{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "TBFXQGKYUc4X" }, "source": [ "##### Copyright 2022 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-08-16T07:58:16.768532Z", "iopub.status.busy": "2024-08-16T07:58:16.768122Z", "iopub.status.idle": "2024-08-16T07:58:16.771801Z", "shell.execute_reply": "2024-08-16T07:58:16.771157Z" }, "id": "1z4xy2gTUc4a" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "KwQtSOz0VrVX" }, "source": [ "\n", " \n", " \n", " \n", " \n", "
\n", " View on TensorFlow.org\n", " \n", " Run in Google Colab\n", " \n", " View source on GitHub\n", " \n", " Download notebook\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "L2MHy42s5wl6" }, "source": [ "# Video classification with a 3D convolutional neural network\n", "\n", "This tutorial demonstrates training a 3D convolutional neural network (CNN) for video classification using the [UCF101](https://www.crcv.ucf.edu/data/UCF101.php) action recognition dataset. A 3D CNN uses a three-dimensional filter to perform convolutions. The kernel is able to slide in three directions, whereas in a 2D CNN it can slide in two dimensions. The model is based on the work published in [A Closer Look at Spatiotemporal Convolutions for Action Recognition](https://arxiv.org/abs/1711.11248v3) by D. Tran et al. (2017). In this tutorial, you will:\n", "\n", "* Build an input pipeline\n", "* Build a 3D convolutional neural network model with residual connections using Keras functional API\n", "* Train the model\n", "* Evaluate and test the model\n", "\n", "This video classification tutorial is the second part in a series of TensorFlow video tutorials. Here are the other three tutorials:\n", "\n", "- [Load video data](https://www.tensorflow.org/tutorials/load_data/video): This tutorial explains much of the code used in this document.\n", "- [MoViNet for streaming action recognition](https://www.tensorflow.org/hub/tutorials/movinet): Get familiar with the MoViNet models that are available on TF Hub.\n", "- [Transfer learning for video classification with MoViNet](https://www.tensorflow.org/tutorials/video/transfer_learning_with_movinet): This tutorial explains how to use a pre-trained video classification model trained on a different dataset with the UCF-101 dataset." ] }, { "cell_type": "markdown", "metadata": { "id": "_Ih_df2q0kw4" }, "source": [ "## Setup\n", "\n", "Begin by installing and importing some necessary libraries, including:\n", "[remotezip](https://github.com/gtsystem/python-remotezip) to inspect the contents of a ZIP file, [tqdm](https://github.com/tqdm/tqdm) to use a progress bar, [OpenCV](https://opencv.org/) to process video files, [einops](https://github.com/arogozhnikov/einops/tree/master/docs) for performing more complex tensor operations, and [`tensorflow_docs`](https://github.com/tensorflow/docs/tree/master/tools/tensorflow_docs) for embedding data in a Jupyter notebook." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:58:16.774936Z", "iopub.status.busy": "2024-08-16T07:58:16.774723Z", "iopub.status.idle": "2024-08-16T07:58:20.724392Z", "shell.execute_reply": "2024-08-16T07:58:20.723562Z" }, "id": "KEbL4Mwi01PV" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting remotezip\r\n", " Using cached remotezip-0.12.3-py3-none-any.whl.metadata (7.2 kB)\r\n", "Requirement already satisfied: tqdm in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (4.66.5)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting opencv-python\r\n", " Using cached opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting einops\r\n", " Downloading einops-0.8.0-py3-none-any.whl.metadata (12 kB)\r\n", "Requirement already satisfied: requests in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from remotezip) (2.32.3)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: numpy>=1.17.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from opencv-python) (1.26.4)\r\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (3.3.2)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (3.7)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (2.2.2)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests->remotezip) (2024.7.4)\r\n", "Using cached remotezip-0.12.3-py3-none-any.whl (8.1 kB)\r\n", "Using cached opencv_python-4.10.0.84-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (62.5 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading einops-0.8.0-py3-none-any.whl (43 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: opencv-python, einops, remotezip\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed einops-0.8.0 opencv-python-4.10.0.84 remotezip-0.12.3\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tensorflow in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (2.17.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: keras in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (3.5.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: absl-py>=1.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (2.1.0)\r\n", "Requirement already satisfied: astunparse>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (1.6.3)\r\n", "Requirement already satisfied: flatbuffers>=24.3.25 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (24.3.25)\r\n", "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (0.6.0)\r\n", "Requirement already satisfied: google-pasta>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (0.2.0)\r\n", "Requirement already satisfied: h5py>=3.10.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (3.11.0)\r\n", "Requirement already satisfied: libclang>=13.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (18.1.1)\r\n", "Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (0.4.0)\r\n", "Requirement already satisfied: opt-einsum>=2.3.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (3.3.0)\r\n", "Requirement already satisfied: packaging in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (24.1)\r\n", "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (3.20.3)\r\n", "Requirement already satisfied: requests<3,>=2.21.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (2.32.3)\r\n", "Requirement already satisfied: setuptools in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (72.2.0)\r\n", "Requirement already satisfied: six>=1.12.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (1.16.0)\r\n", "Requirement already satisfied: termcolor>=1.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (2.4.0)\r\n", "Requirement already satisfied: typing-extensions>=3.6.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (4.12.2)\r\n", "Requirement already satisfied: wrapt>=1.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (1.16.0)\r\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (1.66.0rc3)\r\n", "Requirement already satisfied: tensorboard<2.18,>=2.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (2.17.1)\r\n", "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (0.37.1)\r\n", "Requirement already satisfied: numpy<2.0.0,>=1.23.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow) (1.26.4)\r\n", "Requirement already satisfied: rich in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from keras) (13.7.1)\r\n", "Requirement already satisfied: namex in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from keras) (0.0.8)\r\n", "Requirement already satisfied: optree in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from keras) (0.12.1)\r\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow) (0.43.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorflow) (3.3.2)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorflow) (3.7)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorflow) (2.2.2)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorflow) (2024.7.4)\r\n", "Requirement already satisfied: markdown>=2.6.8 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.6)\r\n", "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.18,>=2.17->tensorflow) (0.7.2)\r\n", "Requirement already satisfied: werkzeug>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.18,>=2.17->tensorflow) (3.0.3)\r\n", "Requirement already satisfied: markdown-it-py>=2.2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from rich->keras) (3.0.0)\r\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from rich->keras) (2.18.0)\r\n", "Requirement already satisfied: importlib-metadata>=4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard<2.18,>=2.17->tensorflow) (8.2.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: mdurl~=0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown-it-py>=2.2.0->rich->keras) (0.1.2)\r\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow) (2.1.5)\r\n", "Requirement already satisfied: zipp>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.18,>=2.17->tensorflow) (3.20.0)\r\n" ] } ], "source": [ "!pip install remotezip tqdm opencv-python einops \n", "!pip install -U tensorflow keras" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:58:20.728489Z", "iopub.status.busy": "2024-08-16T07:58:20.728221Z", "iopub.status.idle": "2024-08-16T07:58:23.825191Z", "shell.execute_reply": "2024-08-16T07:58:23.824477Z" }, "id": "gg0otuqb0hIf" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-08-16 07:58:22.216693: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:485] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "2024-08-16 07:58:22.237981: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:8454] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "2024-08-16 07:58:22.244520: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1452] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" ] } ], "source": [ "import tqdm\n", "import random\n", "import pathlib\n", "import itertools\n", "import collections\n", "\n", "import cv2\n", "import einops\n", "import numpy as np\n", "import remotezip as rz\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "import tensorflow as tf\n", "import keras\n", "from keras import layers" ] }, { "cell_type": "markdown", "metadata": { "id": "Ctk9A57-6ABq" }, "source": [ "## Load and preprocess video data\n", "\n", "The hidden cell below defines helper functions to download a slice of data from the UCF-101 dataset, and load it into a `tf.data.Dataset`. You can learn more about the specific preprocessing steps in the [Loading video data tutorial](../load_data/video.ipynb), which walks you through this code in more detail.\n", "\n", "The `FrameGenerator` class at the end of the hidden block is the most important utility here. It creates an iterable object that can feed data into the TensorFlow data pipeline. Specifically, this class contains a Python generator that loads the video frames along with its encoded label. The generator (`__call__`) function yields the frame array produced by `frames_from_video_file` and a one-hot encoded vector of the label associated with the set of frames." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:58:23.829759Z", "iopub.status.busy": "2024-08-16T07:58:23.829314Z", "iopub.status.idle": "2024-08-16T07:58:23.848580Z", "shell.execute_reply": "2024-08-16T07:58:23.848001Z" }, "id": "nB2aOTU35r9_" }, "outputs": [], "source": [ "#@title\n", "\n", "def list_files_per_class(zip_url):\n", " \"\"\"\n", " List the files in each class of the dataset given the zip URL.\n", "\n", " Args:\n", " zip_url: URL from which the files can be unzipped. \n", "\n", " Return:\n", " files: List of files in each of the classes.\n", " \"\"\"\n", " files = []\n", " with rz.RemoteZip(URL) as zip:\n", " for zip_info in zip.infolist():\n", " files.append(zip_info.filename)\n", " return files\n", "\n", "def get_class(fname):\n", " \"\"\"\n", " Retrieve the name of the class given a filename.\n", "\n", " Args:\n", " fname: Name of the file in the UCF101 dataset.\n", "\n", " Return:\n", " Class that the file belongs to.\n", " \"\"\"\n", " return fname.split('_')[-3]\n", "\n", "def get_files_per_class(files):\n", " \"\"\"\n", " Retrieve the files that belong to each class. \n", "\n", " Args:\n", " files: List of files in the dataset.\n", "\n", " Return:\n", " Dictionary of class names (key) and files (values).\n", " \"\"\"\n", " files_for_class = collections.defaultdict(list)\n", " for fname in files:\n", " class_name = get_class(fname)\n", " files_for_class[class_name].append(fname)\n", " return files_for_class\n", "\n", "def download_from_zip(zip_url, to_dir, file_names):\n", " \"\"\"\n", " Download the contents of the zip file from the zip URL.\n", "\n", " Args:\n", " zip_url: Zip URL containing data.\n", " to_dir: Directory to download data to.\n", " file_names: Names of files to download.\n", " \"\"\"\n", " with rz.RemoteZip(zip_url) as zip:\n", " for fn in tqdm.tqdm(file_names):\n", " class_name = get_class(fn)\n", " zip.extract(fn, str(to_dir / class_name))\n", " unzipped_file = to_dir / class_name / fn\n", "\n", " fn = pathlib.Path(fn).parts[-1]\n", " output_file = to_dir / class_name / fn\n", " unzipped_file.rename(output_file,)\n", "\n", "def split_class_lists(files_for_class, count):\n", " \"\"\"\n", " Returns the list of files belonging to a subset of data as well as the remainder of\n", " files that need to be downloaded.\n", " \n", " Args:\n", " files_for_class: Files belonging to a particular class of data.\n", " count: Number of files to download.\n", "\n", " Return:\n", " split_files: Files belonging to the subset of data.\n", " remainder: Dictionary of the remainder of files that need to be downloaded.\n", " \"\"\"\n", " split_files = []\n", " remainder = {}\n", " for cls in files_for_class:\n", " split_files.extend(files_for_class[cls][:count])\n", " remainder[cls] = files_for_class[cls][count:]\n", " return split_files, remainder\n", "\n", "def download_ufc_101_subset(zip_url, num_classes, splits, download_dir):\n", " \"\"\"\n", " Download a subset of the UFC101 dataset and split them into various parts, such as\n", " training, validation, and test. \n", "\n", " Args:\n", " zip_url: Zip URL containing data.\n", " num_classes: Number of labels.\n", " splits: Dictionary specifying the training, validation, test, etc. (key) division of data \n", " (value is number of files per split).\n", " download_dir: Directory to download data to.\n", "\n", " Return:\n", " dir: Posix path of the resulting directories containing the splits of data.\n", " \"\"\"\n", " files = list_files_per_class(zip_url)\n", " for f in files:\n", " tokens = f.split('/')\n", " if len(tokens) <= 2:\n", " files.remove(f) # Remove that item from the list if it does not have a filename\n", " \n", " files_for_class = get_files_per_class(files)\n", "\n", " classes = list(files_for_class.keys())[:num_classes]\n", "\n", " for cls in classes:\n", " new_files_for_class = files_for_class[cls]\n", " random.shuffle(new_files_for_class)\n", " files_for_class[cls] = new_files_for_class\n", " \n", " # Only use the number of classes you want in the dictionary\n", " files_for_class = {x: files_for_class[x] for x in list(files_for_class)[:num_classes]}\n", "\n", " dirs = {}\n", " for split_name, split_count in splits.items():\n", " print(split_name, \":\")\n", " split_dir = download_dir / split_name\n", " split_files, files_for_class = split_class_lists(files_for_class, split_count)\n", " download_from_zip(zip_url, split_dir, split_files)\n", " dirs[split_name] = split_dir\n", "\n", " return dirs\n", "\n", "def format_frames(frame, output_size):\n", " \"\"\"\n", " Pad and resize an image from a video.\n", " \n", " Args:\n", " frame: Image that needs to resized and padded. \n", " output_size: Pixel size of the output frame image.\n", "\n", " Return:\n", " Formatted frame with padding of specified output size.\n", " \"\"\"\n", " frame = tf.image.convert_image_dtype(frame, tf.float32)\n", " frame = tf.image.resize_with_pad(frame, *output_size)\n", " return frame\n", "\n", "def frames_from_video_file(video_path, n_frames, output_size = (224,224), frame_step = 15):\n", " \"\"\"\n", " Creates frames from each video file present for each category.\n", "\n", " Args:\n", " video_path: File path to the video.\n", " n_frames: Number of frames to be created per video file.\n", " output_size: Pixel size of the output frame image.\n", "\n", " Return:\n", " An NumPy array of frames in the shape of (n_frames, height, width, channels).\n", " \"\"\"\n", " # Read each video frame by frame\n", " result = []\n", " src = cv2.VideoCapture(str(video_path)) \n", "\n", " video_length = src.get(cv2.CAP_PROP_FRAME_COUNT)\n", "\n", " need_length = 1 + (n_frames - 1) * frame_step\n", "\n", " if need_length > video_length:\n", " start = 0\n", " else:\n", " max_start = video_length - need_length\n", " start = random.randint(0, max_start + 1)\n", "\n", " src.set(cv2.CAP_PROP_POS_FRAMES, start)\n", " # ret is a boolean indicating whether read was successful, frame is the image itself\n", " ret, frame = src.read()\n", " result.append(format_frames(frame, output_size))\n", "\n", " for _ in range(n_frames - 1):\n", " for _ in range(frame_step):\n", " ret, frame = src.read()\n", " if ret:\n", " frame = format_frames(frame, output_size)\n", " result.append(frame)\n", " else:\n", " result.append(np.zeros_like(result[0]))\n", " src.release()\n", " result = np.array(result)[..., [2, 1, 0]]\n", "\n", " return result\n", "\n", "class FrameGenerator:\n", " def __init__(self, path, n_frames, training = False):\n", " \"\"\" Returns a set of frames with their associated label. \n", "\n", " Args:\n", " path: Video file paths.\n", " n_frames: Number of frames. \n", " training: Boolean to determine if training dataset is being created.\n", " \"\"\"\n", " self.path = path\n", " self.n_frames = n_frames\n", " self.training = training\n", " self.class_names = sorted(set(p.name for p in self.path.iterdir() if p.is_dir()))\n", " self.class_ids_for_name = dict((name, idx) for idx, name in enumerate(self.class_names))\n", "\n", " def get_files_and_class_names(self):\n", " video_paths = list(self.path.glob('*/*.avi'))\n", " classes = [p.parent.name for p in video_paths] \n", " return video_paths, classes\n", "\n", " def __call__(self):\n", " video_paths, classes = self.get_files_and_class_names()\n", "\n", " pairs = list(zip(video_paths, classes))\n", "\n", " if self.training:\n", " random.shuffle(pairs)\n", "\n", " for path, name in pairs:\n", " video_frames = frames_from_video_file(path, self.n_frames) \n", " label = self.class_ids_for_name[name] # Encode labels\n", " yield video_frames, label" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:58:23.851590Z", "iopub.status.busy": "2024-08-16T07:58:23.851334Z", "iopub.status.idle": "2024-08-16T07:58:55.795904Z", "shell.execute_reply": "2024-08-16T07:58:55.795192Z" }, "id": "OYY7PkdJFM4Z" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "train :\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\r", " 0%| | 0/300 [00:00 (b t) h w c')\n", " images = self.resizing_layer(images)\n", " videos = einops.rearrange(\n", " images, '(b t) h w c -> b t h w c',\n", " t = old_shape['t'])\n", " return videos" ] }, { "cell_type": "markdown", "metadata": { "id": "Z9IqzCq--Uu9" }, "source": [ "Use the [Keras functional API](https://www.tensorflow.org/guide/keras/functional) to build the residual network." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:58:58.153531Z", "iopub.status.busy": "2024-08-16T07:58:58.153309Z", "iopub.status.idle": "2024-08-16T07:59:00.018514Z", "shell.execute_reply": "2024-08-16T07:59:00.017756Z" }, "id": "_bROfh_K-Wxs" }, "outputs": [], "source": [ "input_shape = (None, 10, HEIGHT, WIDTH, 3)\n", "input = layers.Input(shape=(input_shape[1:]))\n", "x = input\n", "\n", "x = Conv2Plus1D(filters=16, kernel_size=(3, 7, 7), padding='same')(x)\n", "x = layers.BatchNormalization()(x)\n", "x = layers.ReLU()(x)\n", "x = ResizeVideo(HEIGHT // 2, WIDTH // 2)(x)\n", "\n", "# Block 1\n", "x = add_residual_block(x, 16, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 4, WIDTH // 4)(x)\n", "\n", "# Block 2\n", "x = add_residual_block(x, 32, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 8, WIDTH // 8)(x)\n", "\n", "# Block 3\n", "x = add_residual_block(x, 64, (3, 3, 3))\n", "x = ResizeVideo(HEIGHT // 16, WIDTH // 16)(x)\n", "\n", "# Block 4\n", "x = add_residual_block(x, 128, (3, 3, 3))\n", "\n", "x = layers.GlobalAveragePooling3D()(x)\n", "x = layers.Flatten()(x)\n", "x = layers.Dense(10)(x)\n", "\n", "model = keras.Model(input, x)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:59:00.022846Z", "iopub.status.busy": "2024-08-16T07:59:00.022165Z", "iopub.status.idle": "2024-08-16T07:59:01.417024Z", "shell.execute_reply": "2024-08-16T07:59:01.416259Z" }, "id": "TiO0WylG-ZHM" }, "outputs": [], "source": [ "frames, label = next(iter(train_ds))\n", "model.build(frames)" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:59:01.421169Z", "iopub.status.busy": "2024-08-16T07:59:01.420633Z", "iopub.status.idle": "2024-08-16T07:59:01.665918Z", "shell.execute_reply": "2024-08-16T07:59:01.665028Z" }, "id": "GAsKrM8r-bKM" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABAEAAAdVCAYAAAD9dMNkAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzdeVyVdf7//+dhEcGQJQRcUUtcU0tzvGXDWKm5TaMpkUtp8xnFxibzqzNaDjqFZZotpg5qWn4al8zGMXOjMi3LZtzXXHFBE0RGQAUEhffvD3+cjye2gwIHvR732+3cxOt9nff7dV2H8+ac57mu69iMMUYAAAAAAOCO5+bqAgAAAAAAQOUgBAAAAAAAwCI8XF0AAKBynDlzRs8995yuXr3q6lIAVCGenp766KOPVK9ePVeXAgCoBIQAAGARGRkZ2rFjh9LS0lxdCoAqJCAgQBkZGYQAAGARnA4AABbi4UH2C8AR8wIAWAshAAAAAAAAFkEIAAAAAACARRACAAAAAABgEYQAAAAAAABYBCEAAAAAAAAWQQgAAAAAAIBFEAIAAAAAAGARhAAAAAAAAFgEIQAAAAAAABZBCAAAAAAAgEUQAgAAUEF2794tY4wWLVrkshpWr14tY4xmzZrlsLwq1AYAACofIQAAAAAAABZBCAAAQCVKTk6WMUZTpkxRfHy8MjIylJiYqGHDhhVaZ9q0adqwYYMyMjL0008/6YknnnDo69q1azLGqFevXpKkevXqyRgjY4yaNWum/fv329tGjhwpY4xSU1OdrrXgaAFjjHJzc3X48GGNGTPG3v7xxx/LGKOPP/7Yvqx9+/b29e+++25JUkBAgN59910dPXpUmZmZ+umnn/T//t//k7u7u8P2Tp8+XRs3btSlS5c0dOjQsu1YAADgFEIAAABcoG/fvvrDH/6g559/XvXr11dcXJxCQkIc1unTp4+GDh2qJ554Qk2aNNGKFSt03333FerLGFPkGK1atdKaNWskSbNnz5bNZlNQUJDTNbZt21Y2m01ubm5q1qyZ8vLyNH36dD355JOSZD/FIDIyUoGBgZKkp59+WpK0fv16/fe//5Wnp6e+/fZbvfTSS1q+fLnq1KmjrVu36u2339aMGTMcxnvyySf1pz/9Sb6+vlq4cKHTdQIAAOcRAgAA4AIffPCBTp8+rXXr1kmS3N3d1bhxY4d1PvroI50+fVrffvutvvvuO7m7u+t//ud/CvWVn59fobUaY3T8+HF9+eWXkqTf/e53kqStW7dq27Ztql69up599lnZbDY99dRTkmS/1sDjjz+u++67T1evXlVsbKwyMjLs4UF0dLRq1qxpHycuLk779++v0G0BAMDqCAEAAHCBc+fOSZKuXr1qX1ZweHyB5OTkQus3aNCgEqqTbDabxo8frwMHDujSpUsyxmjUqFGSrp92UKDgDf3w4cP10EMPqX79+rp48aJWrVolSQoLC5MkeXp6KisrS8YYbdu2TZLk4eHhsD1JSUmVsm0AAFgZIQAAAFVUaGio/eeCUwUSExPty/Ly8iRJ1apVc1jnRsWdKlCa3r17a8qUKWrQoIE6duwoNzc3xcXFSXIMK5YtW6bz58+refPmevfddyVJ//znP3XlyhWHerOzs1WtWjXZbDaHG5/8AwBQuQgBAACoop577jnVr19fERERioiIUH5+vj766CN7+5EjRyRJ3bp1k5+fn8aOHVuoj5SUFElSw4YN5eHh4fTYXl5ekq4HDbm5uWrZsqX69+9faL2cnBzNnz9fkvTggw9KksPXDq5fv1779++Xt7e33nzzTdWsWVP16tXToEGDtGLFCqfrAQAA5YMQAACAKurzzz/XokWLtHr1ah07dkz9+/fXnj177O3R0dHau3evfv/73+vbb7/VDz/8UKiPd955Rzt37lSXLl109epVrV+/3qF90KBB9m8AuPHbA1asWKH33ntPeXl5+vHHHxUbG2u/JsAvxcXF2Y9K+Pnnn7Vp0yZ729WrVxUREaHp06erd+/eSk5O1nfffafHHntMMTExt7qLAABAGdnMzR4nCAC4rRw4cECPPPKIzp8/7+pSUIrk5GSFhITomWeecfhUvSrbvHmzHn74Yb311lv6y1/+4upyUAa1atXSxo0b1bJlS1eXAgCoBBwJAAAAbknjxo3Vpk0b5ebm6oMPPnB1OQAAoASEAAAA4KYVnKqQmpqqZ555RkePHnV1SQAAoATOXyEIAABUihu/FaCq6927t6tLAAAAZcCRAAAAAAAAWAQhAAAAAAAAFkEIAAAAAACARRACAAAAAABgEYQAAAAAAABYBCEAAAAAAAAWQQgAAAAAAIBFEAIAAAAAAGARhAAAAAAAAFgEIQAAAAAAABZBCAAAAAAAgEV4uLoAAEDlu+uuu1StWjVXlwHARa5du6aLFy+6ugwAgAsQAgCABQUFBemjjz5ydRkAXCQ2NlbffPONq8sAALgAIQAAWJCPj486d+7s6jIAuMjcuXNdXQIAwEW4JgAAAAAAABZBCAAAAAAAgEUQAgAAAAAAYBGEAAAAAAAAWAQhAAAAAAAAFkEIAACwhNDQUO3fv9/VZRQSGxsrm82mNWvWuLoU3Kbat2+v4OBgXbp0ydWlAABuA4QAAIASLV68WG3atFH16tUVEhKi6OhoXbhwwen716tXT9u3by+3esq7P1e6ePGipk+frvDwcPXs2dO+vF69erLZbLr33nt17do1SdL27dtls9nk7+/vqnILGTx4sGw2m/02fvx4h/bLly8rOjpaQUFB8vb2VkREhHbs2FGmMb755hv16NFDd911l4KCgtS7d28dPHjQ6fYCq1evttc5duzY22Z8Sdq1a5d++9vfKiAgQHfffbceffRRff/99/b20aNH6/z585o5c2aZ+gUAWBMhAACgWH//+9/1wgsv6OWXX9a5c+e0adMmJSYmqkuXLsrJyXF1ebe9JUuW6OLFi3r66adls9kKtSckJOijjz5yQWXOWbRokYwxio6OLrJ9xIgRmjdvnt58800dOHBABw8eVNeuXZWenu5U/zk5OXrnnXc0ceJEJScna9SoUVqzZo169Oih3NzcUtsL/Pe//9WwYcPKvH2uHr/A3LlzNWHCBJ05c0Zjx47Vxo0b1bNnT125ckWS1KdPH3l7e+uDDz6QMeamxwEAWIQBAFjC/v37Ta1atYwk06JFi1LXz8rKMv7+/mbBggUOyzMzM01oaKiZO3eufZm7u7tJSkqy/3/UqFFmwoQJpl+/fkaS/TZz5kxjjDEhISFmypQpplmzZiYgIMAMHz7c5OTklNiXMabY/m40adIkExISYgIDA010dLTJysqyj/nWW2+ZFi1aGF9fXxMVFWWuXLliv1+7du2MJOPl5WU6dOhgduzYUWqtxhiTnJxsIiMjTWBgoGnQoIF55513St23BXr16mUkmQ0bNjgsr1u3rpFkbDabadCggcnJyTHbtm0zkoyfn599vVOnTpmoqChTu3Zt4+fnZyIiIszmzZsdHpcb95e3t7fp1auXycjIMMYYk5iYaAYMGGDq1Klj/P39TY8ePczhw4edrr9AdHS0kWTGjRtnX3by5Enj5uZmfHx8TF5enjHGmKFDhxpJZsqUKWUewxhj0tLS7Nuya9cup9sjIyONl5eX6dq1q5FkxowZc1uOb4wxP//8s32Mo0eP2pc//PDDRpLZt2+fU/08/fTT9n5q1apl9u/ff9M1AQBuLxwJAAAo0o4dO5Senq7IyEiH5T4+PnriiSf01VdfldrHZ599prp162rbtm0yxuiFF16wty1btkxr167Vzp07tXXrVk2bNu2W+iuoed68edq8ebOOHz+udu3aafPmzfb2tWvXav369Tp06JD27dunRYsW2du2b98uY4zS0tI0dOhQRUVFKS8vr8RajTHq27evQkJCdOzYMcXHxysuLs5+fv+IESM0ePDgYrdnz549kqTmzZsX2f7UU08pMTFR8+bNK9SWnZ2tRx99VJ9++qkWLlyoXbt26ejRo3rsscd04MABh3WHDBmiCxcuqEOHDlqzZo3mzJmjK1euqEuXLlq2bJkWLlyo//znP/rxxx/VuXNnZWRkFFuzs/bu3av8/HzVqVNHbm7XX27UrVtXkrR79+6b7rNAUadFFNW+ZMkSLV++XOPHj1d4ePhNjVtVxs/OztbChQslSW3btlWjRo3sbQW/Q7t27bqlMQAAdz5CAABAkVJTU1WjRg35+voWaqtdu7ZSU1Nvqf+YmBg1atRIDRs21KRJk7R06dJb6k+SPD095eXlJV9fX/n5+WnYsGHq1q2bvX3ixImqX7++6tSpoz59+hR5oUBvb289//zzysvL07Fjx0qsde/evTp48KDee+89BQQEqFmzZnrppZe0fPlyp+otOCy+qH0sScOHD1dYWJjeeOMNZWdnO7StW7dOCQkJatOmjbp166ZGjRopMjJSubm5mjt3rsO6L774ogICAtSpUydJ108zWLdunY4cOaKOHTuqa9euCg8PV/fu3ZWUlOR0/SU5d+6cJKlatWr2ZV5eXpKk5OTkMveXkZGhESNGSJIGDhyohg0bltp+9uxZvfDCC2rSpIlefvnlm9mMKjN+79695ePjowkTJsjf319vv/223N3d7e01a9aUJKWlpd3SOACAOx8hAACgSHfffbcyMzOLvOJ4UlKSgoKCbqn/sLAw+88Fb5huVevWrfXqq68qKipKnTp10uTJk5WVlWVvv7Fmb29vhzfWcXFxCg8Pl5eXl2w2m06cOKGkpKQSaz116pTS09Pl5eUld3d3ubm5aeTIkTp9+rQkac6cOQ5HG/xSwafFxV3VvVq1aoqJiVFSUpL+/ve/O7SdPHlSkhQcHGxfFhISYq/rRgXreHp6SpLy8vLs99+yZYv9gnWffPKJJOno0aPF1uysglpuvHZEwc+hoaFl6isnJ0d9+vTRwYMH9eijj2r+/PlOtX/yySdKS0tTXFycPYC4Ga4eX7p+YcGsrCwtXLhQGRkZ6tGjhz2kkq5fZFIq+ggFAABuRAgAAChS+/bt5efnV+hT4aysLK1atUpdunSxL6tevbr9ImWSHI4SKDgU/JdufKN68uRJ1alTp9S+SuqvwLPPPqtvv/1W8fHx2r17t2JjY0tcX5IOHz6sV155RYsWLVJGRoaMMWrYsKH9yvzF1VpwVMHVq1eVl5en/Px8GWO0YcOGUseUrocWkoq8mnyBIUOGqEmTJlq2bJnD8oJPolNSUuzLCj59vzG0KE7B/SMiImSMcbhNnTrVqfpL0rp1a7m5uSkpKUn5+fmSpDNnzki6fii7s/Lz8zVo0CBt2rRJv/rVr7Rq1Sp5e3s71V4wbpcuXWSz2TR79mxJ0ttvv6327dvfFuPfyNvbW0OGDFFwcLByc3Mdvmmh4Hfo/vvvL3O/AABrIQQAABTJ29tbsbGxGjNmjJYtW6aMjAwdOnRI/fr1U3BwsIYMGWJf97777tOHH36orKwsxcfHa8WKFfa24OBg7du3r9BVy19//XWdPHlSp06dUmxsrKKiokrtq6T+JGnVqlWaOnWqzp49q2vXrskY43AkQHEyMzPl7u4uf39/Xbt2TdOnT7d/Ul5SrW3atFGDBg00ZswYpaSkKDU1VR9++KH9zV5p1wTo1auXJGnTpk3FruPh4aFJkyYV2t7u3burcePG2rNnj7788kudOHFCy5cvl6enp4YPH17qNnfv3l3h4eH6/vvvtWLFCmVmZmrnzp0aNmyYfvjhB0lSx44dZbPZ9Nlnn5Xa3y+FhYVpwIABysrK0oIFC5SQkKDVq1fL39/ffti8M/2PHDlS//znP9W8eXOtWbNGNWrUcLp97NixDuHGyJEjJUljxoyxf81kaTW4evzdu3dr5MiROnTokLKzs7V06VKlpKTI29tbv/rVryRd//3dsWOHwsLC1KpVq2L3JQAAEiEAAKAEf/rTnzRjxgy9/vrrCg4OVkREhOrVq6dvvvlG1atXt6/3/vvva8WKFapdu7bmzJmjfv362dteeeUVxcTEyN3dXbNmzbIv79+/v7p37662bdvqgQce0Lhx40rtq6T+JKlr1666ePGiHnzwQTVs2FDGGMXExJS6nQ888ICGDh2qDh06KDw8XAkJCWrZsmWptbq5uWnlypVKSUnRfffdp5YtW2rLli32kKA0gwYNUs2aNfXJJ5+U+NVuAwYMKPTmzsfHRxs2bFD//v01ZMgQtW3bVvfcc4+++uorp94Ient76+uvv9aAAQP04osvKjQ0VH/84x/10EMP2d9cFtTk4eFRZB8jRoyQzWazX4Ng6tSpstlsGj9+vKTrp0MMHz5c48ePV8uWLdW8eXN9/fXX9kPWS+v/8uXLmjNnjqTrn3QHBQXZT11YuXJlqe3OKKkGV48vXQ/F2rRpo6ioKAUGBmr06NHq2bOnvvrqK/vRHCtXrlR2draGDRtW5FdNAgBwI5sp6VUHAOCOceDAAT3yyCM6f/68WrRoUegK8pUpNDRUX3/99W3xqWVF1xobG6uJEyfqiy++UO/evStkjJtx7do1BQYGqm7dutq9e/ctn9Ne2f3fDjWU1/jt27dXYmKiEhISir3I5C8NGDDAfg2IWrVqaePGjQ7BFwDgzsWRAAAAuFBMTIyMMVUqAJCkrVu3KjMzUwsWLKiQN8cV3f/tUEN5jb99+3alpKQ4HQAAAKyt6GPPAACApT300EPKy8u7bfu/HWpw9fgAAGsiBAAAVLqb+Z54V7mdagUAACgNpwMAAAAAAGARhAAAAAAAAFgEIQAAAAAAABZBCAAAAAAAgEUQAgAAAAAAYBGEAAAAAAAAWAQhAAAAAAAAFkEIAAAAAACARRACAAAAAABgER6uLgAAUPkSEhLUsmVLV5cBwEXOnDnj6hIAAC5CCAAAFnLlyhX5+PjIGKMTJ064uhwALuTj4yPp+rwAALAOQgAAsIj69etr/vz5ri4DVcC///1vvfvuuxo9erQ6duzo6nJQBdSvX9/VJQAAKonNGGNcXQQAAKg8y5cv11NPPaVPP/1UkZGRri4HAABUIi4MCAAAAACARRACAAAAAABgEYQAAAAAAABYBCEAAAAAAAAWQQgAAAAAAIBFEAIAAAAAAGARhAAAAAAAAFgEIQAAAAAAABZBCAAAAAAAgEUQAgAAAAAAYBGEAAAAAAAAWAQhAAAAAAAAFkEIAAAAAACARRACAAAAAABgEYQAAAAAAABYBCEAAAAAAAAWQQgAAAAAAIBFEAIAAAAAAGARhAAAAAAAAFiEh6sLAAAAFe/777/XDz/8IEnat2+fJOnzzz/X8ePHJUmdOnXSww8/7LL6AABA5bAZY4yriwAAABVr06ZNeuSRR4pt37hxozp37lx5BQEAAJcgBAAAwALy8/NVv359JSUl6cY//TabTaGhoTpz5ozc3DhLEACAOx1/7QEAsAA3Nzc9/fTT+mX2b4zRwIEDCQAAALAI/uIDAGARAwYMKNNyAABw5+F0AAAALKRp06Y6duyY8vPzZbPZ1LhxYx07dszVZQEAgErCkQAAAFjIgAEDlJ+fL+n6qQDPPPOMiysCAACViSMBAACwkMOHD6tZs2b2/x86dEhNmzZ1YUUAAKAycSQAAAAW0rRpU7Vr106S1K5dOwIAAAAsxsPVBQCoPBcvXlRkZKRycnJcXQoAF0pPT7f/27lzZ9cWA8ClvLy8tHz5ctWsWdPVpQCoJJwOAFhISkqKmjVrprS0NFeXAgAAqoCAgAAdOnRIwcHBri4FQCXhdADAYjw8OAAIAABcx+sCwHoIAQAAAAAAsAhCAAAAAAAALIIQAAAAAAAAiyAEAAAAAADAIggBAAAAAACwCEIAAAAAAAAsghAAAAAAAACLIAQAAAAAAMAiCAEAAAAAALAIQgAAAFBIcnKyjDEaPHiwq0sBAADliBAAAICb0LRpUy1YsEAnT55Ubm6uLl68qIMHD+rll192WU3t27fX4sWLlZKSoqysLB08eFB//vOf5eb2f3/ud+/eLWOM/Vaw3oQJE1StWrUKr/HNN990GN8YU+R6N9Z59epVXbhwQdu3b9ekSZPk5+dX4XUCAHCnIgQAAKCMHnvsMe3atUtDhw7VggUL1KBBAzVt2lQTJ05UQECAy+qaPHmyFi9erCZNmug3v/mNQkNDNW3atCKDicWLF8tms+n++++Xv7+/Jk+erKlTp1Z4jePHj5fNZlPfvn2dWn/x4sXy8fFRRESEzpw5o7/97W/auXOn6tSpU8GVAgBwZyIEAACgDKpVq6aPP/5Y3t7eWrx4sWJjY5WcnKykpCQtX75cf/nLX+zrBgYGasaMGTp69KiysrJ05MgRTZs2TTVr1nTos+DQ+ylTpig+Pl4ZGRlKTEzUsGHDJEnz5s2TMUZLliyx36d169b2T8lr164tSerevbvWrl2rjIwMbdu2TfHx8ZKkPn36FLs9hw8f1sqVKyVJTz/9dInbfu3aNRlj1KtXL0lSvXr17J/WN2vWTJL00ksv6fDhw8rKytLx48cVFxen+vXrO7Vvi3P16lXt379f/fv319GjR9W4cWO99957t9QnAABWRQgAAEAZdOzY0f4p9KefflrsetWqVdN3332nF198UUuXLlXt2rUVHx+vP//5z4qPj3c4RL9A37599Yc//EHPP/+86tevr7i4OIWEhGjevHmSrr+Z9/X1lSQ9++yzkqQvvvhCSUlJhfpyd3dXmzZtJEkXLlwocZtsNpsTW/5/ijuE/4EHHtC7776rrKws1alTRxEREdqzZ49GjhxZpv6Lc+3aNXtg8cQTT8jT07Nc+gUAwEoIAQAAKIPQ0FD7z8nJycWu9/jjj6tly5Yyxmjq1KnKyMjQtGnTJF0PEh566KFC9/nggw90+vRprVu3TtL1N/KNGzfW9u3btXPnTnl7e6tfv35yd3fXwIEDJckeEPzSW2+9pWbNmunq1at69dVXi60zPDxcv/vd7yRJn3zySSlbf11+fn6RywvO1Q8LC9PgwYN1zz33aOnSpRo/frxT/Trj7NmzkiQvLy+XnnoBAMDtihAAAIAyuPGN/42BwC81aNBAknTp0iVlZmZKks6dO1eo/UYF7VevXrUvc3d3l3Q9IJCuHwHQpUsX1a5dWydPntSXX35ZqJ/Y2FiNHj1a2dnZ6tu3r7Zs2VJonUGDBskYoz179igjI0MxMTEaN25c8RvuhO+++05Lly6Vv7+/Zs6cqU2bNik1NVVvvvnmLfV7o4KjMHJycpSWllZu/QIAYBWEAAAAlMG///1v+6fR/fv3L3a9xMRESZKvr69q1KghSQoJCbG3nz59ukzjLlmyRJmZmercubP9k/X58+cX+lR+0qRJ+utf/6rs7Gz99re/1Zo1a4rsr+DCgN7e3mrWrJkmT56s3NzcEmvIy8uTJPu3CNy4PQXtAwcOVGBgoCIiIjR16lR5eHho3Lhx5XJFfw8PD/sFBVetWuUQlgAAAOcQAgAAUAa5ubl67rnndOXKFT3zzDOaMGGCQkJCFBwcrL59+9qvsB8fH6+DBw/KZrPZ3wQXXDRw69at+uGHH8o07sWLF7Vs2TLZbDZ17txZ165d04cffuiwziuvvKK//e1vysnJUZ8+fbRhw4by2ej/35EjRyRJ3bp1k5+fn8aOHevQ3r59e82fP99+CsP69eslXT8aIisr66bH9fDwUMuWLfXZZ5/p3nvv1fHjxzV69Oib3xAAACyMEAAAgDL68ssv9cADD+jjjz/W8OHDdfr0aZ04cULTpk3TxYsXJV0PCyIiIjRr1iwNGjRIycnJ6tGjh95++209/vjjxZ5XX5Ibz/9fvXp1oQsCTpw4UdL18+Xj4+PtV+5PTU29ha39P9HR0dq7d69+//vf69tvvy0UZOzatUvffPONZsyYoXPnzulf//qXNm/erCeeeML+qf348eNljNG//vUv+/1++Q0DNxo0aJBycnL0/fffKywsTK+99poeeOAB/fzzz+WyTQAAWI3NFHeJXwB3nJSUFLVq1Urnz593dSkAAKAKqFWrlvbv36/g4GBXlwKgknAkAAAAAAAAFkEIAAAAAACARRACAAAAAABgEYQAAAAAAABYBCEAAAAAAAAWQQgAAAAAAIBFEAIAAAAAAGARhAAAAAAAAFgEIQAAAAAAABZBCAAAAAAAgEUQAgAAAAAAYBGEAAAAAAAAWAQhAAAAAAAAFkEIAAAAAACARXi4ugAArhEYGOjqEgBUgCtXrigrK0s1a9aUhwd/5gEU78KFC64uAYAL8OoAsKhnnnlGffr0cXUZAMpZv379lJWVpfbt2ysmJsbV5QCoolauXKkZM2a4ugwALkAIAFhUkyZN1LlzZ1eXAaCcubu7S5KCg4N5jgMo1oEDB1xdAgAX4ZoAAAAAAABYBCEAAAAAAAAWQQgAAAAAAIBFEAIAAAAAAGARhAAAAAAAAFgEIQCA215oaKj279/v6jIKiY2Nlc1m05o1a1xdCm5D7du3V3BwsC5duuTqUm4bzAWwKuYLAGVBCACgRK1atdKiRYsqfJx69epp+/btFT5OZbl48aKmT5+u8PBw9ezZU9L1bbTZbLr33nt17do1SdL27dtls9nk7+/vynILGTx4sGw2m/02fvx4h/bLly8rOjpaQUFB8vb2VkREhHbs2OF0/99884169Oihu+66S0FBQerdu7cOHjzodHuB1atX22scO3ZsmbbR1TXs2rVLv/3tbxUQEKC7775bjz76qL7//nt7++jRo3X+/HnNnDmzTNt1MxYvXqw2bdqoevXqCgkJUXR0tC5cuOD0/cv7+XsnzQfMBSUrr+ehdPPPRVfPBaXtY0n6/PPP9eCDD6p69er29U6ePGlvr8z5AsAdwACwjHPnzplatWoZSWbWrFlO3adly5bmH//4RwVXZkzdunXNtm3bbuq+ISEhZt++feVc0a2Ji4szkszEiRPty+rWrWskGUlm3rx5xhhjtm3bZiQZPz8/V5VaoujoaCPJjBs3zmH5oEGDjCTzwQcfmISEBBMUFGQCAgJMWlpaqX1euXLF9OrVy2zZssVcunTJvPbaa0aSCQsLMzk5OaW2F0hNTTWhoaH2fTpmzBint6sq1BAdHW1+/PFHc/nyZVyND78AACAASURBVPPGG28YScbX19dkZ2cbY4y5fPmy8fb2Ng0bNjT5+flO91vwHH/66aedWn/27NnG39/fLF261KSnp5uffvrJdO/e3dx///3mypUrTvVxK8/f8uyPuaDiVOW5wJibfy5WhbmgQHH7eNmyZcZms5mePXuaxMTEIu97M/PFrFmzjCRTq1Ytc+7cuTLXC+D2RQgAWEh5hAAhISHmrbfeMi1atDC+vr4mKirK/kYhJCTETJkyxTRr1swEBASY4cOHO7xIcnd3N0lJSfb/jxo1ykyYMMH069fP/sJJkpk5c2aRtUyaNMmEhISYwMBAEx0dbbKyskqtqV27dkaS8fLyMh06dDA7duxw2JaS6k1OTjaRkZEmMDDQNGjQwLzzzjtO7TNjjOnVq5eRZDZs2GBfVvDC32azmQYNGpicnJwiX/ifOnXKREVFmdq1axs/Pz8TERFhNm/e7LAfb9xf3t7eplevXiYjI8O+TmJiohkwYICpU6eO8ff3Nz169DCHDx92uv4CRb0oPXnypHFzczM+Pj4mLy/PGGPM0KFDjSQzZcqUMo+RlpZm35Zdu3Y53R4ZGWm8vLxM165db/pFd1Wp4eeff7b3f/ToUfvyhx9+2Egq0xvbsoQAWVlZxt/f3yxYsMBheWZmpgkNDTVz5861Lyvr87ek51dxfRljnJoPmAv+T2nzgRXmAmPK77noyrmgqH2cn59vwsLCjCRz9uzZEu9f1vmCEACwLk4HAFBma9eu1fr163Xo0CHt27fP4XSBZcuWae3atdq5c6e2bt2qadOmldrfZ599prp162rbtm0yxuiFF14otM6OHTs0b948bd68WcePH1e7du20efPmUmvavn27jDFKS0vT0KFDFRUVpby8vFLrNcaob9++CgkJ0bFjxxQfH6+4uDj7Ob0jRozQ4MGDi92mPXv2SJKaN29eqO2pp55SYmKi5s2bV6gtOztbjz76qD799FMtXLhQu3bt0tGjR/XYY4/pwIEDDusOGTJEFy5cUIcOHbRmzRrNmTNHknTlyhV16dJFy5Yt08KFC/Wf//xHP/74ozp37qyMjIxia3bW3r17lZ+frzp16sjN7fqfkbp160qSdu/efVP9FSjqUOii2pcsWaLly5dr/PjxCg8PL/OYVamG7OxsLVy4UJLUtm1bNWrUyN5W8Puza9eum+6/JDt27FB6eroiIyMdlvv4+OiJJ57QV199VWofJT1/K2I+YC4oPBdIRc8HVpgLpPKdD6rCfHSjY8eO6dSpU6pWrZp69+4tHx8fNW7cWO+//36hdSt6vgBw5yAEAFBmEydOVP369VWnTh316dPH4UJcMTExatSokRo2bKhJkyZp6dKl5TKmp6envLy85OvrKz8/Pw0bNkzdunVzqiZJ8vb21vPPP6+8vDwdO3as1Hr37t2rgwcP6r333lNAQICaNWuml156ScuXL3eq3vT0dEmSr69vobbhw4crLCxMb7zxhrKzsx3a1q1bp4SEBLVp00bdunVTo0aNFBkZqdzcXM2dO9dh3RdffFEBAQHq1KmTJCkhIcHex5EjR9SxY0d17dpV4eHh6t69u5KSkpyuvyTnzp2TJFWrVs2+zMvLS5KUnJxcpr4yMjI0YsQISdLAgQPVsGHDUtvPnj2rF154QU2aNNHLL798s5tRJWooeFE/YcIE+fv76+2335a7u7u9vWbNmpKktLS0mx6jJKmpqapRo0aRv6e1a9dWamrqLfVfEfMBc0HhuUAqej640+cCSeU6H1SF+eiXzp8/L0nKzc3VY489pjNnzsjPz0+jRo0q9BhW9HwB4M5BCACgzIKCguw/e3t7O7x4DQsLs/9c8AKpPLRu3VqvvvqqoqKi1KlTJ02ePFlZWVml1hQXF6fw8HB5eXnJZrPpxIkTSkpKKrXeU6dOKT09XV5eXnJ3d5ebm5tGjhyp06dPS5LmzJlT4gUTCz4hKupKzdWqVVNMTIySkpL097//3aGt4EJPwcHB9mUhISH2mm5UsI6np6ck2T/VLOhjy5Yt9gtIffLJJ5Kko0ePFluzswrqycnJsS8r+Dk0NNTpfnJyctSnTx8dPHhQjz76qObPn+9U+yeffKK0tDTFxcXZ33DcLFfXsHr1amVlZWnhwoXKyMhQjx49HN6YXrx4UVLRn0iWh7vvvluZmZlF/p4mJSU5PK9uRkXMB8wFheeCG9e7cT640+cCqfyei66eC4pz4+MfFRWlwMBA9e7dW5L0xRdfOKxb0fMFgDsHIQCAcnXji9OTJ0+qTp069v9Xr15dV65csf//xk8ZCw4lLcmzzz6rb7/9VvHx8dq9e7diY2NLXP/w4cN65ZVXtGjRImVkZMgYo4YNG9qvxl1SvQWfJF69elV5eXnKz8+XMUYbNmwotU7p+hsVScVexXrIkCFq0qSJli1b5rC84JOnlJQU+7KCT9tufJNSkoI+IiIiZK5f+8V+mzp1qlN9lKR169Zyc3NTUlKS8vPzJUlnzpyRdP1wdmfk5+dr0KBB2rRpk371q19p1apV8vb2dqq9YMwuXbrIZrNp9uzZkqS3335b7du3d3o7qkIN0vU3qkOGDFFwcLByc3Mdrqxe8Ptz//33l6lPZ7Vv315+fn6FPlHMysrSqlWr1KVLF/uym3n+Fvf8KqmvkvorwFzAXHBju3Rrz8WqMhcUpUGDBvZP+G02m0NbjRo1HP5f0fMFgDsHIQCAcvX666/r5MmTOnXqlGJjYxUVFWVvu++++/Thhx8qKytL8fHxWrFihb0tODhY+/btkzGmyH5XrVqlqVOn6uzZs7p27ZqMMQ6f/hUlMzNT7u7u8vf317Vr1zR9+nSHr1Qqqd42bdqoQYMGGjNmjFJSUpSamqoPP/zQ/gKvtPOAe/XqJUnatGlTke0eHh6aNGlSoe3t3r27GjdurD179ujLL7/UiRMntHz5cnl6emr48OElbu+NfYSHh+v777/XihUrlJmZqZ07d2rYsGH64YcfJEkdO3aUzWbTZ5995lSfNwoLC9OAAQOUlZWlBQsWKCEhQatXr5a/v7/9UNnS+h85cqT++c9/qnnz5lqzZk2hF7MltY8dO9bhzczIkSMlSWPGjHH4WjlX11DS+Lt379bIkSN16NAhZWdna+nSpUpJSZG3t7d+9atfSbr++7tjxw6FhYWpVatWRW7DrfL29lZsbKzGjBmjZcuWKSMjQ4cOHVK/fv0UHBysIUOG2Ne9medvcc+vkvoqqT+JuYC5wLH9Vp+Lt1pDeYxfkmrVqumll16SdP2ogwsXLmj16tVyc3PTwIED7etVxnwB4M5BCACgXPXv31/du3dX27Zt9cADD2jcuHH2tvfff18rVqxQ7dq1NWfOHPXr18/e9sorrygmJkbu7u6aNWtWoX67du2qixcv6sEHH1TDhg1ljFFMTEyJtTzwwAMaOnSoOnTooPDwcCUkJKhly5ZO1evm5qaVK1cqJSVF9913n1q2bKktW7Y4hBolGTRokGrWrKlPPvmk2GBjwIABhV6s+fj4aMOGDerfv7+GDBmitm3b6p577tFXX33l9As7b29vff311xowYIBefPFFhYaG6o9//KMeeugh+xvMgpo8PDyK7GPEiBGy2Wz2c4+nTp3q8P3Vc+bM0fDhwzV+/Hi1bNlSzZs319dff20/DLWk/i9fvmy/iOHBgwcVFBRkP1R55cqVpbY7y9U1lDT+fffdpzZt2tgP7x09erR69uypr776yv7p7cqVK5Wdna1hw4YV+gSwPP3pT3/SjBkz9Prrrys4OFgRERGqV6+evvnmG1WvXt2+3s08f4t7fpXUV0n9ScwFzAV31lwglb6PY2JiNH78eP3jH/9QvXr15ObmphUrVujXv/61vY/Kmi8A3CHK++sGAFRdN/MVgWVRFb+juyQVXW/B90l/8cUXFTbGzbh69arx9fU1zZo1c/p74KtS/7dDDeUxfrt27UytWrXMxYsXy3S/snxFYEW6neYD5gLmgtt9/JuZL/iKQMC6OBIAACpITEyMjDH2izhVFVu3blVmZqYWLFhQIReyquj+b4caymP87du3KyUlpciryuP2wlzAXFDR4zNfACiLoo9LAgDcsR566CGH70e/3fq/HWpw9fiAM5gL7vzxAaAohAAAyk1Zvxfa1W63eoHbye30/LqdagUA4FZxOgAAAAAAABZBCAAAAAAAgEUQAgAAAAAAYBGEAAAAAAAAWAQhAAAAAAAAFkEIAAAAAACARRACAAAAAABgEYQAAAAAAABYBCEAAAAAAAAWYTPGGFcXAaBypKSkqFWrVjp//rxq166tgIAAV5cEoJydOHFC2dnZqlmzpurVq+fqcgBUUWlpaUpKSlKtWrW0f/9+BQcHu7okAJXEw9UFAKhc2dnZ8vHxUXp6utLT011dDoAK4OPjo6tXr+rEiROuLgVAFebj46Ps7GxXlwGgkhECABbi5+enBQsWuLoMAC7273//W++++65Gjx6tjh07urocAC7m5+fn6hIAVCJOBwAAwGKWL1+up556Sp9++qkiIyNdXQ4AAKhEXBgQAAAAAACLIAQAAAAAAMAiCAEAAAAAALAIQgAAAAAAACyCEAAAAAAAAIsgBAAAAAAAwCIIAQAAAAAAsAhCAAAAAAAALIIQAAAAAAAAiyAEAAAAAADAIggBAAAAAACwCEIAAAAAAAAsghAAAAAAAACLIAQAAAAAAMAiCAEAAAAAALAIQgAAAAAAACyCEAAAAAAAAIsgBAAAAAAAwCIIAQAAAAAAsAgPVxcAAAAq3vfff68ffvhBkrRv3z5J0ueff67jx49Lkjp16qSHH37YZfUBAIDKYTPGGFcXAQAAKtamTZv0yCOPFNu+ceNGde7cufIKAgAALkEIAACABeTn56t+/fpKSkrSjX/6bTabQkNDdebMGbm5cZYgAAB3Ov7aAwBgAW5ubnr66af1y+zfGKOBAwcSAAAAYBH8xQcAwCIGDBhQpuUAAODOw+kAAABYSNOmTXXs2DHl5+fLZrOpcePGOnbsmKvLAgAAlYQjAQAAsJABAwYoPz9f0vVTAZ555hkXVwQAACoTRwIAAGAhhw8fVrNmzez/P3TokJo2berCigAAQGXiSAAAACykadOmateunSSpXbt2BAAAAFiMh6sLAFBxfvrpJ7344ou6du2aq0sBUIWkp6fb/+3cubNriwFQpXh4eOj9999XixYtXF0KgApCCADcwVJSUrRt2zZdvHjR1aUAqIISEhKUkJDg6jIAVCE1a9ZUSkoKIQBwB+N0AOAO5+7u7uoSAADAbYLXDcCdjxAAAAAAAACLIAQAAAAAAMAiCAEAAAAAALAIQgAAAAAAACyCEAAAAAAAAIsgBAAAAAAAwCIIAQAAAAAAsAhCAAAAAAAALIIQAAAAAAAAiyAEAACggiQnJ8sYo8GDB7u6lApX1LZW5vZbaV8DAHArCAEAAHek3bt3yxhjv125ckUHDx7Uyy+/XKZ+Vq9eLWOMZs2aVaF15ufnq3379vblCxculDFGK1eurJBxb0cV/VgAAGAFhAAAgDva4sWLZbPZ1LFjR91zzz164403NGjQIFeXVYjNZtM777zj6jLKVWhoqGw2mxYtWnRHjQUAwO2MEAAAYAm7d+/Wzz//LEnq0KGDw/KCowVyc3N1+PBhjRkzRpK0f/9+9erVS5I0cuRIGWOUmppqv6+/v7/efPNNHTp0SJcvX9bWrVsVERFRaOyWLVsqPj5eGRkZSkxM1LBhwwqtk5+fr1//+tfq27dvsdsQGBioGTNm6OjRo8rKytKRI0c0bdo01axZ02G9gkPjp0+fro0bN+rSpUsaOnSoJCk1NVXGGE2ePFnffvutMjMztX//fj3++OOaMWOG0tLSdOHCBc2fP1/u7u5O7afi3HiIfufOnR2OzCi4paenl8tj8cvTAZzZVwX3mTJlSqmPDwAAdwwD4I61ceNGExAQYCRx42a52+7du40xxixatMhIMq1btza5ubnGGGMGDhxYaH2bzWYaN25sfvrpJ2OMMU8++aSRZFavXm2MMWbWrFkO63t6epo9e/YYY4z59NNPTXBwsAkPDzdvvPGGfZ3k5GRjjDGHDh0y9evXNwMHDjTGGHPt2jUTEhLiUOeSJUtMTk6OOXr0qPH09DQLFy40xhizcuVKI8lUq1bN7N+/3xhjzGuvvWb8/PzMzJkzjTHG/Pjjj8bNza3QuMePHzetWrVyqDs1NdUYY8zOnTtNrVq17H0YY8yYMWNMSEiIOX/+vDHGmEGDBjm9nwrGHDx4cKE6blwmybRq1cqkp6cbY4xJTk6+5cfil2M5u6+ceXy4cbPaLSAgwGzcuLGMrzgA3E44EgAAcEcbNGiQjDHas2ePPD09tXXrVn3xxReF1jPG6Pjx4/ryyy8lSb/73e9K7Pfxxx9X69atJV3/ZDolJUVHjhzRK6+8UmjdDz74QKdPn9a6deskSe7u7mrcuLHDOsePH9fs2bN17733auTIkUWO17JlSxljNHXqVGVkZGjatGmSpI4dO+qhhx4qdJ+4uDjt37+/yPo//vhjnT9/Xtu2bbNv/6xZs3Tu3DkdPnxYkhQeHl7ofmXdT79Ut25drV27Vn5+frp27Zr9CIXyHKOs+8qZxwcAgDsFIQAA4I5WcE2AWrVqacuWLerQoYOWLFki6fp5+OPHj9eBAwd06dIlGWM0atQoSVK9evVK7DcsLEySlJmZqfPnz5e47rlz5yRJV69etS+78VD7ArGxsbpw4YJiYmIUEBDg0NagQQNJ0qVLl5SZmenQ743tN0pKSiq2poJD6XNzcyVJFy9eVE5OjsM6BTXeyn66Uc2aNbVmzRrVr19fkvT8889r/fr15TqGVPZ95ezjAwDAnYAQAABgCampqfY3nI888ogkqXfv3poyZYoaNGigjh07ys3NTXFxcZL+702gMabI/k6dOiVJqlGjhmrVqlUuNaalpWny5MkKDAxU7969HdoSExMlSb6+vqpRo4YkKSQkxN5++vTpcqmhKM7sp9J4enrqs88+U5s2bSRJr7/+uubPn1+mMYp7LH7JlfsKAICqjhAAAGAJQUFB6t69uyTZD4H38vKSJOXl5Sk3N1ctW7ZU//79He6XkpIiSWrYsKE8PDzsy+Pj47V3715J0uzZsxUcHKx77rlHb7311i3VOXv2bCUkJMjNzfFPdHx8vA4ePCibzaZx48bJz89Pf/nLXyRJW7du1Q8//HBL45bEmf1UmiFDhqhr166SpEWLFumvf/1rmcco7rH4JVfuKwAAqjpCAADAHa3gmgA///yz6tevr//93/+1f0XgihUr9N577ykvL08//vijYmNj7eehF3jnnXe0c+dOdenSRVevXrUfTXD16lX95je/0dSpU9WmTRudOHFCy5Yt0+rVq2+p3tzcXI0bN67I5REREZo1a5YGDRqk5ORk9ejRQ2+//bYef/xx5efn39K4JXFmP5WmevXq9p8HDx5c6NsBbuWx+CVX7isAAKo6m3H22DoAt51NmzbpySefVFpamqtLAQAAt4GAgACtWLFCnTt3dnUpACoIRwIAAAAAAGARhAAAAAAAAFgEIQAAAAAAABZBCAAAAAAAgEUQAgAAAAAAYBGEAAAAAAAAWAQhAAAAAAAAFkEIAAAAAACARRACAAAAAABgEYQAAAAAAABYBCEAAAAAAAAWQQgAAAAAAIBFEAIAAAAAAGARhAAAAAAAAFiEh6sLAFDxPD095evr6+oyALhAbm6uLl++rLvuukvVqlVzdTkAqrBLly65ugQAlYAQALAAX19fxcTEqG3btq4uBUAle+6553T58mUFBQXpo48+cnU5AKqo3bt3KzY2VsYYV5cCoIIRAgAW0bZtW3Xu3NnVZQCoZD4+PvZ/mQMAAADXBAAAAAAAwCIIAQAAAAAAsAhCAAAAAAAALIIQAAAAAAAAiyAEAAAAAADAIggBANx2QkNDtX//fleX4SA2NlY2m01r1qxxdSm4Q7Vv317BwcF8j3cZVMW5QmK+QMVjvgBQEkIAAA5atWqlRYsWVfg49erV0/bt2yt8nMpw8eJFTZ8+XeHh4erZs6d9eb169WSz2XTvvffq2rVrkqTt27fLZrPJ39/fVeUWafDgwbLZbPbb+PHjHdovX76s6OhoBQUFydvbWxEREdqxY4fT/X/zzTfq0aOH7rrrLgUFBal37946ePCg0+0FVq9eba9x7Nix5TZ+ZdRQ2j6WpM8//1wPPvigqlevbl/v5MmTkqTRo0fr/PnzmjlzptNj3orFixerTZs2ql69ukJCQhQdHa0LFy44dd/yfn4zX1Sd+cLVc4Wz60gVN19UhblCqlrzBYDbjAFwx9q4caMJCAgwgYGBZuPGjU7dp2XLluYf//hHxRZmjKlbt67Ztm3bTd03JCTE7Nu3r5wrunlxcXFGkpk4caLD8rp16xpJRpKZN2+eMcaYbdu2GUnGz8/PFaWWKjo62kgy48aNc1g+aNAgI8l88MEHJiEhwQQFBZmAgACTlpZWap9XrlwxvXr1Mlu2bDGXLl0yr732mpFkwsLCTE5OTqntBVJTU01oaKh9n44ZM8apbXKm/4qu4UbF7eNly5YZm81mevbsaRITEwvd7/Lly8bb29s0bNjQ5OfnOz1eixYtjCTTokULp+8ze/Zs4+/vb5YuXWrS09PNTz/9ZLp3727uv/9+c+XKlVLvfyvP7/Lsr6rNFcbcOfOFK+YKZ9cxpuLmi6owVxhTMfPFxo0bTWBgoAkICHD6NQOA2xMhAHAHK48QICQkxLz11lumRYsWxtfX10RFRdnfBISEhJgpU6aYZs2amYCAADN8+HCHF0Hu7u4mKSnJ/v9Ro0aZCRMmmH79+tlfGEkyM2fOLFTHpEmTTEhIiAkMDDTR0dEmKyvLqZratWtnJBkvLy/ToUMHs2PHDof7lVRvcnKyiYyMNIGBgaZBgwbmnXfecWqf9erVy0gyGzZscFhe8KLeZrOZBg0amJycnCJf1J86dcpERUWZ2rVrGz8/PxMREWE2b97ssB9v3F/e3t6mV69eJiMjwxhjTGJiohkwYICpU6eO8ff3Nz169DCHDx92qvZfKupF58mTJ42bm5vx8fExeXl5xhhjhg4daiSZKVOmlHmMtLQ0+7bs2rXL6fbIyEjj5eVlunbtetMvqp0Zv6JrKGof5+fnm7CwMCPJnD17ttj7Pvzww0ZSmd7YljUEyMrKMv7+/mbBggUOyzMzM01oaKiZO3euMabsz++Snn/F9WWMuaX5oqS5wpibny9udq4w5s6ZL6rCXFHSOpU1X1T2XGFMxc0XhACAdXA6AIBSrV27VuvXr9ehQ4e0b98+h9MFli1bprVr12rnzp3aunWrpk2bVmp/n332merWratt27bJGKMXXnjBoX3Hjh2aN2+eNm/erOPHj6tdu3bavHmzUzVt375dxhilpaVp6NChioqKUl5eXqn1GmPUt29fhYSE6NixY4qPj1dcXJzWrFmjESNGaPDgwcVuz549eyRJzZs3L7L9qaeeUmJioubNm1eoLTs7W48++qg+/fRTLVy4ULt27dLRo0f12GOP6cCBAw7rDhkyRBcuXFCHDh20Zs0azZkzR1euXFGXLl20bNkyLVy4UP/5z3/0448/qnPnzsrIyCi25rLYu3ev8vPzVadOHbm5Xf+zUbduXUnS7t27b6q/AkUd5lxU+5IlS7R8+XKNHz9e4eHhZR6zLONXRg2/dOzYMZ06dUrVqlVT79695ePjo8aNG+v99993WK/gd2zXrl3lOv6NduzYofT0dEVGRjos9/Hx0RNPPKGvvvqqxPuX9Px2xXxR0vx1M/NFSXOFJEvPF5U9VxS3TmXOF5U9V0hVa74AcHsiBABQqokTJ6p+/fqqU6eO+vTp43ChrZiYGDVq1EgNGzbUpEmTtHTp0lsez9PTU15eXvL19ZWfn5+GDRumbt26OV2TJHl7e+v5559XXl6ejh07Vmq9e/fu1cGDB/Xee+8pICBAzZo100svvaTly5eXWm96erokydfXt8j24cOHKywsTG+88Yays7Md2tatW6eEhAS1adNG3bp1U6NGjRQZGanc3FzNnTvXYd0XX3xRAQEB6tSpkyQpISFB69at05EjR9SxY0d17dpV4eHh6t69u5KSkpyq3Rnnzp2TJFWrVs2+zMvLS5KUnJxcpr4yMjI0YsQISdLAgQPVsGHDUtvPnj2rF154QU2aNNHLL798s5vh1PiVUUNRzp8/L0nKzc3VY489pjNnzsjPz0+jRo1yeBxr1qwpSUpLSyv3GgqkpqaqRo0aRf4+165dW6mpqTfdtyvmi9LmCqls88WtzBXSnT1fVOZcUdw6lTlfuGKukKrWfAHg9kQIAKBUQUFB9p+9vb0dXpiGhYXZfy54AXSrWrdurVdffVVRUVHq1KmTJk+erKysrP+PvTuPj6q+9z/+nqwkmJWYxLAEscZgZFGiUKQRBCwq14tVDCEo2spisRCFX6X2pt42WqUXiuACLqh9CLJEorIoiJogoi2LsqiAEFYvgcAlC2QhIfP9/cHNXCJJZsg2k5zX8/GYB8n5nvP9fGaY88nM55w541JO8+bNU1xcnPz9/WWz2XTgwAHl5eU5zffQoUMqLCyUv7+/vL295eXlpUmTJunIkSOaP39+vRdLrD76U9dVmP38/JSenq68vDy9/PLLNcaqL+IUGRnpWBYVFeXI6ULV6/j6+kqSqqqqHNt/+eWXjgtDLVmyRJK0d+/eOnO+FNX5nD171rGs+ufo6GiX5zl79qxGjBihXbt26dZbb9Xrr7/u0viSJUtUUFCgefPmOd5QNISz+C2RQ10u/P9PTk5WeHi4hg8fLklauXKlY6y4uFhS3UdFm0KHDh1UUlJS6/M5Ly+vxr53qdxRL+qrXw2pF/XVCkmWrhctVSvqW6el6oW7aoXkWfUCQOtEEwBAo1z4lR/t9wAAIABJREFUwvPgwYOKiYlx/N6uXTuVl5c7fr/wCGL1qaJ1eeCBB7R+/XqtXbtW27ZtU0ZGhtNc9uzZoyeffFILFy5UUVGRjDHq2rWr40rb9eVbfaSwsrJSVVVVstvtMsbo008/dRq3Z8+eklTr1aGrjR07VldffbWWLl1aY3n1kaX8/HzHsuqjaRe+AalL9fZJSUky56/z4rjNmDHD6fau6Nmzp7y8vJSXlye73S5J+vHHHyVJvXv3dmkOu92u1NRU5eTkqG/fvlqxYoUCAgJcGq+OOWTIENlsNr300kuSpFmzZikxMbFJ4rdEDvXp0qWL46idzWarMda+fXvHz9XPseuvv77RMeuSmJiokJCQi44Ml5aWasWKFRoyZIikhu3fde1/9c1V33zVWrJeNKZWSG27XrRErXC2TkvUC3fWCsmz6gWA1okmAIBGeeaZZ3Tw4EEdOnRIGRkZSk5Odoz16NFDb7zxhkpLS7V27VplZWU5xiIjI7Vz504ZYy6ac8WKFZoxY4aOHj2qc+fOyRhz0ZkAtSkpKZG3t7dCQ0N17tw5zZw503Hky1m+vXr1UpcuXTR16lTl5+fr5MmTeuONN/TSSy85/YzvnXfeKUnKycmpcx0fHx899dRTF93fYcOGqVu3btq+fbs+/vhjHThwQJmZmfL19dX48eOd3udhw4YpLi5OX3zxhbKyslRSUqKvv/5a48aN08aNGyVJ/fr1k81m07vvvut0vtrExsYqJSVFpaWlWrBggXJzc7Vq1SqFhoY6ToV1FmPSpElavny5unfvrtWrV9d4oepsfNq0aTXerEyaNEmSNHXqVMfXxjU2fkvkUB8/Pz+lpaVJOn8k8dSpU1q1apW8vLw0evRoSeef31u3blVsbKyuu+66S47hqoCAAGVkZGjq1KlaunSpioqKtHv3bt1zzz2KjIzU2LFjJTVs/65r/6tvrvrmk1q+XtRXKyTn1wRoy/WiJWqFs3Vaol64s1ZInlUvALRONAEANMq9996rYcOGqXfv3rrhhhv0xBNPOMbmzp2rrKwsXXHFFZo/f77uuecex9iTTz6p9PR0eXt768UXX6wx59ChQ1VcXKwbb7xRXbt2lTFG6enpTnO54YYb9OCDD+qmm25SXFyccnNzlZCQ4FK+Xl5eev/995Wfn68ePXooISFBX375ZY2mRl1SU1MVHBysJUuW1PompVpKSspFL8YCAwP16aef6t5779XYsWPVu3dvXXXVVVq3bp1LL9wCAgL0ySefKCUlRZMnT1Z0dLR++9vfqn///urbt68kOXLy8fGpc56JEyfKZrM5Plc8Y8aMGt9PPX/+fI0fP17Tp09XQkKCunfvrk8++cRxmml9Mc6cOaP58+dLOn9kKiIiwnEq8vvvv+903BWNie/qOo3JQXL+GKenp2v69Ol6++231alTJ3l5eSkrK0u/+MUvJEnvv/++ysrKNG7cuIuO/jW13/3ud5ozZ46eeeYZRUZGKikpSZ06ddJnn32mdu3aSWrY/l3X/lffXPXNJ7V8vWhMrZBaf71wZ61wdR1nPLleSc4fY8mz6gWAVqipv24AgOdoyFcEXgpP/A7u+jRnvtXfFb1y5cpmmb+hKisrTVBQkImPj3fp+909NYYnx2+pHPr06WMuv/xyU1xcfEnbXepXBDYX6sX/sWq9sMq+6gnxG1Iv+IpAwDo4EwAAmkB6erqMMY6LM3mKTZs2qaSkRAsWLGi2i1S1RAxPjt9SOWzZskX5+fl1XlUerYdV64VV9lVPiE+9AFCfus8NBQC0ev3796/xveetNYYnx/eUHIDGau7nsSfsJ+7Owd3xAUCiCQCgES71e5/drbXlC7QlrW3/a235AgDgKj4OAAAAAACARdAEAAAAAADAImgCAAAAAABgETQBAAAAAACwCJoAAAAAAABYBE0AAAAAAAAsgiYAAAAAAAAWQRMAAAAAAACLoAkAAAAAAIBF+Lg7AQDNr6KiQg899JACAwPdnQqAFpabm+v4NyEhwc3ZAPBUpaWlqqiokK+vr7tTAdDMaAIAbVxlZaXsdruOHz/u7lQAuIGXl5cCAwNljNGBAwfcnQ4AD2az2VRZWenuNAA0M5sxxrg7CQDN48SJE8rOznZ3GgA8zD//+U/Nnj1bjz32mPr16+fudAB4mEGDBunyyy93dxoAmglNAAAALCYzM1P33Xefli1bppEjR7o7HQAA0IK4MCAAAAAAABZBEwAAAAAAAIugCQAAAAAAgEXQBAAAAAAAwCJoAgAAAAAAYBE0AQAAAAAAsAiaAAAAAAAAWARNAAAAAAAALIImAAAAAAAAFkETAAAAAAAAi6AJAAAAAACARdAEAAAAAADAImgCAAAAAABgETQBAAAAAACwCJoAAAAAAABYBE0AAAAAAAAsgiYAAAAAAAAWQRMAAAAAAACLoAkAAAAAAIBF+Lg7AQAA0Py++OILbdy4UZK0c+dOSdIHH3yg/fv3S5JuvvlmDRgwwG35AQCAlmEzxhh3JwEAAJpXTk6OBg0aVOd4dna2Bg4c2HIJAQAAt6AJAACABdjtdnXu3Fl5eXm68E+/zWZTdHS0fvzxR3l58SlBAADaOv7aAwBgAV5eXho1apR+2vs3xmj06NE0AAAAsAj+4gMAYBEpKSmXtBwAALQ9fBwAAAALueaaa7Rv3z7Z7XbZbDZ169ZN+/btc3daAACghXAmAAAAFpKSkiK73S7p/EcB7r//fjdnBAAAWhJnAgAAYCF79uxRfHy84/fdu3frmmuucWNGAACgJXEmAAAAFnLNNdeoT58+kqQ+ffrQAAAAwGJ83J0AgObz/fffa/LkyTp37py7UwHgQQoLCx3/Dhw40L3JAPAoPj4+mjt3rq699lp3pwKgmdAEANqw/Px8bd68WcXFxe5OBYAHys3NVW5urrvTAOBBgoODlZ+fTxMAaMP4OADQxnl7e7s7BQAA0ErwugFo+2gCAAAAAABgETQBAAAAAACwCJoAAAAAAABYBE0AAAAAAAAsgiYAAAAAAAAWQRMAAAAAAACLoAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAImgAAALQi27ZtkzHGcSsoKNDmzZuVkpLS4LkWLlzo8nhERIQj9pgxYxp8PwAAgHvQBAAAoBVatGiRvL29NX78eCUmJmrRokXq37+/u9MCAAAejiYAAACtlN1uV2Zmps6cOSObzaZBgwY5xsLCwjR79mzt3btXJSUl+v777/X444/L29vbjRkDAAB3owkAAEArZ7PZJEkVFRWSJF9fX61fv15paWnKzMxUTEyMNm3apFmzZmnOnDnuTBUAALgZTQAAAFopLy8vjRw5Uu3bt1dBQYGWLl0qSfrlL3+pHj16qLKyUhkZGSoqKtKLL74oSZowYYKCg4PdmTYAAHAjH3cnAAAALl1qaqpSU1MlSWVlZUpNTdXhw4clSbGxsZLOnxFQWlpaYzsfHx916dJF3377rdMYxphGjQMAAM/DmQAAALRCixYtUnBwsKZPn66AgAC99957GjBggCQ5mgFlZWXy8/OTzWarcXOlASBJhw4dkiSFh4c7lnXo0MHx84kTJ5rq7gAAgBZCEwAAgFbq9OnTmjFjhtatWyd/f3+99tpr8vX11Zo1a/Ttt98qICBAzz33nIKDg9WpUyelpqYqKyvL5fnffvttSdItt9yim266SZdddpkmT54s6XyDYMOGDc1yvwAAQPOhCQAAQCuXlpamc+fOKT4+XlOmTFFlZaWSkpI0c+ZMDR8+XMeOHdPnn3+uwYMHKz09/aLtU1NTZYxx3E6ePClJWr58uR566CF99913ys7OVmFhoe6++24tWrRIAwcOVFlZWUvfVQAA0Eg2wwf6gDYrJydHv/rVr1RQUODuVAAAQCsQFhamrKwsDRw40N2pAGgmnAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAImgAAAAAAAFgETQAAAAAAACyCJgAAAAAAABZBEwAAAAAAAIugCQAAAAAAgEXQBAAAAAAAwCJoAgAAAAAAYBE0AQAAAAAAsAiaAAAAAAAAWARNAAAAAAAALMLH3QkAaH6+vr4KCgpydxoA3KCiokJnzpzRZZddJj8/P3enA8CDnT592t0pAGgBNAEACwgKClJ6erp69+7t7lQAtLCHHnpIZ86cUUREhN588013pwPAQ23btk0ZGRkyxrg7FQDNjCYAYBG9e/fWwIED3Z0GgBYWGBjo+JcaAAAAuCYAAAAAAAAWQRMAAAAAAACLoAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAtDrR0dH69ttv3Z1GDRkZGbLZbFq9erW7U0EblZiYqMjISL7H+xJ4Yq2QqBdoftQLAPWhCQCghuuuu04LFy5s9jidOnXSli1bmj1OSyguLtbMmTMVFxenO+64w7G8U6dOstls+tnPfqZz585JkrZs2SKbzabQ0FB3pVurMWPGyGazOW7Tp0+vMX7mzBlNmDBBERERCggIUFJSkrZu3ery/J999pluv/12XXbZZYqIiNDw4cO1a9cul8errVq1ypHjtGnTmix+S+Tg7DGWpA8++EA33nij2rVr51jv4MGDkqTHHntMJ06c0AsvvOByzMZYtGiRevXqpXbt2ikqKkoTJkzQqVOnXNq2qfdv6oXn1At31wpX15Gar154Qq2QPKteAGhlDIA2Kzs724SFhZnw8HCTnZ3t0jYJCQnm7bffbt7EjDEdO3Y0mzdvbtC2UVFRZufOnU2cUcPNmzfPSDJ/+tOfaizv2LGjkWQkmVdffdUYY8zmzZuNJBMSEuKOVJ2aMGGCkWSeeOKJGstTU1ONJPPaa6+Z3NxcExERYcLCwkxBQYHTOcvLy82dd95pvvzyS3P69Gnzl7/8xUgysbGx5uzZs07Hq508edJER0c7HtOpU6e6dJ9cmb+5c7hQXY/x0qVLjc1mM3fccYc5fPjwRdudOXPGBAQEmK5duxq73e5yvGuvvdZIMtdee63L27z00ksmNDTULF682BQWFprvv//eDBs2zFx//fWmvLzc6faN2b+bcj5PqxXGtJ164Y5a4eo6xjRfvfCEWmFM89SL7OxsEx4ebsLCwlx+zQCgdaIJALRhTdEEiIqKMv/1X/9lrr32WhMUFGSSk5MdbwKioqLMs88+a+Lj401YWJgZP358jRdB3t7eJi8vz/H7lClTzB//+Edzzz33OF4YSTIvvPDCRXk89dRTJioqyoSHh5sJEyaY0tJSl3Lq06ePkWT8/f3NTTfdZLZu3Vpju/ryPXbsmBk5cqQJDw83Xbp0MX//+99deszuvPNOI8l8+umnNZZXv6i32WymS5cu5uzZs7W+qD906JBJTk42V1xxhQkJCTFJSUlmw4YNNR7HCx+vgIAAc+edd5qioiJjjDGHDx82KSkpJiYmxoSGhprbb7/d7Nmzx6Xcf6q2F50HDx40Xl5eJjAw0FRVVRljjHnwwQeNJPPss89ecoyCggLHffnmm29cHh85cqTx9/c3Q4cObfCLalfiN3cOtT3GdrvdxMbGGknm6NGjdW47YMAAI+mS3theahOgtLTUhIaGmgULFtRYXlJSYqKjo80rr7xijLn0/bu+/a+uuYwxjaoX9dUKYxpeLxpaK4xpO/XCE2pFfeu0VL1o6VphTPPVC5oAgHXwcQAATn344Ydas2aNdu/erZ07d9b4uMDSpUv14Ycf6uuvv9amTZv0t7/9zel87777rjp27KjNmzfLGKNHH320xvjWrVv16quvasOGDdq/f7/69OmjDRs2uJTTli1bZIxRQUGBHnzwQSUnJ6uqqsppvsYY3X333YqKitK+ffu0du1azZs3T6tXr9bEiRM1ZsyYOu/P9u3bJUndu3evdfy+++7T4cOH9eqrr140VlZWpltvvVXLli3TW2+9pW+++UZ79+7V4MGD9d1339VYd+zYsTp16pRuuukmrV69WvPnz1d5ebmGDBmipUuX6q233tK//vUvffXVVxo4cKCKiorqzPlS7NixQ3a7XTExMfLyOv9no2PHjpKkbdu2NWi+arWd5lzb+DvvvKPMzExNnz5dcXFxlxzzUuK3RA4/tW/fPh06dEh+fn4aPny4AgMD1a1bN82dO7fGetXPsW+++aZJ419o69atKiws1MiRI2ssDwwM1F133aV169bVu319+7c76kV99ash9aK+WiHJ0vWipWtFXeu0ZL1o6VoheVa9ANA60QQA4NSf/vQnde7cWTExMRoxYkSNC22lp6fryiuvVNeuXfXUU09p8eLFjY7n6+srf39/BQUFKSQkROPGjdNtt93mck6SFBAQoEceeURVVVXat2+f03x37NihXbt26fnnn1dYWJji4+OVlpamzMxMp/kWFhZKkoKCgmodHz9+vGJjY/XXv/5VZWVlNcY++ugj5ebmqlevXrrtttt05ZVXauTIkaqoqNArr7xSY93JkycrLCxMN998syQpNzdXH330kX744Qf169dPQ4cOVVxcnIYNG6a8vDyXcnfF8ePHJUl+fn6OZf7+/pKkY8eOXdJcRUVFmjhxoiRp9OjR6tq1q9Pxo0eP6tFHH9XVV1+tP/zhDw29Gy7Fb4kcanPixAlJUkVFhQYPHqwff/xRISEhmjJlSo3/x+DgYElSQUFBk+dQ7eTJk2rfvn2tz+crrrhCJ0+ebPDc7qgXzmqFdGn1ojG1Qmrb9aIla0Vd67RkvXBHrZA8q14AaJ1oAgBwKiIiwvFzQEBAjRemsbGxjp+rXwA1Vs+ePfXnP/9ZycnJuvnmm/X000+rtLTUpZzmzZunuLg4+fv7y2az6cCBA8rLy3Oa76FDh1RYWCh/f395e3vLy8tLkyZN0pEjRzR//vx6L5ZYffSnrqsw+/n5KT09XXl5eXr55ZdrjFVfxCkyMtKxLCoqypHTharX8fX1lSRVVVU5tv/yyy8dF4ZasmSJJGnv3r115nwpqvM5e/asY1n1z9HR0S7Pc/bsWY0YMUK7du3Srbfeqtdff92l8SVLlqigoEDz5s1zvKFoCGfxWyKHulz4/5+cnKzw8HANHz5ckrRy5UrHWHFxsaS6j4o2hQ4dOqikpKTW53NeXl6Nfe9SuaNe1Fe/GlIv6qsVkixdL1qqVtS3TkvVC3fVCsmz6gWA1okmAIBGufCF58GDBxUTE+P4vV27diovL3f8fuERxOpTRevywAMPaP369Vq7dq22bdumjIwMp7ns2bNHTz75pBYuXKiioiIZY9S1a1fHlbbry7f6SGFlZaWqqqpkt9tljNGnn37qNG7Pnj0lqdarQ1cbO3asrr76ai1durTG8uojS/n5+Y5l1UfTLnwDUpfq7ZOSkmTOX+fFcZsxY4bT7V3Rs2dPeXl5KS8vT3a7XZL0448/SpJ69+7t0hx2u12pqanKyclR3759tWLFCgUEBLg0Xh1zyJAhstlseumllyRJs2bNUmJiYpPEb4kc6tOlSxfHUTubzVZjrH379o6fq59j119/faNj1iUxMVEhISEXHRkuLS3VihUrNGTIEEkN27/r2v/qm6u++aq1ZL1oTK2Q2na9aIla4WydlqgX7qwVkmfVCwCtE00AAI3yzDPP6ODBgzp06JAyMjKUnJzsGOvRo4feeOMNlZaWau3atcrKynKMRUZGaufOnTLGXDTnihUrNGPGDB09elTnzp2TMeaiMwFqU1JSIm9vb4WGhurcuXOaOXOm48iXs3x79eqlLl26aOrUqcrPz9fJkyf1xhtv6KWXXnL6Gd8777xTkpSTk1PnOj4+Pnrqqacuur/Dhg1Tt27dtH37dn388cc6cOCAMjMz5evrq/Hjxzu9z8OGDVNcXJy++OILZWVlqaSkRF9//bXGjRunjRs3SpL69esnm82md9991+l8tYmNjVVKSopKS0u1YMEC5ebmatWqVQoNDXWcCussxqRJk7R8+XJ1795dq1evrvFC1dn4tGnTarxZmTRpkiRp6tSpjq+Na2z8lsihPn5+fkpLS5N0/kjiqVOntGrVKnl5eWn06NGSzj+/t27dqtjYWF133XWXHMNVAQEBysjI0NSpU7V06VIVFRVp9+7duueeexQZGamxY8dKatj+Xdf+V99c9c0ntXy9qK9WSM6vCdCW60VL1Apn67REvXBnrZA8q14AaJ1oAgBolHvvvVfDhg1T7969dcMNN+iJJ55wjM2dO1dZWVm64oorNH/+fN1zzz2OsSeffFLp6eny9vbWiy++WGPOoUOHqri4WDfeeKO6du0qY4zS09Od5nLDDTfowQcf1E033aS4uDjl5uYqISHBpXy9vLz0/vvvKz8/Xz169FBCQoK+/PLLGk2NuqSmpio4OFhLliyp9U1KtZSUlItejAUGBurTTz/Vvffeq7Fjx6p379666qqrtG7dOpdeuAUEBOiTTz5RSkqKJk+erOjoaP32t79V//791bdvX0ly5OTj41PnPBMnTpTNZnN8rnjGjBk1vp96/vz5Gj9+vKZPn66EhAR1795dn3zyieM00/pinDlzRvPnz5d0/shURESE41Tk999/3+m4KxoT39V1GpOD5PwxTk9P1/Tp0/X222+rU6dO8vLyUlZWln7xi19Ikt5//32VlZVp3LhxFx39a2q/+93vNGfOHD3zzDOKjIxUUlKSOnXqpM8++0zt2rWT1LD9u679r7656ptPavl60ZhaIbX+euHOWuHqOs54cr2SnD/GkmfVCwCtUFN/3QAAz9GQrwi8FJ74Hdz1ac58q78reuXKlc0yf0NVVlaaoKAgEx8f79L3u3tqDE+O31I59OnTx1x++eWmuLj4kra71K8IbC7Ui/9j1XphlX3VE+I3pF7wFYGAdXAmAAA0gfT0dBljHBdn8hSbNm1SSUmJFixY0GwXqWqJGJ4cv6Vy2LJli/Lz8+u8qjxaD6vWC6vsq54Qn3oBoD51nxsKAGj1+vfvX+N7z1trDE+O7yk5AI3V3M9jT9hP3J2Du+MDgEQTAEAjXOr3Prtba8sXaEta2/7X2vIFAMBVfBwAAAAAAACLoAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAImgAAAAAAAFgETQAAAAAAACyCJgAAAAAAABZBEwAAAAAAAIvwcXcCAJpfRUWFHnroIQUGBro7FQAtLDc31/FvQkKCm7MB4KlKS0tVUVEhX19fd6cCoJnRBADauMrKStntdh0/ftzdqQBwAy8vLwUGBsoYowMHDrg7HQAezGazqbKy0t1pAGhmNmOMcXcSAJrHiRMnlJ2d7e40AHiYf/7zn5o9e7Yee+wx9evXz93pAPAwgwYN0uWXX+7uNAA0E5oAAABYTGZmpu677z4tW7ZMI0eOdHc6AACgBXFhQAAAAAAALIImAAAAAAAAFkETAAAAAAAAi6AJAAAAAACARdAEAAAAAADAImgCAAAAAABgETQBAAAAAACwCJoAAAAAAABYBE0AAAAAAAAsgiYAAAAAAAAWQRMAAAAAAACLoAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAImgAAAAAAAFgETQAAAAAAACyCJgAAAAAAABZBEwAAAAAAAIvwcXcCAACg+X3xxRfauHGjJGnnzp2SpA8++ED79++XJN18880aMGCA2/IDAAAtw2aMMe5OAgAANK+cnBwNGjSozvHs7GwNHDiw5RICAABuQRMAAAALsNvt6ty5s/Ly8nThn36bzabo6Gj9+OOP8vLiU4IAALR1/LUHAMACvLy8NGrUKP2092+M0ejRo2kAAABgEfzFBwDAIlJSUi5pOQAAaHv4OAAAABZyzTXXaN++fbLb7bLZbOrWrZv27dvn7rQAAEAL4UwAAAAsJCUlRXa7XdL5jwLcf//9bs4IAAC0JM4EAADAQvbs2aP4+HjH77t379Y111zjxowAAEBL4kwAAAAs5JprrlGfPn0kSX369KEBAACAxfi4OwEAzef777/X5MmTde7cOXenAsCDFBYWOv4dOHCge5MB4FF8fHw0d+5cXXvtte5OBUAzoQkAtGH5+fnavHmziouL3Z0KAA+Um5ur3Nxcd6cBwIMEBwcrPz+fJgDQhvFxAKCN8/b2dncKAACgleB1A9D20QQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAImgAAAAAAAFgETQAAAAAAACyCJgAAAAAAABZBEwAAAAAAAIugCQAAAAAAgEXQBAAAAAAAwCJoAgAA0MocO3ZMxhiNGTPG42JHRETIGCNjjPr169fC2QEAAGdoAgAA0AS2bdvmePNrjFFBQYE2b96slJQUd6fmVHZ2towxWrly5UVjixYtkjFGW7dudUNmAACgqdEEAACgCS1atEje3t4aP368EhMTtWjRIvXv379JY0RHR8tms2nhwoVNMt/rr78uSbr99tsVHR3tWB4cHKy77767xjpNHRsAALQsmgAAADQxu92uzMxMnTlzRjabTYMGDXKMhYWFafbs2dq7d69KSkr0/fff6/HHH5e3t7djnbS0NO3Zs0elpaXav3+/5s2bp86dOzvGf3pK/sCBA2uchVB9KywsdCnm8uXLVVBQIG9vb91///2OOKNGjVJAQIDKysr0zjvv1Br7qquu0ieffKLi4mJt3769zjMfXLnf4eHhmjNnjvbu3avS0lL98MMP+tvf/qbg4OBG/X8AAID/QxMAAIBmYrPZJEkVFRWSJF9fX61fv15paWnKzMxUTEyMNm3apFmzZmnOnDmSpBtuuEGzZ89WaWmpYmJilJSUpO3bt2vSpEl1xsnJyZHNZpPNZlOPHj1UVFQkSSovL3cpZnl5uRYtWiRJeuihhxzzVv+cmZnpmPNCvr6++vDDDzV48GDNnj1bt9xyi/r27Vvres5y8PPz0+eff67Jkydr8eLFuuKKK7R27Vr9v//3/7QsTDiTAAAgAElEQVR27Vp5efGSBQCAJmEAtFnZ2dkmLCzMSOLGjVsz37Zt22aMMWbhwoXGy8vLjBw50hhjzKlTp0yXLl2MJDN8+HBjjDEVFRUmICDASDKJiYnGGGMqKytNcHCwGTRokGO7Rx991Nxyyy0mJCSkRqxjx44ZY4wZM2ZMjeUdO3Y0hw8fdsw3bNgwl2JKMj179nTUjr59+5r4+HjH77/4xS9qjT106FDHOkFBQUaSuf766x3L+vXr5/L9/rd/+zdjjDF2u920b9/eSDKdO3d2zDVgwAC3/x9z42aFW1hYmMnOzm7gKw8ArQFtdQAAmlBqaqqqqqq0bNkylZWVKTU1VYcPH5YkxcbGSjp/ZLy0tFTGGG3evFmS5OPjoy5duujzzz/X4sWLFRoaqhdeeEE5OTk6efKknnvuuXrjBgcHa/Xq1Y6PDTzyyCNas2aNSzElaceOHdqyZYuk82cAVJ8FsGfPHm3YsKHWmNWxSktLdfr0aUnS8ePHL1rPlRyq8zh9+rRKSkoumqt6HAAANA5NAAAAmtCiRYsUHBys6dOnKyAgQO+9954GDBggSY5mQFlZmfz8/Byn8Fffvv32W1VVVWn06NEKDw9XUlKSZsyYIR8fHz3xxBMKCQmpNaavr6/effdd9erVS5L0zDPPOC7k50rMatXbjBo1Sg888IAkacGCBXXe1yNHjkiSAgMDFRQUJEmKioq6aD1XcqheJygoSO3bt79orupYAACgcWgCAADQxE6fPq0ZM2Zo3bp18vf312uvvSZfX1+tWbNG3377rQICAvTcc88pODhYnTp1UmpqqrKysiRJiYmJev3119WtWzdt2bJFa9asccxZWlpaa7yxY8dq6NChkqSFCxfqP/7jPxxjrsSs9s4776ikpEQhISGKjo5WZWWl/vGPf9R5P3NycrRv3z5J0rRp0xQaGqqpU6detJ4rOaxdu1a7du2SzWZzNDx+//vfS5I2bdqkjRs3uvTYAwCA+tEEAACgmaSlpencuXOKj4/XlClTVFlZqaSkJM2cOVPDhw/XsWPH9Pnnn2vw4MFKT0+XJH3zzTf67LPPNGfOHB0/flzvvfeeNmzYoLvuukuVlZW1xmnXrp3j5zFjxtT4dgBXYlY7ffq0li1b5vh95cqVys/Pr/P+VVZW6o477lB2drYef/xxbdy40XGa/0/Xc5ZDRUWFkpKS9OKLLyo1NVXHjh3T7bffrlmzZumXv/yl7Ha76w88AACok80YY9ydBIDmkZOTo1/96lcqKChwdyoAAKAVCAsLU1ZWlgYOHOjuVAA0E84EAAAAAADAImgCAAAAAABgETQBAAAAAACwCJoAAAAAAABYBE0AAAAAAAAsgiYAAAAAAAAWQRMAAAAAAACLoAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAImgAAAAAAAFgETQAAAAAAACyCJgAAAAAAABbh4+4EADQ/X19fBQUFuTsNAG5QUVGhM2fO6LLLLpOfn5+70wHgwU6fPu3uFAC0AJoAgAUEBQUpPT1dvXv3dncqAFrYQw89pDNnzigiIkJvvvmmu9MB4KG2bdumjIwMGWPcnQqAZkYTALCI3r17a+DAge5OA0ALCwwMdPxLDQAAAFwTAAAAAAAAi6AJAAAAAACARdAEAAAAAADAImgCAAAAAABgETQBAAAAAACwCJoAAFqd6Ohoffvtt+5Oo4aMjAzZbDatXr3a3amgjUpMTFRkZCTf430JPLFWSNQLND/qBYD60AQAUMN1112nhQsXNnucTp06acuWLc0epyUUFxdr5syZiouL0x133OFY3qlTJ9lsNv3sZz/TuXPnJElbtmyRzWZTaGiou9Kt1ZgxY2Sz2Ry36dOn1xg/c+aMJkyYoIiICAUEBCgpKUlbt251ef7PPvtMt99+uy677DJFRERo+PDh2rVrl8vj1VatWuXIcdq0aU0WvyVycPYYS9IHH3ygG2+8Ue3atXOsd/DgQUnSY489phMnTuiFF15wOWZjLFq0SL169VK7du0UFRWlCRMm6NSpUy5t29T7N/XCc+pFc9cKV/YTZ+u4ui83NAd3x6/mSfUCQOtCEwAAGumdd95RcXGxRo0aJZvNdtF4bm6u3nzzTTdk5rqFCxfKGKMJEybUOj5x4kS9+uqreu655/Tdd99p165dGjp0qAoLC53OffbsWf3973/Xn/70Jx07dkxTpkzR6tWrdfvtt6uiosLpeLX/+Z//0bhx4y75vrkyf3PnIDl/jJctW6a7775bkZGR2rt3r4wxMsaoa9eukqQRI0YoICBAr732mowxDcrBVS+//LIeffRR/eEPf9Dx48eVk5Ojw4cPa8iQITp79myzxm7rWnu9aM5a4cr8ztZxdV9uTA7uji95Vr0A0PrQBABQr+joaM2cOVMJCQkKDg7WqFGjHG8CoqOj9dxzz6l79+4KDw/XhAkTarzI8fHx0bFjxxy/p6Wl6T/+4z9077336r//+7914403ymaz6cUXX7wo7n/+538qOjpaHTp00MSJE1VWVlZjfM2aNbXmlJiYKJvNpnbt2qlv3776+uuva9yX+vI9fvy47rvvPnXo0EGxsbGaPXu2S4/RqlWrJEm33HJLreM2m01PP/10nS8ADx8+rFGjRikmJkahoaG65ZZb9MUXXzjGfXx8ahwVCgwM1PDhw1VcXCxJOnLkiEaPHq2OHTsqLCxMd9xxh3744QeXcnfFoUOHtHjxYgUGBurXv/61unXrpuHDh6ugoEDz5893ur2/v79WrVqln//857rsssv0u9/9zjHv999/73S82iOPPKKCggINHTr0kvJ3Zf7mzsEZY4x+//vfyxij119/XZ07d75onfbt26tPnz46ePCgvvvuuyaNf6GysjL98Y9/1KxZszRq1CiFhISoe/fuWr58ufLy8vSPf/xD0qXv3/Xtf3XNJanR9aKuWiE1vF40tFZIbbteNLZWNAVX9+XWHN+T6gWA1okmAACnPvzwQ61Zs0a7d+/Wzp07a3xcYOnSpfrwww/19ddfa9OmTfrb3/7mdL53331XHTt21ObNm2WM0aOPPlpjfOvWrXr11Ve1YcMG7d+/X3369NGGDRtcymnLli0yxqigoEAPPvigkpOTVVVV5TRfY4zuvvtuRUVFad++fVq7dq3mzZun1atXa+LEiRozZkyd92f79u2SpO7du9c6ft999+nw4cN69dVXLxorKyvTrbfeqmXLlumtt97SN998o71792rw4MEXvXAbO3asTp06pZtuukmrV6/W/PnzVV5eriFDhmjp0qV666239K9//UtfffWVBg4cqKKiojpzvhQ7duyQ3W5XTEyMvLzO/9no2LGjJGnbtm0Nmq9abac51zb+zjvvKDMzU9OnT1dcXNwlx7yU+C2Rw0/t27dPhw4dkp+fn4YPH67AwEB169ZNc+fOrbFe9XPsm2++adL4F9q6dasKCws1cuTIGssDAwN11113ad26dfVuX9/+7Y56UV/9aki9qK9WSLJ0vWjqWtEUXNnfW1t8T6oXAFonmgAAnPrTn/6kzp07KyYmRiNGjKhxoa309HRdeeWV6tq1q5566iktXry40fF8fX3l7++voKAghYSEaNy4cbrttttczkmSAgIC9Mgjj6iqqkr79u1zmu+OHTu0a9cuPf/88woLC1N8fLzS0tKUmZnpNN/q01yDgoJqHR8/frxiY2P117/+9aIzGj766CPl5uaqV69euu2223TllVdq5MiRqqio0CuvvFJj3cmTJyssLEw333yzpPOnDX/00Uf64Ycf1K9fPw0dOlRxcXEaNmyY8vLyXMrdFcePH5ck+fn5OZb5+/tLUo2jt64oKirSxIkTJUmjR492nLpa3/jRo0f16KOP6uqrr9Yf/vCHht4Nl+K3RA61OXHihCSpoqJCgwcP1o8//qiQkBBNmTKlxv9jcHCwJKmgoKDJc6h28uRJtW/fvtbn8xVXXKGTJ082eG531AtntUK6tHrRmFohte160ZS1oim4sr+3xvieVC8AtE40AQA4FRER4fg5ICCgxgvT2NhYx8/Vb5Yaq2fPnvrzn/+s5ORk3XzzzXr66adVWlrqUk7z5s1TXFyc/P39ZbPZdODAAeXl5TnN99ChQyosLJS/v7+8vb3l5eWlSZMm6ciRI5o/f369F0usPrpT11WY/fz8lJ6erry8PL388ss1xqov4hQZGelYFhUV5cjpQtXr+Pr6SpKqqqoc23/55ZeO03+XLFkiSdq7d2+dOV+K6nwuPI36wo+EuOrs2bMaMWKEdu3apVtvvVWvv/66S+NLlixRQUGB5s2b53hD0RDO4rdEDnW58P8/OTlZ4eHhGj58uCRp5cqVjrHqU7qb84hmhw4dVFJSUuvzOS8vr8a+d6ncUS/qq18NqRf11QpJlq4XTVUrmoIr+3trje9J9QJA60QTAECjXPjC8+DBg4qJiXH83q5dO5WXlzt+v/AIYvWponV54IEHtH79eq1du1bbtm1TRkaG01z27NmjJ598UgsXLlRRUZHjIknVV9quL9/qI4WVlZWqqqqS3W6XMUaffvqp07g9e/aUpHqv/jx27FhdffXVWrp0aY3l1UeG8vPzHcuqj6Zd+AakLtXbJyUlOS4MVX2bMWOG0+1d0bNnT3l5eSkvL092u12S9OOPP0qSevfu7dIcdrtdqampysnJUd++fbVixQoFBAS4NF4dc8iQIbLZbHrppZckSbNmzVJiYmKTxG+JHOrTpUsXx1G7n14srn379o6fq59j119/faNj1iUxMVEhISEXHRkuLS3VihUrNGTIEEkN27/r2v/qm6u++aq1ZL1oTK2Q2na9aIpa0RRc2d9bc3xPqhcAWieaAAAa5ZlnntHBgwd16NAhZWRkKDk52THWo0cPvfHGGyotLdXatWuVlZXlGIuMjNTOnTtrvWrxihUrNGPGDB09elTnzp2TMeaiMwFqU1JSIm9vb4WGhurcuXOaOXOm48iXs3x79eqlLl26aOrUqcrPz9fJkyf1xhtv6KWXXnL6Gd8777xTkpSTk1PnOj4+Pnrqqacuur/Dhg1Tt27dtH37dn388cc6cOCAMjMz5evrq/Hjxzu9z8OGDVNcXJy++OILZWVlqaSkRF9//bXGjRunjRs3SpL69esnm82md9991+l8tYmNjVVKSopKS0u1YMEC5ebmatWqVQoNDXWc6uosxqRJk7R8+XJ1795dq1evrvFC1dn4tGnTarxZmTRpkiRp6tSpjq+Na2z8lsihPn5+fkpLS5N0/qyDU6dOadWqVfLy8tLo0aMlnX9+b926VbGxsbruuusuOYarAgIClJGRoalTp2rp0qUqKirS7t27dc899ygyMlJjx46V1LD9u679r7656ptPavl6UV+tkJxfE6At14umqBVNwdn+3tw5NHd8T6oXAFopA6DNys7ONmFhYSY8PNxkZ2e7tE1CQoJ5++23Hb9HRUWZnTt3On7PyMgwEyZMcIz99a9/Nddcc40JDQ01Dz/8sCkvL3esu2nTJpOQkGCCg4PNiBEjzJgxY8wf//hHY4wxy5cvNx07djQ2m8288MILNXIoLS01Tz75pImJiTEhISHm7rvvNidOnHApp6lTp5qQkBBzxRVXmIkTJ5qEhASzbt06l/I9duyYSU1NNZGRkSYyMtL85je/MSdOnDATJkwwqampdT5mhYWFJjg42Fx99dXGbrc7lnfs2NFIMhs2bDDGGFNVVWWuu+46I8mEhIQ41jtw4IAZOXKkiY6ONsHBwWbAgAEmJyfHMe7t7W0kmSNHjhhjjHnqqaeMJPOb3/zGGGPM4cOHTWpqqunYsaO57LLLTN++fc0bb7xhKisrjTHG3HTTTUaSee+99+q8DxMmTDCSLro98cQTxhhjTp8+bcaPH2/Cw8ONv7+/GTBggNmyZYtj+/pinD59uta5q9d3Nv5TkyZNMpLM1KlTmyS+q+s0JgdXHuPKykozffp0Ex0dbQICAswNN9xg3n//fcf2CxcuNJLM008/Xev8dbn22muNJHPttdde0nb/+Mc/TI8ePYyfn5+5/PLLzcMPP2xOnjzpGL/U/bu+/a++ueqar1p99aK+WmFMw+tFXbXCGNPm60Vz1gpX5ne2jiv7cmNzcHd8Y5qnXmRnZ5vw8HATFhbm8msGAK0TTQCgDWtIE+BS/PQFtqdrznz/8pe/GElm5cqVzTJ/Q1VWVpqgoCATHx9fo+HR2mJ4cvyWyqFPnz7m8ssvN8XFxZe0XUObAE2NevF/rFovrLKvekL8htQLmgCAdfBxAABoAunp6TLGOC7O5Ck2bdqkkpISLViwoFkuaNdSMTw5fkvlsGXLFuXn59d5VXm0HlatF1bZVz0hPvUCQH183J0AAKD59O/fv8b3nrfWGJ4c31NyABqruZ/HnrCfuDsHd8cHAIkmAIBGcMf3PjdGa8sXaEta2/7X2vIFAMBVfBwAAAAAAACLoAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAImgAAAAAAAFgETQAAAAAAACyCJgAAAAAAABZBEwAAAAAAAIvwcXcCAJpfRUWFHnroIQUGBro7FQAtLDc31/FvQkKCm7MB4KlKS0tVUVEhX19fd6cCoJnRBADauMrKStntdh0/ftzdqQBwAy8vLwUGBsoYowMHDrg7HcAjGGNks9ncnYbHsdlsqqysdHcaAJqZzRhj3J0EgOZx4sQJZWdnuzsNwC2Sk5P185//XGlpae5OBYAHef755/XVV19p6dKl7k7FYw0aNEiXX365u9MA0ExoAgAA2iSbzab77ruPF/oAakhOTtayZcvES2AAVsWFAQEAAAAAsAiaAAAAAAAAWARNAAAAAAAALIImAAAAAAAAFkETAAAAAAAAi6AJAAAAAACARdAEAAAAAADAImgCAAAAAABgETQBAAAAAACwCJoAAAAAAABYBE0AAAAAAAAsgiYAAAAAAAAWQRMAAAAAAACLoAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAImgAAAAAAAFgETQAAAAAAACzCx90JAADQFE6ePKkFCxbUWLZ7927NmDFDktShQwc9/PDD7kgNAADAY9AEAAC0CWFhYXr++ed17Ngxx7IdO3Zox44dkqTf/va37koNAADAY/BxAABAm+Dt7a3k5OQ6x1NSUlowGwAAAM9EEwAA0GbU9kbfZrOpc+fOuvnmm92QEQAAgGehCQAAaDP69u2rn/3sZ7LZbI5lxhilpqbWWAYAAGBVNAEAAG1KcnKyjDE1lvFRAAAAgPNoAgAA2pTU1FTHz15eXoqPj1fPnj3dmBEAAIDnoAkAAGhTunfvrh49ekiS7HZ7jaYAAACA1dEEAAC0OaNHj3b8PGrUKDdmAgAA4Fl83J0AnHv55Ze1bNkyd6cBAK1GeXm5JCk4OFgPP/ywm7MBWl50dLSWLFni7jQAAB6IJkAr8Pnnn2v9+vXuTgMAWp3i4mLqJyypQ4cO7k4BAOCh+DgAAABAG8NXYgIA6kITAAAAAAAAi6AJAAAAAACARdAEAAAAAADAImgCAAAAAABgETQBAAAAAACwCJoAAAAAAABYBE0AAAAAAAAsgiYAAAAAAAAWQRMAAAAAAACLoAkAAC3g2LFjMsZozJgxda4TEREhY4yMMerXr1+Lx2+NsQAAAHBpaAIAsLRt27Y53ngbY1RQUKDNmzcrJSXF3ak1uwvv+7PPPltjbP78+Y6xTz75xE0ZAgAAoKnRBAAASYsWLZK3t7fGjx+vxMRELVq0SP3792+y+aOjo2Wz2bRw4cImm7MpPfLIIwoODpYkRUVFaezYsQ2ey9PvKwAAgJXRBACA/2W325WZmakzZ87IZrNp0KBBjrGwsDDNnj1be/fuVUlJib7//ns9/vjj8vb2liSlpaVpz549Ki0t1f79+zVv3jx17tzZsX1tp8hfddVV+uSTT1RcXKzt27fXevbBuXPnZIzRnXfeKUnq1KmT4wh9fHy8Y70Lj+pXVFRoz549mjp1qkv3++jRowoJCdEjjzwiSXrsscfUrl07HT169KJ1XYnz0/ta/fuzzz6rtWvXqqioSIcPH9a4ceNcyg8AAABNhyYAAPyEzWaTJFVUVEiSfH19tX79eqWlpSkzM1MxMTHatGmTZs2apTlz5uiGG27Q7NmzVVpaqpiYGCUlJWn79u2aNGlSnTF8fX314YcfavDgwZo9e7ZuueUW9e3bt871jTH15ty7d2/ZbDZ5eXkpPj5eVVVVmjlzpn71q185vb+LFy/W8ePHlZaWpsjISE2cOFH79+/XihUrmjTO3XffrYcffliPPPKIOnfurHnz5ikqKsrpdgAAAGg6NAEA4H95eXlp5MiRat++vQoKCrR06VJJ0i9/+Uv16NFDlZWVysjIUFFRkV588UVJ0oQJExxH/GNjYzVmzBhdddVVWrx4saZPn15nrIEDByouLk6SNHPmTBUWFmrWrFl1rm+32126D8YY7d+/Xx9//LEk6d///d+dblNeXq65c+cqOjpaa9asUUhIiGbOnKmqqqomjfPaa6/pyJEj+uijjyRJ3t7e6tatmyt3CwAAAE2EJgAASEpNTVVVVZWWLVumsrIypaam6vDhw5LOv7mXzh+9Ly0tlTFGmzdvliT5+Pjo4MGDWrx4sUJDQ/XCCy8oJydHJ0+e1HPPPVdnvOrGQWlpqU6fPi1JOn78eINyt9lsmj59ur777judPn1axhhNmTJF0vmPD7ji5Zdf1unTp3X99dcrPz9fb775ZpPHqb5/lZWVjmXVH6cAAABAy6AJAAA6f2HA4OBgTZ8+XQEBAXrvvfc0YMAASXI0A8rKyuTn5yebzVbjtn37do0ePVrh4eFKSkrSjBkz5OPjoyeeeEIhISG1xjty5IgkKTAwUEFBQZJU66nx1Ufj/fz86lxn+PDhevbZZ9WlSxf169dPXl5emjdvniTX32QXFhbq1VdflSTNnTtX5eXlzRIHAAAA7kUTAAD+1+nTpzVjxgytW7dO/v7+eu211+Tr66s1a9bo22+/VUBAgJ577jkFBwerU6dOSk1NVVZWlhITE/X666+rW7du2rJli9asWeOYr7S0tNZYOTk52rdvnyRp2rRpCg0NrfVCfj/88IMk6bbbblNISIimTZt20Tr+/v6SzjcMKioqlJCQoHvvvfeS7/+0adNks9n0zDPP1DreVHEAAADgPjQBAOAn0tLSdO7cOcXHx2vKlCmqrKxUUlKSZs6cqeHDh+vYsWP6/PPPNXjwYKWnp+ubb77RZ599pjlz5uj48eN67733tGHDBt111101Tn2/UGVlpe644w5lZ2fr8ccf18aNGx0fMbjQhAkTtGPHDv3617/W+vXrtXHjxovWycrK0vPPP6+qqip99dVXysjIcHxWvym1VBwAAAA0H5txdslpuN2oUaMcFygDAABwJiIiQidOnHB3Gh4pOTlZy5Ytc/qtKwDQVnEmAAAAAAAAFkETAAAAAAAAi6AJAAAAAACARdAEAAAAAADAImgCAAAAAABgETQBAAAAAACwCJoAAAAAAABYBE0AAAAAAAAsgiYAAAAAAAAWQRMAAAAAAACLoAkAAAAAAIBF0AQAAAAAAMAiaAIAAAAAAGARNAEAAAAAALAIH3cnANcFBgaqXbt27k4DgBuUlpaqvLxc4eHh7k4FgAc7d+6ciouL3Z0GAMCD0QRoRdq1a6fly5e7Ow0ALaywsFDjx49XeXm57r//fo0YMcLdKQHwUBkZGfrss8/cnQYAwIPRBGhFvL29NXDgQHenAaCF5efnO36++uqrqQMA6vTKK6+4OwUAgIfjmgAAAAAAAFgETQAAAAAAACyCJgAAAAAAABZBEwAAAAAAAIugCQAAAAAAgEXQBIBbREdH/3/27jw8qvrs//hnsi9kAbKRCEGsLE8QFBBQEVAWAVMfuDQQEiqtCsELqlj6uCNq0IIPllpQERH1KcjuwiaprUaRLhh2EBSQtSaBFEIwYQnJ9/cHv0wJSciQZHIyOe/Xdc1FZr5nvvc94Zz7zNznzIl27txpdRoVpKeny+FwaM2aNVangkaqW7duioqK0unTp61OxWNQL2BH1AoAgLvQBGikOnbsqAULFrg9zjXXXKOsrCy3x6kPBQUFmjFjhtq2bashQ4Y4H7/mmmvkcDj0s5/9TBcuXJAkZWVlyeFwKDw83Kp0Kxg1apQcDofz9uSTT5Yb/+mnn5SWlqaIiAgFBgaqd+/e2rRpU53GqG78888/1+DBg9WkSRNFREQoMTFRu3fv9pj4rsSQpE8++UQ333yzAgICnMsdPHhQkvTYY4/p+PHjmjVr1lXFrYmFCxeqc+fOCggIUHR0tNLS0nTixAmXn1+X23djqhVS5fXCU2qF5P564QnbqtX1Smo4tQIAYC80AYD/74MPPlBBQYGSk5PlcDgqjO/fv1/vvvuuBZm5ZsGCBTLGKC0trdLxcePGae7cuZo2bZp27dql3bt3a8CAAcrPz6+zGFcaP3funH7/+9/rueeeU05Ojh599FGtWbNGgwcP1vnz5z0ivis5LF26VMOGDVNUVJT27t0rY4yMMWrdurUkaejQoQoMDNTbb78tY4zLca/WG2+8oQkTJuipp55Sbm6uMjMzdfjwYfXv31/nzp1zW1y7uFK9aOi1QnJ/vfCEbdXqetVQagUAwH5oAthATEyMZsyYoYSEBIWGhio5Obnch4CYmBhNmzZNHTp0ULNmzZSWluZ8k+Pj46OcnBznshMnTtSzzz4rSbrvvvv0r3/9SzfffLMcDodmz55dIfbzzz+vmJgYNW/eXOPGjdOZM2ecY+vWrasyp27dusnhcCggIEA9evTQ5s2bXco3NzdXw4cPV/PmzRUfH6+ZM2e6/HtavXq1JKlPnz6VjjscDk2dOrXKN4CHDx9WcnKyYrAHd3gAACAASURBVGNjFR4erj59+ujrr792jvv4+JQ7KhQUFKTExEQVFBRIko4cOaKUlBTFxcWpadOmGjJkiL7//nuX87+SQ4cOadGiRQoKCtIDDzygNm3aKDExUSdPntScOXPqJEZ1/P39tXr1at1yyy1q0qSJfv3rXztz+/bbbxtFfGOMHn/8cRljNG/ePLVs2bLCMsHBweratasOHjyoXbt21Uncy505c0bPPPOMXn31VSUnJyssLEwdOnTQihUrlJ2drffff9+5bFXbeGXb95W2vaudqzI1qRc1rRWS++qFu2uF1LjrhdW1oj5yaCi1AgBgTzQBbGLt2rVat26d9uzZox07dlT4qsCSJUu0du1abd68WRs3btQrr7xS7ZzLly9XXFycvvnmGxljNGHChHLjmzZt0ty5c7V+/Xr98MMP6tq1q9avX+9STllZWTLG6OTJk/rlL3+pESNGqKSk5Ir5GmM0bNgwRUdHa9++fcrIyNCbb77p/L7uuHHjNGrUqCpfz7Zt2yRJHTp0qHR8+PDhOnz4sObOnVth7MyZM7rzzju1dOlSvffee9qyZYv27t2rfv36VXjzNnr0aJ04cULdu3fXmjVrNGfOHJ09e1b9+/fXkiVL9N577+mf//yn/v73v6tv3746depUlTm7avv27SotLVVsbKy8vC5u9nFxcZKkrVu31nr+muZUxopTpd0Rf9++fTp06JD8/PyUmJiooKAgtWnTRn/84x/LLVe2jm3ZsqVO4l5u06ZNys/PV1JSUrnHg4KCdM899+izzz6rdo6qtm931IqynGtSL2pSKyS5tV64s1ZIsl29sLpWuCOHhlIrAAD2RBPAJp577jm1bNlSsbGxGjp0aIWLbE2ePFnXXnutWrdurSlTpmjRokW1junr6yt/f3+FhIQoLCxMY8aM0cCBA13OSZICAwP18MMPq6SkRPv27btivtu3b9fu3bv1hz/8QU2bNlX79u01ceJELVu2zKV8y05zDQkJqXR87Nixio+P18svv1zuCKUkffrpp9q/f786d+6sgQMH6tprr1VSUpLOnz+vt956q9yyjzzyiJo2barbbrtN0sVThz/99FN9//336tmzpwYMGKC2bdtq0KBBys7Odjn/K8nNzZUk+fn5OR/z9/eXpHJHbuvLqVOnNG7cOElSSkqK8/RXT49//PhxSdL58+fVr18/HT16VGFhYXr00UfL/T+GhoZKkk6ePFkncS+Xl5en4ODgStflFi1aKC8vr8Zzu6NWSLWvF1dTKyS5tV64s1aUzWGXemF1rXBXDg2lVgAA7IkmgE1EREQ4fw4MDKzwxjQ+Pt75c+vWrfXjjz/WOmanTp30wgsvaMSIEbrttts0depUFRUVuZTTm2++qbZt28rf318Oh0MHDhxQdnb2FfM9dOiQ8vPz5e/vL29vb3l5eWn8+PE6cuSIJGnOnDlXvFhi2dGdqq7E7Ofnp8mTJys7O1tvvPFGubGyCzlFRUU5H4uOjpZ08fTRS5Ut4+vrK0kqKSlxPv9vf/ub8xTgxYsXS5L27t1bZc6uKsvl0q9clP0cExNT6/mvxrlz5zR06FDt3r1bd955p+bNm9do4l/6/z9ixAg1a9ZMiYmJkqRVq1Y5x8pO63bXUc3mzZursLCw0nU5Ozu73LZ3tdxRK6Sa14ua1ApJbq0X7qwVl87R2OuF1bXCnTk0lFoBALAnmgCQVP7N58GDBxUbGytJCggI0NmzZ51jlx9BLDtVtCr333+/vvzyS2VkZGjr1q1KT0+vNpfvvvtOTz/9tBYsWKBTp045L5RUdrXtqvItO0pYXFyskpISlZaWyhijv/71r9XGlC5+CJF0xas/jx49Wtdff72WLFlS7vGyI0PHjh1zPlZ2NO3SDyFVKXt+7969nReHKrtNnz7dpfyvpFOnTvLy8lJ2drZKS0slSUePHpUk3XjjjbWe31WlpaVKTU1VZmamevTooZUrVyowMLDRxG/VqpXzyN3lF4sLDg52/ly2jt100011FvtS3bp1U1hYWIWjwkVFRVq5cqX69+/vfOxK23hl23dVtaImc13uautFTWuFJLfXC3fVikvnaMz1wupa4e4cGkqtAADYE00ASJJeeuklHTx4UIcOHVJ6erpGjBghSbrhhhs0f/58FRUVKSMjQx9++GG550VFRWnHjh2VXrl45cqVmj59un788UdduHBBxphyR/aqUlhYKG9vb4WHh+vChQuaMWOG88jXlfLt3LmzWrVqpUmTJunYsWPKy8vT/Pnz9frrr0uq/ju+d999tyQpMzOzymV8fHw0ZcqUCq930KBBatOmjbZt26Y///nPOnDggJYtWyZfX1+NHTu22tc8aNAgtW3bVl9//bU+/PBDFRYWavPmzRozZow2bNggSerZs6ccDoeWL19e7XyXi4+P18iRI1VUVKR33nlH+/fv1+rVqxUeHu48zbW2MVwxfvx4rVixQh06dNCaNWvKvdltCPFrm4Ofn58mTpwoSVq8eLFOnDih1atXy8vLSykpKZIurt+bNm1SfHy8OnbsWLsXVIXAwEClp6dr0qRJWrJkiU6dOqU9e/bo3nvvVVRUlEaPHu1c9krbeGXbd1W1oiZzXaom9aKmtUKS2+uFu2pF2RxW1wtP31brIofGUCsAADZl0OCNGDHCSDKRkZEuPychIcH86U9/MsYYEx0dbXbs2OEcS09PN2lpac770dHR5uWXXzbt2rUz4eHh5qGHHjJnz541xhizceNGk5CQYEJDQ83QoUPNqFGjzDPPPON87ooVK0xcXJxxOBxm1qxZ5XIoKioyTz/9tImNjTVhYWFm2LBh5vjx4y7lNGnSJBMWFmZatGhhxo0bZxISEsxnn31Wbb45OTkmNTXVREVFmaioKPPggw86Y6alpZnU1NQqf2f5+fkmNDTUXH/99aa0tNT5eFxcnJFk1q9fb4wxpqSkxHTs2NFIMmFhYc7lDhw4YJKSkkxMTIwJDQ01vXr1MpmZmc5xb29vI8kcOXLEGGPMlClTjCTz4IMPGmOMOXz4sElNTTVxcXGmSZMmpkePHmb+/PmmuLjYGGNM9+7djSTz0UcfVZp/WlqakVTh9sQTTxhjjDl9+rQZO3asadasmfH39ze9evUyWVlZ5eaobYwrjZ8+fbrSsUvjWR2/LnIoLi42Tz75pImJiTGBgYGmS5cu5uOPP3Y+f8GCBUaSmTp1aqXzVyY3N9dERkYaSWb27NkuP+/99983N9xwg/Hz8zORkZHmoYceMnl5eeWWudI2fvn2faVt72rnulxN60VNa4UxdV8v6qtWGGN9vWgM26rV9codtcIYY5KTk40kExERcVXPs5Phw4cb3gIDsDMqoAeoSRPgalz+Bruhc2e+L774opFkVq1a5Zb5a6q4uNiEhISY9u3bl/sQ42kxGnL8+sqha9euJjIy0hQUFLj8nJo2AeoataI8u9YLu2yrVsevSa0whiaAK2gCALA7vg4AXGLy5Mkyxjgv0NRQbNy4UYWFhXrnnXecV+n2xBgNOX595ZCVlaVjx45V+Vco4DnsWi/ssq1aHZ9aAQBwFx+rEwBQvVtvvbXc3z731BgNOX5DyQGoLXevxw1hO7E6B6vjAwBQGzQBYMnfia8NT8sXaCw8bdvztHwBAADqA18HAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAAAAAAACboAkAAAAAAIBN0AQAAAAAAMAmfKxOAK776aeflJCQYHUaAOpZSUmJzp07J0l66aWX9MYbb1icEYCG6ujRo1anAABo4GgCeAAvLy/5+/tLkg4cOGBxNgCsEhQUpPz8fOXn51udCoAGLCgoSCUlJVanAQBooGgCeIDf/va3Gjp0qNVpALCx+fPnKyMjQ2+//bZCQ0OtTgdANQICAqxOAQDQQNEE8ABdunRRly5drE4DgI199dVXysjI0H//938rMjLS6nQAAABQQ1wYEAAAAAAAm6AJAAAAAACATdAEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAAAAAAACboAkAAAAAAIBN0AQAAAAAAMAmaAIAAAAAAGATNAEAAAAAALAJmgAAAAAAANgETQAAAAAAAGyCJgAAAAAAADZBEwAAAAAAAJugCQAAAAAAgE3QBAAAAAAAwCZ8rE4AANAwffDBBzpy5IgkafPmzZKkWbNmKTg4WJKUnJys+Ph4y/IDAFc99dRT2r9/vyTpH//4hyRp+PDhzvHZs2crKirKktwAoL45jDHG6iQAAA3P888/rxdeeKHSseDgYOXm5jobAgDQkE2ZMkUvvvhipWMdOnTQt99+W88ZAYB1+DoAAKBSI0eOrHLsnnvuoQEAwGNcqZ6lpKTUYyYAYD2aAACASrVr10433XSTvLwq7ip40wzAk7Rv31433nhjpfVsxIgRFmQEANahCQAAqFJKSopKS0ud9x0Oh8LCwjRw4EALswKAq1dZPevevbuuv/56C7MCgPpHEwAAUKWUlJRyR86MMUpOTpafn5+FWQHA1UtNTa1QzzirCYAd0QQAAFQpNjZWt99+uxwOh/OxK323FgAaqtjYWPXq1ctZz7y8vJSUlGRxVgBQ/2gCAACuaOTIkSr7QzItWrTQ7bffbnFGAFAzl9azO+64Q7GxsRZnBAD1jyYAAOCKhg8fLl9fX0kVT6cFAE9yaT3jrCYAduUwZe1QoJ5lZGTod7/7ndVpAHDBzp079e9//1tdunRRSEiI1ekAQI3t3LlTJ06c0K233iofHx+r04FNPfXUU7rrrrusTgM2ReWDZfbt26cvv/zS6jQAXIXNmzdbnQIA1IkNGzZYnQJsLCkpiSYALMM5nQAAAAAA2ARNAAAAAAAAbIImAAAAAAAANkETAAAAAAAAm6AJAAAAAACATdAEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAA2FRERIWOMjDHq2bNnrZcDAAANH00AAAAagXfffdf5QX3FihVWpwMAABoomgAAAHi4kJAQJSUlOe///Oc/V1RUlIUZAQCAhoomAAAAHi4lJUXBwcHKy8vTwYMH5evrq9GjR1dY7rrrrtNf/vIXFRQUaNu2bRo5cmSl87m6HAAA8Dw0AQAA8HAPPfSQJGn58uVasmSJJOnBBx8st4yvr6/Wrl2rfv36aebMmerTp4969OhRYS5XlwMAAJ6JJgAAAB6sU6dO6tatmyRp8eLFWrx4sSSpXbt2uv32253L9e3bV23btpUkzZgxQ/n5+Xr11VcrzOfqcgAAwDPRBAAAwIONGTNGkvTjjz9q/fr12rp1q/bs2SPpP2cISFLLli0lSUVFRTp9+rQkKTc3t8J8ri4HAAA8E00AAAA8VEBAgFJTUyVJsbGxKikpkTFG7du3lyQlJSUpLCxMknTkyBFJUlBQkEJCQiRJ0dHRFeZ0dTkAAOCZaAIAAOCh7r33XjVt2lSnT5+Wv7+/HA6HHA6HvLy8lJOTo8DAQKWkpEiSMjMztW/fPknSb3/7W4WHh2vSpEkV5nR1OQAA4JloAgAA4KHKLv63bt06nT9/3vm4MUarV6+W9J+vBBQXF2vIkCH64osv9Jvf/EYbNmzQN998U2FOV5cDAACeyWGMMVYnAXt6/fXXNWHCBKvTAAAAAOrV7NmzNX78eKvTgE1xJgAAAAAAADZBEwAAAAAAAJugCQAAAAAAgE3QBAAAAAAAwCZoAgAAAAAAYBM0AQAAAAAAsAmaAAAAAAAA2ARNAAAAAAAAbIImAAAAAAAANkETAAAAAAAAm6AJAAAAAACATdAEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCR+rEwACAgIUFBRkdRoAANTIhQsXVFBQoKCgIAUEBFidDoAGrKioSGfPnrU6DdgcTQBYLiQkRHPnzlV4eLjVqQAAcNXS09P1+eefKyAgQCtWrLA6HQANVH5+vsaOHUsTAJajCYAG4dZbb1VUVJTVaQAAcNXeeustSZK3t7f69u1rbTIAGqxjx45ZnQIgiWsCAAAAAABgGzQBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAAAAAAACboAkA1KGYmBjt3LnT6jTKCQgIkMPhkMPh0H333VduLD09XQ6HQ2vWrLEoOzR23bp1U1RUlE6fPn1Vz2PdhLtVtm5u3brVWS8dDodmzJhhYYaeoSHu9yRqCNyvpvs3oCGgCQCP0rFjRy1YsMDtca655hplZWW5PU59OnPmjJYvX+68X1BQoBkzZqht27YaMmSI8/FrrrlGDodDP/vZz3ThwgVJUlZWlhwOh8LDw+s976qMGjWq3Jv1J598stz4Tz/9pLS0NEVERCgwMFC9e/fWpk2b6mx+V5b5/PPPNXjwYDVp0kQRERFKTEzU7t276ywHq+OX+eSTT3TzzTeXazgdPHhQkvTYY4/p+PHjmjVrlstxPX3dlKxfPxvCutEQcrjadfPGG2+UMUZPPPGEy3nUxsKFC9W5c2cFBAQoOjpaaWlpOnHihMvPr8t9VWPa73l6DXF3/XAlhtXbr7vjuxJDqvv9G9BQ0AQAbOqDDz5QQUGBkpOT5XA4Kozv379f7777rgWZuWbBggUyxigtLa3S8XHjxmnu3LmaNm2adu3apd27d2vAgAHKz8+vk/mrW+bcuXP6/e9/r+eee045OTl69NFHtWbNGg0ePFjnz5+vkxysji9JS5cu1bBhwxQVFaW9e/fKGCNjjFq3bi1JGjp0qAIDA/X222/LGONSXE9fNyXr18+GsG5YnYM71s269MYbb2jChAl66qmnlJubq8zMTB0+fFj9+/fXuXPn6j2fxsTTa4i764crMazeft0d35UcGnoNAWqDJgA8WkxMjGbMmKGEhASFhoYqOTnZ+eYpJiZG06ZNU4cOHdSsWTOlpaWV2zn4+PgoJyfHeX/ixIl69tlndd999+lf//qXbr75ZjkcDs2ePbtC3Oeff14xMTFq3ry5xo0bpzNnzjjH1q1bV2k+0sVTxxwOhwICAtSjRw9t3ry53GupKt/c3FwNHz5czZs3V3x8vGbOnFnr393q1aslSX369Kl03OFwaOrUqVXuUA8fPqzk5GTFxsYqPDxcffr00ddff+0c9/HxKddhDwoKUmJiogoKCiRJR44cUUpKiuLi4tS0aVMNGTJE33//fa1flyQdOnRIixYtUlBQkB544AG1adNGiYmJOnnypObMmVMnMarj7++v1atX65ZbblGTJk3061//2pnbt99+2yjiG2P0+OOPyxijefPmqWXLlhWWCQ4OVteuXXXw4EHt2rXLpXkb87opWb9+Wr1u1kcO7lo368qZM2f0zDPP6NVXX1VycrLCwsLUoUMHrVixQtnZ2Xr//fclVb2fklTpvupK+5GrnetynrTfa8w1xOr6IVlfQzx5/wY0FDQB4PHWrl2rdevWac+ePdqxY0e5rwssWbJEa9eu1ebNm7Vx40a98sor1c63fPlyxcXF6ZtvvpExRhMmTCg3vmnTJs2dO1fr16/XDz/8oK5du2r9+vUu5ZOVlSVjjE6ePKlf/vKXGjFihEpKSq6YrzFGw4YNU3R0tPbt26eMjAy9+eabzu85jhs3TqNGjbrq39u2bdskSR06dKh0fPjw4Tp8+LDmzp1bYezMmTO68847tXTpUr333nvasmWL9u7dq379+lXYEY4ePVonTpxQ9+7dtWbNGs2ZM0dnz55V//79tWTJEr333nv65z//qb///e/q27evTp06ddWv5XLbt29XaWmpYmNj5eV1sczFxcVJuvidXyts377d+bMVp526I/6+fft06NAh+fn5KTExUUFBQWrTpo3++Mc/lluubB3bsmWLS/M25nVTanjrp9XrpjtycNe6WVc2bdqk/Px8JSUllXs8KChI99xzjz777LNq56hqX8V+r3HXkIZWP8pyKsP+DfAMNAHg8Z577jm1bNlSsbGxGjp0aLkLFE2ePFnXXnutWrdurSlTpmjRokW1jufr6yt/f3+FhIQoLCxMY8aM0cCBA13Kp0xgYKAefvhhlZSUaN++fVfMd/v27dq9e7f+8Ic/qGnTpmrfvr0mTpyoZcuW1ep1lJ02GBISUun42LFjFR8fr5dffrncER9J+vTTT7V//3517txZAwcO1LXXXqukpCSdP39eb731VrllH3nkETVt2lS33XabpIunYX766af6/vvv1bNnTw0YMEBt27bVoEGDlJ2dXevXJV08giRJfn5+zsf8/f0lqdyRsPpy6tQpjRs3TpKUkpLiPJXQ0+MfP35cknT+/Hn169dPR48eVVhYmB599NFy/4+hoaGSpJMnT7o0b2NeN6WGtX5avW66Kwd3rZt1JS8vT8HBwZWu4y1atFBeXl6N52a/17hrSEOqH5L1NcTT9m9AQ0ETAB4vIiLC+XNgYGC5HXp8fLzz59atW+vHH3+sdbxOnTrphRde0IgRI3Tbbbdp6tSpKioqcimfN998U23btpW/v78cDocOHDig7OzsK+Z76NAh5efny9/fX97e3vLy8tL48eN15MgRSdKcOXNqdLHEsm55VVe19fPz0+TJk5Wdna033nij3FjZRXGioqKcj0VHR0u6eDrepcqW8fX1lSSVlJQ4n/+3v/3NeTrl4sWLJUl79+696tdyubJcLj0l9dKvidSnc+fOaejQodq9e7fuvPNOzZs3r9HEv/T/f8SIEWrWrJkSExMlSatWrXKOlZ0i6+oRmsa8bl6aj9Xrp9XrpjtzcNe6WVeaN2+uwsLCStfx7OzscvuRq8V+r3HXkIZSP8risn+zpoYAtUUTAI3apTvsgwcPKjY21nk/ICBAZ8+edd6/9MhL2Sl2Vbn//vv15ZdfKiMjQ1u3blV6enq1uXz33Xd6+umntWDBAp06dcp5cZmyKxRXlW/Z0ZXi4mKVlJSotLRUxhj99a9/rTbmlXTq1EmSrng13dGjR+v666/XkiVLyj1e1mk/duyY87GyoxOXvqGrStnze/fu7bzQTtlt+vTpV/MyKtWpUyd5eXkpOztbpaWlkqSjR49Kunj17/pSWlqq1NRUZWZmqkePHlq5cqUCAwMbTfxWrVo5j4JcfvGt4OBg589l69hNN93k0ryNed2UGsb6afW66e4c3LVu1pVu3bopLCyswpHhoqIirVy5Uv3795d05f2UVPm+qqr9Xk3mupQn7fcacw1pCPVDsr6GeOr+DWgoaAKgUXvppZd08OBBHTp0SOnp6RoxYoRz7IYbbtD8+fNVVFSkjIwMffjhh86xqKgo7dixo9Krva5cuVLTp0/Xjz/+qAsXLsgYU+6ISFUKCwvl7e2t8PBwXbhwQTNmzHAeMbhSvp07d1arVq00adIkHTt2THl5eZo/f75ef/11STW/JsDdd98tScrMzKxyGR8fH02ZMqXC72HQoEFq06aNtm3bpj//+c86cOCAli1bJl9fX40dO7ba2IMGDVLbtm319ddf68MPP1RhYaE2b96sMWPGaMOGDZKknj17yuFwlPuzhq6Kj4/XyJEjVVRUpHfeeUf79+/X6tWrFR4e7jxtsDbzu2r8+PFasWKFOnTooDVr1pR741AfObg7vp+fnyZOnChJWrx4sU6cOKHVq1fLy8tLKSkpki6u95s2bVJ8fLw6duzoUtzGvG5KDWP9tHrddHcONV0360tgYKDS09M1adIkLVmyRKdOndKePXt07733KioqSqNHj5Z05f2UVPm+qqr9Xk3mKuNp+73GXENcqR+1jeEKq2tIdfFrm0NDryFArRnAIrNnzzaSTGRkpMnNzXXpOQkJCeZPf/qT8350dLTZsWOH8356erpJS0tzjr388sumXbt2Jjw83Dz00EPm7NmzzmU3btxoEhISTGhoqBk6dKgZNWqUeeaZZ4wxxqxYscLExcUZh8NhZs2aVS6HoqIi8/TTT5vY2FgTFhZmhg0bZo4fP15tPsYYM2nSJBMWFmZatGhhxo0bZxISEsxnn31Wbb45OTkmNTXVREVFmaioKPPggw86Y6alpZnU1NQqf2f+/v5Gkjlz5ky5x/Pz801oaKi5/vrrTWlpqfPxuLg4I8msX7/eGGNMSUmJ6dixo5FkwsLCnMsdOHDAJCUlmZiYGBMaGmp69eplMjMznePe3t5Gkjly5IgxxpgpU6YYSebBBx80xhhz+PBhk5qaauLi4kyTJk1Mjx49zPz5801xcbExxpju3bsbSeajjz6q9HWlpaUZSRVuTzzxhDHGmNOnT5uxY8eaZs2aGX9/f9OrVy+TlZXlfH5t569umdOnT1c6dmnM2uZgdXxjjCkuLjZPPvmkiYmJMYGBgaZLly7m448/do4vWLDASDJTp051+Xfv6eumK787d6+fDWHdsDqHmqybZZ544gkjyfzv//5v5f/Bl0lOTnbuz67G+++/b2644Qbj5+dnIiMjzUMPPWTy8vKc41faTxlTcV91pf3I1c51KU/b73l6Dalt/aiLGFZvv7WNXxc51KaGVCU3N9dERkYaSWb27NkuPw+oazQBYJmaNAGuxuVvTBo6d+Vb1gSQZO69995yYy+++KKRZFatWlXncWujuLjYhISEmPbt25dr3HjK/J6QQ33F79q1q4mMjDQFBQVXFdeu62Z9xWjI8esrh8vXTWOM2bJlS7kPA+5uAtQ19nv/QQ2hhlhRQ6pDEwANhY8ANGqXfgf0cpMnT9bkyZPrMRvXbNy4UYWFhXrnnXecVz32pPk9IYf6ip+VlVWjuHZdN+srRkOOX185XL5uShe/U20qOR0enocaQg2xooYAnoImAIAG59Zbby33d6Q9bX5PyMGq+Fa/7tqqj/yt/h1ZHb+h5AC4AzXEPjkADRlNADRaVvy9jpsbygAAIABJREFU3NrwtHwBAA2Lp+1HPC1fAGgs+OsAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAAAAAAACboAkAAAAAAIBN0AQAAAAAAMAmaAIAAAAAAGATNAEAAAAAALAJH6sTAM6dO6fevXvL29vb6lQAALhqR48elST99NNPSkhIsDgbAA1VSUmJzp07Z3UaAE0AWMvPz0/FxcU6fPiw1akAAFBjQUFBMsbowIEDVqcCoIHz8/OzOgXYHE0AWGbQoEGKjIy0Og0AsJ1//OMfmjlzph577DH17NnT6nQAwHa6du1qdQqwMZoAsMx1112n6667zuo0AMB2HA6HZs6cqVtuuUVJSUlWpwMAAOoRFwYEAAAAAMAmaAIAAAAAAGATNAEAAAAAALAJmgAAAAAAANgETQAAAAAAAGyCJgAAAAAAADZBEwAAAAAAAJugCQAAAAAAgE3QBAAAAAAAwCZoAgAAAAAAYBM0AQAAAAAAsAmaAAAAAAAA2ARNAAAAAAAAbIImAAAAAAAANkETAAAAAAAAm6AJAAAAAACATdAEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCR+rEwAAAO739ddfa8OGDZKkHTt2SJI++eQT/fDDD5Kk2267Tb169bIsPwAAUD8cxhhjdRIAAMC9MjMzdccdd1Q5/sUXX6hv3771lxAAALAETQAAAGygtLRULVu2VHZ2ti7d9TscDsXExOjo0aPy8uJbggAANHbs7QEAsAEvLy8lJyfr8t6/MUYpKSk0AAAAsAn2+AAA2MTIkSOv6nEAAND48HUAAABspF27dtq3b59KS0vlcDjUpk0b7du3z+q0AABAPeFMAAAAbGTkyJEqLS2VdPGrAL/4xS8szggAANQnzgQAAMBGvvvuO7Vv3955f8+ePWrXrp2FGQEAgPrEmQAAANhIu3bt1LVrV0lS165daQAAAGAzPlYnAMBaycnJysnJsToNAPUoPz/f+W/fvn2tTQZAvYqJidHixYutTgOAhfg6AGBzERER+ve//211GgAAoB40b95ceXl5VqcBwEJ8HQCwOYfDYXUKAACgnrDfB0ATAAAAAAAAm6AJAAAAAACATdAEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAAAAAAACboAkAAICHycnJkTFGo0aNanCxIyIiZIyRMUY9e/as5+wAAEB1aAIAAFAHtm7d6vzwa4zRyZMn9c0332jkyJFWp1atL774QsYYrVq1qsLYwoULZYzRpk2bLMgMAADUNZoAAADUoYULF8rb21tjx45Vt27dtHDhQt166611GiMmJkYOh0MLFiyok/nmzZsnSRo8eLBiYmKcj4eGhmrYsGHllqnr2AAAoH7RBAAAoI6VlpZq2bJl+umnn+RwOHTHHXc4x5o2baqZM2dq7969Kiws1Lfffqvf/OY38vb2di4zceJEfffddyoqKtIPP/ygN998Uy1btnSOX35Kft++fcudhVB2y8/PdynmihUrdPLkSXl7e+sXv/iFM05ycrICAwN15swZffDBB5XGvu666/SXv/xFBQUF2rZtW5VnPrjyups1a6bXXntNe/fuVVFRkb7//nu98sorCg0NrdX/BwAA+A+aAAAAuInD4ZAknT9/XpLk6+urL7/8UhMnTtSyZcsUGxurjRs36tVXX9Vrr70mSerSpYtmzpypoqIixcbGqnfv3tq2bZvGjx9fZZzMzEw5HA45HA7dcMMNOnXqlCTp7NmzLsU8e/asFi5cKEn61a9+5Zy37Odly5Y557yUr6+v1q5dq379+mnmzJnq06ePevToUely1eXg5+enr776So888ogWLVqkFi1aKCMjQ//zP/+jjIwMeXnxlgUAgDphANhaRESEkcSNG7da3rZu3WqMMWbBggXGy8vLJCUlGWOMOXHihGnVqpWRZBITE40xxpw/f94EBgYaSaZbt27GGGOKi4tNaGioueOOO5zPmzBhgunTp48JCwsrFysnJ8cYY8yoUaPKPR4XF2cOHz7snG/QoEEuxZRkOnXq5KwLPXr0MO3bt3fev/322yuNPWDAAOcyISEhRpK56aabnI/17NnT5df985//3BhjTGlpqQkODjaSTMuWLZ1z9erVy/L/Y27cGsMtIiKipm8ZADQStNUBAKhDqampKikp0dKlS3XmzBmlpqbq8OHDkqT4+HhJF4+MFxUVyRijb775RpLk4+OjVq1a6auvvtKiRYsUHh6uWbNmKTMzU3l5eZo2bdoV44aGhmrNmjXOrw08/PDDWrdunUsxJWn79u3KysqSdPEMgLKzAL777jutX7++0phlsYqKinT69GlJUm5uboXlXMmhLI/Tp0+rsLCwwlxl4wAAoHZoAgAAUIcWLlyo0NBQPfnkkwoMDNRHH32kXr16SZKzGXDmzBn5+fk5T+Evu+3cuVMlJSVKSUlRs2bN1Lt3b02fPl0+Pj564oknFBYWVmlMX19fLV++XJ07d5YkvfTSS84L+bkSs0zZc5KTk3X//fdLkt55550qX+uRI0ckSUFBQQoJCZEkRUdHV1jOlRzKlgkJCVFwcHCFucpiAQCA2qEJAABAHTt9+rSmT5+uzz77TP7+/nr77bfl6+urdevWaefOnQoMDNS0adMUGhqqa665Rqmpqfrwww8lSd26ddO8efPUpk0bZWVlad26dc45i4qKKo03evRoDRgwQJK0YMECPfvss84xV2KW+eCDD1RYWKiwsDDFxMSouLhY77//fpWvMzMzU/v27ZMk/fa3v1V4eLgmTZpUYTlXcsjIyNDu3bvlcDicDY/HH39ckrRx40Zt2LDBpd89AAC4MpoAAAC4ycSJE3XhwgW1b99ejz76qIqLi9W7d2/NmDFDiYmJysnJ0VdffaV+/fpp8uTJkqQtW7bo888/12uvvabc3Fx99NFHWr9+ve655x4VFxdXGicgIMD586hRo8r9dQBXYpY5ffq0li5d6ry/atUqHTt2rMrXV1xcrCFDhuiLL77Qb37zG23YsMF5mv/ly1WXw/nz59W7d2/Nnj1bqampysnJ0eDBg/Xqq6/qrrvuUmlpqeu/eAAAUCWHMcZYnQQA60RGRiovL8/qNAAAQD2IiIjQ8ePHrU4DgIU4EwAAAAAAAJugCQAAAAAAgE3QBAAAAAAAwCZoAgAAAAAAYBM0AQAAAAAAsAmaAAAAAAAA2ARNAAAAAAAAbIImAAAAAAAANkETAAAAAAAAm6AJAAAAAACATdAEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCZoAAAAAAADYhI/VCQBoGEJDQ+XjQ0kA7OjEiRMKCAhQUFCQ1akAcJMLFy6ooKDA6jQANAC84wcgSerWrZsmT55sdRoA6tnHH3+s1157TSEhIZo7d67Cw8OtTgmAG6Snp+vzzz+3Og0ADQBNAACSpKioKPXt29fqNADUs127djl/vvXWWxUVFWVhNgDc5a233rI6BQANBNcEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAQKMTExOjnTt3Wp1GBenp6XI4HFqzZo3VqaCR6tatm6KionT69GmrU/EI1Ap4KrZ1ALVBEwDAVenYsaMWLFhQL7GuueYaZWVl1UssdysoKNCMGTPUtm1bDRkyRNLF1+dwOPSzn/1MFy5ckCRlZWXJ4XAoPDzcynQrGDVqlBwOh/P25JNPlhv/6aeflJaWpoiICAUGBqp3797atGlTnc1f3bgkff755xo8eLCaNGmiiIgIJSYmavfu3fWWg7vjS9Inn3yim2++WQEBAc7lDh486Bx/7LHHdPz4cc2aNcvluDW1cOFCde7cWQEBAYqOjlZaWppOnDjh8vPrcvtu7LVC8px64cp6XNt60b9//3IxHA6HWrduXW6Z6rYVK+eXar+91+e2DqDxoQkAAPXggw8+UEFBgZKTk+VwOMqN7d+/X++++65FmblmwYIFMsYoLS2t0vFx48Zp7ty5mjZtmnbt2qXdu3drwIABys/Pr5P5qxs/d+6cfv/73+u5555TTk6OHn30Ua1Zs0aDBw/W+fPn3Z5DfcRfunSphg0bpqioKO3du1fGGBljyn04GTp0qAIDA/X222/LGONS3Jp44403NGHCBD311FPKzc1VZmamDh8+rP79++vcuXNui2sHV6oVUsOvF9Wtx1Lt60WZ48ePO7eDSz+Au7KtWD1/bbf3+trWATRONAEA1EpMTIxmzJihhIQEhYaGKjk5udyHgJiYGE2bNk0dOnRQs2bNlJaW5vxQ5OPjo5ycHOeyEydO1LPPPitJuu+++/Svf/1LN998sxwOh2bPnl0h9vPPP6+YmBg1b95c48aN05kzZ5xj69atqzSnbt26yeFwKCAgQD169NDmzZtdylWScnNzNXz4cDVv3lzx8fGaOXOmy7+n1atXS5L69OlTYczhcGjq1KlVflg8fPiwkpOTFRsbq/DwcPXp00dff/11uWV8fHzKHVUKCgpSYmKiCgoKJElHjhxRSkqK4uLi1LRpUw0ZMkTff/+9y/lfyaFDh7Ro0SIFBQXpgQceUJs2bZSYmKiTJ09qzpw5dRKjOv7+/lq9erVuueUWNWnSRL/+9a+duX377bceH98Yo8cff1zGGM2bN08tW7asdLng4GB17dpVBw8e1K5du2odtzJnzpzRM888o1dffVXJyckKCwtThw4dtGLFCmVnZ+v999+XdPXbd3XbX1XzuatWSDWvF+6qFVLt64WVtUJyf71wdVtpqPO7GqM+tnUAjRdNAAC1tnbtWq1bt0579uzRjh07KnxdYMmSJVq7dq02b96sjRs36pVXXql2zuXLlysuLk7ffPONjDGaMGFCufFNmzZp7ty5Wr9+vX744Qd17dpV69evrzanrKwsGWN08uRJ/fKXv9SIESNUUlJSba7GGA0bNkzR0dHat2+fMjIy9Oabbzq/sztu3DiNGjWqytezbds2SVKHDh0qjA0fPlyHDx/W3LlzK4ydOXNGd955p5YuXar33ntPW7Zs0d69e9WvX79K3/iNHj1aJ06cUPfu3bVmzRrNmTNHZ8+eVf/+/bVkyRK99957+uc//6m///3v6tu3r06dOlVlzq7avn27SktLFRsbKy+vi7uVuLg4SdLWrVtrPX9NcypjxanSdR1/3759OnTokPz8/JSYmKigoCC1adNGf/zjHyssW7aObdmypdZxK7Np0ybl5+crKSmp3ONBQUG655579Nlnn1U7R1Xbd0OqFVLN6oU7a4VUd/XCiloh1W29iI+PV2hoqHr16qUvv/xS0tVtK1bPXxVXY7h7WwfQeNEEAFBrzz33nFq2bKnY2FgNHTq0woW2Jk+erGuvvVatW7fWlClTtGjRolrH9PX1lb+/v0JCQhQWFqYxY8Zo4MCBLucUGBiohx9+WCUlJdq3b1+1uW7fvl27d+/WH/7wBzVt2lTt27fXxIkTtWzZMpfyLTvNNSQkpMLY2LFjFR8fr5dffrncEUpJ+vTTT7V//3517txZAwcO1LXXXqukpCSdP39eb731VoW5HnnkETVt2lS33XabpIunDn/66af6/vvv1bNnTw0YMEBt27bVoEGDlJ2d7XL+V5KbmytJ8vPzcz7m7+8vSeWO3NaXU6dOady4cZKklJSUqz4FuCHGP378uCTp/Pnz6tevn44ePaqwsDA9+uijFf4PQ0NDJUknT56sddzK5OXlKTg4uNJ1uUWLFsrLy6vx3A2xVkhXVy/cWSukuqsXVtQKqW7qxV/+8hdnc+a1117Thg0bNHjwYO3bt++qthWr5q+OqzHcva0DaLxoAgCotYiICOfPgYGBFd6YxsfHO39u3bq1fvzxx1rH7NSpk1544QWNGDFCt912m6ZOnaqioqJqc3rzzTfVtm1b+fv7y+Fw6MCBA8rOzq4210OHDik/P1/+/v7y9vaWl5eXxo8fryNHjkiS5syZc8ULJpYdDa7sSs5+fn6aPHmysrOz9cYbb5QbK/sealRUlPOx6OhoZ06XK1vO19dXklRSUuKc429/+5vzFODFixdLkvbu3Vtlzq4qy+fS06jLfo6Jian1/Ffj3LlzGjp0qHbv3q0777xT8+bNaxTxL/3/HzFihJo1a6bExERJ0qpVq8otW3Zat7vOgGjevLkKCwsrXZezs7PLbXtXqyHVCqlm9cKdtUKqu3phRa24NJ+6qBd+fn761a9+pY4dO+rMmTP69NNPr2pbsXr+qrgaw93bOoDGiyYAALe79M3nwYMHFRsbK0kKCAjQ2bNnnWOXH0EsO1W0Kvfff7++/PJLZWRkaOvWrUpPT7/i8t99952efvppLViwQKdOnXJeZKnsSttXyrXsSGFxcbFKSkpUWloqY4z++te/VvPqL+rUqZMkVXm1+NGjR+v666/XkiVLyj1edhT52LFjzsfKjqRd+gHkSsrm6N27t/PiUmW36dOnuzTHlXTq1EleXl7Kzs5WaWmpJOno0aOSpBtvvLHW87uqtLRUqampyszMVI8ePbRy5UoFBgY2ivitWrVyHvW7/GJxwcHB5e6XrWM33XRTncS+XLdu3RQWFlbhqGdRUZFWrlyp/v37S6rZ9l3V9lfdfHVdK6Sa1wt31wrJffXC3bVCck+9KLswnre391VtKw1l/su5GsPd2zqAxosmAAC3e+mll3Tw4EEdOnRI6enpGjFihCTphhtu0Pz581VUVKSMjAx9+OGH5Z4XFRWlHTt2VHrl45UrV2r69On68ccfdeHCBRljyh3dq0xhYaG8vb0VHh6uCxcuaMaMGRX+pFNVuXbu3FmtWrXSpEmTdOzYMeXl5Wn+/Pl6/fXXJVX/Pd+7775bkpSZmVnpuI+Pj6ZMmVLhtQ4aNEht2rTRtm3b9Oc//1kHDhzQsmXL5Ovrq7Fjx17x9V46R9u2bfX111/rww8/VGFhoTZv3qwxY8Zow4YNkqSePXvK4XBo+fLlLs15qfj4eI0cOVJFRUV65513tH//fq1evVrh4eHO0+JrM7+rxo8frxUrVqhDhw5as2ZNhTfk7s7BnfH9/Pw0ceJESdLixYt14sQJrV69Wl5eXkpJSXEuV1hYqE2bNik+Pl4dO3as3QuqQmBgoNLT0zVp0iQtWbJEp06d0p49e3TvvfcqKipKo0ePllSz7buq7a+6+eq6Vkg1rxfurhWS++qFu2uFVLf1ori4WP/3f/+nXbt2KTQ0VHfffbdL20pDmb8qrsSoj20dQCNmANhaRESEkWSSk5NdWj4hIcH86U9/ct6Pjo42O3bscN5PT083aWlp5cZffvll065dOxMeHm4eeughc/bsWWOMMRs3bjQJCQkmNDTUDB061IwaNco888wzzueuWLHCxMXFGYfDYWbNmlUuj6KiIvP000+b2NhYExYWZoYNG2aOHz9ebU6TJk0yYWFhpkWLFmbcuHEmISHBfPbZZ9XmaowxOTk5JjU11URFRZmoqCjz4IMPOmOmpaWZ1NTUKn9v+fn5JjQ01Fx//fWmtLTUGGNMXFyckWTWr19vjDGmpKTEdOzY0UgyYWFhzuceOHDAJCUlmZiYGBMaGmp69eplMjMzy83v7e1tJJkjR44YY4yZMmWKkWQefPBBY4wxhw8fNqmpqSYuLs40adLE9OjRw8yfP98UFxcbY4zp3r27kWQ++uijSvNPS0szkircnnjiCWOMMadPnzZjx441zZo1M/7+/qZXr14mKyvL+fzazu9K/MrGL43pzhzqI35xcbF58sknTUxMjAkMDDRdunQxH3/8cbk5FixYYCSZqVOnVhqjMrNnzzaSTGRkpMnNzXX5ee+//7654YYbjJ+fn4mMjDQPPfSQycvLc45f7fZd3fZ3pfncUSuMqXm9qOtaYUzd1Qura4UxtasXx48fLzdvZGSkGTx4sPnmm2+cy1S3rVg5v6u/p+pi1GRbT05ONpJMRESEy88B0DjRBABs7mqbAFfr8jfZDZm7c33xxReNJLNq1Sq3xaiJ4uJiExISYtq3b1/uQ5enzO8JOdRX/K5du5rIyEhTUFDg8nNq2gSoa55UK4xxb752rRX1EcPT5y9Tk22dJgCAMnwdAADqyeTJk2WMcV7gqaHYuHGjCgsL9c477ziv0u1J83tCDvUVPysrS8eOHavyyvLwDHatFfURw9PnL8O2DqA2fKxOAABgrVtvvbXc3z73tPk9IQer4wN1oT7WY0+vR2zrADwBTQAAbmXF34mvKU/KFWhsPG3787R8AQAow9cBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAAAAAAACboAkAAAAAAIBN0AQAAAAAAMAmaAIAAAAAAGATPlYnAKBhWLt2rRISEqxOA0A9O3nypCTp3Llz6t27t7y9vS3OCIA7HD161OoUADQQDmOMsToJANZp1qyZzp07J0oBYF8Oh4MaANiAw+GQv7+/Tpw4YXUqACzEmQCAzb333ns6e/as1WmgHsyfP18ZGRl6++23FRoaanU6ABqAgoICjRkzRnfddZceeOABq9NBPQgICLA6BQAW40wAALCJCRMm6PXXX9exY8cUGRlpdToAGoDjx48rKipK48eP1+zZs61OBwBQD7gwIAAAAAAANkETAAAAAAAAm6AJAAAAAACATdAEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAAAAAAACboAkAAAAAAIBN0AQAAAAAAMAmaAIAAAAAAGATNAEAAAAAALAJmgAAAAAAANgETQAAAAAAAGyCJgAAAAAAADZBEwAAAAAAAJugCQAAAAAAgE34WJ0AAMB9PvjgAx05ckSStHnzZknSrFmzFBwcLElKTk5WfHy8ZfkBqH+HDh3S4sWLJUmFhYWSLtaH6dOnS5JatmyplJQUy/IDALiXwxhjrE4CAOAezz//vF544YVKx4KDg5Wbm+tsCACwh8LCQkVHRzsbAJebMmWKnn/++fpNCgBQb/g6AAA0YiNHjqxy7J577qEBANhQcHCw7rnnnirHr1Q3AACejyYAADRi7dq100033SQvr4rlntN9Afuq7IO+l5eXunTponbt2lmQEQCgvtAEAIBGLiUlRaWlpc77DodDYWFhGjhwoIVZAbDSoEGD1LRpUzkcDudjpaWlNAcBwAZoAgBAI5eSklLuTABjjJKTk+Xn52dhVgCs5Ovrq6SkJF16aSgvLy+NGDHCwqwAAPWBJgAANHKxsbG6/fbbyx3x4zu/AC6tAw6HQ71799Y111xjYUYAgPpAEwAAbGDkyJHOI34tWrTQ7bffbnFGAKzWu3dvxcbGSvrPGUIAgMaPJgAA2MDw4cPl6+srSUpNTa30QoEA7MXLy8t5NoCPj4/uu+8+izMCANQHh7n0y2DVePzxx7Vx40Z35gMAcJOdO3fq3//+t7p06aKQkBCr00E9eOqpp3TXXXdd9fMyMjL0u9/9zg0ZoaE5ffq0Nm/erObNm6tjx45WpwMAqIHu3bvrlVdecXn5q2oCJCQk6Ntvv61RYgAAoH7Nnj1b48ePv+rnvf7665owYYIbMgIAAHXtv/7rv7Rr1y6Xl+d8UAAAAAAAbIImAAAAAAAANkETAAAAAAAAm6AJAAAAAACATdAEAAAAAADAJmgCAAAAAABgEzQBAAAAAACwCZoAAAAAAADYBE0AAAAAAABsgiYAAAAAAAA2QRMAgCQpJydHxhiNGjXK6lQAALC96vbLERERMsbIGKOePXvWe3xPiwPgP2gCAA3Y1q1bnTt4Y4yKioq0e/duPfPMM/Lz87M6vf/H3p2HR1mf+x//TALZMAsRkhCQIFZEQKgFhaOcSAWVzR4oxQChRY9K8OApKLZQPejVoiKKosWK4AK2UARcWgWEugAi9ZRFVgsIKIslYbkgIWQSEpL79we/mcOQbZLMZDKZ9+u65oI8y/d7PzPP/Xwnd575TrWWL18uM9PLL78c6FAAAKizS8fl06dPa9OmTRo5cmSgQ/O7i499+vTpHuteffVV97pPPvkkQBEC8BZFACAILFq0SA6HQ9dff70SEhL05JNPasaMGT7tIyUlRQ6HQwsXLvRpuwAANDaLFi1SeHi4xo4dqx49emjRokW66aabfNpHQx6XH3jgAcXFxUmSkpOTNWbMmFq31ZCPE2isKAIAQWTv3r36y1/+IkkaMWKEe7nrVrqZM2dqzZo1ys/P19133y1JSkxM1EsvvaR9+/bJ6XTqm2++0bPPPusevC9tw3U7XvPmzTVr1izt27dPBQUF+uc//6mHH35Y4eHh7n0SEhL0zDPPaM+ePTp79qw2btyo9PR0SdKuXbs0aNAgSdL48eNlZjp58qTfnhsAAOpTWVmZli1bprNnz8rhcOjHP/6xe503Y+jEiRO1d+9eOZ1Offvtt5ozZ46uuOIK9/pLx+WrrrpKn3zyic6cOaPt27dXevfB+fPnZWbuMbhNmzbuv9J37NhRkudf9YuLi7V3715NmjTJq+M+evSo4uPj9cADD0iSHnroIUVFReno0aPltvWmn0uP0/Xz9OnTtXr1auXl5enw4cO6//77vYoPQPUoAgBBxuFwVLrupz/9qf77v/9bsbGxWrBggSIiIvT555/rl7/8pRYvXqxWrVpp9erV+tWvfqXVq1crLKziS0DTpk21bt06TZw4UcuWLVNqaqo2btyo559/Xi+99JLHNpMnT9aOHTvUvn17jR49Wv3795ckdenSRStWrJAk/eEPf5DD4VCLFi18/GwAABBYrnG5uLhYkndj6I9+9CPNmjVLTqdTqampSk9P1/bt2zV+/PgK+2jatKlWrlypvn37atasWbrlllvUs2fPKuMys0rX/fCHP5TD4VBYWJg6duyo0tJSzZzZaVYVAAAgAElEQVQ5Uz/96U+rPd7Fixfr2LFjmjhxopKSkjRu3Dh9++23+uCDD3zaz9ChQ3XffffpgQce0BVXXKE5c+YoOTm52v0AVI8iABBEOnTooP/4j/+QJL399tvl1s+ZM0e7du1y/3zHHXeoc+fOMjPNmDFDeXl5evbZZyVJvXr1qvTWxTvuuEPXXXedSkpKNG3aNOXl5bk/15+VlaW4uDjdcccd6tq1q6QLf+k/fvy4vvnmGz366KM+PWYAABqisLAwDR8+XM2aNdPp06e1ZMkSSd6NofHx8ZKktLQ0jR49WldddZUWL16sKVOmVNhXnz591KFDB0nSzJkzlZubq+eff77K+MrKyqo9BjPTt99+q7/97W+S5H6PUZWioiL9/ve/V0pKilatWqX4+HjNnDlTpaWlPu3ntdde05EjR/TRRx9JksLDw9W+fftq9wNQPYoAQBDIzMyUmWn79u3Ky8vT1KlTNXny5HLbZWdne/zctm1bSVJ+fr4KCgokSceOHSu3/lJpaWmSLvzlwel0ysy0adMmSVKTJk3Utm1b9zYFBQU6ceJEHY8QAIDgkZmZqdLSUi1dulSFhYXKzMzU4cOHJXk3hn7++edavHixEhISNHv2bK1du1YnT57UM888U2F/ro8JOJ1O5efnS/Icz2vC4XBoypQp+vrrr5Wfny8z04QJEyRd+OiAN1555RXl5+fr+uuv1/HjxzV//nyf9+M6vpKSEveyiz9OAaD2KAIAQcA1MWB0dLQ6duyoJ5980n3bYVVcb0hiY2PVrFkzSfK4le7IkSNV7ldYWKiIiAg5HA6Px65du3To0CFJUrNmzdSyZcsK26nqVkQAAILVokWLFBcXpylTpig6Olrvv/++evfuLcm7MbS0tFSjRo1SYmKi0tPTNWPGDDVp0kSTJ0923yVwMdd4HRMTo9jYWEmq9NZ411/kXd8idOl2gwcP1vTp09W2bVv16tVLYWFhmjNnjiTvf8nOzc3VvHnzJEm///3vVVRUVG4bX/QDwD8oAgCN2OrVq7V79245HA73G4tf//rXkqSNGzdqw4YNFe63atUq7dq1S9HR0XrmmWcUFxenNm3aKDMzU++995677R07dki68Jn/pKQkXXXVVXruuefc7Rw/flyS1K5dOzVp0sSfhwoAQL3Kz8/XjBkz9PHHHysyMlKvvfaamjZt6tUY2qNHD73++utq3769Nm/erFWrVrnbdDqd5fpau3at9u/fL0l65JFHlJCQUOlEft98840k6fbbb1d8fLweeeQRj/WRkZGSLhQLiouL1blzZ/3sZz+r8fE/8sgjcjgceuqppypc76t+APgeRQCgESsuLlZ6erpefvllZWZmKicnRwMGDNDzzz+vO+64o9LPC5aUlCg9PV0zZ87U4MGDlZOTo88//1x9+/bV1KlT3dvccsstmjFjhrp166bvvvtOS5Ys0fLly93tvPDCC/rqq6/Ur18/lZSUuN/kAADQWEycOFHnz59Xx44dNWHCBK/G0K1bt+qzzz7TSy+9pGPHjun999/X+vXr9ZOf/MTj9neXkpISDRw4UGvWrNHDDz+sDRs2uD9icKmsrCzt2LFD//mf/6l169aVK/i/9957evHFF1VaWqovv/xS06ZNc39W35fqqx8AtWA10KlTJ5PEgwePRvg4ceKEmZkNHz484LHw4MHDN4+XX365JsO828svvxzw2Hnw4MGDBw8e3j06depUo3GeOwEAqFOnTkpMTFRZWZm2b98e6HAAAAAA+AlFACDETZw4Ubt27dKRI0f0wAMPuD9LCAAAAKDxYaYuIMS9+OKLevHFFwMdBgAAAIB6wJ0AAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACEiCa12emyyy5TRESEr2MB4GdFRUVyOp2Ki4tTkya1Sn8AQcDpdKqoqKjO7URFRSkmJsYHEQGoT+fPn9eZM2cUExOjqKioQIcDwE+Ki4t19uzZGu9Xq98CWrRoofnz59dmVwABNGzYMDmdTvXo0UNTp04NdDgA/CA3N1djx471SREgNjZW8+bNU0JCgg8iA1Bfpk2bps8++0xRUVF69913Ax0OAD+555576q8IEBMToz59+tRmVwABFB4eLklKSkoih4FG6vjx4z5t76abblJSUpJP2wTgX3PnzpV0YdxnvAcar9rercecAAAAAAAAhAiKAAAAAAAAhAiKAAAAAAAAhAiKAAAAAAAAhAiKAAAAAAAAhAiKAAAAAAAAhIiQLwKkpKRo165dgQ6jnGnTpsnhcGjFihWBDgUNUI8ePZSUlKT8/PxAhxI0yHUEI3Ldd7gGIFhxHagZch3Bqj5z3e9FgC5dumjhwoX+7kZt2rTR5s2b/d5PfThz5oxmzpypDh06aODAge7lbdq0kcPh0A9+8AOdP39ekrR582Y5HA4lJCQEKtxyRo8eLYfD4X5MmTLFY/3Zs2eVlZWlFi1aKDo6Wunp6dqyZYvX7ffr18+jfYfDoXbt2pXb7q9//atuuOEGRUVFubc7ePCgz/qoS/vVPUfVtf/QQw/pxIkTmj17tlf91cWiRYvUrVs3RUVFKTk5WVlZWTp16pTX+/s6Nxt7rgdLnksNI9frkof10cfWrVt15513qnnz5rr88st166236osvvnCv/+yzzzRgwABddtllatGihQYPHqzdu3e719dnrtcV433NNfbxXmr414H6uM4w5tcOuR48uV7XPJeCP9erG++lhjXmh/ydAA3Rn//8Z505c0YjRoyQw+Eot/7AgQOaP39+ACLzzsKFC2VmysrKqnD9uHHjNG/ePD3zzDP6+uuvtXv3bt12223Kzc2tUT8nTpyQmcnMyiXo0qVLNXToUCUlJWnfvn3u7SoqFtSmj7q2X91zVF37Q4YMUXR0tF577TWZWY2OqSZeeeUVPfjgg/rNb36jY8eOae3atTp8+LD69eunc+fO+a3fUFFVrjf0PJcCn+u+ynN/9jF37lw99thj+v777/XII49ozZo1GjhwoIqKinTu3Dm98MILevzxx5WTk6MJEyZoxYoVGjBggIqLiyXVX64jMBr7eC8Fz3XAn+0z5qOx57qv8lwK3lyvaryX1PDGfKuBTp06mSTr1KmT1/t07tzZ/vSnP5mZWXJysj333HPWqVMni42NtYyMDCsqKnJvm5ycbNOnT7eOHTta8+bNbezYsXbu3DkzMwsPD7fs7Gz3thMmTLDHHnvMzMyGDRtmktyP2bNnl4vjiSeesOTkZEtMTLSsrCxzOp1exdS9e3eTZJGRkXbjjTfali1bvIo3JyfHhg8fbomJida2bVt74YUXvH7OBg0aZJLs008/9VjeunVrk2QOh8Patm1r586ds02bNpkki4+Pd2936NAhy8jIsFatWll8fLylp6fb+vXr3evDw8M9nq/o6GgbNGiQ5eXlmZnZ4cOHbeTIkZaammoJCQk2YMAA27t3r9fxu2RlZZkkmzx5snvZwYMHLSwszGJiYqy0tNTMzO6++26TZNOnT/eq3b59+5okO3HiRIXry8rKLC0tzSTZ0aNHaxx3dX34on2Xip4jb9vv3bu3SbKdO3d63V/Lli1Nko0YMaLabZ1OpyUkJNgbb7zhsbygoMBSUlJs7ty57mWV5WdludnQcr22eW7m+1z3VZ67nsvGmuu+ysP6ynUzs3/961/u12Lfvn3l1p8+fdq9fuvWre7lNc31Y8eOuXP95ZdfrlWsL7/8skmyli1b2rFjx7za5+Lx3qzqnKsur2p6TbkY433DGO/NguM6UJ/XgPoc80eMGOHOYW94O+bXdIxuaOO9GbneEMd7s8aV69WN92a+G/Nr8/u5mVm93wmwcuVKrVq1Snv27NHOnTvL3Tq4ZMkSrVy5Ul999ZU2btyoZ599tto233nnHbVu3VqbNm2SmenBBx/0WL9lyxbNmzdP69ev17fffqvu3btr/fr1XsW0efNmmZlOnz6tu+++WxkZGSotLa0yXjPT0KFDlZycrP3792v16tWaM2eO+zNA48aN0+jRoys9nu3bt0uSrr322grX33XXXTp8+LDmzZtXbl1hYaFuvfVWLV26VAsWLNDWrVu1b98+9e3bV19//bXHtmPGjNGpU6d04403asWKFXr11VdVVFSkfv36acmSJVqwYIH+8Y9/6Msvv1SfPn2Ul5dXacze2rFjh8rKypSamqqwsAunX+vWrSVJ27Ztq1FbaWlpiouLU+/evbVu3Tr38v379+vQoUOKiIjQ4MGDFRMTo/bt2+v3v/99jeOtqA9ftl8Rb9t3nR9bt271Sb+X2rJli3JzczV8+HCP5TExMfrJT36ijz/+uNo2qsrNhpTrtclzSX7NdV/ludQ4c93XeejvPgoLC7VgwQJJ0g9/+ENdeeWV5bbZsWOH+/8X3wbq71z3p6rG14Z0DZAY7319DZCC6zoQiPG+Jn0E85hPrjfuXPdlnkvBn+vejPdS4Mf8ei8CPP7447riiiuUmpqqIUOGlJu4Y+rUqbryyivVrl07PfHEE1q8eHGd+2zatKkiIyMVGxur+Ph43X///br99tu9jkmSoqOj9cADD6i0tFT79++vMt4dO3Zo9+7devHFF9W8eXN17NhREydO1LJly7yK13XrTGxsbIXrx44dq7S0ND399NMqLCz0WPfRRx/pwIED6tatm26//XZdeeWVGj58uIqLizV37lyPbX/5y1+qefPmuvnmmyVduBXpo48+0jfffKNevXrptttuU4cOHdS/f39lZ2d7HX9Vjh07JkmKiIhwL4uMjJQk5eTkeNXGJ5984r54v/TSS9qwYYMGDBjgfl1OnDghSSouLlbfvn31/fffKz4+XhMmTPD6GKrqwxftV8Xb9uPi4iRJp0+frnOfFTl58qSaNWtW4XnYqlUrnTx5sk7tN8Rcr0meS/Jrrvsqz6XGmeu+ysP66MP1huKxxx5TQkKCnn/+eYWHh3tsk5eXp3HjxkmSRo0a5XH7ob9z3Z+qyrmGeA2QGO99dQ2QguM6EMjxXgqNMZ9cb9y57os8lxpHrnsz3ksNY8yv9yJAixYt3P+Pjo4ud6KnpaW5/9+uXTsdPXq0zn127dpVv/3tb5WRkaGbb75ZTz75pJxOp1cxzZkzRx06dFBkZKQcDoe+++47ZWdnVxnvoUOHlJubq8jISIWHhyssLEzjx4/XkSNHJEmvvvpqlZMnuapBlc0MGRERoalTpyo7O1uvvPKKxzrXZ1uSkpLcy5KTkyVJhw4d8tjWtU3Tpk0lSaWlpe79//73v7snxHj77bclSfv27as0Zm+5Yrn4s2Wu/6ekpNSorYiICN1zzz3q0qWLCgsL9dFHH0nyPPaMjAwlJiZq8ODBkqQPP/ywzn34sv2KeNv+mTNnJMlvE8dcfvnlKigoqPA8zM7O9sib2mhIuV6bPJfk11z3VZ5fvF1jynVf56E/+1i+fLmcTqcWLFigvLw8j6KldOF5GTJkiHbv3q1bb71Vr7/+usf+/s51f6pqfG1I1wCJ8d7X14CL4wmG60AgxnspNMZ8cr1x57ov81wK7lyvbryXGs6Y3+AmBrz4ZD548KBSU1MlSVFRUe6JFSSVq0i6bj+pzC9+8QutW7dOq1ev1rZt2zRt2rRqY9m7d68effRRLVy4UHl5ee7JIVyzd1YWr6vyWFJSotLSUpWVlcnM9Omnn1bbp3ThwibJY7bIS40ZM0ZXX321lixZ4rHcVUk6fvy4e5mrQnfxRa0yrv3T09PdE2K4HjNmzPAq/qp07dpVYWFhys7OVllZmSTp+++/l3ThlpnasP8/cYar0ta2bVt3Fe3SyVeaNWtW5z780f7FvG3fdX5cf/31de6zIj169FB8fHy5CqjT6dQHH3ygfv36uZdVlZ+V5WZDyfXa5rkkv+e6v/L84jaCNdf9lYf+6iM6OlpjxoxRUlKSiouL3bMml5WVKTMzU2vXrlXPnj31wQcfKDo62mNff+d6oFSWV1LtrikujPcNY7yXgvM6UJ/jvRR8Y35txuiGMt5L5HqwjPdS8OZ6ZeO91LDG/AZXBHjqqad08OBBHTp0SNOmTVNGRoYk6brrrtObb74pp9Op1atX67333vPYLykpSTt37qxwJsUPPvhAM2bM0NGjR3X+/HmZmUe1sDIFBQUKDw9XQkKCzp8/r5kzZ5abhb6ieLt166a2bdtq0qRJOn78uE6ePKk333xTf/jDHyRV/7mhQYMGSZLWrl1b6TZNmjTRE088Ue54+/fvr/bt22v79u3629/+pu+++07Lli1T06ZNNXbs2GqPuX///urQoYO++OILvffeeyooKNBXX32l+++/Xxs2bJAk9erVSw6HQ++880617V0qLS1NI0eOlNPp1BtvvKEDBw5o+fLlSkhIcN8W4237JSUl+uMf/6ivv/5acXFx7uctIiJCEydOlCS9/fbbOnXqlJYvX66wsDCNGjWqzn34sv2KeNN+QUGBtmzZorS0NHXp0qXGfXgjOjpa06ZN06RJk7RkyRLl5eVpz549GjZsmJKSkjRmzBj3tlXlZ2W52VByvbZ5Lsnvue6vPHe1Ecy57k2e1EcfVbW/bds2jR8/Xnv27FFhYaEWL16s48ePKzo6Wj179pQkjR8/Xu+++66uvfZarVixotybjfrI9UCpLK+k2l1TJMb7hjTeSw3jOtBQ2q9MsI35tRmjG8p4L5HrgRrva9JHMOa6N+O91MDG/JrMIuiLbwe4eKbDadOmWVZWlvvn5ORke/rpp+2aa66xhIQEu++++9yzeW7cuNE6d+5scXFxNmTIEBs9erR7BlEzs3fffddat25tDoej3AyiTqfTHn30UUtNTbX4+HgbOnSoe2bI6mKaNGmSxcfHW6tWrWzcuHHWuXNn+/jjj6uNNycnxzIzMy0pKcmSkpLs3nvvdfeZlZVlmZmZlT5nubm5FhcXZ1dffbWVlZW5l7tmEHXNBlpaWmpdunQpN4Pod999Z8OHD7eUlBSLi4uz3r1729q1a93rXTOIHjlyxMwuzK4qye69914zuzCDaGZmprVu3douu+wy69mzp7355ptWUlJiZmY33nijSbL333+/wvhdM4de+nDNJJqfn29jx461xMREi4yMtN69e9vmzZvd+1fV/okTJzzabNmypQ0YMMA2bdrksV1JSYlNmTLFUlJSLDo62n70ox/ZX/7yF5/1UZf2vXmOqmt/4cKFJsmefPLJCtuvTE2+HcDlrbfesuuuu84iIiKsZcuWdt9999nJkyc9tqkqPyvKzYaW67XNczPf57qv8tys8ed6dXlSH31U1f758+dt7ty51rVrV4uKirLk5GQbNGiQffHFF+7np6Ln7+L2apPrDenbASrLueryqqbXFBfG+4Y13psF/joQ6PHem+fJH2N+Tb8dwKW6Mb+mY3RDG+/NyPVAjPfV9RHsuV7deO96jvwx5tf22wH8XgSoiUuTtqHzZ7y/+93vTJJ9+OGHfmm/tkpKSiw2NtY6duzo8YYtWNqvjz7q4xi6d+9uLVu2tDNnztRov9oUAfwhmHLd37GS6+R6VWqT64EqAtREMF0DzBjvydHAtO9Sm+tAbYsAvkau/x9yPXhzsSHnetB8RSC8M3XqVJmZe1KKhmLjxo0qKCjQG2+84Z75M5jar48+6uMYNm/erOPHj1c6yyyCB7lOrleFXG/8QvUaUB99BHv7LlwHGgdyPXhzsTHmehO/94BG5aabbvL4LtVga78++qiPYwD8rTHkSWM4BiBQyNHAtw/UB3I98O0HQoMqAtTkuyQbgmCLF2gogil3gilWIFgEW14FW7xAQxFsuRNs8QK1xccBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIEU1qs9OBAwfUuXNnX8cCwM/Onj0rSVq5ciU5DDRSpaWlOnfunE/aOnfunNLT0xUeHu6T9gDUj++//17ShXGf8R5ovA4cOFCr/WpUBAgLC1N0dLQk6bvvvqtVhwACKyYmRiUlJeQw0MhFRETUef+SkhIdPnzYRxEBqE8xMTEyM8Z7oBFz/X4eFlazG/xrVASYPXu2jh8/XqMOACAUnTt3Tr/4xS/Up08fPfDAA4EOByGqe/futdqvf//+atmypY+jAbwzZ84crV27Vn/84x8VGRkZ6HAAoMFLSkqq0fYOMzM/xQIAIcvpdKpZs2a6++67NX/+/ECHAwBB45577tGCBQtUUFCgmJiYQIcDAI0OEwMCAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAimgQ6AABoLI4ePao//elPkqSSkhJJ0s6dOzVjxgxJUkpKisaMGROw+ACgoXrrrbeUk5Mj6cJ1U5JeeOEFNW3aVJL085//XKmpqQGLDwAaE4eZWaCDAIDGoLi4WCkpKTp9+nSF63/1q1/p2WefreeoAKDh+/Wvf63nnnuuwnXNmzdXTk6OIiIi6jkqAGic+DgAAPhIRESEhg0bVun6kSNH1mM0ABA8qro+Dhs2jAIAAPgQRQAA8KGK3siGhYXpmmuu0fXXXx+AiACg4bv++ut17bXXKiys/FvTUaNGBSAiAGi8KAIAgA/16dNHqampcjgc7mVlZWXKzMwMYFQA0PCNGDFCZWVl7p8dDodSUlKUnp4ewKgAoPGhCAAAPhQWFqaMjAxdOt3KiBEjAhQRAASHzMxMjwKqmWnUqFEKDw8PYFQA0PhQBAAAH7v4IwFhYWG64YYbdPXVVwcwIgBo+K666ir16NHDoxDAXCoA4HsUAQDAx2644QZdddVVki58FIA3sQDgnZEjR7rvpHIVBQAAvkURAAD8wDUHQFhYmO66664ARwMAwWHEiBHuyQFHjx4d4GgAoHFy2KUfXAUakbFjx+qbb74JdBgIQU6nU5s2bVJCQoK6desW6HAAIGhs375dubm5uuGGGxQTExPocBCCOnTooHnz5gU6DMBvKAKgUWvVqpVycnICHQYAAACCREpKirKzswMdBuA3fBwAAAAAAIAQQREAAAAAAIAQQREAAAAAAIAQQREAAAAAAIAQQREAAAAAAIAQQREAAAAAAIAQQREAAAAAAIAQQREAAAAAAIAQQREAAAAAAIAQQREAAAAAAIAQQREAAIAQ1qJFC5mZzEy9evWq9TYAACA4UAQAAKCRmD9/vvuX9XfffTfQ4QAAgAaIIgAAAI1AbGyshg8f7v75zjvvVFJSUgAjAgAADRFFAAAAGoFRo0apWbNmOnnypA4ePKimTZtqzJgx5ba76qqr9Mknn+jMmTPavn27Ro4cWattAABAcKIIAABAI3DfffdJkt555x0tWbJEknTvvfd6bNO0aVOtXLlSffv21axZs3TLLbeoZ8+eNd4GAAAEL4oAAAAEua5du6pHjx6SpLfffltvv/22JOmaa67Rv//7v7u369Onjzp06CBJmjlzpnJzc/X88897tOXNNgAAIHhRBAAAIMjdf//9kqSjR49q/fr12rZtm/bs2SPp/+4QkKQrrrhCkuR0OpWfny9JOnbsmEdb3mwDAACCF0UAAACCWFRUlDIzMyVJqampKi0tlZmpY8eOkqThw4crPj5eknTkyBFJUkxMjGJjYyVJycnJHu15sw0AAAheFAEAAAhiw4YNU/PmzZWfn6/IyEg5HA45HA6FhYUpJydH0dHRGjVqlCRp7dq12r9/vyTpkUceUUJCgiZNmuTRnjfbAACA4EURAACAIOaa/G/VqlUqLi52LzczLV++XNL/fSSgpKREAwcO1Jo1a/Twww9rw4YN2rRpk0d73mwDAACCl8PMLNBBAP7SqlUr5eTkBDoMAAAABImUlBRlZ2cHOgzAb7gTAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAEEERAAAAAACAENEk0AEA9SEqKkoxMTGBDgMAEKScTqeKioqUmJgY6FAA+FF+fn6gQwD8jiIAQkJsbKzmzZunhISEQIcCAAgyubm5Gjt2rIqKivTzn/9cQ4YMCXRIAPxg27ZtmjZtWqDDAPyOIgBCxk033aSkpKRAhwEACDLHjx93///qq69Wnz59AhcMAAB1xJwAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAAAAAAACECIoAQJBJSUnRrl27Ah2Gh6ioKDkcDjkcDv3sZz/zWDdt2jQ5HA6tWLEiQNGhIevRo4eSkpKUn59f4305t1CdS8+vbdu2ua9VDodDM2fODHCEwaEhjjsS1wBUrS7jC9DYUQQALtGlSxctXLjQ7/20adNGmzdv9ns/9amwsFDvvPOO++czZ85o5syZ6tChgwYOHOhe3qZNGzkcDv3gBz/Q+fPnJUmbN2+Ww+FQQkJCvcddmdGjR3v8wjBlyhSP9WfPnlVWVpZatGih6Ohopaena8uWLV63369fP4/2HQ6H2rVrV267v/71r7rhhhs8ii0HDx70WR91aX/r1q2688471bx5c11++eW69dZb9cUXX7jXf/bZZxowYIAuu+wytWjRQvL9RPQAACAASURBVIMHD9bu3bvd6x966CGdOHFCs2fP9qo/F86t6vn7tQ/0uSXV/Pz64Q9/KDPT5MmTvYqhrhYtWqRu3bopKipKycnJysrK0qlTp7ze35fjRGMbcyq6BgRL/ksNY3ypS37WRx+BGl+AUEARAIDf/PnPf9aZM2c0YsQIORyOcusPHDig+fPnByAy7yxcuFBmpqysrArXjxs3TvPmzdMzzzyjr7/+Wrt379Ztt92m3NzcGvVz4sQJmZnMrNybo6VLl2ro0KFKSkrSvn373NtVVCyoTR91bX/u3Ll67LHH9P333+uRRx7RmjVrNHDgQBUVFencuXN64YUX9PjjjysnJ0cTJkzQihUrNGDAABUXF0uShgwZoujoaL322msyM6+Ph3PLe/567f3dflXnliS/nl++8Morr+jBBx/Ub37zGx07dkxr167V4cOH1a9fP507d65eY2mMqroGNPT8lwI/vvgq//3ZR6DGFyAkGNCIpaSkmCRr2bKlHTt2zKt9OnfubH/605/cPycnJ9tzzz1nnTp1stjYWMvIyLCioiL3uunTp1vHjh2tefPmNnbsWDt37px73/DwcMvOznb/PGHCBHvsscds2LBhJsn9mD17drk4nnjiCUtOTrbExETLysoyp9NZbTxmZt27dzdJFhkZaTfeeKNt2bLF41gqizcnJ8eGDx9uiYmJ1rZtW3vhhRe8er7MzCIjI02SFRYWeiwfNGiQSbJPP/3UY3nr1q1NkjkcDmvbtq2dO3fONm3aZJIsPj7evd2hQ4csIyPDWrVqZfHx8Zaenm7r16/3eH4vfh6jo6Nt0KBBlpeXZ2Zmhw8ftpEjR1pqaqolJCTYgAEDbO/evV4fl0tWVpZJssmTJ7uXHTx40MLCwiwmJsZKS0vNzOzuu+82STZ9+nSv2u3bt69JshMnTlS4vqyszNLS0kySHT16tMZxV9eHL9q/2L/+9S/3a7Fv375y60+fPu1ev3XrVvfy3r17myTbuXOn131xblXP3699Qzq3zGp2fk2ePNkk2XPPPedV/8eOHbOWLVuaJHv55Zer3d7pdFpCQoK98cYbHssLCgosJSXF5s6d615Wk3HCn2OOWe3GndqOOWZ1G3cqugbUV/6bNfxrQH3kZ0O6BvhqfFmzZo0lJiZaSkpKnWMGGjLuBAC8sHLlSq1atUp79uzRzp07PT4usGTJEq1cuVJfffWVNm7cqGeffbba9t555x21bt1amzZtkpnpwQcf9Fi/ZcsWzZs3T+vXr9e3336r7t27a/369V7Fs3nzZpmZTp8+rbvvvlsZGRkqLS2tMl4z09ChQ5WcnKz9+/dr9erVmjNnjvtzluPGjdPo0aNr/Lxt375dknTttddWuP6uu+7S4cOHNW/evHLrCgsLdeutt2rp0qVasGCBtm7dqn379qlv3776+uuvPbYdM2aMTp06pRtvvFErVqzQq6++qqKiIvXr109LlizRggUL9I9//ENffvml+vTpo7y8vBofy6V27NihsrIypaamKizswqW0devWki587rgm0tLSFBcXp969e2vdunXu5fv379ehQ4cUERGhwYMHKyYmRu3bt9fvf//7GsdbUR++bL+wsFALFiyQdOGW6yuvvLLcNjt27HD//+Jbc13nx9atW73uj3PLe/5+7RvCuSX59vyqqy1btig3N1fDhw/3WB4TE6Of/OQn+vjjj6tto7Jxwh9jjivm2ow7tRlzJNV53KnqGuDP/JcUVNcAf+dnffRR3+MLEAooAgBeePzxx3XFFVcoNTVVQ4YM8ZggaerUqbryyivVrl07PfHEE1q8eHGd+2vatKkiIyMVGxur+Ph43X///br99tu9isclOjpaDzzwgEpLS7V///4q492xY4d2796tF198Uc2bN1fHjh01ceJELVu2rE7H4bptMTY2tsL1Y8eOVVpamp5++mkVFhZ6rPvoo4904MABdevWTbfffruuvPJKDR8+XMXFxZo7d67Htr/85S/VvHlz3XzzzZIu3Ar60Ucf6ZtvvlGvXr102223qUOHDurfv7+ys7PrfFySdOzYMUlSRESEe1lkZKQkKScnx6s2PvnkE/eb55deekkbNmzQgAED3K/XiRMnJEnFxcXq27evvv/+e8XHx2vChAleH0NVffiifUnuN3iPPfaYEhIS9Pzzzys8PNxjm7y8PI0bN06SNGrUKI/bQePi4iRJp0+f9rpPzq3q+fu1byjnluT786uuTp48qWbNmlV4frZq1UonT56sddv+GHOkuo87NRlzJNV53KnqGuDP/He10dCvAfWRnw3lGtDQ8h8IBhQBAC+0aNHC/f/o6GiPNxVpaWnu/7dr105Hjx6tc39du3bVb3/7W2VkZOjmm2/Wk08+KafT6VU8c+bMUYcOHRQZGSmHw6HvvvtO2dnZVcZ76NAh5ebmKjIyUuHh4QoLC9P48eN15MgRSdKrr75aq8kSXdX4ymbmjYiI0NSpU5Wdna1XXnnFY53rc4VJSUnuZcnJyZKkQ4cOeWzr2qZp06aSpNLSUvf+f//7392TEb399tuSpH379tX4WC7liuXiz/a6/p+SklKjtiIiInTPPfeoS5cuKiws1EcffSTJ89gzMjKUmJiowYMHS5I+/PDDOvfhq/aXL18up9OpBQsWKC8vz6OQIV14XoYMGaLdu3fr1ltv1euvv+6x/5kzZySpRhN3cW55z5+vvb/br+7ckvxzftXV5ZdfroKCggrPz+zsbI9reE35Y8yRaj/u1GbMkVTncaeqa4A/8//iNoLhGuDv/Pd3H4EYX4BQQBEAqKOL3zQcPHhQqamp7p+joqLck1hJ8vjrj+sWv8r84he/0Lp167R69Wpt27ZN06ZNqzaWvXv36tFHH9XChQuVl5fnnoDHNUtyZfG6/rpTUlKi0tJSlZWVycz06aefVttnVbp27SpJHrP1XmrMmDG6+uqrtWTJEo/lrkr+8ePH3ctcfx25+E1lZVz7p6enuycjcj1mzJhRk8OoUNeuXRUWFqbs7GyVlZVJkr7//ntJF25XrA37/xMXuf7K0bZtW/dfMS6d+KpZs2Z17sOX7UdHR2vMmDFKSkpScXGxexbrsrIyZWZmau3aterZs6c++OADRUdHe+zrOj+uv/56r/vj3Ko5f732/m6/snNL8t/5VVc9evRQfHx8ub94Op1OffDBB+rXr597WU3HCX+NOVLNx53ajjmS6jzuVHcN8Ff+X9xGMF0D/J3//uyjvscXIBRQBADq6KmnntLBgwd16NAhTZs2TRkZGe511113nd588005nU6tXr1a7733nntdUlKSdu7cWeGMtR988IFmzJiho0eP6vz58zIzj7/IVKagoEDh4eFKSEjQ+fPnNXPmzHKzzVcUb7du3dS2bVtNmjRJx48f18mTJ/Xmm2/qD3/4g6TazwkwaNAgSdLatWsr3aZJkyZ64oknyj0P/fv3V/v27bV9+3b97W9/03fffadly5apadOmGjt2bLV99+/fXx06dNAXX3yh9957TwUFBfrqq690//33a8OGDZKkXr16yeFweHytobfS0tI0cuRIOZ1OvfHGGzpw4ICWL1+uhIQE922J3rZfUlKiP/7xj/r6668VFxfnft4iIiI0ceJESdLbb7+tU6dOafny5QoLC9OoUaPq3Edd29+2bZvGjx+vPXv2qLCwUIsXL9bx48cVHR2tnj17SpLGjx+vd999V9dee61WrFhR7s1fQUGBtmzZorS0NHXp0sW9vLrjCvVzqyZ9+OO193f73pxbUu3PL3+Ljo7WtGnTNGnSJC1ZskR5eXnas2ePhg0bpqSkJI0ZM8a9bU3HCX+MOVLtxp3ajjmS6jzuVHcN8Ff+u9oI9DWgoeS/v/rw5/gCQHw7ABo3X307wMWzyk6bNs2ysrLc655++mm75pprLCEhwe677z6Pmfo3btxonTt3tri4OBsyZIiNHj3aHnvsMTMze/fdd61169bmcDjKzdTsdDrt0UcftdTUVIuPj7ehQ4e6Z9+tKh4zs0mTJll8fLy1atXKxo0bZ507d7aPP/642nhzcnIsMzPTkpKSLCkpye699153n1lZWZaZmVnpc1bZtwPk5uZaXFycXX311VZWVuZe7prB2TUbc2lpqXXp0qXcDM7fffedDR8+3FJSUiwuLs569+5ta9euda93zeB85MgRM7sws7Uku/fee83swuzNmZmZ1rp1a7vsssusZ8+e9uabb1pJSYmZmd14440myd5///0Kj8s1a/OlD9cszvn5+TZ27FhLTEy0yMhI6927t23evNm9f1XtnzhxwqPNli1b2oABA2zTpk0e25WUlNiUKVMsJSXFoqOj7Uc/+pH95S9/8VkfdWn//PnzNnfuXOvatatFRUVZcnKyDRo0yL744gv381PR83dxewsXLjRJ9uSTT3q0Xd1rE+rnVnV9+Pu1D/S55XqOant++fvbAVzeeustu+666ywiIsJatmxp9913n508edJjm5qME/4ac8xqP+7Udswxq9u4U9E1oL7y3yzw14BA5md99OHP8aUqfDsAQgVFADRqtSkC1MSlb4waOn/F6yoCSLJhw4Z5rPvd735nkuzDDz/0eb91UVJSYrGxsdaxY0ePN6XB0n599FEfx9C9e3dr2bKlnTlzpsb9huq5VR99BHv7LpeeX1u3bvX4ZcHfRQBfY8zxFKrXgGBvv776qGh8qQ5FAISKJl7dLgAAVbj4M6iXmjp1qqZOnVqP0Xhn48aNKigo0BtvvOGedTmY2q+PPurjGDZv3lzrfkP13KqPPoK9fZdLz68f/vCHld4Oj+ATqteAYG+/vvqoaHwBcAFFAAAh6aabbvL4Lutga78++qiPY2hI/foKr33g2wcCKdjzpzFcwwBUjSIAUAc1+c7uhiDY4gUA/J9gu4YHW7wAECr4dgAAAAAAAEIERQAAAAAAAEIERQAAAAAAAEIERQAAAAAAAEIERQAAAAAAAEIERQAAAAAAAEIERQAAAAAAAEIERQAAAAAAAEKEw8ws0EEA/tKqVSvl5OQoLi5OrVq1Unh4eKBDAgAEmdLSUmVnZ+vMmTNq1aqVmjdvHuiQAPiB0+nUyZMnddlllyk7OzvQ4QB+QxEAjVpqaqry8vLEaQ4AqCuHw8F4AjRyDodD8fHxOnr0aKBDAfymSaADAPxp/vz5ysvLC3QYANCg/O///q9mzZqlhx56SL169Qp0OADQoMTHxwc6BMCvKAKgUbvjjjsCHQIANDgOh0OzZs3Sv/3bv2n48OGBDgcAANQjJgYEAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBENAl0AAAAwP+++OILbdiwQZK0c+dOSdJf//pXffvtt5Kkm2++Wb179w5YfAAAoH44zMwCHQQAAPCvtWvX6sc//nGl69esWaM+ffrUX0AAACAgKAIAABACysrKdMUVVyg7O1sXD/0Oh0MpKSn6/vvvFRbGpwQBAGjsGO0BAAgBYWFhGjFihC6t/ZuZRo0aRQEAAIAQwYgPAECIGDlyZI2WAwCAxoePAwAAEEKuueYa7d+/X2VlZXI4HGrfvr32798f6LAAAEA94U4AAABCyMiRI1VWVibpwkcBfv7znwc4IgAAUJ+4EwAAgBCyd+9edezY0f3znj17dM011wQwIgAAUJ+4EwAAgBByzTXXqHv37pKk7t27UwAAACDENAl0AAAatldeeUVLly4NdBgAfCg3N9f9b58+fQIbDACfuuuuu/Rf//VfgQ4DQANGEQBAlT7//HOtW7cu0GEA8IMDBw7owIEDgQ4DgA+lpKRQBABQJT4OAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAAAAAABAiKAIAABAkMnJyZGZafTo0Q2u7xYtWsjMZGbq1atXPUcHAACqQxEAAAAf2LZtm/uXXzPT6dOntWnTJo0cOTLQoVVrzZo1MjN9+OGH5dYtWrRIZqYtW7YEIDIAAOBrFAEAAPChRYsWKTw8XGPHjlWPHj20aNEi3XTTTT7tIyUlRQ6HQwsXLvRJe6+//rokacCAAUpJSXEvj4uL09ChQz228XXfAACgflEEAADAx8rKyrRs2TKdPXtWDodDP/7xj93rmjdvrlmzZmnfvn0qKCjQP//5Tz388MMKDw93bzNx4kTt3btXTqdT3377rebMmaMrrrjCvf7SW/L79OnjcReC65Gbm+tVn++++65Onz6t8PBw/fznP3f3M2LECEVHR6uwsFB//vOfK+z7qquu0ieffKIzZ85o+/btld754M1xJyYm6qWXXtK+ffvkdDr1zTff6Nlnn1VcXFydXg8AAPB/KAIAAOAnDodDklRcXCxJatq0qdatW6eJEydq2bJlSk1N1caNG/X888/rpZdekiT96Ec/0qxZs+R0OpWamqr09HRt375d48ePr7SftWvXyuFwyOFw6LrrrlNeXp4kqaioyKs+i4qKtGjRIknSPffc427X9f9ly5a527xY06ZNtXLlSvXt21ezZs3SLbfcop49e1a4XXUxRERE6PPPP9cvf/lLLV68WK1atdLq1av1q1/9SqtXr1ZYGG9ZAADwCQOAKmRkZJgkHjx4VPPYtm2bmZktXLjQwsLCbPjw4WZmdurUKWvbtq1JssGDB5uZWXFxsUVHR5sk69Gjh5mZlZSUWFxcnP34xz927/fggw/aLbfcYvHx8R595eTkmJnZ6NGjPZa3bt3aDh8+7G6vf//+XvUpybp27erO+549e1rHjh3dP//7v/97hX3fdttt7m1iY2NNkl1//fXuZb169fL6uO+8804zMysrK7NmzZqZJLviiivcbfXu3TvgrzEPHsHwyMjIqO2QDyBEUFYHAMCHMjMzVVpaqqVLl6qwsFCZmZk6fPiwJCktLU3Shb+MO51OmZk2bdokSWrSpInatm2rzz//XIsXL1ZCQoJmz56ttWvX6uTJk3rmmWeq7DcuLk4rVqxwf2zggQce0KpVq7zqU5J27NihzZs3S7pwB4DrLoC9e/dq/fr1Ffbp6svpdCo/P1+SdOzYsXLbeRODK478/HwVFBSUa8u1HgAA1A1FAAAAfGjRokWKi4vTlClTFB0drffff1+9e/eWJHcxoLCwUBEREe5b+F2PXbt2qbS0VKNGjVJiYqLS09M1Y8YMNWnSRJMnT1Z8fHyFfTZt2lTvvPOOunXrJkl66qmn3BP5edOni2ufESNG6Be/+IUk6Y033qj0WI8cOSJJiomJUWxsrCQpOTm53HbexODaJjY2Vs2aNSvXlqsvAABQNxQBAADwsfz8fM2YMUMff/yxIiMj9dprr6lp06ZatWqVdu3apejoaD3zzDOKi4tTmzZtlJmZqffee0+S1KNHD73++utq3769Nm/erFWrVrnbdDqdFfY3ZswY3XbbbZKkhQsX6n/+53/c67zp0+XPf/6zCgoKFB8fr5SUFJWUlOitt96q9DjXrl2r/fv3S5IeeeQRJSQkaNKkSeW28yaG1atXa/fu3XI4HO6Cx69//WtJ0saNG7VhwwavnnsAAFA1igAAAPjJxIkTdf78eXXs2FETJkxQSUmJ0tPTNXPmTA0ePFg5OTn6/PPP1bdvX02dOlWStHXrVn322Wd66aWXdOzYMb3//vtav369fvKTn6ikpKTCfqKiotz/Hz16tMe3A3jTp0t+fr6WLl3q/vnDDz/U8ePHKz2+kpISDRw4UGvWrNHDDz+sDRs2uG/zv3S76mIoLi5Wenq6Xn75ZWVmZionJ0cDBgzQ888/rzvuuENlZWXeP/EAAKBSDjOzQAcBoOEaMWKElixZEugwAACAFzIyMvT2228HOgwADRh3AgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECKaBDoAAMEhJiZGUVFRgQ4DQA0VFxfr7NmzuuyyyxQRERHocAD4SVFRkZxOZ6DDABAEKAIA8EpUVJTefffdQIcBoIbuuecenT17Vi1atND8+fMDHQ4APxk2bBhFAABeoQgAwCvh4eHq06dPoMMAUEMxMTHuf8lhoPEKDw8PdAgAggRzAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAIOSkpKdq1a1egwyhn2rRpcjgcWrFiRaBDQQPVo0cPJSUlKT8/P9ChBAVyHcGIPAfgbxQBAPhcly5dtHDhQr/306ZNG23evNnv/dSHM2fOaObMmerQoYMGDhzoXt6mTRs5HA794Ac/0Pnz5yVJmzdvlsPhUEJCQqDCLWf06NFyOBzux5QpUzzWnz17VllZWWrRooWio6OVnp6uLVu21KiPfv36efThcDjUrl07j23++te/6oYbblBUVJR7m4MHDzaI9rdu3ao777xTzZs31+WXX65bb71VX3zxhcc2n332mQYMGKDLLrtMLVq00ODBg7V79273+oceekgnTpzQ7NmzveqzLhYtWqRu3bopKipKycnJysrK0qlTp7za19e5Sa6HTq5XlwOStGvXLg0YMECXX365mjVrpq5du+qtt97yWR91bb+6XG9IeQ4gRBkAVCEjI8MkWcuWLb3ep3PnzvanP/3Jj1Fd0Lp1a9u0aVON90tOTradO3f6IaLamzNnjkmyxx9/3GN569atTZJJsnnz5pmZ2aZNm0ySxcfHByLUKmVlZZkkmzx5ssfyzMxMk2SvvfaaHThwwFq0aGHNmze306dPe9123759TZKdOHGiwvVLliwxh8NhAwcOtMOHD9c4dn+3n5WVZV9++aWdPXvWnn76aZNksbGxVlhYaGZmRUVFNmjQIPv73/9u+fn59rvf/c4kWVpamp07d87MzM6ePWvR0dHWrl07Kysr86rfTp06mSTr1KmT17H+4Q9/sISEBFu8eLHl5ubaP//5T+vfv79df/31VlRUVO3+tc1NX7dHrvuPP3LdmxwwM/vBD35gkmzBggV2+PBhu/zyy83hcHh1jnjTR13adz03leW6v/LczKxly5YmyTIyMrzeB0BooggAoEp1LQIkJyfbc889Z506dbLY2FjLyMjw+CUiOTnZpk+fbh07drTmzZvb2LFj3W+EwsPDLTs7273thAkT7LHHHjMzs2HDhrnfMEuy2bNnl4vjiSeesOTkZEtMTLSsrCxzOp1exdS9e3eTZJGRkXbjjTfali1bvIo3JyfHhg8fbomJida2bVt74YUXvH7OBg0aZJLs008/9Vju+sXA4XBY27Zt7dy5cxX+YnDo0CHLyMiwVq1aWXx8vKWnp9v69evd68PDwz2er+joaBs0aJDl5eWZmdnhw4dt5MiRlpqaagkJCTZgwADbu3ev1/G7VPSLwcGDBy0sLMxiYmKstLTUzMzuvvtuk2TTp0/3uu2qfkkvKyuztLQ0k2RHjx6tcdz10f7F/vWvf7lfi3379lW4zenTp93bbN261b28d+/eJsnrX25rWgRwOp2WkJBgb7zxhsfygoICS0lJsblz55pZ5flZWW6S6xeQ696rKAecTqd7WU5OjpmZ9enTxyTZ/Pnz69yHr9uvLtd9ledmFAEAeI+PAwDwu5UrV2rVqlXas2ePdu7cWe6jAkuWLNHKlSv11VdfaePGjXr22WerbfOdd95R69attWnTJpmZHnzwQY/1W7Zs0bx587R+/Xp9++236t69u9avX+9VTJs3b5aZ6fTp07r77ruVkZGh0tLSKuM1Mw0dOlTJycnav3+/Vq9erTlz5rg/8ztu3DiNHj260uPZvn27JOnaa6+tcP1dd92lw4cPa968eeXWFRYW6tZbb9XSpUu1YMECbd26Vfv27VPfvn319ddfe2w7ZswYnTp1SjfeeKNWrFihV199VUVFRerXr5+WLFmiBQsW6B//+Ie+/PJL9enTR3l5eZXG7K0dO3aorKxMqampCgu7MOy0bt1akrRt27Yat5eWlqa4uDj17t1b69atkyTt379fhw4d+n/s3Xl01PW9//HXJJBkErMhWdEEUQISBFEUfsKNcUMQ2ovlRoTQQq8IePBWWryV6kGOjdWiWK1LUVoQW7xAcWkRFVzaWFBvWWQXVJD1khByJCFkWELy/v3BmSkDWSbLZDKZ5+OcOYTv8vm8v5Pv+/uZvGfm81VERIRGjBih6OhodevWTc8//3yba//EiRNauHChJOnqq6/WZZddVut2W7Zs8fx87sfB3efIxo0bG923LzZs2KCysjLl5eV5LY+Ojtb3v/99ffjhh/XuX19ukuvkemPbc3PngNPpVG5uriRp5cqVOnDggLZu3aqYmBjl5OQ0u4+WbN+XXA9UngMIbRQBAPjdo48+qksvvVTp6ekaOXLkBRN1zZw5U5dddpm6du2qWbNmafHixc3us2PHjoqMjFRsbKzi4+N17733asiQIT7HJJ19sXnfffepurpau3btqjfeLVu2aMeOHXruueeUmJionj17atq0aVq2bJlP8ZaVlUmSYmNja10/adIkZWZm6oknntCJEye81r3//vvavXu3+vbtqyFDhuiyyy5TXl6eTp8+rVdeecVr25/85CdKTEzUoEGDJEm7d+/W5JYEdwAAIABJREFU+++/r6+//loDBw7UbbfdpqysLA0dOlRFRUU+x1+fw4cPS5IiIiI8yyIjIyVJxcXFPrfz0Ucfef5g++1vf6tPP/1Uw4YN065du3TkyBFJ0unTp3XLLbfo4MGDio+P1wMPPODzMfi7fUmeAsIjjzyihIQEPfPMMwoPD79gu/Lyck2ZMkWSNHbsWK+5CeLi4iRJR48e9bnfxigtLVVMTEyt52JaWppKS0ub3Da5Tq77qr4cmDdvnjIyMjRhwgRlZGSorKxMzz//vLp169YifbRE+77keiDzHEBoowgAwO86d+7s+dnpdF7wwjYzM9Pzc9euXXXo0KFm99mnTx899thjGj16tAYNGqTHH39cLpfLp5jmzp2rrKwsRUZGyuFwaM+ePSoqKqo33n379qmsrEyRkZEKDw9XWFiYpk6dqgMHDkiSXn755XonS3S/A1TXbNARERGaOXOmioqK9Lvf/c5rnXtiuuTkZM+ylJQUSdK+ffu8tnVv07FjR0lSdXW1Z//PPvvMM9nXkiVLJEnffPNNnTH7yh3LqVOnPMvcP6empja6vYiICP34xz9W7969deLECb3//vtexz569Gh16tRJI0aMkCS98847bab9FStWyOVyaeHChSovL/cUGc516tQpjRw5Ujt27NDNN9+sP/zhD17rjx07Jkl+myzu4osvVmVlZa3nYlFRkVfuNBa5Tq77or4cqKio0I033qiDBw/qk08+UUlJibKzszVx4kStWLGi2X20VPsN5Xqg8xxAaKMIACDgzn3xunfvXqWnp0uSoqKidPLkSc+689+BdH/ctC4/+tGP9Mknn2jVqlXatGmTCgoKGozlq6++0sMPP6xFixapvLxcZqauXbt6ZuuuK173O41VVVWqrq5WTU2NzEwff/xxg31KZ/+QkXTBLNjnGj9+vLp3766lS5d6LXe/e1RSUuJZ5n5H7tw/Yuri3j8nJ0d2dq4Yz2P27Nk+xV+fPn36KCwsTEVFRaqpqZEkHTx4UNLZj8g2lZlJksLDw5WRkeF558zhcHhtFxMT06badzqdGj9+vJKTk3X69GmvmdNramqUn5+vwsJCDRgwQMuXL5fT6fTa332O9OvXr9HH5Iv+/fsrPj7+gneGXS6Xli9frltvvVVS/flZV26S6+R6QxrKge3bt6uoqEhpaWnKyclRUlKSbrrpJpmZPvroo2b30RLtu9WV620hzwGENooAAALuV7/6lfbu3at9+/apoKBAo0ePliRdddVVWrBggVwul1atWqW33nrLa7/k5GRt3brV88fauZYvX67Zs2fr0KFDOnPmjMzM693BulRWVio8PFwJCQk6c+aM5syZc8Et4GqLt2/fvsrIyND06dNVUlKi0tJSLViwQC+99JKkhr8nPHz4cElSYWFhndt06NBBs2bNuuB4hw4dqm7dumnz5s364IMPtGfPHi1btkwdO3bUpEmTGjzmoUOHKisrS2vWrNFbb72lyspKffHFF7r33nv16aefSpIGDhwoh8OhN954o8H2zpeZmakxY8bI5XJp/vz52r17t1asWKGEhATPR2Eb00dVVZX++Mc/avv27YqLi9Pw4cMVERGhadOmSZKWLFmi7777TitWrFBYWJjGjh0b8PY3bdqkqVOnaufOnTpx4oQWL16skpISOZ1ODRgwwLPd1KlT9eabb+rKK6/Uu+++e0GBobKyUhs2bFBmZqZ69+5d73E0ldPpVEFBgaZPn66lS5eqvLxcO3fu1KhRo5ScnKzx48dLqj8/68pNcp1cb6j9hnKgR48eiomJUXFxsdasWaPS0lLPc3ndddc1u4/mtu9LrreFPAcQ4vw/9yCAYNYSdwc4d3bjgoICmzx5suf/KSkp9sQTT1iPHj0sISHBJk6c6Jm9e+3atZadnW1xcXE2cuRIGzdunGfGcDOzN99807p06WIOh+OCGcNdLpc9/PDDlp6ebvHx8XbnnXd6Zn1vKKbp06dbfHy8paWl2ZQpUyw7O9s+/PDDBuMtLi62/Px8S05OtuTkZLvnnns8fU6ePNny8/PrfM7KysosLi7Ounfv7nVLKPeM4e7Zv6urq613794XzBi+Z88ey8vLs9TUVIuLi7PBgwdbYWGhZ717xvADBw6Y2dnZ1CXZPffcY2ZnZwzPz8+3Ll262EUXXWQDBgywBQsWWFVVlZmZXX/99SbJ3n777Vrjd88Ufv7DPXN4RUWFTZo0yTp16mSRkZE2ePBgW79+vVcb9fVx5MgRr3aTkpJs2LBhXrfsqqqqshkzZlhqaqo5nU675ppr7C9/+UubaP/MmTP2yiuvWJ8+fSwqKspSUlJs+PDhtmbNGs82FRUVtT6H57a5aNEik2SPP/54rb+H2jTlFoFmZq+99ppdddVVFhERYUlJSTZx4kQrLS31rK8vP2vLTXL9rFDP9fra9yUHzMwKCwstNzfXEhMTLSoqynr06GFz5sxpsT6a035Due6vPDfj7gAAfEcRAEC9mlIEaIy2eB/v+vgzXvf9ot955x2/tN9UVVVVFhsbaz179vTpHvFtsY9gb9/t2muvtaSkJDt27JjP+zS1CNDSyPV/CdVc51rim6bkuRlFAAC+4+sAANBGzJw5U2bmmXCurVi7dq0qKys1f/58z0zfwdZHsLfvtn79epWUlNQ5szyCQ6jmOtcS35DnAPytQ6ADAAC0bTfccIPXvdODsY9gbx9oDe0hT9rDMQCAv1EEABBQjb13dKAFW7xAWxFsuRNs8QIA4Cu+DgAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIjoEOgAAASH48ePKzs7O9BhAGik3bt3e/4lh4H26/jx44EOAUCQoAgAoF5hYWGKjIyUJO3ZsyfA0QBorLCwMEVHR8vMyGGgnYuMjFRYGB/0BVA/h5lZoIMA0HZ98cUX2rVrV6DDgB988MEHmj9/vmbNmqVevXoFOhwAreDLL7/UY489pnvuuUdDhgwJdDjwgyuuuELXXHNNoMMA0IbxSQAA9brmmmt4MdFOlZaWav78+crNzVVubm6gwwHQCgoLC/XYY4/pmmuu0V133RXocAAAAcDnhQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEUAQAAAAAACBEdAh0AAKD1fPDBB9q4caMk6fPPP5ckLV68WP/85z8lSbfddpuuueaagMUHoOV98cUX+vDDDyVJ3377raSz14KKigpJUr9+/TRkyJCAxQcAaF0OM7NABwEAaB3Lli3TXXfdVef6bdu2KTs7uxUjAuBv27dvV+/evetc/+c//1l5eXmtGBEAIJAoAgBACDlx4oSSk5N1/Phxr+UOh0NXXXWVNm/eHKDIAPhT3759tXXrVp3/su+iiy5SSUmJnE5ngCIDALQ25gQAgBDidDp15513XrDczJSfnx+AiAC0hrFjx15QAJCkH/zgBxQAACDEUAQAgBAzZsyYC5Y5HI56vyYAILiNGTNGDoej1uUAgNDC1wEAIMScOXNG6enpKi0tlZnJ4XBo0KBBWr16daBDA+BHgwcP1meffebJ+06dOqm4uFgdOjBPNACEEj4JAAAhpkOHDsrLy/N8NNjMeDcQCAFjxozxyvu7776bAgAAhCA+CQAAIWjNmjX6t3/7N0lSeHi4ioqKlJSUFOCoAPjTkSNHlJaWpurqaknS6tWrNXjw4ABHBQBobXwSAABC0KBBg5SZmSlJGjJkCAUAIAQkJSXptttukyRdeumlGjRoUIAjAgAEQqM+A/bzn/9ca9eu9VcsAIBWVFNTI0nas2ePcnNzAxsM/OIXv/iFbr/99kbvt2rVKj355JN+iAiBdvjwYc/PN910UwAjAQC0lOuvv15PPfWUz9s36usA2dnZ+vLLL5sUGAAAaF0vvviipk6d2uj9XnrpJd1///1+iAgAALS0Xr16afv27T5vz9cBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAEiSiouLZWYaN25coEMBACDkNTQud+7cWWYmM9PAgQNbvf9g6wfAv1AEANqwTZs2eQZ4M5PL5dKOHTv0yCOPKCIiItDhNWjFihUyM7344ouBDgUAgGY7f1w+evSo1q1bpzFjxgQ6NL8799iffPJJr3Uvv/yyZ91HH30UoAgB+IoiABAEXn/9dTkcDvXr108JCQl6/PHHNXv27BbtIzU1VQ6HQ4sWLWrRdgEAaG9ef/11hYeHa9KkSerfv79ef/113XDDDS3aR1sel++77z7FxcVJklJSUjR+/Pgmt9WWjxNorygCAEHkq6++0l/+8hdJ0t133+1Z7v4o3Zw5c/T3v/9dFRUVmjBhgiSpU6dO+u1vf6tvvvlGLpdLX3/9tZ566inP4H1+G+6P4yUmJurZZ5/VN998o8rKSn355Zf62c9+pvDwcM8+CQkJ+vWvf62dO3fq+PHjWrt2rXJyciRJ27Zt0/DhwyVJU6dOlZmptLTUb88NAACtqaamRsuWLdPx48flcDh00003edb5MoZOmzZNX331lVwul7799lvNnTtXl156qWf9+ePy5Zdfro8++kjHjh3T5s2b6/z0wZkzZ2RmnjH4kksu8bxL37NnT0ne7+qfPn1aX331laZPn+7TcR86dEjx8fG67777JEk//elPFRUVpUOHDl2wrS/9nH+c7v8/+eSTWrVqlcrLy7V//37de++9PsUHoGEUAYAg43A46lz3gx/8QP/1X/+l2NhYLVy4UBEREfrHP/6hn/zkJ1q8eLHS0tK0atUq/fd//7dWrVqlsLDaLwEdO3bUJ598omnTpmnZsmVKT0/X2rVr9cwzz+i3v/2t1zYPPfSQtmzZom7dumncuHEaOnSoJKl379569913JUkvvfSSHA6HOnfu3MLPBgAAgeUel0+fPi3JtzH0mmuu0bPPPiuXy6X09HTl5ORo8+bNmjp1aq19dOzYUe+9955uueUWPfvss7rxxhs1YMCAeuMyszrXXX311XI4HAoLC1PPnj1VXV2tOXPm6Ac/+EGDx7t48WIdPnxY06ZNU3JysqZMmaJvv/1Wy5cvb9F+7rzzTk2cOFH33XefLr30Us2dO1cpKSkN7gegYRQBgCCSlZWlf//3f5ckLVmy5IL1c+fO1bZt2zz/v/3225WdnS0z0+zZs1VeXq6nnnpKkjRw4MA6P7p4++2366qrrlJVVZUKCgpUXl7u+V7/5MmTFRcXp9tvv119+vSRdPad/pKSEn399dd6+OGHW/SYAQBoi8LCwpSXl6eYmBgdPXpUS5culeTbGBofHy9JyszM1Lhx43T55Zdr8eLFmjFjRq195ebmKisrS5I0Z84clZWV6Zlnnqk3vpqamgaPwcz07bff6oMPPpAkz2uM+pw8eVLPP/+8UlNTtXLlSsXHx2vOnDmqrq5u0X5+//vf68CBA3r//fclSeHh4erWrVuD+wFoGEUAIAjk5+fLzLR582aVl5dr5syZeuihhy7YrqioyOv/GRkZkqSKigpVVlZKkg4fPnzB+vNlZmZKOvvOg8vlkplp3bp1kqQOHTooIyPDs01lZaWOHDnSzCMEACB45Ofnq7q6Wn/+85914sQJ5efna//+/ZJ8G0P/8Y9/aPHixUpISNALL7ygwsJClZaW6te//nWt/bm/JuByuVRRUSHJezxvDIfDoRkzZmj79u2qqKiQmemBBx6QdParA7743e9+p4qKCvXr108lJSV69dVXW7wf9/FVVVV5lp37dQoATUcRAAgC7okBnU6nevbsqccff9zzscP6uF+QxMbGKiYmRpK8Pkp34MCBevc7ceKEIiIi5HA4vB7btm3Tvn37JEkxMTFKSkqqtZ36PooIAECwev311xUXF6cZM2bI6XTq7bff1uDBgyX5NoZWV1dr7Nix6tSpk3JycjR79mx16NBBDz30kOdTAudyj9fR0dGKjY2VpDo/Gu9+R959F6HztxsxYoSefPJJZWRkaODAgQoLC9PcuXMl+f5HdllZmebNmydJev7553Xy5MkLtmmJfgD4B0UAoB1btWqVduzYIYfD4Xlh8fOf/1yStHbtWn366ae17rdy5Upt27ZNTqdTv/71rxUXF6dLLrlE+fn5euuttzxtb9myRdLZ7/wnJyfr8ssv19NPP+1pp6SkRJLUtWtXdejQwZ+HCgBAq6qoqNDs2bP14YcfKjIyUr///e/VsWNHn8bQ/v376w9/+IO6deum9evXa+XKlZ42XS7XBX0VFhZq165dkqQHH3xQCQkJdU7k9/XXX0uShgwZovj4eD344INe6yMjIyWdLRacPn1a2dnZ+o//+I9GH/+DDz4oh8OhX/3qV7Wub6l+ALQ8igBAO3b69Gnl5OToxRdfVH5+voqLizVs2DA988wzuv322+v8vmBVVZVycnI0Z84cjRgxQsXFxfrHP/6hW265RTNnzvRsc+ONN2r27Nnq27ev9uzZo6VLl2rFihWedn7zm9/oiy++0K233qqqqirPixwAANqLadOm6cyZM+rZs6ceeOABn8bQjRs36m9/+5t++9vf6vDhw3r77be1evVqff/73/f6+LtbVVWV7rjjDv3973/Xz372M3366aeerxicb/LkydqyZYv+8z//U5988skFBf+33npLzz33nKqrq/X555+roKDA8139ltRa/QBoAmuEXr16mSQePHi0w8eRI0fMzCwvLy/gsfDgwaNlHi+++GJjhnmPF198MeCx8+DBgwcPHjx8e/Tq1atR4zyfBACgXr16qVOnTqqpqdHmzZsDHQ4AAAAAP6EIAIS4adOmadu2bTpw4IDuu+8+z3cJAQAAALQ/zNQFhLjnnntOzz33XKDDAAAAANAK+CQAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhokNTdrrooosUERHR0rEA8LOTJ0/K5XIpLi5OHTo0Kf0BBAGXy6WTJ082u52oqChFR0e3QEQAWtOZM2d07NgxRUdHKyoqKtDhAPCT06dP6/jx443er0l/BXTu3FmvvvpqU3YFEECjRo2Sy+VS//79NXPmzECHA8APysrKNGnSpBYpAsTGxmrevHlKSEhogcgAtJaCggL97W9/U1RUlN58881AhwPAT3784x+3XhEgOjpaubm5TdkVQACFh4dLkpKTk8lhoJ0qKSlp0fZuuOEGJScnt2ibAPzrlVdekXR23Ge8B9qvpn5ajzkBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIESFfBEhNTdW2bdsCHcYFCgoK5HA49O677wY6FLRB/fv3V3JysioqKgIdStAg1xGMyPWWwzUAwYrrQOOQ6whWrZnrfi8C9O7dW4sWLfJ3N7rkkku0fv16v/fTGo4dO6Y5c+YoKytLd9xxh2f5JZdcIofDoSuuuEJnzpyRJK1fv14Oh0MJCQmBCvcC48aNk8Ph8DxmzJjhtf748eOaPHmyOnfuLKfTqZycHG3YsMHn9v/2t79p2LBhuuiii9S5c2eNGDFCO3bs8Npm27ZtGjZsmC6++GLFxMSoT58+eu2111qsj+a2v3HjRn3ve99TYmKiLr74Yt18881as2aNz/3/9Kc/1ZEjR/TCCy/43GdTvf766+rbt6+ioqKUkpKiyZMn67vvvvN5/5bOzfae68GS51Lgc725edhaffz1r3/Vddddp6ioKM9ztXfvXq9tVqxY4Vn34IMPepa3Zq43F+N947X38V5q+9eB1rgGMOY3DbkePLne3DyX2keu+zLeS21kzLdG6NWrl0myXr16+bxPdna2/elPf2pMN03SpUsXW7duXaP3S0lJsa1bt/ohoqabO3euSbJHH33Ua3mXLl1MkkmyefPmmZnZunXrTJLFx8cHItR6TZ482STZQw895LU8Pz/fJNnvf/972717t3Xu3NkSExPt6NGjDbZ58uRJGz58uH322WdWUVFhv/zlL02SZWZm2qlTpzzbXXHFFSbJFi5caPv377eLL77YHA6HT+eIL300p333c/P555/b8ePH7YknnjBJFhsbaydOnPCp/+PHj5vT6bSuXbtaTU2NT32amSUlJZkku/vuu33a/qWXXrKEhARbvHixlZWV2ZdffmlDhw61fv362cmTJ31qo6m52dLtBUuuB1uemwUu15ubh63Rx9KlS83hcNgdd9xh+/fvr3Wb0tJSS01N9fzep0+f7lnXlFw/fPiwJ9dffPFFn/Y534svvmiSLCkpyQ4fPuzTPoz3jdfex3uztn0daI1rgPv5ae0x/+677/bksK/a2phPrgdPrjcnz83aR677Mt6btfyY35S/z83MWrUIkJKSYk8//bT16tXLYmNjbfTo0V4XlZSUFHvyySetZ8+elpiYaJMmTfL8YsLDw62oqMiz7QMPPGCPPPKImZmNGjXK80RKshdeeOGCOGbNmmUpKSnWqVMnmzx5srlcLp9iuvbaa02SRUZG2vXXX28bNmzwKd7i4mLLy8uzTp06WUZGhv3mN7/x+TkbPny4SbKPP/7Ya7n7QuFwOCwjI8NOnTpV64Vi3759Nnr0aEtLS7P4+HjLycmx1atXe9aHh4d7PV9Op9OGDx9u5eXlZma2f/9+GzNmjKWnp1tCQoINGzbMvvrqK5/jd6vtQrF3714LCwuz6Ohoq66uNjOzCRMmmCR78sknG93H0aNHPcexceNGMzNzuVyeZcXFxWZmlpuba5Ls1VdfbXYfLd3+//3f/3na++abb3w6RjOzwYMHm6RGDXSNKQK4XC5LSEiw+fPney2vrKy01NRUe+WVVzzL6srPunKzreV6U/PcrOVzvaXy3P1cttdcb+k89EcfNTU1lpmZaZLs0KFDdW6Xl5dnkZGRdtttt13wgsCs8bneVooA9eVcQ3nV2GvKuRjv28Z4bxZ814HWuM601pjf2CKAr2N+Y8fotjbem5HrbX28Nwu+XPd1vDdr+TG/qUWAVp8T4L333tPKlSu1c+dObd269YKPDi5dulTvvfeevvjiC61du1ZPPfVUg22+8cYb6tKli9atWycz0/333++1fsOGDZo3b55Wr16tb7/9Vtdee61Wr17tU0zr16+Xmeno0aOaMGGCRo8ererq6nrjNTPdeeedSklJ0a5du7Rq1SrNnTvX8x2gKVOmaNy4cXUez+bNmyVJV155Za3r77rrLu3fv1/z5s27YN2JEyd08803689//rMWLlyojRs36ptvvtEtt9yi7du3e207fvx4fffdd7r++uv17rvv6uWXX9bJkyd16623aunSpVq4cKH++c9/6vPPP1dubq7Ky8vrjNlXW7ZsUU1NjdLT0xUWdvb069KliyRp06ZNTWrPzf2xKafTqdzcXEnSypUrdeDAAW3dulUxMTHKyclpdh8t2f6JEye0cOFCSdLVV1+tyy67rMH+3dznx8aNGxvVp682bNigsrIy5eXleS2Pjo7W97//fX344YcNtlFfbralXG9Knkvya663VJ5L7TPXWzrP/dHHrl27tG/fPkVERGjEiBGKjo5Wt27d9Pzzz3u2+Z//+R8tW7ZMM2bMUFZWVq3t+DvX/am+8bUtXQMkxvuWvgZIwXcd8Hf7oTrmk+vtO9dbOs/dbboFQ677Mt5LbWvMb/UiwKOPPqpLL71U6enpGjly5AUTd8ycOVOXXXaZunbtqlmzZmnx4sXN7rNjx46KjIxUbGys4uPjde+992rIkCE+xySd/cPyvvvuU3V1tXbt2lVvvFu2bNGOHTv03HPPKTExUT179tS0adO0bNkyn+ItKyuTJMXGxta6ftKkScrMzNQTTzyhEydOeK17//33tXv3bvXt21dDhgzRZZddpry8PJ0+fVqvvPKK17Y/+clPlJiYqEGDBkmSdu/erffff19ff/21Bg4cqNtuu01ZWVkaOnSoioqKfI6/PocPH5YkRUREeJZFRkZKkoqLixvVVnl5uaZMmSJJGjt2rLp27epZN2/ePGVkZGjChAnKyMhQWVmZnn/+eXXr1q1F+miJ9t0XiUceeUQJCQl65plnFB4e7vMxxsXFSZKOHj3aqGPyVWlpqWJiYmo9D9PS0lRaWtqs9ttirjcmzyX5NddbKs+l9pvrLZXn/urjyJEjkqTTp0/rlltu0cGDBxUfH68HHnhAy5Yt06FDh3T//fere/fu+sUvflFnO/7OdX+qL+fa4jVAYrxvqWuAFFzXAX+3H8pjPrnevnO9JfNcCs5cb2i8l9TmxvxWLwJ07tzZ87PT6bzgRM/MzPT83LVrVx06dKjZffbp00ePPfaYRo8erUGDBunxxx+Xy+XyKaa5c+cqKytLkZGRcjgc2rNnj4qKiuqNd9++fSorK1NkZKTCw8MVFhamqVOn6sCBA5Kkl19+ud7Jk9yV37pmhoyIiNDMmTNVVFSk3/3ud17r3JNPJCcne5alpKRIkvbt2+e1rXubjh07SpKqq6s9+3/22WeeCSuWLFkiSfrmm2/qjNlX7lhOnTrlWeb+OTU11ed2Tp06pZEjR2rHjh26+eab9Yc//MGzrqKiQjfeeKMOHjyoTz4Eh4P4AAAgAElEQVT5RCUlJcrOztbEiRO1YsWKZvfRUu2vWLFCLpdLCxcuVHl5uYYNG+Y1CNV3jNLZSWYk+W3imIsvvliVlZW1nodFRUVeedMUbSnXm5Lnkvya6y2V5+du155yvaXy0J99nPv7GT16tDp16qQRI0ZIkt555x0tWbJER48e1dy5cz0vmGrj71z3p/rG17Z0DZAY71v6GnBuPG39OtAa15lQHvPJ9fad6y2V5+79gjHXGxrvJbW5Mb/N3SLw3JN57969Sk9PlyRFRUXp5MmTnnXnVyTdHz+py49+9CN98sknWrVqlTZt2qSCgoIGY/nqq6/08MMPa9GiRSovL5eZqWvXrp7ZO+uK1115rKqqUnV1tWpqamRm+vjjjxvsUzp7YZN0wYz35xo/fry6d++upUuXei13V7NKSko8y9wVunMvanVx75+TkyM7O2eE5zF79myf4q9Pnz59FBYWpqKiItXU1EiSDh48KOnsR+N8UVNTo/z8fBUWFmrAgAFavny5nE6nZ/327dtVVFSktLQ05eTkKCkpSTfddJPMTB999FGz+2iJ9t2cTqfGjx+v5ORknT592jOTakPHKP3r/OjXr1+j+vRV//79FR8ff0GV2OVyafny5br11ls9y+rLz7pys63kelPzXJLfc91feX5uG8Ga6y2Vh/7sIyMjw1PRdzgcXutiYmI8z8utt94qh8Ohl156SZL0zDPPqH///p5t/Z3rgVJXXklNu6a4Md63jfFeCo7rQGuN91L7GPObMka3lfFeItfb6ngvBXeuNzTeu/uX2s6Y3+aKAL/61a+0d+9e7du3TwUFBRo9erQk6aqrrtKCBQvkcrm0atUqvfXWW177JScna+vWrTKzC9pcvny5Zs+erUOHDunMmTMyM69qYV0qKysVHh6uhIQEnTlzRnPmzLngNg+1xdu3b19lZGRo+vTpKikpUWlpqRYsWOD5ZTf0vaHhw4dLkgoLC+vcpkOHDpo1a9YFxzt06FB169ZNmzdv1gcffKA9e/Zo2bJl6tixoyZNmtTgMQ8dOlRZWVlas2aN3nrrLVVWVuqLL77Qvffeq08//VSSNHDgQDkcDr3xxhsNtne+zMxMjRkzRi6XS/Pnz9fu3bu1YsUKJSQkeD6a01D7U6dO1Ztvvqkrr7xS7777rie53Hr06KGYmBgVFxdrzZo1Ki0t9TyX1113XbP7aG77mzZt0tSpU7Vz506dOHFCixcvVklJiZxOpwYMGODTMVZWVmrDhg3KzMxU796963vKm8zpdKqgoEDTp0/X0qVLVV5erp07d2rUqFFKTk7W+PHjPdvWl5915WZbyfWm5rkkv+e6v/Lc3UYw57ovedgafdTXfkREhKZNmybp7DsA3333nVasWKGwsDCNHTtWDz74oNeLsalTp0qSpk+f7rktVmvkeqDUlVdS064pEuN9WxrvpbZxHQh0++1tzG/KGN1WxnuJXA/UeO9LH8Gc6w2N95La3pjfmFkEW+LuAOfOdFhQUGCTJ0/2/D8lJcWeeOIJ69GjhyUkJNjEiRM9s3muXbvWsrOzLS4uzkaOHGnjxo3zzCBqZvbmm29aly5dzOFwXDCDqMvlsocfftjS09MtPj7e7rzzTjty5IhPMU2fPt3i4+MtLS3NpkyZYtnZ2fbhhx82GG9xcbHl5+dbcnKyJScn2z333OPpc/LkyZafn1/nc1ZWVmZxcXHWvXt3r9tDuGcQdc8GWl1dbb17975gBtE9e/ZYXl6epaamWlxcnA0ePNgKCws9690ziB44cMDMzs6uKsnuueceMzs7g2h+fr516dLFLrroIhswYIAtWLDAqqqqzMzs+uuvN0n29ttv1xq/e+bQ8x/umUQrKips0qRJ1qlTJ4uMjLTBgwfb+vXrPfvX135FRUWtbZ+/fWFhoeXm5lpiYqJFRUVZjx49bM6cOS3WR3PaP3PmjL3yyivWp08fi4qKspSUFBs+fLitWbPG5/4XLVpkkuzxxx+v9XdQl8beItDM7LXXXrOrrrrKIiIiLCkpySZOnGilpaVe29SXn7XlZlvL9abmuVnL53pL5blZ+8/1hvKwNfpo6DmqqqqyGTNmWGpqqjmdTrvmmmvsL3/5S63bTp069YKZgpuS623p7gB15VxDedXYa4ob433bGu/NAn8dCPQ1IFBjflNuEWjW8Jjf2DG6rY33ZuR6IMb7hvpoD7nemPHerOXG/DZ7i8DGaIv39ayPP+N137/ynXfe8Uv7TVVVVWWxsbHWs2dPn+8Z25bab40+WuMYrr32WktKSrJjx441ar+mFAH8IZhy3d+xkuvken2akuuBKgI0RjBdA8wY78nRwLTv1pTrQFOLAC2NXP8Xcj14c7Et53rQ3CIQvpk5c6bMzDOpRFuxdu1aVVZWav78+fVOatFW22+NPlrjGNavX6+SkpI6Z5lF8CDXyfX6kOvtX6heA1qjj2Bv343rQPtArgdvLrbHXO/g9x7Qrtxwww1e91INtvZbo4/WOAbA39pDnrSHYwAChRwNfPtAayDXA99+ILSpIkBT7iUZSMEWL9BWBFPuBFOsQLAItrwKtniBtiLYcifY4gWaiq8DAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIjo0Zafdu3crOzu7pWMB4GfHjx+XJL333nvkMNBOVVdX69SpUy3S1qlTp5STk6Pw8PAWaQ9A6zh48KCks+M+4z3Qfu3evbtJ+zWqCBAWFian0ylJ2rNnT5M6BBBY0dHRqqqqIoeBdi4iIqLZ+1dVVWn//v0tFBGA1hQdHS0zY7wH2jH33+dhYY37gH+jigAvvPCCSkpKGtUBAISiU6dO6Uc/+pFyc3N13333BTochKhrr722SfsNHTpUSUlJLRwN4Ju5c+eqsLBQf/zjHxUZGRnocACgzUtOTm7U9g4zMz/FAgAhy+VyKSYmRhMmTNCrr74a6HAAIGj8+Mc/1sKFC1VZWano6OhAhwMA7Q4TAwIAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECIoAgAAAAAAECI6BDoAAGgvDh06pD/96U+SpKqqKknS1q1bNXv2bElSamqqxo8fH7D4AKCteu2111RcXCzp7HVTkn7zm9+oY8eOkqQf/vCHSk9PD1h8ANCeOMzMAh0EALQHp0+fVmpqqo4ePVrr+v/+7//WU0891cpRAUDb9/Of/1xPP/10resSExNVXFysiIiIVo4KANonvg4AAC0kIiJCo0aNqnP9mDFjWjEaAAge9V0fR40aRQEAAFoQRQAAaEG1vZANCwtTjx491K9fvwBEBABtX79+/XTllVcqLOzCl6Zjx44NQEQA0H5RBACAFpSbm6v09HQ5HA7PspqaGuXn5wcwKgBo++6++27V1NR4/u9wOJSamqqcnJwARgUA7Q9FAABoQWFhYRo9erTOn27l7rvvDlBEABAc8vPzvQqoZqaxY8cqPDw8gFEBQPtDEQAAWti5XwkICwvTddddp+7duwcwIgBo+y6//HL179/fqxDAXCoA0PIoAgBAC7vuuut0+eWXSzr7VQBexAKAb8aMGeP5JJW7KAAAaFkUAQDAD9xzAISFhemuu+4KcDQAEBzuvvtuz+SA48aNC3A0ANA+Oez8L64C7cikSZP09ddfBzoMhCCXy6V169YpISFBffv2DXQ4ABA0Nm/erLKyMl133XWKjo4OdDgIQVlZWZo3b16gwwD8hiIA2rW0tDQVFxcHOgwAAAAEidTUVBUVFQU6DMBv+DoAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAAAAAhgiIAAAAhrHPnzjIzmZkGDhzY5G0AAEBwoAgAAEA78eqrr3r+WH/zzTcDHQ4AAGiDKAIAANAOxMbGKi8vz/P/733ve0pOTg5gRAAAoC2iCAAAQDswduxYxcTEqLS0VHv37lXHjh01fvz4C7a7/PLL9dFHH+nYsWPavHmzxowZ06RtAABAcKIIAABAOzBx4kRJ0htvvKGlS5dKku655x6vbTp27Kj33ntPt9xyi5599lndeOONGjBgQKO3AQAAwYsiAAAAQa5Pnz7q37+/JGnJkiVasmSJJKlHjx76t3/7N892ubm5ysrKkiTNmTNHZWVleuaZZ7za8mUbAAAQvCgCAAAQ5O69915J0qFDh7R69Wpt2rRJO3fulPSvTwhI0qWXXipJcrlcqqiokCQdPnzYqy1ftgEAAMGLIgAAAEEsKipK+fn5kqT09HRVV1fLzNSzZ09JUl5enuLj4yVJBw4ckCRFR0crNjZWkpSSkuLVni/bAACA4EURAACAIDZq1CglJiaqoqJCkZGRcjgccjgcCgsLU3FxsZxOp8aOHStJKiws1K5duyRJDz74oBISEjR9+nSv9nzZBgAABC+KAAAABDH35H8rV67U6dOnPcvNTCtWrJD0r68EVFVV6Y477tDf//53/exnP9Onn36qdevWebXnyzYAACB4OczMAh0E4C9paWkqLi4OdBgAAAAIEqmpqSoqKgp0GIDf8EkAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCBEUAAAAAAABCRIdABwC0hqioKEVHRwc6DABAkHK5XDp58qQ6deoU6FAA+FFFRUWgQwD8jiIAQkJsbKzmzZunhISEQIcCAAgyZWVlmjRpkk6ePKkf/vCHGjlyZKBDAuAHmzZtUkFBQaDDAPyOIgBCxg033KDk5ORAhwEACDIlJSWen7t3767c3NzABQMAQDMxJwAAAAAAACGCIgAAAAAAACGCIgAAAAAAACGCIgAAAAAAACGCIgAAAAAAACGCIgAAAAAAACGCIgAQZFJTU7Vt27ZAh+ElKipKDodDDodD//Ef/+G1rqCgQA6HQ++++26AokNb1r9/fyUnJ6uioqLR+3JuoSHnn1+bNm3yXKscDofmzJkT4AiDQ1scdySuAahfc8YXoL2jCACcp3fv3lq0aJHf+7nkkku0fv16v/fTmk6cOKE33njD8/9jx45pzpw5ysrK0h133OFZfskll8jhcOiKK67QmTNnJEnr16+Xw+FQQkJCq8ddl3Hjxnn9wTBjxgyv9cePH9fkyZPVuXNnOZ1O5eTkaMOGDT63/7e//U3Dhg3TRRddpM6dO2vEiBHasWOH1zbbtm3TsGHDdPHFFysmJkZ9+vTRa6+91mJ9NLd9SfrrX/+q6667zqsYtHfvXq9tVqxY4Vn34IMPepb/9Kc/1ZEjR/TCCy80qk/OrYb5+3ffVs4tyffz6+qrr5aZ6aGHHmpUHE31+uuvq2/fvoqKilJKSoomT56s7777zuf9W3KcaG9jTm3XgGDJfynw40tL5GdbuQa09PgChAQD2rHU1FSTZElJSXb48GGf9snOzrY//elPfo7MrEuXLrZu3bpG75eSkmJbt271Q0RNFxkZaZLsxIkTXsvnzp1rkuzRRx/1Wt6lSxeTZJJs3rx5Zma2bt06k2Tx8fGtFrevJk+ebJLsoYce8lqen59vkuz3v/+97d692zp37myJiYl29OjRBts8efKkDR8+3D777DOrqKiwX/7ylybJMjMz7dSpU57trrjiCpNkCxcutP3799vFF19sDofDp3PHlz6a076Z2dKlS83hcNgdd9xh+/fvr3Wb0tJSTy5KsunTp3vWHT9+3JxOp3Xt2tVqamp86tOMc6sh/v7dt5Vzy6xp59dDDz1kkuzpp5/2KZbDhw9bUlKSSbIXX3zRp31eeuklS0hIsMWLF1tZWZl9+eWXNnToUOvXr5+dPHnSpzaaOk60dFttcdyp7RoQbPlvFrjxpbn52VauAS09vvz973+3Tp06WWpqqk/bA8GKIgDatZYoAqSkpNjTTz9tvXr1stjYWBs9erTnBVxKSoo9+eST1rNnT0tMTLRJkyZ5/QEXHh5uRUVFnv8/8MAD9sgjj9ioUaM8A5Yke+GFFy6IY9asWZaSkmKdOnWyyZMnm8vlajAeM7Nrr73WJFlkZKRdf/31tmHDBq9jqSve4uJiy8vLs06dOllGRob95je/8en5Mqu7CDB8+HCTZB9//LHXcvcLNYfDYRkZGXbq1KlaX6jt27fPRo8ebWlpaRYfH285OTm2evVqr+f33OfR6XTa8OHDrby83MzM9u/fb2PGjLH09HRLSEiwYcOG2VdffeXzcbnV9iJt7969FhYWZtHR0VZdXW1mZhMmTDBJ9uSTTza6j6NHj3qOY+PGjWZm5nK5PMuKi4vNzCw3N9ck2auvvtrsPprbfk1NjWVmZpokO3ToUJ3b5eXlWWRkpN12220XvEgzMxs8eLBJatQfGZxbjdPSv3t/t+/ruWXWtPPL30UAl8tlCQkJNn/+fK/llZWVlpqaaq+88opnWWPGCX+OOWZNG3eaOuaYNW/cqe0a0Fr5bxZc1wB/578/+gjU+EIRAKGCrwMAPnjvvfe0cuVK7dy5U1u3bvX6usDSpUv13nvv6YsvvtDatWv11FNPNdjeG2+8oS5dumjdunUyM91///1e6zds2KB58+Zp9erV+vbbb3Xttddq9erVPsWzfv16mZmOHj2qCRMmaPTo0aqurq43XjPTnXfeqZSUFO3atUurVq3S3LlzPd+znDJlisaNG9fo523z5s2SpCuvvLLW9XfddZf279+vefPmXbDuxIkTuvnmm/XnP/9ZCxcu1MaNG/XNN9/olltu0fbt2722HT9+vL777jtdf/31evfdd/Xyyy/r5MmTuvXWW7V06VItXLhQ//znP/X5558rNzdX5eXljT6W823ZskU1NTVKT09XWNjZS2mXLl0knf3ecVPac3N/bNXpdCo3N1eStHLlSh04cEBbt25VTEyMcnJymt1Hc9vftWuX9u3bp4iICI0YMULR0dHq1q2bnn/+ec82//M//6Nly5ZpxowZysrKqrUd9/mxceNGn4+Fc6vxbbq1xO/e3+37cm5J/ju/mmvDhg0qKytTXl6e1/Lo6Gh9//vf14cffthgG3WNE/4Yc9wxN2XcacqYI6nZ40591wB/5r+koLsG+Dv//dFHIMcXIBRQBAB88Oijj+rSSy9Venq6Ro4c6TVB0syZM3XZZZepa9eumjVrlhYvXtzs/jp27KjIyEjFxsYqPj5e9957r4YMGeJTPG5Op1P33XefqqurtWvXrnrj3bJli3bs2KHnnntOiYmJ6tmzp6ZNm6Zly5Y16zjKysokSbGxsbWunzRpkjIzM/XEE0/oxIkTXuvef/997d69W3379tWQIUN02WWXKS8vT6dPn9Yrr7zite1PfvITJSYmatCgQZKk3bt36/3339fXX3+tgQMH6rbbblNWVpaGDh2qoqKiZh+XJB0+fFiSFBER4VkWGRkpSSouLm5UW+Xl5ZoyZYokaezYseratatn3bx585SRkaEJEyYoIyNDZWVlev7559WtW7cW6aM57R85ckSSdPr0ad1yyy06ePCg4uPj9cADD2jZsmU6dOiQ7r//fnXv3l2/+MUv6mwnLi5OknT06FGfj4dzy3f++N37u/2Gzi1Jfj2/mqu0tFQxMTG1np9paWkqLS1tctv+GHOk5o87jRlzJDV73KnvGuDP/He3ESzXAH/nv7/6COT4AoQCigCADzp37uz52el0er2oyMzM9PzctWtXHTp0qNn99enTR4899phGjx6tQYMG6fHHH5fL5fIpnrlz5yorK0uRkZFyOBzas2ePioqK6o133759KisrU2RkpMLDwxUWFqapU6fqwIEDkqSXX365SZMlut/Rrmtm3oiICM2cOVNFRUX63e9+57XOPfFPcnKyZ1lKSookad++fV7burfp2LGjJKm6utqz/2effeaZMGjJkiWSpG+++abRx3I+dyynTp3yLHP/nJqa6nM7p06d0siRI7Vjxw7dfPPN+sMf/uBZV1FRoRtvvFEHDx7UJ598opKSEmVnZ2vixIlasWJFs/tobvvn/m5Gjx6tTp06acSIEZKkd955R0uWLNHRo0c1d+5czwvY2hw7dkySGjVxF+eWb/z1u/d3+w2dW5L8en4118UXX6zKyspaz8+ioiKva3hj+WPMkZo+7jRlzJHU7HGnvmuAP/P/3Dba+jXA3/nvzz4COb4AoYAiANBM575o2Lt3r9LT0z3/j4qK0smTJz3/P/fdH/dH/Oryox/9SJ988olWrVqlTZs2qaCgoMFYvvrqKz388MNatGiRysvLZWbq2rWrZ5bkuuJ1v7tTVVWl6upq1dTUyMz08ccfN9hnffr06SNJF8x4f67x48ere/fuWrp0qddy9zsJJSUlnmXud0fOfVFZF/f+OTk5srPzn3ges2fPbsxh1KpPnz4KCwtTUVGRampqJEkHDx6UdHYGcl/U1NQoPz9fhYWFGjBggJYvXy6n0+lZv337dhUVFSktLU05OTlKSkrSTTfdJDPTRx991Ow+mtt+RkaG510Wh8PhtS4mJsbzvNx6661yOBx66aWXJEnPPPOM+vfv79nWfX7069fPp2OSOLd84c/fvb/bb+jccvcv+ef8aq7+/fsrPj7+gneFXS6Xli9frltvvdWzrLHjhL/GHKnx405TxxxJzR53GroG+Cv/z22jLV8D/J3//u4jkOMLEAooAgDN9Ktf/Up79+7Vvn37VFBQoNGjR3vWXXXVVVqwYIFcLpdWrVqlt956y7MuOTlZW7dulZld0Oby5cs1e/ZsHTp0SGfOnJGZeb0jU5fKykqFh4crISFBZ86c0Zw5cy64lU5t8fbt21cZGRmaPn26SkpKVFpaqgULFngG1abOCTB8+HBJUmFhYZ3bdOjQQbNmzbrgeRg6dKi6deumzZs364MPPtCePXu0bNkydezYUZMmTWqw76FDhyorK0tr1qzRW2+9pcrKSn3xxRe699579emnn0qSBg4cKIfD4XVbQ19lZmZqzJgxcrlcmj9/vnbv3q0VK1YoISHB87HIhtqfOnWq3nzzTV155ZV69913PX/cuPXo0UMxMTEqLi7WmjVrVFpa6nkur7vuumb30dz2IyIiNG3aNEln35X97rvvtGLFCoWFhWns2LF68MEHvV4cT506VZI0ffp0z63KKisrtWHDBmVmZqp3796eths6rlA/t3zpw5+/e3+339C5JalZ55e/OZ1OFRQUaPr06Vq6dKnKy8u1c+dOjRo1SsnJyRo/frxn28aOE/4Yc6SmjTtNHXMkNXvcaega4K/8d7cR6GtAoPPf3334c3wBIG4RiPatpe4OcO6ssgUFBTZ58mTPuieeeMJ69OhhCQkJNnHiRK+Z+teuXWvZ2dkWFxdnI0eOtHHjxtkjjzxiZmZvvvmmdenSxRwOxwUzNbtcLnv44YctPT3d4uPj7c4777QjR440GI+Z2fTp0y0+Pt7S0tJsypQplp2dbR9++GGD8RYXF1t+fr4lJydbcnKy3XPPPZ4+J0+ebPn5+XU+Z3XdHaCsrMzi4uKse/fuXrfncc/g7J6Nubq62nr37n3BDM579uyxvLw8S01Ntbi4OBs8eLAVFhZ61rtncD5w4ICZnZ3ZWpLdc889ZnZ29ub8/Hzr0qWLXXTRRTZgwABbsGCBVVVVmZnZ9ddfb5Ls7bffrvW43LM2n/9wz+JcUVFhkyZNsk6dOllkZKQNHjzY1q9f79m/vvYrKipqbfv87QsLCy03N9cSExMtKirKevToYXPmzGmxPprTvplZVVWVzZgxw1JTU83pdNo111xjf/nLX2rddurUqRfM3rxo0SKTZI8//rjXtg31G+rnVkN9+Pt339bOLbPGnV+tcYtAM7PXXnvNrrrqKouIiLCkpCSbOHGilZaWem3TmHHCX2OOWdPHnaaOOWbNG3dquwa0Vv6bBf4aEOj8bGvXgMbkf324OwBCBUUAtGtNKQI0Rlu8d3J9/BWvuwggyUaNGuW1zn3v4HfeeafF+22Oqqoqi42NtZ49e/p8z+621H5r9NEax3DttddaUlKSHTt2rNH9huq51Rp9BHv7buefXxs3bvT6Y8XfRYCWxpjjLVSvAcHefmv1Udv40hCKAAgVHRr+rAAA1O/c76Ceb+bMmZo5c2YrRuObtWvXqrKyUvPnz693UqG22n5r9NEax+D+2GZT+g3Vc6s1+gj29t3OP7+uvvrqOj8Oj+ATqteAYG+/tfqobXwBcBZFAAAh6YYbbvC6l3Wwtd8afbTGMbSlflsKv/vAtw8EUrDnT3u4hgGoH0UAoBmacs/uQAq2eAEA/xJs1/BgixcAQgV3BwAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIERQBAAAAAAAIEQ4zMwCHQTgL2lpaSouLlZcXJzS0tIUHh4e6JAAAEGmurpaRUVFOnbsmNLS0pSYmBjokAD4gcvlUmlpqS666CIVFRUFOhzAbygCoF1LT09XeXm5OM0BAM3lcDgYT4B2zuFwKD4+XocOHQp0KIDfdAh0AIA/vfrqqyovLw90GADQpvzv//6vnn32Wf30pz/VwIEDAx0OALQp8fHxgQ4B8DC5tD0AACAASURBVCuKAGjXbr/99kCHAABtjsPh0LPPPqv/9//+n/Ly8gIdDgAAaEVMDAgAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAAQIigCAAAAAAA/5+9O4+uor77OP6ZLGQjC1sISwBBWUT2IFQlBFkETH2kAoGEFm1lKy4oVFEbrUUq+AQRpEJRXE5BdqQKCIoQBPTIvsqOQCxJgJKQnYRknj94ckvMdklyc5PM+3XOPSQzc3+/74T7/c3c7/3NXMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCLcnB0AAABwvB07dmjnzp2SpMOHD0uS/vWvf+ns2bOSpPvvv18PPPCA0+IDAACVwzBN03R2EAAAwLFiY2PVp0+fYtdv3bpVYWFhlRcQAABwCooAAABYQF5enoKDgxUfH69bD/2GYSgoKEg///yzXFy4ShAAgJqOoz0AABbg4uKiESNG6Je1f9M0FRkZSQEAAACL4IgPAIBFjBw58raWAwCAmofLAQAAsJA2bdro9OnTysvLk2EYatmypU6fPu3ssAAAQCVhJgAAABYycuRI5eXlSbp5KcBvf/tbJ0cEAAAqEzMBAACwkBMnTqht27a2348fP642bdo4MSIAAFCZmAkAAICFtGnTRt26dZMkdevWjQIAAAAW4+bsAABUbe+9955WrFjh7DAAVKDk5GTbv2FhYc4NBkCFGj58uP74xz86OwwAVRhFAAAl+vbbb7Vt2zZnhwHAAc6cOaMzZ844OwwAFSgoKIgiAIAScTkAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAQDWTkJAg0zQ1atSoKtd3/fr1ZZqmTNNUz549Kzk6AABQGooAAABUgAMHDtje/JqmqaSkJO3evVsjR450dmil2rp1q0zT1BdffFFo3ZIlS2Sapvbu3euEyAAAQEWjCAAAQAVasmSJXF1dNXbsWIWEhGjJkiW67777KrSPoKAgGYahxYsXV0h7H3zwgSRp0KBBCgoKsi338/PTkCFDCmxT0X0DAIDKRREAAIAKlpeXp5UrVyotLU2GYahPnz62dXXq1NHs2bN16tQppaen68cff9Tzzz8vV1dX2zaTJk3SiRMnlJGRobNnz2r+/PkKDg62rf/llPywsLACsxDyH8nJyXb1uXr1aiUlJcnV1VW//e1vbf2MGDFCXl5eyszM1Kefflpk361atdLmzZuVkpKigwcPFjvzwZ79rlu3rubMmaNTp04pIyNDJ0+e1FtvvSU/P79y/X8AAID/oggAAICDGIYhScrOzpYkubu7a9u2bZo0aZJWrlypxo0ba9euXZo1a5bmzJkjSeratatmz56tjIwMNW7cWKGhoTp48KAmTpxYbD+xsbEyDEOGYahDhw66du2aJCkrK8uuPrOysrRkyRJJ0hNPPGFrN//nlStX2tq8lbu7uzZs2KC+fftq9uzZ6t27t3r06FHkdqXFUKtWLX377bd65plntHTpUjVq1EibNm3Sn/70J23atEkuLpyyAABQIUwAKEFERIQpiQcPHqU8Dhw4YJqmaS5evNh0cXExhw0bZpqmaV69etVs1qyZKckMDw83TdM0s7OzTS8vL1OSGRISYpqmaebk5Jh+fn5mnz59bM976qmnzN69e5v+/v4F+kpISDBN0zRHjRpVYHmTJk3MCxcu2NobOHCgXX1KMjt27GjL+x49epht27a1/d6rV68i++7fv79tG19fX1OS2aVLF9uynj172r3fv/71r03TNM28vDzTx8fHlGQGBwfb2nrggQec/n/Mg0d1eERERJT1kA/AIiirAwBQgaKiopSbm6sVK1YoMzNTUVFRunDhgiSpefPmkm5+Mp6RkSHTNLV7925Jkpubm5o1a6Zvv/1WS5cuVUBAgN59913FxsbqypUrmjFjRon9+vn5af369bbLBiZMmKCNGzfa1ackHTp0SHv27JF0cwZA/iyAEydOaPv27UX2md9XRkaGUlNTJUmJiYmFtrMnhvw4UlNTlZ6eXqit/PUAAKB8KAIAAFCBlixZIj8/P02dOlVeXl767LPP9MADD0iSrRiQmZmpWrVq2abw5z+OHDmi3NxcRUZGqm7dugoNDdXMmTPl5uamF198Uf7+/kX26e7urlWrVqlTp06SpOnTp9tu5GdPn/nynzNixAj97ne/kyQtWrSo2H2Ni4uTJHl7e8vX11eS1LBhw0Lb2RND/ja+vr7y8fEp1FZ+XwAAoHwoAgAAUMFSU1M1c+ZMff311/Lw8ND7778vd3d3bdy4UUeOHJGXl5dmzJghPz8/NW3aVFFRUVqzZo0kKSQkRB988IFatmypPXv2aOPGjbY2MzIyiuxv9OjR6t+/vyRp8eLF+vOf/2xbZ0+f+T799FOlp6fL399fQUFBysnJ0SeffFLsfsbGxur06dOSpClTpiggIECTJ08utJ09MWzatEnHjh2TYRi2gscLL7wgSdq1a5d27txp198eAACUjCIAAAAOMmnSJN24cUNt27bVs88+q5ycHIWGhiomJkbh4eFKSEjQt99+q759+yo6OlqStH//fm3ZskVz5sxRYmKiPvvsM23fvl2PPPKIcnJyiuzH09PT9vOoUaMKfDuAPX3mS01N1YoVK2y/f/HFF7p06VKx+5eTk6PBgwdr69atev7557Vz507bNP9fbldaDNnZ2QoNDdW8efMUFRWlhIQEDRo0SLNmzdJDDz2kvLw8+//wAACgWIZpmqazgwBQdY0YMULLly93dhgAAMAOERERWrZsmbPDAFCFMRMAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCIoAgAAAAAAYBEUAQAAAAAAsAiKAAAAAAAAWISbswMAUD14e3vL09PT2WEAuE3Z2dlKS0tT7dq1VatWLWeHA8BBsrKylJGR4ewwAFQDFAEA2MXT01OrV692dhgAbtMTTzyhtLQ01a9fXx999JGzwwHgII899hhFAAB2oQgAwC6urq4KCwtzdhgAbpO3t7ftX3IYqLlcXV2dHQKAaoJ7AgAAAAAAYBEUAQAAAAAAsAiKAAAAAAAAWARFAAAAAAAALIIiAAAAAAAAFkERAAAAAAAAi6AIAMBygoKCdOTIEWeHUci0adNkGIbWr1/v7FBQRYWEhCgwMFCpqanODqVaINdRHZHnAByNIgCACnfPPfdo8eLFDu+nadOm2rNnj8P7qQwpKSmKiYlR69atNXjwYNvypk2byjAM3Xnnnbpx44Ykac+ePTIMQwEBAc4Kt5BRo0bJMAzbY+rUqQXWp6Wlady4capfv768vLwUGhqqvXv33lYfW7Zs0aBBg1S7dm3Vr19f4eHhOnbsmG39kSNHNGjQINWrV08+Pj7q2LGjPvnkkyrTviT961//Uvfu3eXp6Wn7W507d67QduvWrbOtnzJlim35c889p8uXL+vdd9+9rX7LYsmSJerUqZM8PT3VsGFDjRs3TlevXrXruRWdm+S6dXK9tPZvVVyeVFQfZW1fsi/Xq0KeA7AmigAAUAV8+umnSklJ0YgRI2QYRqH1Z86c0UcffeSEyOyzePFimaapcePGFbl+/PjxWrhwoWbMmKGjR4/q2LFj6t+/v5KTk+1q//r163r77bf16quvKiEhQc8++6zWr1+vQYMGKTs7W5I0ZMgQbdy4UW+//baOHz+uixcv6oknnrDrzaOj25ekFStWaMiQIQoMDNSpU6dkmqZM01SLFi0KbPef//xHY8aMKbKNRx99VF5eXnr//fdlmqZd/ZbFe++9p6eeekovvfSSEhMTFRsbqwsXLqhfv366fv26w/q1AnK9fO3nKylPKqKP8rRvT65XhTwHYF0UAQA4VFBQkGJiYtS+fXv5+flpxIgRBd5EBAUFacaMGWrXrp3q1q2rcePG2d50ubm5KSEhwbbtpEmT9Oc//1mSNHToUP373/9W9+7dZRiG5s2bV6jvv/zlLwoKClK9evU0fvx4ZWZm2tZt3Lix2JhCQkJkGIY8PT3Vo0cP7du3z654ExMTNXz4cNWrV0/NmzfX7Nmz7f47rVu3TpLUu3fvItcbhqE33njD1tcvXbhwQSNGjFDjxo0VEBCg3r17a8eOHbb1bm5uBT758vb2Vnh4uFJSUiRJcXFxioyMVJMmTVSnTh0NHjxYJ0+etDv+kpw/f15Lly6Vt7e3fv/736tly5YKDw9XUlKSFixYYFcbHh4eWrdunX71q1+pdu3aevrpp21t//jjj8rMzNTp06clSQMHDlRwcLA6dOgg0zTtmg7u6PZN09QLL7wg0zT1wQcfKDg4uNhtJ0yYoKSkJPXv37/QOh8fH3Xr1k3nzp3T0aNHS+23LDIzM/XKK69o1qxZGjFihPz9/dWuXTutXr1a8fHxttkPxeVncblJrt9ErleMkvLEme3bm+vOznMA1kYRAIDDbdiwQRs3btTx48d1+PDhQpcKLF++XBs2bNC+ffu0a9cuvfXWW6W2uWrVKjVp0kS7d++WaZp66qmnCqzfu3evFi5cqO3bt+vs2bPq1q2btm/fbldMe/bskWmaSkpK0uOPP66IiAjl5uaWGK9pmhoyZIgaNmyo06dPa9OmTZo/f77tmt/x48dr1KhRxe7PwYMHJUnt2rUrcv3w4cN14cIFLVy4sNC6zMxMPfjgg1qxYoU+/vhj7d+/X6dOnVLfvn0LnUCOHj1aV69e1b333qv169drwYIFysrKUr9+/bR8+XJ9/PHH+uGHH/T9998rLCxM165dKzZmex06dEh5eXlq3LixXFxuHnaaNGkiSTpw4ECZ28wXEBAgLy8vhYWFSbr5pi8uLk6HDx+Wj4+PQkNDnd7+6dOndf78edWqVUvh4eHy9vZWy5YtNXfu3ALbffrpp1q5cqWmTp2q1q1bF9lW/mtk//79t71f9ti7d6+Sk5M1bNiwAsu9vb31yCOP6Ouvvy7x+SXlJrlOrlcEe/LEWe3bk+tVIc8BWBtFAAAO9+qrryo4OFiNGzfWo48+WuiT0+joaN1xxx1q0aKFXnvtNS1durTcfbq7u8vDw0O+vr7y9/fXmDFjNGDAALtjkiQvLy9NmDBBubm5tk+Bi4v30KFDOnbsmN555x3VqVNHbdu21aRJk7Ry5Uq74s2fKuvr61vk+rFjx6p58+b629/+VuBTTkn68ssvdebMGXXq1EkDBgzQHXfcoWHDhik7O1v/+Mc/Cmz7zDPPqE6dOrr//vsl3Zx6/OWXX+rkyZPq2bOn+vfvr9atW2vgwIGKj4+3O/6SJCYmSpJq1aplW+bh4SFJBT79tde1a9c0fvx4SVJkZKRtiu3ChQvVrFkzPf7442rWrJmSk5M1d+5ctWzZ0untX758WZKUnZ2tvn376ueff5a/v7+effZZ29/44sWLeuqpp3TXXXfppZdeKrYtPz8/SVJSUtJt7Ze9rly5Ih8fnyJfi40aNdKVK1fK3Da5Tq6Xl7154qz2S8v1qpLnAKyNIgAAh6tfv77tZy8vr0Ints2bN7f93KJFC128eLHcfXbs2FGvv/66IiIidP/99+uNN95QRkaGXTHNnz9frVu3loeHhwzD0E8//aT4+PgS4z1//rySk5Pl4eEhV1dXubi4aOLEiYqLi5MkLViwoMSbJebf+Ku4u0HXqlVL0dHRio+P13vvvVdgXf7NpgIDA23LGjZsKOnm9Nxb5W/j7u4uScrNzbU9/7vvvrNNIV62bJkk6dSpU8XGbK/8WG6dhp3/c1BQ0G21df36dT366KM6duyYHnzwQX3wwQeSbv7devfurZ9//lnbtm3TpUuX1L59ez355JO26dfObP/W/5uIiAjVrVtX4eHhkqQvvvhCkrRs2TIlJSVp/vz5tjdORcmf1u2om8XVq1dP6enpRb4W4+PjC+TO7SLXyfXysjdPnNV+ableVfIcgLVRBADgdLeevJ47d06NGzeWJHl6eiorK8u27pefQOZPNy3O7373O23btk2bNm3SgQMHNG3atFJjOXHihF5++WUtXrxY165ds93MKf9u3cXFm/9JY05OjnJzc5WXlyfTNPXNN9+U2qd0842MpAJ3o/+l0aNH66677tLy5csLLM//pPrSpUu2ZfmfyN36JqY4+c8PDQ213cAq/zFz5ky74i9Jx44d5eLiovj4eOXl5UmSfv75Z0lS586d7W4nLy9PUVFRio2NVY8ePfT555/Ly8tLknT06FHFx8erUaNGCg0NVYMGDdSnTx+ZpqnNmzc7vf1mzZrZPtn75c3gfHx8bP1LUr9+/WQYhv7+979LkmbNmqWQkBDb9vmvkS5duti1X7crJCRE/v7+hT4ZzsjI0Oeff65+/fpJKjk/i8tNcp1cLy9788RZ7ZeW61UlzwFYG0UAAE43ffp0nTt3TufPn9e0adMUEREhSerQoYM+/PBDZWRkaNOmTVqzZk2B5wUGBurw4cNF3j35888/18yZM3Xx4kXduHFDpmkW+HSwOOnp6XJ1dVVAQIBu3LihmJiYQl/rVFS8nTp1UrNmzTR58mRdunRJV65c0Ycffmg7wSvtOuGHH35YkhQbG1vsNm5ubnrttdcK7e/AgQPVsmVLHTx4UF999ZV++uknrVy5Uu7u7ho7dmyp+zxw4EC1bt1aO3bs0Jo1a5Senq59+/ZpzJgx2rlzpySpZ8+eMgxDq1atKrW9X2revLlGjhypjIwMLVq0SGfOnNG6desUEBBgm3ZvTx8TJ07U6tWr1a5dO61fv9725lmS2rRpIx8fHyUkJGjHjh26cuWK7W/ZvXt3p7dfq1YtTZo0SdLNTxqvXr2qdevWycXFRZGRkZKkKVOmFHhTNnHiREnS5MmTbd9AkJ6err1796p58+a65557Sv7Dl5GXl5emTZumyZMna/ny5bp27ZqOHz+uxx57TIGBgRo9erSkkvOzuNwk18n18rQv2Zcn5emjvO2XlutVJc8BWBtFAABON3ToUA0cOFCdO3dW165d9eKLL0qS5s6dqzVr1qhRo0ZasGCBHnvssQLPe/nllxUdHS1XV9dCdwzv37+/UlJS1L17d7Vo0UKmaSo6OrrUWLp27arHH39c9957r1q3bq0zZ86offv2pcbr4uKitWvX6tKlS+rQoYPat2+v7777zvYmpzRRUVHy8/PTsmXLSvxKqJEjRxY6KfT29tY333yjoUOHavTo0ercubNatWqlr7/+2q4TSC8vL23evFkjR47UM888o6CgIP3xj3/Ufffdpx49ekiSLSY3N7ci2xg/frwMw7Bdlzxz5swC37+9YMECjR07VlOnTlX79u3Vrl07bd68ucBU15L6SEtLs91d/NixY6pfv75tOvPatWtVp04drV+/Xr169dIjjzyi4OBgZWVlKSYmRlFRUU5vX7p5ffnUqVP1z3/+U02bNpWLi4vWrFmjXr16Ff0fU4S1a9cqMzNTY8aMKfLr5SrK008/rTlz5mj69OkKDAxUaGiomjZtqi1btsjT01NSyflZXG6S6+R6edu3h6P7cHSuV1aeA7AwEwBKEBERYUoyGzRo4JD2GzZsaB4+fNghbTuCI+P961//akoyv/jiC4e0X1Y5OTmmr6+v2bZtWzMrK6ta9lHd28/XrVs3s0GDBmZKSordz7n77rtNSebdd9/tsLjsQa7/l1VznbHEPmXJc9M0zQYNGpiSzIiICIfEBaDmYCYAAFQR0dHRMk3TdhOpqmLXrl1KT0/XokWLHHIjrsroo7q3n2/Pnj26dOlSsXeWR/Vg1VxnLLEPeQ7A0YqexwQAwP+77777Cnx3enXso7q3D1SGmpAnNWEfAMDRKAIAcKqK+u7oylLd4gWqiuqWO9UtXgAA7MXlAAAAAAAAWARFAAAAAAAALIIiAAAAAAAAFkERAAAAAAAAi6AIAAAAAACARVAEAAAAAADAIigCAAAAAABgERQBAAAAAACwCDdnBwCgekhLS1P79u2dHQaA23TmzBnbv+QwUHOlpaU5OwQA1QRFAAAlcnFxkYeHhyTpp59+cnI0AG6Xi4uLvL29ZZomOQzUcB4eHnJxYaIvgJIZpmmazg4CQNW1b98+nT592tlhwAG++uorLVq0SK+99pruvvtuZ4cDoBL8+OOPev311/WHP/xBAwYMcHY4cIA777xTXbt2dXYYAKowZgIAKFHXrl05maihrly5okWLFiksLExhYWHODgdAJYiNjdXrr7+url27avjw4c4OBwDgBMwXAgAAAADAIigCAAAAAABgERQBAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCIoAgAAAAAAYBEUAQAAAAAAsAg3ZwcAAKg8X331lfbv3y9J+v777yVJS5cu1Q8//CBJ6t+/v7p27eq0+ABUvH379unrr7+WJJ09e1bSzbEgNTVVktSlSxcNGDDAafEBACqXYZqm6ewgAACVY+XKlRo+fHix648cOaL27dtXYkQAHO3o0aO65557il2/YsUKDRs2rBIjAgA4E0UAALCQzMxMBQYGKi0trcBywzDUoUMHHTx40EmRAXCkTp066fDhw/rlaV/t2rV16dIleXl5OSkyAEBl454AAGAhXl5eGjJkSKHlpmkqKirKCREBqAyRkZGFCgCS9Jvf/IYCAABYDEUAALCYkSNHFlpmGEaJlwkAqN5GjhwpwzCKXA4AsBYuBwAAi7lx44YaN26sK1euyDRNGYah+++/X9u3b3d2aAAc6IEHHtB3331ny/u6desqISFBbm7cJxoArISZAABgMW5ubho2bJhtarBpmnwaCFjAyJEjC+T9iBEjKAAAgAUxEwAALGjHjh3q1auXJMnV1VXx8fFq0KCBk6MC4EiXL19Wo0aNlJubK0navn27HnjgASdHBQCobMwEAAALuv/++9W8eXNJ0oABAygAABbQoEED9e/fX5IUHBys+++/38kRAQCcwTYHLCUlRcOGDdP169edGQ8AoJLk5eVJkn766SeFhYU5Nxg4xEsvvaSHHnrotp+3adMmvfnmmw6ICM6WmJho+7lPnz5OjAQAUFk8PDy0cuVK+fn5SbqlCJCVlaXdu3crKSnJacEBACrf8ePHdfz4cWeHAQcYNmxYmYoAp0+f1rZt2xwQEaqKuLg4xcXFOTsMAEAlqFOnjrKysmxFgAKXA3BzGAAAAAAAao5fvs/nngAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCIoAgAAAAAAYBEUAQAAAAAAsAiKAAAAAAAAWARFAMCCEhISZJqmRo0a5exQAACAHew5dtevX1+maco0TfXs2bPS+69O/QBWRhEAqEIOHDhgO3ibpqmMjAwdO3ZMr7zyimrVquXs8Eq1bt06maapefPmOTsUAAAc7pfH7aSkJO3evVsjR450dmgOd+u+v/nmmwXWLViwwLZu8+bNTooQQHEoAgBV0JIlS2QYhrp06aKAgAC98cYbmjlzZoW1HxQUJMMwtHjx4gprEwAAq1qyZIlcXV01duxYhYSEaMmSJbrvvvsqtI+qfOyeMGGC/Pz8JEkNGzbU6NGjy9xWVd5PoKagCABUYSdOnNDatWslSSNGjLAtz58qFxMTo61btyo1NVWPP/64JKlu3bqaM2eOTp06pYyMDJ08eVJvvfWW7eB86/NvnWpXp04dzZ49W6dOnVJ6erp+/PFHPf/883J1dZUkBQQEaMaMGTp+/LjS0tK0a9cuhYaG2p5/5MgRPfzww5KkiRMnyjRNXblyxWF/GwAAqpK8vDytXLlSaWlpMgxDffr0sa0r7RgrSZMmTdKJEyeUkZGhs2fPav78+QoODratL+rY3apVK23evFkpKSk6ePBgkTMQbty4IdM0bcfopk2b2j6lb9u2raSCn+pnZ2frxIkTmjx5sl37ffHiRfn7+2vChAmSpOeee06enp66ePFikduX1ldR+5m/7M0339SmTZt07do1XbhwQWPGjLErRgAFUQQAqjjDMIpd95vf/EZPP/20fH199fHHH6tWrVr69ttv9cwzz2jp0qVq1KiRNm3apD/96U/atGmTXFyKTnl3d3dt27ZNkyZN0sqVK9W4cWPt2rVLs2bN0pw5c2zrX3zxRR06dEgtW7bUqFGjNHDgQFsb99xzj9avXy9J+vvf/y7DMFS/fv2K/WMAAFDF5R+3s7OzJZV+jJWkrl27avbs2crIyFDjxo0VGhqqgwcPauLEicX24+7urg0bNqhv376aPXu2evfurR49ehS7vWmaxa7r3LmzDMOQi4uL2rZtq9zcXMXExOg3v/lNqfu7dOlSJSYmatKkSQoMDNT48eN19uxZff755xXe15AhQ/Tkk09qwoQJCg4O1vz589WwYcNSnwegIIoAQBXWunVr/c///I8kadmyZYXWz58/X0eOHLH9/tBDD6l9+/YyTVMzZ87UtWvX9NZbb0mSevbsWezUxIceekgdOnRQTk6Opk2bpmvXrtmu6x83bpyGDRumjh07Srr5Kf+lS5d08uRJvfzyyxW6jUfp3AAAIABJREFUvwAAVFcuLi4aNmyYfHx8lJSUpOXLl0sq/Rjr5+cnf39/SVLz5s01atQotWrVSkuXLtXUqVOL7S8sLEytW7eWJMXExCg5OVmzZs0qdvu8vLxS98E0TZ09e1ZfffWVJNnOQUqSlZWluXPnKigoSBs3bpS/v79iYmKUm5tb4X29//77iouL05dffilJcnV1VcuWLUt9HoCCKAIAVVBUVJRM09TBgwd17do1RUdH68UXXyy0XXx8fIHfmzVrJklKTU1Venq6JCkxMbHQ+l9q3ry5pJufKmRkZMg0Te3evVuS5Obmpl69ekmS0tPTdfny5XLuHQAANUtUVJRyc3O1YsUKZWZmKioqShcuXJBU+jG2WbNm+vbbb7V06VIFBATo3XffVWxsrK5cuaIZM2YU22f+pQIZGRlKTU2VVPCYby/DMDR16lQdPXpUqampMk1Tzz77rKSblw7Y47333lNqaqq6dOmiS5cu6aOPPnJIX/n7l5OTY1t26yUVAOxDEQCogvJvDOjl5aW2bdvqjTfesE0rLEn+CYevr698fHwkqcA0ubi4uBKfl5mZqVq1askwjAKP/Gn+Pj4+atCgQbH9lzTVEACAmmrJkiXy8/PT1KlT5eXlpc8++0wPPPCApNKPsUeOHFFubq4iIyNVt25dhYaGaubMmXJzc9OLL75omyXwS/nHdG9vb/n6+kpSkVPj8z+Rz/+WoV9uEx4erjfffFPNmjVTz5495eLiovnz50uy/w12cnKyFi5cKEmaO3eusrKyityuIvoCUH4UAYAaZNOmTTp27JgMw7CdOLzwwguSpF27dmnnzp1FPm/jxo06cuSIvLy8NGPGDPn5+alp06aKiorSmjVrtGnTJh06dEjSzev9AwMD1apVK/3v//5vgXYuXbokSWrRooXc3NwcuKcAAFQtqampmjlzpr7++mt5eHjo/fffl7u7e6nHWEkKCQnRBx98oJYtW2rPnj3auHGjrc2MjIwi+4uNjdXp06clSVOmTFFAQECRN/M7efKkJGnAgAHy9/fXlClTCqz38PCQdLNYkJ2drfbt22vo0KG3vf9TpkyRYRiaPn16sdtUVF8AyociAFCDZGdnKzQ0VPPmzVNUVJQSEhI0aNAgzZo1Sw899FCx1wPm5OQoNDRUMTExCg8PV0JCgr799lv17dtX0dHRysnJUe/evTVz5kx16tRJP/30k5YvX65169YVaOftt9/Wvn371K9fP+Xk5NhOYgAAsIpJkybpxo0batu2rZ599tlSj7GStH//fm3ZskVz5sxRYmKiPvvsM23fvl2PPPJIganvt8rJydHgwYO1detWPf/889q5c6ftMoNbjRs3TocOHdLvf/97bdu2rdAHAmvWrNE777yj3Nxcff/995o2bZrtOv2KVpl9ASiB+f8SExPNBg0amJJ48OBRwx+XL182TdM0hw0b5vRYePDg4bjHvHnzzLKYN2+e02PnwYMHDx48eFTMo0GDBmZiYqLtOM9MAMBi7r77btWtW1d5eXk6ePCgs8MBAAAAUIkoAgAWMmnSJB05ckRxcXGaMGGC7TpBAAAAANbAnbsAC3nnnXf0zjvvODsMAAAAAE7CTAAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCIoAgAAAAAAYBEUAQAAAAAAsAiKAAAAAAAAWARFAAAAAAAALIIiAAAAAAAAFkERAAAAAAAAi3AramHdunUrOw4AFSA1NVWS5Ovr6+RIADhTRkaGsrKyyt2Op6envL29KyAiAJXpxo0bSklJkbe3tzw9PZ0dDgAnunr1aqFlRRYBfvvb3+rRRx91eEAAKs6BAwc0bdo0SVJ0dLQ6d+7s5IgAOENycrLGjh1bIUUAX19fLVy4UAEBARUQGYDKMm3aNG3ZskWenp5avXq1s8MB4CRr167VnDlzCi0vsghw1113KSwszNExAXCQzp07k8OARV26dKlC27vvvvsUGBhYoW0CcKx//OMfkiRXV1fOBwALO3r0aJHLuScAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALCIGl8ECAoK0pEjR5wdRiHTpk2TYRhav369s0NBFRQSEqLAwEClpqY6O5RqoyrmOnmO8mIsqDhVcYyQGCdQOsaB20Ouo6aqyLGgXEWAe+65R4sXLy53EKVp2rSp9uzZ4/B+KktKSopiYmLUunVrDR48WNLNfTQMQ3feeadu3LghSdqzZ48Mw1BAQIAzwy1k1KhRMgzD9pg6dWqB9WlpaRo3bpzq168vLy8vhYaGau/evRXWfr5169bZtpkyZUqF7kNF9PGvf/1L3bt3l6enp62Nc+fO2dX+c889p8uXL+vdd9+9rT7LYsmSJerUqZM8PT3VsGFDjRs3TlevXrX7+RWZnzUp14vKc4lcv53285U1D6vCWLJlyxYNGjRItWvXVv369RUeHq5jx47Z1h85ckSDBg1SvXr15OPjo44dO+qTTz6xra/MsaC8OCe4fdV9nLAnxxgnbuKc4PaR69Un18ub5/b0ka+q5ro97Velc4IaPxOgKvr000+VkpKiESNGyDCMAuvOnDmjjz76yEmR2Wfx4sUyTVPjxo0rcv348eO1cOFCzZgxQ0ePHtWxY8fUv39/JScnV0j7kvSf//xHY8aMKVP8ldHHihUrNGTIEAUGBurUqVMyTVOmaapFixZ2tf/oo4/Ky8tL77//vkzTLFMM9njvvff01FNP6aWXXlJiYqJiY2N14cIF9evXT9evX3dYv1ZQUp5L5Lo97Uvly0NnjyXXr1/X22+/rVdffVUJCQl69tlntX79eg0aNEjZ2dmSpCFDhmjjxo16++23dfz4cV28eFFPPPGE7cS3ssYCOEd1HyfsyTHGCc4JUPNzvbx5bk8fUtXO9dLar2rnBBVaBAgKClJMTIzat28vPz8/jRgxwjZoBAUFacaMGWrXrp3q1q2rcePG2XZYktzc3JSQkGD7fdKkSfrzn/+soUOH6t///re6d+8uwzA0b968Ivv+y1/+oqCgINWrV0/jx49XZmambd3GjRuLjCkkJESGYcjT01M9evTQvn37CuxLSfEmJiZq+PDhqlevnpo3b67Zs2fb/Xdat26dJKl3796F1hmGoTfeeKNAX7e6cOGCRowYocaNGysgIEC9e/fWjh07bOvd3NwKVKG8vb0VHh6ulJQU2zZxcXGKjIxUkyZNVKdOHQ0ePFgnT560O/6SnD9/XkuXLpW3t7d+//vfq2XLlgoPD1dSUpIWLFhQIX1I0oQJE5SUlKT+/ftXWJsV1YdpmnrhhRdkmqY++OADBQcH33b7Pj4+6tatm86dO6ejR4+WKf7SZGZm6pVXXtGsWbM0YsQI+fv7q127dlq9erXi4+NtlcficlNSkfnpyFwvKc+lqpXrJeW55Phcd2SeSzUn1x3ZvoeHh9atW6df/epXql27tp5++mlJN/92P/74ozIzM3X69GlJ0sCBAxUcHKwOHTrINE3bVNbKGAscxVnnBGU5H5DKPk446nxAYpywV1UeJzgnKD53bretXyLXq0auV1aeS1U710tT1c4JKnwmwIYNG7Rx40YdP35chw8fLjA1cPny5dqwYYP27dunXbt26a233iq1vVWrVqlJkybavXu3TNPUU089VWibvXv3auHChdq+fbvOnj2rbt26afv27aXGtGfPHpmmqaSkJD3++OOKiIhQbm5uqfGapqkhQ4aoYcOGOn36tDZt2qT58+fbrvEZP368Ro0aVew+HTx4UJLUrl27QuuGDx+uCxcuaOHChYXWZWZm6sEHH9SKFSv08ccfa//+/Tp16pT69u1b6IUwevRoXb16Vffee6/Wr19vS8KsrCz169dPy5cv18cff6wffvhB33//vcLCwnTt2rViY7bXoUOHlJeXp8aNG8vF5ebLq0mTJpKkAwcOlLt96WY1deXKlZo6dapat25dIW1WZB+nT5/W+fPnVatWLYWHh8vb21stW7bU3Llzb6v9/NfH/v37y74jJdi7d6+Sk5M1bNiwAsu9vb31yCOP6Ouvvy61jeLy0xG5XlqeS5Wb6+XJc8mxue7oPJdqRq5Xxlhyq0OHDtl+DggIkJeXl8LCwiTdPGGNi4vT4cOH5ePjo9DQUNu2jh4LHKmyzwnKej4glW2ccOT5gMQ4YY+qPk5wTkCuSzU71ysjz6Wqn+u3y9nnBBVeBHj11VcVHBysxo0b69FHHy1wY47o6GjdcccdatGihV577TUtXbq0Qvp0d3eXh4eHfH195e/vrzFjxmjAgAF2xSRJXl5emjBhgnJzc20VmJLiPXTokI4dO6Z33nlHderUUdu2bTVp0iStXLnSrnjzp8b4+voWWjd27Fg1b95cf/vb3wp9yvnll1/qzJkz6tSpkwYMGKA77rhDw4YNU3Z2tv7xj38U2PaZZ55RnTp1dP/990u6Oc0ov42TJ0+qZ8+e6t+/v1q3bq2BAwcqPj7e7vhLkpiYKEmqVauWbZmHh4ckFaj2ltXFixf11FNP6a677tJLL71U7vYc0cfly5clSdnZ2erbt69+/vln+fv769lnn9XKlSvtbt/Pz0+SlJSUVLYdKcWVK1fk4+NT5OuwUaNGunLlSpnbdkSul5bnUtXK9ZLyXHJsrjs6z6Xqn+uVMZbc6tq1axo/frwkKTIy0jYNeOHChWrWrJkef/xxNWvWTMnJyZo7d65atmxpe66jxwJHquxzgvKeD0i3N0448nxAYpwoTXUYJzgnINelmp3rjs5zqXrk+u2oCucEbuV6dhHq169v+9nLy0v/+c9/bL83b97c9nOLFi108eLFCumzY8eOev311xUREaEbN25o0KBBev755+Xt7V1iTPPnz9fs2bN1/vx52/Sb+Ph4tWnTpsR4z58/r+TkZHl4eNiu6zJNUw8++KAklTr1JSAgQGlpaUpNTVXt2rULrKtVq5aio6P15JNP6r333iuwLv8GMoGBgbZlDRs2tMV0q/xt3N3dJclW4cxv47vvvit0TdKpU6dKjNse+fHcOu3q1umf5bVs2TIlJSVp5cqVtgGmopW3j1v/fyIiIlS3bl2Fh4frwIED+uKLLxQXF2dX+/lTuBx1Y5h69eopPT1dqamphQ5K8fHxBfLmdjki10vLc6lyc/2bb74pMd6S8lxybK47Os9vjae65npljCX5rl+/rkcffVTHjh3Tgw8+qA8++ECSlJqaqt69eysxMVHbtm1Tu3bt1K9fPz355JMKDAxUeHi4JMePBY5U2ecEZT0fkMo2TjjyfEBinChNdRgnOCcg16WaneuOznOpeuS6varKOUGl3hjw1hfquXPn1LhxY9vvnp6eysrKsv1+a8Uxf2pJSX73u99p27Zt2rRpkw4cOKBp06aVuP2JEyf08ssva/Hixbp27ZrtBi35d+YsKd78ymJOTo5yc3OVl5cn0zRLfVOQr2PHjpJU4G6Qtxo9erTuuusuLV++vMDy/CrRpUuXbMvyq2+3DlglyW8jNDS0wCBmmqZmzpxpVxsl6dixo1xcXBQfH6+8vDxJ0s8//yxJ6ty5c7nbz2+zX79+MgxDf//73yVJs2bNUkhISLnbr4g+mjVrZqvS/XKw9fHxsbv9/NdHly5dyrlHRQsJCZG/v3+hKnBGRoY+//xz9evXT1LJuSkVnZ+OyvXbzXPJebleWp5Ljst1R+e5VP1zvTLGkvx+oqKiFBsbqx49eujzzz+Xl5eXJOno0aOKj49Xo0aNFBoaqgYNGqhPnz4yTVObN2+2teHoscBZasI44ejzAYlxoiTVYZzgnKD4XC9LW7ci16tGrjs6z6Xqkev29lNVzgkqtQgwffp0nTt3TufPn9e0adMUERFhW9ehQwd9+OGHysjI0KZNm7RmzRrbusDAQB0+fLjYuyB+/vnnmjlzpi5evKgbN27INE1lZGSUGEt6erpcXV0VEBCgGzduKCYmptBXtRQXb6dOndSsWTNNnjxZly5d0pUrV/Thhx/aXjClXRf08MMPS5JiY2OLXO/m5qbXXnut0P4OHDhQLVu21MGDB/XVV1/pp59+0sqVK+Xu7q6xY8eWuL+3ttG6dWvt2LFDa9asUXp6uvbt26cxY8Zo586dkqSePXvKMAytWrXKrjZv1bx5c40cOVIZGRlatGiRzpw5o3Xr1ikgIMA27aU87U+ZMqXA4DVx4kRJ0uTJk213zixP+xXRR61atTRp0iRJNyuLV69e1bp16+Ti4qLIyEi72k9PT9fevXvVvHlz3XPPPWXaj9J4eXlp2rRpmjx5spYvX65r167p+PHjeuyxxxQYGKjRo0dLKjk3paLz0xG5XpY8lxyX6+XNc8lxue7oPJeqf67b0355+5CkiRMnavXq1WrXrp3Wr18vHx8f27o2bdrIx8dHCQkJ2rFjh65cuWJ7vXTv3l1S5YwFzlITxglHnw9IjBMlqQrjRGntc05QfK6Xpa185HrVyXV78ry8fVSHXLdHVTonqNQiwNChQzVw4EB17txZXbt21YsvvmhbN3fuXK1Zs0aNGjXSggUL9Nhjj9nWvfzyy4qOjparq2uRdwft37+/UlJS1L17d7Vo0UKmaSo6OrrEWLp27arHH39c9957r1q3bq0zZ86offv2dsXr4uKitWvX6tKlS+rQoYPat2+v7777rsAJTEmioqLk5+enZcuWFVvYGDlyZKH/XG9vb33zzTcaOnSoRo8erc6dO6tVq1b6+uuv7X4heHl5afPmzRo5cqSeeeYZBQUF6Y9//KPuu+8+9ejRQ5JsMbm5FX21yPjx42UYhu06pJkzZxb4PswFCxZo7Nixmjp1qtq3b6927dpp8+bNtmkr5W2/NKW1Xxl9REdHa+rUqfrnP/+ppk2bysXFRWvWrFGvXr3san/t2rXKzMzUmDFjivwqmYry9NNPa86cOZo+fboCAwMVGhqqpk2basuWLfL09JRUcm5KReenI3K9LHkuOS/X7clzyTG5XhF5LlX/XC9v++XtIy0tzTZF9NixY6pfv77tzs1r165VnTp1tH79evXq1UuPPPKIgoODlZWVpZiYGEVFRUmqvLHAGWrCOFEZ5wNS1R0n7Mmxmj5O2DOWck5QdK6Xpa185HrVyvXS8rwi+ihNVW+/yp0TmP8vMTHRbNCggSnJnDdvnlnRGjZsaB4+fLjC23UUR8f717/+1ZRkfvHFFw7royxycnJMX19fs23btmZWVhbtO6mPbt26mQ0aNDBTUlLsfs7WrVvNunXrmnXr1jW3bt3qkLjsQa7/l1XzvDL6qAn7YI+yjAUVcTyfN2+eKcls0KCBmZiYWKY2SsI48V+ME9V3nKisMaIs48CIESNsOexM5Pp/kevVNxerwvmAaZZtLCjueF6pMwHwX9HR0TJN03aTh6pi165dSk9P16JFixxyY4zq3n5l9bFnzx5dunSp2LvIonqwap5XRh81YR/swVhQ8zFOVN9xorLGCMaBmoFcr765WBXOB6SKHQsq/NsBUL3dd999Bb4rlfad0wfgSDUhT2rCPgBVWU3IserePlAZyHXnt+8MlVYEqKjviaws1S1eoKqobrlT3eIFaoLqlnfVLV6gqqhuuVPd4gXKissBAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARbkUtnD59ut57773KjgVAOWRkZCg7O1uS9MQTT8jb29vJEQFwhtzcXF2/fr1C2rp+/bpCQ0Pl6upaIe0BqBw///yzJCktLU3t27d3cjQAnCUpKanI5QWKAJmZmfL29lZycrKSk5MrJTAAFccwDElSYmKikyMB4Gy1atUq9/NzcnJ04cKFCooIQGXy9vaWaZr66aefnB0KACfy9vZWZmZmgWW2IoC/v78WLVpU6UEBQHW2f/9+zZgxQxMmTFBYWJizwwEK6NatW5meN3DgQDVo0KCCowHKJzY2VvPnz9fUqVPVpUsXZ4cDANWKv7+/7WdbEcDDw0PDhw93SkAAUF3Vrl1bM2bM0L333ssYihqjVatWatWqlbPDAArIyMjQ/Pnz1atXLw0ePNjZ4QBAtcWNAQEAAAAAsAiKAAAAAAAAWARFAAAAAAAALIIiAAAAAAAAFkERAAAAAAAAi6AIAAAAAACARVAEAAAAAADAIigCAAAAAABgERQBAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACzCzdkBAEB188MPPyg2NlaSdOLECUnShg0blJiYKEm699571adPH2eFBwA1xtatW7Vr1y5J0t69eyVJq1at0uHDhyVJYWFh6tGjh9PiA4DqyDBN03R2EABQnezevVv33ntvsevXr1+vwYMHV2JEAFAzbdiwQQ8//HCx63ft2qXu3btXYkQAUP1RBACAMrjzzjt19uxZ/XIIrVu3rhISEuTu7u6kyACg5sjJyVFQUJCSkpIKjLeGYahly5Y6ffq0E6MDgOqJewIAQBlERkYWKgBIUkREBAUAAKgg7u7uGj58eKHx1jRNRUVFOSkqAKjeKAIAQBlERkYWuXzkyJGVHAkA1GzFjasRERGVHAkA1AxcDgAAZdSlSxcdOnRIeXl5MgxDTZo00fnz5+XiQn0VACqKaZpq0aKF4uLiZJqmDMNQ586dtW/fPmeHBgDVEmeqAFBGkZGRysvLk3TzJDUyMpICAABUMMMwFBERYbskIH+8BQCUDTMBAKCM4uLi1KJFC1shYN++ferSpYuTowKAmmf//v3q2rWrJMnFxUXnzp1TcHCwk6MCgOqJj6wAoIyCg4P1wAMPSJLatGlDAQAAHKRLly5q166dJKlXr14UAACgHNycHQBgr++//16vvPKK7VNXoCqIj4+XJF2/fl1hYWHODQYAarDMzExJ0sWLFxlvUaW4uLho+vTp+tWvfuXsUAC7UARAtREXF6fvv/9eWVlZzg4FKOTcuXM6d+6cs8MAgBrv1KlTOnXqlLPDAGw8PT0VFxdHEQDVBpcDoFrhpmsAAACoSjg/RXXDKxYAAAAAyoj7rKO6oQgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAgIXVr19fpmnKNE317NmzzNsAAIDqgSIAAAA1xEcffWR7s7569WpnhwMAAKogigAAANQAvr6+GjZsmO33X//61woMDHRiRAAAoCqiCAAAQA0QGRkpHx8fXblyRefOnZO7u7tGjx5daLtWrVpp8+bNSklJ0cGDBzVy5MgybQMAAKonigAAANQATz75pCRp1apVWr58uSTpD3/4Q4Ft3N3dtWHDBvXt21ezZ89W79691aNHj9veBgAAVF8UAQAAqOY6duyokJAQSdKyZcu0bNkySVKbNm3Uq1cv23ZhYWFq3bq1JCkmJkbJycmaNWtWgbbs2QYAAFRfFAEAAKjmxowZI0m6ePGitm/frgMHDuj48eOS/jtDQJKCg4MlSRkZGUpNTZUkJSYmFmjLnm0AAED1RREAAIBqzNPTU1FRUZKkxo0bKzc3V6Zpqm3btpKkYcOGyd/fX5IUFxcnSfL29pavr68kqWHDhgXas2cbAABQfVEEAACgGnvsscdUp04dpaamysPDQ4ZhyDAMubi4KCEhQV5eXoqMjJQkxcbG6vTp05KkKVOmKCAgQJMnTy7Qnj3bAACA6osiAAAA1Vj+zf82btyo7Oxs23LTNLVu3TpJ/70kICcnR4MHD9bWrVv1/PPPa+fOndq9e3eB9uzZBgAAVF+GaZqms4MA7LFixQo98cQTysjIcHYoAAAAgCTJy8tLH3/8sYYPH+7sUAC7MBMAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCIoAgAAAAAAYBEUAQAAAAAAsAiKAAAAAABQRoZhODsE4La4OTsAoCz8/Pzk5sbLFwDgHFlZWcrIyOB4BFhcdna28vLynB0GcFs4aqFaCgkJUXR0tLPDAABY1GOPPaaMjAyOR4DFPfHEE0pMTHR2GMBtoQiAaikwMFBhYWHODgMAYFGurq6SOB4BVuft7e3sEIDbxj0BAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAnCwoKEhHjhxxdhgFeHp6yjAMGYahoUOH2pZPmzZNhmFo/fr1TowO1VlISIgCAwOVmpp628/l9YfyKOq1d+DAAdtYZxiGYmJinBhh9VEVj1sSYwTKpzzHJ6C6oQiAGu2ee+7R4sWLK6Wvpk2bas+ePZXSV2XJzMzUqlWrJEkpKSmKiYlR69atNXjwYNs2TZs2lWEYuvPOO3Xjxg1J0p49e2QYhgICApwSd3FGjRpV4IR/6tSpBdanpaVp3Lhxql+/vry8vBQaGqq9e/dWWPv51q1bZ9tmypQpVaZ9e/rYsmWLBg0apNq1a6t+/foKDw/XsWPHbOuPHDmiQYMGqV69evLx8VHHjh31ySef2NY/99xzunz5st59993biquo1x+vPfvbz+fI10Z5+3DGa69z584yTVMvvvii3XGWx5L/Y+/Oo6qq9/+Pvw6DCDjhgDgwxC3UyCGHNC3E0i6Wt6/mhGJp95tDaWbZ75sNVDe0tC+pdUvNJu+6auK0zCsOpaml1jU15xnnBMmbgDIIwuf3h4vzBRlV4AClXsFwAAAgAElEQVT7+VjrLPF89v583mefN5/Nee/hLFigtm3bqmbNmmrcuLFGjx6tP/74o9Trl/V+pjrtt5gjbq//XMwRN79/AqoiigAASmXhwoVKSUlReHi4bDZbgfa4uDh99dVXDois9ObPny9jjEaPHl1o+5gxYzR37lxNnTpVBw4c0KFDh9SrVy8lJSWVSf+S9J///EcjR44sl/hvt/+Sxrh69aqmT5+uN998UwkJCXrhhRcUGxur3r17KzMzU5LUr18/rV27VtOnT9fhw4d1/vx5Pf300/YPGn379pW7u7s+++wzGWNKHVdx+UfuOT43ymKMypp7ZWXWrFkaN26cXn31VV24cEGbNm3SmTNn1LNnT129erXC46lumCNur3+JOcLRcwRQkSgCwFJ8fHwUHR2t4OBg1alTR+Hh4fn++PLx8dHUqVPVqlUr1a9fX6NHj7bvPFxcXJSQkGBfdsKECXrjjTckSQMGDNBvv/2mTp06yWaz6eOPPy4w9ttvvy0fHx81aNBAY8aMUXp6ur1t7dq1hcbUsWNH2Ww21axZU507d9auXbtKFaskXbhwQYMGDVKDBg3k7++vGTNm3Na2W7VqlSSpe/fuhbbbbDZNnjw5Xwx5nTlzRuHh4WratKnq1aun7t27a8uWLfZ2FxeXfBV+Dw8P9enTRykpKZKks2fPaujQoWrWrJm8vLz06KOP6ujRo7f1mvI6ffq0vv76a3l4eOivf/2rAgMD1adPH126dElz5swps3GeffZZXbp0Sb169SqzPiuqfzc3N61atUr333+/atWqpeeff17S9W138OBBpaen6/jx45KksLAw+fr6qnXr1jLG2E8d9vT0VIcOHXTq1CkdOHCg1GMXl3+3m3uSY/OvuuReeY7hyNwrC+np6Xr99df1wQcfKDw8XHXr1lWrVq20bNkyxcfH5zsaWdS+pqj9DPut65gjbh9zhOPmCKCiUQSA5axevVpr167V4cOHtW/fvgKXC8TExGj16tXatWuXtm/frvfff7/EPpcuXapmzZrpl19+kTFG48aNy9e+c+dOzZ07Vz/++KNOnDihDh066Mcffywxph07dsgYo0uXLmnEiBEaPHiwsrOzS4zVGKN+/fqpcePGOn78uNatW6fZs2fbr5McM2aMhg0bdlPbbc+ePZKkVq1aFdo+aNAgnTlzRnPnzi3Qlp6eroceekiLFy/WvHnz9Ouvv+rYsWN6+OGHC+xohw8frj/++EP33XefYmNjNWfOHGVkZKhnz56KiYnRvHnz9O9//1s//fSTQkNDlZycfFOvoyh79+5VTk6OmjZtKien61Njs2bNJF2/brgsLFy4UEuWLNGkSZMUFBRUJn1WZP832rt3r/3nevXqyd3dXaGhoZKuf0A4e/as9u3bJ09PT4WEhNiXzc2hX3/9tdRjFZd/ZZV7kmPyrzrkXkWNkasic68s7Ny5U0lJSRo4cGC+5z08PPT444/ru+++K7GP4vYz7LeYI24Xc8R1jpojgIpGEQCW8+abb8rX11dNmzZV3759C9zcKDIyUnfccYcCAgL01ltv6euvv77tMV1dXeXm5qbatWurbt26GjlypB555JFSx+Tu7q5nn31W2dnZ9kp2cbHu3btXhw4d0syZM+Xl5aWWLVtqwoQJWrJkyS2/htxTDmvXrl1o+6hRo+Tv7693330339EiSVqzZo3i4uLUtm1bPfLII7rjjjs0cOBAZWZm6tNPP8237Pjx4+Xl5aVu3bpJun4a55o1a3T06FF16dJFvXr1UlBQkMLCwhQfH39brymvCxcuSJJq1Khhf87NzU2S8h1Ju1Xnz5/XuHHjdNddd+nVV1+97f4quv8bJScna8yYMZKkoUOHKiAgQJI0d+5c+fn5acSIEfLz81NSUpI++ugjBQYG2tetU6eOJOnSpUulHq+4/Cur3JMck39VPfcqaoxcFZ17ZeHixYvy9PQsNH+bNGmiixcv3lb/7LeYI24Hc4Tj5wigolEEgOU0bNjQ/rO7u3uBPwj8/f3tPwcEBOj8+fO3PWabNm30t7/9TYMHD1a3bt00efJkpaWllRjT7NmzFRQUJDc3N9lsNp08eVLx8fElxnr69GklJSXJzc1Nzs7OcnJy0tixY3X27FlJ0pw5c276hom5N1Eq6q65NWrUUGRkpOLj4zVr1qx8badOnZIkeXt7259r3LixPda8cpdxdXWVJGVnZ9vX37Ztm/1UzEWLFkmSjh07dlOvoyi58eS9PCT3Zx8fn9vuf9GiRbp06ZJmz55t/+OtLJV3/3ldvXpVffv21aFDh/TQQw/p888/l3Q9N7p3765z585p8+bNSkxMVHBwsJ555hn7qbqS7KfP3syNuYrLv7LKvbzLVWT+VfXcq6gxJMfkXllo0KCBUlNTC83f+Pj4fPuAW8F+iznidjBHOH6OACoaRQDgBnl3+qdOnVLTpk0lXf/avIyMDHvbjUduck/RK8pTTz2lzZs3a926ddq9e7eioqKKXf7IkSN67bXXNH/+fCUnJ8sYo4CAAPsdjouLNffoTFZWlrKzs5WTkyNjjDZs2FDCqy9amzZtJCnfnXZvNHz4cN11112KiYnJ93xuFT4xMdH+XO6Rjbx/EBYld/2QkBAZY/I9pk2bdjMvo0ht2rSRk5OT4uPjlZOTI0k6d+6cpOt3EL9duX327NlTNptNn3zyiSTpgw8+UMeOHSt9/3nHiYiI0KZNm9S5c2etXLlS7u7ukqQDBw4oPj5eTZo0UUhIiBo1aqQePXrIGKP169fb+8jNoXvvvbfU45aUf+WVe3n7KK/8q+q5V5FjOCL3ykLHjh1Vt27dAkeF09LStHLlSvXs2dP+XHH7mqL2M+y3mCNuB3OE4+cIoKJRBABuMGXKFJ06dUqnT59WVFSUBg8eLElq3bq1vvzyS6WlpWndunVavnx5vvW8vb21b9++Qu8ou3LlSk2bNk3nz5/XtWvXZIzJd0SlMKmpqXJ2dla9evV07do1RUdH2482lBRr27Zt5efnp4kTJyoxMVEXL17Ul19+ad/p3so9AR577DFJ0qZNm4pcxsXFRW+99VaBbRAWFqbAwEDt2bNH3377rU6ePKklS5bI1dVVo0aNKnHssLAwBQUFacuWLVq+fLlSU1O1a9cujRw5Ulu3bpUkdenSRTabzf6VhjfL399fQ4YMUVpamr744gvFxcVp1apVqlevnv20wtsZ4+WXX873h+HYsWMlSRMnTrTfmbi8+7/dMSRp7NixWrZsmVq1aqXY2Fh5enra21q0aCFPT08lJCRoy5Ytunjxoj1fOnXqJOl6Xu/cuVP+/v665557Sh1XSflXXrmX20d55l9lyL2KGKOy5l5FcHd3V1RUlCZOnKiYmBglJyfr8OHD6t+/v7y9vTV8+HD7ssXta4raz7DfYo5gjqjacwRQ0SgCADcYMGCAwsLC1K5dO7Vv397+/dEfffSRli9friZNmmjOnDnq379/vvVee+01RUZGytnZucBdlnv16qWUlBR16tRJAQEBMsYoMjKy2Djat2+vESNG6L777lNQUJDi4uIUHBxcqlidnJy0YsUKJSYmqnXr1goODta2bdvsf2zdioiICNWpU0eLFi0q9qtzhgwZUmDn6eHhoQ0bNmjAgAEaPny42rVrpz/96U/67rvvSrWjdXd31/r16zVkyBCNHz9ePj4+eu6559S1a1d17txZkuwxubi4FNnPmDFjZLPZ7Nd5Tps2Ld93Dc+ZM0ejRo3SpEmTFBwcrFatWmn9+vX20wJLGqOk/ktS3v3f7hhXrlyx34n60KFDatiwof3U1xUrVsjLy0uxsbF68MEH9fjjj8vX11cZGRmKjo5WRESEJGnFihVKT0/XyJEj832NV0lxlSb/yiP3pLLJv8qeexUxRmXNvYry/PPP68MPP9SUKVPk7e2tkJAQNW/eXN9//71q1qxpX664fU1R+xn2W8wRzBFVf44AKpQBqoiYmBjj4eFhJJnw8PByGaNx48Zm37595dJ3WSvPWN3c3IwkI8n079/f/vw777xjJJl//etf5TLurcrKyjK1a9c2LVu2NBkZGVVyjOrwGkqjQ4cOplGjRiYlJeWm47Jq/lWH3Kisuffrr7/a5zpJ5n//939L3V+jRo3KdX9UWuy3/g9zBHPE7ShsjiiNu+++27i7u5uYmJhyigwoe0UfMgNgWXmvIc0rMjKyxCNBjrB9+3alpqbqiy++KLcbDpX3GNXhNZRG3lNLc5U2LqvmX3XIjcqae+3atSv2zCZULcwRzBG3o7A5AqiuKAIAqPK6du2a73uoq+IY1eE13KrKGldpkRuO7x+ozKrD71d1eA0A/g9FACCPsvi+3YpSlWIFAJSPqrQvqEqxAkB1xo0BAQAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARLo4OALgVq1evVnBwsKPDAABY1JUrVySxPwKsLi4uTk5OHFdF1UIRAFWOh4eHsrKydPLkSUeHAgCwMPZHAJycnGSz2RwdBnBTbMYY4+gggNI4d+6ctm3b5ugwAKDK+/nnnzVjxgy9+OKL6tKli6PDAYAqr2vXrmrevLmjwwBKhSIAAAAWs2TJEg0aNEiLFy/WwIEDHR0OAACoQFzAAgAAAACARVAEAAAAAADAIigCAAAAAABgERQBAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCIoAgAAAAAAYBEujg4AAACUvy1btmjr1q2SpH379kmSvvnmG504cUKS1K1bNz3wwAMOiw8AAFQMmzHGODoIAABQvjZt2qQePXoU2b5x40aFhoZWXEAAAMAhKAIAAGABOTk58vX1VXx8vPLu+m02m3x8fHTu3Dk5OXGVIAAA1R17ewAALMDJyUnh4eG6sfZvjNHQoUMpAAAAYBHs8QEAsIghQ4bc1PMAAKD64XIAAAAspEWLFjp+/LhycnJks9kUGBio48ePOzosAABQQTgTAAAACxkyZIhycnIkXb8U4Mknn3RwRAAAoCJxJgAAABZy5MgRtWzZ0v7/w4cPq0WLFg6MCAAAVCTOBAAAwEJatGihDh06SJI6dOhAAQAAAItxcXQAAJDXwYMHNX78eF27ds3RoQDVVlJSkv3f0NBQxwYDVGMuLi766KOPdPfddzs6FACwowgAoFJJTEzUL7/8opSUFEeHAlR7cXFxiouLc3QYQLVVp04dJSYmUgQAUKlwOQCASsfZ2dnRIQAAcNvYnwGojCgCAAAAAABgERQBAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAFVSQkKCjDEaNmxYhaxXXv3g5ty43XkfAAC4ORQBAACVyp133qlPP/1Ux48fV0ZGhtLS0nT+/Hlt3rxZXbt2dXR4Jfrqq69kjJExRsuWLXN0OOVq9+7d9tdqjFFaWpoOHTqk119/XTVq1HB0eGUiMDBQ8+bN07lz55Samqpjx45p2rRpqlmzpn2ZvNshKytLf/zxh3bs2KG33npLdevWdWD0AAAURBEAAFBp9OjRQ3v27NHIkSO1ePFitWzZUj4+Purbt68OHTqkpk2bOjrEYtWuXVsDBw60//8vf/mLvL29HRhRxViwYIFsNpvuvfde1atXT5MnT9a0adMqZGwfHx/ZbDbNnz+/XPofN26cFi9erLvvvlsPPvig6tevr//5n//RlClTCiy7YMECeXh4KCQkROfOndPbb7+tXbt2Vfq8BQBYC0UAAEClUKNGDf3zn/+Uh4eHFixYoNdee02nTp1SSkqKtm/frjFjxmjp0qVFrl+/fn19+OGHOnbsmNLS0nT06FG9//77qlOnTqHLt2nTRhs2bFBycrIOHjyoxx9/3N6W98huZmamjhw5ookTJ5b4GoYOHSpPT09dvHhRp06dkqurq4YPH25vnzt3rowxWrhwYb44co8gN2nSRJLk5eWlGTNm6NixY0pNTdXBgwf10ksvydnZ2b5e7mnw0dHR2rhxoy5fvqwRI0aUKvbAwEB99913SklJ0d69ezV+/Hj7Ol26dLEvV5o48jpy5IhWrFghSQoPD7/p9+Zm38O82yHv5QC5z7333ntat26dkpOTdebMGY0cOfKmt8FLL72k1atXKyUlRbt27dK2bdvs71thsrKytH//fg0YMEDHjh1TYGCgZs6cWWT8AABUOAMAlcjGjRuNl5eXkcTDYo+QkBB7HvzlL38pcfmEhARjjDHDhg0zNWrUMPv37zfGGPPOO++YunXrmr///e/GGGN++ukn4+TkVGC9o0ePGl9fX9O9e3eTlZVlrl27Zlq3bp1vDJvNZgIDA83BgweNMcY88cQThY6f+9wvv/xijDFm9uzZZurUqcYYYw4fPmxv79ixozHGmLS0NFO7dm0jyURHRxtjjFm+fLmRZFxdXc3evXuNMca8++67pm7dumbevHnGGGM+/vjjAuOfOHHC3HPPPQW2T1Gxu7q6miNHjtj79/LyMgsXLrRv+y5dupQ6jt27dxtjjJk/f7593Dlz5hhjjImPjzeSSv3elHa5G7d7Ye9D7nOHDx82vr6+ZujQocYYY65du2YaN25c6m2Q9+Hs7Gw6duxoLl68aIwx5plnnrG3FbYdJJn333/fGGNMRkaGcXV1dfjvGI+Kf3h5eZmNGzcaAKhMKAIAqFQoAlj3MWjQIHsedOzY0UgyPj4++fJj7dq19uXzfvj7y1/+YowxJicnx3h6ehpJxtfX177eAw88UGC9V1991f7chg0bjDHGzJw5s9DYZs6caYwx5h//+Eeh40sybdq0sY/XvXt3065dO/v/H3zwQft6O3fuNMYYM2LECOPs7GzOnz9vjDEmLCzMSDJ9+vQxxhiTmZlp3N3djfR/xYOsrCxTp06dfOP/v//3/4rdrjfG3rNnT3tcdevWNZJM+/bt7c/lfgAuTRw3fvgNCgoy8fHxxhhjZsyYYSSV+r0p7XI3UwSYOHGika5/EMt1//33l3ob5D7efvttk9eSJUvsMUpFFwEmTJhgX8fb29vhv2M8Kv5BEQBAZcTlAACASiEhIcH+s4+Pj/05m82mL774oth1/fz8JEmXL19WamqqJOnChQsF2osaL3dZPz8/2Ww2TZo0SQcOHNDly5dljNELL7wgSWrevHmRMeSean7+/Hn9+OOP2r17tw4fPixJeuaZZ+zLffbZZ5Kkp556Sj179lSTJk106tQpffvtt5Ikf39/SZKrq6vS0tJkjNEvv/wiSXJxcSnwWuLj4+0/lyb23PXT0tKUnJxcYFvkupk4IiIiZIzRnj17lJycrMjISL3yyiv5xivpvbmV97AkuetnZWXZn3N2di71Nsj19ttvy9XVVW3atNGBAwc0YMAALV++vMTxc+8FcPXqVV26dOmm4wcAoDxQBAAAVAo///yzzp8/L0l64oknbmrdM2fOSLp+Yz5PT09JUuPGje3tZ8+eLbBObqEh77JnzpxRnz599N5778nPz09dunSRk5OTZs+eLUlFXgtfs2ZNRURESLr+wS87O1vGGLVs2VKSNHDgQPtd4hcuXKjU1FSFhoZq0qRJkqTPP/9cOTk5+V5Lenq6atSoIZvNlu+xf//+IrdDaWLP7d/Dw0O1atUqsC1u3KaliSP3xoDu7u5q2bKlJk+erMzMzHz9lPTe3Mp7eKtKuw3yunbtmvbt26eYmBhJ129iWRwXFxf169dPkrRy5cp8hQgAAByJIgAAoFLIzMzU008/rYyMDD311FN644031KxZM3l6eqpRo0bFrrtu3TodOnRINptNr7zyiurWrav/+Z//kSRt375dW7duLbDO008/LV9fX4WEhCgkJEQ5OTn66quv5ObmJknKzs5WZmamgoODNWDAgGLH79+/v7y8vHT58mW5ubnZPyg7OTkpISFB7u7uGjp0qCQpJSVFMTExstlsCg0N1bVr1/Tll1/a+1q7dq32798vd3d3TZ06VXXq1FHz5s0VERFR4tHn0sS+efNmHT16VJI0ceJE1atXTy+//HKBvm4njrxK+97cynt4q0q7Dfz8/PT111+rU6dO8vDwUMuWLe3b84cffii0bxcXFwUHB2vp0qW68847deLECb344otlFjsAALeLIgAAoNL49ttv1b59e/3zn//UyJEjdfLkSSUmJqpDhw7auHGjvvnmm0LXy8zMVEhIiD7++GNFREQoISFBvXv31gcffKA///nP9qPseX3zzTeaP3++Vq1apePHj2vAgAHas2ePli9frpkzZyo7O1s//fSToqKi7KfqF+W///u/JV3/4Jx7BFySjDFatWqVpPyXBMydO9f+86pVq/Kd0p+VlaWQkBBFR0erT58+SkhI0A8//KCHH35YkZGRxcZRmtizsrL06KOPasOGDXr55Ze1detW7dq1y95+7dq1244jr9K+N7fyHt6q0m6Ds2fPaunSpZo+fboSEhL0888/y9nZWVOmTCm0MBQREaGrV69qy5Yt8vf31zvvvKP27dvrt99+K7PYAQC4XTZjjHF0EACQa9OmTXriiSe4fhaoQA8++KB++OEH5eTkyNvbW//5z38cHVKFYxugPHh5eWn58uUKDQ11dCgAYOfi6AAAAEDFeumll5SQkKA1a9aofv36evfddyVJX3zxhWU+/LINAABWxeUAAABYzIIFC/TQQw/p4MGD2rlzpzw8PPTss8/queeec3RoFYZtAACwKs4EAADAYi5cuJDvHgVWxDYAAFgVZwIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCIoAgAAAAAAYBEUAQAAAAAAsAiKAAAAAAAAWISLowMAgMK4urqqdu3ajg4DQDlIS0tTRkaG6tev7+hQgHJz+fJlR4cAAIWiCACgUqpdu7YiIyPVrl07R4cCoAwlJSVp1KhRysjI0JNPPqm+ffs6OiSgzO3evVtRUVEyxjg6FAAogCIAgEqrXbt2Cg0NdXQYAMpQYmKi/ee77rqL33EAACoY9wQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAKoCPj4/279/v6DDyiYqKks1mU2xsrKNDQRXVsWNHeXt76/Lly44OpcqojHOBxHxQHPIcQHVDEQBAlXfPPfdo/vz55T5O8+bNtWPHjnIfpyKkpKQoOjpaQUFBevTRR+3PN2/eXDabTXfeeaeuXbsmSdqxY4dsNpvq1avnqHALNWzYMNlsNvtj0qRJ+dqvXLmi0aNHq2HDhnJ3d1dISIh27txZZv3nWrVqlX2Zl19+udL0X5oxvv/+e/Xu3Vu1atVSw4YN1adPHx06dMjevn//fvXu3VsNGjSQp6en2rRpo3/84x/29hdffFG///67/v73v99UXLdiwYIFatu2rWrWrKnGjRtr9OjR+uOPP0q9fln+/lanuUAqfD6oTnNBVcpzAKgIFAEAwIIWLlyolJQUhYeHy2azFWiPi4vTV1995YDISm/+/Pkyxmj06NGFto8ZM0Zz587V1KlTdeDAAR06dEi9evVSUlJSmfQvSf/5z380cuTIcon/dvsvaYyrV69q+vTpevPNN5WQkKAXXnhBsbGx6t27tzIzMyVJ/fr109q1azV9+nQdPnxY58+f19NPP23/ANy3b1+5u7vrs88+kzHmluMsyaxZszRu3Di9+uqrunDhgjZt2qQzZ86oZ8+eunr1armNaxXFzQdVfS6oSnkOABWFIgCAasfHx0fR0dEKDg5WnTp1FB4ebv+g4OPjo6lTp6pVq1aqX7++Ro8ebf9DUJJcXFyUkJBg//+ECRP0xhtvaMCAAfrtt9/UqVMn2Ww2ffzxxwXGffvtt+Xj46MGDRpozJgxSk9Pz9e+du3aQmPq2LGjbDabatasqc6dO2vXrl35Xktx8V64cEGDBg1SgwYN5O/vrxkzZpRqG61atUqS1L1790LbbTabJk+enG+svM6cOaPw8HA1bdpU9erVU/fu3bVlyxZ7u4uLS74jcx4eHurTp49SUlIkSWfPntXQoUPVrFkzeXl56dFHH9XRo0dLFXtpnD59Wl9//bU8PDz017/+VYGBgerTp48uXbqkOXPmlNk4zz77rC5duqRevXqVWZ8V1b+bm5tWrVql+++/X7Vq1dLzzz8v6fq2O3jwoNLT03X8+HFJUlhYmHx9fdW6dWsZY+yns3t6eqpDhw46deqUDhw4UOYxSlJ6erpef/11ffDBBwoPD1fdunXVqlUrLVu2TPHx8fmO2N7M7295zgVS8fNBZZoLpOLng/KeC6TynQ+qSp4DQEWiCACgWlq9erXWrl2rw4cPa9++ffkuF4iJidHq1au1a9cubd++Xe+//36J/S1dulTNmjXTL7/8ImOMxo0bl699586dmjt3rn788UedOHFCHTp00I8//liqmHbs2CFjjC5duqQRI0Zo8ODBys7OLjFeY4z69eunxo0b6/jx41q3bp1mz56t2NhYjRkzRsOGDSvy9ezZs0eS1KpVq0LbBw0apDNnzmju3LkF2tLT0/XQQw9p8eLFmjdvnn799VcdO3ZMDz/8cIE/kIcPH64//vhD9913n2JjYzVnzhxlZGSoZ8+eiomJ0bx58/Tvf/9bP/30k0JDQ5WcnFxkzDdj7969ysnJUdOmTeXkdH1X16xZM0nS7glesbYAACAASURBVN27y2SMhQsXasmSJZo0aZKCgoLKpM+K7P9Ge/futf9cr149ubu7KzQ0VNL1D61nz57Vvn375OnpqZCQEPuyuTn066+/lktcO3fuVFJSkgYOHJjveQ8PDz3++OP67rvvSuyjqN/f8pgLcmMubj6oyLlA0m3NB+U5F0iqkPkgr8qa5wBQkSgCAKiW3nzzTfn6+qpp06bq27dvvhtxRUZG6o477lBAQIDeeustff3117c9nqurq9zc3FS7dm3VrVtXI0eO1COPPFLqmCTJ3d1dzz77rLKzs+1HpoqLd+/evTp06JBmzpwpLy8vtWzZUhMmTNCSJUtKjDf3lPjatWsX2j5q1Cj5+/vr3XffLXBGw5o1axQXF6e2bdvqkUce0R133KGBAwcqMzNTn376ab5lx48fLy8vL3Xr1k3S9VOL16xZo6NHj6pLly7q1auXgoKCFBYWpvj4+FLFXhoXLlyQJNWoUcP+nJubmyTlO7p7q86fP69x48bprrvu0quvvnrb/VV0/zdKTk7WmDFjJElDhw5VQECAJGnu3Lny8/PTiBEj5Ofnp6SkJH300UcKDAy0r1unTh1J0qVLl8oltosXL8rT07PQXG3SpIkuXrx4y32Xx1wglTwfVKa5QCp+PijPuSC3j/KeD3JV5jwHgIpEEQBAtdSwYUP7z+7u7vn+ePX397f/HBAQoPPnz9/2eG3atNHf/vY3DR48WN26ddPkyZOVlpZWqphmz56toKAgubm5yWaz6eTJk4qPjy8x3tOnTyspKUlubm5ydnaWk5OTxo4dq7Nnz2rOnDnF3iwx98ZeRd3tukaNGoqMjFR8fLxmzZqVr+3UqVOSJG9vb/tzjRs3tseUV+4yrq6ukqTs7Gz7+tu2bbOfIrxo0SJJ0rFjx4qM+WbkxpP3evG8l4TcrkWLFunSpUuaPXu2vbhQlsq7/7yuXr2qvn376tChQ3rooYf0+eefS7qeG927d9e5c+e0efNmJSYmKjg4WM8884z99HFJ9tO6y+tmcQ0aNFBqamqhuRofH5/v9+pmlcdcIJU8H1TkXCDptuaD8pwL8vZRnvOBVPnzHAAqEkUAAJaT94/TU6dOqWnTpvb/16xZUxkZGfb/5z3KmHtaeVGeeuopbd68WevWrdPu3bsVFRVVYixHjhzRa6+9pvnz5ys5OVnGGAUEBNjvxl1cvLlHErOyspSdna2cnBwZY7Rhw4YSx23Tpo0k5btD9o2GDx+uu+66SzExMfmezz16lpiYaH8u98h73g8pRcldPyQkRMaYfI9p06aVuH5ptGnTRk5OToqPj1dOTo4k6dy5c5Kkdu3a3Xb/uX327NlTNptNn3zyiSTpgw8+UMeOHSt9/3nHiYiI0KZNm9S5c2etXLlS7u7ukqQDBw4oPj5eTZo0UUhIiBo1aqQePXrIGKP169fb+8jNoXvvvbfM4sqrY8eOqlu3boGjwmlpaVq5cqV69uxpf+5mf3/Lay6Qbn4+cNRcIJU8H5TXXJC3j/KcD6pCngNARaIIAMBypkyZolOnTun06dOKiorS4MGD7W2tW7fWl19+qbS0NK1bt07Lly+3t3l7e2vfvn2F3h165cqVmjZtms6fP69r167JGFPgTIDCpKamytnZWfXq1dO1a9cUHR1tPzJWUrxt27aVn5+fJk6cqMTERF28eFFffvmlPvnkkxKvAX7sscckSZs2bSpyGRcXF7311lsFXm9YWJgCAwO1Z88effvttzp58qSWLFkiV1dXjRo1qsTXHBYWpqCgIG3ZskXLly9Xamqqdu3apZEjR2rr1q2SpC5dushms2np0qUl9lcYf39/DRkyRGlpafriiy8UFxenVatWqV69evbTgW9njJdffjnfh5WxY8dKkiZOnGi/o3h593+7Y0jS2LFjtWzZMrVq1UqxsbHy9PS0t7Vo0UKenp5KSEjQli1bdPHiRXu+dOrUSdL1/N25c6f8/f11zz333FIMJXF3d1dUVJQmTpyomJgYJScn6/Dhw+rfv7+8vb01fPhw+7I3+/tbHnOBdGvzQXnNBVLJ9wQoaT4or7kgt4/yng+qQp4DQEWiCADAcgYMGKCwsDC1a9dO7du31yuvvGJv++ijj7R8+XI1adJEc+bMUf/+/e1tr732miIjI+Xs7FzgjuC9evVSSkqKOnXqpICAABljFBkZWWIs7du314gRI3TfffcpKChIcXFxCg4OLlW8Tk5OWrFihRITE9W6dWsFBwdr27Zt+T7IFCUiIkJ16tTRokWLiv3KqyFDhhT4o9fDw0MbNmzQgAEDNHz4cLVr105/+tOf9N1335XqD2R3d3etX79eQ4YM0fjx4+Xj46PnnntOXbt2VefOnSXJHpOLi0uR/YwZM0Y2m81+7fG0adPyfUf4nDlzNGrUKE2aNEnBwcFq1aqV1q9fbz+dt6QxSuq/JOXd/+2OceXKFfvN2Q4dOqSGDRvaT8desWKFvLy8FBsbqwcffFCPP/64fH19lZGRoejoaEVEREiSVqxYofT0dI0cObLQr5osK88//7w+/PBDTZkyRd7e3goJCVHz5s31/fffq2bNmvblbvb3tzzmAunW5gNHzQVS6eaD8pgLpLKZD6pLngNAhTEAUIls3LjReHl5mfr165uNGzeWef+NGzc2+/btK/N+y0t5xvvOO+8YSeZf//pXufR/q7Kyskzt2rVNy5YtTUZGRpUcozq8htLo0KGDadSokUlJSSn1OhcuXDCNGjUykszHH39cjtEVj7kgPyvPByW5lTzfuHGjqV+/vvHy8iqXfRkA3A7OBAAAi4qMjJQxRn369HF0KPls375dqamp+uKLL8rtpnjlPUZ1eA2lsWPHDiUmJhb5LROoOqw8H5SEPAdQ3RR9niUAAA7QtWvXfN+NXhXHqA6vAagMyHMAKHsUAQBYSll8R3xFqmrxAlVFVfvdqmrxAgAqLy4HAAAAAADAIigCAAAAAABgERQBAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFuDg6AAAoTGZmpp5++ml5eHg4OhQAZSg7O1tXr16VJE2ZMkWzZs1ycERA2UtLS1NmZqZcXV0dHQoAFEARAEClk5WVpZycHF24cMHRoQAoJx4eHkpKSlJSUpKjQwHKhc1mU1ZWlqPDAIACbMYY4+ggACDX77//ro0bNzo6DKBa+/nnnzVjxgy9+OKL6tKli6PDAaq1Hj16qFGjRo4OAwDsKAIAAGAxS5Ys0aBBg7R48WINHDjQ0eEAAIAKxI0BAQAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAIugCAAAAAAAgEVQBAAAAAAAwCIoAgAAAAAAYBEUAQAAAAAAsAiKAAAAAAAAWARFAAAAAAAALMLF0QEAAIDyt2XLFm3dulWStG/fPknSN998oxMnTkiSunXrpgceeMBh8QEAgIphM8YYRwcBAADK16ZNm9SjR48i2zdu3KjQ0NCKCwgAADgERQAAACwgJydHvr6+io+PV95dv81mk4+Pj86dOycnJ64SBACgumNvDwCABTg5OSk8PFw31v6NMRo6dCgFAAAALII9PgAAFjFkyJCbeh4AAFQ/XA4AAICFtGjRQsePH1dOTo5sNpsCAwN1/PhxR4cFAAAqCGcCAABgIUOGDFFOTo6k65cCPPnkkw6OCAAAVCTOBAAAwEKOHDmili1b2v9/+PBhtWjRwoERAQCAisSZAAAAWEiLFi3UoUMHSVKHDh0oAAAAYDEujg4AACq7WbNmafHixY4OAygzSUlJ9n9DQ0MdGwxQhgYNGqTnnnvO0WEAQKVGEQAASvDDDz9o8+bNjg4DKHNxcXGKi4tzdBhAmfHx8aEIAAAl4HIAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAgCooISFBxhgNGzbM0aEAAIAqhCIAAACVzO7du2WMKfD4+eefb6vfVatWyRijjz/++KbaAABA9UERAACASmrBggWy2Wz2R5cuXRwdEgAAqOIoAgAAUE3kPYMgMzNTR44c0cSJEyVJ+/fv12OPPSZJGjt2rIwxunjxYoltXl5emjFjho4dO6bU1FQdPHhQL730kpydne3j5l6a8N5772ndunVKTk7WmTNnNHLkyIp8+QAAoBQoAgAAUE20a9dONptNTk5OatmypbKzsxUdHa0nnnhC99xzj2JjYyVJn3zyiWw2mxo2bChJRba5urpq8+bNmjBhgpYsWaKmTZtq+/bt+uCDD/Thhx8WGL9fv3565pln9Oyzz8rX11ezZ89W48aNK24DAACAElEEAACgkoqIiMh3T4Do6OhSrWeM0YkTJ/Ttt99Kkv7rv/7rlsb/85//rNatWysrK0tRUVFKTk623zNg9OjRqlOnTr7lP/vsM509e1Zr1qyRJDk7OyswMPCWxgYAAOXDxdEBAACAwi1YsKDUd/+32Wx65ZVX9OSTT8rPz0+1atWytzVv3vyWxvf395ckubq6Ki0tLV+bi4uL/Pz8tH//fvtzFy5ckCRlZWXZn8t72QAAAHA8zgQAAKAa6NOnj9577z35+fmpS5cucnJy0uzZsyX93wdxY0yR6xfWdubMGUlSenq6atSoke8mhTabLV8BAAAAVA0UAQAAqAbc3NwkSdnZ2crMzFRwcLAGDBiQb5nExERJUkBAgFxcXEpsW7t2rfbv3y93d3dNnTpVderUUfPmzRUREaHly5eX90sCAADlgCIAAADVwPLlyzVz5kxlZ2frp59+UlRUlP2eALmmT5+uXbt2qWfPnsrKytLatWuLbcvKylJISIiio6PVp08fJSQk6IcfftDDDz+syMjIin6JAACgDNhMcecGAgAUHh6umJgYR4cBACjB4MGDtWjRIkeHAQCVGmcCAAAAAABgERQBAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAItwcXQAAFBVeHh4qGbNmo4OA7gpmZmZunLlimrVqqUaNWo4OhygXGRkZCgtLc3RYQBAlUARAABKqWbNmlq2bJmjwwBuytNPP60rV66oYcOG+uqrrxwdDlAu+vfvTxEAAEqJIgAAlJKzs7NCQ0MdHQZwUzw8POz/kr+orpydnR0dAgBUGdwTAAAAAAAAi6AIAAAAAACARVAEAAAAAADAIigCAAAAAABgERQBAAAAAACwCIoAAAAAAABYBEUAALAgHx8f7d+/39FhFBAVFSWbzabY2FhHh1IpdezYUd7e3rp8+bKjQ6kSyPOqhxwHgPJHEQAAysE999yj+fPnl/s4zZs3144dO8p9nIqQkpKi6OhoBQUF6dFHH7U/37x5c9lsNt155526du2aJGnHjh2y2WyqV6+eo8ItYNiwYbLZbPbHpEmT8rV///336t27t2rVqqWGDRuqT58+OnToUL5l9u/fr969e6tBgwby9PRUmzZt9I9//MPe/uKLL+r333/X3//+93J/PQsWLFDbtm1Vs2ZNNW7cWKNHj9Yff/xRqnXLOi/J8+qT55UpxwHAqigCAAAqhYULFyolJUXh4eGy2WwF2uPi4vTVV185ILLSmT9/vowxGj16dIG2q1evavr06XrzzTeVkJCgF154QbGxserdu7cyMzPty/Xr109r167V9OnTdfjwYZ0/f15PP/20/QNw37595e7urs8++0zGmHJ7LbNmzdK4ceP06quv6sKFC9q0aZPOnDmjnj176urVq+U2rhVYPc8rS44DgJVRBACAcubj46Po6GgFBwerTp06Cg8Pz/dBysfHR1OnTlWrVq1Uv359jR492v4Hs4uLixISEuzLTpgwQW+88YYkacCAAfrtt9/UqVMn2Ww2ffzxxwXGfvvtt+Xj46MGDRpozJgxSk9Pt7etXbu2yJg6duwom82mmjVrqnPnztq1a1ep4r1w4YIGDRqkBg0ayN/fXzNmzCj1dlq1apUkqXv37oW222w2TZ48Od+H5rzOnDmj8PBwNW3aVPXq1VP37t21ZcsWe7uLi0u+I5geHh7q06ePUlJSJElnz57V0KFD1axZM3l5eenRRx/V0aNHSx1/cdzc3LRq1Srdf//9qlWrlp5//nlJ0unTp3Xw4EFJUnp6uo4fPy5JCgsLk6+vr1q3bi1jjP2Udk9PT3Xo0EGnTp3SgQMHyiS2G6Wnp+v111/XBx98oPDwcNWtW1etWrXSsmXLFB8fbz9qW1RuFpWX5Pl1Vs7zypLjAGB1FAEAoAKsXr1aa9eu1eHDh7Vv374ClwrExMRo9erV2rVrl7Zv367333+/xD6XLl2qZs2a6ZdffpExRuPGjcvXvnPnTs2dO1c//vijTpw4oQ4dOujHH38sVUw7duyQMUaXLl3SiBEjNHjwYGVnZxcbrzFG/fr1U+PGjXX8+HGtW7dOs2fPtl/3PGbMGA0bNqzI17Nnzx5JUqtWrQptHzRokM6cOaO5c+cWaEtPT9dDDz2kxYsXa968efr111917NgxPfzwwwU+SAwfPlx//PGH7rvvPsXGxmrOnDnKyMhQz549FRMTo3nz5unf//63fvrpJ4WGhio5ObnImG/V3r177T/nnurt7u6u0NBQSdc/uJ49e1b79u2Tp6enQkJC7Mvnbp9ff/21zOOSrudNUlKSBg4cmO95Dw8PPf744/ruu++KXb+4vCTPrZ3nlSXHAcDqKAIAQAV488035evrq6ZNm6pv374FblYWGRmpO+64QwEBAXrrrbf09ddf3/aYrq6ucnNzU+3atVW3bl2NHDlSjzzySKljkq5/MH322WeVnZ1tP4JXVLx79+7VoUOHNHPmTHl5eally5aaMGGClixZUqp4k5KSJEm1a9cutH3UqFHy9/fXu+++m+9IryStWbNGcXFxatu2rR555BHdcccdGjhwoDIzM/Xpp5/mW3b8+PHy8vJSt27dJF0//XrNmjU6evSounTpol69eikoKEhhYWGKj48vdfyllZycrDFjxkiShg4dqoCAAHvb3Llz5efnpxEjRsjPz09JSUn66KOPFBgYaF+mTp06kqRLly6VaVy5Ll68KE9Pz0LfhyZNmujixYu33Dd5Tp5XhhwHAKujCAAAFaBhw4b2n93d3Qv8ce/v72//OSAgQOfPn7/tMdu0aaO//e1vGjx4sLp166bJkycrLS2tVDHNnj1bQUFBcnNzk81m08mTJxUfH19svKdPn1ZSUpLc3Nzk7OwsJycnjR07VmfPnpUkzZkzp9ibJeYeES/qruA1atRQZGSk4uPjNWvWrHxtp06dkiR5e3vbn2vcuLGk66ci55W7jKurqyQpOzvbvv62bdvsp1EvWrRIknTs2LEiY75ZV69eVd++fXXo0CE99NBD+vzzz+1tly9fVvfu3XXu3Dlt3rxZiYmJCg4O1jPPPGM/hVyS/bTu8rpZXIMGDZSamlro+xAfH58vb24WeW7tPK8sOQ4AVkcRAAAqgbx/wJ86dUpNmzaVJNWsWVMZGRn2thuPwjo5FT+NP/XUU9q8ebPWrVun3bt3KyoqqsRYjhw5otdee03z589XcnKyjDEKCAiw37G8qHhzj7ZmZWUpOztbOTk5MsZow4YNJY4pXf8wJ6nAHfPzGj58uO666y7FxMTkez73KGNiYqL9uQsXLkjK/0GuKLnrh4SEyBiT7zFt2rRSxV+SnJwcRUREaNOmTercubNWrlwpd3d3e/uBAwcUHx+vJk2aKCQkRI0aNVKPHj1kjNH69evty+Vun3vvvbdM4rpRx44dVbdu3QJHhtPS0rRy5Ur17NlTUvG5WVRekufWzvPKkuMAYHUUAQCgEpgyZYpOnTql06dPKyoqSoMHD5YktW7dWl9++aXS0tK0bt06LV++PN963t7e2rdvX6F30V65cqWmTZum8+fP69q1azLG5DtCWpTU1FQ5OzurXr16unbtmqKjo+1HEIuLt23btvLz89PEiROVmJioixcv6ssvv9Qnn3wiqeRrpR977DFJ0qZNm4pcxsXFRW+99VaB1xsWFqbAwEDt2bNH3377rU6ePKklS5bI1dVVo0aNKvE1h4WFKSgoSFu2bNHy5cuVmpqqXbt2aeTIkdq6daskqUuXLrLZbFq6dGmJ/RVm7NixWrZsmVq1aqXY2Fh5enrma2/RooU8PT2VkJCgLVu26OLFi/Zt0alTJ0nX35udO3fK399f99xzzy3FURJ3d3dFRUVp4sSJiomJUXJysg4fPqz+/fvL29tbw4cPl1R8bhaVl+S5tfO8suQ4AFgdRQAAqAQGDBigsLAwtWvXTu3bt9crr7wiSfroo4+0fPlyNWnSRHPmzFH//v3zrffaa68pMjJSzs7OBe6a3qtXL6WkpKhTp04KCAiQMUaRkZElxtK+fXuNGDFC9913n4KCghQXF6fg4OAS43VyctKKFSuUmJio1q1bKzg4WNu2bbN/0CtJRESE6tSpo0WLFhX71WBDhgwp8OHAw8NDGzZs0IABAzR8+HC1a9dOf/rTn/Tdd9+V6oOEu7u71q9fryFDhmj8+PHy8fHRc889p65du6pz586SZI/JxcWl0D7GjBkjm81mvzZ72rRp9u9Rv3LliubMmSPp+lHOhg0b2k/HXrFihSTJy8tLsbGxevDBB/X444/L19dXGRkZio6OVkREhCRpxYoVSk9P18iRIwv9ermy8vzzz+vDDz/UlClT5O3trZCQEDVv3lzff/+9atasKan43CwqL8lza+d5ZcpxALAym+FLWAGgWOHh4YqJiVGjRo3ynYZbVnx8fLR+/foqc9SrPOONiorSm2++qX/961/q06dPmfd/q65du6b69eurWbNm2r17t9zc3BwSR8eOHXXmzBnFxcUVeWO5GwUHB+vgwYO6++67HfqVa+T5/yHPi3YrOS5dP1vk999/1+DBg+33OQAAFI4zAQAAlUZkZKSMMZXqg5Ekbd++Xampqfriiy8cVgCQrn+lXWJi4k19OELlQ54XjRwHgPJX+LleAADArmvXrvm+Px6ojshzALAGigAA4GAJCQmODuGmVLV4UTlUtbypavECAFBaXA4AAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAAABZBEQAAAAAAAItwcXQAAFBVXLlyRcHBwY4OA7gpcXFx9n/JX1RXV65ccXQIAFBlUAQAgBI4OTnJzc1NknTy5EkHRwPcHCcnJ3l4eMgYQ/6iWnNzc5OTEye5AkBJbMYY4+ggAKAy27Vrl44fP+7oMIAy8/PPP2vGjBl68cUX1aVLF0eHA5SZO++8U+3bt3d0GABQqVEEAADAYpYsWaJBgwZp8eLFGjhwoKPDAQAAFYhzpgAAAAAAsAiKAAAAAAAAWARFAAAAAAAALIIiAAAAAAAAFkERAAAAAAAAi6AIAAAAAACARVAEAAAAAADAIigCAAAAAABgERQBAAAAAACwCIoAAAAAAABYBEUAAAAAAAAsgiIAAAAAAAAWQREAAAAAAACLoAgAAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACzCxdEBAACA8rdlyxZt3bpVkrRv3z5J0jfffKMTJ05Ikrp166YHHnjAYfEBAICKYTPGGEcHAQAAytemTZvUo0ePIts3btyo0NDQigsIAAA4BEUAAAAsICcnR76+voqPj1feXb/NZpOPj4/OnTsnJyeuEgQAoLpjbw8AgAU4OTkpPDxcN9b+jTEaOnQoBQAAACyCPT4AABYxZMiQm3oeAABUP1wOAACAhbRo0ULHjx9XTk6ObDabAgMDdfz4cUeHBQAAKghnAgAAYCFDhgxRTk6OpOuXAjz55JMOjggAAFQkzgQAAMBCjhw5opYtW9r/f/jwYbVo0cKBEQEAgIrEmQAAAFhIixYt1KFDB0lShw4dKAAAAGAxLo4OAACqmlGjRuno0aOODgO4ZUlJSfZ/Q0NDHRsMcBuCgoI0d+5cR4cBAFUKlwMAwE1q0qSJEhISHB0GAFiej4+P4uPjHR0GAFQpXA4AAAAAAIBFUAQAAAAAAMAiKAIAAAAAAGARFAEAAAAAALAIigAAAAAAAFgERQAAAAAAACyCIgAAAAAA/P/27j2oyjqP4/jnyOFyILl4QUARoqJlyMuaZtl0dEtbbBlHR80LzurupFB2se2P7IJWVKsNZmqbRKU1o6l5yXElcTMH021nDRUVwzJM0bgto4JyEAGf/YPh0ZOgaMLhdN6vGWbg/J7zPJ9z+A7D831+z+8AHoImAAAAAAAAHoImAAAAAAAAHoImAAAAAAAAHoImAAAAAAAAHoImAAAAHVxeXp4Mw5BhGKqrq9OpU6eUm5uruXPnKigoyNXxAACAG6EJAACAm1i5cqX8/f1lt9t18uRJvfLKK9q7d68iIiJcHQ0AALgJmgAAALiRuro65efna9y4cTpy5IhiYmL0zjvvmOMhISFauHChjhw5ourqan333Xf629/+Ji8vL3Ob0tJSGYahv//979q6dasqKytVVFSk6dOnm9vMmjVL33//vRwOh44ePaqlS5cqMjLyuo4DAAA6HpoAAAC4ofr6em3cuFGSNGrUKHl7e8vb21s7duzQrFmztHbtWkVERGj3ED+ewgAAEGNJREFU7t1asGCBFi1adMU+xowZo8cee0yPP/64IiMjtXTpUvXo0UMDBgzQwoUL5XA4FBERIbvdrv3792vmzJmSdN3HAQAAHQdNAAAA3FRxcbEkydfXVyEhIfrjH/+oPn36qK6uTmlpaaqsrNS7774rSUpOTlZgYKDT8z/44AOdOHFCW7ZskSR5eXkpJibGXGcgKipKU6ZM0W233aZVq1Zp9uzZknTdxwEAAB0HTQAAANxU01oAtbW1On36tKKioiQ1Xql3OBwyDEPffvutJMlqtap3795Ozy8rK5PUeItBEy8vL3399ddatWqVgoODtWTJEuXk5KiiokLz5s2TpOs+DgAA6DhoAgAA4IasVqvGjBkjSdq0aZPq6upUVFQkSaqpqZGPj48sFovTV35+fqv23dDQoMmTJ6tLly6y2+2aP3++rFarnn/+eQUFBd204wAAgPZHEwAAADditVoVHx+vdevW6fbbb9fRo0f17LPPSpKys7OVn58vm82mefPmKTAwUL169VJSUpI2bNjQ6mMMHDhQH374oWJiYpSbm6vs7GxJ0tmzZ+VwOG7acQAAQPujCQAAgJtISkpSbW2tdu3apaioKL322msaMGCAfv75Z0mN0/rtdrvS09OVmJio0tJSff3113rooYeUmpra6uPs27dP27dv16JFi1RWVqbPP/9cO3fu1KhRo1RXV3fTjgMAANqfxTAMw9UhAMCdhIeHq7S01NUxAMDjhYWFqaSkxNUxAMCtMBMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPYXV1AABwV35+fvL393d1DOC61NfXq6qqSv7+/vLz83N1HOCGnT171tURAMAt0QQAgBvUuXNnZWZmKjg42NVRgFZLS0vT9u3b5efnp/Xr17s6DnBD8vLylJaW5uoYAOCWaAIAwK8wZMgQhYaGujoG0Grvv/++JMnLy0vDhg1zbRgAANDuWBMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAAAAAAAPQRMAAKCwsDDl5+e7OsYV0tLSZLFYlJWV5eooHdLAgQMVGhqqs2fPujqKW6DOOybqGADaF00AAGgHd911l1asWNHmx+nVq5dyc3Pb/DjtoaqqSunp6YqNjdUjjzxiPt6rVy9ZLBbdfvvtqq+vlyTl5ubKYrEoODjYVXGvMGXKFFksFvNr9uzZV2yzfft2jRw5Urfccou6deumxMREFRQUmOP5+fkaOXKkunbtqoCAAPXt21effPKJOf7ss8/qf//7n5YsWdLmr2flypXq16+f/Pz81KNHDyUnJ+vUqVOtfv7NrE3q3H3q/Ny5c0pOTla3bt1ks9lkt9u1Z88ep23as44BADQBAAAd1KeffqqqqipNnDhRFovlivHCwkItX77cBclaZ8WKFTIMQ8nJyc2O19bW6u2339acOXNUWlqqZ555RllZWRo5cqQuXLggSRozZoyys7P19ttv6/DhwyouLtZf/vIX8wR49OjRstls+uCDD2QYRpu9lvfee09PPvmkXnjhBZWVlSknJ0dFRUUaPny4amtr2+y4nuC3XucpKSnKzMzUvHnzdOjQIRUUFGjEiBE6c+aMuU171TEAoBFNAABwgbCwMKWnpys+Pl6BgYGaOHGieTIVFhamefPmKS4uTl26dFFycrJ5UihJVqtVpaWl5s+zZs3Syy+/rHHjxunnn3/WoEGDZLFY9O67715x3FdeeUVhYWHq2rWrUlJSVFNTY45lZ2c3m0dqnK5rsVjk5+enwYMHa+/evU6vpaW8ZWVlevTRR9W1a1dFRUVp4cKFrX6PNm/eLEkaOnRos+MWi0Wvv/6603tzuaKiIk2cOFEREREKDg7W0KFDtWvXLnPcarU6XcH09/dXYmKiqqqqJEknTpzQ5MmT1bNnT4WEhOiRRx7RDz/80Or81+Lr66vNmzfrvvvu0y233KKnnnpKknT8+HF99913qqmp0Y8//ihJSkhIUGRkpPr06SPDMMwp7QEBAbr77rt17NgxHTp06KZlu1xNTY1eeuklLViwQBMnTlRQUJDi4uK0fv16lZSUmDMTWqpLSc3W5tXq5nr39UvUeceo8+PHj2vVqlXy9/fXX//6V8XExCgxMVGnT59WRkaGuV171DEA4BKaAADgIl988YWys7N1+PBhHTx40Ol2gTVr1uiLL77Q3r17tXv3br311lvX3N+6devUs2dPffvttzIMQ08++aTT+J49e5SZmamdO3fq6NGjuvvuu7Vz585W5cnNzZVhGDp9+rSmTZumCRMmqKGh4ap5DcPQmDFj1KNHD/3444/aunWrli5dat73nJKSoilTprT4evbv3y9JiouLa3b80UcfVVFRkTIzM68Yq6mp0YMPPqjPPvtMH3/8sfbt26cjR47ooYceuuIkY+rUqTp16pTuueceZWVlKSMjQ+fPn9fw4cO1Zs0affzxx/rvf/+r//znPxo2bJgqKytbzPxrHDhwwPw+ODhYNptNw4YNk9R44nrixAkdPHhQAQEBstvt5rZN78++ffvaJNeePXt05swZjR8/3ulxf39/jRo1Sl9++eU199FSbVLnv+06P3DggC5evKiIiAh16tT4L2fPnj0lSXl5eU7btnUdAwAuoQkAAC4yZ84cRUZGKiIiQqNHj3ZasCw1NVW33nqroqOjNXfuXK1atepXH8/b21u+vr7q3LmzgoKCNH36dD388MOtytPEZrPp8ccfV0NDg3mVuqW8Bw4cUEFBgd555x2FhITod7/7nWbNmqW1a9e2Km/TdOHOnTs3Oz5jxgxFRUXpzTffdLrSK0lbtmxRYWGh+vXrp4cffli33nqrxo8frwsXLuj999932vbpp59WSEiI7r//fkmN06+3bNmiH374Qffee69GjBih2NhYJSQkqKSkpNX5r0dlZaVSUlIkSZMnT1Z0dLQkKTMzU71799a0adPUu3dvnTlzRosXL1ZMTIz53MDAQEnS6dOnb3ouSaqoqFBAQECzv4fw8HBVVFTc8L6p8992nZeVlUmSfHx8zMd8fX0lyWmmh9T2dQwAuIQmAAC4SLdu3czvbTab0z/4UVFR5vfR0dEqLi7+1cfr27evXn31VU2YMEH333+/Xn/9dTkcjlblWbp0qWJjY+Xr6yuLxaKffvpJJSUlV817/PhxnTlzRr6+vvLy8lKnTp00c+ZMnThxQpKUkZFx1cUSmxY/a2nFcB8fH6WmpqqkpETvvfee09ixY8ckSaGhoeZjPXr0kNQ4RflyTdt4e3tLkhoaGsznf/PNN+Y06tWrV0uSjhw50mLmG1FbW6vRo0eroKBADz74oD788ENJja976NChOnnypHbs2KHy8nLFx8frscceM6eQSzKndbfVYnFdu3ZVdXV1s7+HkpISp7q5XtT5b7vOm7JcfsvF5bc9Xa6t6xgAcAlNAADogC7/B/7YsWOKiIgwf/bz89P58+fNny+/Ets05bYlf/7zn7Vjxw5t3bpVeXl5SktLu2aW77//Xi+++KJWrFihyspKGYah6Ohoc8XylvI2XW2tq6tTQ0ODLl68KMMw9NVXX13zmFLjyZwkp9Xyf2nq1Km64447tGbNGqfHm66kl5eXm481XZW8/ESuJU3Pt9vtMgzD6Wv+/Pmtyt8aFy9eVFJSknJycjR48GBt2rRJNptNknTo0CGVlJQoPDxcdrtd3bt31x/+8AcZhqFt27aZ+2h6f37/+9/ftFyXGzhwoIKCgq64MuxwOLRp0yYNHz5c0tXrUmq+Nluq8xvZ1+Wo845R53379lWnTp1UUlKiixcvSpJOnjwpSerfv7/Ttm1dxwCAS2gCAEAH9MYbb+jYsWM6fvy40tLSNGHCBHOsT58+WrZsmRwOh7Zu3aoNGzaYY6GhoTp48GCzK2xv2rRJ8+fPV3Fxserr62UYhtMV0pZUV1fLy8tLwcHBqq+vV3p6unkF8Wp5+/Xrp969e+u5555TeXm5KioqtGzZMv3jH/+QdO17pf/0pz9JknJyclrcxmq1au7cuVe83oSEBMXExGj//v3617/+pZ9++klr166Vt7e3ZsyYcc3XnJCQoNjYWO3atUsbNmxQdXW19u7dq+nTp+vf//63JOnee++VxWLRunXrrrm/lsycOVPr169XXFycsrKyFBAQYI7deeedCggIUGlpqXbt2qWKigrzvRg0aJCkxt/Nnj17FBUVpbvuuuuGc1yNzWZTWlqannvuOa1Zs0aVlZU6fPiwxo4dq9DQUE2dOlXS1etSar42W6rzG9lXE+q849R5VFSUJk2aJIfDoY8++kiFhYXavHmzgoODzdtfpPapYwDAJTQBAKADGjdunBISEtS/f38NGDBAzz//vDm2ePFibdiwQeHh4crIyNDYsWPNsRdffFGpqany8vK6YtX0ESNGqKqqSoMGDVJ0dLQMw1Bqauo1swwYMEDTpk3TPffco9jYWBUWFio+Pv6aeTt16qSNGzeqvLxcffr0UXx8vL755hunhsbVJCUlKTAwUKtXr77qx4ZNmjTpihMHf39/ffXVVxo3bpymTp2q/v3767bbbtOXX37ZqpMMm82mbdu2adKkSXr66acVFhamJ554QkOGDNHgwYMlycxktVqb3UdKSoosFot5b/b8+fOdPkf93Llz5grpBQUF6tatmzkle+PGjQoJCVFWVpYeeOABjRo1SpGRkTp//rzS09OVlJQkSdq4caNqamo0ffr0Zj9e7mZ56qmntGjRIr3xxhsKDQ2V3W5Xr169tH37dvn5+Um6el1KzddmS3V+I/tqQp13rDrPyMjQjBkzNHv2bMXHxysuLk7btm1zmvbfXnUMAGhkMfhAVgC4LuHh4SotLVX37t2Vn5/vdD/uzRAWFqZt27a5zRWxtsyblpamOXPm6J///KcSExNv+v5vVH19vbp06aKePXsqLy/PXOysvQ0cOFBFRUUqLCxscWG5X5o0aZJWr16t7t27O00jb2/U+SWeXuc3Usc5OTkaO3asfHx8nNZtAABcGzMBAAAdVmpqqgzD6FAnRpK0e/duVVdX66OPPnJZA0Bq/Ei78vLyVp84oWPy9DqnjgGgfTU/twsAALRoyJAhTp8fD/wWUecA8NtEEwAAOphffn52R+duedExuFvduFteAABawu0AAAAAAAB4CJoAAAAAAAB4CJoAAAAAAAB4CJoAAAAAAAB4CJoAAAAAAAB4CJoAAAAAAAB4CJoAAAAAAAB4CJoAAAAAAAB4CKurAwCAu6qtrZXdbpeXl5erowCtdvLkSUnSuXPnFB8f7+I0wI1xOBy6cOGCfHx8XB0FANyOxTAMw9UhAMCdREREqLKyUvz5hLuyWCzUL9yexWJRUFCQiouLXR0FANwKMwEA4DotX75clZWVro4BAB4vKCjI1REAwO0wEwAAAAAAAA/BwoAAAAAAAHgIq6S1rg4BAAAAAADa3v8BWcGLRRofX14AAAAASUVORK5CYII=", "text/plain": [ "" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Visualize the model\n", "keras.utils.plot_model(model, expand_nested=True, dpi=60, show_shapes=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "1yvJJPnY-dMP" }, "source": [ "## Train the model\n", "\n", "For this tutorial, choose the `tf.keras.optimizers.Adam` optimizer and the `tf.keras.losses.SparseCategoricalCrossentropy` loss function. Use the `metrics` argument to the view the accuracy of the model performance at every step." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:59:01.670916Z", "iopub.status.busy": "2024-08-16T07:59:01.670646Z", "iopub.status.idle": "2024-08-16T07:59:01.686076Z", "shell.execute_reply": "2024-08-16T07:59:01.685463Z" }, "id": "ejrbyebDp2tA" }, "outputs": [], "source": [ "model.compile(loss = keras.losses.SparseCategoricalCrossentropy(from_logits=True), \n", " optimizer = keras.optimizers.Adam(learning_rate = 0.0001), \n", " metrics = ['accuracy'])" ] }, { "cell_type": "markdown", "metadata": { "id": "nZT1Xlx9stP2" }, "source": [ "Train the model for 50 epoches with the Keras `Model.fit` method.\n", "\n", "Note: This example model is trained on fewer data points (300 training and 100 validation examples) to keep training time reasonable for this tutorial. Moreover, this example model may take over one hour to train." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:59:01.689242Z", "iopub.status.busy": "2024-08-16T07:59:01.688999Z", "iopub.status.idle": "2024-08-16T08:41:20.473077Z", "shell.execute_reply": "2024-08-16T08:41:20.472315Z" }, "id": "VMrMUl2hOqMs" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/50\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1723795151.433190 256397 service.cc:146] XLA service 0x7f870c033450 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n", "I0000 00:00:1723795151.433225 256397 service.cc:154] StreamExecutor device (0): Tesla T4, Compute Capability 7.5\n", "I0000 00:00:1723795151.433229 256397 service.cc:154] StreamExecutor device (1): Tesla T4, Compute Capability 7.5\n", "I0000 00:00:1723795151.433232 256397 service.cc:154] StreamExecutor device (2): Tesla T4, Compute Capability 7.5\n", "I0000 00:00:1723795151.433235 256397 service.cc:154] StreamExecutor device (3): Tesla T4, Compute Capability 7.5\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "I0000 00:00:1723795169.934874 256397 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown \u001b[1m29s\u001b[0m 29s/step - accuracy: 0.0000e+00 - loss: 2.8774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown \u001b[1m29s\u001b[0m 239ms/step - accuracy: 0.0625 - loss: 2.7695 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown \u001b[1m30s\u001b[0m 607ms/step - accuracy: 0.0694 - loss: 2.7566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown \u001b[1m31s\u001b[0m 758ms/step - accuracy: 0.0755 - loss: 2.7065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown \u001b[1m32s\u001b[0m 824ms/step - accuracy: 0.0804 - loss: 2.6718" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown \u001b[1m33s\u001b[0m 869ms/step - accuracy: 0.0809 - loss: 2.6601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown \u001b[1m34s\u001b[0m 882ms/step - accuracy: 0.0821 - loss: 2.6487" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown \u001b[1m35s\u001b[0m 895ms/step - accuracy: 0.0836 - loss: 2.6428" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown \u001b[1m36s\u001b[0m 912ms/step - accuracy: 0.0835 - loss: 2.6427" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown \u001b[1m37s\u001b[0m 917ms/step - accuracy: 0.0827 - loss: 2.6439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown \u001b[1m38s\u001b[0m 923ms/step - accuracy: 0.0845 - loss: 2.6381" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown \u001b[1m39s\u001b[0m 915ms/step - accuracy: 0.0870 - loss: 2.6348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown \u001b[1m40s\u001b[0m 926ms/step - accuracy: 0.0884 - loss: 2.6348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/Unknown \u001b[1m41s\u001b[0m 940ms/step - accuracy: 0.0898 - loss: 2.6313" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/Unknown \u001b[1m42s\u001b[0m 937ms/step - accuracy: 0.0910 - loss: 2.6272" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/Unknown \u001b[1m43s\u001b[0m 950ms/step - accuracy: 0.0926 - loss: 2.6221" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/Unknown \u001b[1m44s\u001b[0m 951ms/step - accuracy: 0.0954 - loss: 2.6150" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/Unknown \u001b[1m45s\u001b[0m 964ms/step - accuracy: 0.0978 - loss: 2.6084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/Unknown \u001b[1m46s\u001b[0m 966ms/step - accuracy: 0.1006 - loss: 2.6018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/Unknown \u001b[1m47s\u001b[0m 969ms/step - accuracy: 0.1031 - loss: 2.5957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/Unknown \u001b[1m48s\u001b[0m 969ms/step - accuracy: 0.1053 - loss: 2.5903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/Unknown \u001b[1m49s\u001b[0m 983ms/step - accuracy: 0.1075 - loss: 2.5851" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/Unknown \u001b[1m50s\u001b[0m 979ms/step - accuracy: 0.1094 - loss: 2.5800" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/Unknown \u001b[1m51s\u001b[0m 981ms/step - accuracy: 0.1111 - loss: 2.5757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/Unknown \u001b[1m52s\u001b[0m 980ms/step - accuracy: 0.1131 - loss: 2.5708" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/Unknown \u001b[1m53s\u001b[0m 990ms/step - accuracy: 0.1154 - loss: 2.5654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/Unknown \u001b[1m54s\u001b[0m 989ms/step - accuracy: 0.1178 - loss: 2.5598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/Unknown \u001b[1m55s\u001b[0m 992ms/step - accuracy: 0.1201 - loss: 2.5540" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/Unknown \u001b[1m56s\u001b[0m 994ms/step - accuracy: 0.1222 - loss: 2.5484" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/Unknown \u001b[1m57s\u001b[0m 997ms/step - accuracy: 0.1241 - loss: 2.5429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/Unknown \u001b[1m59s\u001b[0m 1s/step - accuracy: 0.1257 - loss: 2.5376 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/Unknown \u001b[1m60s\u001b[0m 999ms/step - accuracy: 0.1271 - loss: 2.5327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/Unknown \u001b[1m61s\u001b[0m 1s/step - accuracy: 0.1284 - loss: 2.5276 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/Unknown \u001b[1m62s\u001b[0m 1s/step - accuracy: 0.1297 - loss: 2.5230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/Unknown \u001b[1m63s\u001b[0m 1s/step - accuracy: 0.1309 - loss: 2.5189" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/Unknown \u001b[1m64s\u001b[0m 1s/step - accuracy: 0.1321 - loss: 2.5146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/Unknown \u001b[1m65s\u001b[0m 1000ms/step - accuracy: 0.1331 - loss: 2.5105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/Unknown \u001b[1m81s\u001b[0m 1s/step - accuracy: 0.1341 - loss: 2.5066 " ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/lib/python3.9/contextlib.py:137: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.\n", " self.gen.throw(typ, value, traceback)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m96s\u001b[0m 2s/step - accuracy: 0.1350 - loss: 2.5029 - val_accuracy: 0.1700 - val_loss: 2.4099\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m46s\u001b[0m 1s/step - accuracy: 0.1250 - loss: 2.2250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.1875 - loss: 2.1379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.1944 - loss: 2.1430" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.2005 - loss: 2.1162" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.2054 - loss: 2.0996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.2094 - loss: 2.0909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.2101 - loss: 2.0927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.2112 - loss: 2.0971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.2108 - loss: 2.1057" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.2123 - loss: 2.1130" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.2116 - loss: 2.1200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.2096 - loss: 2.1293" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.2082 - loss: 2.1353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.2067 - loss: 2.1398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.2057 - loss: 2.1427" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.2051 - loss: 2.1439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.2047 - loss: 2.1448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.2045 - loss: 2.1449" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.2052 - loss: 2.1451" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.2059 - loss: 2.1449" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.2063 - loss: 2.1443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.2070 - loss: 2.1433" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.2076 - loss: 2.1421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.2083 - loss: 2.1404" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.2092 - loss: 2.1389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.2098 - loss: 2.1377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.2106 - loss: 2.1364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.2114 - loss: 2.1349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.2118 - loss: 2.1345 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.2121 - loss: 2.1341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.2125 - loss: 2.1336" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.2127 - loss: 2.1330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.2129 - loss: 2.1326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.2133 - loss: 2.1318" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.2138 - loss: 2.1308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.2143 - loss: 2.1297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.2147 - loss: 2.1289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.2151 - loss: 2.1280" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m49s\u001b[0m 1s/step - accuracy: 0.2155 - loss: 2.1272 - val_accuracy: 0.2100 - val_loss: 2.1292\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.2500 - loss: 2.5918" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 819ms/step - accuracy: 0.2188 - loss: 2.4679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 892ms/step - accuracy: 0.2014 - loss: 2.3967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 941ms/step - accuracy: 0.2135 - loss: 2.3325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.2258 - loss: 2.2797 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.2403 - loss: 2.2332" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.2493 - loss: 2.1965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.2553 - loss: 2.1686" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.2593 - loss: 2.1490" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.2609 - loss: 2.1333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.2620 - loss: 2.1194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.2627 - loss: 2.1079" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.2625 - loss: 2.0987" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.2616 - loss: 2.0928" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.2602 - loss: 2.0886" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.2591 - loss: 2.0839" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.2581 - loss: 2.0791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.2573 - loss: 2.0749" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.2562 - loss: 2.0715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.2550 - loss: 2.0676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.2545 - loss: 2.0630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.2537 - loss: 2.0592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.2526 - loss: 2.0560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.2514 - loss: 2.0532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.2500 - loss: 2.0516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.2485 - loss: 2.0504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.2474 - loss: 2.0489" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.2463 - loss: 2.0474" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.2453 - loss: 2.0460 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.2445 - loss: 2.0445" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.2439 - loss: 2.0430" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.2432 - loss: 2.0414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.2425 - loss: 2.0400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.2418 - loss: 2.0389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.2414 - loss: 2.0377" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.2413 - loss: 2.0362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.2411 - loss: 2.0348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.2409 - loss: 2.0334" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m49s\u001b[0m 1s/step - accuracy: 0.2407 - loss: 2.0321 - val_accuracy: 0.1800 - val_loss: 2.1674\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 1.9908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.4375 - loss: 1.9799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.4028 - loss: 1.9482" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.3802 - loss: 1.9388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.3692 - loss: 1.9245" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.3701 - loss: 1.9115" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.3683 - loss: 1.9144" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.3691 - loss: 1.9091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.3682 - loss: 1.9042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.3664 - loss: 1.8984" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.3631 - loss: 1.8949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.3597 - loss: 1.8916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.3550 - loss: 1.8905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.3500 - loss: 1.8911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.3461 - loss: 1.8907" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.3435 - loss: 1.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.3415 - loss: 1.8911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.3395 - loss: 1.8921" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.3379 - loss: 1.8925" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.3376 - loss: 1.8913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.3371 - loss: 1.8902" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.3373 - loss: 1.8892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.3377 - loss: 1.8876" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.3386 - loss: 1.8852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.3389 - loss: 1.8836" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.3390 - loss: 1.8820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.3388 - loss: 1.8810" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.3383 - loss: 1.8802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.3375 - loss: 1.8798 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.3371 - loss: 1.8789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.3367 - loss: 1.8779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.3361 - loss: 1.8777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.3353 - loss: 1.8778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.3348 - loss: 1.8779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.3342 - loss: 1.8779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.3336 - loss: 1.8778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.3331 - loss: 1.8777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.3325 - loss: 1.8776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.3320 - loss: 1.8774 - val_accuracy: 0.2200 - val_loss: 2.1371\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.3750 - loss: 1.8254" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.3750 - loss: 1.8561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.4028 - loss: 1.8296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.4036 - loss: 1.8333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.4029 - loss: 1.8271" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.4017 - loss: 1.8210" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.4030 - loss: 1.8142" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.3976 - loss: 1.8188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.3966 - loss: 1.8147" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.3944 - loss: 1.8169" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.3916 - loss: 1.8183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.3885 - loss: 1.8186" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.3853 - loss: 1.8190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.3820 - loss: 1.8195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.3782 - loss: 1.8204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.3741 - loss: 1.8218" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.3707 - loss: 1.8224" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.3678 - loss: 1.8218" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.3658 - loss: 1.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.3650 - loss: 1.8204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.3638 - loss: 1.8201" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.3622 - loss: 1.8207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.3611 - loss: 1.8207" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.3604 - loss: 1.8204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.3600 - loss: 1.8200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.3594 - loss: 1.8197" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.3588 - loss: 1.8198" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.3586 - loss: 1.8193" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.3587 - loss: 1.8183 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.3590 - loss: 1.8170" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.3591 - loss: 1.8160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.3590 - loss: 1.8151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.3589 - loss: 1.8143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.3587 - loss: 1.8138" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.3583 - loss: 1.8138" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.3577 - loss: 1.8137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.3571 - loss: 1.8136" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.3566 - loss: 1.8135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.3561 - loss: 1.8134 - val_accuracy: 0.1700 - val_loss: 2.5758\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 6/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.1250 - loss: 2.1970" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.1250 - loss: 2.1789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.1806 - loss: 2.0789" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.2214 - loss: 2.0210" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.2371 - loss: 1.9953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.2462 - loss: 1.9798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.2595 - loss: 1.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.2661 - loss: 1.9399" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.2705 - loss: 1.9272" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.2734 - loss: 1.9158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.2796 - loss: 1.9039" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.2849 - loss: 1.8924" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.2904 - loss: 1.8818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.2945 - loss: 1.8751" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.2976 - loss: 1.8696" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.3015 - loss: 1.8622" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.3050 - loss: 1.8554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.3077 - loss: 1.8495" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.3095 - loss: 1.8440" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.3106 - loss: 1.8395" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.3122 - loss: 1.8345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.3138 - loss: 1.8294" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.3155 - loss: 1.8239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.3171 - loss: 1.8189" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.3192 - loss: 1.8137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.3214 - loss: 1.8089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.3235 - loss: 1.8041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.3257 - loss: 1.8002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.3277 - loss: 1.7968 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.3296 - loss: 1.7940" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.3315 - loss: 1.7914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.3333 - loss: 1.7892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.3346 - loss: 1.7873" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.3358 - loss: 1.7857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.3372 - loss: 1.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.3386 - loss: 1.7823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.3399 - loss: 1.7806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.3410 - loss: 1.7791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.3421 - loss: 1.7778 - val_accuracy: 0.2000 - val_loss: 2.4542\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 7/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m41s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 1.5382" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.4688 - loss: 1.5613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.4653 - loss: 1.5521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.4583 - loss: 1.5569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.4667 - loss: 1.5554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.4757 - loss: 1.5432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.4766 - loss: 1.5423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.4756 - loss: 1.5427" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.4737 - loss: 1.5432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.4713 - loss: 1.5426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.4688 - loss: 1.5424" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.4662 - loss: 1.5429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.4643 - loss: 1.5424" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.4624 - loss: 1.5414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.4616 - loss: 1.5390" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.4616 - loss: 1.5361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.4612 - loss: 1.5342" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.4607 - loss: 1.5330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.4603 - loss: 1.5319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.4601 - loss: 1.5315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.4595 - loss: 1.5313" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.4587 - loss: 1.5321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.4584 - loss: 1.5323" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.4575 - loss: 1.5328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.4566 - loss: 1.5333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.4561 - loss: 1.5333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.4558 - loss: 1.5331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.4552 - loss: 1.5333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.4546 - loss: 1.5332 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.4541 - loss: 1.5333" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.4535 - loss: 1.5331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.4525 - loss: 1.5335" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.4516 - loss: 1.5341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.4507 - loss: 1.5350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.4499 - loss: 1.5355" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.4492 - loss: 1.5357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.4485 - loss: 1.5362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.4476 - loss: 1.5371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.4468 - loss: 1.5379 - val_accuracy: 0.3100 - val_loss: 2.3473\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 8/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m45s\u001b[0m 1s/step - accuracy: 0.3750 - loss: 1.9231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.3750 - loss: 1.8437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.3611 - loss: 1.7860" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.3646 - loss: 1.7373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.3767 - loss: 1.6935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.3833 - loss: 1.6630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.3923 - loss: 1.6420" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.3999 - loss: 1.6233" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.4033 - loss: 1.6146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.4043 - loss: 1.6083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.4057 - loss: 1.6019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.4084 - loss: 1.5928" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.4095 - loss: 1.5873" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.4096 - loss: 1.5825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.4090 - loss: 1.5799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.4073 - loss: 1.5784" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.4067 - loss: 1.5756" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.4061 - loss: 1.5747" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.4055 - loss: 1.5747" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.4056 - loss: 1.5733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.4058 - loss: 1.5712" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.4059 - loss: 1.5701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.4067 - loss: 1.5681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.4076 - loss: 1.5655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.4083 - loss: 1.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.4087 - loss: 1.5600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.4091 - loss: 1.5579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.4097 - loss: 1.5558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.4100 - loss: 1.5546 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.4105 - loss: 1.5536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.4109 - loss: 1.5525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.4115 - loss: 1.5509" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.4120 - loss: 1.5494" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.4123 - loss: 1.5486" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.4128 - loss: 1.5473" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.4134 - loss: 1.5461" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.4140 - loss: 1.5448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.4146 - loss: 1.5434" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.4152 - loss: 1.5421 - val_accuracy: 0.3700 - val_loss: 1.8979\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 9/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 1.1099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m40s\u001b[0m 1s/step - accuracy: 0.5938 - loss: 1.1844" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.5903 - loss: 1.1922" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.5833 - loss: 1.2142" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.5767 - loss: 1.2436" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.5708 - loss: 1.2580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.5684 - loss: 1.2578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.5657 - loss: 1.2712" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.5630 - loss: 1.2821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.5580 - loss: 1.2911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.5537 - loss: 1.2992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.5492 - loss: 1.3072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.5447 - loss: 1.3158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.5409 - loss: 1.3231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.5371 - loss: 1.3300" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.5342 - loss: 1.3344" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.5314 - loss: 1.3389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.5289 - loss: 1.3429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.5263 - loss: 1.3475" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.5240 - loss: 1.3525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.5215 - loss: 1.3569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.5195 - loss: 1.3602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.5170 - loss: 1.3653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.5152 - loss: 1.3691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.5138 - loss: 1.3721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.5125 - loss: 1.3753" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.5115 - loss: 1.3783" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.5102 - loss: 1.3822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.5086 - loss: 1.3861 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.5074 - loss: 1.3894" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.5063 - loss: 1.3919" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.5052 - loss: 1.3944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.5040 - loss: 1.3969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.5029 - loss: 1.3990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.5019 - loss: 1.4008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.5012 - loss: 1.4024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.5004 - loss: 1.4042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.4995 - loss: 1.4059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.4987 - loss: 1.4076 - val_accuracy: 0.3300 - val_loss: 2.0729\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 10/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m45s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 1.5866" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 1.6095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 1.5644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.6016 - loss: 1.5468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.5863 - loss: 1.5345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.5684 - loss: 1.5386" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.5612 - loss: 1.5349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.5516 - loss: 1.5379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.5428 - loss: 1.5393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.5347 - loss: 1.5352" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.5305 - loss: 1.5255" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.5271 - loss: 1.5164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.5236 - loss: 1.5096" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.5187 - loss: 1.5069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.5152 - loss: 1.5031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.5113 - loss: 1.5026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.5072 - loss: 1.5031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.5033 - loss: 1.5027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.5007 - loss: 1.5016" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.4985 - loss: 1.5002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.4963 - loss: 1.4992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.4949 - loss: 1.4971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.4937 - loss: 1.4949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.4927 - loss: 1.4922" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.4922 - loss: 1.4893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.4916 - loss: 1.4868" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.4907 - loss: 1.4852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.4899 - loss: 1.4837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.4891 - loss: 1.4829 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.4883 - loss: 1.4819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.4876 - loss: 1.4807" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.4868 - loss: 1.4796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.4861 - loss: 1.4788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.4852 - loss: 1.4782" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.4846 - loss: 1.4771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.4840 - loss: 1.4760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.4837 - loss: 1.4748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.4833 - loss: 1.4737" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.4830 - loss: 1.4727 - val_accuracy: 0.4400 - val_loss: 1.9701\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 11/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 1.4798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m41s\u001b[0m 1s/step - accuracy: 0.5625 - loss: 1.3952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.5694 - loss: 1.3890" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.5599 - loss: 1.3893" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.5529 - loss: 1.4135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.5545 - loss: 1.4068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.5467 - loss: 1.4078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.5409 - loss: 1.4098" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.5363 - loss: 1.4140" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.5327 - loss: 1.4185" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.5297 - loss: 1.4195" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.5255 - loss: 1.4231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.5228 - loss: 1.4240" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.5206 - loss: 1.4256" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.5186 - loss: 1.4268" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.5160 - loss: 1.4299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.5133 - loss: 1.4332" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.5107 - loss: 1.4372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.5080 - loss: 1.4405" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.5061 - loss: 1.4423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.5049 - loss: 1.4432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.5039 - loss: 1.4438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.5033 - loss: 1.4436" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.5025 - loss: 1.4438" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.5018 - loss: 1.4433" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.5013 - loss: 1.4423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.5010 - loss: 1.4412" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.5008 - loss: 1.4400" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.5006 - loss: 1.4390 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.5003 - loss: 1.4383" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.5004 - loss: 1.4371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.5005 - loss: 1.4361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.5005 - loss: 1.4353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.5008 - loss: 1.4340" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.5013 - loss: 1.4326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.5019 - loss: 1.4311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.5029 - loss: 1.4293" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.5037 - loss: 1.4277" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.5045 - loss: 1.4261 - val_accuracy: 0.3500 - val_loss: 1.8626\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 12/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.8825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 895ms/step - accuracy: 0.8438 - loss: 0.9292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 996ms/step - accuracy: 0.8264 - loss: 0.9598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.8073 - loss: 0.9774 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.7908 - loss: 0.9979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7632 - loss: 1.0290" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7435 - loss: 1.0516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7267 - loss: 1.0707" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7123 - loss: 1.0847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.6998 - loss: 1.0978" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.6899 - loss: 1.1069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.6802 - loss: 1.1181" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.6708 - loss: 1.1305" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.6617 - loss: 1.1409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6554 - loss: 1.1486" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6511 - loss: 1.1535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6465 - loss: 1.1582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6430 - loss: 1.1617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6396 - loss: 1.1663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6358 - loss: 1.1712" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6321 - loss: 1.1751" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6295 - loss: 1.1777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6267 - loss: 1.1805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6240 - loss: 1.1833" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6221 - loss: 1.1848" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6200 - loss: 1.1866" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6177 - loss: 1.1881" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6154 - loss: 1.1897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6134 - loss: 1.1913 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6111 - loss: 1.1937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6090 - loss: 1.1961" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6074 - loss: 1.1975" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6058 - loss: 1.1992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6040 - loss: 1.2010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6021 - loss: 1.2027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6002 - loss: 1.2045" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.5983 - loss: 1.2065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.5965 - loss: 1.2083" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.5948 - loss: 1.2100 - val_accuracy: 0.4700 - val_loss: 1.6501\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 13/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m42s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 1.2473" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 947ms/step - accuracy: 0.6250 - loss: 1.2170" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.5972 - loss: 1.2127 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.5807 - loss: 1.2680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.5796 - loss: 1.2803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.5767 - loss: 1.2864" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.5760 - loss: 1.2916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.5782 - loss: 1.2882" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.5788 - loss: 1.2884" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.5796 - loss: 1.2882" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.5827 - loss: 1.2843" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.5837 - loss: 1.2823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.5854 - loss: 1.2804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.5869 - loss: 1.2777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.5883 - loss: 1.2733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.5892 - loss: 1.2709" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.5904 - loss: 1.2693" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.5919 - loss: 1.2669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.5930 - loss: 1.2660" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.5940 - loss: 1.2659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.5957 - loss: 1.2645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.5971 - loss: 1.2628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.5983 - loss: 1.2607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.5996 - loss: 1.2581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6008 - loss: 1.2558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6021 - loss: 1.2534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6031 - loss: 1.2511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6041 - loss: 1.2488" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6051 - loss: 1.2461 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6059 - loss: 1.2439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6063 - loss: 1.2426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6064 - loss: 1.2414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6063 - loss: 1.2405" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6066 - loss: 1.2393" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6068 - loss: 1.2380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6069 - loss: 1.2370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6071 - loss: 1.2361" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6073 - loss: 1.2353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6074 - loss: 1.2345 - val_accuracy: 0.5700 - val_loss: 1.3051\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 14/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m40s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 0.8808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 925ms/step - accuracy: 0.5000 - loss: 0.9665" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 0.9873 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.5078 - loss: 1.0023" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.5213 - loss: 1.0091" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.5247 - loss: 1.0262" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.5313 - loss: 1.0423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.5391 - loss: 1.0501" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.5471 - loss: 1.0483" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.5562 - loss: 1.0430" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.5655 - loss: 1.0378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.5740 - loss: 1.0317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.5801 - loss: 1.0274" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.5839 - loss: 1.0245" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.5872 - loss: 1.0234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.5901 - loss: 1.0238" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.5930 - loss: 1.0241" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.5952 - loss: 1.0251" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.5971 - loss: 1.0258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.5985 - loss: 1.0263" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.5997 - loss: 1.0264" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6006 - loss: 1.0273" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6019 - loss: 1.0276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6031 - loss: 1.0281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6040 - loss: 1.0283" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6046 - loss: 1.0285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6054 - loss: 1.0288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6061 - loss: 1.0292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6069 - loss: 1.0296 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6076 - loss: 1.0297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6080 - loss: 1.0301" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6084 - loss: 1.0309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6088 - loss: 1.0315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6092 - loss: 1.0322" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6094 - loss: 1.0330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6096 - loss: 1.0339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6096 - loss: 1.0350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6096 - loss: 1.0364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6095 - loss: 1.0378 - val_accuracy: 0.4800 - val_loss: 1.4512\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 15/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 1.0965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m43s\u001b[0m 1s/step - accuracy: 0.6875 - loss: 0.9487" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.6528 - loss: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.6380 - loss: 0.9717" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.6154 - loss: 0.9955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.5997 - loss: 1.0220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.5905 - loss: 1.0418" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.5851 - loss: 1.0564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.5802 - loss: 1.0646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.5772 - loss: 1.0693" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.5743 - loss: 1.0739" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.5733 - loss: 1.0769" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.5736 - loss: 1.0777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.5722 - loss: 1.0815" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.5713 - loss: 1.0856" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.5702 - loss: 1.0892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.5691 - loss: 1.0928" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.5684 - loss: 1.0956" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.5679 - loss: 1.0972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.5676 - loss: 1.0985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.5678 - loss: 1.0991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.5681 - loss: 1.0993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.5684 - loss: 1.0991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.5693 - loss: 1.0986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.5699 - loss: 1.0979" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.5705 - loss: 1.0972" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.5708 - loss: 1.0968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.5710 - loss: 1.0965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.5712 - loss: 1.0961 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.5715 - loss: 1.0955" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.5719 - loss: 1.0947" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.5721 - loss: 1.0941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.5722 - loss: 1.0937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.5725 - loss: 1.0931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.5726 - loss: 1.0926" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.5726 - loss: 1.0925" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.5724 - loss: 1.0927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.5722 - loss: 1.0931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.5720 - loss: 1.0935 - val_accuracy: 0.6200 - val_loss: 1.1746\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 16/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.8735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.8125 - loss: 0.9142" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 970ms/step - accuracy: 0.7917 - loss: 0.9174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 984ms/step - accuracy: 0.7734 - loss: 0.9424" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 993ms/step - accuracy: 0.7638 - loss: 0.9616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.7476 - loss: 0.9740 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7377 - loss: 0.9799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7295 - loss: 0.9809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7210 - loss: 0.9849" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7139 - loss: 0.9879" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7068 - loss: 0.9925" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7000 - loss: 1.0013" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.6950 - loss: 1.0077" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6893 - loss: 1.0139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6828 - loss: 1.0209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.6773 - loss: 1.0274" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6720 - loss: 1.0338" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6683 - loss: 1.0385" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6649 - loss: 1.0425" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6626 - loss: 1.0450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6606 - loss: 1.0480" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6584 - loss: 1.0512" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6563 - loss: 1.0541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6539 - loss: 1.0564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6517 - loss: 1.0583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6498 - loss: 1.0599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6483 - loss: 1.0607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6469 - loss: 1.0611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6457 - loss: 1.0614 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6450 - loss: 1.0611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6442 - loss: 1.0609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6436 - loss: 1.0608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6429 - loss: 1.0610" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6426 - loss: 1.0610" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6424 - loss: 1.0609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6421 - loss: 1.0611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6418 - loss: 1.0611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6416 - loss: 1.0612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6414 - loss: 1.0612 - val_accuracy: 0.5900 - val_loss: 1.1096\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 17/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m41s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.7116" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.7214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.7361 - loss: 0.7623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.7396 - loss: 0.7766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7367 - loss: 0.7934" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.7319 - loss: 0.8122" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7294 - loss: 0.8228" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7261 - loss: 0.8366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7226 - loss: 0.8480" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7166 - loss: 0.8608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7103 - loss: 0.8755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7032 - loss: 0.8898" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.6987 - loss: 0.8996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.6947 - loss: 0.9081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6917 - loss: 0.9145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6890 - loss: 0.9203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6861 - loss: 0.9274" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6831 - loss: 0.9336" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6804 - loss: 0.9384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6773 - loss: 0.9456" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6751 - loss: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6728 - loss: 0.9573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6707 - loss: 0.9623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6686 - loss: 0.9669" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6667 - loss: 0.9707" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6640 - loss: 0.9753" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6615 - loss: 0.9796" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6592 - loss: 0.9837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6572 - loss: 0.9873 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6555 - loss: 0.9903" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6540 - loss: 0.9928" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6528 - loss: 0.9949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6516 - loss: 0.9971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6506 - loss: 0.9992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6496 - loss: 1.0009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6489 - loss: 1.0024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6480 - loss: 1.0041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6473 - loss: 1.0057" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6466 - loss: 1.0072 - val_accuracy: 0.3400 - val_loss: 1.9732\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 18/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 1.2765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.5312 - loss: 1.3408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.5486 - loss: 1.3240" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.5755 - loss: 1.2663" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.5954 - loss: 1.2320" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.6073 - loss: 1.2154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.6200 - loss: 1.1954" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.6265 - loss: 1.1862" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.6325 - loss: 1.1805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.6355 - loss: 1.1767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.6397 - loss: 1.1697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.6411 - loss: 1.1643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.6421 - loss: 1.1585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6434 - loss: 1.1531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6461 - loss: 1.1457" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.6487 - loss: 1.1380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6503 - loss: 1.1315" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6516 - loss: 1.1259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6530 - loss: 1.1209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6531 - loss: 1.1175" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6532 - loss: 1.1141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6537 - loss: 1.1105" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6541 - loss: 1.1075" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6544 - loss: 1.1049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6549 - loss: 1.1021" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6552 - loss: 1.1002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6554 - loss: 1.0985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6556 - loss: 1.0968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6553 - loss: 1.0962 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6547 - loss: 1.0961" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6542 - loss: 1.0958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6536 - loss: 1.0954" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6530 - loss: 1.0951" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6524 - loss: 1.0945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6517 - loss: 1.0939" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6511 - loss: 1.0931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6505 - loss: 1.0927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6498 - loss: 1.0927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6491 - loss: 1.0926 - val_accuracy: 0.5600 - val_loss: 1.0943\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 19/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m41s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.4418" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.9062 - loss: 0.5942" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.8264 - loss: 0.7027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7917 - loss: 0.7525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7583 - loss: 0.8099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.7361 - loss: 0.8488" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7253 - loss: 0.8666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7226 - loss: 0.8769" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7210 - loss: 0.8819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7226 - loss: 0.8823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7231 - loss: 0.8847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7236 - loss: 0.8853" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7241 - loss: 0.8867" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7241 - loss: 0.8897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7230 - loss: 0.8935" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7232 - loss: 0.8954" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7231 - loss: 0.8967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7223 - loss: 0.8996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7213 - loss: 0.9019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7212 - loss: 0.9033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7208 - loss: 0.9039" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7206 - loss: 0.9043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7207 - loss: 0.9040" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7208 - loss: 0.9034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7208 - loss: 0.9027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7205 - loss: 0.9027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7193 - loss: 0.9039" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7183 - loss: 0.9049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7172 - loss: 0.9065 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7159 - loss: 0.9080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7148 - loss: 0.9094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7137 - loss: 0.9108" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7125 - loss: 0.9124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7114 - loss: 0.9139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7102 - loss: 0.9154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7090 - loss: 0.9168" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7077 - loss: 0.9180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7066 - loss: 0.9191" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7055 - loss: 0.9202 - val_accuracy: 0.6800 - val_loss: 1.0248\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 20/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.7126" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 916ms/step - accuracy: 0.7500 - loss: 0.6483" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 907ms/step - accuracy: 0.7361 - loss: 0.6736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 960ms/step - accuracy: 0.7161 - loss: 0.7059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 972ms/step - accuracy: 0.6929 - loss: 0.7556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 979ms/step - accuracy: 0.6851 - loss: 0.7779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 994ms/step - accuracy: 0.6867 - loss: 0.7869" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 993ms/step - accuracy: 0.6868 - loss: 0.7952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 996ms/step - accuracy: 0.6892 - loss: 0.8010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 994ms/step - accuracy: 0.6903 - loss: 0.8099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 994ms/step - accuracy: 0.6926 - loss: 0.8157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 995ms/step - accuracy: 0.6948 - loss: 0.8209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 991ms/step - accuracy: 0.6961 - loss: 0.8270" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 998ms/step - accuracy: 0.6974 - loss: 0.8321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6981 - loss: 0.8359 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.6989 - loss: 0.8384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7002 - loss: 0.8398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7006 - loss: 0.8422" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7008 - loss: 0.8440" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7005 - loss: 0.8463" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7008 - loss: 0.8471" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7018 - loss: 0.8477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7025 - loss: 0.8485" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7036 - loss: 0.8483" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7046 - loss: 0.8485" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7051 - loss: 0.8492" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7052 - loss: 0.8504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7057 - loss: 0.8510" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7062 - loss: 0.8517 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7067 - loss: 0.8520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7070 - loss: 0.8522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7074 - loss: 0.8523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7074 - loss: 0.8529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7073 - loss: 0.8538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7068 - loss: 0.8553" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7063 - loss: 0.8569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7058 - loss: 0.8584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7053 - loss: 0.8601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7047 - loss: 0.8617 - val_accuracy: 0.6200 - val_loss: 0.9955\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 21/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 1.1499" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.5938 - loss: 1.0027" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.6042 - loss: 0.9911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.6016 - loss: 0.9989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.6112 - loss: 0.9854" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.6170 - loss: 0.9808" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.6182 - loss: 0.9904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.6229 - loss: 0.9909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.6293 - loss: 0.9841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.6326 - loss: 0.9786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.6330 - loss: 0.9793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.6340 - loss: 0.9797" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.6348 - loss: 0.9818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6354 - loss: 0.9821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6358 - loss: 0.9843" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6366 - loss: 0.9857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6359 - loss: 0.9906" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6357 - loss: 0.9940" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6358 - loss: 0.9954" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6359 - loss: 0.9960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6357 - loss: 0.9967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6355 - loss: 0.9967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6350 - loss: 0.9969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6348 - loss: 0.9968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6346 - loss: 0.9968" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6342 - loss: 0.9967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6341 - loss: 0.9959" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6341 - loss: 0.9948" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6342 - loss: 0.9937 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6342 - loss: 0.9924" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6344 - loss: 0.9909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6350 - loss: 0.9891" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6357 - loss: 0.9871" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6365 - loss: 0.9852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6372 - loss: 0.9831" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6380 - loss: 0.9811" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6387 - loss: 0.9790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6395 - loss: 0.9770" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6403 - loss: 0.9750 - val_accuracy: 0.6600 - val_loss: 0.9456\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 22/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m42s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.7887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 927ms/step - accuracy: 0.7500 - loss: 0.8064" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7639 - loss: 0.8222 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7682 - loss: 0.8168" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.7796 - loss: 0.8052" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.7816 - loss: 0.8053" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7822 - loss: 0.8078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7821 - loss: 0.8072" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7800 - loss: 0.8089" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7770 - loss: 0.8092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7756 - loss: 0.8079" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7744 - loss: 0.8049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7717 - loss: 0.8071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7689 - loss: 0.8104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7665 - loss: 0.8130" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7650 - loss: 0.8142" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7637 - loss: 0.8152" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7622 - loss: 0.8157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7601 - loss: 0.8172" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7581 - loss: 0.8191" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7560 - loss: 0.8216" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7539 - loss: 0.8238" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7516 - loss: 0.8259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7496 - loss: 0.8277" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7478 - loss: 0.8288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7459 - loss: 0.8308" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7440 - loss: 0.8330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7421 - loss: 0.8349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7403 - loss: 0.8371 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7384 - loss: 0.8396" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7367 - loss: 0.8420" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7350 - loss: 0.8443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7336 - loss: 0.8461" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7323 - loss: 0.8475" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7311 - loss: 0.8489" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7297 - loss: 0.8502" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7284 - loss: 0.8517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7270 - loss: 0.8532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7257 - loss: 0.8546 - val_accuracy: 0.4900 - val_loss: 1.4771\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 23/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m41s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.5604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 886ms/step - accuracy: 0.8125 - loss: 0.6421" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 957ms/step - accuracy: 0.7778 - loss: 0.7033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 953ms/step - accuracy: 0.7552 - loss: 0.7334" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 987ms/step - accuracy: 0.7442 - loss: 0.7437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 978ms/step - accuracy: 0.7382 - loss: 0.7535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 997ms/step - accuracy: 0.7348 - loss: 0.7569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 982ms/step - accuracy: 0.7347 - loss: 0.7543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 994ms/step - accuracy: 0.7318 - loss: 0.7616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 996ms/step - accuracy: 0.7286 - loss: 0.7681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7244 - loss: 0.7751 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7196 - loss: 0.7847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7160 - loss: 0.7934" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7120 - loss: 0.7997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7090 - loss: 0.8056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7062 - loss: 0.8117" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7032 - loss: 0.8180" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7007 - loss: 0.8226" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6981 - loss: 0.8272" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6957 - loss: 0.8317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6932 - loss: 0.8365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6909 - loss: 0.8407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6885 - loss: 0.8454" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6863 - loss: 0.8499" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6844 - loss: 0.8537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6827 - loss: 0.8574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6811 - loss: 0.8610" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6800 - loss: 0.8637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6792 - loss: 0.8657 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6786 - loss: 0.8671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6781 - loss: 0.8685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6774 - loss: 0.8701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6771 - loss: 0.8710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6770 - loss: 0.8713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6771 - loss: 0.8716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6771 - loss: 0.8718" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6771 - loss: 0.8719" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6771 - loss: 0.8720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6771 - loss: 0.8721 - val_accuracy: 0.5800 - val_loss: 1.0957\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 24/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m41s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.4661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.6875 - loss: 0.7468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.6806 - loss: 0.8402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.6901 - loss: 0.8634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.6871 - loss: 0.8709" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.6906 - loss: 0.8651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.6889 - loss: 0.8605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.6868 - loss: 0.8546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.6892 - loss: 0.8468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.6903 - loss: 0.8443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.6916 - loss: 0.8409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.6930 - loss: 0.8385" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.6936 - loss: 0.8374" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6945 - loss: 0.8366" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6960 - loss: 0.8352" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.6979 - loss: 0.8334" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6992 - loss: 0.8326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7005 - loss: 0.8322" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7017 - loss: 0.8316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7029 - loss: 0.8312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7031 - loss: 0.8319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7032 - loss: 0.8324" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7038 - loss: 0.8320" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7038 - loss: 0.8325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7040 - loss: 0.8327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7043 - loss: 0.8329" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7048 - loss: 0.8327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7052 - loss: 0.8325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7057 - loss: 0.8321 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7064 - loss: 0.8312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7071 - loss: 0.8304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7076 - loss: 0.8298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7078 - loss: 0.8296" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7077 - loss: 0.8297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7077 - loss: 0.8297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7079 - loss: 0.8293" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7082 - loss: 0.8289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7083 - loss: 0.8285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7084 - loss: 0.8281 - val_accuracy: 0.6800 - val_loss: 0.9744\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 25/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.3370" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m40s\u001b[0m 1s/step - accuracy: 0.9062 - loss: 0.3641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.8958 - loss: 0.4229" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.8984 - loss: 0.4502" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.9038 - loss: 0.4644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.9094 - loss: 0.4727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.9019 - loss: 0.4993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8927 - loss: 0.5225" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8846 - loss: 0.5437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8748 - loss: 0.5658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8645 - loss: 0.5848" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8567 - loss: 0.6005" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8507 - loss: 0.6123" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8461 - loss: 0.6211" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8425 - loss: 0.6276" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8401 - loss: 0.6329" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8378 - loss: 0.6384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8353 - loss: 0.6440" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8322 - loss: 0.6500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8296 - loss: 0.6551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8272 - loss: 0.6590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8253 - loss: 0.6623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8232 - loss: 0.6654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8210 - loss: 0.6686" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8192 - loss: 0.6712" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8169 - loss: 0.6748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8149 - loss: 0.6777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8131 - loss: 0.6801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8115 - loss: 0.6823 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8101 - loss: 0.6840" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8086 - loss: 0.6859" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8071 - loss: 0.6877" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8056 - loss: 0.6897" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8042 - loss: 0.6916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8028 - loss: 0.6936" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8016 - loss: 0.6951" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8004 - loss: 0.6966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7991 - loss: 0.6982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7980 - loss: 0.6998 - val_accuracy: 0.5100 - val_loss: 1.6530\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 26/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 1.0104" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.5000 - loss: 1.0679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.5139 - loss: 1.0629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.5260 - loss: 1.0453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.5408 - loss: 1.0231" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.5444 - loss: 1.0114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.5534 - loss: 1.0035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.5604 - loss: 0.9927" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.5676 - loss: 0.9820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.5696 - loss: 0.9763" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.5736 - loss: 0.9679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.5779 - loss: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.5822 - loss: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.5859 - loss: 0.9464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.5902 - loss: 0.9416" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.5938 - loss: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.5983 - loss: 0.9329" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6028 - loss: 0.9278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6071 - loss: 0.9235" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6114 - loss: 0.9188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6152 - loss: 0.9145" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6175 - loss: 0.9129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6199 - loss: 0.9109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6219 - loss: 0.9095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6232 - loss: 0.9088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6247 - loss: 0.9079" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6261 - loss: 0.9069" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6275 - loss: 0.9057" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6285 - loss: 0.9048 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6295 - loss: 0.9040" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6304 - loss: 0.9033" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6310 - loss: 0.9030" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6319 - loss: 0.9024" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6327 - loss: 0.9018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6333 - loss: 0.9017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6340 - loss: 0.9014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6347 - loss: 0.9012" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6353 - loss: 0.9008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6360 - loss: 0.9005 - val_accuracy: 0.5700 - val_loss: 1.2295\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 27/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.5306" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.8125 - loss: 0.6403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.7778 - loss: 0.6824" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.7552 - loss: 0.6982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7442 - loss: 0.6988" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.7312 - loss: 0.7269" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.7263 - loss: 0.7372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7214 - loss: 0.7469" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7169 - loss: 0.7540" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7127 - loss: 0.7658" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7099 - loss: 0.7729" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7072 - loss: 0.7801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7060 - loss: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7066 - loss: 0.7859" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7073 - loss: 0.7863" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7065 - loss: 0.7874" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7065 - loss: 0.7873" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7062 - loss: 0.7874" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7057 - loss: 0.7875" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7058 - loss: 0.7866" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7059 - loss: 0.7853" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7063 - loss: 0.7837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7064 - loss: 0.7822" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7064 - loss: 0.7805" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7066 - loss: 0.7788" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7066 - loss: 0.7773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7065 - loss: 0.7761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7064 - loss: 0.7755" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7060 - loss: 0.7755 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7054 - loss: 0.7757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7050 - loss: 0.7760" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7045 - loss: 0.7766" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7040 - loss: 0.7770" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7036 - loss: 0.7770" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7033 - loss: 0.7771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7031 - loss: 0.7773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7027 - loss: 0.7775" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7024 - loss: 0.7779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7020 - loss: 0.7782 - val_accuracy: 0.6000 - val_loss: 1.0399\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 28/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m42s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.4566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.5349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.5497" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.7578 - loss: 0.5582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7513 - loss: 0.5967" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.7406 - loss: 0.6395" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7292 - loss: 0.6814" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7240 - loss: 0.7037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7145 - loss: 0.7317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7043 - loss: 0.7559" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.6982 - loss: 0.7713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.6921 - loss: 0.7852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.6876 - loss: 0.7962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6844 - loss: 0.8054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6810 - loss: 0.8143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6785 - loss: 0.8220" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.6767 - loss: 0.8272" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6753 - loss: 0.8312" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6748 - loss: 0.8335" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6741 - loss: 0.8359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6741 - loss: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6744 - loss: 0.8380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6746 - loss: 0.8389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6747 - loss: 0.8397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6752 - loss: 0.8401" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6753 - loss: 0.8408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6755 - loss: 0.8413" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6760 - loss: 0.8409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6768 - loss: 0.8402 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6777 - loss: 0.8390" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6788 - loss: 0.8378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6798 - loss: 0.8369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6809 - loss: 0.8357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6819 - loss: 0.8348" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.6827 - loss: 0.8341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.6835 - loss: 0.8335" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.6844 - loss: 0.8327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.6852 - loss: 0.8321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.6859 - loss: 0.8315 - val_accuracy: 0.6500 - val_loss: 0.9905\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 29/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 1.1037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.9952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.9424" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7344 - loss: 0.9278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7225 - loss: 0.9181" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.7236 - loss: 0.8943" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.7146 - loss: 0.8888" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7093 - loss: 0.8803" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7061 - loss: 0.8710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7030 - loss: 0.8644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7021 - loss: 0.8566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7017 - loss: 0.8494" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7010 - loss: 0.8450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6988 - loss: 0.8457" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6977 - loss: 0.8460" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.6971 - loss: 0.8446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6968 - loss: 0.8439" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6966 - loss: 0.8425" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6963 - loss: 0.8418" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6965 - loss: 0.8402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6974 - loss: 0.8376" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6985 - loss: 0.8347" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7000 - loss: 0.8310" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7012 - loss: 0.8277" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7024 - loss: 0.8246" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7034 - loss: 0.8219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7045 - loss: 0.8193" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7058 - loss: 0.8165" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7069 - loss: 0.8141 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7080 - loss: 0.8114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7090 - loss: 0.8090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7100 - loss: 0.8065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7111 - loss: 0.8038" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7119 - loss: 0.8019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7127 - loss: 0.8001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7137 - loss: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7145 - loss: 0.7966" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7152 - loss: 0.7952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7159 - loss: 0.7938 - val_accuracy: 0.6800 - val_loss: 0.8693\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 30/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m42s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.5441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7812 - loss: 0.5210" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.7847 - loss: 0.5302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7760 - loss: 0.5359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7708 - loss: 0.5429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.7708 - loss: 0.5446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7704 - loss: 0.5494" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7718 - loss: 0.5519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7740 - loss: 0.5528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7741 - loss: 0.5569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7740 - loss: 0.5590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7737 - loss: 0.5640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7741 - loss: 0.5709" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7756 - loss: 0.5758" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7766 - loss: 0.5798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7759 - loss: 0.5847" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7757 - loss: 0.5882" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7758 - loss: 0.5916" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7759 - loss: 0.5945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7758 - loss: 0.5973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7760 - loss: 0.6002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7759 - loss: 0.6034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7757 - loss: 0.6062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7757 - loss: 0.6085" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7753 - loss: 0.6109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7747 - loss: 0.6141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7741 - loss: 0.6169" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7734 - loss: 0.6196" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7727 - loss: 0.6219 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7721 - loss: 0.6239" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7713 - loss: 0.6263" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7707 - loss: 0.6284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7702 - loss: 0.6302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7697 - loss: 0.6321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7693 - loss: 0.6339" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7687 - loss: 0.6358" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7682 - loss: 0.6378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7678 - loss: 0.6395" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7675 - loss: 0.6411 - val_accuracy: 0.6500 - val_loss: 0.9730\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 31/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 0.7557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 989ms/step - accuracy: 0.7188 - loss: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7431 - loss: 0.6525 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.7448 - loss: 0.6634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 982ms/step - accuracy: 0.7408 - loss: 0.6798" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7424 - loss: 0.6853 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7460 - loss: 0.6816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7485 - loss: 0.6823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7517 - loss: 0.6821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7565 - loss: 0.6786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7611 - loss: 0.6744" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7645 - loss: 0.6699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7686 - loss: 0.6642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7730 - loss: 0.6581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7770 - loss: 0.6521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7802 - loss: 0.6475" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7836 - loss: 0.6426" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7864 - loss: 0.6389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7883 - loss: 0.6365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7901 - loss: 0.6341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7910 - loss: 0.6332" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7915 - loss: 0.6327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7921 - loss: 0.6323" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7929 - loss: 0.6314" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7936 - loss: 0.6304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7941 - loss: 0.6299" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7944 - loss: 0.6298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7941 - loss: 0.6307" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7937 - loss: 0.6315 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7934 - loss: 0.6321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7932 - loss: 0.6326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7927 - loss: 0.6332" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7920 - loss: 0.6341" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7914 - loss: 0.6351" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7908 - loss: 0.6362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7902 - loss: 0.6373" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7896 - loss: 0.6388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7890 - loss: 0.6403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7884 - loss: 0.6418 - val_accuracy: 0.4800 - val_loss: 1.3806\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 32/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.2500 - loss: 1.4143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 941ms/step - accuracy: 0.4062 - loss: 1.1910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 950ms/step - accuracy: 0.4792 - loss: 1.0812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 991ms/step - accuracy: 0.5234 - loss: 1.0036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.5437 - loss: 0.9704 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.5608 - loss: 0.9512" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 989ms/step - accuracy: 0.5776 - loss: 0.9374" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 992ms/step - accuracy: 0.5913 - loss: 0.9259" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 986ms/step - accuracy: 0.6028 - loss: 0.9187" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 988ms/step - accuracy: 0.6138 - loss: 0.9101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 998ms/step - accuracy: 0.6230 - loss: 0.9010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.6310 - loss: 0.8915 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.6372 - loss: 0.8846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.6421 - loss: 0.8778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.6465 - loss: 0.8716" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.6510 - loss: 0.8660" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.6555 - loss: 0.8603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.6600 - loss: 0.8546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.6644 - loss: 0.8486" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.6687 - loss: 0.8432" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.6720 - loss: 0.8390" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.6750 - loss: 0.8354" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.6773 - loss: 0.8330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.6793 - loss: 0.8309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.6815 - loss: 0.8281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.6838 - loss: 0.8249" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.6861 - loss: 0.8219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.6882 - loss: 0.8192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.6905 - loss: 0.8162 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.6926 - loss: 0.8135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.6944 - loss: 0.8109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.6960 - loss: 0.8085" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.6976 - loss: 0.8062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.6990 - loss: 0.8040" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7004 - loss: 0.8019" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7016 - loss: 0.7999" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7028 - loss: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7038 - loss: 0.7962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7048 - loss: 0.7944 - val_accuracy: 0.6200 - val_loss: 0.9962\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 33/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.3726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.4194" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.9861 - loss: 0.4479" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.9740 - loss: 0.4532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.9592 - loss: 0.4576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.9486 - loss: 0.4624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.9355 - loss: 0.4756" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.9280 - loss: 0.4812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.9236 - loss: 0.4821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.9200 - loss: 0.4834" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.9159 - loss: 0.4864" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.9108 - loss: 0.4887" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.9043 - loss: 0.4919" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8971 - loss: 0.4953" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8901 - loss: 0.4998" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8838 - loss: 0.5042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8768 - loss: 0.5111" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8709 - loss: 0.5168" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8659 - loss: 0.5215" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8620 - loss: 0.5250" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8584 - loss: 0.5285" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8550 - loss: 0.5317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8516 - loss: 0.5355" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8482 - loss: 0.5394" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8451 - loss: 0.5429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8424 - loss: 0.5462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8398 - loss: 0.5497" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8372 - loss: 0.5531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8350 - loss: 0.5562 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8328 - loss: 0.5592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8309 - loss: 0.5618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8292 - loss: 0.5645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8274 - loss: 0.5672" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8256 - loss: 0.5702" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8237 - loss: 0.5731" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8220 - loss: 0.5759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8204 - loss: 0.5785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8190 - loss: 0.5809" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8176 - loss: 0.5833 - val_accuracy: 0.6700 - val_loss: 0.9532\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 34/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m43s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.5371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.6875 - loss: 0.6337" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.6944 - loss: 0.6481" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7083 - loss: 0.6353" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7167 - loss: 0.6403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.7188 - loss: 0.6419" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7207 - loss: 0.6434" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.7243 - loss: 0.6398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7272 - loss: 0.6388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7295 - loss: 0.6409" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7324 - loss: 0.6425" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7338 - loss: 0.6435" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7358 - loss: 0.6441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7356 - loss: 0.6465" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7349 - loss: 0.6489" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7343 - loss: 0.6507" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7331 - loss: 0.6546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7321 - loss: 0.6584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7306 - loss: 0.6630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7294 - loss: 0.6671" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7284 - loss: 0.6709" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7281 - loss: 0.6734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7283 - loss: 0.6750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7288 - loss: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7294 - loss: 0.6773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7301 - loss: 0.6777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7306 - loss: 0.6778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7313 - loss: 0.6779" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7321 - loss: 0.6778 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7328 - loss: 0.6776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7337 - loss: 0.6777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7344 - loss: 0.6777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7350 - loss: 0.6778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7358 - loss: 0.6777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7366 - loss: 0.6774" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7373 - loss: 0.6771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7380 - loss: 0.6767" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7385 - loss: 0.6764" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7391 - loss: 0.6760 - val_accuracy: 0.7000 - val_loss: 0.9689\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 35/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.6392" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 994ms/step - accuracy: 0.7812 - loss: 0.6390" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 920ms/step - accuracy: 0.8125 - loss: 0.6068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 989ms/step - accuracy: 0.8359 - loss: 0.5793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.8438 - loss: 0.5751 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8490 - loss: 0.5777" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8476 - loss: 0.5830" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8412 - loss: 0.5936" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8326 - loss: 0.6044" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8281 - loss: 0.6090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8241 - loss: 0.6129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8223 - loss: 0.6139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8212 - loss: 0.6151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8205 - loss: 0.6148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8203 - loss: 0.6141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8198 - loss: 0.6132" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8192 - loss: 0.6126" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8180 - loss: 0.6141" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8165 - loss: 0.6163" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8157 - loss: 0.6174" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8148 - loss: 0.6186" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8139 - loss: 0.6193" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8128 - loss: 0.6200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8117 - loss: 0.6208" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8111 - loss: 0.6210" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8106 - loss: 0.6214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8102 - loss: 0.6214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8095 - loss: 0.6216" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8089 - loss: 0.6218 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8085 - loss: 0.6217" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8082 - loss: 0.6217" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8077 - loss: 0.6218" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8071 - loss: 0.6221" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8065 - loss: 0.6226" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8059 - loss: 0.6232" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8053 - loss: 0.6237" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8048 - loss: 0.6241" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8044 - loss: 0.6243" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8041 - loss: 0.6246 - val_accuracy: 0.5900 - val_loss: 1.0407\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 36/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.6495" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.6875 - loss: 0.6776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.6944 - loss: 0.6734" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.6927 - loss: 0.6835" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.6942 - loss: 0.6842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.6931 - loss: 0.6921" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.6961 - loss: 0.6899" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.6950 - loss: 0.6920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.6980 - loss: 0.6883" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7020 - loss: 0.6825" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7033 - loss: 0.6812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7045 - loss: 0.6791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7043 - loss: 0.6787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7044 - loss: 0.6780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7041 - loss: 0.6776" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7045 - loss: 0.6764" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7055 - loss: 0.6747" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7064 - loss: 0.6730" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7073 - loss: 0.6720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7082 - loss: 0.6720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7094 - loss: 0.6713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7102 - loss: 0.6709" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7110 - loss: 0.6703" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7119 - loss: 0.6699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7129 - loss: 0.6695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7141 - loss: 0.6689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7151 - loss: 0.6684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7162 - loss: 0.6679" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7173 - loss: 0.6669 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7184 - loss: 0.6660" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7193 - loss: 0.6656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7201 - loss: 0.6652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7211 - loss: 0.6647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7221 - loss: 0.6640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7232 - loss: 0.6633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7241 - loss: 0.6627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7249 - loss: 0.6619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7259 - loss: 0.6611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7267 - loss: 0.6603 - val_accuracy: 0.5700 - val_loss: 1.1837\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 37/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m41s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 1.1101" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.6875 - loss: 0.9467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 964ms/step - accuracy: 0.7222 - loss: 0.8475" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 959ms/step - accuracy: 0.7370 - loss: 0.7976" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 960ms/step - accuracy: 0.7496 - loss: 0.7547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 950ms/step - accuracy: 0.7566 - loss: 0.7349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 982ms/step - accuracy: 0.7608 - loss: 0.7203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7653 - loss: 0.7074 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 998ms/step - accuracy: 0.7697 - loss: 0.6991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7740 - loss: 0.6897 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7780 - loss: 0.6806" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7818 - loss: 0.6722" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7823 - loss: 0.6684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7819 - loss: 0.6656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7814 - loss: 0.6628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7819 - loss: 0.6595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7831 - loss: 0.6555" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7832 - loss: 0.6547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7831 - loss: 0.6535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7834 - loss: 0.6520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7838 - loss: 0.6504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7843 - loss: 0.6487" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7849 - loss: 0.6472" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7856 - loss: 0.6455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7856 - loss: 0.6446" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7855 - loss: 0.6437" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7854 - loss: 0.6428" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7856 - loss: 0.6415" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7857 - loss: 0.6405 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7856 - loss: 0.6399" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7858 - loss: 0.6390" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7859 - loss: 0.6383" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7858 - loss: 0.6378" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7860 - loss: 0.6372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7860 - loss: 0.6368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7861 - loss: 0.6360" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7861 - loss: 0.6356" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7862 - loss: 0.6352" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m49s\u001b[0m 1s/step - accuracy: 0.7862 - loss: 0.6348 - val_accuracy: 0.6400 - val_loss: 1.0391\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 38/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m40s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.5780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 940ms/step - accuracy: 0.8438 - loss: 0.6053" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.8403 - loss: 0.5990 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.8177 - loss: 0.6188" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.8092 - loss: 0.6233" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8028 - loss: 0.6243" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8003 - loss: 0.6200" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.7999 - loss: 0.6119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8021 - loss: 0.6001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8019 - loss: 0.5941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8003 - loss: 0.5952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7995 - loss: 0.5944" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7987 - loss: 0.5942" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7978 - loss: 0.5942" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7962 - loss: 0.5957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7948 - loss: 0.5965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7939 - loss: 0.5962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7934 - loss: 0.5960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7928 - loss: 0.5965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7920 - loss: 0.5971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7911 - loss: 0.5981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7903 - loss: 0.5990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7899 - loss: 0.5993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7893 - loss: 0.5998" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7888 - loss: 0.6001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7886 - loss: 0.6001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7883 - loss: 0.6002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7883 - loss: 0.6001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7880 - loss: 0.6004 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7880 - loss: 0.6004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7882 - loss: 0.6002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7886 - loss: 0.5999" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7888 - loss: 0.6001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7890 - loss: 0.6001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7891 - loss: 0.6003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7893 - loss: 0.6003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7895 - loss: 0.6002" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7897 - loss: 0.6001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m49s\u001b[0m 1s/step - accuracy: 0.7899 - loss: 0.6000 - val_accuracy: 0.6700 - val_loss: 0.8552\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 39/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 0.6596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 955ms/step - accuracy: 0.7188 - loss: 0.5642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.7569 - loss: 0.5183 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7786 - loss: 0.4997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.7979 - loss: 0.4904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.8142 - loss: 0.4780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8204 - loss: 0.4761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8213 - loss: 0.4819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8211 - loss: 0.4901" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8215 - loss: 0.4943" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8202 - loss: 0.5003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8195 - loss: 0.5041" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8186 - loss: 0.5079" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8182 - loss: 0.5122" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8181 - loss: 0.5153" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8187 - loss: 0.5172" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8194 - loss: 0.5190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8194 - loss: 0.5217" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8192 - loss: 0.5249" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8192 - loss: 0.5278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8196 - loss: 0.5297" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8201 - loss: 0.5311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8208 - loss: 0.5319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8215 - loss: 0.5322" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8221 - loss: 0.5328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8228 - loss: 0.5330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8232 - loss: 0.5335" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8235 - loss: 0.5338" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8236 - loss: 0.5342 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8236 - loss: 0.5349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8237 - loss: 0.5355" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8240 - loss: 0.5357" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8238 - loss: 0.5364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8237 - loss: 0.5368" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8236 - loss: 0.5371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8235 - loss: 0.5376" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8235 - loss: 0.5380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8234 - loss: 0.5385" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8233 - loss: 0.5389 - val_accuracy: 0.6800 - val_loss: 0.9595\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 40/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m45s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.2837" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 987ms/step - accuracy: 0.9375 - loss: 0.3611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 946ms/step - accuracy: 0.9167 - loss: 0.3850" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 973ms/step - accuracy: 0.8984 - loss: 0.4186" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 993ms/step - accuracy: 0.8838 - loss: 0.4325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8719 - loss: 0.4434 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8672 - loss: 0.4447" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8662 - loss: 0.4455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8657 - loss: 0.4483" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8654 - loss: 0.4504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8642 - loss: 0.4511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8633 - loss: 0.4519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8627 - loss: 0.4525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8617 - loss: 0.4535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8609 - loss: 0.4548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8599 - loss: 0.4558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8582 - loss: 0.4583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8560 - loss: 0.4621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8546 - loss: 0.4650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8537 - loss: 0.4674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8528 - loss: 0.4700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8520 - loss: 0.4720" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8506 - loss: 0.4750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8492 - loss: 0.4787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8481 - loss: 0.4817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8471 - loss: 0.4842" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8462 - loss: 0.4866" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8453 - loss: 0.4891" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8443 - loss: 0.4915 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8431 - loss: 0.4942" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8421 - loss: 0.4965" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8413 - loss: 0.4985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8408 - loss: 0.5001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8401 - loss: 0.5017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8396 - loss: 0.5031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8392 - loss: 0.5043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8388 - loss: 0.5054" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8385 - loss: 0.5065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m49s\u001b[0m 1s/step - accuracy: 0.8382 - loss: 0.5075 - val_accuracy: 0.7200 - val_loss: 0.7749\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 41/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m44s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.5921" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m42s\u001b[0m 1s/step - accuracy: 0.9062 - loss: 0.5081" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.8681 - loss: 0.5691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m37s\u001b[0m 1s/step - accuracy: 0.8542 - loss: 0.5928" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.8483 - loss: 0.5948" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.8424 - loss: 0.5931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.8419 - loss: 0.5883" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8402 - loss: 0.5849" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8394 - loss: 0.5821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8392 - loss: 0.5793" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8394 - loss: 0.5761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8398 - loss: 0.5732" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8395 - loss: 0.5695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8395 - loss: 0.5661" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8402 - loss: 0.5615" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8414 - loss: 0.5561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8421 - loss: 0.5514" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8427 - loss: 0.5470" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8437 - loss: 0.5422" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8441 - loss: 0.5388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8441 - loss: 0.5365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8440 - loss: 0.5345" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8437 - loss: 0.5325" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8435 - loss: 0.5311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8431 - loss: 0.5302" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8429 - loss: 0.5295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8429 - loss: 0.5284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8430 - loss: 0.5272" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8434 - loss: 0.5258 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8438 - loss: 0.5246" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8440 - loss: 0.5236" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8439 - loss: 0.5228" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8438 - loss: 0.5219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8436 - loss: 0.5211" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8432 - loss: 0.5209" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8426 - loss: 0.5210" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8420 - loss: 0.5215" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8415 - loss: 0.5218" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8411 - loss: 0.5221 - val_accuracy: 0.6800 - val_loss: 0.8257\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 42/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.5379" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.5055" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 954ms/step - accuracy: 0.8611 - loss: 0.5121" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 996ms/step - accuracy: 0.8646 - loss: 0.4958" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 979ms/step - accuracy: 0.8667 - loss: 0.4889" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8611 - loss: 0.4985 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 995ms/step - accuracy: 0.8580 - loss: 0.4998" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8543 - loss: 0.4999 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8488 - loss: 0.5038" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8465 - loss: 0.5046" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8429 - loss: 0.5074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8403 - loss: 0.5095" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8378 - loss: 0.5112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8366 - loss: 0.5122" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8364 - loss: 0.5121" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8359 - loss: 0.5124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8347 - loss: 0.5140" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8335 - loss: 0.5154" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8329 - loss: 0.5158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8319 - loss: 0.5166" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8314 - loss: 0.5164" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8308 - loss: 0.5161" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8306 - loss: 0.5157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8305 - loss: 0.5151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8305 - loss: 0.5142" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8303 - loss: 0.5135" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8305 - loss: 0.5125" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8308 - loss: 0.5112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8308 - loss: 0.5102 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8310 - loss: 0.5094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8314 - loss: 0.5084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8317 - loss: 0.5073" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8321 - loss: 0.5062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8326 - loss: 0.5049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8332 - loss: 0.5035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8337 - loss: 0.5022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8341 - loss: 0.5009" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8346 - loss: 0.4995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8351 - loss: 0.4983 - val_accuracy: 0.6700 - val_loss: 0.9425\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 43/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 986ms/step - accuracy: 0.8750 - loss: 0.4652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 846ms/step - accuracy: 0.8125 - loss: 0.5139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.8056 - loss: 0.5130 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.7995 - loss: 0.5359" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.8046 - loss: 0.5327" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.8059 - loss: 0.5328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8081 - loss: 0.5321" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8067 - loss: 0.5323" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8020 - loss: 0.5362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7993 - loss: 0.5390" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7968 - loss: 0.5404" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7955 - loss: 0.5395" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7950 - loss: 0.5389" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7956 - loss: 0.5372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7954 - loss: 0.5372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7950 - loss: 0.5374" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7940 - loss: 0.5390" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7935 - loss: 0.5397" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7933 - loss: 0.5398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7930 - loss: 0.5403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7927 - loss: 0.5407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7923 - loss: 0.5413" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7916 - loss: 0.5423" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7910 - loss: 0.5435" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7907 - loss: 0.5440" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7907 - loss: 0.5441" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7903 - loss: 0.5448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7903 - loss: 0.5451" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7906 - loss: 0.5449 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7906 - loss: 0.5451" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7905 - loss: 0.5454" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7901 - loss: 0.5460" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7897 - loss: 0.5466" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7894 - loss: 0.5471" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7890 - loss: 0.5475" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7887 - loss: 0.5480" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7886 - loss: 0.5483" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7885 - loss: 0.5485" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7883 - loss: 0.5487 - val_accuracy: 0.5800 - val_loss: 1.1208\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 44/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m45s\u001b[0m 1s/step - accuracy: 0.6250 - loss: 0.9338" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 988ms/step - accuracy: 0.6250 - loss: 0.9035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.6389 - loss: 0.8452 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.6510 - loss: 0.8124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.6558 - loss: 0.7914" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 999ms/step - accuracy: 0.6681 - loss: 0.7676" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.6747 - loss: 0.7504 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.6841 - loss: 0.7328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.6945 - loss: 0.7155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.7025 - loss: 0.7038" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7100 - loss: 0.6937" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7168 - loss: 0.6855" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7223 - loss: 0.6785" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7274 - loss: 0.6727" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7312 - loss: 0.6695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7348 - loss: 0.6666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7383 - loss: 0.6631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7409 - loss: 0.6608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7431 - loss: 0.6594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7456 - loss: 0.6569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7475 - loss: 0.6550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7487 - loss: 0.6535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7497 - loss: 0.6519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7503 - loss: 0.6503" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7509 - loss: 0.6492" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7518 - loss: 0.6477" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7529 - loss: 0.6460" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7541 - loss: 0.6443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7553 - loss: 0.6426 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7564 - loss: 0.6408" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7572 - loss: 0.6394" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7578 - loss: 0.6380" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7585 - loss: 0.6365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7592 - loss: 0.6350" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7600 - loss: 0.6336" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7606 - loss: 0.6326" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7612 - loss: 0.6316" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7616 - loss: 0.6311" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7620 - loss: 0.6305 - val_accuracy: 0.7100 - val_loss: 0.8008\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 45/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m45s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.2467" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.9375 - loss: 0.3453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 1s/step - accuracy: 0.9306 - loss: 0.3666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.9089 - loss: 0.4001" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.8921 - loss: 0.4192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.8823 - loss: 0.4360" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8710 - loss: 0.4649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8657 - loss: 0.4786" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8590 - loss: 0.4940" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8544 - loss: 0.5043" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8521 - loss: 0.5099" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8497 - loss: 0.5159" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8464 - loss: 0.5241" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8440 - loss: 0.5291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8422 - loss: 0.5331" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8394 - loss: 0.5388" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8376 - loss: 0.5425" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8366 - loss: 0.5444" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8358 - loss: 0.5455" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8353 - loss: 0.5461" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8346 - loss: 0.5471" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8339 - loss: 0.5490" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8333 - loss: 0.5504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8326 - loss: 0.5518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8319 - loss: 0.5530" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8314 - loss: 0.5538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8309 - loss: 0.5545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8306 - loss: 0.5546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8303 - loss: 0.5547 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8300 - loss: 0.5550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8296 - loss: 0.5554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8294 - loss: 0.5558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8289 - loss: 0.5563" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8282 - loss: 0.5573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8276 - loss: 0.5580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8270 - loss: 0.5586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8264 - loss: 0.5591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8257 - loss: 0.5596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8250 - loss: 0.5602 - val_accuracy: 0.7000 - val_loss: 0.8332\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 46/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m39s\u001b[0m 1s/step - accuracy: 0.7500 - loss: 0.8394" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 993ms/step - accuracy: 0.7500 - loss: 0.7714" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 952ms/step - accuracy: 0.7639 - loss: 0.7170" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 955ms/step - accuracy: 0.7760 - loss: 0.6765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 983ms/step - accuracy: 0.7858 - loss: 0.6443" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.7937 - loss: 0.6184 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 988ms/step - accuracy: 0.8003 - loss: 0.6025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 999ms/step - accuracy: 0.8076 - loss: 0.5878" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8120 - loss: 0.5756 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8158 - loss: 0.5660" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 992ms/step - accuracy: 0.8181 - loss: 0.5570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 989ms/step - accuracy: 0.8203 - loss: 0.5488" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 989ms/step - accuracy: 0.8230 - loss: 0.5417" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 999ms/step - accuracy: 0.8235 - loss: 0.5369" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 998ms/step - accuracy: 0.8242 - loss: 0.5322" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 999ms/step - accuracy: 0.8244 - loss: 0.5289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 999ms/step - accuracy: 0.8248 - loss: 0.5261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8253 - loss: 0.5231 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8255 - loss: 0.5204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8245 - loss: 0.5193" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8227 - loss: 0.5206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8214 - loss: 0.5212" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8204 - loss: 0.5214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8199 - loss: 0.5211" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8197 - loss: 0.5205" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8198 - loss: 0.5196" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8198 - loss: 0.5190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8197 - loss: 0.5186" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8195 - loss: 0.5188 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8194 - loss: 0.5187" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8193 - loss: 0.5187" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8189 - loss: 0.5190" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8186 - loss: 0.5192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8184 - loss: 0.5192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8183 - loss: 0.5192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8180 - loss: 0.5196" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8178 - loss: 0.5199" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8175 - loss: 0.5202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m49s\u001b[0m 1s/step - accuracy: 0.8172 - loss: 0.5205 - val_accuracy: 0.6600 - val_loss: 0.9206\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 47/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m40s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.3667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 978ms/step - accuracy: 0.8750 - loss: 0.3568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 973ms/step - accuracy: 0.8750 - loss: 0.3590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 985ms/step - accuracy: 0.8828 - loss: 0.3624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.8913 - loss: 0.3605 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m33s\u001b[0m 1s/step - accuracy: 0.8851 - loss: 0.3685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8785 - loss: 0.3826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8742 - loss: 0.3962" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8712 - loss: 0.4070" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8691 - loss: 0.4143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8665 - loss: 0.4215" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8646 - loss: 0.4261" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8632 - loss: 0.4288" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8615 - loss: 0.4319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8607 - loss: 0.4343" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8606 - loss: 0.4356" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8606 - loss: 0.4365" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8610 - loss: 0.4363" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8611 - loss: 0.4364" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8608 - loss: 0.4372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8607 - loss: 0.4384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8600 - loss: 0.4399" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8595 - loss: 0.4412" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8586 - loss: 0.4431" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8579 - loss: 0.4448" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8567 - loss: 0.4468" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8555 - loss: 0.4488" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8543 - loss: 0.4511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8529 - loss: 0.4534 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8515 - loss: 0.4555" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8503 - loss: 0.4572" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8493 - loss: 0.4587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8485 - loss: 0.4602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8476 - loss: 0.4616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8468 - loss: 0.4628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8460 - loss: 0.4641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8452 - loss: 0.4653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8445 - loss: 0.4664" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8438 - loss: 0.4675 - val_accuracy: 0.6800 - val_loss: 0.9416\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 48/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m45s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.1206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 972ms/step - accuracy: 0.9062 - loss: 0.2499" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.8819 - loss: 0.3032 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.8724 - loss: 0.3395" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 993ms/step - accuracy: 0.8379 - loss: 0.5499" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 991ms/step - accuracy: 0.8198 - loss: 0.6668" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 989ms/step - accuracy: 0.8073 - loss: 0.7395" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 990ms/step - accuracy: 0.8021 - loss: 0.7791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 989ms/step - accuracy: 0.7978 - loss: 0.8031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.7955 - loss: 0.8178 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.7935 - loss: 0.8330" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.7916 - loss: 0.8444" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.7891 - loss: 0.8545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.7857 - loss: 0.8622" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.7828 - loss: 0.8689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.7802 - loss: 0.8736" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.7780 - loss: 0.8772" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.7765 - loss: 0.8802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.7754 - loss: 0.8813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.7748 - loss: 0.8820" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.7741 - loss: 0.8829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.7736 - loss: 0.8830" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.7730 - loss: 0.8826" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.7727 - loss: 0.8819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.7726 - loss: 0.8812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.7723 - loss: 0.8802" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.7721 - loss: 0.8790" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.7718 - loss: 0.8778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.7715 - loss: 0.8763 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.7712 - loss: 0.8748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.7708 - loss: 0.8735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.7702 - loss: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.7697 - loss: 0.8710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.7692 - loss: 0.8697" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.7688 - loss: 0.8682" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.7685 - loss: 0.8666" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.7683 - loss: 0.8648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.7680 - loss: 0.8633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.7677 - loss: 0.8618 - val_accuracy: 0.5400 - val_loss: 1.5664\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 49/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m41s\u001b[0m 1s/step - accuracy: 0.8750 - loss: 0.4650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.9062 - loss: 0.3957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m40s\u001b[0m 1s/step - accuracy: 0.8958 - loss: 0.3910" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m38s\u001b[0m 1s/step - accuracy: 0.8906 - loss: 0.3867" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m36s\u001b[0m 1s/step - accuracy: 0.8825 - loss: 0.3913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.8708 - loss: 0.3969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.8663 - loss: 0.3986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m32s\u001b[0m 1s/step - accuracy: 0.8635 - loss: 0.4018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 1s/step - accuracy: 0.8586 - loss: 0.4130" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 1s/step - accuracy: 0.8552 - loss: 0.4222" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 1s/step - accuracy: 0.8529 - loss: 0.4317" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 1s/step - accuracy: 0.8495 - loss: 0.4414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8463 - loss: 0.4494" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8439 - loss: 0.4558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8421 - loss: 0.4601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8402 - loss: 0.4640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8380 - loss: 0.4699" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8358 - loss: 0.4759" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8340 - loss: 0.4816" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8323 - loss: 0.4866" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8310 - loss: 0.4905" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8291 - loss: 0.4949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8275 - loss: 0.4984" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8263 - loss: 0.5011" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8252 - loss: 0.5035" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8244 - loss: 0.5056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8226 - loss: 0.5086" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8212 - loss: 0.5113" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8197 - loss: 0.5137 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8182 - loss: 0.5161" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8170 - loss: 0.5185" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8160 - loss: 0.5204" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8150 - loss: 0.5223" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8141 - loss: 0.5242" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8132 - loss: 0.5257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8126 - loss: 0.5269" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8121 - loss: 0.5281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8116 - loss: 0.5291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8111 - loss: 0.5301 - val_accuracy: 0.7400 - val_loss: 0.8227\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 50/50\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", "\u001b[1m 1/38\u001b[0m \u001b[37m━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m47s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.2728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 2/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m35s\u001b[0m 988ms/step - accuracy: 1.0000 - loss: 0.2751" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 3/38\u001b[0m \u001b[32m━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 998ms/step - accuracy: 0.9722 - loss: 0.2964" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 4/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m34s\u001b[0m 1s/step - accuracy: 0.9557 - loss: 0.3092 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 5/38\u001b[0m \u001b[32m━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 969ms/step - accuracy: 0.9396 - loss: 0.3213" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 6/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m31s\u001b[0m 973ms/step - accuracy: 0.9253 - loss: 0.3309" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 7/38\u001b[0m \u001b[32m━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m30s\u001b[0m 990ms/step - accuracy: 0.9182 - loss: 0.3372" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 8/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m29s\u001b[0m 984ms/step - accuracy: 0.9049 - loss: 0.3528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m 9/38\u001b[0m \u001b[32m━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━━\u001b[0m \u001b[1m28s\u001b[0m 987ms/step - accuracy: 0.8939 - loss: 0.3682" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m10/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 999ms/step - accuracy: 0.8858 - loss: 0.3799" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m11/38\u001b[0m \u001b[32m━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━━\u001b[0m \u001b[1m27s\u001b[0m 1s/step - accuracy: 0.8807 - loss: 0.3881 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m12/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m26s\u001b[0m 1s/step - accuracy: 0.8767 - loss: 0.3950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/38\u001b[0m \u001b[32m━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━━\u001b[0m \u001b[1m25s\u001b[0m 1s/step - accuracy: 0.8744 - loss: 0.3990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m14/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m24s\u001b[0m 1s/step - accuracy: 0.8731 - loss: 0.4025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m15/38\u001b[0m \u001b[32m━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━━\u001b[0m \u001b[1m23s\u001b[0m 1s/step - accuracy: 0.8727 - loss: 0.4044" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m16/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m22s\u001b[0m 1s/step - accuracy: 0.8719 - loss: 0.4063" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m17/38\u001b[0m \u001b[32m━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━━\u001b[0m \u001b[1m21s\u001b[0m 1s/step - accuracy: 0.8703 - loss: 0.4086" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m18/38\u001b[0m \u001b[32m━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━━\u001b[0m \u001b[1m20s\u001b[0m 1s/step - accuracy: 0.8683 - loss: 0.4118" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m19/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m19s\u001b[0m 1s/step - accuracy: 0.8665 - loss: 0.4152" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m20/38\u001b[0m \u001b[32m━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━━\u001b[0m \u001b[1m18s\u001b[0m 1s/step - accuracy: 0.8654 - loss: 0.4178" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m21/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m17s\u001b[0m 1s/step - accuracy: 0.8644 - loss: 0.4202" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m22/38\u001b[0m \u001b[32m━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━━\u001b[0m \u001b[1m16s\u001b[0m 1s/step - accuracy: 0.8636 - loss: 0.4224" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m23/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m15s\u001b[0m 1s/step - accuracy: 0.8622 - loss: 0.4251" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m24/38\u001b[0m \u001b[32m━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━━\u001b[0m \u001b[1m14s\u001b[0m 1s/step - accuracy: 0.8608 - loss: 0.4278" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m25/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m13s\u001b[0m 1s/step - accuracy: 0.8596 - loss: 0.4304" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m26/38\u001b[0m \u001b[32m━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━━\u001b[0m \u001b[1m12s\u001b[0m 1s/step - accuracy: 0.8585 - loss: 0.4328" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m27/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m11s\u001b[0m 1s/step - accuracy: 0.8576 - loss: 0.4349" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m28/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━━\u001b[0m \u001b[1m10s\u001b[0m 1s/step - accuracy: 0.8566 - loss: 0.4371" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m29/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m9s\u001b[0m 1s/step - accuracy: 0.8558 - loss: 0.4389 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m30/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━━\u001b[0m \u001b[1m8s\u001b[0m 1s/step - accuracy: 0.8547 - loss: 0.4407" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m31/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m7s\u001b[0m 1s/step - accuracy: 0.8537 - loss: 0.4429" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m32/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━━\u001b[0m \u001b[1m6s\u001b[0m 1s/step - accuracy: 0.8526 - loss: 0.4452" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m33/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m5s\u001b[0m 1s/step - accuracy: 0.8516 - loss: 0.4474" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m34/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━━\u001b[0m \u001b[1m4s\u001b[0m 1s/step - accuracy: 0.8505 - loss: 0.4499" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m35/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m3s\u001b[0m 1s/step - accuracy: 0.8494 - loss: 0.4522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m36/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━━\u001b[0m \u001b[1m2s\u001b[0m 1s/step - accuracy: 0.8484 - loss: 0.4542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m37/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m━\u001b[0m \u001b[1m1s\u001b[0m 1s/step - accuracy: 0.8473 - loss: 0.4565" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 1s/step - accuracy: 0.8463 - loss: 0.4586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m50s\u001b[0m 1s/step - accuracy: 0.8454 - loss: 0.4606 - val_accuracy: 0.7000 - val_loss: 0.9533\n" ] } ], "source": [ "history = model.fit(x = train_ds,\n", " epochs = 50, \n", " validation_data = val_ds)" ] }, { "cell_type": "markdown", "metadata": { "id": "KKUfMNVns2hu" }, "source": [ "### Visualize the results\n", "\n", "Create plots of the loss and accuracy on the training and validation sets:" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:41:20.477421Z", "iopub.status.busy": "2024-08-16T08:41:20.477160Z", "iopub.status.idle": "2024-08-16T08:41:20.855947Z", "shell.execute_reply": "2024-08-16T08:41:20.855299Z" }, "id": "Cd5tpNrtOrs7" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABeEAAAN+CAYAAACSPMAzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1dvG8e+m90AghR567733IoogFsSCIKg/BRV7f+2iYBd7w4YoKqgovffeeyeUEGpCCKm77x8nCSAtCbuZTXJ/rivXnp2dnbkDCSTPnHmOzeFwOBAREREREREREREREafzsDqAiIiIiIiIiIiIiEhhpSK8iIiIiIiIiIiIiIiLqAgvIiIiIiIiIiIiIuIiKsKLiIiIiIiIiIiIiLiIivAiIiIiIiIiIiIiIi6iIryIiIiIiIiIiIiIiIuoCC8iIiIiIiIiIiIi4iIqwouIiIiIiIiIiIiIuIiK8CIiIiIiIiIiIiIiLqIivIiIiIiIiIiIiIiIi6gILyIiIiJSyIwZMwabzcaKFSusjiIiIiIiUuSpCC8iIiIiIiIiIiIi4iIqwouIiIiIiIiIiIiIuIiK8CIiIiIiRdDq1au55pprCAkJISgoiM6dO7NkyZLz9klLS+Pll1+matWq+Pn5UaJECdq0acP06dOz94mNjWXQoEGULVsWX19fSpUqRe/evdmzZ08+f0YiIiIiIu7Jy+oAIiIiIiKSvzZu3Ejbtm0JCQnhySefxNvbm88//5wOHTowd+5cmjdvDsBLL73EiBEjGDJkCM2aNSMhIYEVK1awatUqunbtCsCNN97Ixo0befDBB4mOjiYuLo7p06ezb98+oqOjLfwsRURERETcg83hcDisDiEiIiIiIs4zZswYBg0axPLly2nSpMkFr99www38+++/bN68mUqVKgFw6NAhqlevTsOGDZk7dy4ADRo0oGzZskyaNOmi5zl58iTFixdn1KhRPP744677hERERERECjC1oxERERERKUIyMjKYNm0affr0yS7AA5QqVYrbbruNBQsWkJCQAECxYsXYuHEj27dvv+ix/P398fHxYc6cOZw4cSJf8ouIiIiIFDQqwouIiIiIFCFHjhwhKSmJ6tWrX/BazZo1sdvtxMTEAPDKK69w8uRJqlWrRt26dXniiSdYt25d9v6+vr689dZbTJ48mcjISNq1a8fIkSOJjY3Nt89HRERERMTdqQgvIiIiIiIX1a5dO3bu3Mk333xDnTp1+Oqrr2jUqBFfffVV9j7Dhw9n27ZtjBgxAj8/P1544QVq1qzJ6tWrLUwuIiIiIuI+VIQXERERESlCwsPDCQgIYOvWrRe8tmXLFjw8PChXrlz2trCwMAYNGsTPP/9MTEwM9erV46WXXjrvfZUrV+axxx5j2rRpbNiwgdTUVN555x1XfyoiIiIiIgWCivAiIiIiIkWIp6cn3bp1488//2TPnj3Z2w8fPszYsWNp06YNISEhABw7duy89wYFBVGlShVSUlIASEpKIjk5+bx9KleuTHBwcPY+IiIiIiJFnZfVAURERERExDW++eYbpkyZcsH2l156ienTp9OmTRseeOABvLy8+Pzzz0lJSWHkyJHZ+9WqVYsOHTrQuHFjwsLCWLFiBb/99hvDhg0DYNu2bXTu3JlbbrmFWrVq4eXlxYQJEzh8+DC33nprvn2eIiIiIiLuzOZwOBxWhxAREREREecZM2YMgwYNuuTrMTExHDlyhGeeeYaFCxdit9tp3rw5r7/+Oi1btsze7/XXX+evv/5i27ZtpKSkUKFCBe68806eeOIJvL29OXbsGC+++CIzZ84kJiYGLy8vatSowWOPPcbNN9+cH5+qiIiIiIjbUxFeRERERERERERERMRF1BNeRERERERERERERMRFVIQXEREREREREREREXERFeFFRERERERERERERFzE0iL8p59+Sr169QgJCSEkJISWLVsyefLky75n/Pjx1KhRAz8/P+rWrcu///6bT2lFRERERERERERERHLH0iJ82bJlefPNN1m5ciUrVqygU6dO9O7dm40bN150/0WLFtG/f38GDx7M6tWr6dOnD3369GHDhg35nFxERERERERERERE5MpsDofDYXWIc4WFhTFq1CgGDx58wWv9+vXj9OnTTJo0KXtbixYtaNCgAZ999ll+xhQRERERERERERERuSIvqwNkycjIYPz48Zw+fZqWLVtedJ/Fixfz6KOPnrete/fuTJw48ZLHTUlJISUlJfu53W7n+PHjlChRApvN5pTsIiIiIiIiIiIiIlJ0OBwOTp06RenSpfHwuHzDGcuL8OvXr6dly5YkJycTFBTEhAkTqFWr1kX3jY2NJTIy8rxtkZGRxMbGXvL4I0aM4OWXX3ZqZhERERERERERERGRmJgYypYte9l9LC/CV69enTVr1hAfH89vv/3GXXfdxdy5cy9ZiM+tZ5555rzZ8/Hx8ZQvX56YmBhCQkKccg4RERERERERERERKToSEhIoV64cwcHBV9zX8iK8j48PVapUAaBx48YsX76cDz74gM8///yCfaOiojh8+PB52w4fPkxUVNQlj+/r64uvr+8F20NCQlSEFxEREREREREREZE8y0nL88s3q7GA3W4/r4f7uVq2bMnMmTPP2zZ9+vRL9pAXEREREREREREREbGSpTPhn3nmGa655hrKly/PqVOnGDt2LHPmzGHq1KkADBgwgDJlyjBixAgAHn74Ydq3b88777zDtddey7hx41ixYgVffPGFlZ+GiIiIiIiIiIiIiMhFWVqEj4uLY8CAARw6dIjQ0FDq1avH1KlT6dq1KwD79u07b2XZVq1aMXbsWJ5//nmeffZZqlatysSJE6lTp45Vn4KIiIiIiIiIiIiIyCXZHA6Hw+oQ+SkhIYHQ0FDi4+PVE15EREREREREREScJiMjg7S0NKtjiBN4e3vj6el5yddzU2e2fGFWERERERERERERkYLM4XAQGxvLyZMnrY4iTlSsWDGioqJytPjq5agILyIiIiIiIiIiInIVsgrwERERBAQEXHXRVqzlcDhISkoiLi4OgFKlSl3V8VSEFxEREREREREREcmjjIyM7AJ8iRIlrI4jTuLv7w+YdU0jIiIu25rmSjyuvIuIiIiIiIiIiIiIXExWD/iAgACLk4izZf2dXm2ffxXhRURERERERERERK6SWtAUPs76O1URXkRERERERERERETERVSEFxERERERERERERGniI6O5v3337c6hltREV5ERERERERERESkiLHZbJf9eOmll/J03OXLl3Pvvfc6N2wB52V1ABERERERERERERHJX4cOHcoe//LLL/zf//0fW7duzd4WFBSUPXY4HGRkZODldeVycnh4uHODFgKaCS8iIiIiIiIiIiJSxERFRWV/hIaGYrPZsp9v2bKF4OBgJk+eTOPGjfH19WXBggXs3LmT3r17ExkZSVBQEE2bNmXGjBnnHfe/7WhsNhtfffUVN9xwAwEBAVStWpW//vornz9ba6kILyIiIiIiIiIiIuJEDoeDpNR0Sz4cDofTPo+nn36aN998k82bN1OvXj0SExPp2bMnM2fOZPXq1fTo0YNevXqxb9++yx7n5Zdf5pZbbmHdunX07NmT22+/nePHjzstp7tTOxoRERERERERERERJzqTlkGt/5tqybk3vdKdAB/nlH1feeUVunbtmv08LCyM+vXrZz9/9dVXmTBhAn/99RfDhg275HEGDhxI//79AXjjjTf48MMPWbZsGT169HBKTnenmfAiIiIiIiIiIiIicoEmTZqc9zwxMZHHH3+cmjVrUqxYMYKCgti8efMVZ8LXq1cvexwYGEhISAhxcXEuyeyONBNeRERERERERERExIn8vT3Z9Ep3y87tLIGBgec9f/zxx5k+fTpvv/02VapUwd/fn5tuuonU1NTLHsfb2/u85zabDbvd7rSc7k5FeBEREREREREREREnstlsTmsJ404WLlzIwIEDueGGGwAzM37Pnj3WhioA1I5GRERERERERERERK6oatWq/PHHH6xZs4a1a9dy2223FakZ7XmlIryIiIiIiIiIiIiIXNG7775L8eLFadWqFb169aJ79+40atTI6lhuz+ZwOBxWh8hPCQkJhIaGEh8fT0hIiNVxREREREREREREpABLTk5m9+7dVKxYET8/P6vjiBNd7u82N3VmzYQXEREREREREREREXERFeFFRERERERERERERFxERXgRERERERERERERERdREV5ERERERERERERExEVUhBcRERERERERERERcREV4UVEREREREREREREXERFeBERERERERERERERF1ERXkRERERERERERETERVSEFxERERERERERERFxERXhRURERERERERERCTXOnTowPDhw7OfR0dH8/7771/2PTabjYkTJ171uZ11nPygIryIiIiIiIiIiIhIEdOrVy969Ohx0dfmz5+PzWZj3bp1uTrm8uXLuffee50RL9tLL71EgwYNLth+6NAhrrnmGqeey1VUhBcREREREREREREpYgYPHsz06dPZv3//Ba99++23NGnShHr16uXqmOHh4QQEBDgr4mVFRUXh6+ubL+e6WirCi4iIiIiIiIiIiBQx1113HeHh4YwZM+a87YmJiYwfP54+ffrQv39/ypQpQ0BAAHXr1uXnn3++7DH/245m+/bttGvXDj8/P2rVqsX06dMveM9TTz1FtWrVCAgIoFKlSrzwwgukpaUBMGbMGF5++WXWrl2LzWbDZrNl5/1vO5r169fTqVMn/P39KVGiBPfeey+JiYnZrw8cOJA+ffrw9ttvU6pUKUqUKMHQoUOzz+VKXi4/g4iIiIiIiIiIiEhR4nBAWpI15/YOAJvtirt5eXkxYMAAxowZw3PPPYct8z3jx48nIyODO+64g/Hjx/PUU08REhLCP//8w5133knlypVp1qzZFY9vt9vp27cvkZGRLF26lPj4+PP6x2cJDg5mzJgxlC5dmvXr13PPPfcQHBzMk08+Sb9+/diwYQNTpkxhxowZAISGhl5wjNOnT9O9e3datmzJ8uXLiYuLY8iQIQwbNuy8iwyzZ8+mVKlSzJ49mx07dtCvXz8aNGjAPffcc8XP52qoCC8iIiIiIiIiIiLiTGlJ8EZpa8797EHwCczRrnfffTejRo1i7ty5dOjQATCtaG688UYqVKjA448/nr3vgw8+yNSpU/n1119zVISfMWMGW7ZsYerUqZQubf4s3njjjQv6uD///PPZ4+joaB5//HHGjRvHk08+ib+/P0FBQXh5eREVFXXJc40dO5bk5GS+//57AgPN5z569Gh69erFW2+9RWRkJADFixdn9OjReHp6UqNGDa699lpmzpzp8iK82tGIiIiIiIiIiIiIFEE1atSgVatWfPPNNwDs2LGD+fPnM3jwYDIyMnj11VepW7cuYWFhBAUFMXXqVPbt25ejY2/evJly5cplF+ABWrZsecF+v/zyC61btyYqKoqgoCCef/75HJ/j3HPVr18/uwAP0Lp1a+x2O1u3bs3eVrt2bTw9PbOflypViri4uFydKy80E15ERERERERERETEmbwDzIx0q86dC4MHD+bBBx/k448/5ttvv6Vy5cq0b9+et956iw8++ID333+funXrEhgYyPDhw0lNTXVa1MWLF3P77bfz8ssv0717d0JDQxk3bhzvvPOO085xLm9v7/Oe22w27Ha7S851LhXhRURERERERERERJzJZstxSxir3XLLLTz88MOMHTuW77//nvvvvx+bzcbChQvp3bs3d9xxB2B6vG/bto1atWrl6Lg1a9YkJiaGQ4cOUapUKQCWLFly3j6LFi2iQoUKPPfcc9nb9u7de94+Pj4+ZGRkXPFcY8aM4fTp09mz4RcuXIiHhwfVq1fPUV5XUjsaERERERERERERkSIqKCiIfv368cwzz3Do0CEGDhwIQNWqVZk+fTqLFi1i8+bN3HfffRw+fDjHx+3SpQvVqlXjrrvuYu3atcyfP/+8YnvWOfbt28e4cePYuXMnH374IRMmTDhvn+joaHbv3s2aNWs4evQoKSkpF5zr9ttvx8/Pj7vuuosNGzYwe/ZsHnzwQe68887sfvBWUhFeREREREREREREpAgbPHgwJ06coHv37tk93J9//nkaNWpE9+7d6dChA1FRUfTp0yfHx/Tw8GDChAmcOXOGZs2aMWTIEF5//fXz9rn++ut55JFHGDZsGA0aNGDRokW88MIL5+1z44030qNHDzp27Eh4eDg///zzBecKCAhg6tSpHD9+nKZNm3LTTTfRuXNnRo8enfs/DBewORwOh9Uh8lNCQgKhoaHEx8cTEhJidRwREREREREREREpwJKTk9m9ezcVK1bEz8/P6jjiRJf7u81NnVkz4UVEREREREREREREXERFeBERERERERERERERF1ERXkRERERERERERETERVSEFxERERERERERERFxERXhRURERERERERERK6Sw+GwOoI4mbP+TlWEF3FXKYnwy53w51A4GWN1GhERERERERERuQhvb28AkpKSLE4izpb1d5r1d5xXXs4IIyIusOxz2PyXGa//DVo8AG0eAb8Qa3OJiIiIiIiIiEg2T09PihUrRlxcHAABAQHYbDaLU8nVcDgcJCUlERcXR7FixfD09Lyq46kIL+KOUhJh0WgzLlEFju2ABe/C6h+g47PQcAB46ttXRERERERERMQdREVFAWQX4qVwKFasWPbf7dVQFU/EHS3/Cs4ch7BK8MBS2D4Vpv+fKcZPegSWfg7dXoeqXaxOKiIiIiIiIiJS5NlsNkqVKkVERARpaWlWxxEn8Pb2vuoZ8FlUhBdxN6mnYdFHZtzuCTPjvca1ULUbrPgG5oyAI1vgpxuhcifo9hpE1rY2s4iIiIiIiIiI4Onp6bTCrRQeWphVxN0s/xqSjkLxaKh7y9ntnt7Q/D54aDW0HAYe3rBzFnzWBv56CE4dtiyyiIiIiIiIiIiIXJylRfgRI0bQtGlTgoODiYiIoE+fPmzduvWy7xkzZgw2m+28Dz8/v3xKLOJiqUmw6EMzbvv4xfu++xeH7q/DsGVQqzc47LDqO/ioEcwbZY4hIiIiIiIiIiIibsHSIvzcuXMZOnQoS5YsYfr06aSlpdGtWzdOnz592feFhIRw6NCh7I+9e/fmU2IRF1v5LZw+AsUqQP1bL79vWCW45Xu4eyqUaQKpiTDrNRjdBNaOA7s9fzKLiIiIiIiIiIjIJVnaE37KlCnnPR8zZgwRERGsXLmSdu3aXfJ9NpvNKavSiriVtDOw8AMzbvuYaT+TE+VbwJAZsOF3mPEyxO+DCffBkk/NjPnoNq7LLCIiIiIiIiIiIpflVj3h4+PjAQgLC7vsfomJiVSoUIFy5crRu3dvNm7ceMl9U1JSSEhIOO9DxC2tHAOJhyG0HNTvn7v32mxQ9yYYthy6vAQ+wXBoDYy5FsbdDsd2uiCwiIiIiIiIiIiIXInbFOHtdjvDhw+ndevW1KlT55L7Va9enW+++YY///yTH3/8EbvdTqtWrdi/f/9F9x8xYgShoaHZH+XKlXPVpyCSd2nJsOB9M277KHj55O043n7Q5hGzeGuTwWDzhC2T4ONmMPlpSDrutMgiIiIiIiIiIiJyZTaHw+GwOgTA/fffz+TJk1mwYAFly5bN8fvS0tKoWbMm/fv359VXX73g9ZSUFFJSUrKfJyQkUK5cOeLj4wkJCXFKdpGrtvQLmPwEhJSFh1aBl69zjhu3Bab/H2yfap77hUK7J6HZPc47h4iIiIiIiIiISBGTkJBAaGhojurMbjETftiwYUyaNInZs2fnqgAP4O3tTcOGDdmxY8dFX/f19SUkJOS8DxG3kp4CC94z4zbDnVscj6gBt/8Kd06EyDqQHA/TnjMz4zf9Ce5xDU5ERERERERERKTQsrQI73A4GDZsGBMmTGDWrFlUrFgx18fIyMhg/fr1lCpVygUJRfLB6h/g1EEILg2NBrjmHJU7wn3z4PrREBQJJ/bArwPg22tg/0rXnFNERERERERERESsLcIPHTqUH3/8kbFjxxIcHExsbCyxsbGcOXMme58BAwbwzDPPZD9/5ZVXmDZtGrt27WLVqlXccccd7N27lyFDhljxKYhcnfQUmJ81C/4R17aI8fCERnfCg6ug/VPg5Q/7FsNXneD3IXAyxnXnFhERERERERERKaIsLcJ/+umnxMfH06FDB0qVKpX98csvv2Tvs2/fPg4dOpT9/MSJE9xzzz3UrFmTnj17kpCQwKJFi6hVq5YVn4LI1VnzEyTsh6Ao182C/y/fIOj4LDy4EurfBthg/Xj4qLFZvDXh0BUPISIiIiIiIiIiIjnjNguz5pfcNMwXcan0VPioEcTHQI83ocX91uQ4uAamPQ975pvnnr7mgkCb4RCauzUaREREREREREREioICtzCrSJG09mdTgA+KhMYDrctRugHc9bdZvLV8S8hIgeVfwgcN4O/hcGKvddlEREREREREREQKOBXhRayQkQbz3zbj1g+Dt7+1eWw2s3jroMmmIB/dFuxpsPJbM1v/z2FwfLe1GUVERERERERERAogFeFFrLB2HJzcB4Hh0HiQ1WnOstmgYjsYOAkG/guVOoA9HVb/YHrGT7gfju20OqWIiIiIiIiIiEiBoSJ8UXRsJ/zQF04dtjpJ0ZSRfnYWfKuHwCfA2jyXEt0aBvwJd0+DKl3AkQFrx8LoJvDHvXBkm9UJRURERERERERE3J6K8EWNwwET74edM+H3waYgLPlr/a9wYg8ElISmg61Oc2Xlm8Mdv8OQWVCtBzjssO4X+LgZ/HY3xG22OqGIiIiIiIiIiIjbUhG+qLHZ4PrR4BMEe+bDrFetTlS0ZKTDvFFm3OpB8Am0Nk9ulG0Mt/0C986FGtcBDtjwO3zSAn4dALHrrU4oIiIiIiIiIiLidlSEL4rCq0Hv0Wa88H3YPMnSOEXKht/h+C7wD4OmQ6xOkzelG8CtP8H/FkCt3mbbpj/hszYw7nY4uMbKdCIiIiIiIiIiIm5FRfiiqvYN0GKoGU/UYpv5wp5xziz4YeAbZG2eqxVVF275Hu5fDHVuBGywZRJ80R7G9oP9K61OKCIiIiIiIiIiYjkV4Ysou90BXV+Gci0gJcG0E0lNsjpW4bbhDzi2HfyLQ7N7rU7jPJG14KZvYOgyqNcPbB6wbQp81Ql+vBH2LbU6oYiIiIiIiIiIiGVUhC+C1sacpOeH89l3Mg1uHgOB4XB4A/zzqFm4VZzPngHzRppxi6HgG2xtHlcIrwZ9v4BhK6DB7WDzhB0z4Jtu8N31sGeh1QlFRERERERERETynYrwRYzD4eD1fzazJfYUQ75fTqJvONz0rZm9vPZnWPmt1RELp00T4eg28AuF5oVoFvzFlKgMfT6BB1dCowHg4QW758KYnvDttbB7ni72iIiIiIiIiIhIkaEifBFjs9n4sH9DwoN92XY4keHj1mCv0AY6v2h2mPwUHFAvb6ey22FuZi/4FkNNIb4oCKsI138ED62GJneDhzfsXQDf9TI94zPSrU4oIiIiIiIiIiLicirCF0FRoX58cWdjfLw8mLH5MO9M3wqtH4Ya10FGKvx6FyQdtzpm4bH5TziyGXxDofl9VqfJf8XKw3XvwcNrTC98Tx/YPhU2/GZ1MhEREREREREREZdTEb6Iali+OG/2rQvAx7N38ufag6aFSFgliI+B34eYPuZydc6bBf8/8C9maRxLhZaFnqOgw9Pm+fx3zJ+PiIiIiIiIiIhIIaYifBHWt1FZ7mtXCYAnf1vH+qPALT+Alz/snAnzRlkbsDDYMgniNoJvCLS43+o07qHpPaYlz9FtsPkvq9OIiIiIiIiIiIi4lIrwRdyTPWrQoXo4Kel27vl+BXEBVUzrEIA5b8L2GdYGLMjsdpg70oyb3wf+xa3N4y78QqBZZlueeW9rkVYRERERERERESnUVIQv4jw9zEKtlcIDiU1I5t4fVpJc+xZoPAhwwB9D4OQ+q2MWTFv/hcPrwScIWjxgdRr30uJ+8A40fz7bplqdRkRERERERERExGVUhBdC/Lz5+q6mhPh5sSbmJM9N2ICjxwgo3RDOnIBfB0B6itUxCxaHA+a+ZcbN7oWAMGvzuJuAMGg62IznjdJseBERERERERERKbRUhBcAKpYM5OPbG+Fhg99X7efrJYfg5u9MC5WDq2HK01ZHLFi2TYHYdWa2d8thVqdxTy2HgacvHFgBu+danUZERERERERERMQlVISXbG2rhvP8tbUAeOPfzcyO84e+XwE2WPENrPnZ2oAFhcNh+ukDNBsCgSWszeOugiOh8V1mPO9ta7OIiIiIiIiIiIi4iIrwcp5BraO5pUlZ7A54aOxqdoS2gA6Zs+AnPQKxG6wNWBBsnw6H1oB3ALR6yOo07q3VQ+DhDXvmw74lVqcRERERERERERFxOhXh5Tw2m41X+9ShSYXinEpJ597vVxDf9BGo0gXSz8Cvd0JyvNUx3ZfDAXMzZ8E3HQyBJa3N4+6KlYP6t5qxZsOLiIiIiIiIiEghpCK8XMDXy5NP72hM6VA/dh09zbBxa0jv/TmEloPju2DiA1pI81J2zIQDK8HLX7Pgc6rNI2DzgB3TzfoDIiIiIiIiIiIihYiK8HJR4cG+fDGgCf7enszffpQRc+Pglu/A0we2TIJFH1od0f2cOwu+yd0QFGFtnoKiRGWoc5MZz3/H2iwiIiIiIiIiIiJOpiK8XFKdMqG8fXN9AL5esJtfD0XANW+ZF2e8BLvnWxfOHe2aDfuXg5cftH7Y6jQFS9vHzOPmvyFus7VZREREREREREREnEhFeLmsa+uV4qHOVQF4fsIGVpbsDfX7g8MOv90NCYcsTugmHA6Yk3mBovEgCI60Nk9BE1EDavYyY82GFxERERERERGRQkRFeLmi4Z2r0r12JKkZdu77cTWH2rwOEbXhdByMHwgZaVZHtN7uuRCzBDx9NQs+r9o+bh43/A7HdlqbRURERERERERExElUhJcr8vCw8e4tDagRFczRxBSG/LyJ5L5jwDfEFJ6nv2h1ROvNHWkeG98FIaWszVJQlW4AVbuZuywWvGd1GhEREREREREREadQEV5yJNDXiy8HNCEs0IeNBxN4bFYijj6fmBeXfAwbJ1gb0Eq758PehWbR2tbDrU5TsGXNhl/7M5yMsTaLiIiIiIiIiIiIE6gILzlWLiyAT29vhJeHjX/WHWL0wRpnW6/8OQyObLM2oFXmZvaCbzQAQstYm6WgK98cotuCPR0WfWh1GhERERERERERkaumIrzkSvNKJXildx0A3pm+jamR90KFNpCaCL/eCSmJFifMZ3sWwp754OGtWfDO0u4J87jyOzh12NosIiIiIiIiIiIiV0lFeMm125qX566WFQB45LcNbG//AQRFwZEt8PfD4HBYnDAfZc2Cb3gHFCtnbZbComI7KNsUMlJg8UdWpxEREREREREREbkqKsJLnjx/XS1aVS5BUmoGg8bvI6HXl2DzhA2/wbIvrY6XP/Ytgd1zwcML2j5qdZrCw2Y7Oxt++TeQdNzaPCIiIiIiIiIiIlfBy+oAUjB5e3rw8W2N6P3xQvYdT+KeOWH81OUVvKY/B1OfhdINoFwz1wVwOCA+Bg5vgriN5vHYDggIg+IVIazS2Y/i0eDt5/wMc940jw1ug2LlnX/8oqxqN4iqC7HrYcmn0Ok5qxOJiIiIiIiIiIjkic3hKEq9QyAhIYHQ0FDi4+MJCQmxOk6Bt+3wKfp+sojElHRub1aO19Pfhk1/QnBp+N98CCx59Sc5cyKz2L4JDm80j3GbISUhhwewQUjpzKL8OQX64hXNc9/g3GeKWQZfdzWz4B9caQr94lwbJ8L4u8A3FB5ZD36hVicSEREREREREREBcldn1kx4uSrVIoN5v18D7vlhBT8ti6HudU9x6+FNcGw7/HY33DkBPDxzdrD0FDiy9fxi++FNcOrgxff38IaS1SCiJkTWgpLVIfkkHN91zsduU6xPOGA+9sy/8DiBERcW6MMqmiJ9QNjFz53VC77+rSrAu0rN683f6dGtsPwraPuY1YlERERERERERERyTTPhxSk+mbODkVO24uVhY/yNxWg45UZIS4K2j0PnF87f2W6Hk3vPFtnPbSfjyLj4CULLQUQtU2yPrGPGJaqAl8/lgzkcpqf4uYX5E7vPjpOOXf79fsXOb20TVhFsHjDhPtMD/8EVZru4xtpfYMK9EFAChq8Hn0CrE4mIiIiIiIiIiOSqzqwivDiFw+Fg+C9r+HPNQYoFeDOjSxwlpw01L14z0hTDs4rtR7ZAauLFD+QXChG1TbE9ohZE1jYz3V3ViuTMycyi/O6zM+ezCvWnDl3+vfVvgxs+dU0uMTLSYXRjOLEHur8BLYdanUhERERERERERERF+MtREd51ktMyuOXzxazbH0+1yCAmVfkLn5VfXXxnTx/TauS8Ynst07vdZsvf4JeSetoUf89tbZP16OEJAyaqFU1+WDkG/n4YgkvBQ2tcs8iuiIiIiIiIiIhILqgIfxkqwrtWbHwyvUYv4MipFLrXCOMz3w+xxW02s9mz2slE1IYSlcHT2+q4UhCkp8CHDU1P/2vfhaaDrU4kIiIiIiIiIiJFnIrwl6EivOut3neCfl8sITXdztCOlXmiew2rI0lBt/RzmPwkhJaHh1bpAo6IiIiIiIiIiFgqN3Vmj3zKJEVIw/LFebNvXQA+nr2TP9ccsDiRFHiNBkBgOMTvg/XjrU4jIiIiIiIiIiKSYyrCi0v0bVSW+9pVAuCRX9bw+Pi1HDh5xuJUUmB5+0PLYWY8/x2wZ1ibR0REREREREREJIdUhBeXebJHDW5qXBa7A35buZ+Ob8/htUmbOHE61epoUhA1HQx+xeDYDtg00eo0IiIiIiIiIiIiOaIivLiMp4eNt2+uz4QHWtGiUhip6Xa+WrCbdiNnM3rWdpJS062OKAWJbzC0uN+M570Ddru1ec6VehritkDRWmJDRERERERERERyQEV4cbmG5Yvz8z0tGDOoKTVLhXAqJZ23p22j/ag5/LBkL2kZblRMFffW7F7wCYa4jbBtitVpjNj18EkL+KQ5fNMdtk5RMV5ERERERERERLLZHI6iVS3Kzaq14nx2u4O/1x3k7WlbiTluesRHlwjgsW7VubZuKTw8bBYnFLc34yVY8B6UbgT3zAKbhV8zG/6AP4dCWtL52yNqQ5tHoPYN4OllTTYREREREREREXGZ3NSZVYQXS6Sm2/l52T4+mrWdo4mmR3ydMiE81aMGbauGW5xO3FriEXi/LqSfgTsnQOVO+Z/BngGzXjUXAwAqdYQeI2DNWFjxDaQmmu3Fo6HVQ9DgdvD2y/+cIiIiIiIiIiLiEirCX4aK8O4lMSWdr+fv5ot5OzmdmgFA6yoleKpHDeqVLWZtOHFfk5+GpZ9ChdYw6N/8PfeZk/D7ENgx3Txv9RB0fvHsjPczJ2DZV7DkEzhz3GwLioSWQ6HJ3aa3vYiIiIiIiIiIFGgqwl+GivDu6VhiCqNn7+DHJXtJyzBfktfWLcVj3apRKTzI4nTiduIPwIcNICMVBk2GCq3y57xxW2DcbXB8J3j5wfWjod7NF9839TSs+h4WfQQJB8w2v1DT1775/RBYIn8yi4iIiIiIiIiI0+WmzmzpwqwjRoygadOmBAcHExERQZ8+fdi6desV3zd+/Hhq1KiBn58fdevW5d9/83kmrDhdiSBfXuxVm1mPdaBvwzLYbPDP+kN0fW8ez/yxnsMJyVZHFHcSWgYa3GbG897On3NungRfdTYF+NBycPfUSxfgAXwCocX98NAa6P0xlKgCyfEwbxS8X8fM5o/fnz/ZRURERERERETEMpYW4efOncvQoUNZsmQJ06dPJy0tjW7dunH69OlLvmfRokX079+fwYMHs3r1avr06UOfPn3YsGFDPiYXVykXFsC7/Rrw70Nt6VQjggy7g5+X7aP9qNm8NWUL8WfSrI4o7qL1cLB5ws6ZcGCl685jt8PsEfDL7abXe3RbuHcOlG6Qs/d7+UDDO2DoMrj5OyhV3yzkuvRT+KABTBwKR7e7Lr+IiIiIiIiIiFjKrdrRHDlyhIiICObOnUu7du0uuk+/fv04ffo0kyZNyt7WokULGjRowGeffXbFc6gdTcGybPdx3py8mVX7TgIQ6u/NAx0qc1eraPy8Pa0NJ9ab8D9Y+zNUvxb6j3X+8ZMTzDm2/mOeN7sPur8Ont55P6bDATtnmUVd98zP3GiDmr2g7aNQuuFVxxYREREREREREdcqMO1o/is+Ph6AsLCwS+6zePFiunTpct627t27s3jxYpdmE2s0qxjG7/e34os7G1M1Ioj4M2mMmLyFjm/P4Zfl+0jPsFsdUazU5lHAZorkhzc699hHd8BXXcyxPX1MS5meI6+uAA9gs0GVzjBwEgyeDtWuARyw+S/4ogP8cAPsnm+K9SIiIiIiIiIiUuC5TRHebrczfPhwWrduTZ06dS65X2xsLJGRkedti4yMJDY29qL7p6SkkJCQcN6HFCw2m41utaOYMrwdI2+qR+lQPw7FJ/PU7+vp8cF8pmyIxY1u6JD8FF4NavU24/nvOO+426fDl53g6FYILmUWf214h/OOn6VcM7htHNy/COrektleZxZ8dx183RW2/Gva4YiIiIiIiIiISIHlNkX4oUOHsmHDBsaNG+fU444YMYLQ0NDsj3Llyjn1+JJ/PD1s3NKkHLMe78BzPWtSLMCbHXGJ/O/HlfT9dBFLdh2zOqJYod3j5nHDH1ffW93hgPnvwk83Q0o8lG1m+r+XbXLVMS8rsjbc+CU8uBKaDAZPX9i/HMb1h09bwdpfICPdtRlERERERERERMQl3KIIP2zYMCZNmsTs2bMpW7bsZfeNiori8OHD5207fPgwUVFRF93/mWeeIT4+PvsjJibGabnFGn7entzTrhLznuzI0I6V8fP2YPW+k9z6xRLu/HopK/eesDqi5Keoumdbuix4L+/HST0Nvw2CmS+bYzW6y7SMCb74vy0uEVYRrnsXhq+H1g+DTzAc2QwT7oWPGsKyLyHtTP7lERERERERERGRq2bpwqwOh4MHH3yQCRMmMGfOHKpWrXrF9/Tr14+kpCT+/vvv7G2tWrWiXr16Wpi1iIpLSOaDmdv5ZXkM6Xbz5dyuWjjDu1SlUfniFqeTfLF/BXzVGTy84MFVULxC7t5/Yg+Mux0ObzDH6DkKmtztkqi5cuYkLP8SlnwKSZl3egRGQMuh0HQI+AZZGk/EJRwO+PFGSD5pWkF5+VqdSEREREREROQCuakzW1qEf+CBBxg7dix//vkn1atXz94eGhqKv78/AAMGDKBMmTKMGDECgEWLFtG+fXvefPNNrr32WsaNG8cbb7zBqlWrLttLPouK8IXXvmNJjJ69nd9XHSAjsxjfvlo4D6sYXzR83xt2zTHtXK57N+fv2zUHxg+EMycgMBxu+QEqtHRRyDxKTYJV38OijyBhv9kWUAJaDoNm94BvsLX5RJzp6HYYndkCauA/EN3G2jwiIiIiIiIiF1FgivA2m+2i27/99lsGDhwIQIcOHYiOjmbMmDHZr48fP57nn3+ePXv2ULVqVUaOHEnPnj1zdE4V4Qu/SxXjh3epSkMV4wuvPQtgzLXg6QMPr4OQUpff3+EwM8ynPQ+ODCjdEPr9CKGXb4llqfRUWP8rzHsbTuw22/yLm5nxze4DP/2bJoXAim9g0iNm3OFZ6PCUtXlERERERERELqLAFOGtoCJ80bH32GlGz9rBH6vPFuM7VA9neJdqNChXzNpw4nwOB3zTA2KWmBni3V+/9L5pZ0yRb+3P5nm9W6HX++Dtny9Rr1pGOqwfD/NGwfGdZptfMVOMb34f+IVaGk/kqowfBBv/MOPotmZtBhERERERERE3oyL8ZagIX/TsPXaaj2btYMI5xfiO1cN5WMX4wmf7DPjpRvAOMIubBpa8cJ/4/fDLHXBwNdg8TbG++f/gEnfmuLWMdFOsnDsSjm0323xDocX95sO/mKXxRHLN4YC3q8HpOPPcyw+e3qe+8CIiIiIiIuJ2VIS/DBXhi649R08zevb5xfhONSJ4uHNV6qsYXzg4HPBFBzi0Bto+Bp3/7/zX9y6CXwfA6SPgHwY3fwuVOlgQ1MnsGbBxginGH91qtvmGmIsLLe6HgDBr84nk1JFt8HFT8PQ1Cw8nHYNBU9xvnQYREREREREp8nJTZ/bIp0wilosuGcjbN9dn5qPtubFRWTxsMGtLHL0/XsjdY5azNuak1RHlatls0O5xM172JZw5acYOByz/Gr7rZQrwkXXg3tmFowAP4OEJdW+CBxbDTd9AeE1ISYB5I+H9ejDzVUg6bnVKkSvbM888lmt2dkHWvQusyyMiIiIiIiLiBCrCS5ETXTKQd26pz8zHOlxQjB88Zjnr9p+0OqJcjerXni1CL/sS0lPg74fhn0fBng61b4DB06B4tNVJnc/DE+rcCPcvgpu/g4jakHoK5r8N79eFGS/B6WNWpxS5tD2ZBffotubj3G0iIiIiIiIiBZTa0UiRt/voaT6atZ2Jqw+Q2aWGLjUjeLhzNeqW1QKXBdL63+D3weBfHEpUhf3LABt0eRFaDy+Y/d/zwm6HLZNMm5rD680270BoNgRaPXTxnvkiVnE44O2q5m6VQZPNYsOftjRrPDy9Dzy9rU4oIiIiIiIikk094S9DRXi5lF1HEhk9awcT16gYX+DZM2B0Ezi+yzz3DTVtWqp2sTaXVRwO2PovzHkTYteZbd4B0ORuaP0wBEVYm08EIG4LfNL87GKsHt4wqjKcOQ6Dp5sWNSIiIiIiIiJuQj3hRfKgUngQ7/ZrwIxH29O3YRk8bDBjcxy9Ri9gyHcr2HAg3uqIklMentDxOTMuWd30fy+qBXgwM/9rXAv3zYP+46B0Q0hLgsWjTc/4Kc/CqcNWp5Sibs9881iuGXj5gocHVGiV+Zpa0oiIiIiIiEjBpZnwIpewM3Nm/J/nzIzvWiuShztXpU4ZzYwvEI7ugGLlTEFPznI4YPt0mPsmHFhptnn5QeNBZmZ8SClr80nR9OsA2PQndHwe2j9hti35DKY8BZU7w51/WJtPRERERERE5BxqR3MZKsJLbu2IS2T0rO38tfZgdjG+U40IrqkTRfvq4UQE+1kbUCSvHA7YMdMU4/cvN9s8faHxXdDmEQgpbW0+KTocDtN6JukYDJoCFVqa7bHr4bM24BMET+0FTy9rc4qIiIiIiIhkUhH+MlSEl7zKKsb/ufYg537X1C4dQofq4XSoHkHDcsXw8lSXJylgHA7YNRvmvAUxS8w2Tx9oNAA6PW8WuBVxpbjN8EkL8PI3/eC9fMx2ux1GVoTkkzBkFpRtbGlMERERERERkSwqwl+GivBytXbEJfLXmgPM2XaEdfvP7xMf4udF26rhtK8eTodq4USEaJa8FCAOB+yea4rx+xaZbVF14c4/IbCEtdmkcFv6BUx+Aip1gAF/nv/az/3NwsJdXzHtkkRERERERETcgIrwl6EivDjTkVMpzNt2hDnbjjB/+xFOJqWd97pmyUuBtWsu/D4YTh+BiNqmMBoUbnUqKax+uRM2/2XuvGj3xPmvLf4Ypj4LVbvB7eOtySciIiIiIiLyHyrCX4aK8OIqGXYHa2JOMndrnGbJS+FwZCt81wsSD0N4DRjwFwRHWp1KChu7Hd6uYvrB3z0Nyjc///WDa+CL9uAbAk/tAQ9PK1KKiIiIiIiInEdF+MtQEV7yy9HEzFnyW48w7yKz5GuVOjtLvlF5zZIXN3V0hynEnzoIJarAXX9rwVZxrsMb4dNW4B1gFl/N6gefxZ4Bb1WElHi4dw6UbmhJTBEREREREZFz5abO7JVPmUSKnJJBvvRtVJa+jcqSYXewdv9J5mw9wtytcaw7EM+mQwlsOpTAJ3N2EuznRduqJelQLYL21cOJ1Cx5cRclq8Cgf+C76+HYDvi2pynEFytndTIpLPYsMI/lml9YgAcz8718C9g+FfYsVBFeREREREREChwV4UXygaeHjUbli9OofHEe7VqNo4kpzN9uZsnP3WZmyf+7PpZ/18cCUDNzlnxHzZIXdxBWCQb+Y2bEn9gNY3rCXZOgeAWrk0lhsGe+eazY9tL7RLcxRfi9C6HVsPzJJSIiIiIiIuIkakcjYrGLzZI/97syPNiXmxqXpV+TckSXDLQuqEj8fhhznSnEh5aDu/4yBXqRvLLbYVQlOHMCBk+Hcs0uvt+BlfBlJ/ALhSd3qy+8iIiIiIiIWE494S9DRXhxd8cSU5j3n1nyWVpUCuPWpuXpUScKP28VocQCCQczW9Nsh+DSpjVNySpWp5KCKnYDfNYavAPh6b3g6X3x/TLS4a1oSD0F982HUvXyNaaIiIiIiIjIf6knvEgBViLIlxsaluWGhmVJy7Azc3Mcvyzfx9xtR1iy6zhLdh0n5E8vbmhYhn5Ny1OrtC4mST4KKW1a03x/PRzZAmOuNTPiw6tbnUwKoqx+8OVbXLoAD+DpBeWbw44ZpiWNivAiIiIiIiJSgKjRtIgb8/b0oEedKL4d1IwFT3Xi0a7VKFPMn4TkdL5bvJeeH87n+tELGLt0H6eS0658QBFnCI40PeEjakNirCnEH95kdSopiLL6wUe3ufK+WftkFe5FRERERERECgi1oxEpYOx2Bwt3HmXcshimbYolLcN8C/t7e3JdvVLc2qwcjcoXx2azWZxUCr2k4/B9b4hdB/5hZkZ8VF2rU0lBYbfDyIqQfBKGzISyTS6/f8xy+LoL+BeHJ3aBh+YRiIiIiIiIiHXUE/4yVISXwuRYYgoTVh9g3PIYdsQlZm+vEhHErU3LcUPDMpQI8rUwoRR6Z07ADzfAwdXgVwwGTITSDa1OJQXBoXXweVvwCYKn9ly+HQ1ARhq8WQHSTsP9iyCydr7EFBEREREREbmY3NSZNY1MpAArEeTLkLaVmP5IO36/vyU3Ny6Lv7cnO+ISee2fzbQYMZOhP61i3rYj2O1F6nqb5Bf/4jDgTyjb1Mxo/q437F9pdSopCHLaDz6LpzeUa5b53oWuyyUiIiIiIiLiZCrCixQCNpuNxhXCGHVzfZY915k3bqhL/bKhpGU4+Gf9IQZ8s4y2I2fzwYztHDx5xuq4Utj4hcIdf0D5lpASb1rU7FtqdSpxd1lF+Oi2OX9PVl/4veoLLyIiIiIiIgWH2tGIFGKbDibw64oY/li1n4TkdAA8bNC+Wjj9mpanc80IvD11LU6cJCURfr7VLLbpEwS3/QrRra1OJe7InpHZDz4ehsyCso1z9r59S+Cb7hBQEp7YAVr7QkRERERERCyinvCXoSK8FEXJaRlM2RDLuOX7WLLrePb2kkE+3Ni4LP2alKNSeJCFCaXQSE2Ccf1h1xzwDoD+46BSe6tTibs5tBY+bwc+wZn94L1y9r70VHizPKSfgQeWQkQNl8YUERERERERuRT1hBeR8/h5e9KnYRnG3duS2Y934P4OlQkP9uVoYiqfz91Fp3fmcsvni1m3/6TVUaWg88ksvFfpAmlJMPYW2DHT6lTibrJa0VRomfMCPICXD5RrasZqSSMiIiIiIiIFhIrwIkVMxZKBPNWjBoue7sQXdzamc40IPGywbPdx+n6yiM/n7tQirnJ1vP3h1rFQrQekJ8PP/WHbNKtTiTvZPd88ZvV4z42sHvJanFVEREREREQKCBXhRYoob08PutWO4uuBTVn4dCd61o0i3e5gxOQt3PXtMuISkq2OKAWZly/c8gPUuA4yUmDcbbDlX6tTiTuwZ8DeRWacm0VZs1TIXGdgzwIoWh31REREREREpIBSEV5EKBXqz8e3NeLNvnXx8/Zg/vajXPPBfGZvibM6mhRkXj5w8xio1QfsafDrnbDpT6tTidVi10NKPPiGQFS93L+/TGPw9IXTcXBsh/PziYiIiIiIiDiZivAiAoDNZuPWZuWZ9GAbapYK4djpVAaNWc7Lf28kJT3D6nhSUHl6w41fQ92bwZ4O4wfBht+tTiVW2pPZiqZ8LvvBZ/H2g7KZfeH3qC+8iIiIiIiIuD8V4UXkPFUigpnwQCsGtooG4NuFe+jz8SJ2xCVaG0wKLk8vuOFzqN8fHBnw+xBY+4vVqcQqWYXzinloRZMlq5f8XvWFFxEREREREfenIryIXMDP25OXrq/NNwObEBbow+ZDCfT6aAHjlu3DoR7MkhcentD7E2g0ABx2mHAfrP7J6lSS387rB5+HRVmzRKsvvIiIiIiIiBQcKsKLyCV1qhHJlIfb0qZKSc6kZfD0H+sZNnY18WfSrI4mBZGHB1z3ATQZDDjgzwdg5RirU0l+OrQWUhLANzRv/eCzlG0Knj5w6hAc3+W8fCIiIiIiIiIuoCK8iFxWRIgf39/djKevqYGXh41/1h+i5wfzWbHnuNXRpCDy8IBr34Hm/zPP/34Yln1pbSbJP1mtaCq0MndH5JW3v1mgFdSSRkRERERERNyeivAickUeHjb+174yv93figolAjhw8gy3fL6Y92dsIz3DbnU8KWhsNujxJrQcZp7/+zgs+dTaTJI/shZlvZpWNFmyjrFHRXiRy0pPgT/ug4UfWp1ERERERKTIUhFeRHKsQbli/PNQW/o2LIPdAe/P2M5tXy7lwMkzVkeTgsZmg26vQZtHzPMpT8PexdZmEtfKSD/7d+yMInwF9YUXyZGt/8K6cTD9/+DwJqvTiIiIiIgUSSrCi0iuBPl68W6/BrzXrz6BPp4s23Oca96fx+T1h6yOJgWNzQadX4QGd5jnfz9sZmxK4RS7FlJPgV8oRNW9+uOVawYeXpCwH07uvfrjiRRWmydlDhww5w1Lo4iIiIiIFFUqwotIntzQsCz/PtyW+mVDSUhO5/6fVvHMH+s5k5phdTQpSGw26P4aBIbD0a2w8AOrE4mr7M5sRVOh9dX1g8/iEwilG5mxWtKIXFx6Cmybevb55r/h4BrL4oiIiIiIFFUqwotInlUoEcj4/7Xif+0rY7PBz8v20Wv0AjYdTLA6mhQk/sVNj3iAeW/D0R3W5hHXyFqUNbqt846Z1dZGi7OKXNyuueYOlOBSUOcms222ZsOLiIiIiOQ3FeFF5Kr4eHnw9DU1+OHu5oQH+7IjLpE+nyxkzMLdONSnWXKqzo1QuTNkpMCk4erxXdhkpMM+J/aDzxKd1Rd+vvOOKVKYbP7LPNa4Fjo8AzZP2D4VYpZbm0tEREREpIhREV5EnKJN1ZJMebgtnWpEkJpu56W/NzHkuxUcS1SPb8kBmw2uexe8/E1Bdc1YqxOJMx1aA6mJ4FcMIus477jlmpui4sl9cDLGeccVKQwy0s2irAA1e0HJKlC/v3k++3XrcomIiIiIFEEqwouI05QI8uXru5rwUq9a+Hh5MHNLHNd8MJ+FO45aHU0KguLR0OFpM572HJzW102hkTVTPboNeDjxRw/fYCjdwIzVkkbkfPsWQ9Ix0/KrQuZdI+2fMAsa75qttRRERERERPJRnn4TjomJYf/+/dnPly1bxvDhw/niiy+cFkxECiabzcbA1hWZ+EBrKocHEncqhTu+Xsqbk7eQlmG3Op64u5ZDzUzpMydg6nNWpxFnye4H78RWNFmyjpl1DhExNv9tHqv3BE9vMy4eDQ3vNOPZr6v1l4iIiIhIPslTEf62225j9uzZAMTGxtK1a1eWLVvGc889xyuvvOLUgCJSMNUqHcKkB9vSv1l5HA74bO5ObvpsMXuPnbY6mrgzT2/o9SFgg3XjYOdsqxPJ1cpIg70u6AefpYKK8CIXsNvPFuFr9jr/tXZPgKevuXtk15x8jyYiIiIiUhTlqQi/YcMGmjVrBsCvv/5KnTp1WLRoET/99BNjxoxxZj4RKcD8fTwZ0bcun97eiBA/L9bGnOTaDxcwduk+zqRmWB1P3FXZxtDsXjOe9AiknbE2j1ydg2sg7bRpiRFR2/nHL98CbB5wYjckHHT+8UUKooOr4dRB8A6ESh3Pfy20DDQZZMaaDS8iIiKSP04dNmv2SJGVpyJ8Wloavr6+AMyYMYPrr78egBo1anDo0CHnpRORQuGauqWYPLwdzaLDSExJ59kJ62n82nQe+WUNc7bGka42NfJfnZ6H4NKmsDp3pNVp5Gpk9YOv0Nq5/eCz+IVAVL3Mc6nHtQgAm/8yj9W6gbffha+3edQshL1/OWyfnr/ZRERERIqanbPgneow/QWrk4iF8vTbcO3atfnss8+YP38+06dPp0ePHgAcPHiQEiVKODWgiBQOZYr5M/ae5jxzTQ3KhfmTlJrBhNUHGPjtclqMmMlLf21k9b4TODQjT8AUVnuOMuNFH8LhjdbmkbzLXpS1revOkdXmZq9a0ojgcFy6FU2W4EhoNsSMZ7+m2fAiIiIirrT8a8ABa8eBXV0Biqo8FeHfeustPv/8czp06ED//v2pX78+AH/99Vd2mxoRkf/y8vTgvvaVmfdER36/vyV3tqhAWKAPRxNTGbNoDzd8soiOb8/h3enb2HUk0eq4YrWa10GN68CeDn8PNz2OpWDJSIN9S8y4Yj4U4dUXXgSObIHjO8HTB6p2u/R+rYeDTxAcWgtbJuVbPBEREZEiJTn+7J2HZ47D/hXW5hHLeOXlTR06dODo0aMkJCRQvHjx7O333nsvAQEBTgsnIoWTzWajcYUwGlcI4/961WL+9iNMXH2Q6ZsOs+dYEh/O3M6HM7dTr2wovRuUoVf9UkQEX+R2ein8rhkJu+bC/mWw8htoOsTqRJIbB1ZBWhL4h0F4Tdedp3xLwAbHdsCpWAiOct25RNxd1iz4yp3AN/jS+wWWhOb/g/lvw+w3oPq1rmkZJSIiIlKUbZ4EGSlnn2+fCuWbW5dHLJOnn7TPnDlDSkpKdgF+7969vP/++2zdupWIiAinBhSRws3b04NONSL5sH9DVjzfhff61adD9XA8PWys2x/Pq5M20eKNmdz59VJ+W7mfU8lpVkeW/BRaBjpn9s2b8TIkaN2RAiW7FU0b1xb3/ItBVB0z3qu+8FLEZfWDv1QrmnO1Gga+oRC3CTZNcG0uERERkaJow2/mMWtS0vZp1mURS+XpN+LevXvz/fffA3Dy5EmaN2/OO++8Q58+ffj0009zfJx58+bRq1cvSpcujc1mY+LEiZfdf86cOdhstgs+YmNj8/JpiIibCfT14oaGZRkzqBlLn+3My9fXpmH5YtgdMH/7UR4fv5Ymr81g6NhVTN90mNR0tScpEpoOgTKNISUBpjxldRrJjaz2MK7sB5+lQlZLGhXhpQg7vhti14PNE6pdc+X9/YtDy6FmPHsEZKS7Np+IiIhIUZJ4xNzZDXD9h4DN/KyWcNDSWGKNPBXhV61aRdu25hfq3377jcjISPbu3cv333/Phx9+mOPjnD59mvr16/Pxxx/n6vxbt27l0KFD2R+afS9S+JQM8uWuVtFMeKA1c5/owKNdq1EpPJCUdDv/rDvEPd+voNkbM3h2wnqW7T6O3a5F5QotD0/o9YEpKm36E7ZOsTqR5ER6KsQsNeOsnu2upL7wImd7u1doBYElcvaeFvebYvyx7bB+vOuyiYiIiBQ1myaCIwNKN4RyzczkMtBs+CIqTz3hk5KSCA42PSanTZtG37598fDwoEWLFuzduzfHx7nmmmu45poczNL5j4iICIoVK5br94lIwVShRCAPda7Kg52qsOFAAhPXHODvtQeJO5XC2KX7GLt0H2WK+dOrfmn6NCxNjagQqyOLs0XVNW0TFn4A/zxmCq6+QVankss5mNkPPqAERLiwH3yWCq3M49GtZsZJULjrzynibrL6wde8Pufv8QuB1g/DjJdg7ptQ9ybw9HZJPBEREZEiZX1mK5o6N5nHat3hwArYNg0aD7QsllgjTzPhq1SpwsSJE4mJiWHq1Kl069YNgLi4OEJCXF/8atCgAaVKlaJr164sXHj5285TUlJISEg470NECiabzUbdsqG8cF0tFj/TmR8HN+emxmUJ8vXiwMkzfDZ3Jz3en0+P9+fx6ZydHDh5xurI4kztn4ZiFSBhP8x+3eo0ciXn9oO32Vx/voAwiKhtxuoLL0XRqdizd5/UuDZ37212LwSGw4k9sGas06OJiIiIFDknYyBmCWCDOn3NtqqmfsquOZCecql3SiGVp5nw//d//8dtt93GI488QqdOnWjZsiVgZsU3bNjQqQHPVapUKT777DOaNGlCSkoKX331FR06dGDp0qU0atToou8ZMWIEL7/8sssyiYg1PD1stKlakjZVS/JanzrM3BzHxDUHmLM1ji2xp9gyZQtvTdlCiUAfwoN9zUeQ79nxf56H+ntjy49CoeSdTwBc9y78eCMs/Qzq3WJu6xP3tDurCJ8P/eCzRLeGuI2mCF+7T/6dV8QdZLWiKdPELGqdGz6B0OYRmPoszB0J9W8FL1/nZxQREREpKjb8bh4rtIaQ0mZcqj4ERUFirPmdpXIn6/JJvrM5HI48NVKOjY3l0KFD1K9fHw8PM6F+2bJlhISEUKNGjdwHsdmYMGECffr0ydX72rdvT/ny5fnhhx8u+npKSgopKWevLiUkJFCuXDni4+PzZda+iOSvk0mpTN4Qy8TVB1i6+3iO3+fj6UF4sC8lL1Osj8h87uft6cLPQK7ot8FmhfmoenDPbPDM0/VkcaX0FHizAqSfgQeWQkTufy7Ik01/wq8DIKIWPLA4f84p+SPxCNjTzv4CIxf6vreZVdXlZWgzPPfvTzsDHzaEU4eg59vQ7B5nJxQREREpOj5rYxZhve49aHL32e1/DoXVP0Lz++GaN63LJ06RkJBAaGhojurMea5cREVFERUVxf79+wEoW7YszZo1y+vh8qxZs2YsWHDpRdh8fX3x9dVMHpGioliAD/2blad/s/KcTEolNiGZuIQUjpxK4Uhi5uOp85/Hn0kjNcPOgZNnctTCJtjP64KZ9KVC/agSEUTViGDKFPPHw0Oz6l2mxwjYMR1i15kZ8a2GWZ1I/uvAKlOADwyH8Or5d94Krc1j3CY4fSznC1OKe0s7A5+3g5RTcP9CKF7B6kTuJ+n42btPavbK2zG8/aHtY/Dv4zDvbWh4h9kmIiIiIrlzZJspwHt4Qa0+579Wtbspwm+fqiJ8EZOnIrzdbue1117jnXfeITExEYDg4GAee+wxnnvuueyZ8flhzZo1lCpVKt/OJyIFR7EAH4oF+FAj6vL7JadlcOx0KkdOpRCXkHzJYn3cqRRS0+2cSk7nVHI6u46cvujx/L09MwvyQVSNDM58DKJc8QAV550hKAK6vgp/P2R6w9e6HoqVtzqVnCu/+8FnCSwJ4TXgyBbYtyjvxUhxLxv+gFMHzXjGi3DzGEvjuKVtU8CRYdZFKFE578dpNMAsgB0fAyu+gZZDnZdRREREpKjYkLkga+VOZu2qc1XuCB7ecHwXHNt5dT+7SYGSpyL8c889x9dff82bb75J69Zm1tmCBQt46aWXSE5O5vXXc7ZgXmJiIjt27Mh+vnv3btasWUNYWBjly5fnmWee4cCBA3z//fcAvP/++1SsWJHatWuTnJzMV199xaxZs5g2bVpePg0REQD8vD0pU8yfMsUuP+PP4XBwKiU9uzgfd06hfv+JJHbEJbLryGnOpGWw/kA86w/E/+c8HlQOD6JaZHB2kb5aZDDlwgLwVHE+dxreCWvHmULrP4/Dbb/kb7E3JzLSwNPb6hTWOLcIn98qtDZF+D0LVYQvLFZ8c3a8cQI0uw8qtLQujzvanNkP/mq/5r18od0T5iLn/Heh0V3gG3T1+URERESKCocD1mcW4evcdOHrvsFQoRXsngvbpkLLB/I3n1gmT0X47777jq+++orrr78+e1u9evUoU6YMDzzwQI6L8CtWrKBjx47Zzx999FEA7rrrLsaMGcOhQ4fYt29f9uupqak89thjHDhwgICAAOrVq8eMGTPOO4aIiKvYbDZC/LwJ8fOmcvjFixLpGXb2HU9i2+FEdsSdYntcItsOJ7LzSCLJaXY2Hkxg48GE897j45VVnD9/9nz5sAC8PPPvzqICxcMDer0Pn7Y2t/Ftmgi1b7A6lXFkq+nzd2Qb3DbO/IBVlKSnQMwyM87PRVmzRLeBFV/Dnku3qpMC5NBaOLDCzBaq3gM2/w1TnjbrQeTjnZduLSURds40Y2dceGpwGyx4D07shmVfQNtHr/6YIiIiIkXFoTVwfCd4+UGNnhffp2o3U4TfriJ8UZKnhVn9/PxYt24d1apVO2/71q1badCgAWfOXLmnslVy0zBfRMRZMuwOYo4nse2wKcxvz3zcEZdISrr9ou/x8fKgUslAqkYGUy2zpU2ViGAqlgzUzPkss0fA3DchKBKGLgP/YtZlsWfA4tEw63XIyFwQPDAC7psHIUWobdqehTCmp/ncH9+W/3conDoM71QDbPDUbvAvnr/nF+f6+2FYOQZq94VrRpqFQ1NPQZ/PoEF/q9O5h40TYfxdULwiPLTaOd9za8fBhPvM98/D68BPPzOLiIiI5MjU58zvhbX6wC3fXXyfo9thdBMz0eSp3WZ2vBRILl+YtX79+owePZoPP/zwvO2jR4+mXr16eTmkiEih5ulhI7pkINElA+lW++z2DLuD/SeS2H44kW1xp9hxODG7OH8mLYMtsafYEnvqvGMVD/CmU41IutaKpF21kgT45HmN7YKv7aOw4Xc4th1mvmxWnrfC0R0w8X7YnzkDvEpXSDhgFggdfxfcNQm8fKzJlt+yZqDndz/4LMGRUKKq+ZrYu/jSs0/E/SUnwLrxZtx0MASFQ7vHTV/4mS+bWd9qlWLuDgDz5+Gs77m6N8P8d+DoNljyKXR4yjnHFRERESnM7HbTPhGg7kVa0WQpUcVMoDixG3bNhZrX5U8+sVSeKjcjR47k2muvZcaMGbRsaXpyLl68mJiYGP7991+nBhQRKcw8PWxUKBFIhRKBdKkVmb3dbndw4OSZc2bOJ7I97hTbDydyIimN31ft5/dV+/H18qBNlZJ0rRVJ55qRhAf7WvjZWMDL17SlGXOt6Rtdrx+Ub5F/57fbYelnpiCYngw+wdBjBDS8wyy080UHiFkK056DnqPyL5eVrOwHnyW6dWYRfqGK8AXZul8g7TSUrG56/QO0uB9Wfgsn9pgFRDs9Z2lEy6WnmF6iADWvv/y+ueHhCR2egd8GmZlcze65cFExERERETnfvsVmMpZviJmYdSk2G1Trbn6X3D5VRfgiIk/NNNu3b8+2bdu44YYbOHnyJCdPnqRv375s3LiRH374wdkZRUSKHA8PG+XCAuhcM5L/ta/MO7fU569hbVj/Ujd+vqcFd7euSLkwf1LS7czcEsfTf6yn2Rsz6PvJQj6ds5MdcYlWfwr5J7qNKXqDaV2Rnpo/5z2+yxT/pz5jCvCVOsADi6HRneaHqhKVoe8XZt9lX8DaX/Inl5XSks/2g6/YzrocWb3osy4ISMHjcJxdkLXJ3WdneHv5QtdXzXjRh3Ayxpp87mLXXNOeJygKyjR27rFr9YHIOpCSYArxIiIiInJ5GzIXZK3ZC7z9Lr9v1cwi/fbp5mdfKfTy1BP+UtauXUujRo3IyMhw1iGdTj3hRaSwcDgcbD18iukbDzN982HW7Y8/7/VKJc3s+q61ImlUvnjh7iOfdBxGN4Wko9DpeWj3hOvOZbebhT+n/x+kJYF3IHR/DRoPungriFmvwbxR4OUPQ6ZDVF3XZbPangXmwkRQJDy21Zp2NAAJh+DdGmDzgKf2gF+oNTkk7/Yuhm97mO+bx7acv96DwwFjroO9C0zblBu/siym5f4cBqt/gKZD4Np3nH/8zZPgl9vNv3PD10FgSeefQ0RERKQwyEiDd6pD0jG44w+o0vny+6clw8iK5nfK++ZBqfr5k1OcKjd15jzNhBcREevZbDZqRIXwYOeq/DWsDUue6cyrferQrlo43p42dh09zRfzdnHzZ4tp9voMnhi/lmkbYzmT6r4XSvMsIMy0gQGYOwqO7XTNeU7she+vh38fNz8sRbeFBxadP1P3vzo8A5U7Q/oZ+OUOOHPCNdncwe5zWtFYVYAHsxBuWCVw2GHfEutySN5lzYKve+OFCy7bbNDjDcAG68efvfuiqMlIh62ZbSBr9nLNOWpcC6UamLZAC993zTlERERECoNdc00BPjAcKra/8v7efuZuaoDt01waTdyDivAiIoVEVKgfd7aowPd3N2PVC10ZfVtDejcoTYifF8dOpzJ+5X7u/WElDV+dxpDvVvDr8hiOJqZYHdt56t4MlTtBRgpMGu7cW/ocDljxLXzayrQ48Q6Aa0bBgL+gePTl3+vhaWbqFitv+lj/ca+ZTV8YZS/K2tbaHHC2h3hWJik4Th+FTRPNuMngi+9Tqj40vN2MpzxTeL+nLmffYvOLnn/xs1/vzmazmbuLAJZ9CadiXXMeERERkYIuqxVNrT7gmcMlOKt2M4/bVIQvClSEFxEphIL9vLmuXmk+uLUhK1/oytghzRnYKpoyxfxJTrMzY/Nhnvx9HU1fn8GNny7is7k72XmkgPeRt9lMOwYvP9g9D9aOc85x4/fDDzeYwn5qIpRvCf9bAM3vBY8c/jcaEAb9fjTZtk+DeSOdk82dpCXD/uVm7A5F+Oy+8CrCFzhrfoKMVDMDu0yjS+/X6QXwCYIDK87+0lOUbP7bPFbvCZ7erjtPlS5QtplZ+2L+u647jxROyQmw7leziLCIiEhhlXbGtPEDqHtTzt+X1Rd+/3I4fcz5ucSt5PDSjNG3b9/Lvn7y5MmrySIiIi7g7elBqyolaVWlJC/2qsXmQ6eYvukw0zfHsuFAAiv3nmDl3hO8OXkLlcID6Vorkm61ImlQrgD2kQ+rBB2ehhkvwdRnzcyCwBJ5O5bDAat/NMdJSTAF9M4vQvP7zOz23CpVH657DybeD3PehNKNoFq3vGVzR/uXmbsQgkuZRWmtFp05M/jQWkg5Bb7B1uaRnLHbzV0nAE0vMQs+S3AUtH0UZr5ivudrXAc+AS6P6Bbs9rNFeFe1oslis0Gn5+D73rDyW2j9EISWde05pfD4axhs+tPcuXHde1anERERcY3t0yD1FISWM5MXciq0LETWgcMbYOdMqHeL6zKK5XI1Ez40NPSyHxUqVGDAgAGuyioiIlfJZrNRq3QID3epyqQH27Lo6U680rs2bauWxMvDxq4jp/l87i5u/HQxzd+YyVtTtnDw5BmrY+dOy2HmB5kzx2Ha83k7RsJBGHuLKR6kJEDZpmb2e8sH8laAz9Lgtsz2Gg74Ywgc35X3Y7mb7FY0FveDzxJaFopVAEcG7FtqdRrJqV2z4MRu8A2FOjdeef8WQyG0PCQcgEUfuT6fuzi4Gk4dNAumVuro+vNVbA8V2pg7FOa97frzSeGwf6UpwAOsHAOHN1kaR0RExGXWZ96VWadvzu+WzpLdkmaqczOJ28nVTPhvv/3WVTlERMQCpYv5M6BlNANaRpOQnMacrUeYvukwc7bEcTQxhU/n7OSLebvoViuSga2iaVYxDJs7FFgvx9Mben0AX3WBtWOhfr+zC95cicMB636ByU9Ccjx4+poZoC2HXV3x/Vw93oTYdeaWw18GwOBphWP27rlFeHcR3QbW7IW9C6BqF6vTSE5kzYKvfyv4BF55f28/6Poy/DbILBza6E4IKe3SiG5hS+Ys+GrdzJ+Bq2XNhv/2Glj9A7R+GMIquv68UnA5HDDjRTP29DEXcKY9D3f+YW0uERERZ0tOOFtAr5OLVjRZqnWHBe/CjhmQkZ7zfvJS4KgnvIiIABDi58319UvzUX/TR/6zOxrTslIJMuwOJm+Ipd8XS7jmg/mMW7aPM6kZVse9vLJNoOkQM570iOnRdyWnDsO422HCfaYAX7oR3DfPFJucVYAH8PKBW76HwHA4vN75i8haIe2Me/WDz5J1QUB94QuG+AOw9V8zbnJ3zt9X+wYo1wLSkkxrmsLO4YBNf5mxq1vRnKtCK7P4tT0d5o3Kv/NKwbRzllnI3NMH7vgdPLzNbfbbp1udTERExLm2/GPacpasBlF1c//+Mk3Arxgknzz7O5UUSirCi4jIBXy8POhRJ4qf723BlOFt6d+sPH7eHmyJPcXTf6yn5ZszGTF5M/tPJFkd9dI6/5/pT3581+XbJzgc5vbBT5rD1n9MoaDTCzB4OkTUcE22kNJw8xiweZqZ98u+dM158kvMMjPLMbi06cvvLipk9oU/uBpST1ubRa5s1ffgsJu/t9x879ls0GOEGa/9GQ6sdE0+d3FkCxzfaYqbVfN5XYmOmS2+1v4MR3fk77ml4LDbYebLZtx0CFRsZ9ZTAZj6HGSkWZdNRETE2TZktaK5KW9tOT29oErmXbvbpzkvl7gdFeFFROSyakSFMKJvXZY805lne9agbHF/Tial8fncXbQbOZv7fljBop1HcbjbbG6/ELhmpBkvfB/iNl+4z+mj8OsA+H0wnDkBUfXgvrnQ7nHX3wYY3Qa6Zs7anfoM7Fvi2vO50p755tFd+sFnKV7BLI5kT4cY9YV3axlpsOo7M87NLPgsZRpB/f5mPOWZgn93yeVkLchauVP+LzhctjFU62Eulsx9M3/PLQXHpglmUWyfYGj7mNnW7gkIKAFHt5r+8CIiIoXB6aOwc7YZ181DK5os1bqbRxXhCzUV4UVEJEeKBfhwb7vKzH2iI18OaELrKiWwO2DqxsPc9uVSerw/n7FL95GUmm511LNq9oLqPU0R9u+Hzey8LJv+hI+bw+a/wMMLOjwL98yCyNr5l6/lUKjd1+T79S7TEqcgymr3UtGNWtFkyZoNv2ehtTnk8rZNgVOHIKBk3lusdP4/8A4wF1w2FuK+05szW9HUuM6a83d81jyu/00LbcqFMtJg1mtm3OpBCCxpxv7FoMMzZjz7DThz0op0IiIizrVpIjgyoFQDKFE578ep0gWwweENEL/fSeHE3agILyIiueLpYaNrrUh+GtKC6Y+0444W5fH39mTr4VM8O2E9Ld6YyRv/bibmuBu0qrHZoOco8AkyhblVYyDpOPx2t5kBn3QUImqb4nuHp8yirvmd7/qPILwmJMbC+IEF7zb91CTYv8KM3WlR1izqC18wLP/aPDa6E7x883aMkNLQ5hEznv5SztaCKGiO74bY9WDzMBcYrVCqPtS8HnDAnBHWZBD3tfoH0wYuoKS50HyuxoOgZHU4c1zrCoiISOGw/nfzWOfGqztOQBiUbWrGmg1faKkILyIieVY1MpjX+tRlybOdef7ampQPCyAhOZ0v5u2i3ajZ3PP9ChbusLhVTWhZ0+MdYPqLZvb7ht9NP/Z2T8C9c0xRySq+QdDvR/ANgX2LYNoL1mXJi5ilYE+DkDJQvKLVaS4UnTkT/sBKc8FA3M+xnbBrNmCDxgOv7lgth5mvxfh9sPhjZ6RzL1smmccKrSGwhHU5Oj4L2Mys/EPrrMsh7iU1Cea8ZcbtnzT/v53L0wu6v27GSz83xXoREZGCKn6/+f0NoE7fqz9etcy1frSIeaGlIryIiFy1UH9vhrStxOzHO/D1XU1oW7UkDgdM33SY279aSrf35vHjkr3Wtappdg+UbgQpCXA6DsJrwJDp0Ol58PKxJtO5SlaBGz4z46WfmjYPBUXWDPPotu7VDz5L8YpmwVh7GuxfbnUauZiV35rHKl2gePTVHcsnALpkLgg5/104FXt1x3M3Wf3ga15vbY6ImmdnfM1+w9os4j6Wfmbu6ipW/tIX1Kp2hcqdzb/J0/8vX+OJiIg41YbM9oflW5mJX1eramZf+F1zIC356o8nbkdFeBERcRpPDxuda0byw+DmzHi0PQNaViDQx5PtcYk8P3EDzd+YyWuTNrHvWD7PSPbwhD6fQtlm0OZRuHculGmcvxmupMa1Zxew++tBOLzR2jw5lV2Ed8NWNGAuDGTNht+rvvBuJy0ZVv9kxk0HO+eYdW8yt/OmnYaZrzrnmO7gVOzZBYZrXGttFjD9vW0esG3y2ZZUUnQlHYcF75txx+cv31aq22vma2fz32oVJiIiBdeGzIlTda+yFU2WqLoQXArSkmCv/n8sjFSEFxERl6gSEcQrveuw+NnOvNirFtElAjiVnM5XC3bT/u3ZDB6znPnbj+Rfq5qIzNnvXV4Eb7/8OWdudXwOKncyP3iNu939F65LPW3avIB7LsqaJbsvvIrwbmfTn6Y/dEhZqNrNOce02aB7Zq/yNT/BwTXOOa7VslrRlGkCoWWszQLmDp76/c149uvWZhHrLXwfUuLNOit1b7r8vpG1zs6Un/rs+Yumi4iIFARHd8ChtabFaa0+zjmmzWbuGAPYpr7whZGK8CIi4lIhft4Mal2RWY914NtBTWlfLRyHA2ZuiePOr5fR5d25fLNgN4cTdMsdHp5w49cQWh5O7IYJ97l3cSKrH3xoOShWweo0l1Yhswi/f7lu7XQ3KzIXZG080Hz9O0u5plD3ZsBhinxWrkvhLNmtaHpZm+Nc7Z8EDy/YOQv2LrY6jVgl4aDp8Q7mQndOvpc7PGvWQjm0FtaNc20+ERERZ8uaBV+5IwSWdN5xs1rSbJ9aOH5+lfOoCC8iIvnCw8NGx+oRfHd3M2Y91p6BraIJ8vVi55HTvDJpE83fmMlNny7i6wW7OXjyjNVxrRMQBv1+AE9f2DYF5r9tdaJLO7cVjTv2g89SojIERUJGChxQ2wy3EbvBXMjx8IJGdzr/+F1eAi9/04Zo81/OP35+Sjp+9vvNnYrwxaOh4R1mPOs1/bJYVM15E9KToXzLnN/REhR+tgXbzFfMnVUiIiIFgcNxdg2vOle4+yu3KnUATx84sQeO7XDuscVyKsKLiEi+qxQexEvX12bJs515pXdtGlcoDsCKvSd4ddImWr05ixs+WciX83YRczyf+8e7g9IN4Lp3zXj2G7B9uqVxLmn3fPMY7cataMBcIKiQ2RdeLWncx4pvzGONayE4yvnHDy0LrR8y42kvFOy7ILZNBXu6afVRorLVac7X7gnzy+LeBbB7rtVpJL8d3Q6rfzTjLi/l7oJsi/vNXVSnDsHCD10ST0RExOli18Gx7eDl5/x1enyDzv7esm2qc48tllMRXkRELBPk68WAltH8fn8rljzTmZd61aJZxTBsNli97ySv/7uZtiNn03v0Aj6buzP/F3S1UsM7oPEgwAG/D4Hju61OdL6URDi4yozddVHWc2Vl1CJH7iHlFKz7xYyb3O2687R+2CxwdXIvLP3MdedxNXdsRZMltGzmv1XArNc1G76omfUqODKg2jVQvkXu3uvlC11fMeOFH0D8AefnExERcbasWfBVu4FfiPOPn3VX2XYV4QsbFeFFRMQtRIX6MbB1RX69ryVLn+nMq71r07JSCTxssHZ/PG9O3kK7UbO59sP5fDx7B7uPFoFb1695yyzCmHwSfr0TUt3oIkTMUjMzN7Q8FHfjfvBZsorwMcsgPcXaLALrx0NqIpSoAhXbu+48PoHQ+UUznvc2JMa57lyukpIIO2easTsW4QHaPmpmg+1fBjtmWJ1G8suBlWZxZWzQ+YW8HaNWb9PGJv2MKeiLiIi4M7sdNvxhxldaiDyvqmX2hd+7GJITXHMOsYSK8CIi4nYiQvy4s2U0P9/bgmXPdeH1G+rQpkpJPD1sbDyYwKipW+n49hx6vD+PD2duZ0dcotWRXcPLF275HgJKQux6+OdR95lluiezFU1FN29Fk6VkNQgMN32LD6yyOk3R5nDA8sxWNE3udv16AvX6QemGkHrK9C0vaHbMMF+3xStCZG2r01xccBQ0HWLG6g1fdMzMnMVe/9a8f23abND9dTNe+7P+fRYREfcWsxQS9oNPcM7XQcmtEpUhrDLY02DXHNecQyyhIryIiLi1kkG+3N68Aj8Oac7y57rwZt+6tKsWjpeHjS2xp3h3+ja6vDuXbu/N5b3p29h2+BSOwlQACi0DN38LNg9ToFj+ldWJjHMXZS0IbDao0MqM1ZLGWvtXwOH1ZuZ0/f6uP5+HB/R404xXfW8uaBUk2a1ornPvBZDbPALegXBozdl+/1J47ZxtCgMe3tDhmas7VpnG5mIZwNRndRFHRETc14bMVjQ1rwNvf9edJ2s2vFrSFCoqwouISIERFujDrc3K8/3dzVjxfBdG3VSPjtXD8fa0se1wIh/M3E639+bR5d25vDNtK5sOJhSOgnzFdtDlZTOe8oxpqWKllFNnZysWlCI8nF1AVouzWmvF1+axdl8ICMufc5ZvYc6Hw3wPFZR/F9JTzi7KVfN6a7NcSWBJ04MfzF07c0cWnD9nyR2HA2a8ZMZNBzunJVnnF8HLH/Yths1/Xf3xREREnC0jHTZONOM6LmpFk6VqV/O4fbppgSOFgorwIiJSIBUL8OHmJuX4dlAzVjzflXdvqU+XmpH4eHqw88hpPpq1g54fzqfTO3MZOWULGw7EF+yCfKsHoVYfc1virwPg1GHrsuxbahbiK1YBipW3LkduVWhtHmOWQkaatVmKqqTjZ/tounJB1ovp+jJ4+ppWSlv/zd9z59WuuaaNTlCUWR/C3bV74mwhfvbr8Ncwfa8VRpsmmjsefIKg7ePOOWZoGWj9kBlP/z+t3SEiIu5n91xIOgoBJaCSC9c0AvN7i3cgJB6G2HWuPZfkGxXhRUSkwAv196Zvo7J8dVcTVr7QhQ9ubUD32pH4enmw++hpPpmzk+s+WkD7UXP4ct4uktMyrI6cezYb9B4NJavDqUPw2yDriltZ/eCjC0g/+CzhNcA/DNKS4OBqq9MUTWvGQkYKRNWFsvlcVC5WHloNM+OpzxWMIl/WjOCa15m2Ou7OwwO6vgLXvmtaaK3+EcbeokXFCpOMNJiZuYBqy2EQFO68Y7d6yFxwOrEHln7mvOOKiIg4w4bfzWOtPuDp7dpzeflC5Y5mvH2aa88l+aYA/DQvIiKSc8F+3vRuUIbP72zCyhe68lH/hvSsG4Wftwf7jifx+r+b6TBqDuOW7SM9o4Dd2ucbDLf+ZBYC2rsQpr9oTY6CtihrFg+Ps33h96gvfL6z28/2Cm8y2Jr+5m0egaBIOLEbln2R/+fPjYz0szP2a/ayNktuNR0Mt/4M3gGwcxZ8ew3EH7A6lTjD6h/h+E4zCzDropaz+AZB5/8z43lvw+mjzj2+iIhIXqUln12np66LW9FkyVr4dZv6whcWKsKLiEihFeTrRa/6pfnk9saseqErb91Yl9KhfsQmJPP0H+vp9t48/ll3CLu9ALWpKVkVbvjUjJd8DOt/y9/zJyfAwTVmnNXepSDJmr2/V33h892eeaZ45xMMdW+2JoNvMHR6wYznjnLvIt++xZB0DPyLF8zvteo9YOA/EBgBhzfAV10gdoPVqeRqpCbB3LfMuN0T5vvJ2er3h1L1ISUBZr/h/OOL9VKTYPc8SE+1OomISM7tmG7+bwopA+Va5M85s/rCH1jp3j+zSo6pCC8iIkVCgI8X/ZqWZ9bjHXjhulqEBfqw6+hpho5dRe+PFzJv25GC0zO+Zi8zoxfgrwfzt7AVk9kPvng0FCuXf+d1lujMYua+JWamseSf5ZkLstbvZ2a8WqXBbRBVD1Li3bvIt2WSeaze0/W3PLtKmUYwZEZmG62D8E0PMzNeCqZlX5h2aKHlXbemg4cHdM/8vlz5LcRtds15xBq758EnLeC7XvBFh7MX9UVE3F3WxKc6ffOvRWBIadPCEQfsmJE/5xSXUhFeRESKFD9vTwa3qci8JzsyvEtVAn08WX8gngHfLKP/l0tYte+E1RFzptMLUKmD6W/+eVv45hpY8D4c2QquvJiwe555LGj94LNE1Aa/YpCaCIfWWp2m6Eg4BFv+MeP8XpD1vzw8occIM175LRzeZG2ei3E4zt7yXNBa0fxX8QoweCpUaGMWmf3pZtPSRAqWMydgwbtm3PFZ06vWVaLbQI3rwGGHac+77jySf5ITYNIjpvh+cq/ZFrcRvuwEs17XrHgRcW8pp2DbFDOuk0+taLJU7W4e1ZKmUFARXkREiqQgXy+Gd6nGvCc7MrhNRXw8PViy6zh9P1nEPd+vYNvhU1ZHvDwPT7jxGyjf0hQq9i2CGS/Cx83gw4Yw+WnYNcf5v9hm9VIvqEX4c/vC71Vf+Hyz+gdzB0W5FhBZ2+o0pshX83rzvTP1WddeuMqLg6sg4QB4B0KljlanuXr+xeHOP0wbIns6/DkUZo9wvz93ubSFH0ByPETUgnq3uP58XV8BD28z82+7Zv8VaDtmwCctz1kT5G54aLVZ2NCRAfNGala8iLi3Lf9CejKUqGJapuWnaplF+J0zdRdvIaAivIiIFGklgnx54bpazH6iA7c0KYuHDaZvOkz39+fx6K9riDmeZHXESwssAXdPgeHroefbUKULePqYRSeXfgrf94ZRleHXu2DtOEg6fnXnS06AQ2vMOLrNVce3TFZ/7T3qC58vMtJh5RgztnoW/Lm6vmK+X3bNhu3TrE5zvqxZ8NW6gbeftVmcxcsX+n4JbR83z+e+CRMf0AzYgiDhECz5zIw7/5+5COxqJSpD8/vMeNpzKjwURGdOmgtuP94ICfuhWAUY8Bdc9x6EVYJbvoObx5hFfrNnxb+mfxNExP1syGpFcxPYbPl77jKNwT/MXAiPWZq/5xanUxFeREQEKFPMn5E31WfaI+24pk4UDgf8seoAnd6Zw0t/beRoYorVES+tWHlodg/c8Ts8uRv6/QgN74DAcLOA0KaJMOE+U5D/ujsseA/ituR+Fuq+xWbmcFglCC3jkk8lX2RdQNi3GOwZ1mYpCrZPM7O6/cOgVm+r05wVVhFa3G/GU5+FjDRr82RxOGDTX2Zc0FvR/JfNBp1fgF4fgM0T1o6Fn240v1iK+5r7FqSfgXLNoVqP/DtvuyfMvxtHtsCqMfl3Xrl6W6eY3u+rfwRs0Px/8MBiqNT+/P1q3wBDl5lHRwbMG5U5K361FalFRC6UdPzsejZ187kVDZgL31W6mLG7TRqRXFMRXkRE5BxVIoL59I7G/Dm0NW2qlCQtw8GYRXtoN3I2707bSkKymxTqLsU3yBTuen8Mj22DITNNISOyrimgxyyBGS/BJ83hg/ow+SnYOTtnM8/2zDePBXkWPJgFjnxDzQWK2HVWpyn8VmQuyNrwDveb1d32cXOx6tgOWP6V1WmMI1vg+E4zS79qN6vTuEbjgXDbL+ATZNaZ+KYHxO+3OpVczLGdsOp7M+7yUv7OAPQvZvrPg1lE+czJ/Du35E3ScfjjXvi5n1nEN6wyDJoM17wFPoEXf09gSTMj/ubvIKBk5qz4zpmz4t14AoSIFA2bJppWelH1oGRVazJktaRREb7AUxFeRETkIuqXK8aPQ5rz05Dm1C8bSlJqBh/O2kG7kbP5Yt5OktMKwAxqDw8o2wQ6PQ/3L4DhG+Dad6BKV/D0NYujLf0MfugDIyvBrwNgzVg4ffTix8vuB98u3z4Fl/DwhPItzFgtaVzr+G7YMdOMGw+0NMpF+YWY7w+AOSOuvmWTM2S1oqnUEXyDrc3iSlW7wqB/ISgK4jbBV13gkC6KuZ1Zr5oZylW7n11PIz81Hgglq0HSMZj/Tv6fX3Ju01/wcXNY9wvYPKDVg3D/QqjQMmfvr90Hhi7VrHgRcS/rfzePVsyCz1K5k/l3NW4TnIyxLodcNRXhRURELqN1lZJMHNqaz+5oRJWIIE4mpfHGv1voMGoO45btIz3DbnXEnCtWDpoOgTt+gyd3wa1joeGdEBgBqadg058w8X4YVQW+7mYKHoc3mfYYyfFwaK05TnRraz8PZ8j6HPaqCO9SK8cADvPLQ4nKVqe5uIZ3QmQd8zU+502r08DmQtqK5mJK1YchMyC8ppk1++01WoTTnRxcDRsnADbTC94Knt7Q7XUzXvqZubAn7iXxiFl75tc74XQchNeAwdOh22vg7Z+7Y10wK36TmRU/81XNipeCJTEOZr0OsRusTiJXI+Hg2d8Vave1LkdAGJRtZsbbp1qXQ66aivAiIiJXYLPZ6FGnFFMebsvIm+pROtSP2IRknv5jPd3em8c/6w5ht+eyv7oT2O0OjiWmkJqehwsBvkFQ41roPRoe2wr3zIJ2T5pWLTjMwj8zX4FPW8IH9czt5Q67ubU8pLTTP5d8l9VSZ+9C9YV3lfSUzH7AuNeCrP/l4Qnd3zDj5V/Bka3WZTm+G2LXm9lO1XtalyM/FStnFpiu2A5SE2HsLWcX8hVrzXjZPNa7BaLqWJejaldzZ0hGKky36GKAXMjhgPW/mfZ2myaadR7aPgb3zTN34V2N/86Kn/+2ZsVLwXFwjfl6nTfSLEzsDnfZSd5s+ANwQPmW5ucVK1XLbFG4fbq1OeSq2ByO3K7KVrAlJCQQGhpKfHw8ISEhVscREZECKDktg5+W7uPj2Ts4ftr0Uq9TJoQnu9egbdWS2K6iZ67d7uBEUipHE1M5mpjCkVMp5jF7nJq97fjpVDLsDnw8PahZOoSG5YpRv1woDcoVJ7pEQN5zxB+AbVPMx665kHHO7LPGA82iigVdRjq8FW3uALhvPpSqZ3Wiwmf9b/D7YAguZVoheXpZnejyfr4Ntv5j2jXd8Zs1GRZ9BNOeh+i2MHCSNRmskp4Kfz8Ea382z9s+Bp1eyN8e5HLWrjnwfW/w8IZhy81CxlY6vAk+a20uBg+abE1rHDnrVCxMetT8mwnmbqLeH0PpBs4/18aJ8M9jkHTUFPrbPALtnwQvX+efS+RqbfgdJg41i1lnqXsz3Ogm685I7mRd/Ov5NjS7x9ossRvM/4Ne/vDU7tzfaSQuk5s6s4rwIiIieZSYks5X83fx5bxdnE41s6lbVArjyR41aFS+ePZ+druD+DNpHElM4eipixfUswruxzIL61cr1N+b+uWK0aBsqHksV4wSQXn4hTX1tCnEb5sMR3fAde9CRM2rzucOHD/eiG3HDLPYYJtHrI5T+Hzb09xp0P5p6PiM1Wmu7NhO08/Ynga3fA+1eud/hq+7mbtQrhkFze/N//NbzeEwvfnnvmWe173F3K2jYlv+cjjgy05wcBU0uxd6jrI6kfH3cFj5LZRqAPfMNuueSP5yOMyFsilPmxZeHt5m8fc2j4CXj+vOe/oo/Pt4ZnskIKKWKfqXaeS6c4rkht0Oc94waxmAWVi9xf1mJrzDbt3PFZJ3x3bCR43Mxb/Ht5l2WVZyOOC92pBwAG7/zdwlJm5BRfjLUBFeRESc7VhiCp/M2ckPi/eSmtkjvmH5YqRl2Dl6ysxoT89lYb14gDclg3wJD/alZJDvOWMfSgb7Ep75PCzQh4Mnz7Am5iRrY+JZE3OCDQcTLtqipmxxfxpkFuQblCtG7dKh+Pt4OuXPwB05HA4SzqQTcyKJ/SeS2H/iDDHHzeP+E2fofuJnHvUYC0BK8er41u0NNa+DqHqafXu14jbDJy3MLy6PbCg4LYymPgeLR5tx7RvMBZri0flz7lOx8E51M35kE4SWyZ/zuqNVP8Ck4WBPN3cF9PsB/Itf8W3iJJv+NAt1ewfCw2sgKMLqREZiHHzYyNzB1OczaNDf6kRFS/wB8325fZp5XqoB9PkEImvnX4YLZsUPh/ZP6UKdWCvlFPxx39k7Q1o/DJ1fNO3uZr5i1lgKKAEPLIWgcGuzSs7NHQmzX4fKneHOP6xOY/z9sGnZ1/QeuPZtq9NIJhXhL0NFeBERcZUDJ8/wwYxt/LZyPxeruRfLLKyXDPIhPNgv8zGzwH5Owb1EkA/ennmf4Zeabmdr7CnW7D/Jmn0nWbv/JDviEi/Yz9PDRo2o4OyZ8g3KFaNyeBCeHgWnAH0qOY2Y42fOFtlPnC2y7z+exKmU9Eu+twTxvOX9Be081uFjO6cvfLHyUPN6szBm2WaabZkX/z4By76AGtfBrT9ZnSbnUpNgylOmCIwDPH2g+X3Q9nHwL+bacy//Gv55FMo0gXtmuvZcBcHOWfDLAFNwLVkdbh8PxStYnarwy0g3F9CObTfrhHR6zupE51vwHsx4CYJLw4MrwCfQ6kSFn8MBq76DaS9ASoL5d7HDM9DqIWvajJ0+av6P2ZhZFNOseLHSiT3wc3+ziLCnL1z/IdS/9ezr6SnmzqLDG8zPRP1+1ESPgsDhMHdHHt0KfT6FBrdZncjY8i+M629+V3l4nb6W3ISK8JehIryIiLjariOJrN53kuKB3oQH+VEy2IcSgb74eFlXzE1ITmP9/njWxJzM/jhyKuWC/YJ8vahbJvS8wnxUqJ8FiY3TKemZRfX/zGQ/mUTM8TPEn0m74jFKBvlStrg/5cICzGNx81i2uD82m40PJ63Avm0KPTyX09FzLX6knn1zUKRZwLZmLzMj19PbhZ9tIZF6Gt6pYYo1d/wBVTpbnSj3YjeY3uy7Zpvn/mHQ4WmzwKyrvga+72PO1+VlM7tTzN/DTzfDqYMQGAG3/wqlG1qdqnBb+Z3pze8fBg+vBT83+30pLRk+bgon95lCcIenrU5UuJ3Ya74eds0xz8s2NQXv8OqWxgLMHRuTHtWseLHO7vnmrqEzxyEoykw6uNiixIfWwZcdzd1dN3wB9fvlf1bJndj18Fkbc2HliR3u839h6ml4q6JZr2voMvf4t1hUhL8cFeFFRERMq5ZD8cmsPacov/5APEmpGRfsGxXiR/1yodQqFYqPlwd2hwO73UFG5qPdwTljBxl2zD4OBxmZr2e/9p/3ODL3ybCbTBmZz+PPpLH/xJnshW8vJyzQ5/zienax3Z8yxQJy1HJn7rYjvPTXRg4dPU57j3XcHrqW1hkr8ExNOLuTXzGofo0pyFfupAWRLiWriFe8Ijy4quDeSeBwwI4Zphh/ZIvZVqIKdH0Fqvd07uyjpOPwdlXzC/qDq6BEZecdu6CLPwBjbzGzCL0D4OYxUK271akKp7Qzpt3LqYPQ/Q1oOdTqRBe34Q/4bZD5enhwZcFpd1WQ2O2w4muY/iKknQYvP7NQcov7TYsNd3H6WGav+MxZ8eE1TYsczYoXV1v+FUx+yvy/Xboh3Dr28v8WzR0Fs18Dv1B4YIn+3XJ301+Ehe+bn/n7/Wh1mvP90Bd2zoSur0Lrh6xOI6gIf1kqwouIiFxcht3B9rhT2S1s1sTEszU24aKtdfJTqL/3BTPYzax28zzQ1zm3w6ekZ/DV/N18NGs7yWl2/DwyeKH2UW4OXI3P9slw+sjZnb0DzIJINa83i2+5ywwZd/B5ezi0xhSrWz9sdZqrl5EOq7+H2W+c/Rqo0Aa6v+a8WdlrfoaJ/4OI2vDAIuccszBJTjCzDXfNBpsH9Hwbmg62OlXhs/ADmP5/EFoOhq0Ab+vugroshwO+6QExS6D+bXDDp1YnKlyO7YS/HjQLawOUb2UWSHbni4OaFS/5JSMNJj8JK74xz+veDNd/dOWJGRnp8HVXs+B1lS5mYU21EnFPDge8Xw/i98HN30HtPlYnOt+Sz0zrxOi2MHCS1WkEFeEvS0V4ERGRnEtKTWfDgQTWxJxg+2HTV97DZsPDw4anR+Y488PTAzw8Msc2Gx4289wzc3+PzG2e/xnbbDY8M/ezZW4L9PUyRfcwf0L88rcFzIGTZ3ht0iYmb4gFIDzYl+euqUbvsBhsWybB5r8hPubsGzx9oFIHM1umek8ILJmved3KgZWm96mnLzy6GQJLWJ3IeZITTD/qJZ9AerLZVu9W6PwChJa9umP/fJtZ0K3909DxmavPWhhlpJlFIVdnzkhr/TB0fqng3mnhbs6chA/qQ/JJ6P0JNLzd6kSXt38lfNXJjO+dozZFzmDPgKWfwcxXIf2MWZi3y0vQdEjB+D7TrHhxtdPHYPxdsGc+YIMuL0Lr4Tkvph/ZCp+1Na1Een0AjQe6MKzk2b6l8E038AmGJ7a7352vx3fBhw3Bwwue3GXurhBLqQh/GSrCi4iISE7My2xRs+voaQCaVQzjld61qREZbGZ6b/7bfBzddvZNNg+o0NoU5Gtce/XF2YLmz6GmSFqvH/T9wuo0rnEyBma9Cut+Mc+9/KDlMDPz0jc498dLSYRRlU1h/38LIaqOU+MWKg4HzBsFs183zyt1hJrXQbkWEFHTvdpkFDQzX4H570B4Dbh/UcH4s/z9Hlj/q/k3d+A/mlWaV6cOw+a/zL/dh9aYbRXbmwUmi0dbmSxvNv0J/zxm7lyyeUKbR6DjswXja1rc1+GN8POtZj0Kn2C48Suo3iP3x1n0kWlz5xNk/q3VguPu598nYdnnZqJF38+tTnNxHzUxC6i740z9IkhF+MtQEV5ERERyKqtFzehZOziTloGnh427WkYzvGvVszP0j2w1BYzNf8OhtecfoExjqHGdaVtTskr+fwL56cwJeKemmUF591Qo38LqRK51YJX5RTqrZUNghCn0NLwTPHPRImnjRDOzrng0PLRGhcScWPMz/DXM9OLN4hNsFsQr3wLKNYMyTdQmKqdOxcIHDcz37q1jzQXEgiB+P3zU2FzAuuUHqHW91YkKjoRD5v+tTX/C3kVAZknAJ9i02mp0V8H+t+j0MZj8BGz43Tyvdo0pmvoGWZtLCqbNk+CPe836CMUrQv9xEFEjb8eyZ8CYa2HfYtNOZMBfBeNOk6IiIx3erQmn40zLoKpdrU50cVOfg8WjocHt5o4fsVSBKcLPmzePUaNGsXLlSg4dOsSECRPo06fPZd8zZ84cHn30UTZu3Ei5cuV4/vnnGThwYI7PqSK8iIiI5NbFWtQ827MGfRqUwXZuoeLEXtgyyfzCtm8x2YUNgLBKULKa+QUurKIpuhavCMXKu2/v5dxY8ilMedr0Nb9/YcEu4OSUwwFb/oHpL5jbg8G0QOj2GlTtkrNj/DYYNvwGrR4075OciV1vLnztW2LaIKUm/mcHG0TWhnLNMz+ame+5ovB1mVuTHjWLcJZtBoOnFaw/o1mvmbsjikfD0GXqAX458QfOFt73LeG8/5/KNoVavU1/6+AoyyI63brx5g6tjBSIrAu3jSt6d6hJ3jkcMO9ts6AqQMV2ZuZxQNjVHff4Lvi0NaQlQY+3oMX/rj6rOMfO2fBDH/APg8e3gWf+tsTMsV1z4PveEBgOj23ThRyLFZgi/OTJk1m4cCGNGzemb9++VyzC7969mzp16vC///2PIUOGMHPmTIYPH84///xD9+7dc3ROFeFFREQkry5oURMdxit9alMj6iI/UyTGmQLt5r9h99zzZ+2exwYhpc8W5YtHZxbpM8cBYe5fFHM44ONmpjVPz7eh2T1WJ8pf6ammiDn3LXNHAEDlTqaoHln7Mu9LgZGVIfUUDJ5uCsWSexnpELcJYpae/Ti578L9giLNn3FWYb5UfRVtj+0037v2dBj4L0S3tjpR7qQkmtnwibHm+63Vg1Ynci/x+2HTX7Bpovm+OFfZZqaNQc3roVg5K9Llj5jlMK6/aU8TFAn9fzZ3qYlcTmoS/PkAbJxgnje7D7q/7ryi7LIvzRoGXv7wvwWF/27JgiKrrWLjQdDrfavTXFp6KoysZH5+vGe21r6wWIEpwp/LZrNdsQj/1FNP8c8///D/7N13dFR1/v/x18wkmfRegRR6ld6CoKIgWFixoqKAdS2wKuvPsmtdd2X3q+vadZuyKojiistaYBHFQi+C9J6Ekt7rJFN+f9xkICSElmRSno9zcmbm3jv3vgfIJXndz31/tm3b5l524403qqCgQEuWLDmt4xDCAwCAc2GzO/TPHw/qteXHWtRMS07UQ+N7nHwS2fJ8o31J/kEpP0XKO2iMms8/WM8I3hNYg42eobUC+iTjdUj8mbU+aSoHf5D+daUxkd+vd7XfNiDl+caoubV/lZxVxhwBg26Rxj4hBcXU3X7P/6T510uBscZEtoxkajxF6dLhdcYEa4fWGq2inFW1t7FYjQk9jw/mA6M8U6+nfHK70bKj23jplk88Xc3Z+ekDIzixhki/2tS+J8eWjAtQNcH74fW118WPPBa8h3T0RHWeUZAmzZ9iXKzz8jP6PPe5ytNVoaUqPCx9eJOU8bNk9paueLHxJ1F1OqUPrjZGNHcaZrTxY94Cz7LbpBe6S7ZCY56RpNGerqhhH91iDPS56HHposc8XU271mZD+AsuuECDBw/Wyy+/7F727rvv6sEHH1RhYWG977HZbLLZbO7XRUVFio+PJ4QHAADn5EhBuf7wxQ59udVoURMZaLSouXrQCS1qGuJySWW51aF8ihHKH/+8OL3h95ssxgjGEwP6mH5G+5vmGkG/8DZp+6fGL6mTXmmeY7ZkeQekr58x2j5IxsWJ0Q8aE7j6+B/b7j8zpZ/el4bdKV3xZ09U2n5UlUtHN0uH1kiH1hnBfFlu3e3CuxxrXxM/0piotK1eHEnfIv31AuP5L3+Q4vp7tp6z5XRIf7vQaFE04GZp3DP1X/Rqy/JTjfPNjs+M9kxuJikhuTp4n2TcddVeVRQZF532LTNeX/KUNHp2y7/TDM0rba300VTjzgn/CGnKB1LiqKY5VsEh6a1Rkq3IOG+NfqhpjoPTs+sLacHNUlAH6aHtLf///k3vG/PjdBgs3f2tp6tp184khG8BQ6dOX0ZGhmJiav9AFRMTo6KiIpWXl8vPz6/Oe+bMmaNnn322uUoEAADtRMdQP705dYh+2Jutp/9jtKiZ/fEWfbguTb+7qp96x53GxX6TyRi1GRApxQ+ru76qvHrEfMoJo+hTjC+H7djzEwVEHdcPe4TUYWDTtN4oyTJG4kjS0Dsaf/+tUXgX6Yb3jL7LS38rHdkgffsHacO70iVPSv1vlOSSdn9pbN97kkfLbRe8/aTEZONLMi6A5R0wwvi06mA+e6exLO+AtOVDYztriDHh6+BpxsjZthTYfV39O9J517feAF4yRo9OmGPcjbNlvvEVFCfFDTTOe3EDjOfBcR4utJHlHTwWvB/96bgVJinxfCN473Vl2/vcZ8s32JhQc+lvpHV/lZb/TsrZZ1w49vLxdHVoCX76QPr8IclRaQxmuOlDY96ephIaL02cY9zJ8+3zUvcJUkyfpjseGra1+m6wfte0/ABeOjZp7NFNxs/igdGerQenpVWNhO/Ro4duu+02Pf744+5lX375pa644gqVlZXVG8IzEh4AADS1+lrU3DoyUbMvbaBFzblyOo0+yCeOos87IGVuM36JPF5N642EEcYI3/jhjdO24fsXpW+eM26nvvPrc99fW+NyGe0+vn5WKqzuUx7bX+p7tbT8WckvTHp4b8ud/Ks9Kc+XDm+sHi2/1nheVXpsfafhRk/gttC7/+D30r8mSWYvaeZ648JRa7f6DWnjXClnr2pNOlojMMYI4+MGVIfzA42R4a3pwkreAWn7Z0bwnr7l2HKT2Qje+1xltJppb3cCnKl1f5e+elRyOYw/tykfnPtkm2i9HHZp2VPSmjeM170nSZPflqyBTX9sl0v68EZpzxLjZ4O7vuHnAU+wlUgvdJPs5a2rx/pfLzD+L5j8ljTwZk9X02612ZHwsbGxyszMrLUsMzNTwcHB9QbwkmS1WmW1tvMJlwAAQJOyell030XdNHlgR/2+ukXN3FUp+vzndD1+WS9dM/gMWtScLrPZCJCCO9SdTNFuO9Z6o6YndllOdbi4RlJ1y5iIbkYgn1A9Wj6yx5kFUk6HtPFfxvOhtzfGp2p7TCbpvOuMEalr35Z++LPRZzbjZ2N9z8v5hbul8AuTuo8zvqTqCV+3Szs/l1a/bvSY/+d44wLKuGeM1k+tUUWRtOxp4/mQ29pGAC9JyfcbX7ZiKWOblL7ZOA+mb5FydkslmdLepcZXjYCoYyPla4L5kE4tK5jP3W9MDrnjM6PlTg2T2ehZ3GeyERoyCvL0Db/LaN+28DYpdaX094ulqQulyO6ergzNrTzfaFO0/xvj9YWPSRc+2nwjoU0m426MN0caPxd8/6I09vFTvw+Na/dXRgAf3sUYsNJadJ9g/B+3ZykhfCvRqkbCP/roo/ryyy+1deuxHz5uvvlm5eXlMTErAABoMX7Ym62nF2/XgWxjFO2wpDA9Pamv+nYIbvww/nTUtN5IW3OsJ3b2rrrb+YXV7ofdcbDRxuNk9iyV5t8g+YYaE7I2tC0MpTnSij9KG94xRmHe8qnU7RJPV4VTKUqXvv299NM8SS7J4iON+KU05mHJL9TT1Z2e0lzjQtC6v0oVhZK3v/Srze1j1HRl6bFgPn2LEc5n7zK+B0/kH3FCMD9ACk0892DeUWUEfuX5Ulle9fO8k7zOP/a6quzYPkwWqfOYY8F7e5+E9lxl7TT+DytIk3xDpBvel7pc6Omq0Fyy9xij0PP2G+fDyW8ZbZw8Ydu/jYsBJot01/LWFQS3BfOnGHcjXPCIdPFvPV3N6Tu0XvrnOMkaLD1ygEEdHtJqJmYtKSnRvn37JEmDBg3SSy+9pLFjxyo8PFwJCQl6/PHHdeTIEb333nuSpIMHD6pfv366//77dfvtt+ubb77Rr371K33xxReaMGHCaR2TEB4AADSHSrtT//zxoF5dvlflVUbQE+Lnrd5xQeodF6zeccHqExes7jGBsnpZmr/Asjzp8PrqYH6tMZmfvaL2NmZvI4BKGHksmD8+sKv5pWXk/dLE55u3/tYud79UdNQI1NB6ZGyT/veEdKB6EjS/cOmix4w7QVrqL79FR6VVr0sb3z0W6Eb2MHoRdxvn2do8qapcytxu9FNP3ywd3WLMC+C0193WL+xYMB83wGgbITUQotcTqlcWn12dJosRDPeZbNxRExBxlh8Y9SrJNiZjPLzOaM90xUvSkOmerqp+ufullS8bj5f9nxTbz9MVtV57lxmht61IComXbpzv+bkxPp5u3PES1Vu6e4Xk7evZetqLsjzpxR6Ss0q6f50U1dPTFZ0+p0N6sbsx0fyML4y7o5pb4RHjDrToXs1/7Bai1YTwK1as0NixY+ssnz59uubOnasZM2YoJSVFK1asqPWehx56SDt27FCnTp305JNPasaMGad9TEJ4AADQnI4WlOv5L3dqybYM2Z11f+zyMpvUNSpQfToE1wroIwObuZ2evdJodXBozbFgviSz7nZhScZo+dj+RhgplzRzoxTZrXnrBTzF5ZL2fW38+6+5oyS8qzT+d1KvK1pOK5O8A9LKV6TN84/NERE3QBrza6nXpNYx8Vxzq6owWhDVtLFJ3yxl7jDCmcbiG2qE+v7hxqNfmHExp9aymtdhUkB08/Smbs+qKozJMbdVT8w4apY07llj0t+WIHO70cps+yLJ5TSW+QRK170r9bjUs7W1Ni6XtOo1owe8XMbggikfSIFRnq7MuFvpzRFSabZ0/gPG/yloehvnSv99QIo5T7r3R09Xc+Y+/aX08wJp1K+kS59rvuPaK6W1b0kr/mS08rrrm5ZzzmxmrSaE9wRCeAAA4Ak2u0N7M0u0M71IO9KLtDO9SDvTi1VYXn+4Ex1kPTZivkOw+sQFqXNkoCzmZgr4XC6pILW6p3x1b/msHaoz4WHnC6Xpi5unJqAlcdiln96Tvn3eCE0kKXG08UuwJyd1y9wh/fgXI1CsCewSRkkX/FrqeknLuUjQWthtxrmvpo1NTTBv8TFC8joh+skC9XCj5Uk7DSlaPJdL+u5P0oo5xuuel0vX/N2zF0AOb5R+eFHa/eWxZd0nGO2VUn805gWY+EejNRZOreCQtOxJ42KGJA261bjzwcvHs3Udb9eX0oKbJJmk25cac/agcVSVS8UZUkmWVJIhFWcag012fCbl7jPmehn9kKerPHM1rYyiekn3r22eYx74Tvry/xnzrUjG4Jwp81rGxSwPIIRvACE8AABoKVwul9ILK7TjaHUon1GkHUeLlJpXpvp+QrN6mdUzNkh9qsP53nHB6hUXpGDfZmqDUVFY3cKmOpgvOCRd/bbRrgZoryqKjBYRq9841tKp/xTpkqeMST6by+GNxmjZ3V8cW9ZtvDRmtpQ4qvnqAFqzrZ9In90nOWxS7HnSTR9JIR2b7/gul5TyoxG+H1hRvdAk9bnKuIslrr8xAvWL2dJP7xurh98tTZgjWbyar87WpCzPODeu+7vx92qyGO24ht/dMi9KLrpH2vKhMUnoPT9KPgGerqjlcrmMll8lmfUH7McvtxWefD8mi/TAZik0odlKbzTl+dL/dTXmOHngZykssemOVXTUuAtw27+N1/6RxsCD/je267vrCOEbQAgPAABaulKbXbsyimuNmt+VXuzuLX+i+HA/9Y49Nmo+KSJAUUFWhfl7e2YiWKA9KjwsLX/OuC1ckrx8pZH3GSPrfJvo9w6XS0r5wQiYagV2v6gO7AY0zXGBtuzQOunDm6SyHCkoTrrpw6afKNPlMvqU//Ci0Q5OMoLB/lOMc0hUj7rbr3xF+vpp43W38dJ17zTduaY1qiwz2mX8+MqxADZxtHTp76SOQzxbW0PKC6Q3k6Xio9LwX0qX/5+nK/KM4gwj9HWH6ZlGwF6SVR2sVy+vabd2Orx8pcAYKSjWeAyMMeY6ih/ZuufoeecyKW2VdPmL0vC7Gn//jipjYvcVf5QqS4y7cIbdKY39beuZnL4JEcI3gBAeAAC0Rg6nS6m5pdqZXlzdysYI6NMLK076Hm+LSVGBVkUFWRUV5KvoYKuiAq2KDrYqOshX0UHGushAq3y82u8IFqBRHf1JWvqE0S5CkgKipIselwZPb7yRqi6XMSnyD3827k6RGg7sAJyZ/FRj8vHsnZK3v3TN36Tekxr/OE6ntHOx8b2c8bOxzGKVBt1i9AU/1ajWHYulT++W7OVSdB/p5o9a52jexuSwS5s/MALD4nRjWUw/o91It3Etc/T7ifYtlz64xng+bbExOXN7YCsxWqlteNdo/XW6/MKOC9VjpcBoKTD2hOcxkjW4dfz9n6kf/yJ9/YzU/VJp6sLG3ffBH6QvHz42B06n4dIVL3KR/ziE8A0ghAcAAG1Jfmmlu41NTUCfXliu/LIzm0gwPMDHHdBHVYfzxwf10UFWRQf7KsDHclaj610ul6ocLtnsDlXanbJVfxnPj1923PMqp2wOp2xVDvn5WJQUEaCkyADFBfvK3Fy98YGz4XIZfZyXPWX0mpWMfq3jn5O6jz/7EMDpMPoZ//gXKXObscxilQZPMyaTbMrb0IH2pqJQWnibtH+58XrcM9L5DzZOiOeoMlrf/PiSlLPHWOYdIA29zfheDoo9/X0d2SR9eKMxKjgg2hi532noudfY2rhc0q7Ppa+flXL3GstCEqSLn5DOu771tcv474PSxnelkHjp3lVt+y6HjK1G8P7zx1JlsbHMZDbC88DoYyPX6w3YYyQvq2fr97TMHdJbycZI/0cOSj7+577P4gyj9czW6lDfP8KYLHjAza3ve6mJEcI3gBAeAAC0Bza7QzkllcoqqlB2sU1Z1V/ZxTZlF1cc99wmu/P0fxz087ZUj6S3KszfR06Xq05gXumofm13qtLucAfujcXHy6yEcH8lRfgrMSLA/dg5MkBxIb7ysvDLAVoIR5W04R1jRGZ5nrGsy0XSpb83+k2fLnul0ebmx79IeQeMZT6B0rA7pJH3GyP8ADQ+h11a8pi0/u/G60G3SFf85ewn86yqkDbPM+aRKEgzlvmGGG1HRt5rTOB7NgoPS/NvlDK3GkHc1W9Lfa8+u321RikrjdY8NXcG+YVLF/w/4xzZWgNaW7H01vlSQapxofUXr3m6osZVWSZt/9QI349sOLY8vKs0ZIY08GYpINJj5bUqLpf0l35S0WHp5o+lHhPOfl8Ou7Tur9K3c6oviJiM76Oxvz3781MbRwjfAEJ4AACAY5xOl/LLKpVdYlNWUU1Yfyy4zy6yVa+rUGll/T3pz4aPxSwfL7Os1V/Gc8uxZd5m+ViOLSux2ZWSW6pDeWWqcpz8x1dvi0nxYf5KPD6gjwxQUkSAOoX5yZuAvkm5XC7mIahPeYHRbmLt29X9a03SwKnGCM3guJO/r7JU2vSetOo1qeiIscwvzOg1P/wu4zmAprf2r0YY73JKSWOkG947s0CqstQIG1e9ZvS1loxJDZPvN3orN8YoZ1ux9Mkd0t6lxutLnpJGz26b7TdqZG43Rr7XfGZvf+PPdNQs4+JGa5fyozT3Skku6eaFUo9LPV3RucvcYYzw3/LRsV79Zm+p95XSkNuM7y9GWp+5zx8yLvoPu1O64s9nt4+UlUbrmawdxuuOQ43WM009J0YrRwjfAEJ4AACAs1Nqsx83qr5C+WVV8jabqgNzS+3w3NtS/Vg7ZLd6GevPtp2Mw+nS0YJypeaWKSW3VCk5pUrJLVNqbqlS88pU2cCIe4vZpE5hfrVGz9c8xof7yeplOds/mnYvu9im/1uyS19sTde43jG6a0wXndepDQQgjS0/xQiMtn9qvPb2l0b9Sjr/V5JPwLHtyguk9f+Q1rwpleUaywJjjWBpyAzJGtjMhQPQnv9Jn9xujA4N72qMOI3s1vB7ygukdX83vpdr7oYJ7mj0ex90a+O0jTie02G0kFjzpvF6wM3SpFfOfuR+S1WQJn37vLRlgSSXMSfGkOnShY+eWSuf1mDJ48bfZ2CsdN/q1jkauapc2v6ZEb7XTDwsSWFJxnwpg24xWsvg7O1eIn04xWjB9ODPZ3bxrThTWvak9PNHxmu/cGn8s9LAW7ggchoI4RtACA8AANA2OZ0uZRRVKCW3tFZIX/O8ourkAb3ZJHUI9VNSRICGJoVpbM9ondcxhN7zp2B3OPX+mlS9tGyPiivstdaN6Byuu8Z00cW9ovlzPNGh9dLS30iH1xmvA2ONUfHdxxsjbtf/Q7IVGevCkow+1ANvbr1tFYC2InO70falME3yDZWmfCB1HlN3u5Jsac0b0rp/HOtxHd7FmDi5/41NH4qv+7v01aOSyyEljpamvN86w9sTleUZdxWt+1v1XUWS+kyWLn7y1BdEWquqcuntMUaf+/NukK79u6crOn3Zu407QLZ8KFUUGMtMFqnX5cao9y5jCXkbS2WZ9KckyWGT7lsjRfc+9XscdqPV1rfPV//MYTLmpbj4ybZxvmgmhPANIIQHAABof1wul7KKbbVC+dTcMh3MKVVqbmm9rXYiA310YY9oje0VpTHdoxTi5+2ByluuNQdy9fR/tmt3phEwndcxRPdc2FXLdmTo85/T3XMNdIkM0O2jO+vawZ3k58PdBm4ul7TjM2nZ00bP3xNF9ZbGzJb6XiNZvJq9PAAnUZIlfXiT0cfa7CVd+bI0+FZjXeERadWr0sZ/SfZyY1l0H2nMr42wuDm/l/d+LS2ccWzk/tSFUkTX5jt+Y6oslda8Ja185dgFyqQx0rhnpU5DPFtbczi8QfrneKMd0g3vSX2u8nRFJ2e3STsWG61R0lYdWx6SIA2ZZtwB0tbuVmgpPrhW2ve18X0x+sGGt01dbbSeqZnkvcNgo41Nx8FNXmZbQwjfAEJ4AAAAHM/lcimnpFKpuaXak1miH/Zm64e9OSqxHRvZbTGbNCQhTGN7GaF8z5igdtv7PKOwQs9/uVOLtxyVJIX6e+uRCb00ZVi8LNUj3tMLyzV3VYrmr01zj5AP8/fWLSMTdWtyoqKDfD1Wf4tjtxmjVr//P6mi0Oi9OuZhqefljBAEWqqqcumz+461lhp5n1RZIm3+UHJWGcs6DJYueFjqcZnnvpczd0jzpxgj9/3CjJH7SaM9U8vZcNiln943Jreu6aUfc540/hmp6yVtu9/9iZb/zrgLwD9Cum+tFBjl6Ypqy9lntJvZPP9Y6yWTReox0Rhd3fViycyF+Ca19m/SV//PuPvlti/q36Yky7j4v2W+8dovTBr3jDRoGj9znCVC+AYQwgMAAOBUKu1ObUzN17e7s/TtriztzSqptT4uxFcX9YzW2J5ROr9bpAKsbX+kcqXdqXdWHtSry/eqrNIhk0maOiJBvx7fU2EB9bdWKLXZ9fGGQ3pn5UEdyjNGhfpYzJo8qIPuGN1FPWODmvMjtGzlBcaI+Nj+7StYAlorp1NaMce4gHa8xNHSBb82Wm20hO/lWiP3vY0e8YOmerqqhrlc0s7/GsFz7l5jWWiC0Saj33XtMyy026S/jZWytku9J0k3vO/5f1/2SmnXf42WMyk/HFse3EkaPM24QyS4g+fqa2/yU6RXBhgXPx45IPmFHlvnsEsb/il984fqCXFNxjwKlzxN65lzRAjfAEJ4AAAAnKlDeWVasSdb3+7K0qr9ObX6y/tYzBrRJdwdyneJanuTZn6/J1vP/He7DmSXSpIGJ4Tqd1f1U7+Opzf5qsPp0v+2Z+jvPxzQprQC9/ILekTprjGdNbpbZLu9swBAK/fzx9KSx46NfE8Y6emK6qoqlz67V9q+yHg9erYRaLfEMDvlR2Ok7pENxmv/COmCR4zR1O19Xoz0n6W/j5Wcdumav0v9b/BMHXkHpI1zpZ/mSWU5xjKTWep+qdHrvft4Rr17yuvDpZzd0nXvSv2uMZalrZW++LWUudV43WGQdPmf20crp2ZACN8AQngAAACci4oqh9YcyNWK3dn6ZleW0vLKaq1PivA3Avle0RrROVy+3q33F9HD+WX6/ec7tWS70QYgMtBHj13WW9cM6njWk61uTM3XP344oKXbM1TdNl69YoN0x+jO+sXADrJ6td4/LwBosZxOacXz0vcvGK/7XCVNflvy8fdsXTUytknLn5X2/s947R0gJd8vjZol+ZLduH33gvTt7yXfEGMCzuYYaW4rlnL3S1k7pZ8XSAdWHFsXFGeMeh90qxQa3/S1oGFLfyutfl0acJM0/jnp66elzfOMdb6h0rinpcHTuUjSiAjhG0AIDwAAgMbicrl0IKdU3+7K0ord2Vp7MFdVjmM/Xvt5WzSqa4Qu6mWMku8U1kLCjlOoqHLob98f0Jsr9qmiyimL2aTpyUl6cHx3Bfs2zgS1abllemflQX284ZDKqifGjQqyanpyoqaOSDxpixsAwDnY/KG0eJbRu77DYOmmBVJQjGdqsRVLh9dLWz6Sfv5IksuY7HbIDGP0u6fqaskcdumf46SjP0ndxklTP2mctjSOKqOdSe6+Y1851Y81/fjdTMaxh94mdZ/A5OEtycHvpX9NknyCjDtdKgqN5YOnSZc8IwVEeLS8togQvgGE8AAAAGgqJTa7Vu7L0YrdWfp2V7Yyiipqre8RE6ixPaN1Uc9oDU0Kk7el5bUC+HpHpn73+Q73CP8RncP1u6v6NVn/9sLyKn24Lk1zV6a4/7x8vc26fki8bh/dWZ0jA5rkuADQbqWslD6aKpXnSyHx0s0fSTF9m/64RenSoTVS2hopbbWUsVVyHWvvpr5XG21yIro2fS2tWdYu6a8XSA6bNOlVo7f36XC5pOJ0KWdvddC+/1jgnp8iuRwnf29AlBTRTUo83wh0wxIb5aOgkTmqpP/rItmKjNdxA4zWM/HDPFtXG0YI3wBCeAAAADQHl8ulnenF+nZ3llbsztLG1Hx3+xVJCrR6aXjncCV3iVBy1wj1jguW5SxbvDSGlJxS/e7zHfpmV5YkKTbYV7+9oreu7B/XLP3aK+1OfbH1qP7+/UHtSDd+eTSZpHG9Y3TXmC4alhTWLHXYHU7ll1Upt9Sm3JJKFZVXqXdcsJK4GACgLcndL82/wQhgfYKk6981enk3FqdTytljhO01oXtBat3tQhOkhFHSiLuljvSoPm2rXpP+94TkEyjdu6p2KF5ecFzAvve40e37paqyk+5S3v7GBZCIblJE9+rHblJEF8kvrMk/UltXUFapED/vpv9Z5vsXpM3zpZH3SUNvp/VMEyOEbwAhPAAAADyhoKxS3+/N0YpdWVqxJ1t5pZW11of4eWtE53Ald43QqK6R6hET2Cyhc1mlXW9+u19/+/6AKh1OeVtMumN0F826uJsCrM1/i7nL5dLqA7n6xw8H3RcEJKl/pxDdOaaLLu8XK68zuIPA6XSpsPxYqJ5bWqncElv1Y2Wd5QXlVarvN6Ru0YEa3ydG43rHaFB86Fn3xAeAFqMsT/p4mpTygzGx5sQ/GWH42bDbjBYp7tB9jVRRUHsbk1mK6SclJEsJI6T4kVJIx3P+GO2S0yG9e7lxZ0HcQCm237H2MTWTpdbHZJHCko4L2LtKkdWBe1Bc47S2QR2Lfjqshxf+rLE9o/TWLUNa5J2QODuE8A0ghAcAAICnOZwu7Uwv0ur9uVp9IFfrDuapxGavtU1EgI9GdonQyK4RGtU1Ql0iAxo1lHe5XPpqW4Z+//kOHS002sCM6R6pZ37RV12jAhvtOOdiX1aJ/vnjQX266bBsdqNlQcdQP80YlaSxvaJVWF6pnJJK5VUH6DnVYXpedbCeU1Kp/LJKOZxn9iuPySSF+fsoIsBHfj4W7ThaJPtx+4gM9NElvWI0vk+Mzu8WKT8fRpkBaKXsldIXD0k/fWC8Hv5LacLzp+7zXZYnHVp3rL3MkU1Ge5Tjefsbo9sTkqWEkVKnYUyy2phy90tvj65/dHtgrBGsR3Y7LnDvJoUmSl7MudKcDmSX6MrXfnTPf3PN4I768/UDmmWgBZoeIXwDCOEBAADQ0tgdTm09UqjVB3K1en+u1qfkqaLKWWub6CCrkrtGKLmLMVI+PtzvrH+B25dVrKcXb9fKfbmSjGD7qUl9dGmfmBb5S2FuiU0frEnTe6tTlHvCHQSnK9jXS5GBVkUE+ig8wEcRgVZFBBhBu/t59fowf59arYEKy6u0YneWvt6ZpRW7slR83AUTX2+zxnSP0vjeMbq4d7QiA63n/HkBoFm5XNLKl6WvnzFedxsvXffOscDc5ZIK0o61lUlbI2XvrLufgCgjbK8J3WP7S5bGmcwbJ7Hnf9L2RUY7muNHt1ubZh4XnBmb3aFr3lyl7UeL1CMmUPuzS+VwunTPhV312GW9PF0eGgEhfAMI4QEAANDSVdqd2nK4QKv352rV/hxtSitQpb12KN8x1E8juxij5JO7RqhDqN8p91tcUaVXl+/VuytTZHe65ONl1j0XdtW9F3ZtFaO5K6oc+s/mI3p3ZYoO5ZUpItCq8AAfRQb6KCLAqvBAI1SPrF4eEWg8D/P3kY9X49z6XWl3at3BPH29M1PLdmTqSEG5e53JJA1OCNO43sYo+a5RjXv3AgA0qR2LpU/vluzlUnQfYwLOQ2uN0L04ve72Ed2rQ/fq4D28C+1MgOP8/vMd+sePBxXm762vHrhA3+/N1iOf/CxJeurKPrp9dGcPV4hzRQjfAEJ4AAAAtDYVVQ5tSsvXmv25WrU/V5sPFdRqjyJJiRH+7klek7tGKDrI173O5XLpP5uP6vkvdyqr2GgXMK53jJ66so8SIvyb9bO0JTWT7y7bkamvd2Zq65HCWus7Rwa4+8gPSQzz6MS7AHBajmySPrxRKsmsvdzsZfQerwnc40dIgVEeKRFoDb7dnaXb3l0vSfr7tKEa3ydGkvTGt/v0wtLdMpmkV28cpEkDOniyTJwjQvgGEMIDAACgtSurtGtDSr5WVfeU33q4QCe2Pe8aFaDkrhEaGB+mj9cf0rqUPElSUoS/np7UV2N7RXug8rYtvbBcX+/M0tc7MrV6f64qHcfuXgjz99bFvWI0vk+0xnSP8siktwBwWgoPS/97QrIVHwvdOwyWfLhoC5yOrOIKXfbyD8otrdT05EQ9e1U/9zqXy6VnFm/Xv1anysdi1tzbhmlUt0gPVotzQQjfAEJ4AAAAtDXFFVVan5KnVfuMUH5HepFO/Cnf19usWRd3151jOsvq1fJbz7R2JTa7vt+TrWU7MvXNriwVlle51/l4mXV+1wiN7xOrS3pHKybYt4E9AQCA1sLpdGn6u+v0w94c9YoN0mf3ny9f79o/dzmcLs36cJO+3JqhQKuXPvrlSPXtEOKhinEuCOEbQAgPAACAtq6grFJrD+Zp9f5cbUrLV7eoQP16Qk91PI2+8Wh8dodTG1LztWyH0Uc+La+s1voBnUI0vk+MLuoZrZ6xQfK2NE7/egAA0Lz+9v1+Pf/lLvl6m/XfmaPVPab+SXIrqhya/s46rT2Yp6ggqz69d5Tiw7nbpLUhhG8AITwAAAAAT3G5XNqbVeLuI/9TWkGt9d4Wk7pFB6l3bJB6xwWrV1yQesUGKyrI6pmCAQDAadlyqEDXvrVKdqdLc645TzcNT2hw+6KKKt3w9mrtyihW58gAfXJPsiIC+f++NSGEbwAhPAAAAICWIqu4Qt/szNKyHZlaezBPJTZ7vdtFBlrVOy5IvWKNUL53XLC6Rge069ZCTqdLmcUVSskpU1peqbzMZo3oEq5OYYwkBAA0rxKbXVe8+oNSc8t0Wb9YvTl1sEymU0/InllUoWveXKUjBeUaEB+qD+8aIX8f5o1pLQjhG0AIDwAAAKAlcrlcOpxfrl0ZxdqZXqRdGUXalV6sg7mldXr8S5KX2aSuUYFGOB8XrF7Vo+ejg6yn9Yt/a2B3OHWkoFypuWVKzS1VSm6Z+3laXplsdmed9ySE+2tU1wglV39FB9FzHwDQtGZ/tFmf/nREHUJ89dUDFyjE3/u037svq0TXv71K+WVVuqhnlP4+bSit6VoJQvgGEMIDAAAAaE3KKu3ak1miXelF2plepJ0ZxdqVXqSiivpHzYcH+Bw3Yt4I5rtFB9aZGK6lqKhy6FCeEa6nVIfrKdVB+5H8ctmdJ/+V1ctsUqcwPyVEBKi4oko/Hy6U44Ttu0cHKrlrhEZ1jdDILhEK9fdp6o8EAGhHFv10WA99tEVmk/TRL5M1LCn8jPexKS1fN/99jSqqnLp2cCe9eH3/NnNBvS0jhG8AITwAAACA1s7lculoYYV2pRe5R87vTC/SwZxS1ZdZW8wmdYkMcI+Yjw6yysfLLG9LzZdJPhZzrWU+Xqbj1puPW2+SxWw6o3CgxGZXam7psaD9uMf0oop6R/rXsHqZlRjhr4TwACVF+CsxMkCJ4f5KighQh1BfeR03WrC4okrrU4xJiVftz9WO9KJa+zaZpD5xwe6R8sOSwhXke/qjFQEAOF5qbqkuf+UHlVY69NC4HnpgXPez3tc3uzJ113sb5XC6dN9FXfXIxF6NWCmaAiF8AwjhAQAAALRVFVUO7c0sqR4xb7Sz2ZlRpIKyqkY9jskkdzDvbTkW1ltrQvzqAN/pko7klymnpLLB/QVavZQYYQTrCRH+RtgeEaDECH/FBPnKbD670YD5pZVae9AI5Ffvz9XerJJa6y1mk/p3CtGorhEa1TVSQxLDWuwdAwCAlqXS7tT1b6/SlsOFGt45XB/eNVKWs/z/qsbHGw7pkU9+liQ9M6mPZpzfuTFKRRMhhG8AITwAAACA9sTlcimzyKadGcZo+d0ZxSosr1KVw6kqu0uVDqfx3OFUlcOlSrvz2DJ79TJH3d7rZyo8wEeJEf5KDD8WsCdGGKPbwwN8muW2+6yiCq0+kOseKZ+WV1ZrvY/FrEEJoRrVNVKjukVoQKdQ+XjRlxcAUNecr3bqr98dUIift756YIw6hPo1yn7f+HafXli6WyaT9NpNg3Rl/w6Nsl80PkL4BhDCAwAAAMCZcblcsjtdqnI4jwvpXdUh/XGvj19vd8rpUnXPdn8Ft8C2L4fzy7R6/7FQPqOootZ6P2+LhiaFGaF81wj16xhyzqMcAQCt3/d7sjXtnXWSpLdvGaKJ/WIbbd8ul0tPL96u91anysdi1tzbh2lU18hG2z8aDyF8AwjhAQAAAAAncrlcOphTqtUHjrWvySut3UYnyNdLw5PCFRviK19vi3y9zfL1ssjPxyKrt0W+Xmb5elvk5205tr6+517mWr3sAQCtR06JTRNf/kE5JTZNHZGgP1x9XqMfw+F0adaHm/Tl1gwFWb300S+T1acDOWZLQwjfAEJ4AAAAAMCpOJ0u7ckq1qp9uVp9IFdrDuSquMLeaPv3tpjk62WE934+Rph/Ylgf5OulhHB/98S0CeH+igxsntY9AIC6nE6Xbv/Xeq3Yna0eMYFaPHN0k80lUlHl0PR31mntwTxFBVn16b2jFB/u3yTHwtkhhG8AITwAAAAA4Ew5nC5tP1qoDSn5KqqoUkWVUxVVjuO+nCqveW53ylblOPa6el2l/dx76wf4WBRfHcwnRgS4Q/rE8AB1CPVlhD0ANKF//nhQz32+Q1YvsxbPHK2esUFNerzC8ipN+etq7cooVpfIAH1y7yiFB/g06TFx+gjhG0AIDwAAAADwBKfTJZvdCO+PD+gr7A5VVDqMx6pj6wvKqpSWW6bUvFKl5ZYpvahCDf0G72U2qWOYX61gPiGiZiS9v/x9vJrvwwJAG7PtSKGufnOlqhwuPTe5n24dmdgsx80sqtA1b67SkYJyDYwP1fy7RnA+byEI4RtACA8AAAAAaI1sdocO5ZUrrTqUT80rO/aYV3bKkfaRgdbqcN7/uHA+QIkR/gr185bFbKLVDQDUo9Rm16TXftSBnFJd2idGf711SLOeL/dllei6t1epoKxKY3tG6W/ThsqbO588jhC+AYTwAAAAAIC2xul0KbO4Qqm5Ze7R86m5RjifmlumwvKq09qPt8UkL7NZXhaTvC1meZmrHy2mE56bT7Ft9fpaz83ytpjl72NRgI9Ffj5e1Y8WBVi95O9jkf9xy/x9vGQxc1EAgOf9v4VbtHDjYcUG++qrB8YozAMtYTal5evmv69RRZVT1w3ppBeu68+FUw87k5yZexcAAAAAAGjlzGaT4kL8FBfip5FdIuqsLyyrOiGYP/Y847g2N1UOl6ocDun0Mvsm5+ttlr9PTUBfHdJbLfLzNh5rB/c164xQP9TPWzEhvooL8aV1A4CztnjLUS3ceFgmk/TyjQM9EsBL0uCEML1x82Dd/f5GfbLxsGKCrfp/E3p5pBacOf4XAgAAAACgjQvx91Z//1D17xRaZ53N7lB5pUNVDpfsTqfsDpeqHE7ZndWP1curHC5jXfU2dodTVU7j8fjlNe+1O5wn7NOlSodD5ZVOlVXaVVbpUFmlXaU2owd+qc2u8kqHSivtclZfFDB65Fcqr/TcPn+wr5fiQvwUWx3Kx4b4KjbYt/q1sTzY14tRpWhVHE6XSmx2/u02oUN5Zfrtp1slSbPGdqv3ImdzuqR3jOZcfZ4e+ffPeuPb/YoKtGrG+Z09WhNODyE8AAAAAADtmNXLIquXxdNluLlcxgS2ZZXVwXx1QG+E9g53gF/fsppQv6zSrvyyKqUXlKu00qGiCruKKoq1O7P4pMf197G4Q/qY4Jqw3k9x7rDeV+EBPoSd8Bi7w6ltR4u07mCu1h7I07qUPBVX2BXk66WkiAAlRQYoKcJfiRHGY1JkgCL4N3vWqhxO/WrBTyq22TUkMUy/uqS7p0uSJN0wLF5ZxRV68X979OznOxQV5Ksr+sd5uiycAiE8AAAAAABoMUwmk3y9LfL1tii8Edo+FFdUKaOwQumFFcoorFBGUc3zcuOxqEIFZVUqq3ToQHapDmSffNi9j8WsmBCr4oJrj6rvHh2kPh2CG6VeoEal3amtRwq05kCe1h7M08aUPJVWOupsV1xh19Yjhdp6pLDOukCrlxIj/KtD+pqA3gjpo4KsBPQNePnrPfoprUBBvl565caB8mpBE6HeP7absoptem91qh76aLPCA3yU3NWzo/TRMCZmBQAAAAAA7Vp5pUMZRTUhfbk7sD/+MafEdsr9xIX4qk9csPp2CFafDsHq2yFEncL8CDpxWiqqHNpyqEBrD+Zp7cFcbUzNV0WVs9Y2wb5eGt45XCM6R2hEl3B1iQrUkfxypeSWKjW3VCm5ZUrJMeZ8OFpYroZSP38fi3vU/PGj55MiAhQdZJW5HU+MvGpfjqb+c61cLumNmwe3yJHmDqdLM+dv0lfbMhRk9dLH9ySrdxxZZ3M6k5yZEB4AAAAAAOAUKu1OZRXXDeePFJRpd0axUnLL6n1fkK+XetcE83FGMN8tOlA+Xi1nVC08o7zSoU1p+Vp7IFdrDuZp86ECVdprh+7hAT4anhSuEV2M4L1XbNBph+MVVQ4dzi9TSk6ZUnJLq4N64/mR/HL33Av18fU2KzE8QIkR/uocGaDEiAD1jA1U3w4h8vVuOe2rmkJeaaUmvvy9soptunFYvP54bX9Pl3RSFVUOTX9nndYezFN0kFX/vneU4sP9PV1Wu0EI3wBCeAAAAAAA0NiKK6q0K6NYO44WafvRQu1IL9KejBJVOpx1tvWxmNU9JlB94o6NmO8dF6QgX28PVI7mUmKza2OqEbqvPZinnw8XqMpRO5aLDLRqRJdwjewcrhFdItQtKrBJRqRX2p1GQJ9bqpScMvco+tTcUh3KL5fjJAm9t8Wk3nHBGhgf6v7qHBnQZu72cLlcuuu9Dfp6Z5a6RgXov7NGy9+nZXfzLiyv0pS/rtaujGJ1iQrQJ/eMojVWMyGEbwAhPAAAAAAAaA6Vdqf2Z5do+9Ei7ThapB3phdp+tEjFFfZ6t0+M8K/Tziaavt2tVmF5lTak5FW3l8nTtiOFdcLtuBBfjagO3Id3DleXFhBoVzmcx7W4MYL6gzml2nakUDkllXW2D/Hz1oDqQH5Q9WNYKw2B/7UqRU8v3i4fi1mf3X+++nRoHdlhRmGFrn1rlY4UlKtvh2D9YkAHJUb4Kz7cXwnh/lzgayKE8A0ghAcAAAAAAJ7icrl0OL/cCObTq8P5o4U6WlhR7/YRAT7qUx3Kd4sKVJCvl/x8vBTgY5Gfj0X+Jzy3tOM+3i1BWm6ZPlibqpX7crQjvahOT/ZOYX7ufu4jO0coPrz1zBlQ829386EC99e2I4Wy2eve7ZEY4V9rtHyfDsGyerXsNjY7jhZp8psrVWl36plJfTTj/M6eLumM7Msq0XVvr1JBWVWddWH+3kqICFBCuL8Swv2qHwOUEOGv2GBfzhtniRC+AYTwAAAAAACgpckvrTwWyqcbLW32Z5eetC3IyVi9zPKvDuSNRyOgD/Dxqg7qa6+reV6zjb+PRf5WLwVaLQry9Vag1VjWWoJiTzmYU6o3vt2nRT8dqfV3lhTh7w7dR3SJUMdQPw9W2fiqHE7tSi/W5kP5+qk6mD+QXVpnOx+LWX06GG1sBiUYwXxCuH+L+XdVVmnXpNd+1P7sUl3SK1r/mD60xdR2Jg7mlOrTTYeVlldmfOWWKbe07t0Lx/OxmNUpzM89aj4h3F8JEceeB1hbdjseTyKEbwAhPAAAAAAAaA0qqhzanVHsDudTcktVXulQaaVD5ZX26keHyirtDU6yea4sZpMCrV4K8vVSoNVLwb7eCvL1qv7yVuBxz4Ortwk6cRtr2xylvy+rRG98u0//2XzE/XdwYY8oXTO4o0Z2iVBMsK9nC/SAwrIqbT5coM1pBdp8KF+bDxUov57R2eEBPhrQKUQD48M0MCFUAzuFKsTfM21THv/0Z3247pCig6xa8uAFbaqneonNrkN5ZUrNLdOh6nA+Nc94fji/rM68BCeKDPSpHdAfF9THBPk2yZwFrQUhfAMI4QEAAAAAQFvicrlksztVVh3IG4/Vz20OlVVVh/Y2h8qrHCq1GdsYgb69Osiv/d4Sm13FFVWNGu4H+Fjc4XxgdTgfEeCjcb1jNK5PdItvV3K8PZnFeu2bffr856PuljOX9IrWrEu6a2B8qEdra2lcLpfS8sq0+VCBfkozRsvvOFpU76TFXSIDNCA+VPHh/uoY6qsOoX6KC/FTh1DfJpsg9cut6bpv3iaZTNK8O0ZoVLfIJjlOS+RwupRRVGFMyFsT0B8X1td38eR4wb5e2vL0pa3yroHG0OpC+DfeeEMvvPCCMjIyNGDAAL322msaPnx4vdvOnTtXt912W61lVqtVFRX19047ESE8AAAAAADAqblcLpVVOlRcYVeJrUpFFXYVVxjhfMlxz4sq7O7Qvrh6ec3rogq7KuvpGX6iMH9vTR7UUTcMjVfvuJab1+xML9Jr3+zVl1sz3Msu7ROjWRd313mdQjxYWetiszu0M71Ym9Py3f3lU3LLGnxPqL+3OoT4qUOoEcobj37qEGI8jw6yystiPqM6DueX6fJXflBRhV33XdRVj0zsdS4fq80pqqhSWnUon1odzNeMqj9SUK7OkQH6evaFni7TY84kZ/Z4U5+PPvpIs2fP1ttvv60RI0bo5Zdf1oQJE7R7925FR0fX+57g4GDt3r3b/bq9Xm0BAAAAAABoKiaTSQFWr+qe0GffVsVmdxwX2leH9Tbj+f7sEi3adEQZRRV6d2WK3l2ZovM6huiGoZ30iwEdPdae5ETbjhTq1eV79b8dme5ll58Xq5lju6tPh5Z70aClsnpZ3JO21sgvrdTmw8Yo+SMF5TpaUK70ggodKShXic2ugrIqFZRVaUd6Ub37tJhNigmyusP5uFBfdTxuJH3HUD+F+Hm7c0S7w6kHF2xWUYVdA+ND9dD4Hs3x0VuVYF9v9esYon4d615gsjucpxwpj2M8PhJ+xIgRGjZsmF5//XVJktPpVHx8vGbNmqXHHnuszvZz587Vgw8+qIKCgrM6HiPhAQAAAAAAWg6H06Uf9mZr4YbD+t+ODHePah8vsyb2jdUNQ+M1qmuER3pPbz5UoNeW79XyXVmSJJNJurJ/B80c2009Y4OavZ72qqiiSukFFTpaUK4jBeVKLyzX0erXRwvLlVFYccre5pLk521xj6J3ulxauS9XQVYvffnAGMWH+zfDJ0Fb0mpGwldWVmrjxo16/PHH3cvMZrPGjRun1atXn/R9JSUlSkxMlNPp1ODBg/X888+rb9++9W5rs9lks9ncr4uK6r9aBgAAAAAAgOZnMZt0Uc9oXdQzWnmllfrP5iP6aP0h7coo1uItR7V4y1F1DPXTdUM66bohnZolLN2Ymq9Xl+/Vd3uyJUlmk3TVwI66f2xXdYsmfG9uwb7eCo71PumFD6fTpZwSW/UI+gqlF1aH9QUVOlpojKrPKalUeZVD+7NLtT+71P3e31/djwAeTc6jIXxOTo4cDodiYmJqLY+JidGuXbvqfU/Pnj31zjvvqH///iosLNSLL76oUaNGafv27erUqVOd7efMmaNnn322SeoHAAAAAABA4wkP8NFt53fWjFFJ2nakSB9vOKT/bD6iIwXlemX5Xr2yfK/O7xahG4bGa0LfWPl6N+5krusO5unV5Xv1474cScYFgskDO2rmxd3UOTKgUY+FxmM2mxQd7KvoYF8NSqh/m4oqhzIKa0bPG4+dwvx01cCOzVss2iWPtqM5evSoOnbsqFWrVik5Odm9/JFHHtF3332ntWvXnnIfVVVV6t27t2666SY999xzddbXNxI+Pj6edjQAAAAAAACtQEWVQ0u3Z2jhhsPucFySgn29dNVAYzLXfh2Dz3rOQJfLpdUHcvXq8r1acyBPkuRlNunawZ1039iuSowgfAdQV6tpRxMZGSmLxaLMzMxayzMzMxUbG3ta+/D29tagQYO0b9++etdbrVZZrdZzrhUAAAAAAADNz9fboqsGdtRVAzvqUF6Z/r3psBZuOKwjBeV6f02q3l+Tql6xQbphaLwmD+qo8ACf09qvq7on+KvL92pdihG+e1tMun5ovO69sCstSgA0mhYxMevw4cP12muvSTImZk1ISNDMmTPrnZj1RA6HQ3379tXll1+ul1566ZTbMzErAAAAAABA6+Z0GqPXP95wSF9ty1Cl3SnJCNHH94nR9UPjdUH3KFnqmczV5XLpuz3ZenX5Xm1KK5Ak+VjMunF4vO65sKs6hPo150cB0Eq1mpHwkjR79mxNnz5dQ4cO1fDhw/Xyyy+rtLRUt912myRp2rRp6tixo+bMmSNJ+t3vfqeRI0eqW7duKigo0AsvvKDU1FTdeeednvwYAAAAAAAAaCZms0nnd4vU+d0i9buyKi3eckQfbzisrUcK9eXWDH25NUOxwb66dkhHXT8kXkmRAXK5XPpmV5ZeXb5XWw4XSpKsXmbdPCJBv7ygq2JDfD38qQC0VR4P4adMmaLs7Gw99dRTysjI0MCBA7VkyRL3ZK1paWkym83u7fPz83XXXXcpIyNDYWFhGjJkiFatWqU+ffp46iMAAAAAAADAQ0L8vXVrcpJuTU7SjqNFWrjxkD776Ygyiir0xrf79ca3+zW8c7hKbXZtP1okSfL1NuvWkYm664Iuig4ifAfQtDzejqa50Y4GAAAAAACgbbPZHVq+M0sfbzik7/dky1mdfvn7WDQtOUl3jumsyEDmEARw9lpVOxoAAAAAAACgMVm9LLr8vDhdfl6c0gvL9Z/NRyVJNwyNP+2JWwGgsRDCAwAAAAAAoM2KC/HTPRd29XQZANox86k3AQAAAAAAAAAAZ4MQHgAAAAAAAACAJkIIDwAAAAAAAABAEyGEBwAAAAAAAACgiRDCAwAAAAAAAADQRAjhAQAAAAAAAABoIoTwAAAAAAAAAAA0EUJ4AAAAAAAAAACaCCE8AAAAAAAAAABNhBAeAAAAAAAAAIAmQggPAAAAAAAAAEATIYQHAAAAAAAAAKCJEMIDAAAAAAAAANBECOEBAAAAAAAAAGgihPAAAAAAAAAAADQRQngAAAAAAAAAAJoIITwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCCA8AAAAAAAAAQBMhhAcAAAAAAAAAoIkQwgMAAAAAAAAA0EQI4QEAAAAAAAAAaCKE8AAAAAAAAAAANBFCeAAAAAAAAAAAmgghPAAAAAAAAAAATYQQHgAAAAAAAACAJkIIDwAAAAAAAABAEyGEBwAAAAAAAACgiRDCAwAAAAAAAADQRAjhAQAAAAAAAABoIoTwAAAAAAAAAAA0EUJ4AAAAAAAAAACaCCE8AAAAAAAAAABNhBAeAAAAAAAAAIAmQggPAAAAAAAAAEATIYQHAAAAAAAAAKCJEMIDAAAAAAAAANBECOEBAAAAAAAAAGgihPAAAAAAAAAAADQRQngAAAAAAAAAAJoIITwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCCA8AAAAAAAAAQBMhhAcAAAAAAAAAoIkQwgMAAAAAAAAA0EQI4QEAAAAAAAAAaCKE8AAAAAAAAAAANBFCeAAAAAAAAAAAmkiLCOHfeOMNJSUlydfXVyNGjNC6desa3H7hwoXq1auXfH19dd555+nLL79spkoBAAAAAAAAADh9Hg/hP/roI82ePVtPP/20Nm3apAEDBmjChAnKysqqd/tVq1bppptu0h133KGffvpJkydP1uTJk7Vt27ZmrhwAAAAAAAAAgIaZXC6Xy5MFjBgxQsOGDdPrr78uSXI6nYqPj9esWbP02GOP1dl+ypQpKi0t1eeff+5eNnLkSA0cOFBvv/32KY9XVFSkkJAQFRYWKjg4uPE+CAAAAAAAAACgXTiTnNmjI+ErKyu1ceNGjRs3zr3MbDZr3LhxWr16db3vWb16da3tJWnChAkn3R4AAAAAAAAAAE/x8uTBc3Jy5HA4FBMTU2t5TEyMdu3aVe97MjIy6t0+IyOj3u1tNptsNpv7dWFhoSTjSgUAAAAAAAAAAGeqJl8+nUYzHg3hm8OcOXP07LPP1lkeHx/vgWoAAAAAAAAAAG1FcXGxQkJCGtzGoyF8ZGSkLBaLMjMzay3PzMxUbGxsve+JjY09o+0ff/xxzZ492/3a6XQqLy9PERERMplM5/gJWqeioiLFx8fr0KFD9MUHUC/OEwBOhfMEgFPhPAHgVDhPADiVlnyecLlcKi4uVocOHU65rUdDeB8fHw0ZMkTLly/X5MmTJRkh+fLlyzVz5sx635OcnKzly5frwQcfdC9btmyZkpOT693earXKarXWWhYaGtoY5bd6wcHBLe4fL4CWhfMEgFPhPAHgVDhPADgVzhMATqWlnidONQK+hsfb0cyePVvTp0/X0KFDNXz4cL388ssqLS3VbbfdJkmaNm2aOnbsqDlz5kiSHnjgAV144YX685//rCuuuEILFizQhg0b9Le//c2THwMAAAAAAAAAgDo8HsJPmTJF2dnZeuqpp5SRkaGBAwdqyZIl7slX09LSZDab3duPGjVK8+fP1xNPPKHf/OY36t69uz777DP169fPUx8BAAAAAAAAAIB6eTyEl6SZM2eetP3MihUr6iy7/vrrdf311zdxVW2X1WrV008/XadNDwDU4DwB4FQ4TwA4Fc4TAE6F8wSAU2kr5wmTy+VyeboIAAAAAAAAAADaIvOpNwEAAAAAAAAAAGeDEB4AAAAAAAAAgCZCCA8AAAAAAAAAQBMhhAcAAAAAAAAAoIkQwrdDb7zxhpKSkuTr66sRI0Zo3bp1ni4JgId8//33mjRpkjp06CCTyaTPPvus1nqXy6WnnnpKcXFx8vPz07hx47R3717PFAvAI+bMmaNhw4YpKChI0dHRmjx5snbv3l1rm4qKCt1///2KiIhQYGCgrr32WmVmZnqoYgDN7a233lL//v0VHBys4OBgJScn66uvvnKv5xwB4Hh//OMfZTKZ9OCDD7qXcZ4A8Mwzz8hkMtX66tWrl3t9az9PEMK3Mx999JFmz56tp59+Wps2bdKAAQM0YcIEZWVlebo0AB5QWlqqAQMG6I033qh3/f/93//p1Vdf1dtvv621a9cqICBAEyZMUEVFRTNXCsBTvvvuO91///1as2aNli1bpqqqKl166aUqLS11b/PQQw/pv//9rxYuXKjvvvtOR48e1TXXXOPBqgE0p06dOumPf/yjNm7cqA0bNujiiy/WVVddpe3bt0viHAHgmPXr1+uvf/2r+vfvX2s55wkAktS3b1+lp6e7v3788Uf3utZ+njC5XC6Xp4tA8xkxYoSGDRum119/XZLkdDoVHx+vWbNm6bHHHvNwdQA8yWQyadGiRZo8ebIkYxR8hw4d9Otf/1oPP/ywJKmwsFAxMTGaO3eubrzxRg9WC8BTsrOzFR0dre+++04XXHCBCgsLFRUVpfnz5+u6666TJO3atUu9e/fW6tWrNXLkSA9XDMATwsPD9cILL+i6667jHAFAklRSUqLBgwfrzTff1O9//3sNHDhQL7/8Mj9LAJBkjIT/7LPPtHnz5jrr2sJ5gpHw7UhlZaU2btyocePGuZeZzWaNGzdOq1ev9mBlAFqigwcPKiMjo9Y5IyQkRCNGjOCcAbRjhYWFkoyATZI2btyoqqqqWueKXr16KSEhgXMF0A45HA4tWLBApaWlSk5O5hwBwO3+++/XFVdcUet8IPGzBIBj9u7dqw4dOqhLly6aOnWq0tLSJLWN84SXpwtA88nJyZHD4VBMTEyt5TExMdq1a5eHqgLQUmVkZEhSveeMmnUA2hen06kHH3xQ559/vvr16yfJOFf4+PgoNDS01racK4D2ZevWrUpOTlZFRYUCAwO1aNEi9enTR5s3b+YcAUALFizQpk2btH79+jrr+FkCgGR075g7d6569uyp9PR0PfvssxozZoy2bdvWJs4ThPAAAAA4Lffff7+2bdtWqzcjAEhSz549tXnzZhUWFuqTTz7R9OnT9d1333m6LAAtwKFDh/TAAw9o2bJl8vX19XQ5AFqoyy67zP28f//+GjFihBITE/Xxxx/Lz8/Pg5U1DtrRtCORkZGyWCx1Zg7OzMxUbGysh6oC0FLVnBc4ZwCQpJkzZ+rzzz/Xt99+q06dOrmXx8bGqrKyUgUFBbW251wBtC8+Pj7q1q2bhgwZojlz5mjAgAF65ZVXOEcA0MaNG5WVlaXBgwfLy8tLXl5e+u677/Tqq6/Ky8tLMTExnCcA1BEaGqoePXpo3759beLnCUL4dsTHx0dDhgzR8uXL3cucTqeWL1+u5ORkD1YGoCXq3LmzYmNja50zioqKtHbtWs4ZQDvicrk0c+ZMLVq0SN988406d+5ca/2QIUPk7e1d61yxe/dupaWlca4A2jGn0ymbzcY5AoAuueQSbd26VZs3b3Z/DR06VFOnTnU/5zwB4EQlJSXav3+/4uLi2sTPE7SjaWdmz56t6dOna+jQoRo+fLhefvlllZaW6rbbbvN0aQA8oKSkRPv27XO/PnjwoDZv3qzw8HAlJCTowQcf1O9//3t1795dnTt31pNPPqkOHTpo8uTJnisaQLO6//77NX/+fP3nP/9RUFCQu+diSEiI/Pz8FBISojvuuEOzZ89WeHi4goODNWvWLCUnJ2vkyJEerh5Ac3j88cd12WWXKSEhQcXFxZo/f75WrFihpUuXco4AoKCgIPdcMjUCAgIUERHhXs55AsDDDz+sSZMmKTExUUePHtXTTz8ti8Wim266qU38PEEI385MmTJF2dnZeuqpp5SRkaGBAwdqyZIldSZeBNA+bNiwQWPHjnW/nj17tiRp+vTpmjt3rh555BGVlpbq7rvvVkFBgUaPHq0lS5bQyxFoR9566y1J0kUXXVRr+bvvvqsZM2ZIkv7yl7/IbDbr2muvlc1m04QJE/Tmm282c6UAPCUrK0vTpk1Tenq6QkJC1L9/fy1dulTjx4+XxDkCwKlxngBw+PBh3XTTTcrNzVVUVJRGjx6tNWvWKCoqSlLrP0+YXC6Xy9NFAAAAAAAAAADQFtETHgAAAAAAAACAJkIIDwAAAAAAAABAEyGEBwAAAAAAAACgiRDCAwAAAAAAAADQRAjhAQAAAAAAAABoIoTwAAAAAAAAAAA0EUJ4AAAAAAAAAACaCCE8AAAAgEZhMpn02WefeboMAAAAoEUhhAcAAADagBkzZshkMtX5mjhxoqdLAwAAANo1L08XAAAAAKBxTJw4Ue+++26tZVar1UPVAAAAAJAYCQ8AAAC0GVarVbGxsbW+wsLCJBmtYt566y1ddtll8vPzU5cuXfTJJ5/Uev/WrVt18cUXy8/PTxEREbr77rtVUlJSa5t33nlHffv2ldVqVVxcnGbOnFlrfU5Ojq6++mr5+/ure/fuWrx4cdN+aAAAAKCFI4QHAAAA2oknn3xS1157rbZs2aKpU6fqxhtv1M6dOyVJpaWlmjBhgsLCwrR+/XotXLhQX3/9da2Q/a233tL999+vu+++W1u3btXixYvVrVu3Wsd49tlndcMNN+jnn3/W5ZdfrqlTpyovL69ZPycAAADQkphcLpfL00UAAAAAODczZszQBx98IF9f31rLf/Ob3+g3v/mNTCaT7rnnHr311lvudSNHjtTgwYP15ptv6u9//7seffRRHTp0SAEBAZKkL7/8UpMmTdLRo0cVExOjjh076rbbbtPvf//7emswmUx64okn9Nxzz0kygv3AwEB99dVX9KYHAABAu0VPeAAAAKCNGDt2bK2QXZLCw8Pdz5OTk2utS05O1ubNmyVJO3fu1IABA9wBvCSdf/75cjqd2r17t0wmk44ePapLLrmkwRr69+/vfh4QEKDg4GBlZWWd7UcCAAAAWj1CeAAAAKCNCAgIqNMeprH4+fmd1nbe3t61XptMJjmdzqYoCQAAAGgV6AkPAAAAtBNr1qyp87p3796SpN69e2vLli0qLS11r1+5cqXMZrN69uypoKAgJSUlafny5c1aMwAAANDaMRIeAAAAaCNsNpsyMjJqLfPy8lJkZKQkaeHChRo6dKhGjx6tefPmad26dfrnP/8pSZo6daqefvppTZ8+Xc8884yys7M1a9Ys3XrrrYqJiZEkPfPMM7rnnnsUHR2tyy67TMXFxVq5cqVmzZrVvB8UAAAAaEUI4QEAAIA2YsmSJYqLi6u1rGfPntq1a5ck6dlnn9WCBQt03333KS4uTh9++KH69OkjSfL399fSpUv1wAMPaNiwYfL399e1116rl156yb2v6dOnq6KiQn/5y1/08MMPKzIyUtddd13zfUAAAACgFTK5XC6Xp4sAAAAA0LRMJpMWLVqkyZMne7oUAAAAoF2hJzwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCT3gAAACgHaALJQAAAOAZjIQHAAAAAAAAAKCJEMIDAAAAAAAAANBECOEBAAAAAAAAAGgihPAAAAAAAAAAADQRQngAAAAAAAAAAJoIITwAAAAAAAAAAE2EEB4AAAAAAAAAgCZCCA8AAAAAAAAAQBMhhAcAAABakDfffFMmk0kjRozwdCkAAAAAGoHJ5XK5PF0EAAAAAMP555+vo0ePKiUlRXv37lW3bt08XRIAAACAc8BIeAAAAKCFOHjwoFatWqWXXnpJUVFRmjdvnqdLqldpaamnSwAAAABaDUJ4AAAAoIWYN2+ewsLCdMUVV+i6666rN4QvKCjQQw89pKSkJFmtVnXq1EnTpk1TTk6Oe5uKigo988wz6tGjh3x9fRUXF6drrrlG+/fvlyStWLFCJpNJK1asqLXvlJQUmUwmzZ07171sxowZCgwM1P79+3X55ZcrKChIU6dOlST98MMPuv7665WQkCCr1ar4+Hg99NBDKi8vr1P3rl27dMMNNygqKkp+fn7q2bOnfvvb30qSvv32W5lMJi1atKjO++bPny+TyaTVq1ef8Z8nAAAA0BJ4eboAAAAAAIZ58+bpmmuukY+Pj2666Sa99dZbWr9+vYYNGyZJKikp0ZgxY7Rz507dfvvtGjx4sHJycrR48WIdPnxYkZGRcjgcuvLKK7V8+XLdeOONeuCBB1RcXKxly5Zp27Zt6tq16xnXZbfbNWHCBI0ePVovvvii/P39JUkLFy5UWVmZ7r33XkVERGjdunV67bXXdPjwYS1cuND9/p9//lljxoyRt7e37r77biUlJWn//v3673//qz/84Q+66KKLFB8fr3nz5unqq6+u82fStWtXJScnn8OfLAAAAOA5hPAAAABAC7Bx40bt2rVLr732miRp9OjR6tSpk+bNm+cO4V944QVt27ZNn376aa2w+oknnlDNVE/vvfeeli9frpdeekkPPfSQe5vHHntMZzsdlM1m0/XXX685c+bUWv6nP/1Jfn5+7td33323unXrpt/85jdKS0tTQkKCJGnWrFlyuVzatGmTe5kk/fGPf5QkmUwm3XLLLXrppZdUWFiokJAQSVJ2drb+97//uUfMAwAAAK0R7WgAAACAFmDevHmKiYnR2LFjJRnB9JQpU7RgwQI5HA5J0r///W8NGDCgzmjxmu1rtomMjNSsWbNOus3ZuPfee+ssOz6ALy0tVU5OjkaNGiWXy6WffvpJkhGkf//997r99ttrBfAn1jNt2jTZbDZ98skn7mUfffSR7Ha7brnllrOuGwAAAPA0QngAAADAwxwOhxYsWKCxY8fq4MGD2rdvn/bt26cRI0YoMzNTy5cvlyTt379f/fr1a3Bf+/fvV8+ePeXl1Xg3vXp5ealTp051lqelpWnGjBkKDw9XYGCgoqKidOGFF0qSCgsLJUkHDhyQpFPW3atXLw0bNqxWH/x58+Zp5MiR6tatW2N9FAAAAKDZ0Y4GAAAA8LBvvvlG6enpWrBggRYsWFBn/bx583TppZc22vFONiK+ZsT9iaxWq8xmc51tx48fr7y8PD366KPq1auXAgICdOTIEc2YMUNOp/OM65o2bZoeeOABHT58WDabTWvWrNHrr79+xvsBAAAAWhJCeAAAAMDD5s2bp+joaL3xxht11n366adatGiR3n77bXXt2lXbtm1rcF9du3bV2rVrVVVVJW9v73q3CQsLkyQVFBTUWp6amnraNW/dulV79uzRv/71L02bNs29fNmyZbW269KliySdsm5JuvHGGzV79mx9+OGHKi8vl7e3t6ZMmXLaNQEAAAAtEe1oAAAAAA8qLy/Xp59+qiuvvFLXXXddna+ZM2equLhYixcv1rXXXqstW7Zo0aJFdfZTM+nqtddeq5ycnHpHkNdsk5iYKIvFou+//77W+jfffPO067ZYLLX2WfP8lVdeqbVdVFSULrjgAr3zzjtKS0urt54akZGRuuyyy/TBBx9o3rx5mjhxoiIjI0+7JgAAAKAlYiQ8AAAA4EGLFy9WcXGxfvGLX9S7fuTIkYqKitK8efM0f/58ffLJJ7r++ut1++23a8iQIcrLy9PixYv19ttva8CAAZo2bZree+89zZ49W+vWrdOYMWNUWlqqr7/+Wvfdd5+uuuoqhYSE6Prrr9drr70mk8mkrl276vPPP1dWVtZp192rVy917dpVDz/8sI4cOaLg4GD9+9//Vn5+fp1tX331VY0ePVqDBw/W3Xffrc6dOyslJUVffPGFNm/eXGvbadOm6brrrpMkPffcc6f/BwkAAAC0UITwAAAAgAfNmzdPvr6+Gj9+fL3rzWazrrjiCs2bN082m00//PCDnn76aS1atEj/+te/FB0drUsuucQ9carFYtGXX36pP/zhD5o/f77+/e9/KyIiQqNHj9Z5553n3u9rr72mqqoqvf3227Jarbrhhhv0wgsvnHIC1Rre3t7673//q1/96leaM2eOfH19dfXVV2vmzJkaMGBArW0HDBigNWvW6Mknn9Rbb72liooKJSYm6oYbbqiz30mTJiksLExOp/OkFyYAAACA1sTkOvEeUAAAAADwELvdrg4dOmjSpEn65z//6elyAAAAgHNGT3gAAAAALcZnn32m7OzsWpO9AgAAAK0ZI+EBAAAAeNzatWv1888/67nnnlNkZKQ2bdrk6ZIAAACARsFIeAAAAAAe99Zbb+nee+9VdHS03nvvPU+XAwAAADQaj4bw33//vSZNmqQOHTrIZDLps88+O+V7VqxYocGDB8tqtapbt26aO3duk9cJAAAAoGnNnTtXdrtdGzZsOO3JYQEAAIDWwKMhfGlpqQYMGKA33njjtLY/ePCgrrjiCo0dO1abN2/Wgw8+qDvvvFNLly5t4koBAAAAAAAAADhzLaYnvMlk0qJFizR58uSTbvPoo4/qiy++0LZt29zLbrzxRhUUFGjJkiXNUCUAAAAAAAAAAKfPy9MFnInVq1dr3LhxtZZNmDBBDz744EnfY7PZZLPZ3K+dTqfy8vIUEREhk8nUVKUCAAAAAAAAANool8ul4uJidejQQWZzww1nWlUIn5GRoZiYmFrLYmJiVFRUpPLycvn5+dV5z5w5c/Tss882V4kAAAAAAAAAgHbi0KFD6tSpU4PbtKoQ/mw8/vjjmj17tvt1YWGhEhISdOjQIQUHB3uwMgAAAAAAAABAa1RUVKT4+HgFBQWdcttWFcLHxsYqMzOz1rLMzEwFBwfXOwpekqxWq6xWa53lwcHBhPAAAAAAAAAAgLN2Oi3PG25W08IkJydr+fLltZYtW7ZMycnJHqoIAAAAAAAAAICT82gIX1JSos2bN2vz5s2SpIMHD2rz5s1KS0uTZLSSmTZtmnv7e+65RwcOHNAjjzyiXbt26c0339THH3+shx56yBPlAwAAAAAAAADQII+G8Bs2bNCgQYM0aNAgSdLs2bM1aNAgPfXUU5Kk9PR0dyAvSZ07d9YXX3yhZcuWacCAAfrzn/+sf/zjH5owYYJH6gcAAAAAAAAAoCEml8vl8nQRzamoqEghISEqLCykJzwAAAAAAACARuNwOFRVVeXpMtAIvL29ZbFYTrr+THLmVjUxKwAAAAAAAAC0NC6XSxkZGSooKPB0KWhEoaGhio2NPa3JVxtCCA8AAAAAAAAA56AmgI+Ojpa/v/85h7bwLJfLpbKyMmVlZUmS4uLizml/hPAAAAAAAAAAcJYcDoc7gI+IiPB0OWgkfn5+kqSsrCxFR0c32JrmVDw6MSsAAAAAAAAAtGY1PeD9/f09XAkaW83f6bn2+SeEBwAAAAAAAIBzRAuatqex/k4J4QEAAAAAAAAAaCKE8AAAAAAAAACARpGUlKSXX37Z02W0KITwAAAAAAAAANDOmEymBr+eeeaZs9rv+vXrdffddzdusa2cl6cLAAAAAAAAAAA0r/T0dPfzjz76SE899ZR2797tXhYYGOh+7nK55HA45OV16jg5KiqqcQttAxgJDwAAAAAAAADtTGxsrPsrJCREJpPJ/XrXrl0KCgrSV199pSFDhshqterHH3/U/v37ddVVVykmJkaBgYEaNmyYvv7661r7PbEdjclk0j/+8Q9dffXV8vf3V/fu3bV48eJm/rSeRQgPAAAAAAAAAI3I5XKprNLukS+Xy9Von+Oxxx7TH//4R+3cuVP9+/dXSUmJLr/8ci1fvlw//fSTJk6cqEmTJiktLa3B/Tz77LO64YYb9PPPP+vyyy/X1KlTlZeX12h1tnS0owEAAAAAAACARlRe5VCfp5Z65Ng7fjdB/j6NE/v+7ne/0/jx492vw8PDNWDAAPfr5557TosWLdLixYs1c+bMk+5nxowZuummmyRJzz//vF599VWtW7dOEydObJQ6WzpGwgMAAAAAAAAA6hg6dGit1yUlJXr44YfVu3dvhYaGKjAwUDt37jzlSPj+/fu7nwcEBCg4OFhZWVlNUnNLxEh4AAAAAAAAAGhEft4W7fjdBI8du7EEBATUev3www9r2bJlevHFF9WtWzf5+fnpuuuuU2VlZYP78fb2rvXaZDLJ6XQ2Wp0tHSE8AAAAAAAAADQik8nUaC1hWpKVK1dqxowZuvrqqyUZI+NTUlI8W1QrQDsaAAAAAAAAAMApde/eXZ9++qk2b96sLVu26Oabb25XI9rPFiE8AAAAAAAAAOCUXnrpJYWFhWnUqFGaNGmSJkyYoMGDB3u6rBbP5HK5XJ4uojkVFRUpJCREhYWFCg4O9nQ5AAAAAAAAAFqxiooKHTx4UJ07d5avr6+ny0Ejaujv9kxyZkbCAwAAAAAAAADQRAjhAQAAAAAAAABoIoTwAAAAAAAAAAA0EUJ4AAAAAAAAAACaCCE8AAAAAAAAAABNhBAeAAAAAAAAAIAmQggPAAAAAAAAAEATIYQHAAAAAAAAAKCJEMIDAAAAAAAAANBECOEBAAAAAAAAAGfsoosu0oMPPuh+nZSUpJdffrnB95hMJn322WfnfOzG2k9zIIQHAAAAAAAAgHZm0qRJmjhxYr3rfvjhB5lMJv38889ntM/169fr7rvvbozy3J555hkNHDiwzvL09HRddtlljXqspkIIDwAAAAAAAADtzB133KFly5bp8OHDdda9++67Gjp0qPr3739G+4yKipK/v39jldig2NhYWa3WZjnWuSKEBwAAAAAAAIB25sorr1RUVJTmzp1ba3lJSYkWLlyoyZMn66abblLHjh3l7++v8847Tx9++GGD+zyxHc3evXt1wQUXyNfXV3369NGyZcvqvOfRRx9Vjx495O/vry5duujJJ59UVVWVJGnu3Ll69tlntWXLFplMJplMJne9J7aj2bp1qy6++GL5+fkpIiJCd999t0pKStzrZ8yYocmTJ+vFF19UXFycIiIidP/997uP1ZS8mvwIAAAAAAAAANCeuFxSVZlnju3tL5lMp9zMy8tL06ZN09y5c/Xb3/5Wpur3LFy4UA6HQ7fccosWLlyoRx99VMHBwfriiy906623qmvXrho+fPgp9+90OnXNNdcoJiZGa9euVWFhYa3+8TWCgoI0d+5cdejQQVu3btVdd92loKAgPfLII5oyZYq2bdumJUuW6Ouvv5YkhYSE1NlHaWmpJkyYoOTkZK1fv15ZWVm68847NXPmzFoXGb799lvFxcXp22+/1b59+zRlyhQNHDhQd9111yk/z7kghAcAAAAAAACAxlRVJj3fwTPH/s1RySfgtDa9/fbb9cILL+i7777TRRddJMloRXPttdcqMTFRDz/8sHvbWbNmaenSpfr4449PK4T/+uuvtWvXLi1dulQdOhh/Fs8//3ydPu5PPPGE+3lSUpIefvhhLViwQI888oj8/PwUGBgoLy8vxcbGnvRY8+fPV0VFhd577z0FBBif/fXXX9ekSZP0pz/9STExMZKksLAwvf7667JYLOrVq5euuOIKLV++vMlDeNrRAAAAAAAAAEA71KtXL40aNUrvvPOOJGnfvn364YcfdMcdd8jhcOi5557Teeedp/DwcAUGBmrp0qVKS0s7rX3v3LlT8fHx7gBekpKTk+ts99FHH+n8889XbGysAgMD9cQTT5z2MY4/1oABA9wBvCSdf/75cjqd2r17t3tZ3759ZbFY3K/j4uKUlZV1Rsc6G4yEBwAAAAAAAIDG5O1vjEj31LHPwB133KFZs2bpjTfe0LvvvquuXbvqwgsv1J/+9Ce98sorevnll3XeeecpICBADz74oCorKxut1NWrV2vq1Kl69tlnNWHCBIWEhGjBggX685//3GjHOJ63t3et1yaTSU6ns0mOdTxCeAAAAAAAAABoTCbTabeE8bQbbrhBDzzwgObPn6/33ntP9957r0wmk1auXKmrrrpKt9xyiySjx/uePXvUp0+f09pv7969dejQIaWnpysuLk6StGbNmlrbrFq1SomJifrtb3/rXpaamlprGx8fHzkcjlMea+7cuSotLXWPhl+5cqXMZrN69ux5WvU2JdrRAAAAAAAAAEA7FRgYqClTpujxxx9Xenq6ZsyYIUnq3r27li1bplWrVmnnzp365S9/qczMzNPe77hx49SjRw9Nnz5dW7Zs0Q8//FArbK85RlpamhYsWKD9+/fr1Vdf1aJFi2ptk5SUpIMHD2rz5s3KycmRzWarc6ypU6fK19dX06dP17Zt2/Ttt99q1qxZuvXWW9394D2JEB4AAAAAAAAA2rE77rhD+fn5mjBhgruH+xNPPKHBgwdrwoQJuuiiixQbG6vJkyef9j7NZrMWLVqk8vJyDR8+XHfeeaf+8Ic/1NrmF7/4hR566CHNnDlTAwcO1KpVq/Tkk0/W2ubaa6/VxIkTNXbsWEVFRenDDz+scyx/f38tXbpUeXl5GjZsmK677jpdcsklev3118/8D6MJmFwul8vTRTSnoqIihYSEqLCwUMHBwZ4uBwAAAAAAAEArVlFRoYMHD6pz587y9fX1dDloRA393Z5JzsxIeAAAAAAAAAAAmgghPAAAAAAAAAAATYQQHgAAAAAAAACAJkIIDwAAAAAAAABAEyGEBwAAAAAAAIBz5HK5PF0CGllj/Z0SwgMAAAAAAADAWfL29pYklZWVebgSNLaav9Oav+Oz5dUYxQAAAAAAAABAe2SxWBQaGqqsrCxJkr+/v0wmk4erwrlwuVwqKytTVlaWQkNDZbFYzml/hPAAAAAAAABokyqqHPpya7o+XJcmL7NZr940SFFBVk+XhTYoNjZWktxBPNqG0NBQ99/tuSCEBwAAAAAAQJtyKK9MH6xN1cfrDym/rMq9fMrfVmv+nSMVG+LrwerQFplMJsXFxSk6OlpVVVWnfgNaPG9v73MeAV+DEB4AAAAAAACtnsPp0vd7svXe6hSt2JOtmvkUO4T46rqh8fpkwyEdyC7VDX9drfl3jVCnMH/PFow2yWKxNFpwi7aDEB4AAAAAAACtVl5ppT7ecEjz1qbqUF65e/mY7pG6dWSiLu4VLS+LWdcP6aSp/1irtLwyTfnrGs2/a4QSIwI8WDmA9sLkctVcF2wfioqKFBISosLCQgUHB3u6HAAAAAAAAJwhl8ulnw4V6IPVqfp8a7oq7U5JUrCvl24YGq+pIxPVObJuwJ5RWKGb/75GB3JKFRNs1bw7R6pbdGBzlw+gDTiTnJkQHgAAAAAAAK1CWaVdizcf1ftrUrX9aJF7+XkdQ3RrcqIm9e8gP5+GW4FkFVfoln+s1Z7MEkUG+uiDO0eoVywZEYAzQwjfAEJ4AAAAAACA1mV/donmrUnTwo2HVFxhlyT5eJk1qX8H3ZqcqIHxoWe0v7zSSt3yj7XakV6kUH9vfXDHCPXrGNIElQNoqwjhG0AIDwAAAAAA0PLZHU59vTNLH6xJ1Y/7ctzLE8L9dcvIBF0/JF5hAT5nvf/CsipNe3edthwqUJCvl967fbgGJYQ1RukA2gFC+AYQwgMAAAAAALRcWUUVWrD+kOavTVNGUYUkyWSSLukVrVtGJuqC7lEym02Ncqziiird9u56bUjNV4CPRe/eNlzDO4c3yr4BtG2E8A0ghAcAAAAAAKifw+lSXmmlXHIpwMdLft6WRgu8G+JyubT2YJ7eX5OqpdsyZHcacVVEgI+mDIvXTcMTFB/u3yTHLrXZdee/Nmj1gVz5eVv0j+lDdX63yCY5FoC2gxC+AYTwAAAAAACgPXE6XSoor1J2sU05JTZlF9tqPy+peV2pvFKbnCckRf4+Fvn7eFU/WhRgNZ4H1Cyz1jz3UoDVIr/j1tVs63/Ca6uXWSaTScUVVfrspyN6f02q9mSWuI85JDFM05ITNbFfrKxeDU+02hgqqhz65fsb9d2ebPl4mfXXW4dobM/oJj8ugNaLEL4BhPAAAAAAAKC1c7lcKiq3K7ukQtnFlcousSmnOlDPqRWs25RbUukeWX46TKaaYzRR8ZIsZpP8vS2qdDhlszslSX7eFk0e1FG3jExQ3w7NP0mqze7QzPk/admOTHlbTHr95sGa0De22esA0DoQwjeAEB4AAAAAALQm+7KK9dXWDG05XHDcKPZKVTqcZ7Sf8AAfRQb6KCrIqshAq6ICrYoMMh7dy4KsCg/wkdkkVVQ5VVppV3mlQ6WVdpXaHCqrfiyvqv26rNKuskqHyiodKrUZz49/b5nNeKyoqltz16gA3ToyUdcM6aRgX+/G+mM7K1UOpx5csFlfbE2XxWzSy1MGatKADh6tCUDLdCY5s1cz1QQAAAAAAIDT4HK5tP1okZZsy9BX29K1P7v0pNsG+3rVCtBrHqNOCNcjAn3kbTGfUR1+PkZrmcbkcLpUXuVQmc2u0kqHnC6XukQGyGRq+r7zp8PbYtYrNw6U1cusT386ogcW/KRKu1PXDunk6dLQCJxOl7KKbUrNLVVqXpniw/yV3DXC02WhHSCEBwAAAAAA8DCn06WfDuVrybYMLdmeoUN55e513haTRneL1EU9o9Ux1M8YvR5kVUSAj3y9m75femOymE0KtHop0NpyIykvi1kvXj9APl5mLVh/SA9/skU2u1M3j0jwdGk4DXaHU0cKypWaW2aE7bllSs0znqflldW5G+P28zvrN5f3ktcZXqQCzkTLPeMBAAAAAAC0YXaHU+sO5umrbRlauj1DWcU29zpfb7Mu6hGty86L1dhe0R5v09LemM0mPX/1ebJ6mfWv1an6zaKtqrQ7NOP8zp4uDTIm0k3LK1NKjhGsp+aWKaU6ZD+cXy5HA3MgWMwmdQz1U2ywr9al5OmdlQe1L7tEr900SCF+fJ+dLqfTpdzSSkUFWT1dSqvg8RD+jTfe0AsvvKCMjAwNGDBAr732moYPH37S7V9++WW99dZbSktLU2RkpK677jrNmTNHvr6+zVg1AAAAAADAmbPZHVq5L0dLtmVo2Y5M5ZdVudcFWb10ce9oXdYvVhf2iG70VjA4M2azSc/8oq+s3hb97fsDeua/O2SzO/XLC7t6urR2obCsSql5pfWOaM8ssjX4XquXWQnh/kqMCFBihL+SIvyVEBGgxHB/dQzzc7dm+mprumZ/vEXf78nW1W+u1D+nD1PnyIDm+HitTlmlXZsPFWhjSr42pOZrU1q+EiP89fmsMZ4urVXwaAj/0Ucfafbs2Xr77bc1YsQIvfzyy5owYYJ2796t6OjoOtvPnz9fjz32mN555x2NGjVKe/bs0YwZM2QymfTSSy954BMAAAAAAAA0rKzSru92Z+urbRn6ZleWSmx297owf29d2idWE8+L1aiuEbJ6Eby3JCaTSY9f1ku+Xma9+s0+zflql2x2p2Zd3K3F9LFvbcoq7dWTCxuTDGeXVNZ6nVVUodS8MhUcd4GqPkG+XkqKCFBCdcieGF7zPEDRQVaZzaf++7nsvDjFh/vrrvc26EB2qSa/sVJv3DxYo7tHNtbHbbUyiyq0ISVfG1LztDE1X9uPFtW5wyA1t0w2u4Pz1mkwuVyuk9+f0cRGjBihYcOG6fXXX5ckOZ1OxcfHa9asWXrsscfqbD9z5kzt3LlTy5cvdy/79a9/rbVr1+rHH388rWOeyay1AAAAAAAAZ6Oookrf7MzSV9vS9d2e7Fp9qGOCrZrYN1YT+sVqeFI4vahbiTe+3acXlu6WJN13UVf9vwk9CeKrVVQ5agXpOScE69klx56XVTpOe79RQVYlHjei3fgyRrSH+ns32p9/VnGFfvn+Rv2UViCL2aRnJvXRrclJjbLv1sDhdGl3RrE2puVrY0qeNqTm63B+eZ3t4kJ8NSQxTEMTwzQ0KVy9YoPa9fnrTHJmj42Er6ys1MaNG/X444+7l5nNZo0bN06rV6+u9z2jRo3SBx98oHXr1mn48OE6cOCAvvzyS916663NVTYAAAAAAEC9cktsWrYjU0u2Z2jlvhxVOY6Ne4wP99Nl/eI0oW+sBsWHntYoXbQs94/tJquXWb//YqfeXLFfFVVOPXll7zYfxNsdTm1IzVdqbmmtgD27xKacYiNYLz7u7o7T4ettVlSQVVGBVkUGGhMN1zxGBVmVEO6vhHB/BTTTBL7RQb768K6R+s2nW/XpT0f05H+2a3dmsZ6e1NfduqYtKbUZrWVqRrpvTiuo83doNkm9YoM1NCnMCN6TwtUx1M9DFbd+Hgvhc3Jy5HA4FBMTU2t5TEyMdu3aVe97br75ZuXk5Gj06NFyuVyy2+2655579Jvf/Oakx7HZbLLZjvWJKioqapwPAAAAAAAA2jWXy6X0wgojeN+WobUHc3V8t4bu0YGa2C9WE/vFqk9ccJsPa9uDO8d0kdXLrCf/s13vrDyoSodDv/tFvzZ3UaVm7oKvtmZo2c7MU7aGkSQfi7k6TPepE6qfGLQH+Fha3PeDr7dFf75hgHrEBulPS3bpgzVpOpBdqjenDlaov4+nyzsn6YXl2pCSr42pRui+M724TmuZAB+LBiXUBO5hGhgfqiAmhG40Hp+Y9UysWLFCzz//vN58802NGDFC+/bt0wMPPKDnnntOTz75ZL3vmTNnjp599tlmrhQAAAAAALQFTqdL6UUVSs0prZ4U8tgkkWl5ZbX6u0tSv47B7hHv3aIDPVQ1mtKtyUmyeln06Kc/64M1abJVOfXHa/vL0sqD+LJKu1bsztaSk8xdMCA+VFGB9YfqUUFWBft6tbhg/UyZTCbdc2FXdYsK1AMLftKq/bm66o2V+uf0oeoWHeTp8k6Lw+nSrowiI3CvDt6PFNRtLdMhxFdDksI1NNEI3tt7a5mm5rGe8JWVlfL399cnn3yiyZMnu5dPnz5dBQUF+s9//lPnPWPGjNHIkSP1wgsvuJd98MEHuvvuu1VSUiKzue4/lPpGwsfHx9MTHgAAAAAASDJG/R7OL1dadcCeUh2wp+SW6nBeuSodzpO+12SSBieE6bJ+sZrQN1bx4f7NWDk86bOfjmj2x5vldElXDeygP18/oNWFmIXlVfpmV6a+2pqh7/Zky2Zn7oIauzKKdOe/NuhwfrmCrF569eZBGtsz2tNlnVRabple/3avvtyaUefioNkk9Y4LNgL36uC9A61lzlmr6Anv4+OjIUOGaPny5e4Q3ul0avny5Zo5c2a97ykrK6sTtFssxuy7J7uWYLVaZbVaG69wAAAAAADaiF0ZRfrP5qMK8/fWtYM7KSKw7f7+XGqzHxvFfsKI9vTCcjkbGKLobTEpPsxfCRH+dSaJ7BTmL19vS/N9ELQYkwd1lI+XWb/68Cf9Z/NRVdqdeuXGQfLxatlhdc3cBV9ty9Cq/fXPXTCxX6wGdmrfcxf0ig3Wf+4/X/d+sEnrUvJ0x9z1+s3lvXXH6M4tasT/4fwyvf7NPn2y8bDs1SeyQKuXBiWEVk+iGq6BCaEKbKb++qifR//0Z8+erenTp2vo0KEaPny4Xn75ZZWWluq2226TJE2bNk0dO3bUnDlzJEmTJk3SSy+9pEGDBrnb0Tz55JOaNGmSO4wHAAAAAAAnV2l3asn2DH2wOlXrUvLcy19cukdX9I/TLSMTNTghtEWFTGfC7nDqx3052nyowBjZnmeE7TkllQ2+z9/HooRwfyVVB+wJEcbzhHB/dQj1a/WtRtA0Lj8vTj4Ws+6bt0lfbctQ5Qcb9cbUwS3uwkx6YbmWbsvQku0ZWncwr87cBZf1M0a8M3dBbRGBVn1w5wg9+dk2fbThkH7/xU7tySzW7yef5/GLLUcLyvXGt/v08YZD7gspY7pHatbF3TUkMYxzVgvjsXY0NV5//XW98MILysjI0MCBA/Xqq69qxIgRkqSLLrpISUlJmjt3riTJbrfrD3/4g95//30dOXJEUVFRmjRpkv7whz8oNDT0tI53JrcJAAAAAADQVhwpKNeHa9O0YH2aO5C2mE0a1ztaGYUV2nK40L1tn7hg3ZqcqKsGdpC/T+sYPbkzvUj/3nhYn20+qpwSW73bhAf4KCHcv3oUe0D1qHbjeWSgD+Ejztp3e7J193sbZLM7NaZ7pJ6/+jxFBVk9Gsan5pZqybYMfbUtQ5sPFdRax9wFZ8blcundlSn6/Rc75HRJw5PC9dYtgz1y91BGYYXeXLFPC9YdcrfKOr9bhB4a10NDk8KbvZ727ExyZo+H8M2NEB4AAAAA0F44nS6t3J+j91en6uudme7RrzHBVt00PEE3DktQbIivJGnLoQK9vyZV/91y1N0XOsjXS9cN6aRbRiaqa1TLC+qyiiu0ePNR/XvTEe1ML3IvDw/w0cW9otU5MqDWyPZgX28PVou2bvX+XN3xr/Uqq3S4lwX5eikq0KrIIKt7UlNjQlOfWhObRgRYz3lktcvl0t6sEnfwfvz3hMkkDUkI00TmLjgn3+3J1sz5m1RcYVfHUD/9c8ZQ9Yptnnwxq7hCb63Yr3lr01RZfY4e3jlcs8f30MguEc1SA2ojhG8AITwAAAAAoK0rLKvSwo2HNG9tmg7mlLqXJ3eJ0LTkRI3rEyPvk0yymF9aqU82HtYHa1OVmlvmXn5+twjdOjJR43rHeHSCxooqh5btyNSnmw7r+705clRfWfCxmDWuT7SuGdRJF/aMOunnA5rSxtQ8/XbRNh3IKXUHpacr1N/bCOwDrbUC+uND+6hAq8IDfNzfgy6XS9uOFOmrbelasj1DB7KPfb9bzCaN7BKuif3iNKFPjKKDfRv1s7ZX+7JKdOe/1islt0wBPha9fOMgje8T02THyy626a/f7dcHa1NVUWX8mxqWFKaHxvVQctcI7uDxIEL4BhDCAwAAAADaqq2HC/X+mhQt3nLUHdYEWb107ZBOumVkgrpFB532vpxOl37YZ4yi/2bXsVH0scG+uml4gm4aHt9soZ7L5dKG1Hx9uumwPv85XcUVdve6QQmhunZwJ13ZP06h/j7NUg9wKi6XS0UVduWU2JRdbHM/Hv88p6TS/dre0MzAJzCZpIgAH0UGWlVcYdeRgnL3Oh+LWWO6R2pCv1iN7x2jsAC+J5pCQVml7pu3Sav258pkkv7fhJ6698KujRqI55VW6q/f79d7q1JVXmXcXTEoIVSzx/fQ6G6RhO8tACF8AwjhAQAAAABtSUWVQ1/8nK731qRqy3F9n3vFBmlacpKuGthBAdZz6+t+OL9MH65L04J1h5RbavST9zKbNKFfrG4dmagRncObJBBKyy3Tpz8d1qebjigt79io/I6hfrpmcEddPaijurTANjnAmXA6XSosr1J2iU05xTZl1wT2tYJ7I7DPK7XpxLzez9uisb2iNLFfnMb2jFIQbZeaRZXDqd/9d4feX5MqSZo8sIP+eG3/c54HIL+0Un//4YDmrkpxtzYa0ClED43voQt7RBG+tyCE8A0ghAcAAAAAtAVpuWWatzZVH284pPyyKknGKNjLz4vVrcmJGpwQ1uhhjc3u0JJtGfpgTarWp+S7l3ePDtStyYm6elDHcw4Aiyqq9OXP6fr3psO1jhHgY9Hl58XpmsGdNKJzuMxmgii0Pw6nS3mlx0bQuySN6Bzu0Qlg27v3V6fomf/ukMPp0sD4UP1t2hBFB535XUKFZVX6548H9M7KFJXYjLt9+nUM1kPjeujiXtGE7y0QIXwDCOEBAAAAoOm5XC5VOpyyerWtYKiiyiFvi1kWDwXADqdLK3Zn6f01qfpuT7ZqfqPvGOqnqSMTdMPQeEUGWpullh1Hi/TB2lR99tMR92hNfx+Lrh7UUbcmJ57RZIV2h1M/7MvRvzce1rIdme6JYc0m6fxukbp2cCdN6BsrP5+29e8JQNuwal+O7p23SYXlVYoL8dXfpw1Vv44hp/XeoooqvfPjQf3zx4PuVlu944L10LjuGt8nhvC9BSOEbwAhPAAAAAA0riqHU/uzS7QzvUg7jhZpZ3qxdqYXKbe0UgM6hWhivzhN7BerzpEBni71rBwtKNfS7Rn6aluGNqTkSZLCA46bKLF6ssS6EylaFern3SgjtnNLbPp4w2HNW5uqw/nH+j9f2CNKt45M1Nhe0R67MFBUUaVFm47o/TWp2pdV4l4+PClctyQnamLfWPl41T9J6s70Iv1742F9tvmockps7uXdowN17ZBOmjywo2JDmEwSQMuXklOqO/61XvuzS+XrbdZLNwzU5efFnXT74ooqzV2Zor//cEBF1eF7z5ggPTS+uy7tE8vdPq0AIXwDCOEBAAAA4Ozll1YaYXv6sbB9X1aJKh3OU763V2yQJvaL1cR+seoZE9SiR/el5JTqq20ZWrI9o1af9TPlZTYpoiasDzwW0p8Y1kcFWRXs61Xrz8TlcmlTWoE+WJOqL35Od/8Zh/p764ah8Zo6IkGJES3nwobL5dKaA3n6YE2qlm7PcE80GRnooxuHJeimEQnqGOqnrOIKLd58VP/edEQ704vc7w8P8NEvBnTQdUM6qW+H4Bb97wMA6lNUUaVZ83/Sd3uyJUkPjeuhX13Srdb5rNRm179Wp+hv3x9QQXUrsW7RgXpwXHdd3i+O8L0VIYRvACE8AAAAAJyaw+lSSm6pdqYXVX8ZgXt6YUW92wdZvdQ7Lli944KqH4MVEeij7/Zka8m2DK3en+sOZSWpc2SAJvSN1WX9YtW/U4jHA1eXy6XdmcVasi1DS7ZlaFdGsXudySQNSwzXxH6xGt8nRlZvc62JEnNqTZ547LGmT/vp8vEyG0F9kFVRgT46WlChHceF1APiQ3XryERd2T+uxfd/ziyq0Ifr0vThujRlFhkj3M0mqW+HEO1IL5Kj+t+Cj8WsS3pH69rBnXRhzyh5W+ofMQ8ArYXd4dScr3bpnz8elCRd0T9OL143QC659P7qVP31+wPKq57guktUgB64pLuu7N/BY3cz4ewRwjeAEB4AAAAAaiux2bWrOmzfUR22784oVnmVo97tE8L9a4XtfeKC1SnMr8EgvaCsUl/vzNKSbRn6fm+2Ku3HRs53CPHVhH6xmtg3VkOTwpstiHC5XPr5cKG+2pahpdszdDCn1L3Oy2xSctcITewXq0v7xCoq6Mz7rFfancottSmnuFLZJRXVj9WBfU1YX/28pg/wiaxeZl01sINuGZmo/p1Cz/ajekyVw6mvd2Tq/TWpWrU/1718UEKorh3cSVf2j1Oov48HKwSApvHR+jQ98dk2VTlc6hETqLzSSuWUGOF7UoS/HhjXXb8Y0JHwvRUjhG8AITwAAADak8LyKvl6m9vc5Jg4O3aHU0cKyrU7o1g704u1I71QO9OLlZZXVu/2vt5m9YwNVp/qwL1PXLB6xgYpyNf7nOoosdn17a4sLdmeoW93Zbkn9ZSM1iXj+xgj5JO7RjT6yGiH06WNqfn6alu6lm7L0NHjRvb7eJl1QfcoTewXq3G9o5s1HK6ocpwwor5SZpM0sV9smwmp92UVa2NqvoYlhatLVKCnywGAJrfuYJ7u+WCje+R7fLiffnVxd109qKO8uPOn1SOEbwAhPAAAANqD3BKbXl2+V/PWpql7TJA+uSdZAVYvT5eFZlBR5VBaXplSc8uUmltqPOYZz4/kl9dqCXO82GDfWqPbe8cFq3NkQJOP0KuocuiHvTn6alu6vt6R6Z6cTpKCfb00rk+MJvaN1QU9os66BUuVw6nV+3O1ZHuG/rc9s9YEoP4+Fo3tFa2JfWM1tle0Avk+AQA0okN5ZXpzxT4NjA/VNYM70XarDSGEbwAhPAAAANqyiiqH3ll5UG99u1/FtmNh5pX94/TaTYM83ncbjaOwvEppuWVKzSt1h+0puWVKyy1TRlH9Pdtr+HiZ1TUqUL3jgtTnuMA9PMDzo61rh+UZ7tv2peqwvGe0JvY7vbD8dML9y/rFaUz3yBbfXx0AALQ8hPANIIQHAABAW+R0uvTZ5iN6celud3uNvh2Cdf2QTvr9Fztld7r01JV9dPvozh6uFKfD5XIpu8RWHbCXKa06ZE/NM56fasLPIKuXEiP9lRgeoIQIfyVF+CshPECJEf6KDfaVuRX0nz1125hITehrTJRa067lVG1uLu1r9J1vijY3AACgfSGEbwAhPAAAANqaVfty9Icvd2r70SJJxiSX/29iT101oKPMZpPe+fGgfvf5DnmZTVpw90gNTQr3cMU4ntPp0sr9Ofpxb45SqtvHpOWV1QqQ6xMZaFVihL8Sw/2VGGEE7MZXgML8vdvUXQ/HT6C6ZFu6UnKP9bCvmUDV6mXW93tz6p3w9bJ+cRqSGMbkdwAAoNEQwjeAEB4AAABtxZ7MYs35cqe+3Z0tyRj9fN/Ybrrt/KRa7TVcLpdmffiTPv85XTHBVn0+a4yigqyeKhvVCsuqtHDjIc1bm6aDOaV11ptNUlyInztYTzxuRHtChH+77V3ucrm0O7NYS7ZlaMm2DO3KKK61PinCXxP7xemyfrHq3ymkTV2MAACgQZWlUlG6FNFV4v+/JkcI3wBCeAAAALR2WUUV+svXe/TR+kNyuoyRwLeMTNSvLul+0r7epTa7rnpjpfZllWhkl3B9cMcIedGOwyO2Hi7U+2tStHjLUVVUGaO2g6xeuqJ/nHrFBikxwgjZO4X5yepFr/JTOZhTqmU7MlTlcOmS3tHqGRNE8A4AaJ/mT5H2LJE6Xyhd+pwUN8DTFbVphPANIIQHAABAa1VWadffvj+gv31/wN2qZGLfWD16WS91jgw45fv3ZZXoqtd/VGmlQ7+8sIsev6x3U5eMahVVDn3+c7reX5OqLYcK3Mt7xQZpWnKSrhrYQQHtdGQ7AABoBPmp0iv9j1tgkgbcKF38hBTSyWNltWVnkjPzUx4AAADQwjmcLi3ccEgvLdujrGKbJGlgfKieuKL3GfV37xYdqP+7boDun79Jf/3ugAbFh2liv9imKhuS0nLLNG9tqj7acEgF1ZOpeltMuvy8ON06MlFDEsMYtQ0AAM7d1o+Nx45DpLDO0rZPpC0fStsXSSPvk/4/e3cdJlXdBXD8O9tsA5vUUkt3d3cLCCiChICKomJ3i6+KIoqipAISgiIq3d3dSy61bLHdM/f947fLioQbM3Nnd8/neXjmzp2Zew/bc+75ndPqBXCRgmS9SBJeCCGEEEIIG6VpGpvPRvDpytOcuan6Xpcr4cqr3arRo3ZAnpK3PesEcjC0ArO2X+TlX49QNcAjR1X0IueMJo3NZ8KZt/syW85GkLX2uLR3MR5tWo7Bjcvi4y49+YUQQghhJpoGRzOT8I1GQ/2h0PxpWPs2XN4B27+Egz9Bu9eh4Qiwd9Q13KJI2tEIIYQQQghhg05cj2XSytNsPxcJgFcxRyZ0DOaxZuXy3Sc83Wji0Rm72XfpFlX9Pfh9fAtcnaQ+J7+iElJZvP8KC3aHci0m+fb+tlV8GdYsiPbV/LC3k6p3IYQQQpjZtYMwoz04uMBLIdkV75oGZ1bCunchKkTtK1kZOr0P1XrK8NZ8kp7wDyBJeCGEEEIIYcuuxyTzxdoz/H7oGpoGTvZ2jGhZnvHtKuPlar6qpfC4FHpM3U5kQioP1S/Nl4PqSluUPNA0jYOhMczbdYmVx8JIM6pBq96ujgxqVJZHm5SjvKw0EEIIIYQlrXoVXHimgQAApJtJREFU9kyHWgNg4Oy7Hzemq0r4TZMgSRV4UK45dPkIyjSybqyFiCThH0CS8EIIIYQQwhbFp6Qzfct5Zm67SGqGSuT2qVuKl7tWpWwJV4ucc8+FKB6duQejSePDfrUY1izIIucpjJLSMvjj8HXm7brMyRtxt/fXLePFsObl6VUnEBfH/K1YEEIIIYT4T8Z0mFxNJdcf/RWqdLn/c1PiYMfXsOtbyEhR+2r2h07vQvHyVgm3MJEk/ANIEl4IIYQQQtiSdKOJRXtDmbI+hKjENACaVCjBmz2qU7est8XP/+PW83yy8jSO9gaWjGtO/XLFLX7OguxceALzd19m2YGrxKdmAODsYEefuqV4rFmQVT5nQghhMZoGp1bA1i/AszR0fAf8a+gdlRDiQc6uhV8eBlcfePF0zvq9x16DjR+pwa1oYO8ETcZC6xfBtYTFQy4sJAn/AJKEF0IIIYQQtkDTNNadvMmnq05zITIRgIq+brzevTqdqvtZrTWMpmk8Nf8gq0+EEejlwl/PtqKkDA29Q7rRxPqTN5m3+zI7z0fd3l++pCuPNQtiYMMyeLs66RihEEKYwZV9sPZNuLIne5/BDuoNhfZvgmegfrEJIe5v6Sg4vgyaPgnd/5e71944Cuvehgub1X0Xb2jzMjQZAw7y9+B/kST8A0gSXgghhBBC6O1g6C0+XXmavZeiASjp5sTznaswpHFZHO3trB5PfEo6fb/dwYXIRFpV9uGnUU1kgChwPiKBFYevs2hfKDfjUgGwM0DH6v4MaxZEq8o+2MnHSQhR0EVfgPXvw8nl6r5DMWj+NESdg5N/qH2OrtDiWWgxAZzddQtVCPEvKXHwRbBqLTNmE5RukPtjaBqc26CS8eEn1T7vINWipmZ/Gd76AJKEfwBJwgshhBBCCL0cuRLDV+vPsvlMBKDamIxpXZFxbSvi4WK+oat5cSYsnn7TdpCcbuSZ9pV5qWtVXePRg6ZpnLwRx5rjYaw6HkZIeMLtx3zcnRjSuByPNC1Hae9iOkYphBBmkhQNWz+HvTPAlA4YoH5W1Xsp9ZzQPbD2Lbi6V91384P2b0D9YWDvoFvoIlNaIkSeBc8y4OYjydKi6NAC+ONpKBkMz+zL39eAyQiHF8DGjyEhTO0r3VANbw1qYZ54CxlJwj+AJOGFEEIIIYS1Hb8Wy1frzrLhdDgA9nYGBjQozQudqxDoZTsJ3T8OX+O5RYcBmPV4IzpW99c3ICswmTQOX41h9fEwVh8PIzQ66fZjjvYGWlTyoX+D0nSrFYCzgwxaFUIUAukpsPdH1fc9NVbtq9QROn8AAbXufr6mqYr49e/BrYtqn2819fzgLpL41YumwdxecHm7uu/kASXKQ/EKUKIilMi8LV5B9fe3s/5KO2EFP/WGi1uhw1uqjYw5pCXCzm/VANd01TKRar2g0/vgU9k85ygkJAn/AJKEF0IIIYQQ1nLyehxT1p9l7cmbgGpl8lD9MkzoWJmgkm46R3dv7/5xnJ92XcbTxYG/nm1NuZKueodkdhlGE3svRbPmeBhrTtwkLC7l9mPODna0reJL99oBdKjmj1cxfVcoCCGE2ZhMcOI31XomNlTt86+lkumVO/736zPSYP8s2PI/SL6l9lVoA50/hFL1LBa2uI8Ty+HXx1Xffk0DHpDes3eC4uUzE/T/SM6XqKDajjjIXJMCKfYafFUT0OC5o1A8yLzHj78JmyfBwZ9AM4GdAzQcCe1eUysvhCThH0SS8EIIIYQQwtLOhMUzZf1ZVh1XS3ntDNC3Xmme7VCZir623Us3LcPE4B93cSg0hhqBnvz2dAtcHAt+BXhqhpGd56NYfSyMdaduEp2Ydvsxd2cHOlTzo1utANpV9cXVSVosCCEKmUvbVVuZ64fUfY9SqnK27hCwy+XP+OQY2P4l7J4ORjUvgzqDocPb4F3WrGGL+8hIhWlN4NYlaPsatHoBYkJVf/9bFyH6Yvb2rcuZ7Ybuw2Cn2tmUyEzK/7OSvngFmQFgy7ZPgfXvQrkWMGqV5c4Tflqd5+xqdd/JA1q/AM2eBkfbWdGpB0nCP4Ak4YUQQgghhKWE3IxnyoYQVh67gaapFfq965RiQsdgKvsVnDexN2KT6Tl1O9GJaTzcsAyfDayDoQC2G0hOM7LlbDirj4ex4VQ48akZtx/zdnWkc3V/utcOoEUln0JxoUEUIhlpcPpPiLsBTcZKlarIu4izKnl2ZqW67+QOrZ6HZuPBKZ8rnWJCYcOHcGyJum/vDM2egtYTwcUrf8cWD7ZrGqx5A9wDYMJBcHrA6jqTEWKvZibnL6gE/e1E/cXsdiP34+aXXT1fqSPUGiCtbWyBpsH3LdQg1d5fQ8MRlj/nhS3qYl7YUXXfs4y6mFdncJH9mpAk/ANIEl4IIYQQQpjb+YgEpm4IYcWR62T9dd2zdiDPdQqmir+HvsHl0Y5zkQybtQeTBp/2r82QJuX0DilH4lLS2XQ6nFXHwth8NpyUdNPtx/w8nOlaM4ButQJoWqEEDvZF8w2jsGExV+DAXLX0P1ENcKb1i9DxHV3DEgVQQoRqI3FgLmhGMNirJF2718Ddz7znunYQ1r0Dl7ap+64loe2r0GgU2EtLL7NLioap9SElBvp8Aw2G5/1YmqZ+1mQl5/9dSZ8cffdrAupAlw+hYru8n1fkX9gxmN5KtRp6KQSKeVvnvCYTHPsVNn4IsVdUVfxzh4tsexpJwj+AJOGFEEIIIYS5XIxM5JsNISw/fA1T5l/V3WoG8FynYKoHFvy/NadtOsfna87g5GDHsidbULuMbVY2Riemse6kGqy641wUacbsxHuZ4sXoVjOA7rUDqF+2OHZ2Ba+iXxRyJhNc2AT7ZsHZVarvLqhEZlKUSp6O2Sg9t0XOpCXB7mmw/WtIi1f7qvZQAxV9q1juvJqmWlWsewciz6p9JSpB5/fVQMcCuJrKZq1+Q32O/WrCk9ty304oN1JisxPyN4/D3hmQGqceC+6i5gn4Vbfc+cX9rXkTdn0L1fvA4HnWP396MuyZDg4uagVMESVJ+AeQJLwQQgghhMiv0Kgkpm4M4fdD1zBmZt87Vffn+U7B1Cptm4nqvDCZNMbO28/6U+GU9i7G3xNa4e1qG20xwmJTWHsyjFXHwthzMer2RRCASr5udK8VSLdaAdQs5VkgW+mIIiD5Fhz+RSXfo89n7y/fGho/AdV6wm9j4MTvanjmmE3Slkbcn8kIRxbBxo8g/rraV6o+dPkIyreyXhzGDLWSY/Ok7NUcZZupOMo2tl4chVXUeZjWVPV4f+y3nA3UNafEKDWYd/8sMGWofvL1h0H7N8AjwLqxFGUmI3xZAxLCYMgv6veF0IUk4R9AkvBCCCGEECKvrkQn8e3Gcyw7eJWMzKxvh2p+PN8pmDplvPUNzkJik9Pp/c12QqOTaFfVl9mPN9atmjwtw8SaE2HM332ZPRfvXCJfs5Tn7Yr3yn4FswWQKCKuH4J9M+HYMshIVvucPaHuI9B4NPhWzX5uQgR811RVxLd7A9q9qk/Mwrad3whr31aVygBe5aDTu1Czv359mlPjYcfXsPPb7K/zmg9Bx3dVf3GRN4uHwakVULkTPLZMvziizqtZA6f+VPcd3aDlBGj+jAxytYbzG2HeQ1CsOLx4Vi7Q6kiS8A8gSXghhBBCCJFb12KSmbbpHEv2XbmdfG9bxZfnOwVTv1xxnaOzvBPXY+n/3U5SM0y80KkKz3UKtur5r8cks3BvKAv3XiEyIfX2/gblvOlWK4BuNQMpVzKfAwaFsKT0ZFXRvm8mXDuQvd+/lqp6r/3w/RNXx5bCstFg5wjjtoB/TevELGzfzRMq+X5+g7rv7AVtXlLDfB1d9I0tS9x12PgxHF4AaOrruMlYFadrCb2jK1hCd8Psrqr6/Mkd4F9D74hUTGvfgqv71H13f2j/JtR/zLJtcoq638bB0UXQaDT0+lLvaIo0ScI/gCThhRBCCFFYXY9JZtf5KBwd7KgR6EEFH3fspf91vtyITea7TedZvO/K7T7jrSr78ELnYBoGFa3kwdIDV3np1yMYDDBnRGPaVTXzYL9/MZk0dpyPZN6uy6w/dfN2uxk/D2ceaVKOwY3LUsq7mEVjECLfoi/A/tlwaL5qPwNqiF6Nfir5XrbJf/fK1jRYNBTO/A2B9eCJDWDvYOnIhS2LuwGbPlLtjDRTZmJ7DLR52XYT22HHVb/4rAsGLl4q3iZjwcFZ39gKAk2DmZ3g2n5o8Dj0map3RNk0DU4uh/Xvwa1Lap9vdTW8tXInmQdgbmmJ8HkwpCfC6HXq94jQjSThH0CS8EIIIYSwOmM6JEWDh79ZD5ucZmT3xSi2no1gW0gk58IT7njc2cGOqgEeVA/wpEYpT6oHelIt0ANPF0ezxlEYhcel8N3m8/yyN5S0DJV8b16xJC90rkKTCmZIcGSkQkI4eJfN/7Gs6PXfjrFwbyjero789WwryhQ3f/V5bFI6Sw9eZcHuy1yITLy9v3nFkgxrHkTnGv442uvUXsGSUhNUkraAfU2IezAZIWStqno/tz57v1c5aDRS9U92983dMePDYFoTNSSx47vQeqJ5Yxa2z5gBcVfh0AI1jDE9Se2v0U+1nilRUdfwcuzcBpWMz2qd410OOrwNFduBm68kbO/n+DJYOkq1fZlwyOx/U5pFRqqacbHlf5ASo/ZVaKuS8YF1dQ3tvuJugL0juPnoHUnOHV2i5oUUr6C+FuR7RleShH8AScILIYQQwqpMJpjXDy5ugbavQdtX89yfVdM0TofFs/VsBFtDIth38dbt6mwAOwPULeuNATgdFk9SmvGexylTvBjVA1VSvkagB9UDPSlb3FW3Pt+2JCI+lelbzjN/92VSM5PvTcqX4PnOwbSoZKY3aMZ0mNtLLd0etbpAVTClpBsZ9MMujl6NpU4ZL5aMa46Lo3mWmx+/Fsu8XZf548g1UtLVx97d2YEBDUrzWLMggv0LaZ/3myfVgLsjiyAtAUo1UBXStfqDo1T6FygJEXDoZ9g/F2JDs/dX7qQ+p8Fd8tee4fAvsPwpsHeGJ7fd2TteFA7pKRBzWa2giL6obm9dVNsxl9UgzCxlm2YOOy04v0NuMxnhyMLMIbI3svc7uavEYony6qJC8QrqtkQF8CxddNubpKfAtMYQE6pavbR9Re+IHiz5FmybDHt+AGMaYIC6Q6DDW+BVRt/Y0pLg8k61IuP8Rog4rVZlPL0HPAP1jS2n5vVX8bd9Ddq/rnc0RZ4k4R9AkvBCCCGEsKpDC+CPp7Pv1+gH/b4Hp5xVEEclpLL9XCRbMqvdI+JT73i8tHcx2lTxoU2wLy0q+eDlqqrcTSaNy9FJnLoR949/8VyLSb7nedydHagW4HE7OV890IOqAR64Olmu5UFKupHIhFQi4lOJTEjLvE29523ifS4oWFLDoOJM7FyFFpVKYjBnldH692D7V2q7eh8YPM98x7aCq7eS6PXNdmKS0nm0aTk+eah2no+Vkm7k76M3mLf7MoevxNzeXy3Ag2HNg+hXrzRuzoWw7UZGGpz+S1VKX95x7+e4eKueuo1GQclKVg1P5IKmwZW96nN5cnlmwgk1LC/r82euCmVNgwUPw7l1UKYxjFpTdJOSBVlKrEqq37qYnWy/dUltx10HHpCisXcCv+rQ+kX1+6OgV8CmJcKu7+DgzxB7hf/8v3sHqYT8P5PzJSqqavrC3NJmx1RY9zZ4BMKzB8DJTe+IcubWJdjwIRxfqu47uECzp6HVC+BipXycpkH4SbUC4/xGlYA3pt79vMZjoOcX1okpP+JvwpfVVBuqZw/K3wc2QJLwDyBJeCGEEEJYTfIt+KYRJEVClW7qDYApXS3JHbIQvErf9ZK0DBMHQ2/drnY/fi3ujseLOdrTrGIJ2lTxpXWwL5V83XKVII5JSuPUjfjsxHxYHGfDEu6oqM9iMECFkm6qYr6USsxXD/QkwNPlvudMyzARlfjvRLpKsEf8K7Een5Jxz2PorV5Zb17oXIU2wT7mTb4DXNgCP/fldqLBYA/PH9W/MiyXtpyNYMScvWgafPFwXQY2zF38oVFJLNhzmSX7r3ArKR0AR3sDPWoHMqxZEA2Dipv/Y28LYq/Bgblw8CdIuKn2GeyhWk9VKe1XAw7Ph32z76ykrtRRPV6lqyRdbUVqAhz7VbVeuHkse3/phupzVfMhy6xkiL0K05pBWjx0/QSajzf/OUT+aBokRtxdyZ61nRT14Nc7efyrErxC9rZnqcL7MyA9RVV63+tjduuy+vvpvgzq9+jtBH2FOz9+zgV4JVViFEytD6mx0Pc7qD9U74hy79oBNUA466Kzqw+0ew0ajlCtYMwtMQoubFJJ9/Mb71xtAWpVRaUOULmjmqeweKi6nXBQXdCxZbumwZo31IXYJ9b/9/OFxUkS/gEkCS+EEEIIq/n7RVUd6VMVntyuhmktfky9AXf3hyG/QJlGXIpMZGtIBFvPRrDrfNRdVd/VAz1vV7s3Kl8cZwfzvgFPN5q4EJF4OzF/MvM2MiHtns/3dnWkeoAnFX3diE/JyE6sJ6QSk/SgN8l3c7K3w9fDGR93p8xb5ztus7bdnO0xYPmkrL2dgeKujpZJACdGwfctICFMvfGMOg+XtkGriaqfbwHz9foQvlp/FmcHO357ugU1S3k98PlGk8aWs+HM23WZzWcjyHoXUtq7GI82LcegRmXx9SiElYwmk2pHtW8mnFkFWub3t7u/+jpoOEIl1u54jVH1Et83E0LWcfuijVfZzJ7iw3PfU1yYR1K06nd8+BdIzbxI6uACtQdCo9FQuoHlYzgwF/58DhyKwVM7pBJSbxFn4dgS1dYi+pJKGqclPPg1rj53VnL/M3HsWrLgV7ibm8moLkD9OzkffUltpyc++PVuvtkf48qdoc7DVgnbLFa9CnumQ0BtGLul4F6E0TT1O3DdOxAVovaVrAyd3lcXovPzNW9MVyuSzm9UbVquH+aOVRUOxaB8S3VBu3JH8Kly5/l+6qN+T9cfBn2/zXsc1jC9NYQdhR5fqGHMQneShH8AScILIYQQwiquH4If2wMaPP4nVGij9t+6jPGXwdhHnCLd4MSnjuOZFdf4jpeWdHOidbAPrYN9aV3FBz8PF+vHD4THp9xZNX8jjvMRiRhND/7z0cHOQMl/JtX/lVi/nWB3d8azmEPhrHj+N02DhY/A2VXqoszYzeqN4uLHVMLlhZPgqM/nOa9MJo1RP+1j85kIypVw5c9nW+FV7O6KtqiEVJbsv8qCPZe5eiu7HVKbKr4MaxZEh2p+2BfGeQTJt+DwQtXvPepc9v7yraHxaKjWK2cVgNEXYP8cODRPHRNUxV7NfqriumxTSdhZS8g6+GN89iqGEhVV4r3eo+BqhoHNOaVpakXNxS0Q1BIe/yvPs0ZEHhnT4cxKdaHs4tZ7PCGzMrt4+exke1YLleLlrdeKoyi4vfLgwj3a/Nxn5UGvKeqCpq2LPAffNVWzAIb/oYbXFnTGdLUabNMktVIUoFwLNby1TKOcHyf6gkq6n9uovgfT4u983L8WVGqvEu/lmj/4b6wr+2BWJ7Uy7Zl9tnthM/wUfNcM7BzgpRDr/t4R9yVJ+AeQJLwQQgghLM5kUn/MXzsAtQZi6j+TY9dib7eYORN6g8n20+hsfwCA74192VpmHK2q+NO2ii81Aj1tdkhqSrqRkJsJnLoRR2h0Et6ujndVrXsXc7TZ+HWz50dY9bLqaTtmo6poM2bA1HqqD24BXWIek5RGz6nbuRaTTKfqfvw4rBF2dgY0TePQlRjm77rMX0dv3G535FXMkUGNyjC0aRDlfQpIT9vcun5YJd6P/goZmRcdnDyg3iMqYetXLW/HTU+GE8tV0u/a/uz9/rVUUr/2IHB2z2/04l5SE2DtW3BgjrrvUwW6TlLtDPRKft+6BN+1UBXAUhFpPXE3VALxwNzsFhcGO9VyrkKb7Kr24kGFu0d5QfLPHvznN6r+83aOMOJvKNdU7+gebNFQNT8kuCsMXaJ3NOaVEgc7voZd30JGitpXs79aGVi8/N3PT42Hi9tUAcO5Derz+U+uJaFie1XpXqkDeATkLp5fBsPZ1VD7YRgwM0//JYvLmilUtQc8slDvaEQmScI/gCThhRBCCGFxB36CPyeAkwe7eqzm/c3RnA67s0KnYslivOe+jDY356sdVXtC/x8Kdt9ScW9hx2FGBzUIrNv/oNmT2Y9t/0q9qQqsq5aZF8CK5mNXYxkwfSdpGSae6xhMoJcL83Zf5sT17HkGdct48VizIHrXLYWLYwFdSv8g6SlqKOe+mXB1X/Z+v5rQ5AnzJ8ivH1K9yI8tvTvR3/gJ8K1qvnMVdaF74Pdx2QmfZk9Dx3cs0+89t7Iu7jm6wdO7VOJXmJ+mqdZh+2bCqb+yW0q5+UKDx1VLKe+yuoYockjT4NfH4eQfqiXY2C3gGah3VPd2aQfM7aGqs5/amfcLuLYu9hps+li1+EJTxQpNxqrhwzGXsweqXtmjVgRksXNQK8GyersH1M3fRdEbR+GH1oBBfbz9a+T3f2ZeJhNMqQ1xV+Hhn9RqOGETJAn/AJKEF0IIIYRFJUXDNw0hOZoF3uN4M6wtAG5O9rSs7EObKr60reJL2RKu6vlHFsOKZ1WC1q+mqmyx9URKWiLs/FZVI/X4AgLr6B2R7UpLghntVa/g4K7w6OI7E+1J0fBldVUFNmqt7Vfl3ceivaG89tuxO/Y5O9jRp24pHmsWRN2y3voEZmm3LsH+2XBwHiRHq312jlCjr6pMtnSrmORbKnGxbxZEn8/eX761SsZX62mZoXdFQUYabJ4EO6aAZgLPMtDvO6jYVu/IsplMMLcnhO5UbSqGLS+QF/JsVkosHFmkvr8iz2TvL9dcfX9V7wMOTvrFJ/ImNQFmdYbwk1C6EYxcaXurFkwmmNkRrh+ERqOg11d6R2R5YcfUiqMLmzN3GLijrzuoVSaVO6oWMxVam79wZcnj6oJ6tV4wZIF5j51fF7fBT73A2QteOlvgWhgWZpKEfwBJwgshhBDCkhKXPYPbsXmcNpWlV9rH2Nk7Mbx5EM90qIy3633erF/ZB4sehcRwtZx28AIIam7dwHPCZIRD82HTJ2q4KKgKpGG/6xuXLfvzedXCwj1ADVB087n7OX+MVx/XWgNg4Gyrh2gOmqbxxu/HWLj3CkElXXmsaRAPNypz/6/5gsxkVJV5+2bcOTTVs4zqMdxgOLj7WTkmE1zcrJKFZ1aqpDGor7uGI6Dh43cPfxX3d/Mk/D5WJYUA6gyB7v+DYt66hnVPUefVwOeMFOg9VX2uRf6EHVNV70d/zR746egGdQerllIBtfSNT+Rf9AU1tyclBuo/Bn2+ta0LWEd/hd+eACd3mHDI+r9T9KJp6vfrurfVRRInD9XmqXIH9fdmiYqWPX/EGdVzXTOp2T2l6lv2fLmR9bdig+HQ5xu9oxH/IEn4B5AkvBBCCCEsIT4lnT/++pNHj43CzqDxcOo7+Nduzytdq1GupOt/HyD2qhrcGXZUVdL2nqLeGNoCTYNz62HdO+pNEYB3EMSEAho8sx98gnUN0SadXAFLhgEGdaGiUvt7Py9rCbSdAzx/3HaXxv8HTdO4FJVEUAnXwjkTIDFKDUfdP1stkc9SqaOqiq3SFexsoNVO7FXVr/rAT+rCHqh2BtV6qjgrtLGtZJMtMZlg9zTY8AEY06BYCfWzuEZfvSN7sJ3fqApSZ094ejd4ldY7ooInI1X9zN43E67szt7vW01939QZLMNUC5tzG2DBQJVwtaW5Cukp8G0jNS+mw9vQ5iW9I7I+k1H9nvUqa/3VXL+Ng6OLoHIneGyZdc99P+nJ8EUVSI2DESuhfEu9IxL/IEn4B5AkvBBCCCHMKd1oYtG+K0xde4pZGa9Rx+4iW1w64vnoLOqXK567g6Ulwu9PwqkV6n7zZ6DzB/om9m4cVRVJWcuDXbyh7atqEOSvI1TVbZOx0ONz/WK0RbFX4fuWqsqu5fPQ+f0HP392NwjdpT627d+wRoQip67uh70z4MTvqm0UqO+D+o+pNgElK+ka3n1lpMHpP1V1/OUd2ft9qqikYr1HZQbFP926DMufhsvb1f3gLqo61sNf37hywmSEWV3UwN7gLvDoErnQklMxobB/jhrWmRSp9tk5QPXe6vskqKV8LAuzHV+rAgM7Bxi+wjaSm1mzYjxLqyIHpxwUcgjzib4A3zZW/edHrraNlanHf4OlI8GrHDx3RL+B4OKeJAn/AJKEF0IIIYQ5aJrGupM3+XT1aS5EJPKY/To+cpxDuoM7Ds8dxJDXxI3JBFv+B1s+Vfcrd4aBs8DFy3zB50TsNdj4ERxZyO1BWU3HqUFZxTIvLpzfBPP6qeXSE09JlWAWkxF+6q0Sn6UawOi1/13JlfUGy80PXjghfYZtQUosrHo183sgU6kGKjFXq79tDObMqZsnVDL+6GJIS1D7SjeCJ9ZLglHT4PACWPUapMWrtiPdPlEDNwvSxyb8tFpRY0yDh36AukP0jsh2mUxq0OO+mRCyJrt9k0ep7JZSHgH6xiisQ9Ng2Wg4vgxcfWDcFvAqo188iZEwtb6qeJbvY/38+ZxaURbUCkb8pf/vgl8Gw9nV6m/wju/oG4u4iyThH0CS8EIIIYTIryNXYvh45Sn2XlSDGCu6JrPK7nmcM+Kh+2cqWZ1fx39TVZkZyeBTVQ1stUbFbUqcGkS4a5rqMQxQayB0fBuKl7/zuZoG05qqgXXm+n8XBls+g00fq4sTT27LWQ9TYzpMqQPx16H/DKgzyPJxivu7uFV9/8VeAYOd6gne5Ako3VDvyPInJU4l4te9q3pdD1t+/zZJRUFChEq2nPlb3S/bDB763vJ9hy1l22TVSsfFG8bvLRhV/NaUFK16Ku+fDbcuZu+v0FZdXKvaA+wd9ItP6CMtCWZ3UbMAAuvBqNX6XWT9+yU1bySwLozZLBXPeom9qi6GGNP0/z2ZGAmTq6rK/PF7wbeqfrGIe8pNnlm+o4UQQgghcuhKdBITFh6i77Qd7L0YjbODHU+3q8TqWhtVAj6gthraZg61+sOoVeARqJLcMzuqxKClGNNVy42p9VUiJyNFLcMfs1FV4v87AQ+qMiirh+reH1V1YVEXuhs2Z65i6PllzpN59o6qtQnAnh8sE5v4b+nJsPoNtZIh9or6uh+5SiVmC3oCHtRqlSZjVCsaUN+3RdXplfB9c5WAt3OEju/CyJUFNwEP0GKCSt6lxMDfE9WFUgHXDsDvT8Hkaqq92q2L4OwFTZ+C8fvg8RVQo48k4IsqJ1cYvEDNgLhxWF2Y0+N7J+KsukAE0OUjScDryatM9t/zGz/S92fp8d9UAj6wniTgCwH5rhZCCCGE+A+xSel8svIUHSdvYcWR6xgM0L9BaTa91I5XasTidHSBemKPyeZ9E1+qPozZpFpgJN+CeQ9lv0EzF02DU3/Bd81g5UuqJ27JYBiyEEb8/d+Jx7qPqGGAUefgwkbzxlbQJMfAsidAM6ohfnUH5+71DUeotj/X9sPVA5aIUDzI9cPwYzs1mBPU5+PJHVCumY5BWUiTser2zCq4dUnXUKwuJQ7+GA+LHoHECPCroS42tp5oG4N188PeEfp+p/pbn/5LzTEoyk79pb6nZ3SAI7+omQ4BtaH3VHjxFHT/FHyr6B2lsAXFg+DhuWqI9dHFsPt768ew/l3190OV7mqAttBXqxfA0VX9TXZ2tX5xHF2kbqU1UaEgSXghhBBCiPtIyzAxa/tF2n6xiR+3XiDNaKJFpZL8+UwrvhxUj1IejrDyRfXkeo9BuabmD8IzUFVn1n5YVcL89QKsfBmMGfk/9tUDMKcHLB6qkuiuPtBzMjy9C6r1yFkPTGd3qDdUbe8pwlW1mgZ/PZ9dPd3ji9wfw90XavZX23ulGt5qjBmw5XO12iTitOrL/+gS6P21+voujHyrQMX2gKb6YhcVl3bA9JaqJQkGVTk+djME1tE7MvMJqAWtX1LbK19SrQyKoj0/qN9t1w+pi5t1BsPo9TBuGzR8HJzc9I5Q2JqKbaHrx2p77VtwYYv1zn1xmxp0b7CHzh9Y77zi/jz8sy9Yb/xYn9WekefUSh6DPdQaYP3zC7OTJLwQQgghciQ1w6h3CFajaRp/H71Bpy+38OFfJ4lJSqeKvztzRjRmwRNNqVU6c0jq/lmqh6iLF3R+33IBORZTfcKzhjHt/REWDFDV8Xlx6xIsHQUzO0DoTnBwUUmbCYdUX9z/GiL6b1ktaULWQvSFvMVU0B2ar6pO7RxgwOy8D6ltmvmG7/hvkBBuvvjEvUWdhzndYNNH6iJXjb7w9G6o0lXvyCwva4bDwXmqJ3Jhlp6ikmpze0JMKHiXUyt9unwIDs56R2d+rV8Ev5qQFAWrXtE7GuvbPiX7/914jBoc3v9HKNtY/wGLwrY1fVKt8NOM8OsIuHXZ8uc0mWDtm2q70ShZnWFLWj6nVnvePAan/rD++Y8uVreVOoC7n/XPL8xOkvBCCCGEeCBN0/j475NUfWs1TT9Zz4g5e/nf6tOsOHKdc+HxGE2Fq+fs/kvR9P9+J+N/OUhodBK+Hs582r82Kye0pn01PwxZb+ATwlWfSFDJcTcfywZmMKjEyuAF4OgGFzbDjI6qh2hOJd+CNW/Ct43h+DLAAHUfhWcPqsGreU0cl6wElTsDGuwtQlW1WSJDshM+Hd6CMvnoHV66IZRuBKZ0ODDXLOGJe9AyK8Cnt4Kr+1R/6Id+hId/AreSekdnHcFdwDtI9Q8/tkTvaCwn7BjMaA87vwE0qD9MtRkq31LvyCzHwQn6TVPVk8eXqbYsRYGmweb/qbYeAG1egR6fW/73syg8DAbo9ZXqv50cDYuGWv4i5bElcOOISva2e82y5xK541oCmo9X25s+AZMVC5I0LTsJL61oCg2DphWtaS25mVorhBBCFHUmk8Zbfxznlz2h932Os4MdVQM8qBHoSfXMf9UCPfB0yWU1tc4uRibyv1WnWX0iDIBijvaMa1uRMa0r4uZ8jz7vv41TfRoD66l+wtbsJRx2DBY+olqfOHvBw3Ogcsf7Pz8jVQ1d3fq5SrgBVGwHnT80XxuGkHWwYKCKZ+LJwtvG498yUlUbk7BjUKEtDFue/2FqR5fAb2PUUN7nj+V+ZYJ4sLgbqif4+Q3qfoU20O97NYitqNn5jaoQ96sJT+0oXFXCJiPs+DozcZKu2m31+Ua12ioq1r8H278Cd3+1wsO1hN4RWY6mwYYPYPuX6n6Ht6HNS/rGJAqu2KvwQ1s1J6fWABgwyzI/H9OT4ZuGEHcNOr2n+pAL25ISB1/XUYUs/aZDvUesc97Q3TC7Kzi5w0shaoCwsEm5yTNLEl4IIYQQ92Q0aby67ChLD1zFYICP+9WmaoAHJ2/EcSrz35mweJLS7l0VUqZ4sdtJ+RqBHtQI9KJM8WLY2dlWkic6MY2pG0KYv/syGSYNOwMMalSWiZ2r4Ofpcu8XXdoBc3sABnhiQ/4qn/MqIQIWPwZXdoPBDrpOUu0l/vkmUdNUi5T170FM5pJqvxoq+V65o3nfUJpM8G0jiD4PPb+ExqPNd2xbtvoNNcizWAl4aqfq4Z9fGWnwVU1IDIeBs6UPqDkdXwZ/TVQXoxxcVNKjybj8XzgpqJJvwZc1ID1JtWcp30rviMwj+gL8/iRc2aPuV+sFvaaouQtFSXoK/NAaIs+qVU8P6TBs0ho0Dda8Abu/U/e7fpJdvSpEXl3aAT/3Ua3KOn+gWpOY29YvYOOH4FUWntkPjvf5u1Poa/sUtcLGOwiePWCd4og/n4cDcwr3z+5CQpLwDyBJeCGEEOK/pRtNTFxyhD+PXMfezsCXg+rSt17pu55nMmlcjk7i5PXsxPypG3Fcj02553HdnR2oFuBxOzlfPdCDagGeFHOyTBV5WoaJpLQMEtOMJKdlkJhqJDEtg6RUI0npRi5EJDBr20XiU9WQ0/ZVfXmte3WqBnjc/6DGdPihDYSfhIYj1PBGvWSkqkGthxeo+w0eVwNBHZzg8i5V4Xptv3rMPQA6vKmGqFqqan/397D6NfCtroa7Fqaq2nvJqv4HeGQxVO1mvmNv+gS2/A/KNoPRa8x33KIq+Rb8/RIcX6ruB9ZTPaJ9q+oalk348znV+qh6Hxg8T+9o8kfT1P9lzZuQnghOHtD9f1Dv0cL/8+h+ruyFWV0ADYYuheDOekdkXiaTGpC+f7a633Oymm0ihDnsnaEGHBvsYOivULmT+Y6dEA5T60NaAvSfCXUeNt+xhXmlJcLX9VRxRK+vVO9+S8pIhS+qqIKB4X+o1avCZkkS/gEkCS+EEKJQSYkFeyc1uNNM0jJMPLvwIGtO3MTR3sDUIfXpXjt31b0xSWmcuhF/R9V8yM0E0oymu55rMEAFH7fMinmVmPd1dyEpLYOkNCNJaVmJc5VMv70/K6H+j32Jqdm3yelG0o05+zOnRqAnb/asTsvKOegbu2uaqrgrVlz1Utd7eb+mwa5vYe3bgAZBLVVspzN7ADu6qeqtFs+Ak5tlY0mJhcnVVfJr+Aqo2Nay59NT/E34voVaqt5kHPT4zLzHj7sBU2qpCrxxWyGwrnmPX5Sc3wjLx0P8ddUju81L0OZlafOT5eYJ9bVssIfnjxbctjzxN2HFsxCSedEqqBX0+w6KB+kbly1Y86b6PeFZWl0gdfHSOyLzMBlhxQQ4PB8wqHZDDYbpHZUoTDRN/Vw5NE9934zZpObgmMNfL6iLR6XqwxMbi+6KrIJi93RY/Sp4lIIJhyy7auHUn2q1q0cpeOG4dVteilyTJPwDSBJeCCFEoRF1Hn5sp94g1HsEGo0Gv2r5OmRKupGnFxxk4+lwnOzt+P6xBnSs7m+WcNONJi5EJHLyRiynbsTfTs5HJqSZ5fgP4mRvh6uzPW5ODrg62Wf+c8DdxYFuNQN4qH7pnLXJibuhhpqmxasK+IYjLB57jp1dC0tHqdhAVW01GA7t3gAP83wOc+TvF9XAy2q9YMgC653XmkwmWDBAJXf9a6mWRJZ4M7Z0lGqfUu8xNWRR5E5aEqx7B/bNUPdLVoaHfoAyjfSNyxbN7QWXtkGridDpXb2jyb30ZJjWVLXdsndWw7KbPS1JrSxpSTC9pWrT0+Bx6DNV74jyz5gBy5+EY7+qC0gPTYc6g/SOShRGGakwt6ca4u1bHZ5Yn/+5N+Gn1cVPzQgjVhbuQdGFRUYqTG0AcVeh26fQ7CnLnWvRUFVM02ICdPnQcucRZiFJ+AeQJLwQQohCY+no7NYKWcq3Vr24q/XKdZVncpqRMT/vZ/u5SFwc7fhxWCPaVLF8/9zw+BRVNf+PljZxKekqYe6skuWuTtkJdDfnOxPpbs7Zt8Uc77yf9VpHezMlYrI+5qUbwuj1tpfgCT+tBk56BECHt8CvuvVjiDgD05qoiwDPHQHvctaPwdKyhlk6FIOxm/N98eu+QvfA7C4qqTjxFLiVtMx5CqOrB+D3sRB1Tt1vMhY6vS+Dze7n5ApYMgxcS8ILJwteX+Kd38LaN1XV4GPLwL+G3hHZntuzTFADpCu11zWcfMlIg2WjVLWonYOanVGjr95RicIs7gb82BYSbkL13jBoXv5aXC0YpFbtFOaChcLowFzVws3NV/2Na4kVpknRqhWNKV3NGvKvaf5zCLPKTZ7ZwUoxCSGEELq6HpPMJytPYWcw4OvhjI+7c+atE74earuEqxMO5krWWtrNE6pCFlRvwnMb4MxKVcl4aZvq/91wBDR8HDxL/efhElIzGDV3H3svRuPqZM/sEY1pVtE6CT8/Dxf8PFxoa4WEf75c3Jp50cOges7aWgIeVDJ4zAZ9Y/CtqnpXXtisKuI7f6BvPOZ2/RCsf19td5tkuQQ8QNkmqg3NjSNw8CdoPdFy5yosjOmw9XM17E4zgkcg9J2mBhGL+6vaAzzLqAq/48ug/lC9I8q51ATY/qXabv+GJODvp3xLaDxGrQz5cwI8tSv/1bx6SE+BJcNVAtPeCQb9DFW76x2VKOw8A2HwfJjTQ1382faFamuWFxc2q69fOwd1cVgUHPWGqiGtty7Cnh8s83fZyeUqAe9fWxLwhZAk4YUQQhR6scnpjJizl7M3Ex74PIMBSro5/SNB/69EvbsLPh5O+Lo7U9zVKWftSyxl0yeABjX6qeFAjUZB7FU48JOq0kgIgy2fqmRUtZ5qSFmFNves2sn6+BwKjcHD2YG5oxrTMEjnPue2JiNNDXUEtdKgVH1947F1TcapN5kHf4Z2r5t1ZoGuUhPUaghTuqqEs3Q7IoNBfSz/eBr2zVLLku3lz/f7ijgDv42FG4fV/VoDoecXakaCeDB7B/WzbcP7sPeHgjXIdM/3kBQFJSpB3Uf0jsa2dXoPzq6BmFD1ue7xud4R5U5aEix6FC5sAgcXVUFszkGZQjxI2Sbqd8qfz8HGjyGgDlTpmrtjmIxqJR2oNpI+lc0fp7Ace0f1d+3vY2HH1+r9VzFv857jyGJ1K+21CiXd29FMmzaNzz//nLCwMOrWrcs333xDkyZN7vv8mJgY3nzzTX777Teio6MJCgpiypQp9OjRI0fnk3Y0QghRtKRlmBgxZy87z0fh7+nM6FYViEpIIyI+lYiEVCLiU4lMSCMqMZXc/Ea0tzPckbD/d9K+kq87tUpbaPDZtYMwo71q9/H0blV5/E8ZaXD6T5W0u7wje79PFfUHf90ht/9gvJWYxrDZezh+LQ6vYo7MG92EOmW8LRN3Qbbja9Vb2rUkPHtAknr/xWSEqfVUoqfPN6o3fWGw/Gk4vEBVDD+5zTpDedNT4KsaKsk4aB7U6GP5cxY0JpNKHK9/DzJSwMUben0JtQboHVnBkhgFX1YHYyqMWgvlmuod0X9LvgVT6kJqLAyYBbUH6h2R7Tu/Ceb1U9sFqRd1ajz8MgQub1cDxx9dDBVa6x2VKIqyBqo6e8KYjeATnPPXHv4Flj8Fzl5quKe0mSt4TEbVzz/iNLR9Va3AMpfoi+rvZwyqDaFnoPmOLSymwLSjWbx4MRMnTmT69Ok0bdqUKVOm0LVrV86cOYOfn99dz09LS6Nz5874+fmxdOlSSpcuzeXLl/H29rZ+8EIIIWyepmm8/tsxdp6Pwi2zxUrNUvdOjGcYTUQnpREZn0ZEQiqRmUn6yDuS9er2VlI6RpNGeHwq4fGpcOPe5+9U3Y93etWkXEkz9yDe9LG6rTP47gQ8gIOTSj7VGgA3T8L+WXBkEUSehdWvquq32g9zq9ZwHlmRxOmweEq6OTFvdFNqlJIL1HeJvQab/6e2O38gCficsLNXbQ/WvQ17foT6wwpOVe39HFuqEvAGOxgwwzoJeFC9uRs8rtpt7P1RkvD/FntVXRy5uEXdr9QR+n6bozZc4l/cSkLth+HwfHVRoyAk4XdNUwl4vxpQs7/e0RQMldqrC6MHf4YVz8CTO2x/VkJKLMwfCFf3qsTn0KUF4+tTFE7d/qf+vr6yW63MeGIDuOTg7+e0JNiQOWSzzYuSgC+o7OxV4n3JcNj1nVqxaK7P5bFf1W3FtpKAL6R0rYRv2rQpjRs35ttvvwXAZDJRtmxZnn32WV577bW7nj99+nQ+//xzTp8+jaNj7obNZZFKeCGEKDq+Xh/CV+vPYm9nYObjjWhf9e4LvHmRbjQRlZB2Oykf8a9EfXh8Kgcv3yLDpOHkYMfT7SrxZNtKuDja5//kl3fBnG6qj+Qz+6FEhZy9LjUeji6GvTMh4tTt3QdMwSx37MHjoydQuZRP/uMrjJY8rvozlm0KI1fbZi94W5QUDV/WgIxkGLkKglroHVHe3boE01tDapz5q55yIvYqTKmjepzLkC5F0+DoElj5skrCOhSDLh+q1lsF/YKPnm4cgR/aqN8xzx+37SRAYiR8XRfSElSv5uq99Y6o4EiJhWnNIP46NH8Gun6sd0T3lxQN8/ureRwu3jDsdyjdQO+oRFEXfxN+bKe+h6r2gMEL/vvvwy2fw6aP1MD68fsK3gBskc1kUoN6w46qVoFdPsz/MTUNvmkI0eeh33SoJ+3VCorc5Jl1exeZlpbGgQMH6NQpu4ebnZ0dnTp1YteuXfd8zYoVK2jevDnjx4/H39+fWrVq8cknn2A0Gu97ntTUVOLi4u74J4QQovBbduAqX60/C8AHfWuaLQEP4GhvR4CXC7VKe9G+mh+DGpdlfPvKvNenJt8+2oAl45qz+vnWtKhUkrQME1PWh9D5qy2sP3kzfyfWNNiY+Ude/WE5T8ADOHuo5NTTu4gY+Dsb7FuRrtnT0C6ED41fU3l+E9XK4dbl/MVY2JzfqBLwBjvo8YUk4HPDtUR2P8s9P+gbS34Y02HZEyoBX7YZtHnF+jF4lVGzHUBVwxdlJpNqp/HLINWTNTUWSjeCJ7dDkzGSgM+vwLrq69yUAQfm6B3Ng23/SiXgA+tBtV56R1OwuHhB76/V9u7v4Mo+feO5n4QI+Km3SsC7loQRf0kCXtgGD38YMh/sneHMStjyvwc/P/6m+pkFajaDJOALNjs76JDZ23/vDIgPy/8xrx1QCXhHV7moXIjp9k4yMjISo9GIv7//Hfv9/f0JC7v3F/CFCxdYunQpRqORlStX8vbbbzN58mQ++uij+55n0qRJeHl53f5XtmxZs/4/hBBC2J6d5yJ57bejADzZthJDmwZZPYbKfh4seKIp3z5anwBPF65EJ/PEz/sZNXcfl6MS83bQC5tUj3d7Z2jzcp4OERqdTL+/YHTi0wx0nUFss1fAs7TqN739K1VV+MtgCFmnkl1FWUaqqrIFaDIWAuvoG09B1HScuj31p2rrUxBt/hSu7lP9WwfM0G8watbH8ugS1Qe7qEm+pZZ9T2us+lmHrFXV2u3fglFrZLidOTUdq273z1EzRmxR3A3YN1Ntd3hbLr7kRZUuapCtZoI/xqv5E7Yk7gbM7Qk3j4O7v+pfH1Bb76iEyFa6IfTKTKxv+RRO/XX/5276GNIT1UVjaZ1VOAR3gTJN1IrPbV/m/3hHMweyVusJzu75P56wSQWqnMtkMuHn58ePP/5Iw4YNGTx4MG+++SbTp0+/72tef/11YmNjb/+7cuWKFSMWQghhbSE34xk3/wDpRo1edQJ5pes9eqZbicFgoFedUmx4sS1Ptq2Eo72BjafD6fzVVr5cd5aU9Puv5LqLpsHGzIvOjUeDV+lcx3M+IoFBP+ziWkwyFXzcmP5kD7y6vQnPHVXLaCu2BzQ4uxoWDIRv6quBpIlRuT5XobDrW4g6B25+1m8/Ulj414SgVqqNyv7ZekeTexe3wrbJarvP12oJuV6CWoJfTUhPgkPz9YvD2q4fhj+egcnVYc3r6nvSyUPNHHhqF7R9Wb8LI4VV9T7gEQiJ4WolkC3a9oUawlu2GVTuqHc0BVfXT1SCO/LMf1fyWlPsVZjbQ8XlWVq1NPOrpndUQtyt/lBo+qTa/n0chJ+++zk3T8KheWq768dy0bCwMBiyq+EPzIGYfOQajelwfJnarjMk/7EJm6VbEt7Hxwd7e3tu3rxzaf7NmzcJCAi452sCAwOpUqUK9vbZPXWrV69OWFgYaWn3rtJwdnbG09Pzjn9CCCEKp/D4FEbM2Ud8SgaNgorzxcN1sbPT/w9dN2cHXutejVXPtaFVZR/SMkxM3RBCpy+3sPZEGDkaz3J2tVqm6OgKrV7IdQxnwuIZ/MNuwuJSCPZzZ/HYZgR6FVMP2jtA9V4wfLnqM9/saVX1e+sSrHsHvqwOvz8JVw/k+rwFVkyo6t0J0OUjtXRf5E1WVe2BubZXafkgSdHw2zhAU+2faj6kbzwGQ/bHcu8MMOXiIl5Bk56ihknP7KR6rh6apyrN/GpCzy/hxVPQ8wvwraJ3pIWTvSM0GqW2bbGV1K3LcOAntd1RquDzxbWE+p4CddH9+iF94wH1t8ec7hB9QV34HLkSSlbSOyoh7q/LR1C+tWqPtegRSI658/F1b6sVJ9X7QLlmuoQoLKRiW/W5N6bB1s/yfpxzG9SqZDc/qNjObOEJ26NbEt7JyYmGDRuyYcOG2/tMJhMbNmygefPm93xNy5YtOXfuHKZ/LI8/e/YsgYGBODk5WTxmIYQQtispLYPRc/ffrvL+cXgj8wxCNaPKfu7MG92E74Y2INDLhau3khk77wCj5u7jUuQDWtSYTNlV8E3HgXvu+tsfvxbLkB93EZmQSvVATxaNbYaf5316UfoEQ7dJKsnV5xsIqAPGVDiyEGZ2UG1FioLVr6ukX7kW2X3NRd5U7QmeZSApEk78rnc0OaNpqvo6/jqUDIbuNlIhWnuQGkwYc1m1Yyls7rjwN061AbJzhFoD1VDkp3aolUDOHnpHWvg1HAH2TnBtv7oAbEu2fgamdJWoKN9K72gKvuq9VHsMzQizusLPfVVCPuy4+lloTZHnYHZ3dSG8RCVVAV+8vHVjECK37B3h4bngVVZdPFr2RPaF8nMb4Nx69bus03t6RikspcPb6vbQAog6n7djHF2kbmsPlNV9hZyu7WgmTpzIjBkz+Omnnzh16hRPPfUUiYmJjBw5EoDhw4fz+uuv337+U089RXR0NM899xxnz57l77//5pNPPmH8+PF6/ReEEELYAKNJY8LCQxy7FksJNyfmjGhMCTfbvDhrMBjoUTuQDS+25al2qkXNpjMRdPlqK5PXniE57R7VrSeXq56ozp7QYkKuznf4SgyPztjNraR06pbxYuGYppR0d/7vFzq5QYPhMG4rPLEBKmUu98+qPizMQtbB6b/AYK+qbaXKMn/sHaBxZlXt3h+sn9TJi/2z4MzfKgk5cLb6frAFTq7QYJjatsUK5bwwGeHsGljwMHxdTyX/kqPVhZsOb8PEkzBwFgQ1l+9Fa3L3y179sceGhgFHnoPDC9V2VuJD5F+Pz7Mvul/YrC6GTW8Jk6vB70/B0V8hMdKyMYSfUhXw8dfBt5qqgPcqY9lzCmEubj4weD44uMC5daoHvMkIazN/TjUZIys6CqtyTVV/eM2o5gjlVkosnF6ptusMNm9swuYYtBytgbecb7/9ls8//5ywsDDq1avH1KlTadq0KQDt2rWjfPnyzJ079/bzd+3axQsvvMDhw4cpXbo0o0eP5tVXX72jRc2DxMXF4eXlRWxsrLSmEUKIQkDTNN5bcYKfdl3GycGOhWOa0TCouN5h5dj5iATeW3GCbSHqzW1p72K807sGXWr4YzAYwJgB3zWDqBBo9wa0ezXHx953KZqRc/aRkJpBw6DizBnZGE8Xx7wFevMkfN9cvbl45aJKBhZG6Snq433rIjR/RvXuFPmXGKWqm42pMHo9lG2sd0T3d/MkzGiv+k13nQTNn9Y7ojvduqSS1Wgwfl/BbcmSGKXazOyfrSr7s1TqCI2fUG9opRpMX1cPqBVQ9k7wwklw99U7Ilg6Go4vhSrd4dFFekdTuGgaRIbA+Q2qevfSdrUi7DYDBNaFSh1UH/4yTcDBTAUPN46qgctJUeBfW7XHc/Mxz7GFsKajS+C3MWq75kNqBaCLF0w4rNo/icLp+mHVPg8DPL0L/Krn/LUH58GKZ9TFx6d3S8FBAZSbPLPuSXhrkyS8EEIULjO3XeCjv08B8N3QBvSoHahzRLmnaRprToTx4V+nuBaj3vC2reLLe31qUuHqH7D8KShWAp47Ai45+92181wko3/aT3K6keYVSzLz8Ua4OecjoaVp8FUtiLsKj/4KVbrk/Vi2bMtnqnrJPQCe2Zfjj7fIgeVPw+EFUPthGDBT72juLT0ZfmwPEadUEvjRJbb5ZmjhI3BmpRpO2vMLvaPJOU2Dq/th30yVmDCmqv0u3lD/MdWHXCoFbcuMDqodTfu31BBcPd08Ad+3BDQYtw0C6+gbT2GXkQqhu1RC/vxGtSLvn5zcoUIblZSv1CHv37vXDsC8h1Q1aKn68NhvkqwUBduaN2HXt9n3u3wMLZ7RLx5hHYuHwakVUL23WhWRU3N7waVt0PEdaP2i5eITFiNJ+AeQJLwQQhQeq4/f4KkFB9E0eKNHNca2KdjJm6S0DKZtOseMrRdJM5pwszexw/0VvFOvQ+cPoOVzOTrO5jPhjJt3gNQME22q+PLjsIbm6Y//5/NwYE7BS/zl1K1LMK2pqoAeMEv1ZRTmk1UlZOcIL5wAD3+9I7qTpqkLXkcWqsFYT+20jcrfezm/SVWNOrnDxFO2f7EoLRGOLVXJ97Cj2fsD66kl+jX7F97VNQXdkcXw+1jwCITnj6nex3pZNFS1CqvRDwYVgdZotiY+TP3sOb9B3Sb9qz1N8fJqJUvljmpQYU5+LoXuhvkDIS0eyjaFob/KIHRR8BkzYMEA1dqpeHkYvxccctAKUhRs4afgu+aABmM3q4uK/yXmCkyppbafPw7eZS0ZobCQ3OSZc90Tvnz58nzwwQeEhobmOUAhhBAivw6G3uK5RYfRNBjWLIgxrSvqHVK+uTo58HLXaqx5oQ1tq/jSj414p14nCm/WuvUmJ9fN154IY+zPKgHfqbofM4abKQEPqjIYIGRNwejrnVurXlMJ+PKtodYAvaMpfErVU0kWU7q6mGNr9vygEvAGe1Wpb6sJeFADKX2qQFoCHP5F72juLzJEDTmeXB3+nKAS8A4uUG8ojNkI47aoCnhJwNuumv3AzRfib+g7mPvawcxZHXbQ/g394ijKPAKg3iPq5+NLITB2i6rcDGoFdg7qQvb+WbDoUfisghqwuvVz9bkzme4+3sVtMK+/SsCXb60q4CUBLwoDewc1qLX1SzDoZ0nAFxV+1dVqT4BNn+TsNcd+VbflW0sCvojIdRL++eef57fffqNixYp07tyZRYsWkZqaaonYhBBCiHu6HJXImJ/2k5phokM1P97tXUP1Ty8kKvi4MfexWrzt8RcAU9P7MnbRKYbP3suFiIT7vu7vozd4esFB0owmetQO4LuhDXF2MFMCHqBiW9UbOCZUJdcKkzOr4OwqlUjoIcNYLabJWHW7fzZkpOkbyz9d3AprMhN7XT5SX+u2zGDI/lju/fHeCS69GDNUsvbnvvBtI9j9HaTGQvEK6mM78RT0+w5KN9Q7UpETDs7QcKTa3qvjgNZNmfM56gwG36r6xSEUOzt1YbX1izDyb3j1EjyySK2UK1ERTBkQuhM2fqRmbHxeCZaOgkMLIO4GnFsPCwZCeqJqZfPoEnB21/t/JYT5FCsOHd9WcxRE0dHuNVXMEbIWQvc8+LmaBkcXq+06gywfm7AJeUrCHz58mL1791K9enWeffZZAgMDeeaZZzh48KAlYhRCCCFui0lKY+ScfUQlplGrtCffPFIfB/sc/DqLvgi/jsiePm/jDAfm4pISjsmzNMVbj8HJ3o5tIZF0nbKVz1afJikt447n/37oKs8uPEiGSaNfvVJMHVIfJ4dc/5p/MCc3KN9KbYesNe+x9ZSeDKteUdvNx4NfNX3jKcxq9FX99hNuqr6ZtuDWZVjyOGhGqDMEmj2ld0Q5U3cIOHlA9HnVr9kWnFwBX9eBxY+pZfgY1ADNocvg2YPQ4lnp9VwQNRqlLlCG7lIDNK3t8i6VtLVzgLY5H04urMjZA6p2V63qJhxSQyh7fgnVeqmfU8nRcHwZ/PE0fFkNFjysVp5V6Q5DFspqGCFE4VCyEtQfqrY3fvjg5944AhGn1QrBGn0tH5uwCXl+d96gQQOmTp3K9evXeffdd5k5cyaNGzemXr16zJ49O0dL5oUQQojcSEk3MvbnA1yITKSUlwuzH2+cs2GjGanw6+NqEOCvj8OVfZYPNj9SE2DbZADs2r7K891qs/aFNrSv6ku6UeO7zefpNHkLq47dQNM0Fu0NZeKSI5g0GNyoLJMH1cvZhYm8uN2SphAl4bd9qar7PUtDm1f0jqZws3dUCT1Q7V/0lpYEi4eqBFFgPeg9peCsgnD2yH6jt1fnj6Wmweb/wZJhEHcNXH2g1UQ1TPrRRRDcSVXOioLJMxCq91Hb1v5a07TsREb9YVCignXPL/KmRAVoPBqGLIBXL8LI1dDm5cwVMAbQTOpratDP4Oiid7RCCGE+bV5RK4cvbYMLW+7/vKNL1G3V7tKKqwjJ81/D6enpLFmyhD59+vDiiy/SqFEjZs6cyYABA3jjjTcYOnSoOeMUQghRxJlMGi8vPcreS9F4ODswZ2QT/Dxz+MZtwweq2gDAmKaqNOPDLBdsfu39QQ08K14B6j0KQHkfN2aPaMyM4Y0oU7wY12NTeGrBQfp8u4PXfjt2uzf+pP61sbezYBIxKwl/eSekxlvuPNYSdR52TFHbXT+R5fDW0HCEGs56dS9cP6RfHJoGK56FsGMqaTxkATgW0y+evGg8Rt2GrFNfy3pIS4KlI2FzZv/TZk/DxJPQ6V0oHqRPTML8mo5Tt8eWQlK09c57YRNc3gH2ziqJKwoee0cIag4d3lKzIF65AKPWqp7ZDk56RyeEEOblXTa7jdvGD+89R8uYkd0Pvs5g68UmdJfrJPzBgwfvaEFTs2ZNjh8/zvbt2xk5ciRvv/0269ev5/fff7dEvEIIIYqoyevO8OeR6zjYGZg+rCFVAzxy9sJz62HXt2r7oR/BtzokhMHiYapC3tYkx8COr9V2+zfUm9dMBoOBzjX8WT+xLRM6BuPkYMexa7EAjGldgQ/61sTOkgl4UMssS1RUwzUvbLbsuSxN02DVq+rCTMX2shTUWjz8oeZDanuPjj2md34Dx5eqFheDfgavMvrFklc+laFyJ0CDfTOtf/646zCnu1plZOcIfb6BbpNkCF1hVLYpBNRRLUQO/mSdc2qa6ikOqqraq7R1zissy7UElGsKdmacWSOEELak9URwKAZX99179fCFzZAYDsVKZP4dJ4qKXCfhGzduTEhICN9//z3Xrl3jiy++oFq1O3unVqhQgSFDhpgtSCGEEEXbwr2hTNukqjwn9a9Ny8o+OXthQjj8/qTabvwE1B2sql1dvFQV7sqX7l2doKdd0yAlFnyrQa0B93yKi6M9EztXYd0LbRjUqAxv96rBGz2qW284bWFpSXN+A5xbp5KHMozVurKqao8vg8RI65//3AZY/67a7vYplG9p/RjMpUnmx/LQfNXKylquHoAf28ONw+BaEob/AQ2GW+/8wroMhuzv232zVBWfpZ1dDdcOgKMrtHrB8ucTQgghzMEjAJpkrlbc+CGYTHc+njWQtdaAOwquROGX6yT8hQsXWL16NQ8//DCOjvf+YnFzc2POnDn5Dk4IIYTYcjaCt5YfB2BCx2AeblQ2Zy80mWD5U5AYAX41oEtmNV3JSjBgNmCAgz/D/tmWCTwvEqNg93dqu/0b/1klFlTSjc8G1mV0qwrWS8ADBHdWtyHrbO8iRm4cyfwDuOEIVVEsrKdMIyjVAIypcGCudc8dfQGWjlI9iesPUxfoCrLKndTqlNQ4OLrIOuc8thTm9lCrivxqqBYTBflChsiZWgNU1V7sFTi7yrLnMpmyq+CbjgN3P8ueTwghhDCnVi+owdRhx+DUiuz9qQlw+i+1XVeKl4uaXCfhw8PD2bNnz1379+zZw/79+80SlBBCCAFw8nocT88/gNGk0b9+aV7oFJzzF+/5XrWicXCBAbPu7PUc3En1KwZY9Qpc3mXewPNqxxRIS1BL/rOG4NmioFaqMjH+Btw8rnc0eZORCmcyk0i1B+obS1GVVVW7f7Z1qmpBvfFZNBRSYqBMY+g5ueCvgLCzy+4Nv3eGZS+MmUyw4UNYNlq1JanSHUavheLlLXdOYTsci0HDx9W2pQcrn1yufr84e0KLCZY9lxBCCGFuriWg+dNqe9MnYDKq7VN/QnoSlKiUOaxaFCW5TsKPHz+eK1eu3LX/2rVrjB8/3ixBCSGEEDdikxk1dx+JaUaaVyzJpwPq5Lza+/phWJeZZO/6MfjXuPs5LZ9XfalNGbBkOMReM1foeRMfphJoAB3etu3EoKMLVGirtgtqS5rzmyAtHjwCoUwTvaMpmmo+BG6+EHctuyLIkjRNrY4JPwnu/jBoXuHpXV5/KDi6QcRpuLjFMudITYAlw2DbF+p+qxdUey/nHM7nEIVDo9FgsINL2+DmScucw5ihEhYAzZ9RiQwhhBCioGk+Hly8IfJM9iDWrFY0dQbb9vs9YRG5TsKfPHmSBg0a3LW/fv36nDxpoT/EhBBCFCnxKemMnLOPsLgUgv3cmT6sIU4OOfyVlZqgqjRN6VCtl0oY3IvBAH2ngX8tNRhn8WOQnmK+/0RubZsMGckqIZzV7sWW/bMlTUF08g91W72PqiQW1ufgrFoBAey1woDWbZPVcmA7R5WA9wy0/DmtxcUre0mzJYbdxoTC7K7qYom9Ezz0A3R6TwYrFkXeZaFaT7Vtqe/bY0sgKkS1vmn2lGXOIYQQQliaixe0fE5tb56k/p7KKpaoM0i/uIRucv2u09nZmZs3b961/8aNGzg4OJglKCGEEEVXutHE+F8OcTosHh93Z2aPaIxXsVwMrFn9KkSdA49S0OebB1cYOLmpSs5ixeH6QfjrBX16nMeEwv7MWSodbbwKPktWEv7KHki+pW8suZWRBmf+Vts1+uobS1HXaBTYOcDlHRBmwdZGZ9dm95fu+QWUa2q5c+mlyVh1e3YV3LpsvuOG7lYDWG8eBzc/GLFSepgWdVnDgI8uNv/P/4w02Pyp2m71PLh4mvf4QgghhDU1HadWft66pIq+NBOUbQYlKugdmdBBrpPwXbp04fXXXyc2Nvb2vpiYGN544w06dy4AlXtCCCFslqZpvL38OFvPRlDM0Z7ZIxpRtoRrzg9wfBkcmg8YoP+POVvCXrw8PDxXLa8/8ot1KnL/bctnqnK/Qhv1ryDwLge+1dUfkuc36h1N7lzcAimxKqFYrpne0RRtnqWgem+1vddCPaYjz8GyJwBNJf2zqu8LG79qqk2UZoJ9M81zzEML4KfekBQJAbXVANayjc1zbFFwlW+lBvKmJ6mvEXM6PB9iLqufz1mzDoQQQoiCyskNWr+otm8cUbdSBV9k5ToJ/8UXX3DlyhWCgoJo37497du3p0KFCoSFhTF58mRLxCiEEKKI+H7LeRbtu4KdAb55pD51ynjn/MW3LsOfz6vt1i9ChdY5f23FdtD5Q7W9+nW4uC3nr82vqPNw+Be13eFt653XHApqS5qTy9VtjT7STsMW3K6q/RWSos177JQ4WPQopMaqqqNu/zPv8W1N1rDbgz9DWlLej2Mywtq34I+nwZim2jaNWqNakQhhMGSvvNg3I3vYXH6lp8CWz9V2m5fAKRcX4YUQQghb1XCkWqUNqq1fzYf0jUfoJtdJ+NKlS3P06FE+++wzatSoQcOGDfn66685duwYZcvKH+ZCCCHy5o/D1/hs9RkA3u1dk041/HP+YmOGqnRNjYMyjaHda7kPoPl4qD0INCP8+rhqEWMNmyepcwZ3hbIFbEBocBd1G7IOTCZ9Y8kpYzqcllY0NqVcM1VlnZEMh+aZ77gmE/z+pBqG5VEKBv0MDk7mO74tqtJNrVJJickeAJZbKXGwcAjs/Ebdb/sqPPyTquQSIkudQarX7a1L5rsQu382xF8HzzKFd8WKEEKIosfRBdq/obZr9JWB40VYnpq4u7m5MXbsWHPHIoQQwkakZhjZezEaTQM3Z3tcnRxwc3KgmJM9bs72FHO0x2DGvuV7L0bz8q9HAXiiVQUeb1E+dwfY8j+4uhecPWHATLDPRQ/5LAYD9JmqEnY3jsCioary05KVeDdPwrGlarvDm5Y7j6WUawZOHqpVxfVDUKah3hH9t0vbVA9jVx8o10LvaARkVtWOgxXPqDYqzZ8xzwqFrZ+p3v/2zjBkPnjk4sJeQWVnD42fgHXvqNZaDYbnbsZE9AVY+AhEnAYHF+j3HdQaYLl4RcHl5Ab1h8Gub1Urqard8ne81ATY/qXabvuKGtwshBBCFBYNhoF/TfCponckQkd5nqR68uRJQkNDSUtLu2N/nz598h2UEEII/UTEpzL6p30cvRp73+cYDODqaE8xJ4d/JOntVZLeyQFX58xbp8zHMp+j7tvj5uxw+zY+JYOx8/aTZjTRrWYAb/SonruAL22HrZnL13t9pXq855VjMRi8AH5sB2FH4c8J0H+G5Qalbv4E0FRFRGBdy5zDkuwdoVJ7OLUCQtYWjCT8ieXqtnovsJeB8jaj9kCVOI4JhbOroVrP/B3v9N9qlQmonwulC8DXprnUHwabJqlBqpd3QvmWOXvdxW2wZJi6SOURCEN+gdINLBurKNgaPwG7pqm5IJEh4BOc92Pt/QESI6B4Baj3qPliFEIIIWyF/F1V5OX63eeFCxd46KGHOHbsGAaDAU3TAG5XRBqNZuoJKIQQwurOhScwYs5ert5KxsPFgTLFXUlOyyAxzUhSqroF0DRITDOSmGYkMsE8565X1puvBtfDzi4XCe+kaPhtLKBBvaEqkZdf3mVh0E/wUx/VziGwLrR4Nv/H/bfrh+DUn4AB2r1h/uNbS3CX7CR8+9f1jubBjBlw+i+1XaOfrqGIf3Espqq2d0yBPT/kLwkffjrz5wKqwr7+ULOEWGC4loA6D6u+8Ht/yFkSfv8cWPkSmDKgVAOVgPcMtHysomArUUG1QDq7Sq286PF53o6THAM7vlbb7d/I22o2IYQQQggbl+sk/HPPPUeFChXYsGEDFSpUYO/evURFRfHiiy/yxRdfWCJGIYQQVrDnQhRj5x0gNjmd8iVdmTOyCRV87uwBbDJppGQYSUozkpRqJDEtg6S0DBJTM/f9K2H/7wR+UlrGv15rJDE1g9qlvZg+rCHFnHLRgkLTYMWzEHcNSlSC7p+Z74NRvhV0+xRWvayqc/1rqYpvc9r4sbqtMwj8qpn32NaUNZz1+kFICAd3P33jeZDLOyApCoqVUJ9jYVsaj4adU+HiFpVIz8v3RXKMGsSalgBBraDrx2YPs0BoMk4l4U/9BbFXwavMvZ9nzIA1b6hkPUCtgdD3W3VRRIicaDpWJeEP/6KGi7t45v4Yu7+DlFjwrSbtj4QQQghRaOU6Cb9r1y42btyIj48PdnZ22NnZ0apVKyZNmsSECRM4dOiQJeIUQghhQSuOXOelJUdIM5qoX86bmcMbUdL97n6sdnaGzLYyDuCuQ6D/dGCOqmq2c4SBs8DZzAE1GaN6wx+eD0tHwphNqurPHEJ3w7l1YLDP2xBZW+IRoFYL3DgC5zZAvUf0juj+Tv6hbqv1lEpLW+RdDqr2UN/Xe3+EXl/m7vUmoxrQHH0evDJXtBTVz3NALQhqqS487Z8NHd+5+znJt+DXkXBhk7rf4W1o/aLl2m+Jwqlie9XfNvIsHFkITcfl7vWJUaqlDagqeHPMgxBCCCGEsEF2uX2B0WjEw8MDAB8fH65fvw5AUFAQZ86cMW90QgghLErTNKZvOc+EhYdIM5roWtOfhWOa3TMBb1PCT8HqzNYnnd6FUvXNfw6DAXpOVr2kk2+pQa1pifk/rqbBhg/Vdv3HoETF/B9Tb8Fd1G3IWn3jeBCTMbP9D9KKxpZlJfCOLFKVsbmx6WN1ccvBBQbPBzcf88dXkDTJbMlzYC6kp9z5WOQ5mNlJJeAd3dTHq81LkoAXuWcwZH+t7f0RTKbcvX7HFLVyJaAOVJfZYkIIIYQovHKdhK9VqxZHjhwBoGnTpnz22Wfs2LGDDz74gIoVC0EiQQghiogMo4m3/zjOp6tOAzCqZQW+G9oQF0cbr0JLT4GloyEjBSp1gGbjLXcux6xknh+En4DlT6sken5c3AKXt4O9E7R52Txx6i0rCX9+g2pvYYtCd0FiOLh4Q8W2ekcj7qd8a/CrAemJcGhBzl93Yjlsm6y2+3wDpepZIrqCpVov8CytWjCd+C17//mNMLMDRJ1TKwZGr4HqvfWLUxR8dYeAk4f6mrqwMeeviw+DvTPUdoe35SKQEEIIIQq1XCfh33rrLUyZFQ4ffPABFy9epHXr1qxcuZKpU6eaPUAhhBDml5SWwbh5B5i/OxSDAd7uVYN3etfAPjdDUfWy7m2VEHfzhX7TwS7Xv8pyx7MUDJ6n2t6cXA7bv8r7sf5ZBd9olBoCWxiUbgjFiqvK5av79I7m3qQVTcFgMKhWUAD7ZuSsqvZm5gUygObPqDkLAuwd1M8ZUMNuNU3dzh+ovlfLNlNttgJq6xunKPicPbIHIO/5Meev2zYZMpKhbNPs+SJCCCGEEIVUrjMXXbt2pX///gBUrlyZ06dPExkZSXh4OB06dDB7gEIIIcwrPD6FIT/uZsPpcJwd7Ph+aANGtzJTr3NLO71SLXcHlYD38LfOecs1gx6Zg183fAAh6/J2nLNr4Np+cCgGrSaaLz692dlD5U5qO2SNvrHci8kEJ1eo7Rp99Y1F/Lc6g8HFC6IvwLn1D35uUrQaxJqeCBXbQaf3rRJigdFwBNg7w43D8MsgWPUKaEaoNxQeXwHuvnpHKAqLxpkXz0LWqu/d/xITCvvnqO0Ob0kVvBBCCCEKvVwl4dPT03FwcOD48eN37C9RogQG+cNJCCFs3rnwBPp/t5OjV2Mp7urIL2Oa0a1WoN5h5Uzcdfgjs/VMs/EQ3Mm65280SiW00FQ7nKjzuXu9yQSbPlLbTcda7wKCtdzuC5/HCxSWdHUvJISBs6dK1Arb5uQG9Yep7b0/3P95xgxYOgpuXQLvIBg4R1V/i2xuPlBrgNoOWQsYoMtH0HcaONj47A9RsPhUzrwYq8Hemf/9/K2fgykdKrRR/4QQQgghCrlcJeEdHR0pV64cRqPRUvEIIYSwkD0Xohjw/U6u3kqmfElXfnu6JQ2DiusdVs6YjPDbWEiOVsPbOr2rTxzdP1PL5lNjYeEjkBqf89ee+gPCjqm+uS2ft1iIuqnUETDAzeMQe03vaO50Yrm6rdpdEo8FReMnAIOqhI88d+/nbHg/c7CoKwz5BVxLWDXEAqPZU6qdlpMHPLoYWjwrVcfCMppkDlY+NB9SE+7/vKjz2TMfOrxt+biEEEIIIWxArtvRvPnmm7zxxhtER0dbIh4hhBAWsOLIdYbN2ktscjr1y3mz7KkWVPBx0zusnNsxBS5tU8m2gbP1S6Q6OMOgn8EjECLPwO9P5qxntckImz5R283HF85koVtJKNNYbZ+zoWp4kwlOZbWi6adrKCIXSlSAKl3V9r4Zdz9+bCnszJxF1HcaBNSyXmwFTWAdeGoHTDiY/TEVwhIqd4ISFdWF6qOL7/+8zZ+qtkjBXaFsE+vFJ4QQQgiho1wn4b/99lu2bt1KqVKlqFq1Kg0aNLjjnxBCCNuhaRrTt5xnwsJDpBlNdK3pz8IxzSjpXoCqga/uh40fq+3un4FPsL7xeATA4Plg7wSn/4JtX/z3a479CpFnwcUbmj9t8RB1Y4staa4dgLhr4OQOlWR2TYHSZKy6PbTgzlUnN47AH8+o7VYvQK3+1o+toPGtCu5+ekchCjs7u+ze8HtnqGHA/xZ+Sv1OBOjwpvViE0IIIYTQWa4bZ/br188CYQghhDC3DKOJ9/48wfzdoQCMalmBN3tWx96uALUhSIlTPZ81I9TsD/Uf0zsipUwj6PklrHgGNn0M/rWgWo97P9eYDpsnqe1Wz6uBk4VVcGfV9/7CZshItY3WLyeXq9sq3cDRRddQRC5VbA8lgyEqBI4sgiZjIDESFg2FjGRVdSutLISwLfWHwsaPIOIUXNwKFdve+fimjwFNDckOrKtLiEIIIYQQesh1Ev7dd3XqwyuEECLHktIyePaXQ2w4HY7BAG/1rMHoVhX0Dit3NA3+nggxl8GrHPT6yrb6GDcYpipy981Q/erHbATfKnc/79B8NTjSzTe7srewCqgD7v6QcBNCd+k/BFXT4GRWK5q++sYics/OTn3PrHoZ9v6oBiP/OgJir6iWFwNmgp293lEKIf7JxQvqDoH9s9T37T+T8NcPwak/AQO0e0O3EIUQQggh9JDrdjRCCCFsW3h8CkN+3M2G0+E4O9jx/dAGBS8BD6ry9divYLBXybZi3npHdLdukyCoJaTFw6JHICX2zsfTU2Dr52q79YvgVID68OeFnR1U7qy2baElzfWDEBsKjm6qSl8UPPUeUQNFI8/Cz/3UbAgndzWItVgBGSwtRFGTdcH5zEqICc3enzUbpc4g8Ktm/biEEEIIIXSU6yS8nZ0d9vb29/0nhBBCP+fCE+j/3U6OXo2luKsjv4xpRrdagXqHlXtR52HlS2q73etQrqm+8dyPvSM8/BN4loaoc7BszJ2DWg/MUf3IPUtDw5H6xWlNWcnukLX6xgFw8g91W6ULOBbTNxaRN84eUO9RtX15u7p9aDr4VdcvJiHEg/lVgwptQTPBvplqX+ge9XvBYA/tXtM3PiGEEEIIHeS6Hc3vv/9+x/309HQOHTrETz/9xPvvv2+2wIQQQuTOngtRjJ13gNjkdMqXdGXOyCZU8CmAldcZabBsNKQlQFAraD1R74gezN0XhiyA2d0gZA1s/gQ6vAVpibBtsnpOm5eLTj/ySu1VkiXyLERfhBI6rcLQtOwkvLSiKdiajIW9P6jttq9C9d76xiOE+G9Nx8HFLXDwZ3UxfeOHan/9x1Q7KSGEEEKIIibXSfi+fe9+Iztw4EBq1qzJ4sWLGT16tFkCE0IIkXMrjlznpSVHSDOaqF/Om5nDG1HS3QaGYubFxg9V31gXb+j/Q8Ho+VyqPvT+Gn4fp9rPBNRW1fyJEVC8vO0MlLUGFy8o11xVLYesg6Y69cEPO6p68TsUg+Au+sQgzMOnMvScDIlR6oKWEML2VekG3uVUO5o/n1OtpOyd5HtYCCGEEEWW2XrCN2vWjA0bNpjrcEIIIXJA0zSmbznPhIWHSDOa6FrTn4VjmhXcBPz5jbBzqtru+y14ldE3ntyoOwSajVfbvz8FO6ao7Xavq7Y1RYkttKQ5sVzdBncu/L34i4LGT0C7V9XcASGE7bOzV9+3AEcXq9tGo8C7rH4xCSGEEELoyCzvZJKTk5k6dSqlS5c2x+GEEELkQIbRxNt/HOfTVacBGNWyAt8NbYiLYwGoHL+XxEj4/Um13WhUwWw50fkDqNAG0hPVkFafqlD7Yb2jsr4qXdXtpW2QlmT982sanFyutqUVjRBC6KP+MLUaCdRtKxtvLyeEEEIIYUG5bkdTvHhxDAbD7fuaphEfH4+rqyvz5883a3BCCCHuLSktg2d/OcSG0+EYDPBWzxqMbqVT721z0DRY/hQk3ATfatDlY70jyht7Bxg4F2a0U0vwO7xVMNrpmJtvNfAqC7FX4NJ2NRjVmm6egOgLYO+cfUFACCGEdbmWUIOV98+CZk+Bh7/eEQkhhBBC6CbXSfivvvrqjiS8nZ0dvr6+NG3alOLFi5s1OCGEEHcLj0/hiZ/2c/RqLM4Odnw9pB7dagXqHVb+7JmuWpfYO8PA2eDkqndEeedWEp7YoAaTlm+ldzT6MBhUG5j9s9Xn1dpJ+KyBrJU7gbOHdc8thBAiW9dPoFoPqNhe70iEEEIIIXSV6yT8iBEjLBCGEEKI/6JpGufCExg5dx9XbyVT3NWRmY83pmFQAb8AeuMorHtHbXf9GPxr6huPObj7qX9FWXCXzCT8GtA+V4l5a/hnK5qa/axzTiGEEPfm6KIuiAohhBBCFHG5TsLPmTMHd3d3Hn74zh63v/76K0lJSTz++ONmC04IIQqqdKOJpDQjSWkZJKaq23/fv3O/kcRUtZ34j+cmpWbez7w1aer45Uu6MmdkEyr4FPCBkxmpsOwJMKZB1R7ZQ9xEwVehDdg7qbY8kSHgW8U65404rVYh2DtJKxohhBBCCCGEEDYh10n4SZMm8cMPP9y138/Pj7Fjx0oSXghRpJy8Hsf8PZfZfymaxH8kzNOMJouds1nFEkx7tAEl3Z0tdg6r2fUtRJ4BNz/o8631qqWF5Tm5qXY85zeqljTWSsJntaKp1AFcvKxzTiGEEEIIIYQQ4gFynYQPDQ2lQoW7h/8FBQURGhpqlqCEEMKWpWYYWX08jHm7LrP/8q0HPtfR3oCrkwNuTva4Ojvg6mSPq5M9bk4O6r6jPa7OWffVbTGnO+/ffk3m6z1cHK30P7WwmFDY8rna7vKR6qUuCpfgLplJ+DXQ4hnrnDMrCV+jr3XOJ4QQQgghhBBC/IdcJ+H9/Pw4evQo5cuXv2P/kSNHKFlSEihCiMLr6q0kftkTyuJ9V4hKTAPAwc5A11oB9K9fGh93Z9yc7TOT7iqZ7uRgp3PUNmz165CRDEEtoc4gvaMRlhDcBVa/Bpd3QUocuHha9nwRZyH8JNg5QtXulj2XEEIIIYQQQgiRQ7lOwj/yyCNMmDABDw8P2rRpA8CWLVt47rnnGDJkiNkDFEIIPZlMGltDIpi/+zIbT4ff7ske4OnCo03LMaRxWfw8XfQNsiAKWQen/wKDPfT4QtrQFFYlK0GJShB9Hi5ugeq9LXu+rCr4iu2gWAEfWCyEEEIIIYQQotDIdRL+ww8/5NKlS3Ts2BEHB/Vyk8nE8OHD+eSTT8weoBBC6OFWYhq/HrjCgj2hXI5Kur2/VWUfHmsWRKfqfjjYS5V7nqSnwMqX1Xazp8C/hr7xCMsK7gJ7vld94a2VhJdWNEIIIYQQQgghbEiuk/BOTk4sXryYjz76iMOHD1OsWDFq165NUFCQJeITQgirOnIlhnm7L/PnkeukZqjhqh4uDjzcsCxDm5Wjkq+7zhEWAjunwq2L4BEI7V7TOxphacGdM5Pw60DTLLfqIeo83DymVldU62mZcwghhBBCCCGEEHmQ6yR8luDgYIKDg80ZixBC6CI5zcifR68zf/dljl6Nvb2/ZilPhjcPonfdUrg65fnHpfinW5dg22S13eUjcPbQNRxhBUEtwdEV4m/AzeMQUNsy58mqgq/QBlxLWOYcQgghhBBCCCFEHuQ6qzRgwACaNGnCq6++esf+zz77jH379vHrr7+aLTghhLCki5GJLNh9mV8PXCU2OR0AJ3s7etUJ5LHmQdQv641BepWb16rXICNFJUprDdA7GmENji5QoS2cXaVa0lgsCb9c3dbsZ5njCyGEEEIIIYQQeZTrJPzWrVt577337trfvXt3Jk+ebI6YhBDCYowmjQ2nbjJv92W2hUTe3l+meDEeaxbEww3LUNLdWccIC7Ezq1Qi1s5BhrEWNcGdM5Pw66D1i+Y/fvRFuHEEDHZQrZf5jy+EEEIIIYQQQuRDrpPwCQkJODk53bXf0dGRuLg4swQlhBDmFhGfypL9V/hlTyjXYpIBlQNuV8WX4c3L06aKL/Z2khS2mPRkWJW5gqr5ePCtqm88wrqCO6vbK3sg+RYUK27e459aoW7LtwI3H/MeWwghhBBCCCGEyKdcJ+Fr167N4sWLeeedd+7Yv2jRImrUqGG2wIQQIr80TWP/5VvM23WZVcdvkG7UACju6sigxmUZ2iSIciVddY4yF2Kvwpzu4FcDBs8He0e9I8q57V9BzGXwLA1tXtE7GmFt3uXAtzpEnIJzG6D2QPMeP6sffI2+5j2uEEIIIYQQQghhBrlOwr/99tv079+f8+fP06FDBwA2bNjAL7/8wtKlS80eoBBC5Ea60cTBy7fYGhLBupM3OXsz4fZj9ct5M6xZED1qB+LiaK9jlHmgafDncxATqv6tfQu6/0/vqHIm6jxsn6K2u34Czu66hiN0EtxZJeFD1pk3CR8TCtcOAAao3sd8xxVCCCGEEEIIIcwk10n43r17s3z5cj755BOWLl1KsWLFqFu3Lhs3bqREiRKWiFEIIR7oclQiW89GsOVsJLvOR5KYZrz9mIujHf3qleaxZkHUKu2lY5T5dGQhnFsPdo5gSoc90yGgDtQfqndkD6Zpqg2NMRUqdZBK5aKsSlfYORXOrQOTCezszHPck5mtaIJagrufeY4phBBCCCGEEEKYUa6T8AA9e/akZ8+eAMTFxbFw4UJeeuklDhw4gNFo/I9XCyFE/iSkZrDzXCRbQyLYFhLJ5aikOx4v6eZEq2Af2gT70qm6P16uBahty73E3YDVr6ntDm9CRipsngR/vQC+1aBMQ33je5DTf6mkq50jdP9chrEWZWWbgrMnJEXB9UPm+7qVVjRCCCGEEEIIIWxcnpLwAFu3bmXWrFksW7aMUqVK0b9/f6ZNm2bO2IQQAgCTSeP49Vi2no1ga0gkBy/fIsOk3X7cwc5Aw6DitKniS9sqvtQI9MSusAxZ1TT4eyKkxEKp+tD8WTDYwY2jcOZvWPwYjN0MHv56R3q3tERY/brabjkBfCrrG4/Ql70jVGqvkuYha82ThI+9Blf3olrR9M7/8YQQQgghhBBCCAvIVRI+LCyMuXPnMmvWLOLi4hg0aBCpqaksX75chrIKIczqZlwKW8+qSvft5yKJTky74/HyJV1pU8WXNsG+NKtUEnfnPF9TtG3Hl8GZlaqSvO80sM/8fz40HWZ2gsgzsGQ4PP4nODjpG+u/bZsMsVfAqyy0fknvaIQtCO6SnYRv/3r+j3fqT3Vbrhl4Bub/eEIIIYQQQgghhAXkOGvVu3dvtm7dSs+ePZkyZQrdunXD3t6e6dOnWzI+IUQRkZJuZN+laLaFRLL1bASnw+LveNzd2YEWlUreTryXK+mqU6RWlBABK19W221eBv+a2Y+5eMKQX2BGB7iyG1a/Cr2+0ifOe4kMgR1T1Xa3T8GpCHy+xH+r3EndXj8ICeH57+F+crm6lVY0QgghhBBCCCFsWI6T8KtWrWLChAk89dRTBAcHWzImIUQRoGka58IT2JJZ7b7nYhQp6abbjxsMUKe0l0q6V/GlXllvHO3NNMixoFj1MiRHg39taD3x7sd9KsOAGfDLYNg/GwLrQsMRVg/zLpqmLh6Y0lXlc7WeekckbIVHgPo6vXEEzm2Aeo/k/VhxNyB0t9qWVjRCCCGEEEIIIWxYjpPw27dvZ9asWTRs2JDq1aszbNgwhgwZYsnYhBCFjMmkseVsBKuPh7E1JIIbsSl3PO7v6UybYJV0b1nZhxJuNtZexZpOroATv4PBHvp+q/pp30uVrtDhLdj4Ifz9EvhWh3JNrRvrv51cDhc2gb0zdP+fDGMVdwruopLwIWvzl4Q//RegQZnG4FXGbOEJIYQQQgghhBDmluMkfLNmzWjWrBlTpkxh8eLFzJ49m4kTJ2IymVi3bh1ly5bFw8PDkrEKIQqo1Awjfxy+zo9bL3AuPOH2fmcHO5pUKEHbKr60Dvalir87BknYQlI0/P2i2m71ApSq9+Dnt34Rwo6qXttLhsHYLfr1x05NgNVvqO1Wz0OJivrEIWxXcBfY+jmc3wDGjOw5B7l18g91K61ohBBCCCGEEELYOIOmaVpeX3zmzBlmzZrFvHnziImJoXPnzqxYscKc8ZldXFwcXl5exMbG4unpqXc4QhRqcSnpLNwTyuwdF7kZlwqAh7MDAxqWoX01P5pWKIGLo73OUdqg38bC0cXgWw3GbQUH5/9+TWoCzOoM4SehdCMYuTJnrzO3de/Ajq/BOwjG7wHHYtaPQdg2kxE+r6xaLY1cBUEtcn+MhHCYXBU0Ezx/DLzLmT9OIYQQQgghhBDiAXKTZ85Xg+WqVavy2WefcfXqVRYuXJjn40ybNo3y5cvj4uJC06ZN2bt3b45et2jRIgwGA/369cvzuYUQ5nczLoVJq07RctJGJq06zc24VPw9nXm9ezV2vN6B9/rUpG0VX0nA38uZ1SoBb7CDvtNynkh3dochC8DFG67th78nqt7s1hR+GnZNU9vdP5MEvLg3O/vsAa0ha/N2jFN/qgR8qQaSgBdCCCGEEEIIYfPMMuXQ3t6efv365akKfvHixUycOJF3332XgwcPUrduXbp27Up4ePgDX3fp0iVeeuklWrdundewhRBmdi48nleWHqHV/zbyw5YLxKdmEOznzucD67DtlQ6Ma1sJT5f79DYXkBwDfz2vtpuPhzKNcvf6EhVh4GyVwD80H/bNNHeE96dpsPIlMGVA1R5QtZv1zi0KnuAu6jZkXd5eL61ohBBCCCGEEEIUIGZJwufHl19+yZgxYxg5ciQ1atRg+vTpuLq6Mnv27Pu+xmg0MnToUN5//30qVpR+w0Lobf+laJ74aT+dvtzKkv1XSTdqNClfglmPN2LN8214uFFZnBx0/3Fj+9a+BfE3oEQlaP9m3o5RuSN0el9tr34NLu0wX3wPcnwZXNoGDi7QbZJ1zikKrsodAQPcPA6x13L32sRIuLRdbUsSXgghhBBCCCFEAaBrViwtLY0DBw7QqVOn2/vs7Ozo1KkTu3btuu/rPvjgA/z8/Bg9erQ1whRC3IPJpLHmRBj9v9vBwOm7WH/qJgYDdK3pz7KnWrDkyeZ0rO6PnZ0MWs2Rcxvg0DzAoNrQ5KeVS4tnodZAVZW+ZDjEXjVbmPeUEgdrMi8atH4Ripe37PlEwedaAso0VtvnclkNf/pv0IwQWBdKVDB/bEIIIYQQQgghhJk56HnyyMhIjEYj/v7+d+z39/fn9OnT93zN9u3bmTVrFocPH87ROVJTU0lNTb19Py4uLs/xCiEgJd3I8kPX+HHbBS5EJALg5GDHgAZlGNO6AhV93XWOsABKjYc/n1PbTcZCUPP8Hc9ggD7fQOQZCDsGi4bCqNWW69G+5X+QEKba4bSYYJlziMInuAtc3ata0jQckfPXnVyubqUKXgghhBBCCCFEAaFrEj634uPjGTZsGDNmzMDHxydHr5k0aRLvv/++hSMTovCLTU5nwZ7LzNlxiYh4dWHL08WBYc2DeLxFefw8XHSOsABb/x7EXgHvIOj0rnmO6eQKgxfAj+3gxmGV5H/oB5WgN6ebJ2D392q7++fgKF8HIoeCO8Omj+DCZshIzdkQ4qRouLBFbVeXJLwQQgghhBBCiIJB1yS8j48P9vb23Lx58479N2/eJCAg4K7nnz9/nkuXLtG7d+/b+0wmEwAODg6cOXOGSpUq3fGa119/nYkTJ96+HxcXR9myZc353xCiULsek8zs7RdZuDeUxDQjAIFeLoxuVYEhTcrh7lygruXZnovbsgeo9vkGnNzMd+ziQfDwXJj3EBxdDIH1oPnT5ju+psHfL6nWINV6QXCn/36NEFkC6oC7PyTchNBdULHdf7/mzEr19eZfC3wqWzxEIYQQQgghhBDCHHTNnjk5OdGwYUM2bNhAv379AJVU37BhA88888xdz69WrRrHjh27Y99bb71FfHw8X3/99T2T687Ozjg756C6TghxhzNh8fyw9TwrDl8nw6QBUNXfg3FtK9K7bikc7WXQar6lJcKKzJ91DUdCxbbmP0fFttD1YzWkde1b4F8jZ8nOnDi6GEJ3gkMx6PapeY4pig47O1UNf2g+nF2bs6/Lk3+o2xr9LBmZEEIIIYQQQghhVrqXsE6cOJHHH3+cRo0a0aRJE6ZMmUJiYiIjR44EYPjw4ZQuXZpJkybh4uJCrVq17ni9t7c3wF37hRC5p2kaey5G88OW82w6E3F7f7OKJRjXthLtqvhiMHc7k6Js40dw6xJ4loHOH1juPE2fhBtH4MhC+HUkjN2U/+GpyTEqqQ/Q9mXwlhVGIg+Cu6gkfMha6PbJg5+bHAPnN6lt6QcvhBBCCCGEEKIA0T0JP3jwYCIiInjnnXcICwujXr16rF69+vaw1tDQUOzspOJWCEsymTTWnAhj+tYLHLkSA4CdAbrXCmRsm4rULeuta3yFUuie7F7qvb8GF0/LnctggF5fQcRpuH4IFj0Go9eqvvF5tekTSIyAksHQ/FnzxSqKlortwM4BokIg+oIa7ns/Z1aBKR18q4NvFauFKIQQQgghhBBC5JdB0zRN7yCsKS4uDi8vL2JjY/H0tGDSS4gCIuRmPK8sO8qh0BgAnB3seLhRGZ5oVZHyPmbsTy6ypSfD9NYq8VhvKPT7zjrnjb2qBrUmRkCtATBgVt4Gtd44Cj+2Bc0Ew36HSh3MHqooQub2gkvb1GDfpmPv/7xfhsDZVdD2NWj/uvXiE0IIIYQQQggh7iE3eWbdK+GFEPpIyzDx3eZzTNt0jnSjhruzA6Nalmd4i/L4uMscBYva/KlKwLsHqH7t1uJVBgb9DD/1huPLILAutHwud8cwmWDlSyoBX6OfJOBF/gV3Vkn4kLX3T8KnxMH5DWq7Zj+rhSaEEEIIIYQQQpiD9HkRogg6GHqLXt9sY8r6ENKNGh2r+bFuYhsmdqkqCXhLu3YAdk5V272+gmLFrXv+oBbZQ1TXvwfn1ufu9Ud+gSt7wNENuv5HD28hciK4i7q9tA3Sku79nLOrwZgGPlXAt5r1YhNCCCGEEEIIIcxAkvBCFCGJqRm8/+cJBny/k7M3Eyjp5sTUR+oz8/FGBHoV0zu8wi8jFZaPV1XktQZCtR76xNH4Cag/TMWxdBREnc/Z65Jvwbp31Ha7V8GrtOViFEWHbzXwKgsZKXBp+72fc/IPdVujb95aKAkhhBBCCCGEEDqSJLwQRcTWsxF0+Worc3ZcQtOgf/3SrJ/Ylj51S2EojEktTVNV5ylxekeSbdtkiDgFrj7Q/TP94jAYoOdkKNMYUmJh0VBITfjv1234EJKiVNK02dOWj1MUDQaDakkDqiXNv6XGQ8g6tV2jr/XiEkIIIYQQQgghzESS8EIUcrcS05i45DDDZ+/lWkwypb2LMXdkY74cXI/ibk56h2cZ6cmwbDTM6ABT68GeH8GYrm9MN46qJDxAzy/AraS+8Tg4w6B54O6vLgwsf1JduLif64dg/2y13eNzsHe0TpyiaMhqSROy5u6vw5C1YEyFEhXBv5b1YxNCCCGEEEIIIfJJkvBCFFKapvHnket0/moLvx28hsEAI1qUZ+0LbWhX1U/v8Cwn7jrM6a4Gj4Kq3F71MkxrCqf+fHCi2VKM6fDHeDBlQPU+UPMh68dwL56BMHg+2Dmqj822L+79PJMJ/n4R0FQbnQptrBqmKAIqtAF7Z4gJhcizdz52uxVNP2lFI4QQQgghhBCiQJIkvBCF0I3YZMb8vJ9nFx4iMiGNYD93lj7Zgvf61MTN2UHv8Czn2gH4sb2q2i5WAob/odquuPpA9HlY/JhK0F/db924dkyBsKNqCGuP+yS69VK2ifoYAWz8GM6svvs5h35WH1snD+jykXXjE0WDkxuUb6W2/9mSJi0Rzmbel1Y0QgghhBBCCCEKKEnCC1GImEwaC/ZcpsuXW1l/KhxHewPPdQzmrwmtaBhUXO/wLOvYUpjTAxLCwLc6jNkIFdupIaQTDkHrl8ChGITugpkd4deREH3R8nGFn4Itmf3fu/0PPPwtf87cavg4NBoNaPDbGIgMyX4sKRrWv6e227+uqueFsITbLWn+kYQPWQcZyeAdBIF19YlLCCGEEEIIIYTIJ0nCC1FIXIhIYMiM3bz5+3HiUzOoV9abvye05oXOVXB2sNc7PMsxmWDjR6oHfEYKVOkGo9dCiQrZz3HxhI5vw7MHoN5QwAAnfoNvG8PqN1Si2RKMGaoNjTFNxVVnkGXOYw7dPoVyzSE1DhY+oga2gkrAJ98Cv5rQZJyuIYpCLms46+Vd2QOVb7ei6SutaIQQQgghhBBCFFiShBeigEs3mvhu8zm6fb2NvRejKeZozzu9arDsqRZU8ffQOzzLSk2AJcNg6+fqfsvnYMgvKul+L16lod938OQ2qNgeTOmwe5oa3rrzG8hINW98u79TbVycvaDXV7adRHRwgod/Ao9SEBUCv42DK/vg4M/q8Z5fgH0hbmUk9FeyEpSopL4vL25RA5bPrlGP1eyna2hCCCGEEEIIIUR+SBJeiALs+LVY+n67g89WnyEtw0TrYB/WvtCGUa0qYG9nwwlfc4i5ArO7wem/wN4J+k2Hzh+AXQ6q/gNqw/Dl8Ngy8Kuhqr7XvqUq448tNc/w1shzsOljtd31Y/Aslf9jWpqHPwyZrwZknl0F8x4CNKgzBIJa6B2dKAr+2ZLm3HpITwSvslCqgb5xCSGEEEIIIYQQ+SBJeCEKoOQ0I5NWnaLvtB2cvBGHt6sjkx+uy8+jmlC2hKve4Vle6B6Y0R5uHgM3X3j8L6j3SO6PU7kTPLkd+nwLHoEQc1m1tZnZES7vzHt8JpNqQ5ORApU6QP3H8n4sayvdUFXtA6TFg7MndPlQ35hE0ZHVkiZkHZxYrralFY0QQgghhBBCiAJOegsIUcDsPB/J678d43JUEgC96gTybu+a+Ho46xyZlRz+Bf58TvVZ968NjywE77J5P56dPTQYBrX6w65psH2KaiEzpztU6wWd3gOf4Nwdc98MuLIbnNyh99cFL4FYfyhEnFIterp8BO5+ekckioqgluDoCvE34MTval+NvvrGJIQQQgghhBBC5JNB08zRd6HgiIuLw8vLi9jYWDw979M3WggbFJuczqerTrFw7xUAAjxd+LBfLTrX8Nc5MisxGdWQ0J1T1f1qveChH8DZ3bznib8JmyfBwZ9AM4HBHhqNgnavgZvPf78++iJ83wLSk6DnZGj8hHnjs6bkW1CsuN5RiKJm4SNwZqXa9iwNzx8HO1m4J4QQQgghhBDCtuQmzyzvaoUoANacCKPzl1tuJ+CHNi3H2oltik4CPiVOJeayEvBtXoFB88yfgAfVF733FHhqF1TpBppRVbZ/XQ+2TVbDIu9H02DFsyoBX741NBxl/visSRLwQg9ZLWkAqveRBLwQQgghhBBCiAJP2tEIYcPC41N4b8UJVh4LA6CijxuT+temacWSOkdmRdEXVQI+4hQ4uEDfaVB7oOXP61cNHl0MF7eqoa03jsCGD2DfLOjwNtQZfHdy8MAcuLQNHIpBn6mSPBQiLyr/IwkvrWiEEEIIIYQQQhQC0o5GCBsTn5LOpjMRrD5+g02nI0hON2JvZ2Bcm4pM6BiMi6O93iFaz6XtsHgYJEeDewA88osaHGptJhMcX6qS8LFqNQIBtaHzh1CpvbofcwW+a66GmXadBM2ftn6cQhQWmyapdkjdPpWLWUIIIYQQQgghbFJu8syShBfCBtxKTGPdqZusOR7GtpBI0oym24/VLu3FpwNqU7OUl44R6uDAXPj7RTBlQKn6MOQX8Cylb0zpKbBnumpLkxqn9lXuDJ0/UNXy5zdA2aYwcpUa+CqEEEIIIYQQQgghCiVJwj+AJOGFrQiPT2HNCZV433UhCqMp+1uxoo8b3WoF0K1WALVLe2EwGHSM1MqMGbD2TZXsBqjZX7WgcXLVN65/SoyCrZ/BvpnqIkEWe2d4cjv4VtEvNiGEEEIIIYQQQghhcbnJM0tPeCGs6Ep0EmtOhLH6eBgHQm/xz0tg1QM96VYzgO61Awj2cy9aifcsybfg15FwYZO63/4taPMS2NrHwq0kdP8fNBkL69+DUyvU/vZvSAJeCCGEEEIIIYQQQtxBkvBCWNj5iARWH1eJ92PXYu94rF5Zb7rXCqBrzQDK+7jpFKGNiDwHCwdD1DlwdIWHfoAaffSO6sFKVoLB8+DqfjVAttYAvSMSQgghhBBCCCGEEDZGkvBCmJmmaZy8Ecea42GsOh5GSHjC7cfsDNC4fAm61wqgS80ASnkX0zFSG3J+E/z6OKTEgmcZeGQhBNbRO6qcK9NI/RNCCCGEEEIIIYQQ4l8kCS+EGZhMGoevxtxOvIdGJ91+zNHeQItKPnSrFUDnGv74uDvrGKmN0TTVV33Vq6AZoUwTGLIA3P30jkwIIYQQQgghhBBCCLOQJLwQeWQ0aey9GM3q4zdYc+ImYXEptx9zdrCjbRVfutcOoEM1f7yKOeoYqY0ypsOqV2D/bHW/7iPQ+2twkIsUQgghhBBCCCGEEKLwkCS8ELkUcjOeWdsvsu7kTaIS027vd3d2oEM1P7rVCqBdVV9cneTb676SomHJcLi0DTBA5/ehxQTbG8AqhBBCCCGEEEIIIUQ+SZZQiFwIuRnPwOm7iE1OB8Db1ZHO1f3pXjuAFpV8cHG01znCAiD8tBrAeusSOLnDgFlQtZveUQkhhBBCCCGEEEIIYRGShBcih67HJDN89l5ik9OpW9abV7pWpWmFEjjY2+kdWsGREAFze0JSJHgHwSOLwL+G3lEJIYQQQgghhBBCCGExkoQXIgdiktIYPnsvN2JTqOznztwRjSnu5qR3WAXPqpdVAt6vBjz+F7iV1DsiIYQQQgghhBBCCCEsSkp4hfgPyWlGRv+0n3PhCQR4uvDTqCaSgM+LkyvgxO9gsIeHpksCXgghhBBCCCGEEEIUCZKEF+IBMowmnvnlIAcu38LTxYGfRzehtHcxvcMqeJKi4e8X1XarFyCwrr7xCCGEEEIIIYQQQghhJZKEF+I+NE3jjd+PseF0OM4Odswe0Zgq/h56h1UwrX4NEsPBtxq0fUXvaIQQQgghhBBCCCGEsBpJwgtxH1+sPcOS/VexM8C3jzagUfkSeodUMJ1ZDUcXg8EO+k4DB2e9IxJCCCGEEEIIIYQQwmokCS/EPczdcZFpm84D8MlDtelcw1/niAqo5Bj463m13Xw8lGmkZzRCCCGEEEIIIYQQQlidJOGF+Jc/j1zn/b9OAvBSlyoMaVJO54gKsLVvQfwNKFEJ2r+pdzRCCCGEEEIIIYQQQlidJOGF+IftIZFMXHIYTYPHmwcxvn1lvUMquM5tgEPzAINqQ+MoA22FEEIIIYQQQgghRNEjSXghMh2/Fsu4eftJN2r0rB3IO71rYjAY9A6rYEqNhz+fU9tNx0FQc33jEUIIIYQQQgghhBBCJ5KEFwK4HJXIiDl7SUwz0qJSSb4cXBd7O0nA59n69yD2CngHQcd39I5GCCGEEEIIIYQQQgjdSBJeFHkR8akMm7WXyIQ0agR68sOwhjg72OsdVsF1cRvsm6m2+3wDTm76xiOEEEIIIYQQQgghhI4kCS+KtPiUdEbM2UtodBJlSxRj7qjGeLg46h1WwZWWCCueUdsNR0LFtvrGI4QQQgghhBBCCCGEziQJL4qs1AwjT84/wInrcZR0c2LeqKb4ebjoHVbBtvEjuHUJPMtA5w/0jkYIIYQQQgghhBBCCN1JEl4USSaTxsQlR9hxLgo3J3vmjmxCeR9pm5IvoXtg9/dqu/fX4OKpbzxCCCGEEEIIIYQQQtgAScKLIkfTND746yR/H72Bo72B6cMaUruMl95hFWzpyfDHeECDekMhuJPeEQkhhBBCCCGEEEIIYRMkCS+KnO82n2fuzksATB5Uj9bBvvoGVBhs/hSiQsA9ALp+rHc0QgghhBBCCCGEEELYDEnCiyJlyb4rfL7mDADv9KpBn7qldI6oELh2AHZOVdu9voJixfWNRwghhBBCCCGEEEIIGyJJeFFkrD95k9d/PwbAU+0qMapVBZ0jKgQyUmH5eNBMUPthqNZD74iEEEIIIYQQQgghhLApkoQXRcKBy9GM/+UgRpPGwIZleKVrVb1DKhy2fgERp8DNF7r9T+9ohBBCCCGEEEIIIYSwOZKEF4VeyM14Rs3dT2qGif+3d+fRVZX3/sffJwkZCCTMYTAIXhRQGWQKKY4YRbRWnIqUW9DLvVxb4IrU68BPGW61cNEqtSBWq2KrFNQu0LoERATqgAxBLFihOIKFENASIEgCOef3x9ZwU5BBONkheb/WOsuzn/2cc74nsp6V9dlPvrt3uyZMuKYDkUgk7LJOflv+Am8+GDy//AFIbxhuPZIkSZIkSVIVZAivam3zjq8Y9ORyir7axzkt6zH1R12oleg/++NWtg9e/ClE90P7H8BZ/cKuSJIkSZIkSaqSTCNVbe3YU8qgJ5ezpWgvbZrU4cnB3UlLTgy7rOrhrclQsCa4CesVvwy7GkmSJEmSJKnKMoRXtfRVaRlDnl7Jh4W7aZqRytP/1oP66clhl1U9FH4ASyYFz/tOgjpNwq1HkiRJkiRJqsIM4VXt7C+LMnzGKvI/+wcZqUn8bkgPWtRLC7us6qFsP8z5KZSVwhmXQYfrw65IkiRJkiRJqtIM4VWtxGIxRs9ew8J1haQkJfDEjd05I6tu2GVVH+88AptXQUomfP8h8Aa3kiRJkiRJ0mEZwqtaeeDV9Ty38nMSIjDlR13o3qpB2CVVH9s/hEX3Bc/73AcZzcOtR5IkSZIkSToJJIVdgHQi7CuL8vulnzF10UcA/OLqDlxyZlbIVVUj0Si8OAz274V/6Q3n/GvYFUmSJEmSJEknBUN4VaqyaIw9pfv5qrSM4tIyikv2s6e0jD2lwX+/OS7+Zk5JcK64tIyvSvf/03Ewb09JGaVl0fLPuO3SM7ihR8sQv2U1tPwx2PQOJNeBKx+2DY0kSZIkSZJ0lAzhFTe7S/Yz7qX3WfbJF+wpCQLzvfuiR37hd5SYEGHo+acx7KI2cfuMGunLT2Dh+OD5Jf8D9bLDrUeSJEmSJEk6iRjCKy42fbmHf396Jeu37jrk+YQIpCcnUTslkfTkJNKSEysc105ODB4pSaQnJ1I7OYn0lETSkise1/567jevrZXobQ5OqGgUXhoB+/ZAq/Og601hVyRJkiRJkiSdVAzhdcIt+/gLbn4mn3/s2UeTuilMuKYDp9SvXR6sp6ckkZKUQMSWJlXfqunw6RtQqzb84GFI8CKHJEmSJEmSdCwM4XVCzVy+kbvnrGV/NEaHFpk8PqgbTTNTwy7rxCrbB3uLIL1R2JXE145N8OqY4PnFY6DBaeHWI0mSJEmSJJ2EDOF1Quwvi3LfKx/w1FufAnBFx2Y8cF0n0pITwy3sRIpGYe0LsPB/oOhz6HULXDQaklLCruzEi8XgT7dA6S7IzoEeQ8OuSJIkSZIkSTopGcLruBV9tY/hM1bxxobtAIy65AxG9G5TvdrNfPIGvHo3bFl9YOytyfDha3DNY5B1VliVxcfqZ+GjhZCYAldNhYRqdDFFkiRJkiRJqkSG8Doun2wvZsjTK/h4WzGptRJ48IedubxDs7DLOnG2rYcFY+Bv84Lj5Lpw7sigNcsrt8HWtfDYhdD7bsgdXj3C6p1bYN7o4PlFo6HR6eHWI0mSJEmSJJ3EDOH1nb25YTvDZqyi6Kt9NMtM5fFB3Ti7ReaBCbEYbFgAJTuhbV9ITg+v2GO1uxAW/QJW/Q5iZRBJhG7/BhfcAXUaB3NanQsv/Rf8bW4Q1K+fB1dPg/qtQi39uMRi8PKtUFIEzbsEFxYkSZIkSZIkfWcJYRcAMHXqVFq1akVqaio5OTksX778W+c+/vjjnHfeedSvX5/69euTl5d32PmKj98t/ZTBTy2n6Kt9dM6ux4vDe1UM4D99Cx7vDTOuhz8OgV+2h7l3wvYN4RV9NEqLYckkePgcyH8qCODbXgHDlsEVDxwI4AHqNIEBf4Af/BqS68DGt2Far6+D+1h43+F4rHkhuKiQUCtoQ5PodTpJkiRJkiTpeIQews+aNYtRo0YxduxYVq1aRadOnejTpw+FhYWHnL948WIGDBjAokWLWLp0KdnZ2Vx66aX8/e9/r+TKa6Z9ZVHunrOGMS++T1k0xtXntGDm0J40qZsaTNi+AWYOhOmXw+ZVUCsd6p0a7KxeNg2mdIOnfwB/fQnK9of7Zf6vaBm8+wz8uissug9Kdwc7wW98BQbM+PaWLJEIdBkEN78JLXOD1700Av4wINhNfzLZXQhz/zt4fsEdkHVmuPVIkiRJkiRJ1UAkFgt3y25OTg7du3dnypQpAESjUbKzsxkxYgR33nnnEV9fVlZG/fr1mTJlCoMGDTri/J07d5KZmUlRUREZGRnHXX9N8o/iUn767CqWfvwFkQjc3qcdN19wWnAD1t3bYMlEWPn17vFIAnQZDBfeBemN4ePXYcUTQW/1WDR4w7rNoeuN0HUw1G0a3hf78DV4dQwUvh8c12sJF4+Fs66BhGO4ThUtg7d/HYT4ZaVQuxFc+Sto//341H2iPTcI/voiNO0A/7EIEmuFXZEkSZIkSZJUJR1Lzhxqr4nS0lLy8/O56667yscSEhLIy8tj6dKlR/Uee/bsYd++fTRo0OCQ50tKSigpKSk/3rlz5/EVXUN9WLiLIU+v5LMv9pCenMjkG87hkjOzoHQPvPMIvDkZSncFk8+4DPLGQ5N2B96gTV7w2LER8qdD/tOwazMs/gX8eRK0+z70+A84tVewu7wyFKyFBffAR68Hx6mZcP5/Q4+hkJRy7O+XkBjctLVNHsz+z+CmrbMGQqcfQd+JwftXRTs2wbJHgwA+IenrNjQG8JIkSZIkSdKJEGoIv337dsrKysjKyqownpWVxbp1647qPe644w6aN29OXl7eIc9PmDCB8ePHH3etNdmi9YX814x32VWyn1Pqp/Hbwd1o16QOrJ4Br98LO79uBdSsM1x6L7Q+79vfrF5LuHhM0O7kgz/Bit/CxqXw1znBo3E76P7v0LE/pMbpLxV2bobX74PVzwKxoP95j6Fw/m1Q+9AXc45J07PhP14Pbuz61q/gvRnw6RvQb9rhfzaVKRqFjxd9/dcJcw/8dcJ5P4NmncKtTZIkSZIkSapGQm1Hs3nzZlq0aMHbb79Nbm5u+fjtt9/OkiVLWLZs2WFfP3HiRCZNmsTixYvp2LHjIeccaid8dna27WiOQiwW44k3P+EXr3xANAY9WjVg2r92oeHWt4Md5AVrgomZ2UGwfvZ1x9a+5RsFa4Iw+C/Pwb7iYKxWOnTqHwTyWWedmC9UsivYsb90Kuz/Khg76+qg9gannZjP+GefLQ12xe/4DIhA7jDofQ/USo3P5x3JV/8ILp6seAK+/OjAeOvzg591+x9U3l8iSJIkSZIkSSepk6YdTaNGjUhMTGTr1q0Vxrdu3UrTpofvEf7AAw8wceJEXnvttW8N4AFSUlJISfkOrUVquJL9ZdwzZy3PrfwcgP7dsrn3ewnUmjMQPlwQTErJCHZO59x8fKFy0w5w5WS4ZDy8NyvYHb99Pax8Mni0zD0QECclH/v7l+2HVdNh8UQo3haMZfcMdu1nd//udR+NU3PhJ2/B/P8Hq56GpVOCHvTXPFa5O843vxv8XNf88cAFiJQM6DQAug+Bxm0rrxZJkiRJkiSpBqkSN2bt0aMHv/71r4HgxqwtW7Zk+PDh33pj1kmTJnHfffcxf/58evbseUyf541Zj2z77hJ+8kw+Kz79BwkRuC+vETfs/j2R1c8GbUsSkoJQ/PzbIb3hiS8gFoNP3wxC43UvQ3R/MJ7eGLoMgq43Qb3so3uf9XPhtbGw/W/BWIN/CcL+dt+v/B3f6+fBSyOguDD4GV54J/S6FRLjdC1s31fw/uzg5/j3/APjWWcH//86XA8pdeLz2ZIkSZIkSVI1diw5c+gh/KxZsxg8eDC/+c1v6NGjB5MnT+a5555j3bp1ZGVlMWjQIFq0aMGECRMA+N///V/GjBnDjBkz6NWrV/n71KlThzp1jhwoGsIf3gdbdvLvT6/k7zu+oknKfp7rsIJW65+AfXuCCe1/AHnjoOG/VE5BO7fAqt9B/lOwa0swFkkIbv7afQic1vvQLXD+vgpevQc+ezM4TmsAF94F3W4K96ajxdvh5ZFBP3yAU3rA1Y+e2J/nlx8Hf0Hw7jNB+xmAxGQ4s18Qvmf3sOWMJEmSJEmSdBxOqhAeYMqUKdx///0UFBTQuXNnHn74YXJycgC48MILadWqFdOnTwegVatWfPbZZwe9x9ixYxk3btwRP8sQ/tu9+n4BI2etpqS0lJszlnJr0gsk7SkMTp7SHS69D1rmhFNc2b5gV/uK38InSw6MNzgNug2Bzj8Kbqr6j8/g9Z/DmueD80mp0PMncO6tkJoZTu3/LBaD92bC3NuhZCfUqh20xun2b989HI+WwYZXg5/Ph68dGM9sGVx4OOfHUKfxialfkiRJkiRJquFOuhC+MhnCHywWi/HI4o944NV1XBhZzc9rz+KU/RuDk/VbQd54OPOqqrN7etvfYOUTwQ1GS3YGY0mp0PoC+HgRlJUGYx1vgN53H13rmjDs2ARzfgKfvhEct7kErpoCdQ9/P4QKdm+Dd38PK5+Coo0HxtvkBbveT78UEhJPbN2SJEmSJElSDWcIfxiG8BXt3VfGnX/8Cxvee4vRSTPolfh+cCKtPlxwR7DL/LvcDLUylBYHO96X/xa2rjkw3vp8uOTn0LxzaKUdtWgUlj0Kr42DspLg537Fg3D2Nd/+mlgMNi0Pdr3/dc6Biw5p9eGcfw165ldWuyBJkiRJkiSpBjKEPwxD+AMKd+5l9PS59N32W65N/Lp3emIy5NwM5/0M0uqFWt9Ri8Xg8xWwYUHQ77xNXtXZtX+0CtfB7KGw5b3guMP1cPn9QbD+jZLdwUWHFU9UvOjQomuw6/2sq6FWWuXWLUmSJEmSJNVAhvCHYQgf+Osnm1j5zBj67/8TKZF9wWCH66H3PVD/1HCLq6n2l8KfJ8Ebv4RYFOo2h36PQEbzIHh/7w8V2++cfV1wc9oWXcKtW5IkSZIkSaphDOEPwxAe1sx5kBbvPkiDyC4AvmqeS9oVvzDMrSo2rYDZ/wlffnTwuX++Ea0kSZIkSZKkSncsOXNSJdWkKiIWi7HjoxV0iOxic1I2mVdNIP3s75987Vuqs+zucPMbsGBM0Pc9kgBn9A12vZ92ESQkhF2hJEmSJEmSpKPkTvgaqPiLz8mf/yzfu/5WkmpV0ZuuKrD1r5CaCZktwq5EkiRJkiRJ0tdsR3MYhvCSJEmSJEmSpONxLDmzfS0kSZIkSZIkSYoTQ3hJkiRJkiRJkuLEEF6SJEmSJEmSpDgxhJckSZIkSZIkKU4M4SVJkiRJkiRJihNDeEmSJEmSJEmS4sQQXpIkSZIkSZKkODGElyRJkiRJkiQpTgzhJUmSJEmSJEmKE0N4SZIkSZIkSZLixBBekiRJkiRJkqQ4MYSXJEmSJEmSJClODOElSZIkSZIkSYoTQ3hJkiRJkiRJkuLEEF6SJEmSJEmSpDgxhJckSZIkSZIkKU4M4SVJkiRJkiRJihNDeEmSJEmSJEmS4sQQXpIkSZIkSZKkODGElyRJkiRJkiQpTgzhJUmSJEmSJEmKE0N4SZIkSZIkSZLixBBekiRJkiRJkqQ4MYSXJEmSJEmSJClODOElSZIkSZIkSYoTQ3hJkiRJkiRJkuLEEF6SJEmSJEmSpDgxhJckSZIkSZIkKU4M4SVJkiRJkiRJihNDeEmSJEmSJEmS4sQQXpIkSZIkSZKkODGElyRJkiRJkiQpTgzhJUmSJEmSJEmKE0N4SZIkSZIkSZLixBBekiRJkiRJkqQ4MYSXJEmSJEmSJClODOElSZIkSZIkSYoTQ3hJkiRJkiRJkuLEEF6SJEmSJEmSpDgxhJckSZIkSZIkKU4M4SVJkiRJkiRJihNDeEmSJEmSJEmS4sQQXpIkSZIkSZKkODGElyRJkiRJkiQpTgzhJUmSJEmSJEmKE0N4SZIkSZIkSZLixBBekiRJkiRJkqQ4MYSXJEmSJEmSJClODOElSZIkSZIkSYoTQ3hJkiRJkiRJkuLEEF6SJEmSJEmSpDgxhJckSZIkSZIkKU4M4SVJkiRJkiRJihNDeEmSJEmSJEmS4sQQXpIkSZIkSZKkOKkSIfzUqVNp1aoVqamp5OTksHz58sPOf/7552nXrh2pqal06NCBV155pZIqlSRJkiRJkiTp6IUews+aNYtRo0YxduxYVq1aRadOnejTpw+FhYWHnP/2228zYMAAhgwZwrvvvku/fv3o168fa9eureTKJUmSJEmSJEk6vEgsFouFWUBOTg7du3dnypQpAESjUbKzsxkxYgR33nnnQfP79+9PcXExL7/8cvlYz5496dy5M48++ugRP2/nzp1kZmZSVFRERkbGifsikiRJkiRJkqQa4Vhy5lB3wpeWlpKfn09eXl75WEJCAnl5eSxduvSQr1m6dGmF+QB9+vT51vmSJEmSJEmSJIUlKcwP3759O2VlZWRlZVUYz8rKYt26dYd8TUFBwSHnFxQUHHJ+SUkJJSUl5cdFRUVAcKVCkiRJkiRJkqRj9U2+fDSNZkIN4SvDhAkTGD9+/EHj2dnZIVQjSZIkSZIkSaoudu3aRWZm5mHnhBrCN2rUiMTERLZu3VphfOvWrTRt2vSQr2natOkxzb/rrrsYNWpU+XE0GuXLL7+kYcOGRCKR4/wGJ6edO3eSnZ3Npk2b7Isv6ZBcJyQdieuEpCNxnZB0JK4Tko6kKq8TsViMXbt20bx58yPODTWET05OpmvXrixcuJB+/foBQUi+cOFChg8ffsjX5ObmsnDhQkaOHFk+tmDBAnJzcw85PyUlhZSUlApj9erVOxHln/QyMjKq3D9eSVWL64SkI3GdkHQkrhOSjsR1QtKRVNV14kg74L8RejuaUaNGMXjwYLp160aPHj2YPHkyxcXF3HTTTQAMGjSIFi1aMGHCBABuueUWLrjgAn75y19yxRVXMHPmTFauXMljjz0W5teQJEmSJEmSJOkgoYfw/fv3Z9u2bYwZM4aCggI6d+7MvHnzym++unHjRhISEsrnf+9732PGjBncfffdjB49mtNPP505c+Zw9tlnh/UVJEmSJEmSJEk6pNBDeIDhw4d/a/uZxYsXHzR2/fXXc/3118e5quorJSWFsWPHHtSmR5K+4Toh6UhcJyQdieuEpCNxnZB0JNVlnYjEYrFY2EVIkiRJkiRJklQdJRx5iiRJkiRJkiRJ+i4M4SVJkiRJkiRJihNDeEmSJEmSJEmS4sQQXpIkSZIkSZKkODGEr4GmTp1Kq1atSE1NJScnh+XLl4ddkqSQ/PnPf+bKK6+kefPmRCIR5syZU+F8LBZjzJgxNGvWjLS0NPLy8tiwYUM4xUoKxYQJE+jevTt169alSZMm9OvXj/Xr11eYs3fvXoYNG0bDhg2pU6cO1157LVu3bg2pYkmVbdq0aXTs2JGMjAwyMjLIzc1l7ty55eddIyT9XxMnTiQSiTBy5MjyMdcJSePGjSMSiVR4tGvXrvz8yb5OGMLXMLNmzWLUqFGMHTuWVatW0alTJ/r06UNhYWHYpUkKQXFxMZ06dWLq1KmHPD9p0iQefvhhHn30UZYtW0Z6ejp9+vRh7969lVyppLAsWbKEYcOG8c4777BgwQL27dvHpZdeSnFxcfmcW2+9lT/96U88//zzLFmyhM2bN3PNNdeEWLWkynTKKacwceJE8vPzWblyJb179+aqq67i/fffB1wjJB2wYsUKfvOb39CxY8cK464TkgDOOusstmzZUv548803y8+d7OtEJBaLxcIuQpUnJyeH7t27M2XKFACi0SjZ2dmMGDGCO++8M+TqJIUpEokwe/Zs+vXrBwS74Js3b87PfvYzbrvtNgCKiorIyspi+vTp3HDDDSFWKyks27Zto0mTJixZsoTzzz+foqIiGjduzIwZM7juuusAWLduHe3bt2fp0qX07Nkz5IolhaFBgwbcf//9XHfdda4RkgDYvXs3Xbp04ZFHHuHee++lc+fOTJ482d8lJAHBTvg5c+awevXqg85Vh3XCnfA1SGlpKfn5+eTl5ZWPJSQkkJeXx9KlS0OsTFJV9Mknn1BQUFBhzcjMzCQnJ8c1Q6rBioqKgCBgA8jPz2ffvn0V1op27drRsmVL1wqpBiorK2PmzJkUFxeTm5vrGiGp3LBhw7jiiisqrAfg7xKSDtiwYQPNmzfntNNOY+DAgWzcuBGoHutEUtgFqPJs376dsrIysrKyKoxnZWWxbt26kKqSVFUVFBQAHHLN+OacpJolGo0ycuRIevXqxdlnnw0Ea0VycjL16tWrMNe1QqpZ1qxZQ25uLnv37qVOnTrMnj2bM888k9WrV7tGSGLmzJmsWrWKFStWHHTO3yUkQdC9Y/r06bRt25YtW7Ywfvx4zjvvPNauXVst1glDeEmSJB2VYcOGsXbt2gq9GSUJoG3btqxevZqioiJeeOEFBg8ezJIlS8IuS1IVsGnTJm655RYWLFhAampq2OVIqqL69u1b/rxjx47k5ORw6qmn8txzz5GWlhZiZSeG7WhqkEaNGpGYmHjQnYO3bt1K06ZNQ6pKUlX1zbrgmiEJYPjw4bz88sssWrSIU045pXy8adOmlJaWsmPHjgrzXSukmiU5OZk2bdrQtWtXJkyYQKdOnfjVr37lGiGJ/Px8CgsL6dKlC0lJSSQlJbFkyRIefvhhkpKSyMrKcp2QdJB69epxxhln8OGHH1aL3ycM4WuQ5ORkunbtysKFC8vHotEoCxcuJDc3N8TKJFVFrVu3pmnTphXWjJ07d7Js2TLXDKkGicViDB8+nNmzZ/P666/TunXrCue7du1KrVq1KqwV69evZ+PGja4VUg0WjUYpKSlxjZDExRdfzJo1a1i9enX5o1u3bgwcOLD8ueuEpH+2e/duPvroI5o1a1Ytfp+wHU0NM2rUKAYPHky3bt3o0aMHkydPpri4mJtuuins0iSFYPfu3Xz44Yflx5988gmrV6+mQYMGtGzZkpEjR3Lvvfdy+umn07p1a+655x6aN29Ov379witaUqUaNmwYM2bM4MUXX6Ru3brlPRczMzNJS0sjMzOTIUOGMGrUKBo0aEBGRgYjRowgNzeXnj17hly9pMpw11130bdvX1q2bMmuXbuYMWMGixcvZv78+a4Rkqhbt275vWS+kZ6eTsOGDcvHXSck3XbbbVx55ZWceuqpbN68mbFjx5KYmMiAAQOqxe8ThvA1TP/+/dm2bRtjxoyhoKCAzp07M2/evINuvCipZli5ciUXXXRR+fGoUaMAGDx4MNOnT+f222+nuLiYoUOHsmPHDs4991zmzZtnL0epBpk2bRoAF154YYXxp556ihtvvBGAhx56iISEBK699lpKSkro06cPjzzySCVXKikshYWFDBo0iC1btpCZmUnHjh2ZP38+l1xyCeAaIenIXCckff755wwYMIAvvviCxo0bc+655/LOO+/QuHFj4ORfJyKxWCwWdhGSJEmSJEmSJFVH9oSXJEmSJEmSJClODOElSZIkSZIkSYoTQ3hJkiRJkiRJkuLEEF6SJEmSJEmSpDgxhJckSZIkSZIkKU4M4SVJkiRJkiRJihNDeEmSJEmSJEmS4sQQXpIkSdIJEYlEmDNnTthlSJIkSVWKIbwkSZJUDdx4441EIpGDHpdddlnYpUmSJEk1WlLYBUiSJEk6MS677DKeeuqpCmMpKSkhVSNJkiQJ3AkvSZIkVRspKSk0bdq0wqN+/fpA0Cpm2rRp9O3bl7S0NE477TReeOGFCq9fs2YNvXv3Ji0tjYYNGzJ06FB2795dYc6TTz7JWWedRUpKCs2aNWP48OEVzm/fvp2rr76a2rVrc/rpp/PSSy/F90tLkiRJVZwhvCRJklRD3HPPPVx77bW89957DBw4kBtuuIEPPvgAgOLiYvr06UP9+vVZsWIFzz//PK+99lqFkH3atGkMGzaMoUOHsmbNGl566SXatGlT4TPGjx/PD3/4Q/7yl79w+eWXM3DgQL788stK/Z6SJElSVRKJxWKxsIuQJEmSdHxuvPFGnnnmGVJTUyuMjx49mtGjRxOJRLj55puZNm1a+bmePXvSpUsXHnnkER5//HHuuOMONm3aRHp6OgCvvPIKV155JZs3byYrK4sWLVpw0003ce+99x6yhkgkwt13383Pf/5zIAj269Spw9y5c+1NL0mSpBrLnvCSJElSNXHRRRdVCNkBGjRoUP48Nze3wrnc3FxWr14NwAcffECnTp3KA3iAXr16EY1GWb9+PZFIhM2bN3PxxRcftoaOHTuWP09PTycjI4PCwsLv+pUkSZKkk54hvCRJklRNpKenH9Qe5kRJS0s7qnm1atWqcByJRIhGo/EoSZIkSTop2BNekiRJqiHeeeedg47bt28PQPv27XnvvfcoLi4uP//WW2+RkJBA27ZtqVu3Lq1atWLhwoWVWrMkSZJ0snMnvCRJklRNlJSUUFBQUGEsKSmJRo0aAfD888/TrVs3zj33XJ599lmWL1/OE088AcDAgQMZO3YsgwcPZty4cWzbto0RI0bw4x//mKysLADGjRvHzTffTJMmTejbty+7du3irbfeYsSIEZX7RSVJkqSTiCG8JEmSVE3MmzePZs2aVRhr27Yt69atA2D8+PHMnDmTn/70pzRr1ow//OEPnHnmmQDUrl2b+fPnc8stt9C9e3dq167Ntddey4MPPlj+XoMHD2bv3r089NBD3HbbbTRq1Ijrrruu8r6gJEmSdBKKxGKxWNhFSJIkSYqvSCTC7Nmz6devX9ilSJIkSTWKPeElSZIkSZIkSYoTQ3hJkiRJkiRJkuLEnvCSJElSDWAXSkmSJCkc7oSXJEmSJEmSJClODOElSZIkSZIkSYoTQ3hJkiRJkiRJkuLEEF6SJEmSJEmSpDgxhJckSZIkSZIkKU4M4SVJkiRJkiRJihNDeEmSJEmSJEmS4sQQXpIkSZIkSZKkODGElyRJkiRJkiQpTv4/aG26TQagUKwAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "def plot_history(history):\n", " \"\"\"\n", " Plotting training and validation learning curves.\n", "\n", " Args:\n", " history: model history with all the metric measures\n", " \"\"\"\n", " fig, (ax1, ax2) = plt.subplots(2)\n", "\n", " fig.set_size_inches(18.5, 10.5)\n", "\n", " # Plot loss\n", " ax1.set_title('Loss')\n", " ax1.plot(history.history['loss'], label = 'train')\n", " ax1.plot(history.history['val_loss'], label = 'test')\n", " ax1.set_ylabel('Loss')\n", " \n", " # Determine upper bound of y-axis\n", " max_loss = max(history.history['loss'] + history.history['val_loss'])\n", "\n", " ax1.set_ylim([0, np.ceil(max_loss)])\n", " ax1.set_xlabel('Epoch')\n", " ax1.legend(['Train', 'Validation']) \n", "\n", " # Plot accuracy\n", " ax2.set_title('Accuracy')\n", " ax2.plot(history.history['accuracy'], label = 'train')\n", " ax2.plot(history.history['val_accuracy'], label = 'test')\n", " ax2.set_ylabel('Accuracy')\n", " ax2.set_ylim([0, 1])\n", " ax2.set_xlabel('Epoch')\n", " ax2.legend(['Train', 'Validation'])\n", "\n", " plt.show()\n", "\n", "plot_history(history)" ] }, { "cell_type": "markdown", "metadata": { "id": "EJrGF0Sss8E0" }, "source": [ "## Evaluate the model\n", "\n", "Use Keras `Model.evaluate` to get the loss and accuracy on the test dataset. \n", "\n", "Note: The example model in this tutorial uses a subset of the UCF101 dataset to keep training time reasonable. The accuracy and loss can be improved with further hyperparameter tuning or more training data. " ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:41:20.860001Z", "iopub.status.busy": "2024-08-16T08:41:20.859755Z", "iopub.status.idle": "2024-08-16T08:41:31.790546Z", "shell.execute_reply": "2024-08-16T08:41:31.789789Z" }, "id": "Hev0hMCxOtfy" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown \u001b[1m1s\u001b[0m 854ms/step - accuracy: 1.0000 - loss: 0.2573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown \u001b[1m2s\u001b[0m 1s/step - accuracy: 1.0000 - loss: 0.2356 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown \u001b[1m3s\u001b[0m 994ms/step - accuracy: 0.9583 - loss: 0.3014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown \u001b[1m4s\u001b[0m 899ms/step - accuracy: 0.9219 - loss: 0.3735" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown \u001b[1m4s\u001b[0m 900ms/step - accuracy: 0.8775 - loss: 0.4640" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown \u001b[1m5s\u001b[0m 859ms/step - accuracy: 0.8528 - loss: 0.5109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown \u001b[1m6s\u001b[0m 857ms/step - accuracy: 0.8253 - loss: 0.6026" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown \u001b[1m7s\u001b[0m 875ms/step - accuracy: 0.8062 - loss: 0.6715" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown \u001b[1m8s\u001b[0m 889ms/step - accuracy: 0.7891 - loss: 0.7244" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown \u001b[1m9s\u001b[0m 899ms/step - accuracy: 0.7752 - loss: 0.7633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown \u001b[1m10s\u001b[0m 911ms/step - accuracy: 0.7636 - loss: 0.7949" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown \u001b[1m11s\u001b[0m 889ms/step - accuracy: 0.7564 - loss: 0.8147" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown \u001b[1m11s\u001b[0m 838ms/step - accuracy: 0.7513 - loss: 0.8292" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 838ms/step - accuracy: 0.7469 - loss: 0.8416\n" ] }, { "data": { "text/plain": [ "{'accuracy': 0.6899999976158142, 'loss': 1.0032306909561157}" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.evaluate(test_ds, return_dict=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "-F73GxD1-yc8" }, "source": [ "To visualize model performance further, use a [confusion matrix](https://www.tensorflow.org/api_docs/python/tf/math/confusion_matrix). The confusion matrix allows you to assess the performance of the classification model beyond accuracy. In order to build the confusion matrix for this multi-class classification problem, get the actual values in the test set and the predicted values. " ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:41:31.794174Z", "iopub.status.busy": "2024-08-16T08:41:31.793611Z", "iopub.status.idle": "2024-08-16T08:41:31.798365Z", "shell.execute_reply": "2024-08-16T08:41:31.797681Z" }, "id": "Yw-6rG5V-0L-" }, "outputs": [], "source": [ "def get_actual_predicted_labels(dataset): \n", " \"\"\"\n", " Create a list of actual ground truth values and the predictions from the model.\n", "\n", " Args:\n", " dataset: An iterable data structure, such as a TensorFlow Dataset, with features and labels.\n", "\n", " Return:\n", " Ground truth and predicted values for a particular dataset.\n", " \"\"\"\n", " actual = [labels for _, labels in dataset.unbatch()]\n", " predicted = model.predict(dataset)\n", "\n", " actual = tf.stack(actual, axis=0)\n", " predicted = tf.concat(predicted, axis=0)\n", " predicted = tf.argmax(predicted, axis=1)\n", "\n", " return actual, predicted" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:41:31.801431Z", "iopub.status.busy": "2024-08-16T08:41:31.801048Z", "iopub.status.idle": "2024-08-16T08:41:31.805947Z", "shell.execute_reply": "2024-08-16T08:41:31.805378Z" }, "id": "aln6qWW_-2dk" }, "outputs": [], "source": [ "def plot_confusion_matrix(actual, predicted, labels, ds_type):\n", " cm = tf.math.confusion_matrix(actual, predicted)\n", " ax = sns.heatmap(cm, annot=True, fmt='g')\n", " sns.set(rc={'figure.figsize':(12, 12)})\n", " sns.set(font_scale=1.4)\n", " ax.set_title('Confusion matrix of action recognition for ' + ds_type)\n", " ax.set_xlabel('Predicted Action')\n", " ax.set_ylabel('Actual Action')\n", " plt.xticks(rotation=90)\n", " plt.yticks(rotation=0)\n", " ax.xaxis.set_ticklabels(labels)\n", " ax.yaxis.set_ticklabels(labels)" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:41:31.809130Z", "iopub.status.busy": "2024-08-16T08:41:31.808754Z", "iopub.status.idle": "2024-08-16T08:41:31.812423Z", "shell.execute_reply": "2024-08-16T08:41:31.811787Z" }, "id": "tfQ3VAGd-4Az" }, "outputs": [], "source": [ "fg = FrameGenerator(subset_paths['train'], n_frames, training=True)\n", "labels = list(fg.class_ids_for_name.keys())" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:41:31.815545Z", "iopub.status.busy": "2024-08-16T08:41:31.814980Z", "iopub.status.idle": "2024-08-16T08:42:38.201089Z", "shell.execute_reply": "2024-08-16T08:42:38.200393Z" }, "id": "1ucGpbiA-5qi" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown \u001b[1m3s\u001b[0m 3s/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown \u001b[1m3s\u001b[0m 117ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown \u001b[1m4s\u001b[0m 481ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown \u001b[1m5s\u001b[0m 617ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown \u001b[1m6s\u001b[0m 693ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown \u001b[1m7s\u001b[0m 746ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown \u001b[1m8s\u001b[0m 770ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown \u001b[1m9s\u001b[0m 793ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown \u001b[1m9s\u001b[0m 800ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown \u001b[1m11s\u001b[0m 842ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown \u001b[1m11s\u001b[0m 825ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown \u001b[1m12s\u001b[0m 835ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown \u001b[1m13s\u001b[0m 833ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/Unknown \u001b[1m14s\u001b[0m 822ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/Unknown \u001b[1m15s\u001b[0m 820ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/Unknown \u001b[1m15s\u001b[0m 828ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/Unknown \u001b[1m16s\u001b[0m 829ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/Unknown \u001b[1m17s\u001b[0m 835ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/Unknown \u001b[1m18s\u001b[0m 834ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/Unknown \u001b[1m19s\u001b[0m 831ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/Unknown \u001b[1m20s\u001b[0m 828ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/Unknown \u001b[1m20s\u001b[0m 826ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/Unknown \u001b[1m21s\u001b[0m 832ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/Unknown \u001b[1m22s\u001b[0m 830ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/Unknown \u001b[1m23s\u001b[0m 832ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/Unknown \u001b[1m24s\u001b[0m 832ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/Unknown \u001b[1m25s\u001b[0m 831ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/Unknown \u001b[1m26s\u001b[0m 833ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/Unknown \u001b[1m26s\u001b[0m 837ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/Unknown \u001b[1m27s\u001b[0m 834ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/Unknown \u001b[1m28s\u001b[0m 835ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/Unknown \u001b[1m29s\u001b[0m 833ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/Unknown \u001b[1m30s\u001b[0m 836ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/Unknown \u001b[1m31s\u001b[0m 840ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/Unknown \u001b[1m32s\u001b[0m 843ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/Unknown \u001b[1m33s\u001b[0m 846ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/Unknown \u001b[1m34s\u001b[0m 847ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/Unknown \u001b[1m36s\u001b[0m 890ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m38/38\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m36s\u001b[0m 890ms/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAI0CAYAAACj07nSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD+30lEQVR4nOzdd1QU59vG8e/SqyAKAopdQY3Yjcao2IINNTHR2IkldmPvxt57SVUiaqwpGjWaxKhoNDEau2KPvWFBEZC68/7By/5c6ezCLOH+nLPnwOzM7LWzM7P3Ps8UjaIoCkIIIYQQQmSTmdoBhBBCCCFE3iYFpRBCCCGEMIgUlEIIIYQQwiBSUAohhBBCCINIQSmEEEIIIQwiBaUQQgghhDCIFJRCCCGEEMIgUlAKIYQQQgiDSEEphBBCCCEMIgVlHqfValm8eDGVK1fG1tYWjUaDRqNRJUvya9+4cUOV1xf/k5c+iwsXLvD+++/j5uaGubk5Go2GKVOmqB0rW/LScheGmTJlChqNhsDAwGxN7+fnh0ajITg42Ki5csqzZ88YPHgwJUuWxNLSEo1Gg5+fn9qxTEbJkiXRaDSEhIQYbZ7BwcF5ajlbqB3AFF27do1Vq1axb98+rl+/Tnh4OHZ2dpQsWZK33nqLTp060aBBA7VjAjBt2jSmTp2KRqOhUqVKODk5qR1JZFNyETV06FCcnZ1VzZJbHj9+TP369Xny5AmFChWiVq1aWFhYULx4cbWj6blx4wbBwcE4OzszdOhQteMIE/df3JbbtWvHgQMHsLW1xdfXF1tbWypXrqx2LJ49e8aSJUsA8uwP0f8KKShfkZiYyNixY1myZAkJCQkAlCpVipIlS/LixQsuX77MmTNn+PLLL2nQoAEHDhxQNa+iKHz22WcAbNq0iQ4dOqiax9vbGwBLS0tVc+RVU6dOBSAwMNDgL6G88lls2rSJJ0+eUL16dQ4fPoyNjY3akVJ148YNpk6dSokSJdItKPPKcheGK1y4MN7e3nh4eKR4LjPbcvHixfH29s4TjQDnzp3TFZOhoaGULFlS7Ug6z5490y1vNQvKMmXKYGNjg52dndHm6eTkhLe3t8n9wE6LFJT/T1EUPvjgA7Zu3YqVlRWTJk1iwIABuLu768aJjo5m9+7dzJ49m4MHD6qYNsmjR494/PgxAK1bt1Y5DVy8eFHtCOL/5ZXPIjQ0FIAmTZqYbDGZFXlluQvDDRo0iEGDBmV7+rVr1xoxTc5K3k7feOMNkyomTcnevXuNPs93332Xd9991+jzzSlSUP6/hQsXsnXrViwtLdm9ezeNGzdOMY6dnR3t27fnvffeY+bMmSqk1Pfy5Uvd38b8VSREbkleh2X9FcJ0yXYqMkURSmRkpOLi4qIAyoQJE7I9H61Wq2zYsEFp2rSp4uLiolhaWipFixZVOnXqpBw/fjzVaVavXq0ASsOGDXX/165dW7G3t1ccHR0VPz8/5bffftOb5vr16wqQ5mPy5Mmpzjs1DRs2VABl9erVKZ7bu3ev0q5dO8XDw0OxsLBQChQooJQuXVpp166dEhQUlGL85Ne/fv16qq+1e/duJSAgQHFzc1MsLS2VIkWKKG3btlX27t2b6vj79+9XAKVEiRKKoijKTz/9pDRs2FBxcnJS7OzslNq1aysbN25M872l59Wsf//9txIQEKAUKlRIsbe3V+rUqaPs3LlTN+69e/eUgQMHKsWLF1esrKyUMmXKKDNmzFASEhJSzFer1Sq7du1SBg4cqFStWlUpXLiwYmVlpXh6eirt27dXDh48mGKayZMnZ+rzVBRFKVGihAIo+/fvVy5evKh0795dKVq0qGJhYaH06NEj1feX7MSJE4qVlZUCKD/++GOqy6Vbt24KoFSrVk2JiYnJ0jINDQ1VPvroI6VEiRKKlZWV4uzsrDRo0EBZuXJlimXVo0ePdN9zZsTGxio//PCD8tFHHylvvPGGUrBgQcXa2lopUaKE0q1bN+X06dPpTh8dHa0sXbpUadCggeLi4qJYWVkpXl5eSrNmzZQvvvhC9/6Tt5G0Hvv379fNMy9vA+3bt1eKFCmimJmZ6a1ziqIo+/btU95//33F09NTsbS0VFxcXJR33nlH2bZtW7qvce/ePWXMmDFKlSpVFEdHR8XW1lYpW7as0rFjR2X79u2pTpPVZZRsz549StOmTZUCBQooDg4OSu3atZXg4GBFUfS3m1clb3s9evRQEhISlEWLFimVK1dWbG1tFWdnZ6VVq1bKP//8k+rrvTrt68Mysy2nt+9VlKxtT8le/UzPnDmjdOjQQXFzc1OsrKyU8uXLK1OnTlViY2PTXY6vSv4Oycy6ryiGr98bNmxQGjRooBQsWDDV+b8uo/3Iq8s2M+t7dvbfydJax7LzHZ/WtGm93s2bN5WePXsqnp6eipWVlVKiRAll+PDhyvPnz9PMe+XKFaVz586Km5ubYm1trZQvX1759NNPlZcvX+qW6+v7gYxIQakoypYtWxRAMTMzUx4+fJitecTHxyvvv/++bqUtVqyYUrNmTcXJyUkBFHNzc+Wrr75KMd2rK0zPnj0VQPHy8lKqV6+u2Nvb63K9uuO+f/++Uq9ePaVmzZq616tXr57ukVzsGVJQrly5UjdvZ2dnpUqVKoqvr69uQy9atGiKeaX3ZfrJJ5/onndzc1Nq1aqlFC5cWDds4sSJKaZ5dWczdepUBVCKFCmi1KhRQ3F2dtZNu3z58jTfX1pendbS0lIpWLCgUqNGDd37MzMzU7Zs2aJcuXJFKVq0qGJtba1Ur15dKVasmG7aAQMGpJjvixcvFEDRaDSKq6ur4uvrq1SpUkU3X41Go3zxxRd60wQFBSn16tXTzbdmzZqpfp6K8r+dyKxZsxQ7OzvF2tpaqVatmvLGG28oH330UYafxZIlSxRAKViwoHLz5k2959asWaMAir29vXLp0qUsLc/NmzfrilV7e3ulRo0aSqlSpXQ5mjVrpkRHR+vGnzlzplKvXj3Fzc1Nt86/+p4z4+zZs7rPyt3dXalWrZpSqVIlxcHBQQEUKyurNIuWa9euKT4+Prp8xYsXV2rVqqV4enoqGo1Gb9kNGjRIeeONNxRAsba21stZr1495cSJE7r55sVtYMGCBYqFhYXi4OCg1KhRQylfvrwyZcoURVGSvmAHDx6sG7dgwYJKtWrVlCJFiuiGDRo0KNX57969WylQoIDuM6pQoYJSvXp13Y/35CLC0GWkKIry2Wef6e2vkj9LQBkxYkSGBWWXLl2Ud955RwGUsmXLKlWqVFGsra0VQLG1tVWOHj2a4jVTKyizsi2nV1BmdXtKlvz8V199pdjY2Og+0+RlASjt27dPdRmmZteuXUq9evWUcuXKKYBSoECBNNd9Q9fvoUOH6tbv5M8vo4Jy5syZaX4P1qtXT9m1a1eKZZPe+p6d/XeyzBSUmf2OT23atF5v6dKlirOzs+47qmTJkrp9WJ06dZT4+PgU0x45ckRxdHTU7SerV6+ueHt7K4BSt25dpVOnTlJQZteQIUMUQKlcuXK25zFlyhQFUOzs7PRaf2JiYpThw4frisojR47oTZe8wlhaWiqFChXS+6USGRmpvPvuuwqglCxZUtFqtXrTvtpSmZrsFpQJCQlKoUKFFEBZtmxZihXywoULytKlS1PMK60v0+DgYN37/+KLL5TExETd6yxcuFC38n/33Xd60yXvbCwtLRVbW1tl/fr1uufi4+OVAQMGKIDi4OCgREREpPkeU5Oc1dLSUpk+fbruPcbHxysfffSRbqOvXbu20q5dO+XJkye6aZOLbY1Go1y+fFlvvrGxscpXX32l3L17V294QkKCsnnzZsXOzk6xtLRUbt26lenl96rknYi5ubnSuXNnJTw8XPfcq18w6c0rICBAt/NNft+XLl3SFWLJrTqZdeHCBcXGxkYBlN69eyuRkZG65/bs2aP7UTVw4MAU02b3l7CiKMqDBw+UdevW6X02ipK0za1YsUIxNzdXXFxclKioKL3no6OjlQoVKui2+ddboB4+fKjMnTtXCQsL0w17vSUlLXlxGzA3N1dGjBihvHz5Uvdc8ro0d+5cBZJ+IO/YsUNv+l9++UX3g2Dt2rV6z50/f16xs7NTAOX9999PsT2cP39emTNnjlGW0enTpxULCwsFUEaNGqXXAhccHKxYWFgolpaW6RaUlpaWSsmSJfXWhUePHilvvfWWAigNGjRIsfxSKyhfX7bpbctpFZSGbE+v7tdGjx6t95muX79etwz37duXZq7UZPRdYuj6bW5urlhbWyvffvut7ntOq9Vmqpcko+/BZJlZ3w3Zf2dUUGbnOz4zBaWlpaXSrVs35dmzZ7rnfv/9d93298033+hNFx0drZu2adOmevu5o0ePKu7u7rrtRQrKbHjvvfcUQGnbtm22po+MjNT9Ep83b16q49SvX18BlNatW+sNf7VLYd26dSmmu3//vu7Dfb0LL6cKyvv37+t+6WdFWjvRMmXKKJB6i56iKErXrl0VQHnjjTf0hifvbABl+vTpKaZ7+fKl4urqqgDKTz/9lK2sLVu2TPHckydPdDv0IkWKKC9evEgxTvKv4iVLlmTpdSdMmKAAKb5MX82UmYKyYsWKqf7yzMy8Hj9+rBQtWlSBpEM8YmNjlWrVqimQ1FKTVcm/ut94440UO0RFUZRVq1bpdnz37t3Te86QgjIjXbp0UQBl06ZNesOXLVumAErhwoUz3SNhaEFpytvAO++8k+rzT58+VRwcHBRzc3Pl2LFjqY7zww8/KIBSoUIFveHJ+9SGDRvqiouMZHcZde/eXQGUJk2apDrdmDFjdO81rYISSLU78/jx47ofj69+Yb86rbELSkO2p+TXTWtZJP+YHDZsWJq5UpPRd4kx1u+ZM2dmKVOyrBaUaa3vmZHe/jujgjI73/GZKSh9fHyUuLi4FM8n9yy8++67esO/+eYbBVAKFSqk1yCRbPfu3bq8Wd0vy4XNgYiICAAcHByyNf0ff/xBREQENjY29O/fP9VxRo4cCcDvv/9OXFxciuednJzo0qVLiuHu7u6UKlUKgKtXr2YrX1a5ublha2vL8+fP2bVrl0HzunjxIteuXQNg+PDhqY4zatQoIOnSFLdu3Up1nAEDBqQYZmNjQ7Vq1YDsL5uPP/44xTAXFxfdmYydOnVKdb2oWbNmuq979OhRxo0bR7t27fDz8+Ptt9/m7bffZsuWLQCcPHkyW3mT9ejRAwuL7J1TV6hQIdavX4+5uTmzZ8+mTZs2nDx5kjJlyvDFF19keX7J68jQoUNTvah+9+7dcXNzIz4+nj179mQrc3r27t3LiBEjCAgIoGHDhrplnXwlhteX9Q8//ABAnz59cHNzM3qe15n6NtCrV69Uh+/atYvIyEhq1qypW99fFxAQgKWlJRcuXOD+/fsAxMTE8PPPPwMwfvx4zMwy/poxZBn98ssvAPTu3TvV6VLbxl/n6+tL/fr1UwyvVq0a1tbWKIqiy5fTjLE9DRw4MNXhdevWBYz7XWKs9Tutz8/Y0lrfX5UT+++c+o7/+OOPU71MWVqfdfL28v7776d6SavmzZtn+zJFcpY3UKBAAQAiIyOzNf2lS5eApCvlp1WUJl8ANiYmhhs3blC+fHm958uVK5fmHW6KFCnC5cuXefHiRbbyZZWZmRkjR45k+vTptGrVisqVK9OkSRPq1q1LgwYN9C6llJHkZWNra0uZMmVSHadixYqYm5uTmJjIxYsXU6zMhQsXxsXFJdVpixQpApDtZVO2bNlUh7u5uXHx4sV0n4eU60xCQgI9e/Zk3bp16b7ukydPspH2fypVqmTQ9A0bNmTixIlMnTqVX3/9FUtLSzZt2oSjo2OW5vP8+XMePHgAJF1SJDWWlpb4+PgQFhZm1MvqREZG8t5772VYpL6+rM+ePQvAW2+9ZbQs6TH1bSCtden06dMAXL9+nbfffjvN6ZP3W7dv38bDw4MrV64QGxsLZH4ZZ3cZPXv2jLCwMACqVq2a6nSlS5emQIECuoaD1Ly+P371vbm5uXH79u1c2f8aa3tK6/0Yuq6kxljrd278uIP09505uf/Oqe/4rH7WyZ9XWttL8nNpFf7pkRZKoFixYgD8+++/2Zo++QNLr9B69eK3qa009vb2aU6b/AtfUZRs5cuOqVOnsmrVKqpUqcLZs2dZsmQJHTt2xNPTk2bNmum+bDKS/F6TV+7UWFhYULhwYb3xX5WTyyateSdv+Bk9//rrLliwgHXr1mFjY8PixYsJDQ0lMjISrVaLoigEBQUBEB8fn628GeXOimbNmun+rlGjRpqtUOl59fPKzPpvzC+ykSNHsmfPHgoXLsyqVau4evUq0dHRKEmH8jBp0iQg5bJOLixy6w4meXUbCA8PByAsLIzDhw+n+UjucYmOjgb+t3zNzc0z3euT3WX06g+69H4MZfRDyVT2v8bantJ6PznxXnJ6/Ta29F4rJ/ffObWOZfWzTt5mDNle0iIFJeh+fZ8/f173azcrkhd+8i/L1CR3B706fk5Lq+h5VVRUVJrT9urVi1OnThEWFsbWrVsZOnQo7u7u/P777zRu3Ji7d+9mmCH5vT58+DDNcRISEnQXaM+tZZNTku/Lu2DBAoYOHUqFChWwt7fXfRaGtkway/Pnz+natSuQtOM5cuQIy5Yty/J8Xv28MrP+G+vzTUhIYP369UDSMu/VqxdlypTB1tZWN05ayzq5R+LZs2dGyZKRvLoNJBeD3bt31xXp6T2S7zecvHwTExMz3euT3WX0asGa3o+V3OrdMZRa25Mh8ur6nZq8sv82RPI2kxPbixSUQIsWLXBxcUGr1WbrS9XHxwdIuj1bWjvQ5G42GxubXLvTQPIvl/Q29CtXrmQ4H1dXV9q1a8fixYu5dOkSpUqV4unTp2zatCnDaZOXzcuXL9M8Bik0NJTExEQAKlSokOE8Tdn169cB0rzX+5EjR3IzTpo+/vhjbty4Qe3atdm8eTMAo0ePznTLczInJyddS8q5c+dSHSchIUHXNWesz/fRo0e6bS2ry9rX1xeAP//8M9Ovl1ZXVWbk1W0g+TCdM2fOZGm68uXL6+56lNllnN1l5OzsrOsqTWvdvX79errd3aZEre3JEGqv34Zsm6/LK/tvQyTfHja9fX1WvweSSUFJUsU+ZswYAObNm8e+ffvSHV9RFL075bz99tsUKFCAmJiYNE9qWLhwIZDUzWhlZWWk5OkrV64ckLSRpFZUrl+/nufPn2dpno6Ojrov5My0UHp7e+uOQ1y0aFGq4yQvm8qVK+Pl5ZWlPKYm+U4Sr7ZIJ7t48SI7duzIcNrkrsOcsnLlSrZs2UKBAgXYuHEj77//PgMHDiQ2NpYPP/wwzVbrtLRq1QqAJUuWpNoavm7dOsLCwrC0tNTrZjfEq3fsSG1Z79u3jxMnTqQ67fvvvw/AqlWrdK0mmX297Hw2eXUbaN26Nba2tpw6dSpLJ1NZW1vrbgU7Z86cTHXjGbKMmjdvDqDrjnzdypUrM53dWAxZX9TYngyh9vr96r7A0H2nIfvvvCJ5e/n+++9T/f7/7bffuHnzZrbmLQXl/xs1ahRt2rQhPj6eFi1aMHny5BRdDjExMfz000+8+eabTJw4UTfc3t5ed3bblClT2LZtm+65uLg4Ro8ezcGDBzE3N2fChAm58n4gaeMtWbIkcXFxDBw4UG9j27t3L0OHDk317LDQ0FB69erFoUOH0Gq1es/t2bNHd8/SWrVqZSpH8rL66quv+Oqrr3Q7Sa1Wy9KlS3UHQH/66adZf5MmpmHDhkDS2a2v7pROnz5NQEAA5ubmaU6bvFP+/fffcyxfaGgoQ4cOBeDLL7+kdOnSQFIXj6+vLxcvXmTIkCFZmufIkSOxsbHh3Llz9O3bV68g3bdvHyNGjACgb9++WTqhKz1OTk5UqVIFSDob9tXu65CQED788MM07w3eq1cvKlasyKNHj2jatGmKMzbDwsKYP38+jx490g0rU6YMGo2GR48eZbnFDvLmNuDm5qbL/cEHH7B27VoSEhL0xnn69Clr167VncWbbNq0adjZ2bF//346deqU4gs6NDSUuXPn6g3L7jIaMWIEFhYW7Nmzh3Hjxukd37Zu3ToWLFiQ6n4uJxmyLauxPRlKzfW7cOHCODk5AYbvOw3Zf+cVH374ISVKlODx48d06NBB70f18ePH+eijj7K/vWTpIkP/cfHx8crQoUMVc3Nz3bXHSpcurdSuXVupUKGC7tqEgNK4ceMU07Zv3173vJeXl1KrVi3dRWjNzMwyvFNOWtK6Xllmrr+1detWxczMTIGkix9Xr15dKV68uAIoPXv2THXeJ0+e1M3Xzs5O8fX11bvzBP9/zc7Xry+X/FxGdwlJvhNC8vXzIPVbXmbm2n/ZvkVUBteJy+i2aGldg+7MmTO6ux9YW1srvr6+ujsQeHl5KbNmzUrz816wYIEul4+Pj9KgQQOlYcOGehnSutZZZt7fy5cvlcqVKyuAEhgYmGKa8+fPK7a2tgqQ5dv5vXpnDwcHB6VmzZpK6dKldTnSurOHIdeh/PXXX3Xbqr29vVKtWjXd3USqVq2qjBw5Ms3rBF67dk33uSSvY7Vq1VKKFi2a4k45yVq3bq1A0p0lqlWrpjRs2FBp2LChcvLkSd04/6VtQFGSLi49atQo3bjJ+5DatWsrJUqU0C2r1Nbn3bt36+7GYWZmplSsWFGpXr267qYJGd0pJ7PLSFEUZcWKFbpxChYsqPssAWX48OG67eb1a02mdy3JZJm5bePrMrMtZ/ZOOVnZnjL6TDPzfZPd6XJq/c6MQYMG6dazypUr67bN3bt368bJzPpuyP47s7deTE1a60Jmb72YmvSW7V9//aXbNpPvsJN857A6dero7pQzbdq0NDOnRlooX2FhYcHixYu5ePEiY8aMoWbNmkRERHDixAnu3r2Lt7c3/fv359ChQ7pWulen/e6771i/fj2NGzcmMjKSU6dOYW9vT6dOnTh69GimrodmbO3atePXX3/VHTB/8eJFXF1dWbVqVZpdROXLlycoKIjOnTtTvHhxbt++zcmTJ4mLi6Np06asXbuWH3/8MVPXl0u2ZMkSdu3aRevWrdFqtZw8eRKNRkPbtm35/fffmTFjhjHeruoqV67MX3/9Rdu2bbG1teXSpUvEx8czZMgQTp48qXe2/+uGDRvGggULqFKlCrdu3eLgwYMcOHCAGzduGCXb8OHDOXv2LOXLl2fFihUpnq9YsSJLly4FoF+/frrjiTKjQ4cOnDx5ksDAQFxcXDhz5gxPnjyhfv36rFy5kt27d+udMGMM77zzDvv376dp06ZoNBouXryItbU1EydO5PDhw+meVVm6dGlOnDjBggULqFu3Ls+ePePMmTOYm5vzzjvv8PXXX+Pp6ak3zdq1axk0aBDFihXj/PnzHDhwgAMHDmT65J68uA1oNBrmzZvH0aNH+eijjyhSpAihoaGcPHmS+Ph4/P39Wb58Od9++22KaZs3b86FCxcYPnw4Pj4+3Lhxg0uXLlGwYEE6d+7M559/nmKa7C6jgQMH8ttvv9GkSRMSEhIIDQ3Fw8ODoKAgFi5cqDveNvmEoZxm6LasxvZkKDXX7/nz5zNhwgTKly/PlStXdNtmeic2pcaQ/XdeUqdOHY4fP07nzp0pUKAA58+fJyEhgfHjx7Nv3z7dlRuyur1oFCUXr0UjhBBC5KJHjx7h5uaGRqMhPDxc1z0qhEhdpUqVCA0N5aeffqJNmzaZnk5aKIUQQvxnrVq1Ckg6u1+KSSHS99dffxEaGoqFhYXubjuZJQWlEEKIPG3Dhg3s3r1bd2kaSLoO5tdff83UqVMBGDx4sFrxhDApx44dY+XKlSmuN3ngwAE6dOgAJJ284+rqmqX5Spe3EEKIPG3kyJEsXLgQBwcHypUrh7m5OZcvX9Zdf7Jz5858++23Rr1moRB51c6dOwkICMDCwgJvb28cHBy4ffs29+7dA5KOJd2/fz+FChXK0nyloBRCCJGnHT16lK+//ppDhw7x8OFDIiMjcXZ2pnr16nz00Ud07NhRikkh/t/du3dZunQpv//+O3fu3CE8PBw7Ozt8fHxo3749AwcOzNbtMKWgFEIIIYQQBpFjKIUQQgghhEGkoBRCCCGEEAaxUDuAyL8qFXlT7QhpqmhjGrc0S0toTNYu2JvbdriZ7uVZAsKydv/63Gbq615VHNSOkKbRx6erHSFdv1XKvVvvZkewjWH3ws5J3938KcdfI/7xv0abl2Xh0kabV14hBaUQQgghhDYx43FEmqTLWwghhBBCGERaKIUQQgghFK3aCfI0KSiFEEIIIbRSUBpCuryFEEIIIYRBpIVSCCGEEPmeIl3eBpGCUgghhBBCurwNIl3eQgghhBDCINJCKYQQQgghXd4GkYJSCCGEEEIubG4QKSiFEEIIIaSF0iD54hjKKVOmULVqVbVj5LiQkBA0Gg3Pnj1TO4oQQggh8hGTKCj/+usvzM3NadWqldpRgP8VZqk9Hjx4YLTX8fPzQ6PRMGfOnBTPtWrVCo1Gw5QpU4z2ev81NepU5bN1C9h/eifnH/5N4xYN1I6kp92A9szevoC15zex6vgaRn09Ds/SRdWOpWPKy69g/26UPvub3qPY9iC1Y+mY8rIz9fWuetcm9P5lNiPPrWLkuVX02DqFMn5V1I6lJyoqmjlLvqTZez2o0agtXfoO5+yFS2rHSqHM4Da0eriRitO7qx0FMP11L0NarfEe+ZBJFJRBQUEMHjyYgwcPcu/ePbXj6Fy6dIn79+/rPdzc3Iz6Gl5eXgQHB+sNu3v3Lnv37sXDw8Oor/VfY2tny6XzV5gxdr7aUVJV6c03+HXtLsa3G8X0rpOxsLRg4ropWNtaqx0NMP3lF3flBjf9Ouoe97oPUzuSjikvO1Nf717cf8r+uZsIaj2BbwImcvPP83ywcjiFy5lO4fHpnKX8dewksz8dydZ1X/BW7er0+WQ8Dx89VjuajlPV0hTv3oSI8zfVjqJj6uteRhRFa7RHfqR6QRkZGcnmzZvp378/rVq10iuuklsKf/75Z3x9fbGxsaFOnTqcO3dON05wcDDOzs5s27aNcuXKYWNjg7+/P7dv30719Q4ePIilpWWKlsahQ4dSv359vWFubm64u7vrPczMzDI9j0OHDlG/fn1sbW3x8vJiyJAhREVF6U3TunVrHj9+zOHDh3XD1qxZwzvvvJOieF23bh01a9bE0dERd3d3OnfuTFhYWJrLNjo6mhYtWlCvXj1dN/iqVauoUKECNjY2+Pj48Pnnn+vGT63L/NSpU2g0Gm7cuAFkfXnnpEP7/mLZnK/Yu/tArr92ZszsMZWQ7/dx58ptbl64wWcjluJazI3SlcuoHQ0w/eWnJCaS+CRc99A+i1A7ko4pLztTX++u7D3Jtf2nCb/xkKfXHxAy/zviomMoWr2s2tEAiImN5fcDhxg+sBc1q1ameDFPBvbqSvFinmze+rPa8QAwt7Om6ueDODNiJfHPojKeIJeY+roncpbqBeWWLVvw8fHB29ubrl278s0336Aoit44o0aNYuHChRw7dgxXV1cCAgKIj4/XPR8dHc3MmTNZu3Ythw8f5tmzZ3z44Yepvl6DBg0oXbo069at0w2Lj49n/fr19OzZM1OZMzOPa9eu0bx5c9q3b8+ZM2fYvHkzhw4dYtCgQXrzsrKyokuXLqxevVo3LDg4ONUs8fHxTJ8+ndOnT7Nt2zZu3LhBYGBgqhmfPXtGs2bN0Gq17NmzB2dnZ9avX8+nn37KzJkzuXDhArNmzWLSpEmsWbMmU+87WVaWt/gfO0c7ACKfRaqcJG+wLF6U4ns34rV7Da5zxmLu7qp2pDzJlNc7jZmGigF1sLS15u6Jq2rHASAxIZHERC3WVpZ6w62trThx5rxKqfS9MacnYb+f5MnBcxmPrCJTXvdSJV3eBlG9oAwKCqJr164ANG/enOfPn3PggP6v/smTJ9OsWTMqV67MmjVrePjwIVu3btU9Hx8fz4oVK6hbty41atRgzZo1/Pnnnxw9ejTV1+zVq5deAbdjxw5iYmLo0KGD3njFihXDwcFB96hUqVKm5zF79my6dOnC0KFDKVeuHG+99RbLli1j7dq1xMTE6L1Oz5492bJlC1FRURw8eJDnz5/TunXrFLl79uxJixYtKF26NHXq1GHZsmXs3r2byEj9jfXBgwc0bNgQDw8PduzYgZ2dnW45Lly4kPfee49SpUrx3nvvMWzYML766qtUl1Nasrq8AWJjY4mIiNB7aPNRt4BGoyFwcm8uHgvl9uVbascxeTFnL/Jo0nwe9B/P4+nLsCxaBM81i9DY2aodLU8x1fXO1duLUaFBjL2yhhYze/J938U8vnJX7VgA2NvbUeWNCnwZvJGwR09ITExkx6/7OH3uIo8fP1U7Hh7t6lLAtySXZm5SO0q6THXdS5eiNd4jH1K1oLx06RJHjx6lU6dOAFhYWNCxY0eCgvQPvq9bt67ubxcXF7y9vblw4YJumIWFBbVq1dL97+Pjg7Ozs944rwoMDOTq1ascOXIESGoR7NChA/b29nrj/fHHH5w6dUr32LVrV6bncfr0aYKDg/UKUn9/f7RaLdevX9d7nSpVqlCuXDm+//57vvnmG7p164aFRcorOh0/fpyAgACKFy+Oo6MjDRs2BODWLf2NtVmzZpQtW5bNmzdjZWUFQFRUFNeuXaNXr156mWbMmMG1a9dSXU5pyeryhqQC28nJSe/xOMp0jpfNab2n98WrfHEWD1qgdpQ84eWhY0T99gdxl6/z8s/jPBgwEXNHBxz8G6odLU8x1fXuyb/3WNViPKvbfsrxb/cSsLCfSR1DOXvSSFAUGrfrSvVGbVj/3U+0aNoQjZm6bTA2ni5UmtGDUwM+Qxsbn/EEKjLVdU/kHFWvQxkUFERCQgKenp66YYqiYG1tzYoVK3Lsdd3c3AgICGD16tWUKlWK3bt3ExISkmK8UqVK4ezsnK15REZG0rdvX4YMGZJi2uLFi6cY1rNnTz777DNCQ0NTbemLiorC398ff39/1q9fj6urK7du3cLf35+4uDi9cVu1asUPP/xAaGgolStX1uUBWLlyJW+++abe+Obm5gCY/f/O8tVDDl49tMAQ48aNY/jw4XrD3izbxCjzNnW9pn1M9Sa1mNxhHE8fPFE7Tp6kfRFF3M07WBT3zHhkAZj2eqeNTyT85kMAHpy7gWeV0tT6yJ/d479ROVmS4sU8Cf5sPtEvY4iKisa1sAsjJs2mmKe7qrmcqpTG2tWJt/fM0g0zszDHpa4PJXq+w26vbqBV0plD7jDldS9dcmFzg6hWUCYkJLB27VoWLlzIO++8o/dcu3bt2LhxIz4+PgAcOXJEV4SFh4dz+fJlKlSooDevf/75h9q1awNJLZ/Pnj3TG+d1vXv3plOnThQrVowyZcpQr169LL+H9OZRvXp1QkNDKVs2cwead+7cmZEjR1KlShUqVqyY4vmLFy/y5MkT5syZg5eXFwD//PNPqvOaM2cODg4ONGnShJCQECpWrEiRIkXw9PTk33//pUuXLqlO5+qadIza/fv3KViwIJB0Us7rsrO8ra2tsbbWP9PPTKP6ERc5rte0j6ntX4fJHScQdjvtE6hE+jS2Nlh6eRC5Y6/aUfKEvLbeacw0mL92zKIpsLO1wc7WhucRL/jz6HGGD8jccfY55fHBcxxoOEpvWJUl/Yi8eo9rK7abTDGZl9Y9Pfm0q9pYVCsod+7cSXh4OL169cLJyUnvufbt2xMUFMT8+UmX5Jg2bRqFChWiSJEiTJgwgcKFC9OuXTvd+JaWlgwePJhly5ZhYWHBoEGDqFOnjq7gSY2/vz8FChRgxowZTJs2LdVxwsLCUhzvWKhQISwtLTOcx5gxY6hTpw6DBg2id+/e2NvbExoayp49e1JtfS1YsCD379/Xzft1xYsXx8rKiuXLl9OvXz/OnTvH9OnT03x/CxYsIDExkcaNGxMSEoKPjw9Tp05lyJAhODk50bx5c2JjY/nnn38IDw9n+PDhlC1bFi8vL6ZMmcLMmTO5fPkyCxcuTDHv7CzvnGBnZ0vxUsV0/xcr7olPpXI8fxbB/bsPczVLanrP6MvbbRowr88sYqJe4uzqDEB0RDRxsXHpT5wLTHn5uYzoQ/SBIyTcC8PctRAFB3aHRC2Ru/ermiuZKS87U1/v/EZ35FrIaSLuPcbK3pZKbd+iRJ0KbOw2V+1oOof/Po6iKJQsXoxbd+6x8LMgShUvRrtW72Q8cQ5KjIoh8uId/WHRscSHR6YYrgZTX/dEzlKtoAwKCqJp06YpiklIKijnzZvHmTNngKQWt08++YQrV65QtWpVduzYoTs2EMDOzo4xY8bQuXNn7t69S/369VMch/k6MzMzAgMDmTVrFt27p35RWG9v7xTD/vrrL+rUqZPhPHx9fTlw4AATJkygfv36KIpCmTJl6NixY5qZ0upeh6TWw+DgYMaPH8+yZcuoXr06CxYsoE2bNmlOs3jxYr2isnfv3tjZ2TF//nxGjRqFvb09lStXZujQoUBSobhx40b69++Pr68vtWrVYsaMGXzwwQd6883O8s4JlapWIHjrF7r/x0xLuk7htk07mfBJ2sV2bvHv1hKAqVtm6Q3/bMRSQr7fp0YkPaa8/CyKuOI2dzzmzo4khj8n5sR57nb5BG34c1VzJTPlZWfq65194QK0WdQPBzdnYl9EE3bxNhu7zeX6IdM5Y/lFZBRLvlzNw0ePcSrgSLOGbzOkbw8sUzm2XfyPqa97GcqnZ2cbi0Z5/Ro9JiQkJIRGjRoRHh6eZrEVHBzM0KFDs3W7wV69evHo0SO2b9+e7YzGmEdeYsjyfl2lIm9mPJJKKtqoe6xURkJjjHfHppywwy3lD0VTERBmGkVpWkx93auKg9oR0jT6uPo/JNPzW6UJakdIV7BNtNoR0vTdzZ9y/DViz+0x2rys32hmtHnlFfny59bz5885e/YsGzZsyHYhaIx5CCGEEMJESAulQfJlQdm2bVuOHj1Kv379aNYse78ijDEPIYQQQoj/ApPu8hb/bdLlnX3S5Z190uVtGOnyzj7p8s6+3Ojyjjm9K+ORMsmmSkujzSuvyJctlEIIIYQQeuSyQQb5718IUAghhBBC5ChpoRRCCCGEkJNyDCIFpRBCCCGEdHkbRLq8hRBCCCGEQaSFUgghhBBCm6h2gjxNCkohhBBCCOnyNoh0eQshhBBCCINIC6UQQgghhJzlbRApKIUQQgghpMvbIFJQCtX8811/tSOkaVG3PWpHSNfW8DtqR0jXGBO+fWBFG1u1I6Rr6/1/1I6QrrneldSOkKb4zYvUjpAuU761IZj+LV1znAotlImJiUyZMoVvv/2WBw8e4OnpSWBgIBMnTkSj0eR6HkNIQSmEEEIIoYK5c+fyxRdfsGbNGipVqsQ///zDRx99hJOTE0OGDFE7XpZIQSmEEEIIoUIL5Z9//knbtm1p1aoVACVLlmTjxo0cPXo017MYSs7yFkIIIUS+pyiJRnvExsYSERGh94iNjU3xmm+99RZ79+7l8uXLAJw+fZpDhw7RokWL3H77BpOCUgghhBDCiGbPno2Tk5PeY/bs2SnGGzt2LB9++CE+Pj5YWlpSrVo1hg4dSpcuXVRIbRjp8hZCCCGEMGKX97hx4xg+fLjeMGtr6xTjbdmyhfXr17NhwwYqVarEqVOnGDp0KJ6envTo0cNoeXKDFJRCCCGEEEa8bJC1tXWqBeTrRo0apWulBKhcuTI3b95k9uzZea6glC5vIYQQQggVREdHY2amX4qZm5ujzYMXWZcWSiGEEEIIFYq4gIAAZs6cSfHixalUqRInT55k0aJF9OzZM9ezGEoKSiGEEEIIFe6Us3z5ciZNmsSAAQMICwvD09OTvn378umnn+Z6FkNJQSmEEEIIoQJHR0eWLFnCkiVL1I5iMCkohRBCCCHy4HGLpkROyjGyKVOmULVqVaPNLzAwkHbt2hltfqkJCQlBo9Hw7NmzTI3v5+fH0KFDczSTEEIIkasUrfEe+VC+a6H866+/ePvtt2nevDk///yz2nEICQmhUaNGhIeH4+zsnOL5pUuXoiiK0V7Pz8+PqlWr6jWvv/XWW9y/fx8nJyejvU5uSNRq+XL7H/x85DxPIqJwdXagzVuV6dOqHhqNRu14VO/ahOpdm+JczBWAR1fucGjpVq6FnFY52f/079eDEcP74+7uypkzoXwydBLH/jmldizaDWjPm83rUrRMMeJiYrl0/CLr56zl3r931Y4GmH4+MN3PtmD/bhQc0E1vWNz129xp00ulRPparv6D+y9iUgzvULkY4xpVUCHR/+SF9a5Gnar0HNiVir4+uLm7MjhwFPt2H1Q7VuZIC6VB8l1BGRQUxODBgwkKCuLevXt4enqqHSlduVHkWVlZ4e7unuOvY2yrdx/huwMnmfZRa8p4Fib05gMmr/4ZB1trOjeppXY8Xtx/yv65m3h6/QEajQbf9+vzwcrhrGo5nsdX1P8C+OCDNiyYP5kBA8dy9NhJhgzuza6f11PxjQY8evRE1WyV3nyDX9fu4urpK5hbmNN5dDcmrpvCsKaDiH2Z8vZlkk+fKX+2AHFXbnC/zxjd/0pioopp9H3b8U20r/yIv/okkv7bTtCsXBEVUyUx9fUOwNbOlkvnr/Djhh0sC56ndhyRi/JVl3dkZCSbN2+mf//+tGrViuDgYN1zyd2+P//8M76+vtjY2FCnTh3OnTunGyc4OBhnZ2e2bdtGuXLlsLGxwd/fn9u3b6f6egcPHsTS0pIHDx7oDR86dCj169fPVObXu7z9/PwYNGgQgwYNwsnJicKFCzNp0iS9VszPP/9cl69IkSK8//77unkdOHCApUuXotFo0Gg03LhxI9Uu78OHD+Pn54ednR0FCxbE39+f8PDwVDP+/PPPODk5sX79+ky9J2M5fe0OflXK0cC3LEULO9Oshg91K5Xi3PX7uZojLVf2nuTa/tOE33jI0+sPCJn/HXHRMRStXlbtaAAM+6QPq4I2sGbtFi5cuMKAgWOJjn7JR4Efqh2NmT2mEvL9Pu5cuc3NCzf4bMRSXIu5UbpyGbWjAaafz5Q/W0gqIBOfhOse2mcRakfScbGzorC9te7xx43HeDnZUqNoQbWjmfx6B3Bo318sm/MVe3cfUDtK1mm1xnvkQ/mqoNyyZQs+Pj54e3vTtWtXvvnmmxTdyaNGjWLhwoUcO3YMV1dXAgICiI+P1z0fHR3NzJkzWbt2LYcPH+bZs2e6K9y/rkGDBpQuXZp169bphsXHx7N+/XqDrjG1Zs0aLCwsOHr0KEuXLmXRokWsWrUKgH/++YchQ4Ywbdo0Ll26xC+//EKDBg2ApO7zunXr0qdPH+7fv8/9+/fx8vJKMf9Tp07RpEkTKlasyF9//cWhQ4cICAggMZVWhA0bNtCpUyfWr1+f6/cerVKmGH9fvMnNB0ktLpduP+TkldvUe6N0rubIDI2ZhooBdbC0tebuiatqx8HS0pLq1X3Zu+8P3TBFUdi77xB16tRQMVnq7BztAIh8FqlyktSZUr688NlaFi9K8b0b8dq9Btc5YzF3d1U7UqriE7XsunifthWLmsRhNK8zpfXuP0GOoTRIvuryDgoKomvXrgA0b96c58+fc+DAAfz8/HTjTJ48mWbNmgFJhVuxYsXYunUrHTp0AJIKwhUrVvDmm2/qxqlQoQJHjx6ldu3aKV6zV69erF69mlGjRgGwY8cOYmJidPPLDi8vLxYvXoxGo8Hb25uzZ8+yePFi+vTpw61bt7C3t6d169Y4OjpSokQJqlWrBiR1n1tZWWFnZ5duF/e8efOoWbMmn3/+uW5YpUqVUoz32WefMWHCBHbs2EHDhg3TzRwbG0tsrH6XjDYuHmsry6y8dT09W9QlKiaWdp9+jbmZGYlaLYPaNaRVnTeyPU9jc/X2InDrFCysLYmLiuH7votNoru7cGEXLCwsCHv4WG94WNgjfLxNp7UDQKPREDi5NxePhXL78i2146RgavlM/bONOXuRuEnzib9xB/PCLhTs3xXPNYu48+7HKNEv1Y6nZ/+1MF7EJhBQwUPtKCmY2nonRL5pobx06RJHjx6lU6dOAFhYWNCxY0eCgoL0xqtbt67ubxcXF7y9vblw4YJumIWFBbVq/e/4PB8fH5ydnfXGeVVgYCBXr17lyJEjQFK3eYcOHbC3t8/2e6lTp47er+W6dety5coVEhMTadasGSVKlKB06dJ069aN9evXEx0dnaX5J7dQpuf7779n2LBh7NmzJ8NiEmD27Nk4OTnpPeavN+ykqN/+ucCuv88zu3dbNk78iOkftWbtb3+z/c8zBs3XmJ78e49VLcazuu2nHP92LwEL+1G4XFG1Y+Upvaf3xat8cRYPWqB2lFSZej5T8/LQMaJ++4O4y9d5+edxHgyYiLmjAw7+Ge9Hctu20HvUK1EINwcbtaOkIOtdDpAub4Pkm4IyKCiIhIQEPD09sbCwwMLCgi+++IIffviB58+f59jrurm5ERAQwOrVq3n48CG7d+/O0VsqOTo6cuLECTZu3IiHhweffvopVapUyfQlgQBsbW0zHKdatWq4urqmethAasaNG8fz58/1HqO6tMp0ptQs/n4fH7WoS/PaFSlXzI3WdSvTtWltvtn9l0HzNSZtfCLhNx/y4NwNQuZtJuzCLWp95K92LB4/fkpCQgJuRQrrDXdzc+XBw0cqpUqp17SPqd6kFlM7TeTpA/VPJnmdKebLK59tMu2LKOJu3sGiuGmdIHkv4iV/335Cu0qm9wPQFNe7/wTp8jZIvigoExISWLt2LQsXLuTUqVO6x+nTp/H09GTjxo26cZNbEgHCw8O5fPkyFSpU0JvXP//8o/v/0qVLPHv2TG+c1/Xu3ZvNmzfz9ddfU6ZMGerVq2fQ+/n777/1/j9y5AjlypXD3NwcSGpFbdq0KfPmzePMmTPcuHGDffv2AUlndKd2LOSrfH192bt3b7rjlClThv379/PTTz8xePDgDDNbW1tToEABvYch3d0AMXHxmL12XJOZmQat1niXWTI2jZkGcwPftzHEx8dz4sQZGjd6WzdMo9HQuNHbHDlyXMVk/9Nr2sfU9q/D1E4TCbsdpnacFEw1X174bF+lsbXB0suDxEdP1Y6iZ3voPVxsrahfqnDGI+ciU13vhMgXx1Du3LmT8PBwevXqleIyPO3btycoKIj58+cDMG3aNAoVKkSRIkWYMGEChQsX1jvL2tLSksGDB7Ns2TIsLCwYNGgQderUSfX4yWT+/v4UKFCAGTNmMG3atFTHOXv2LI6Ojrr/NRoNVapUSXXcW7duMXz4cPr27cuJEydYvnw5Cxcu1L3Xf//9lwYNGlCwYEF27dqFVqvF29sbgJIlS/L3339z48YNHBwccHFxSTH/cePGUblyZQYMGEC/fv2wsrJi//79fPDBBxQu/L+da/ny5dm/fz9+fn5YWFjk+q2jGviWY9XPf+LuUoAynoW5dOsh3+45Stt6qS+33OY3uiPXQk4Tce8xVva2VGr7FiXqVGBjt7lqRwNg8dKVrA5azPETZzh27CRDBvfB3t6W4DWb1Y5G7xl9ebtNA+b1mUVM1EucXZ0BiI6IJi42Tt1wmH4+U/5sXUb0IfrAERLuhWHuWoiCA7tDopbI3fvVjqajVRR+unCP1hU8sTAznXYXU1/vAOzsbCleqpju/2LFPfGpVI7nzyK4f/ehiskyIZ92VRtLvigog4KCaNq0aarXdGzfvr2uJQ9gzpw5fPLJJ1y5coWqVauyY8cOrKysdOPb2dkxZswYOnfuzN27d6lfv36K4zBfZ2ZmRmBgILNmzaJ79+6pjpN8JnYyc3NzEhISUh23e/fuvHz5ktq1a2Nubs4nn3zCxx9/DICzszM//vgjU6ZMISYmhnLlyrFx40bdSTUjR46kR48eVKxYkZcvX3L9+vUU8y9fvjy//fYb48ePp3bt2tja2vLmm2/qjj99lbe3N/v27cPPzw9zc3NdYZsbxnZuxmfbDjJ7/a88fRGNq7MD7RtUo2/A2xlPnAvsCxegzaJ+OLg5E/simrCLt9nYbS7XD53LeOJc8N1323Et7MKUT0fi7u7K6dPnadW6K2FhjzOeOIf5d2sJwNQts/SGfzZiKSHf71Mjkh5Tz2fKn61FEVfc5o7H3NmRxPDnxJw4z90un6ANz7lDj7Lq71tPefAihnYVTasb3tTXO4BKVSsQvPUL3f9jpg0DYNumnUz4ZLpasTInn3ZVG4tGMeZtWPKwjO5YA0kn1AwdOjRLxyMm69WrF48ePWL79u0G5UztTjd51cuDwWpHSNOibnvUjpCuyfdD1I6Qrnc9aqodIc/aev+fjEdS0WXvlFd8MBXu/cqrHSFdPealfs1iUxEa8yDjkVRy/uHfGY9koJc/zsp4pEyyfW+80eaVV+SLFko1PX/+nLNnz7JhwwaDi0khhBBC5BDp8jaIFJQ5rG3bthw9epR+/frprm8phBBCCBMjBaVBpKD8f35+fhle/iYwMJDAwMAszTckJCT7oXJhfkIIIYQA5AhAg5jO6WtCCCGEECJPkhZKIYQQQgjp8jaIFJRCCCGEEFJQGkS6vIUQQgghhEGkhVIIIYQQQi5sbhApKIUQQgghpMvbINLlLYQQQgghDCItlEIIIYQQch1Kg0hBKYQQQgghXd4GkS5vIYQQQghhEGmhFKrZ98GvakdI0ymbaLUjiBwyt8BLtSOkKzCmgdoR0nUhTO0EaSs/bKvaEdI11cNP7QjpWtXSUe0I6pIWSoNIQSmEEEIIIZcNMogUlEIIIYTI9xStnJRjCDmGUgghhBBCGERaKIUQQggh5BhKg0hBKYQQQgghx1AaRLq8hRBCCCGEQaSFUgghhBBCTsoxiBSUQgghhBByDKVBpMtbCCGEEEIYRFoohRBCCCGkhdIgUlAKIYQQQihyDKUhpMv7P+jGjRtoNBpOnTqldhQhhBAib9BqjffIh6SgNBF//fUX5ubmtGrVSu0oeVaZwW1o9XAjFad3VzsKAO0GtGf29gWsPb+JVcfXMOrrcXiWLqp2LD39+/Xg6uUjREZc489DO6hVs6rakQDTX3YF+3ej9Nnf9B7FtgepHStVprZdvM5U85nitlG9axN6/zKbkedWMfLcKnpsnUIZvypqx9KjcS6E7cdjcVz+IwW++hmH6SsxL1le7VgiF0iXt4kICgpi8ODBBAUFce/ePTw9PVMdT1EUEhMTsbDI/Y8uLi4OKyurXH/dzHCqWpri3ZsQcf6m2lF0Kr35Br+u3cXV01cwtzCn8+huTFw3hWFNBxH7MlbteHzwQRsWzJ/MgIFjOXrsJEMG92bXz+up+EYDHj16omo2U192AHFXbnC/zxjd/0piooppUmeK28WrTDWfqW4bL+4/Zf/cTTy9/gCNRoPv+/X5YOVwVrUcz+Mrd1XLpWPngMOEpSRcOEX0onFoXzzHvEhRlKgXaifLHLlskEGkhdIEREZGsnnzZvr370+rVq0IDg7WPRcSEoJGo2H37t3UqFEDa2trDh06hFarZd68eZQtWxZra2uKFy/OzJkz9eb777//0qhRI+zs7KhSpQp//fWX3vOHDh2ifv362Nra4uXlxZAhQ4iKitI9X7JkSaZPn0737t0pUKAAH3/8MY0bN2bQoEF683n06BFWVlbs3bvX+AsnE8ztrKn6+SDOjFhJ/LOojCfIJTN7TCXk+33cuXKbmxdu8NmIpbgWc6N05TJqRwNg2Cd9WBW0gTVrt3DhwhUGDBxLdPRLPgr8UO1oJr/sIKmATHwSrnton0WoHUmPqW4XyUw5n6luG1f2nuTa/tOE33jI0+sPCJn/HXHRMRStXlbVXMmsW36I9ukjXn6zgMTrl1AePyDh/HG0j+6rHS1zFK3xHvmQFJQmYMuWLfj4+ODt7U3Xrl355ptvUF47OHjs2LHMmTOHCxcu4Ovry7hx45gzZw6TJk0iNDSUDRs2UKRIEb1pJkyYwMiRIzl16hTly5enU6dOJCQkAHDt2jWaN29O+/btOXPmDJs3b+bQoUMpisUFCxZQpUoVTp48yaRJk+jduzcbNmwgNvZ/rUTffvstRYsWpXHjxjm0hNL3xpyehP1+kicHz6ny+pll52gHQOSzSJWTgKWlJdWr+7J33x+6YYqisHffIerUqaFistSZ0rJLZlm8KMX3bsRr9xpc54zF3N1V7Uh6TH27MNV8eWXb0JhpqBhQB0tba+6euKp2HAAsq9Yl8fpl7AZMwnHpdzhM+RLLBi3VjiVyiXR5m4CgoCC6du0KQPPmzXn+/DkHDhzAz89PN860adNo1qwZAC9evGDp0qWsWLGCHj16AFCmTBnefvttvfmOHDlSd0zm1KlTqVSpElevXsXHx4fZs2fTpUsXhg4dCkC5cuVYtmwZDRs25IsvvsDGxgaAxo0bM2LECN08ixYtyqBBg/jpp5/o0KEDAMHBwQQGBqLRaNJ8j7GxsXpFKEC8koilxjyri0uPR7u6FPAtyWH/iQbNJ6dpNBoCJ/fm4rFQbl++pXYcChd2wcLCgrCHj/WGh4U9wsfbdFoBwfSWHUDM2YvETZpP/I07mBd2oWD/rniuWcSddz9GiX6pdjyT3y5MOZ+pbxuu3l4Ebp2ChbUlcVExfN93sWl0dwNmbh5YNQ4g9tfvidm5EfNS3th2GQiJ8cQf3qN2vIxJl7dBpIVSZZcuXeLo0aN06tQJAAsLCzp27EhQkP4B/jVr1tT9feHCBWJjY2nSpEm68/b19dX97eHhAUBYWBgAp0+fJjg4GAcHB93D398frVbL9evXU31dABsbG7p168Y333wDwIkTJzh37hyBgYHpZpk9ezZOTk56jy1RoelOkxEbTxcqzejBqQGfoY2NN2heOa339L54lS/O4kEL1I6S55jisnt56BhRv/1B3OXrvPzzOA8GTMTc0QEH/4ZqRzP57cLU85m6J//eY1WL8axu+ynHv91LwMJ+FC5nIiesaTQk3rxC7A/foL11lfgDPxN3YBdWfgFqJ8sURas12iM/khZKlQUFBZGQkKB3Eo6iKFhbW7NixQrdMHt7e93ftra2mZq3paWl7u/k1kPt/6/okZGR9O3blyFDhqSYrnjx4qm+brLevXtTtWpV7ty5w+rVq2ncuDElSpRIN8u4ceMYPny43rB9ZXtn6n2kxalKaaxdnXh7zyzdMDMLc1zq+lCi5zvs9upmEr84e037mOpNajG5wziePlD3ZJdkjx8/JSEhAbcihfWGu7m58uDhI5VSpWSKyy412hdRxN28g0Xx1E+my02mvl2Yej5T3za08YmE33wIwINzN/CsUppaH/mze/w3KicD5dlTtPf0T7DS3r+FZc36KiUSuUkKShUlJCSwdu1aFi5cyDvvvKP3XLt27di4cSM+Pj4ppitXrhy2trbs3buX3r2zV5RVr16d0NBQypbN+sHclStXpmbNmqxcuZINGzboFb5psba2xtraWm+Yod3djw+e40DDUXrDqizpR+TVe1xbsd1kisna/nWY3HECYbfD1I6jEx8fz4kTZ2jc6G22b/8VSPrR0bjR23z+xWqV0yUx1WWXGo2tDZZeHkTuUOfEtFeZ+nZh6vnywrbxKo2ZBnMry4xHzAUJV89j5u6lN8ysSDG0Tx6qlCiLTOA7Iy+TglJFO3fuJDw8nF69euHk5KT3XPv27QkKCmL+/PkpprOxsWHMmDGMHj0aKysr6tWrx6NHjzh//jy9evXK1GuPGTOGOnXqMGjQIHr37o29vT2hoaHs2bMnUwVi7969GTRoEPb29rz77ruZe8NGlhgVQ+TFO/rDomOJD49MMVwNvWf05e02DZjXZxYxUS9xdnUGIDoimrjYOHXDAYuXrmR10GKOnzjDsWMnGTK4D/b2tgSv2ax2NJNfdi4j+hB94AgJ98Iwdy1EwYHdIVFL5O79akcz+e3C1POB6W4bfqM7ci3kNBH3HmNlb0ultm9Rok4FNnabq2quZHG//YD9+KVYt+pE/LEDmJf2wcqvJS+DF6sdLXPy6dnZxiIFpYqCgoJo2rRpimISkgrKefPmcebMmVSnnTRpEhYWFnz66afcu3cPDw8P+vXrl+nX9vX15cCBA0yYMIH69eujKAplypShY8eOmZq+U6dODB06lE6dOulO4BH6/Lslnd04dcssveGfjVhKyPf71Iik57vvtuNa2IUpn47E3d2V06fP06p1V8LCHmc8cQ4z9WVnUcQVt7njMXd2JDH8OTEnznO3yydow5+rHU0YgaluG/aFC9BmUT8c3JyJfRFN2MXbbOw2l+uHTONM+cTrl4heMRmb93tj3bYb2kf3ebnhC+KPqL/NipynUV6/Po0QmXDjxg3KlCnDsWPHqF69erbm8XORTkZOZTzBNtFqR0jX1vv/qB0hXe961Mx4JJXMLaD+WdjpuRBWSO0IeVbb8INqR0jXVA8/tSOka1Bj0+2adlr9e46/RtS0Lkabl/2n6402r7xCWihFlsTHx/PkyRMmTpxInTp1sl1MCiGEECYln56dbSxSUIosOXz4MI0aNaJ8+fJ8//33ascRQgghjENOyjGIFJQiS/z8/FLcxUcIIYQQ+ZsUlEIIIYQQcpa3QaSgFEIIIYSQLm+DyK0XhRBCCCGEQaSFUgghhBD5Xn69B7exSEEphBBCCCFd3gaRLm8hhBBCCGEQaaEUQgghhJAWSoNIQSmEEEIIIZcNMoh0eQshhBBCCINIC6UQQgghhHR5G0QKSiFSURUHtSOkK7RgMbUj5FkbI1zVjpCuqph2t1sFtydqR0jTZbdKakdI15iISLUjpOutXS/UjpCm87nwGooUlAaRglIIIYQQQgpKg8gxlEIIIYQQwiDSQimEEEIIIXfKMYgUlEIIIYQQ0uVtEOnyFkIIIYQQBpEWSiGEEEIIaaE0iBSUQgghhMj3FEUKSkNIl7cQQgghhEru3r1L165dKVSoELa2tlSuXJl//vlH7VhZJi2UQgghhBAqdHmHh4dTr149GjVqxO7du3F1deXKlSsULFgw17MYSgpKIYQQQggVCsq5c+fi5eXF6tWrdcNKlSqV6zmMQbq8hRBCCCGMKDY2loiICL1HbGxsivG2b99OzZo1+eCDD3Bzc6NatWqsXLlShcSGk4IyHVOmTKFq1apqxzCqkiVLsmTJEt3/Go2Gbdu2qZZHCCGEMAWKVjHaY/bs2Tg5Oek9Zs+eneI1//33X7744gvKlSvHr7/+Sv/+/RkyZAhr1qxRYQkY5j/b5R0YGKj3gbi4uFCrVi3mzZuHr69vrmZRFIWVK1cSFBTE+fPnsbCwoGzZsnTt2pWPP/4YOzu7XM3zqvv37+fJYzVSU2ZwG3wmduL617sJnbRW7ThU79qE6l2b4lzMFYBHV+5waOlWroWcVjlZkhp1qtJzYFcq+vrg5u7K4MBR7Nt9UO1YALQb0J43m9elaJlixMXEcun4RdbPWcu9f++qHQ0w/c/2Vaa2XRTs342CA7rpDYu7fps7bXqplEifKecz9e0CTHu/kiEjdnmPGzeO4cOH6w2ztrZO+ZJaLTVr1mTWrFkAVKtWjXPnzvHll1/So0cPo+XJDf/ZghKgefPmuuMSHjx4wMSJE2ndujW3bt3K1RzdunXjxx9/ZOLEiaxYsQJXV1dOnz7NkiVLKFmyJO3atUsxTVxcHFZWVjmezd3dPcdfIzc4VS1N8e5NiDh/U+0oOi/uP2X/3E08vf4AjUaD7/v1+WDlcFa1HM/jK+p/Adja2XLp/BV+3LCDZcHz1I6jp9Kbb/Dr2l1cPX0FcwtzOo/uxsR1UxjWdBCxL1N2G+U2U/9sk5nidgEQd+UG9/uM0f2vJCaqmCYlU81n6tsFmPZ+JUNGvPOitbV1qgXk6zw8PKhYsaLesAoVKvDDDz8YL0wu+U93eVtbW+Pu7o67uztVq1Zl7Nix3L59m0ePHgEwZswYypcvj52dHaVLl2bSpEnEx8enmM9XX32Fl5cXdnZ2dOjQgefPnwNw8OBBLC0tefDggd74Q4cOpX79+gBs2bKF9evXs3HjRsaPH0+tWrUoWbIkbdu2Zd++fTRq1AhIalFt164dM2fOxNPTE29vbwDWrVtHzZo1cXR0xN3dnc6dOxMWFqZ7rZo1a7JgwQLd/+3atcPS0pLIyEgA7ty5g0aj4erVq6kuo1e7vG/cuIFGo+HHH3+kUaNG2NnZUaVKFf766y+9aVauXKlbHu+++y6LFi3C2dk5U59JTjC3s6bq54M4M2Il8c+iVMvxuit7T3Jt/2nCbzzk6fUHhMz/jrjoGIpWL6t2NAAO7fuLZXO+Yu/uA2pHSWFmj6mEfL+PO1duc/PCDT4bsRTXYm6UrlxG7WiA6X+2YLrbBSQVaIlPwnUP7bMItSPpMdV8pr5dgGnvV0xRvXr1uHTpkt6wy5cvU6JECZUSZd9/uqB8VWRkJN9++y1ly5alUKFCADg6OhIcHExoaChLly5l5cqVLF68WG+6q1evsmXLFnbs2MEvv/zCyZMnGTBgAAANGjSgdOnSrFu3Tjd+fHw869evp2fPngCsX78eb29v2rZtmyKTRqPByclJ9//evXu5dOkSe/bsYefOnbr5TZ8+ndOnT7Nt2zZu3LhBYGCgbpqGDRsSEhICJHWt//HHHzg7O3Po0CEADhw4QNGiRSlbNvNfdBMmTGDkyJGcOnWK8uXL06lTJxISEgA4fPgw/fr145NPPuHUqVM0a9aMmTNnZnreOeGNOT0J+/0kTw6eUzVHejRmGioG1MHS1pq7J1Iv7kXa7ByTDguJfBapcpKUTPWzNeXtwrJ4UYrv3YjX7jW4zhmLubur2pH0mHq+ZKa8XeRFxjyGMrOGDRvGkSNHmDVrFlevXmXDhg18/fXXDBw4MAffac74T3d579y5EwcHBwCioqLw8PBg586dmJkl1dETJ07UjVuyZElGjhzJpk2bGD16tG54TEwMa9eupWjRogAsX76cVq1asXDhQtzd3enVqxerV69m1KhRAOzYsYOYmBg6dOgAwJUrV3StjRmxt7dn1apVel3dyYUpQOnSpVm2bBm1atUiMjISBwcH/Pz8CAoKIjExkXPnzmFlZUXHjh0JCQmhefPmhISE0LBhwywtt5EjR9KqVSsApk6dSqVKlbh69So+Pj4sX76cFi1aMHLkSADKly/Pn3/+qSuA0xIbG5viDLd4JRFLjXmWsr3Oo11dCviW5LD/xIxHVoGrtxeBW6dgYW1JXFQM3/ddbFJdonmBRqMhcHJvLh4L5fbl3D1cJT2m/Nma8nYRc/YicZPmE3/jDuaFXSjYvyueaxZx592PUaJfqh3P5PMlM9XtIk9T4bJBtWrVYuvWrYwbN45p06ZRqlQplixZQpcuXXI9i6H+0y2UjRo14tSpU5w6dYqjR4/i7+9PixYtuHkz6XiizZs3U69ePdzd3XFwcGDixIkpjq8sXry4rpgEqFu3LlqtVtdEHRgYyNWrVzly5AgAwcHBdOjQAXt7eyBrt3KqXLlyiuMmjx8/TkBAAMWLF8fR0VFXHCbnrF+/Pi9evODkyZMcOHCAhg0b4ufnp2u1PHDgAH5+fpnOAOidtOTh4QGg62a/dOkStWvX1hv/9f9Tk9oZb1uiQrOU63U2ni5UmtGDUwM+Qxub8lAFU/Dk33usajGe1W0/5fi3ewlY2I/C5YpmPKHQ6T29L17li7N40IKMR85FpvrZmvp28fLQMaJ++4O4y9d5+edxHgyYiLmjAw7+Wfvhm1NMPV8yU90uRNa1bt2as2fPEhMTw4ULF+jTp4/akbLlP91CaW9vr9fVu2rVKpycnFi5ciWtWrWiS5cuTJ06FX9/f5ycnNi0aRMLFy7M0mu4ubkREBDA6tWrKVWqFLt379YVc5DUgnfx4sVM531VVFQU/v7++Pv7s379elxdXbl16xb+/v7ExcUB4OzsTJUqVQgJCeGvv/6iWbNmNGjQgI4dO3L58mWuXLmS5RZKS0tL3d8ajQZIOhPNEKmd8bavbG+D5ulUpTTWrk68vWeWbpiZhTkudX0o0fMddnt1U+UX56u08YmE33wIwINzN/CsUppaH/mze/w3qubKK3pN+5jqTWoxucM4nj54onYcPab62eaF7eJV2hdRxN28g0VxT7WjpMoU85nydpGnGfGknPzoP11Qvk6j0WBmZsbLly/5888/KVGiBBMmTNA9n9xy+apbt25x7949PD2TdiZHjhzBzMxMrxu7d+/edOrUiWLFilGmTBnq1aune65z5858+OGH/PTTTymOo1QUhYiICL3jKF918eJFnjx5wpw5c/Dy8gJI9f6eDRs2ZP/+/Rw9epSZM2fi4uJChQoVmDlzJh4eHpQvXz4LSyl93t7eHDt2TG/Y6/+nJrUz3gzt7n588BwHGo7SG1ZlST8ir97j2ortJvWlmUxjpsHcyjLjEQW9pn1Mbf86TO44gbDbYRlPoDJT+Wzz2nahsbXB0suDyB171Y6SKlPLl9e2i7wkK8c+ipT+0wVlbGys7gzs8PBwVqxYQWRkJAEBAURERHDr1i02bdpErVq1+Pnnn9m6dWuKedjY2NCjRw8WLFhAREQEQ4YMoUOHDnqX2/H396dAgQLMmDGDadOm6U3foUMHtm7dSqdOnZg4cSLvvPMOrq6unD17lsWLFzN48OBULxsESd3tVlZWLF++nH79+nHu3DmmT5+eYjw/Pz+WL1+Oq6srPj4+umErVqzggw8+yO7iS9XgwYNp0KABixYtIiAggH379rF7925dS2ZuSoyKIfLiHf1h0bHEh0emGK4Gv9EduRZymoh7j7Gyt6VS27coUacCG7vNVTsaAHZ2thQvVUz3f7HinvhUKsfzZxHcv/tQxWTQe0Zf3m7TgHl9ZhET9RJnV2cAoiOiiYuNUzUbmPZna+rbhcuIPkQfOELCvTDMXQtRcGB3SNQSuXu/2tEA085n6tsFmPZ+ReSs/3RB+csvv+iOAXR0dMTHx4fvvvtOd0zhsGHDGDRoELGxsbRq1YpJkyYxZcoUvXmULVuW9957j5YtW/L06VNat27N559/rjeOmZkZgYGBzJo1i+7du+s9p9FodGdtffPNN8ycORMLCwvKlStH9+7d8ff3TzO/q6srwcHBjB8/nmXLllG9enUWLFhAmzZt9MarX78+Wq1Wr2vbz8+PpUuXZvn4yYzUq1ePL7/8kqlTpzJx4kT8/f0ZNmwYK1asMOrr/BfYFy5Am0X9cHBzJvZFNGEXb7Ox21yuHzKNs24rVa1A8NYvdP+PmTYMgG2bdjLhk5Q/XHKTf7eWAEzdMktv+GcjlhLy/T41Iukx9c/WlFkUccVt7njMnR1JDH9OzInz3O3yCdrw52pHA0w7n6lvF2Da+5UMSZe3QTRKVs4aEWnq1asXjx49Yvv27WpHyXV9+vTh4sWL/PHHH1ma7ucinXIokeFO2Zj2+WobYkzn8jSpqWhjuhfMr4qD2hHSVTXGtL/VKrjJMXvZNSbCVu0I6QqNeZDxSCo5//DvHH+Np+8a78Qrl6357zqc/+kWytzw/Plzzp49y4YNG/JNMblgwQKaNWuGvb09u3fvZs2aNSlabYUQQgiRf0hBaaC2bdty9OhR+vXrR7NmzdSOkyuOHj3KvHnzePHihe7amL17G3bGthBCCKEq0+4cMHlSUBro1UsE5RdbtmxRO4IQQghhVIoUlAaRglIIIYQQQgpKg5j2mQdCCCGEEMLkSQulEEIIIfI96fI2TLYKymfPnnH06FHCwsJS3JLv9eswCiGEEEKYPCkoDZLlgnLHjh106dKFyMhIChQooHeHFI1GIwWlEEIIIUQ+k+VjKEeMGEHPnj2JjIzk2bNnhIeH6x5Pnz7NiYxCCCGEEDlK0RrvkR9luYXy7t27DBkyBDs7u5zII4QQQgiR6/JrIWgsWW6h9Pf3559//smJLEIIIYQQIg/Kcgtlq1atGDVqFKGhoVSuXBlLS0u959u0aWO0cEIIIYQQuUFaKA2T5YKyT58+AEybNi3FcxqNhsTERMNTCSGEEELkJkWT8TgiTVkuKF+/TJAQ2VXB7YnaEdL0dk3TXs837FI7Qd61Ieaq2hHSdcrGXe0I6YuwVTtBmuYWeKl2hHRVxUHtCOmqalNW7QgiD5MLmwshhBAi35Mub8Nk69aLBw4cICAggLJly1K2bFnatGnDH3/8YexsQgghhBC5QtFqjPbIj7JcUH777bc0bdoUOzs7hgwZwpAhQ7C1taVJkyZs2LAhJzIKIYQQQuQouQ6lYbLc5T1z5kzmzZvHsGHDdMOGDBnCokWLmD59Op07dzZqQCGEEEIIYdqy3EL577//EhAQkGJ4mzZtuH79ulFCCSGEEELkJkXRGO2RH2W5oPTy8mLv3r0phv/+++94eXkZJZQQQgghRG6SLm/DZLnLe8SIEQwZMoRTp07x1ltvAXD48GGCg4NZunSp0QMKIYQQQgjTluWCsn///ri7u7Nw4UK2bNkCQIUKFdi8eTNt27Y1ekAhhBBCiJyWX8/ONpZsXYfy3Xff5d133zV2FiGEEEIIVSiK2gnytmxdh1IIIYQQQohkmWqhdHFx4fLlyxQuXJiCBQui0aTdLPz06VOjhRNCCCGEyA3S5W2YTBWUixcvxtHRUfd3egXlf8mUKVPYtm0bp06dUjuKEEIIIXKQFJSGyVRB2aNHD93fgYGBOZXFqAIDA1mzZo3ufxcXF2rVqsW8efPw9fVVMZnhXi3ozc3N8fT05P3332f27NlYW1urmCx3FezfjYIDuukNi7t+mztteqmUKCWNcyFsOvTBonJtNFbWaMPu8TJoPok3LqsdjRp1qtJzYFcq+vrg5u7K4MBR7Nt9UO1YALQb0J43m9elaJlixMXEcun4RdbPWcu9f++qHQ2QZWcIU89nyvuV6l2bUL1rU5yLuQLw6ModDi3dyrWQ0yonS2Lq+UTOyvJJOebm5ty/fx83Nze94U+ePMHNzY3ExESjhTNU8+bNWb16NQAPHjxg4sSJtG7dmlu3bqmczHCrV6+mefPmxMfHc/r0aT766CPs7e2ZPn262tFyVdyVG9zvM0b3v2JC6x92DjhMWErChVNELxqH9sVzzIsURYl6oXYyAGztbLl0/go/btjBsuB5asfRU+nNN/h17S6unr6CuYU5nUd3Y+K6KQxrOojYl7Fqx5Nl9x/OB6a7X3lx/yn7527i6fUHaDQafN+vzwcrh7Oq5XgeX1G/IDf1fBmRk3IMk+WTcpQ0lnhsbCxWVlYGBzIma2tr3N3dcXd3p2rVqowdO5bbt2/z6NEjAMaMGUP58uWxs7OjdOnSTJo0ifj4+DTnd+zYMZo1a0bhwoVxcnKiYcOGnDhxQm8cjUbDqlWrePfdd7Gzs6NcuXJs375db5zz58/TunVrChQogKOjI/Xr1+fatWu651etWkWFChWwsbHBx8eHzz//PEUWZ2dn3N3d8fLyonXr1rRt2zZFlp9++onq1atjY2ND6dKlmTp1KgkJCbrnFy1aROXKlbG3t8fLy4sBAwYQGRmpez44OBhnZ2d27tyJt7c3dnZ2vP/++0RHR7NmzRpKlixJwYIFGTJkiGo/JJTERBKfhOse2mcRquRIjXXLD9E+fcTLbxaQeP0SyuMHJJw/jvbRfbWjAXBo318sm/MVe3cfUDtKCjN7TCXk+33cuXKbmxdu8NmIpbgWc6N05TJqRwNk2RnC1POB6e5Xruw9ybX9pwm/8ZCn1x8QMv874qJjKFq9rNrRANPPlxFFqzHaIz/KdAvlsmXLgP8VTA4ODrrnEhMTOXjwID4+PsZPaCSRkZF8++23lC1blkKFCgHg6OhIcHAwnp6enD17lj59+uDo6Mjo0aNTnceLFy/o0aMHy5cvR1EUFi5cSMuWLbly5YruGFOAqVOnMm/ePObPn8/y5cvp0qULN2/exMXFhbt379KgQQP8/PzYt28fBQoU4PDhw7pCb/369Xz66aesWLGCatWqcfLkSfr06YO9vb3eoQevunz5Mvv27dM7HOGPP/6ge/fuLFu2TFewfvzxxwBMnjwZADMzM5YtW0apUqX4999/GTBgAKNHj9YrYKOjo1m2bBmbNm3ixYsXvPfee7z77rs4Ozuza9cu/v33X9q3b0+9evXo2LFj9j+gbLIsXpTiezeixMURc/oCT5cEkfjgUa7nSI1l1boknPsHuwGTMPf2RQl/Quy+7cQf3KV2tDzHztEOgMhnkRmMKV5n6svOFPOZ8n4lmcZMQ4VWb2Jpa83dE1fVjpOCqedLTX69ZaKxZLqgXLx4MZDUQvnll19ibm6ue87KyoqSJUvy5ZdfGj+hAXbu3KkrfKOiovDw8GDnzp2YmSU1zE6cOFE3bsmSJRk5ciSbNm1Ks6Bs3Lix3v9ff/01zs7OHDhwgNatW+uGBwYG0qlTJwBmzZrFsmXLOHr0KM2bN+ezzz7DycmJTZs2YWlpCUD58uV1006ePJmFCxfy3nvvAVCqVClCQ0P56quv9ArKTp06YW5uTkJCArGxsbRu3Zpx48bpnp86dSpjx47VTVO6dGmmT5/O6NGjdQXl0KFD9d7/jBkz6Nevn15BGR8fzxdffEGZMkmtB++//z7r1q3j4cOHODg4ULFiRRo1asT+/fvTLShjY2OJjdXvzorVarE2y/6Vq2LOXiRu0nzib9zBvLALBft3xXPNIu68+zFK9Mtsz9dYzNw8sGocQOyv3xOzcyPmpbyx7TIQEuOJP7xH7Xh5hkajIXByby4eC+X25bx/uEpuMvVlZ4r5TH2/4urtReDWKVhYWxIXFcP3fRebVHeyqecTOSfTBeX169cBaNSoET/++CMFCxbMsVDG0qhRI7744gsAwsPD+fzzz2nRogVHjx6lRIkSbN68mWXLlnHt2jUiIyNJSEigQIECac7v4cOHTJw4kZCQEMLCwkhMTCQ6OjrFMZmvnvRjb29PgQIFCAsLA+DUqVPUr19fV0y+KioqimvXrtGrVy/69OmjG56QkICTk5PeuIsXL6Zp06YkJiZy9epVhg8fTrdu3di0aRMAp0+f5vDhw8ycOVM3TWJiIjExMURHR2NnZ8fvv//O7NmzuXjxIhERESQkJOg9D2BnZ6crJgGKFClCyZIl9VqoixQpont/aZk9ezZTp07VGzbEtTSfFMl+N9fLQ8f+98/l68SevUjxX7/Fwb8hL7b+ku35Go1GQ+KNy8T+8A0A2ltXMS9aEiu/ACkos6D39L54lS/OpPfHZTyy0GPqy84U85n6fuXJv/dY1WI81o62+LR8k4CF/fi24wyTKdpMPV968us9uI0lyyfl7N+/Pydy5Ah7e3vKlv3fsRurVq3CycmJlStX0qpVK7p06cLUqVPx9/fXtRouXLgwzfn16NGDJ0+esHTpUkqUKIG1tTV169YlLi5Ob7zXi0WNRoNWm7Sm2trapjn/5OMXV65cyZtvvqn33KstwgDu7u669+bt7c2LFy/o1KkTM2bMoGzZskRGRjJ16lRdS+erbGxsuHHjBq1bt6Z///7MnDkTFxcXDh06RK9evYiLi9MVlKm9l/TeX1rGjRvH8OHD9YbdrZsymyG0L6KIu3kHi+KeRp1vdinPnqK9d1NvmPb+LSxr1lcpUd7Ta9rHVG9Si8kdxvH0wRO14+Qppr7sTD1fMlPbr2jjEwm/+RCAB+du4FmlNLU+8mf3+G9UTpbE1POlRytd3gbJckHZvn17ateuzZgxY/SGz5s3j2PHjvHdd98ZLZyxaTQazMzMePnyJX/++SclSpRgwoQJuudv3ryZztRw+PBhPv/8c1q2bAnA7du3efz4cZYy+Pr6smbNGuLj41MUZkWKFMHT05N///2XLl26ZGm+yQXny5dJXTLVq1fn0qVLegX1q44fP45Wq2XhwoW6QwCS782eE6ytrVNc0uixAd3dqdHY2mDp5UHkjr1GnW92JVw9j5m7l94wsyLF0D55qFKivKXXtI+p7V+HyR0nEHY7/RZwoc/Ul52p53uVqe1XXqcx02BulbLHy1SYej5hPFkuKA8ePMiUKVNSDG/RokW6rXtqiI2N5cGDB0BSl/eKFSuIjIwkICCAiIgIbt26xaZNm6hVqxY///wzW7duTXd+5cqVY926ddSsWZOIiAhGjRqVbotjagYNGsTy5cv58MMPGTduHE5OThw5coTatWvj7e3N1KlTGTJkCE5OTjRv3pzY2Fj++ecfwsPD9Vr4nj17xoMHD9BqtVy5coVp06ZRvnx5KlSoAMCnn35K69atKV68OO+//z5mZmacPn2ac+fO6Vox4+PjWb58OQEBARw+fNjkjoHNiMuIPkQfOELCvTDMXQtRcGB3SNQSuds0WtHjfvsB+/FLsW7VifhjBzAv7YOVX0teBi9WOxoAdna2FC9VTPd/seKe+FQqx/NnEdy/q27R23tGX95u04B5fWYRE/USZ1dnAKIjoomLjUt/4lwgyy77TD2fKe9X/EZ35FrIaSLuPcbK3pZKbd+iRJ0KbOw2V+1ogOnny4iclGOYLBeUkZGRqV4eyNLSkogI07i0QrJffvkFDw8PIOmMbh8fH7777jv8/PwAGDZsGIMGDSI2NpZWrVoxadKkVIvlZEFBQXz88cdUr14dLy8vZs2axciRI7OUqVChQuzbt49Ro0bRsGFDzM3NqVq1KvXq1QOgd+/e2NnZMX/+fEaNGoW9vT2VK1fWO4EG4KOPPgKSWl3d3d1p0KABs2bNwsIi6SP19/dn586dTJs2jblz52JpaYmPjw+9e/cGoEqVKixatIi5c+cybtw4GjRowOzZs+nevXuW3o+aLIq44jZ3PObOjiSGPyfmxHnudvkEbfhztaMBkHj9EtErJmPzfm+s23ZD++g+Lzd8QfyRfWpHA6BS1QoEb/1C9/+YacMA2LZpJxM+Ufd6pv7dknoBpm6ZpTf8sxFLCfle/eUnyy77TD2fKe9X7AsXoM2ifji4ORP7Ipqwi7fZ2G0u1w+dUzsaYPr5MpJfL/djLBolrQtLpqF27dq0bt2aTz/9VG/4lClT2LFjB8ePHzdqQPHf9W/ld9SOkKZCNU376Oy3dpnGxdHTUtHGXe0IaQqNeaB2hHSZ8rIzdXMLqH8Wdno2RriqHSHPmnBzfY6/xsXyLY02L5/L+e/ycFluoZw0aRLvvfce165d011GZ+/evWzcuNGkj58UQgghhEiL3CnHMFkuKAMCAti2bRuzZs3i+++/x9bWFl9fX37//XcaNmyYExmFEEIIIXKUdHkbJssFJUCrVq1o1apViuHnzp3jjTfeMDiUEEIIIYTIOwy+bsuLFy/4+uuvqV27NlWqVDFGJiGEEEKIXKVVNEZ75EfZLigPHjxI9+7d8fDwYMGCBTRu3JgjR44YM5sQQgghRK5QFI3RHvlRlrq8Hzx4QHBwMEFBQURERNChQwdiY2PZtm0bFStWzKmMQgghhBA5Sk7KMUymWygDAgLw9vbmzJkzLFmyhHv37rF8+fKczCaEEEIIIfKATLdQ7t69myFDhtC/f3/KlSuXk5mEEEIIIXJVfj320Vgy3UJ56NAhXrx4QY0aNXjzzTdZsWJFlu9jLYQQQghhiuQYSsNkuqCsU6cOK1eu5P79+/Tt25dNmzbh6emJVqtlz549vHhh2nfuEEIIIYQQOSPLZ3nb29vTs2dPDh06xNmzZxkxYgRz5szBzc2NNm3a5ERGIYQQQogcpSjGe+RHBl2H0tvbm3nz5nHnzh02btxorExCCCGEELlKrkNpGIMvbA5gbm5Ou3bt2L59uzFmJ4QQQggh8pBs3XpRCGMoVFOrdoQ0vbXLtI8JrmjjrnaEdFXFQe0IadoafkftCOkrqHaAvKtQY0e1I6Sr6i7T3ecBvN3ykdoRVJVfT6YxFikohRBCCJHv5deuamMxSpe3EEIIIYTIv6SFUgghhBD5Xj49OdtoMlVQZuVkG7l0kBBCCCHyGunyNkymCsp27dplamYajYbExERD8gghhBBC5Do5KccwmSootVrTPjNNCCGEEEKoR46hFEIIIUS+J01nhslWQRkVFcWBAwe4desWcXFxes8NGTLEKMGEEEIIIXKLgnR5GyLLBeXJkydp2bIl0dHRREVF4eLiwuPHj7Gzs8PNzU0KSiGEEEKIfCbL16EcNmwYAQEBhIeHY2try5EjR7h58yY1atRgwYIFOZFRCCGEECJHaRXjPfKjLBeUp06dYsSIEZiZmWFubk5sbCxeXl7MmzeP8ePH50RGIYQQQogcpUVjtEd+lOWC0tLSEjOzpMnc3Ny4desWAE5OTty+fdu46fIIPz8/hg4dqnYMPTdu3ECj0XDq1Kk0xwkODsbZ2TnXMgkhhBDivynLBWW1atU4duwYAA0bNuTTTz9l/fr1DB06lDfeeMPoATMrMDAQjUajexQqVIjmzZtz5syZXM/i5+eHRqNhzpw5KZ5r1aoVGo2GKVOm5Hqu13Xs2JHLly+rHcMgGudC2H48FsflP1Lgq59xmL4S85Ll1Y4FQI06Vfls3QL2n97J+Yd/07hFA7Uj6bQb0J7Z2xew9vwmVh1fw6ivx+FZuqjasXSqd21C719mM/LcKkaeW0WPrVMo41dF7Vgp9O/Xg6uXjxAZcY0/D+2gVs2qakcCTHvdA9PPZ8r7lVeVGdyGVg83UnF6d7Wj6OSVZZcaBY3RHvlRlgvKWbNm4eHhAcDMmTMpWLAg/fv359GjR3z99ddGD5gVzZs35/79+9y/f5+9e/diYWFB69atVcni5eVFcHCw3rC7d++yd+9e3fLLLkVRSEhIMGgeALa2tri5uRk8H9XYOeAwYSkkJBC9aBwvJvQiZtOXKFEv1E4GgK2dLZfOX2HG2PlqR0mh0ptv8OvaXYxvN4rpXSdjYWnBxHVTsLa1VjsaAC/uP2X/3E0EtZ7ANwETufnneT5YOZzC5Uyn6P3ggzYsmD+Z6TMWUevN5pw+E8qun9fj6lpI7Wgmve6Biecz8f1KMqeqpSnevQkR52+qHeV/8siyS4vWiI/8KMsFZc2aNWnUqBGQ1OX9yy+/EBERwfHjx6lSRd0WBGtra9zd3XF3d6dq1aqMHTuW27dv8+jRIwDGjBlD+fLlsbOzo3Tp0kyaNIn4+Hjd9FOmTKFq1aqsW7eOkiVL4uTkxIcffsiLF//bGKKioujevTsODg54eHiwcOHCVLO0bt2ax48fc/jwYd2wNWvW8M4776Qo4tatW0fNmjVxdHTE3d2dzp07ExYWpns+JCQEjUbD7t27qVGjBtbW1hw6dAitVsu8efMoW7Ys1tbWFC9enJkzZ+rN+99//6VRo0bY2dlRpUoV/vrrL91zr3d5Z+b9v3jxgi5dumBvb4+HhweLFy9WrcvfuuWHaJ8+4uU3C0i8fgnl8QMSzh9H++h+rmdJzaF9f7Fszlfs3X1A7SgpzOwxlZDv93Hnym1uXrjBZyOW4lrMjdKVy6gdDYAre09ybf9pwm885On1B4TM/4646BiKVi+rdjSdYZ/0YVXQBtas3cKFC1cYMHAs0dEv+SjwQ7WjmfS6B6adz9T3KwDmdtZU/XwQZ0asJP5ZlNpxdPLCshM5J8sFZV4RGRnJt99+S9myZSlUKKnFwNHRkeDgYEJDQ1m6dCkrV65k8eLFetNdu3aNbdu2sXPnTnbu3MmBAwf0uq5HjRrFgQMH+Omnn/jtt98ICQnhxIkTKV7fysqKLl26sHr1at2w4OBgevbsmWLc+Ph4pk+fzunTp9m2bRs3btwgMDAwxXhjx45lzpw5XLhwAV9fX8aNG8ecOXOYNGkSoaGhbNiwgSJFiuhNM2HCBEaOHMmpU6coX748nTp1Srd1M6P3P3z4cA4fPsz27dvZs2cPf/zxR6rvPzdYVq1L4vXL2A2YhOPS73CY8iWWDVqqkiWvs3O0AyDyWaTKSVLSmGmoGFAHS1tr7p64qnYcIOlY8urVfdm77w/dMEVR2LvvEHXq1FAxmTBUXtivvDGnJ2G/n+TJwXNqR9GTF5Zdekyhy3vOnDloNBqTOy8jM7J8HcpSpUqh0aS9sP7991+DAhli586dODg4AEktiR4eHuzcuVN3EtHEiRN145YsWZKRI0eyadMmRo8erRuu1WoJDg7G0dERgG7durF3715mzpxJZGQkQUFBfPvttzRp0gRIanUsVqxYqnl69uxJ/fr1Wbp0KcePH+f58+e0bt06xfGTrxaZpUuXZtmyZdSqVYvIyEjd+wGYNm0azZo1A5JaCpcuXcqKFSvo0aMHAGXKlOHtt9/Wm/fIkSNp1aoVAFOnTqVSpUpcvXoVHx+fVDOn9/5fvHjBmjVr2LBhg+79r169Gk9Pz1Tn9arY2FhiY2P1hyVqsTbP/m8aMzcPrBoHEPvr98Ts3Ih5KW9suwyExHjiD+/J9nzzG41GQ+Dk3lw8Fsrty7fUjqPj6u1F4NYpWFhbEhcVw/d9F/P4yl21YwFQuLALFhYWhD18rDc8LOwRPt6m0corssfU9yse7epSwLckh/0nZjxyLjP1ZZcRtbuqjx07xldffYWvr6/KSbInywXl61VzfHw8J0+e5JdffmHUqFHGypUtjRo14osvvgAgPDyczz//nBYtWnD06FFKlCjB5s2bWbZsGdeuXSMyMpKEhAQKFCigN4+SJUvqiikADw8PXffztWvXiIuL480339Q97+Ligre3d6p5qlSpQrly5fj+++/Zv38/3bp1w8Ii5SI/fvw4U6ZM4fTp04SHh+vunX7r1i0qVqyoG69mzZq6vy9cuEBsbKyusEvLqytm8rGbYWFhaRaU6b3/f//9l/j4eGrXrq173snJKc33/6rZs2czdepUvWFjqpRiXLXSGU6bJo2GxBuXif3hGwC0t65iXrQkVn4BeWLnZSp6T++LV/niTHp/nNpR9Dz59x6rWozH2tEWn5ZvErCwH992nGEyRaX4jzLh/YqNpwuVZvTg7w6z0MbGZzxBbjPhZZcZahaUkZGRdOnShZUrVzJjxgwVk2RflgvKTz75JNXhn332Gf/884/BgQxhb29P2bL/O8Zq1apVODk5sXLlSlq1akWXLl2YOnUq/v7+ODk5sWnTphTHQFpaWur9r9FodAVedvTs2ZPPPvuM0NBQjh49muL5qKgo/P398ff3Z/369bi6unLr1i38/f1T3NbS3t5e97etrW2mXv/V95Pcspze+zH2+082btw4hg8frjcsZlA7g+apPHuK9p7+Aena+7ewrFnfoPnmJ72mfUz1JrWY3GEcTx88UTuOHm18IuE3HwLw4NwNPKuUptZH/uwe/43KyeDx46ckJCTgVqSw3nA3N1cePHykUiphDKa8X3GqUhprVyfe3jNLN8zMwhyXuj6U6PkOu726qXpVbVNedrkttV45a2trrK1TP/Fx4MCBtGrViqZNm+bZgtJox1C2aNGCH374wVizMwqNRoOZmRkvX77kzz//pESJEkyYMIGaNWtSrlw5bt7M2tlxZcqUwdLSkr///ls3LDw8PN1L73Tu3JmzZ8/yxhtv6LU2Jrt48SJPnjxhzpw51K9fHx8fH70TctJSrlw5bG1t2bt3b5begyFKly6NpaWl7rJRAM+fP8/UpYesra0pUKCA3sOQ7m6AhKvnMXP30htmVqQY2icPDZpvftFr2sfU9q/D1E4TCbud8TqnNo2ZBnMry4xHzAXx8fGcOHGGxo3+d4iJRqOhcaO3OXLkuIrJhKFMeb/y+OA5DjQcxR9Nxuoez05e4+4Ph/mjyVjVb9FiyssuM4x5DOXs2bNxcnLSe8yePTvV1920aRMnTpxI8/m8IsstlGn5/vvvcXFxMdbssiU2NpYHDx4ASYXeihUriIyMJCAggIiICG7dusWmTZuoVasWP//8M1u3bs3S/B0cHOjVqxejRo2iUKFCuLm5MWHCBN0xmqkpWLAg9+/fT9Hyl6x48eJYWVmxfPly+vXrx7lz55g+fXqGWWxsbBgzZgyjR4/GysqKevXq8ejRI86fP0+vXr2y9L4yy9HRkR49ejBq1ChcXFxwc3Nj8uTJmJmZpXtcbU6J++0H7McvxbpVJ+KPHcC8tA9Wfi15Gbw444lzgZ2dLcVL/e/42mLFPfGpVI7nzyK4f1fdHWzvGX15u00D5vWZRUzUS5xdnQGIjogmLjYu/Ylzgd/ojlwLOU3EvcdY2dtSqe1blKhTgY3d5qodTWfx0pWsDlrM8RNnOHbsJEMG98He3pbgNZvVjmbS6x6Ydj5T3q8kRsUQefGO/rDoWOLDI1MMV4MpL7vM0Brxayy1XrnUWidv377NJ598wp49e7CxsTFeABVkuaCsVq2aXvGgKAoPHjzg0aNHfP7550YNl1W//PKL7jhBR0dHfHx8+O677/Dz8wOS7kM+aNAgYmNjadWqFZMmTcryBcbnz5+vK1IdHR0ZMWIEz58/T3ea9O5G4+rqSnBwMOPHj2fZsmVUr16dBQsW0KZNmwyzTJo0CQsLCz799FPu3buHh4cH/fr1y9L7yapFixbRr18/WrduTYECBRg9ejS3b99WZUNIvH6J6BWTsXm/N9Ztu6F9dJ+XG74g/si+XM+SmkpVKxC89Qvd/2OmDQNg26adTPgk4x8NOcm/W9KZl1O3zNIb/tmIpYR8r/7ysy9cgDaL+uHg5kzsi2jCLt5mY7e5XD9kOme1fvfddlwLuzDl05G4u7ty+vR5WrXuSljY44wnzmGmvO6Baecz9f2KKZNl9z/pdW+/6vjx44SFhVG9enXdsMTERA4ePMiKFSuIjY3F3Nw8J6MajUZRlCy1kU+ZMkWvoDQzM8PV1RU/P780T/QQ/11RUVEULVqUhQsXZrll9PlHTXMoleHe2mXaF+KtaOOudoR0VcUh45FUMvl+iNoR0uVdMPWrRoiM/dnSMeORVHRol6vaEdL1dkvTPf7XafXvOf4aP7l3Ntq82j7YkKnxXrx4keLwu48++ggfHx/GjBmj6h0IsyrLLZSmcMtAoZ6TJ09y8eJFateuzfPnz5k2bRoAbdu2VTmZEEIIkX1qHIHq6OiYomi0t7enUKFCeaqYhGyclGNubp7qSSNPnjzJM82ywjALFiygSpUqNG3alKioKP744w8KFy6c8YRCCCGE+E/KcgtlWj3ksbGxWFlZGRxImLZq1apx/LicxSqEEOK/Re0LmycLCQlRO0K2ZLqgXLZsGZB0aYxVq1bp3cEl+QBSOYZSCCGEEHmRVoWrlfyXZLqgTL7ntaIofPnll3rd21ZWVpQsWZIvv/zS+AmFEEIIIYRJy3RBef36dSDp9oY//vgjBQsWzLFQQgghhBC5Sd3Lwud9WT6Gcv/+/TmRQwghhBBCNaZyDGVeleWzvNu3b8/cuSnvVjFv3jw++OADo4QSQgghhMhNWo3xHvlRlgvKgwcP0rJlyxTDW7RowcGDB40SSgghhBBC5B1Z7vKOjIxM9fJAlpaWREREGCWUEEIIIURu0pJPmxaNJMstlJUrV2bz5s0phm/atImKFSsaJZQQQgghRG5SjPjIj7LcQjlp0iTee+89rl27RuPGjQHYu3cvGzdu5LvvvjN6QCGEEEIIYdqyXFAGBASwbds2Zs2axffff4+trS2+vr78/vvvNGzYMCcyCiGEEELkqPx6Mo2xaJS07qWYDefOnctzNzMX6plZoovaEfKsDTFX1Y6QrnmUVjtCmoJtotWOkKfNLfBS7Qhpcu9XXu0I6SowbKvaEdI11cNP7QhpmnBzfY6/RnDRrkabV+Ddb402r7wiy8dQvu7Fixd8/fXX1K5dmypVqhgjkxBCCCGEyEOyXVAePHiQ7t274+HhwYIFC2jcuDFHjhwxZjYhhBBCiFwhJ+UYJkvHUD548IDg4GCCgoKIiIigQ4cOxMbGsm3bNjnDWwghhBB5lhxDaZhMt1AGBATg7e3NmTNnWLJkCffu3WP58uU5mU0IIYQQQuQBmW6h3L17N0OGDKF///6UK1cuJzMJIYQQQuQquZe3YTLdQnno0CFevHhBjRo1ePPNN1mxYgWPHz/OyWxCCCGEELlCa8RHfpTpgrJOnTqsXLmS+/fv07dvXzZt2oSnpydarZY9e/bw4sWLnMwphBBCCJFjFI3xHvlRls/ytre3p2fPnhw6dIizZ88yYsQI5syZg5ubG23atMmJjEIIIYQQwoQZdB1Kb29v5s2bx507d9i4caOxMgkhhBBC5Crp8jZMlm+9mBpzc3PatWtHu3btjDE7IYQQQohclV8LQWMx+E45QgghhBAif5OCMpeULFmSJUuWGDSP4OBgnJ2ddf9PmTKFqlWrZnr6rI6fU/MQQgghTI3cKccwRunyNnWBgYGsWbNG97+Liwu1atVi3rx5+Pr6qpjMuKZMmcLUqVOBpMMQihUrxrvvvsv06dNxcHBg5MiRDB48WDd+YGAgz549Y9u2bSolNkz1rk2o3rUpzsVcAXh05Q6Hlm7lWshplZMlMfV8NepUpefArlT09cHN3ZXBgaPYt/ug2rFSVWZwG3wmduL617sJnbRW7Ti0G9CeN5vXpWiZYsTFxHLp+EXWz1nLvX/vqh3NpLMBFOzfjYIDuukNi7t+mztteqmUSF/L1X9w/0VMiuEdKhdjXKMKKiRKqX+/HowY3h93d1fOnAnlk6GTOPbPKbVjmfw+LyNypxzD5IuCEqB58+asXr0aSLqF5MSJE2ndujW3bt1SOZlxVapUid9//52EhAQOHz5Mz549iY6O5quvvsLBwQEHBwe1IxrNi/tP2T93E0+vP0Cj0eD7fn0+WDmcVS3H8/iK+l+epp7P1s6WS+ev8OOGHSwLnqd2nDQ5VS1N8e5NiDh/U+0oOpXefINf1+7i6ukrmFuY03l0Nyaum8KwpoOIfRkr2TIQd+UG9/uM0f2vJCaqmEbftx3fRKv8r43p6pNI+m87QbNyRVRM9T8ffNCGBfMnM2DgWI4eO8mQwb3Z9fN6Kr7RgEePnqiazdT3eSJn5Zsub2tra9zd3XF3d6dq1aqMHTuW27dv8+jRIwDGjBlD+fLlsbOzo3Tp0kyaNIn4+Hjd9KdPn6ZRo0Y4OjpSoEABatSowT///KN7/tChQ9SvXx9bW1u8vLwYMmQIUVFRehlevHhBp06dsLe3p2jRonz22Wd6zy9atIjKlStjb2+Pl5cXAwYMIDIyMkvv08LCAnd3d4oVK0bHjh3p0qUL27dvB/S7q6dMmcKaNWv46aef0Gg0aDQaQkJCALhz5w6dOnXCxcUFe3t7atasyd9//633OuvWraNkyZI4OTnx4YcfqnId0it7T3Jt/2nCbzzk6fUHhMz/jrjoGIpWL5vrWVJj6vkO7fuLZXO+Yu/uA2pHSZO5nTVVPx/EmREriX8WlfEEuWRmj6mEfL+PO1duc/PCDT4bsRTXYm6UrlxG7WgmnS2ZkphI4pNw3UP7LELtSDoudlYUtrfWPf648RgvJ1tqFC2odjQAhn3Sh1VBG1izdgsXLlxhwMCxREe/5KPAD9WOZvL7vIzIWd6GyTcF5asiIyP59ttvKVu2LIUKFQLA0dGR4OBgQkNDWbp0KStXrmTx4sW6abp06UKxYsU4duwYx48fZ+zYsVhaWgJw7do1mjdvTvv27Tlz5gybN2/m0KFDDBo0SO9158+fT5UqVTh58iRjx47lk08+Yc+ePbrnzczMWLZsGefPn2fNmjXs27eP0aNHG/RebW1tiYuLSzF85MiRdOjQgebNm3P//n3u37/PW2+9RWRkJA0bNuTu3bts376d06dPM3r0aLTa/20i165dY9u2bezcuZOdO3dy4MAB5syZY1BOQ2nMNFQMqIOlrTV3T1xVNUtqTD2fqXpjTk/Cfj/Jk4Pn1I6SLjtHOwAin2XtB2BuMMVslsWLUnzvRrx2r8F1zljM3V3VjpSq+EQtuy7ep23Fomg06veHWlpaUr26L3v3/aEbpigKe/cdok6dGiomSykv7vOkoDRMvuny3rlzp667NyoqCg8PD3bu3ImZWVJNPXHiRN24JUuWZOTIkWzatElX0N26dYtRo0bh4+MDoHc/89mzZ9OlSxeGDh2qe27ZsmU0bNiQL774AhsbGwDq1avH2LFjAShfvjyHDx9m8eLFNGvWDEA3fXKGGTNm0K9fPz7//PNsvefjx4+zYcMGGjdunOI5BwcHbG1tiY2Nxd3dXTc8ODiYR48ecezYMVxcXAAoW1b/16VWqyU4OBhHR0cAunXrxt69e5k5c2aaWWJjY4mN1e9uS1ASsdCYZ+u9JXP19iJw6xQsrC2Ji4rh+76LTaprxdTzmTKPdnUp4FuSw/4TMx5ZRRqNhsDJvbl4LJTbl03rEBpTzBZz9iJxk+YTf+MO5oVdKNi/K55rFnHn3Y9Rol+qHU/P/mthvIhNIKCCh9pRAChc2AULCwvCHurf9jgs7BE+3qbRAi37vPwr37RQNmrUiFOnTnHq1CmOHj2Kv78/LVq04ObNpOOyNm/eTL169XB3d8fBwYGJEyfqHV85fPhwevfuTdOmTZkzZw7Xrl3TPXf69GmCg4N1xyg6ODjg7++PVqvl+vXruvHq1q2rl6lu3bpcuHBB9//vv/9OkyZNKFq0KI6OjnTr1o0nT54QHR2d6fd59uxZXbFYu3Zt6taty4oVKzI9/alTp6hWrZqumExNyZIldcUkgIeHB2FhYenOd/bs2Tg5Oek9Djw/n+lcaXny7z1WtRjP6rafcvzbvQQs7EfhckUNnq+xmHo+U2Xj6UKlGT04NeAztLHxGU+got7T++JVvjiLBy1QO0oKppjt5aFjRP32B3GXr/Pyz+M8GDARc0cHHPwbqh0thW2h96hXohBuDjZqR8kz8vI+T87yNky+KSjt7e0pW7YsZcuWpVatWqxatYqoqChWrlzJX3/9RZcuXWjZsiU7d+7k5MmTTJgwQa+reMqUKZw/f55WrVqxb98+KlasyNatW4GkLvS+ffvqCtZTp05x+vRprly5QpkymfvVeOPGDVq3bo2vry8//PADx48f1x1jmVqXdVq8vb05deoUFy5c4OXLl2zfvp0iRTJ/MLmtrW2G4yR39SfTaDR6XeKpGTduHM+fP9d7NHSqlOlcadHGJxJ+8yEPzt0gZN5mwi7cotZH/gbP11hMPZ+pcqpSGmtXJ97eM4sWd7+lxd1vKVSvIiV7+9Pi7rdgpn73I0CvaR9TvUktpnaayNMH6p4Q8TpTzvYq7Yso4m7ewaK4p9pR9NyLeMnft5/QrpLpFEOPHz8lISEBtyKF9Ya7ubny4OEjlVLpy8v7PK3GeI/8KN90eb9Oo9FgZmbGy5cv+fPPPylRogQTJkzQPZ/ccvmq8uXLU758eYYNG0anTp1YvXo17777LtWrVyc0NDRF1/Drjhw5kuL/ChWSLkNx/PhxtFotCxcu1HXDb9myJcvvy8rKKsMcr46b+NrZlb6+vqxatYqnT5+m20qZVdbW1lhbW+sNM7S7OzUaMw3mVpYZj6gSU89nKh4fPMeBhqP0hlVZ0o/Iq/e4tmI7aNVvA+g17WNq+9dhcscJhN1Ov4U+t5lyttdpbG2w9PIgcsdetaPo2R56DxdbK+qXKpzxyLkkPj6eEyfO0LjR22zf/iuQ9F3WuNHbfP7FapXTpS4v7fPy67GPxpJvCsrY2FgePHgAQHh4OCtWrCAyMpKAgAAiIiK4desWmzZtolatWvz888+61keAly9fMmrUKN5//31KlSrFnTt3OHbsGO3btweSzhCvU6cOgwYNonfv3tjb2xMaGsqePXv0upsPHz7MvHnzaNeuHXv27OG7777j559/BpKOU4yPj2f58uUEBARw+PBhvvzyyxxdJiVLluTXX3/l0qVLFCpUCCcnJzp16sSsWbNo164ds2fPxsPDg5MnT+Lp6Zmiy15tfqM7ci3kNBH3HmNlb0ultm9Rok4FNnabq3Y0wPTz2dnZUrxUMd3/xYp74lOpHM+fRXD/7kMVk0FiVAyRF+/oD4uOJT48MsVwNfSe0Ze32zRgXp9ZxES9xNnVGYDoiGjiYjPfo5DfsgG4jOhD9IEjJNwLw9y1EAUHdodELZG796sdTUerKPx04R6tK3hiYWZaHXmLl65kddBijp84w7FjJxkyuA/29rYEr9msdjST3+eJnJVvCspffvkFD4+kA6sdHR3x8fHhu+++w8/PD4Bhw4YxaNAgYmNjadWqFZMmTWLKlClA0kXCnzx5Qvfu3Xn48CGFCxfmvffe011E3NfXlwMHDjBhwgTq16+PoiiUKVOGjh076mUYMWIE//zzD1OnTqVAgQIsWrQIf/+kroAqVaqwaNEi5s6dy7hx42jQoAGzZ8+me/fuObZM+vTpQ0hICDVr1iQyMpL9+/fj5+fHb7/9xogRI2jZsiUJCQlUrFgxxSWOTIF94QK0WdQPBzdnYl9EE3bxNhu7zeX6IdM4I9jU81WqWoHgrV/o/h8zbRgA2zbtZMIn09WKlSf4d2sJwNQts/SGfzZiKSHf71Mjko4pZwOwKOKK29zxmDs7khj+nJgT57nb5RO04c/Vjqbz962nPHgRQ7uKptUND/Ddd9txLezClE9H4u7uyunT52nVuithYY8znjiHmfo+LyPq93vkbRpFUWQZClXMLNFF7Qh51oYY074MxzxKqx0hTcE2mT/JTaQ0t4BpnYn9Kvd+5dWOkK4Cw7ZmPJKKpnr4qR0hTRNurs/x1zDmd1Ju5DU1ptWWL4QQQggh8px80+UthBBCCJEWOSnHMFJQCiGEECLfk+P/DCNd3kIIIYQQwiDSQimEEEKIfE+6vA0jBaUQQggh8r38eocbY5EubyGEEEIIYRBpoRRCCCFEvqeV03IMIgWlEEIIIfI9KScNIwWlEEIIIfI9OSnHMHIMpRBCCCGEMIi0UAohhBAi35NjKA0jBaUQQggh8j0pJw0jBaUQqdgQc1XtCCKfWtU4Su0I6Tq0y1XtCGkq9M9FtSOky7tgMbUjpOsUkWpHEHmYFJRCCCGEyPfkpBzDSEEphBBCiHxPjqE0jJzlLYQQQgghDCItlEIIIYTI96R90jBSUAohhBAi35NjKA0jXd5CCCGEEMIg0kIphBBCiHxPkU5vg0hBKYQQQoh8T7q8DSMFpRBCCCHyPblskGHkGEohhBBCCGEQaaEUQgghRL4n7ZOGkRZKExUcHIyzs7PR5+vn58fQoUMNmkdISAgajYZnz54BOZdVCCGEyC1aFKM98iMpKLMpMDAQjUajexQqVIjmzZtz5swZtaMBKYu+/6LqXZvQ+5fZjDy3ipHnVtFj6xTK+FVRO5ZOjTpV+WzdAvaf3sn5h3/TuEUDtSPpMfV8ryozuA2tHm6k4vTuakcBoN2A9szevoC15zex6vgaRn09Ds/SRdWOpaNxLoTtx2NxXP4jBb76GYfpKzEvWV7tWKkytc8WTHv5mfJ2a+rbhchZUlAaoHnz5ty/f5/79++zd+9eLCwsaN26tdqx8o0X95+yf+4mglpP4JuAidz88zwfrBxO4XKmsQOztbPl0vkrzBg7X+0oqTL1fMmcqpamePcmRJy/qXYUnUpvvsGva3cxvt0opnedjIWlBRPXTcHa1lrtaPxfe3ceV3P2/wH8dW+btltRqWiRSrKW7FuFkd0wwxDKNmaGJPu+L81YkuWLUZSsg7FlGSZC1pTKkihRaLMkLdJyfn/0c8d1s4zU+dzp/ZzHfYz7udurz63bu7NCQwtas/yAoiLkrZqBV7NG4vXujWC5r3gnkyPE91bo50/IP7eC/rn4DCVf8VIVUUFZDmpqajAyMoKRkRGaNm2K6dOnIyUlBZmZmQCAadOmwcbGBhoaGrC0tMScOXNQWFgofXxMTAycnZ2hra0NiUSCZs2a4dq1a2W+VmZmJhwdHfHtt9+ioKAAJSUlWLZsGerUqQN1dXU0adIE+/btAwA8ePAAzs7OAAA9PT2IRCJ4eHhIn6uoqAjjxo2Djo4O9PX1MWfOHDD2TxN9cHAwHB0doa2tDSMjIwwePBgZGRlf+/SV273Q60g8E4MXD9LxPCkNYcv34k3ea9RysOIdDQAQfvoS1vhsQujxs7yjlEno+QBASUMNTf83DrGTNqMwK5d3HKkl7gsQtu80Ht1LwcO4B1g/yQ8GtQ1h2agu72hQ6/4DSp5nIn/LChQnxYM9TUPRrUiUZKbyjiZDqO+t0M+fkH9uhfxz8TnYV/yvKqKC8ivJycnB9u3bYWVlhRo1agAAtLW1ERgYiNu3b8PPzw+bN2+Gr6+v9DFubm6oXbs2IiIiEBkZienTp0NFRUXuuVNSUtC+fXs0bNgQ+/btg5qaGpYtW4Zt27Zh48aNuHXrFry9vTFkyBCcPXsWpqam2L9/PwAgPj4eqamp8PPzkz5fUFAQlJWVcfXqVfj5+WHVqlXw9/eX3l5YWIhFixYhJiYGBw8exIMHD2QKUiESiUWw69UKKupqeByVwDsO+Uoa+oxAxt/X8ezcTd5RPkpDWwMAkJOVwzkJoNK0NYqT7kLjlznQ9tsLrfkbodKhO+9YcoT63irK+VMEQvq5IBWPZnmXQ0hICLS0tAAAubm5MDY2RkhICMTi0jp99uzZ0vtaWFhg8uTJ2L17N6ZOnQoASE5OxpQpU2BrawsAsLa2lnuN+Ph4dOnSBd9++y1Wr14NkUiEgoICLF26FH///Tdat24NALC0tER4eDg2bdqEjh07onr16gAAQ0NDuQkzpqam8PX1hUgkQr169XDjxg34+vpi9OjRAIARI0ZI72tpaYk1a9agefPmyMnJkX69/1ZBQQEKCgpkjhWxYiiLlL7o+d4yqGcKjwPzoaymgje5r7FvjC+e3ntcruckwmDctzUkjS1woevsT9+ZI5FIBI95o3An4jZS7ibzjgOxoTFUXXqh4K99eB2yC0p16kHdbSxQXIjCC6d4xwMg7PdWEc6fIhDaz8XnqKpd1V8LtVCWg7OzM6KjoxEdHY2rV6+ia9eu6NatGx4+LB0PtGfPHrRt2xZGRkbQ0tLC7NmzkZz8zw/WxIkTMWrUKHTu3Bk+Pj5ITEyUef78/Hy0b98e/fr1g5+fH0QiEQAgISEBeXl56NKlC7S0tKSXbdu2yT1HWVq1aiV9LgBo3bo17t27h+LiYgBAZGQkevXqBTMzM2hra6Njx44AIJP931q2bBl0dHRkLmdf3vri53vr2f0n8O82E1v7zEXk9lD0WvmTYMZQki9XzaQ6Gix2R/Qv61FSUPjpB3A0atEYmNqYwXfcCt5RSolEKH54DwX7t6AkOQGFZ4/izdljUHXqxTsZAAV4bwV+/hSF4H4uPgN1eZcPFZTloKmpCSsrK1hZWaF58+bw9/dHbm4uNm/ejEuXLsHNzQ3du3dHSEgIrl+/jlmzZuHNmzfSx8+fPx+3bt1Cjx49cPr0adjZ2eHAgQPS29XU1NC5c2eEhITg8eN/Wt1yckq7D44ePSotaKOjo3H79m3pOMovlZubi65du0IikWDHjh2IiIiQZno3+781Y8YMvHz5UubSUadBubICQElhMV48TEfazQcI+20PMuKS0Xx413I/L+FLp4kl1Ax00O7UUnR7vB3dHm9HjbZ2sBjVFd0ebwfEok8/SSUYufBHOHRqjgWDZuN52jPecQAALOs5Sp7ITnIpSU2GuIYhp0SyhP7eCv38KQIh/lyQikdd3l+RSCSCWCxGfn4+Ll68CHNzc8yaNUt6+9uWy3fZ2NjAxsYG3t7eGDRoELZu3Ypvv/0WACAWixEcHIzBgwfD2dkZYWFhMDExgZ2dHdTU1JCcnCxtPXyfqqoqAEhbHd915coVmeuXL1+GtbU1lJSUcOfOHTx79gw+Pj4wNTUFgA9OFPo31NTUoKYmO9OvvN3dZRGJRVBSlR+HShTL03M3cbbjFJljTVb/hJyEJ0hcdxgo4d8CMHLhj2jRtRXmDZyFjBThTForSrgFsZGpzDFxzdooeZbOKZEsob+3Qj9/QifUn4vPQV3e5UMFZTkUFBQgLS0NAPDixQusW7cOOTk56NWrF7Kzs5GcnIzdu3ejefPmOHr0qEzrY35+PqZMmYLvvvsOderUwaNHjxAREYH+/fvLvIaSkhJ27NiBQYMGwcXFBWFhYTAyMsLkyZPh7e2NkpIStGvXDi9fvsSFCxcgkUjg7u4Oc3NziEQihISEoHv37lBXV5eOf0xOTsbEiRMxZswYREVFYe3atVi5ciUAwMzMDKqqqli7di1++ukn3Lx5E4sWLaqkM/rvOE0diMSwGGQ/eQpVTXU06NMG5q3qY9fQX3lHAwBoaKjDrE5t6fXaZiawbWCNl1nZSH3M/5eTkPMV575Gzp1HssfyClD4IkfuOA+jFo9Bu94d8NvopXidmw9dA10AQF52Ht4UfHlL/tfw5uR+aM70g1qPQSiMOAslS1uoOnVHfqDvpx9cCYT+3gr9/An551bIPxefo4Tx/0NVkVFBWQ4nTpyAsbExgNIZ3ba2tti7dy+cnJwAAN7e3hg3bhwKCgrQo0cPzJkzB/PnzwdQWig+e/YMw4YNQ3p6OvT19dGvXz8sWLBA7nWUlZWxa9cuDBw4UFpULlq0CAYGBli2bBnu378PXV1dODg4YObMmQCAWrVqYcGCBZg+fTqGDx+OYcOGITAwEAAwbNgw5Ofno0WLFlBSUoKXlxd+/PFHAICBgQECAwMxc+ZMrFmzBg4ODlixYgV69+5dsSfzC2jqS9B71U/QMtRFwas8ZNxJwa6hvyIpXBizRhs0rY/AAxuk16ct9AYAHNwdglle/It0oecTsq5DS2f9Lvhjqczx9ZP8ELbvNI9IUsVJ8chbNw/VvhsFtT5DUZKZivydG1B4mW8uRSH08yfkn1sh/1x8Diony0fEGJXkhI8l5m68I3zQzte09FB5/AZL3hE+KLBaHu8IH+XvIpw1GcsSfsyAd4QPatc9k3eEj2pzTBiLo3+IXTUj3hE+aO/DQxX+GkPM+32159r+8M+v9lyKgiblEEIIIaTK47GX97Jly9C8eXNoa2vD0NAQffv2RXx8fAV+lRWHCkpCCCGEVHk8lg06e/Ysxo4di8uXL+PUqVMoLCzEN998g9xcYfdUlIXGUBJCCCGEcHDixAmZ64GBgTA0NERkZCQ6dOjAKdWXoYKSEEIIIVXe11w2qKzd4cpaPu99L1++BADpbneKhLq8CSGEEFLlfc0xlGXtDrds2bKPv35JCSZMmIC2bduiYcOGlfRVfz3UQkkIIYQQ8hXNmDEDEydOlDn2qdbJsWPH4ubNmwgPD6/IaBWGCkpCCCGEVHlfcw/uz+nefte4ceMQEhKCc+fOoXbt2p9+gABRQUkIIYSQKo/H1ouMMXh6euLAgQMICwtDnTp1OKT4OqigJIQQQgjhYOzYsdi5cycOHToEbW1t6XbOOjo6UFdX55zu36GCkhBCCCFVHo+NAzdsKN1G8+2WzW9t3boVHh4elZ6nPKigJIQQQkiV9292uPla/ku7X1NBSQghhJAqj8cYyv8SWoeSEEIIIYSUC7VQElKGwdWseEf4qGjk8I7wUYHI4x3hgw6kXuMd4eNOO/JO8FH+3TN5R1BYQv9cqeq+5rJBVREVlIQQQgip8niMofwvoS5vQgghhBBSLtRCSQghhJAq778045oHKigJIYQQUuXRLO/yoS5vQgghhBBSLtRCSQghhJAqj2Z5lw8VlIQQQgip8miWd/lQlzchhBBCCCkXaqEkhBBCSJVHs7zLhwpKQgghhFR51OVdPtTl/f8CAwOhq6v71Z/XyckJEyZMKNdzhIWFQSQSISsrC0DFZf3SPIQQQoiiY1/xv6pIYVooPTw8EBQUJL1evXp1NG/eHL/99hsaN27MMVmpsLAwODs748WLF5Ve7AUGBmL48OEAALFYDIlEAhsbG/To0QNeXl7Q0dGp1DyVxWFIJzgM6Qzd2gYAgMx7jxDudwCJYTGck5UScr6+v/RHS9fWqFW3Nt68LkB85B3s8NmGJ/cf844GQPj53vr5J3dMmvgzjIwMEBt7G14T5iDiWjTXTIpw7kS6NVBtwGgoN2oBkaoaSjKeID9gOYof3OUdDYBw8wn5MwUQfj5SsRSmoAQAV1dXbN26FQCQlpaG2bNno2fPnkhOTuacjD+JRIL4+HgwxpCVlYWLFy9i2bJl2Lp1Ky5cuAATExPeEb+6V6nPcebX3XielAaRSITG37XH95snwr/7TDy9x/+Xp5DzNWjZEH9tO4aEmHtQUlbC4KlDMTt4Prw7j0NBfgHXbIqQDwC+/743Viyfh1/GTsfViOsY7zkKx47ugF3DDsjMfMYtl+DPnYYWtGb5oSguGnmrZqDk1Uso1awFlvuKd7JSAs4n5M8URcj3KSU0hrJcFKrLW01NDUZGRjAyMkLTpk0xffp0pKSkIDMzEwAwbdo02NjYQENDA5aWlpgzZw4KCwulj4+JiYGzszO0tbUhkUjQrFkzXLt2rczXyszMhKOjI7799lsUFBSgpKQEy5YtQ506daCuro4mTZpg3759AIAHDx7A2dkZAKCnpweRSAQPDw/pcxUVFWHcuHHQ0dGBvr4+5syZIzP4Nzg4GI6OjtDW1oaRkREGDx6MjIyMf3VuRCIRjIyMYGxsjPr162PkyJG4ePEicnJyMHXqVOn9LCwssHr1apnHNm3aFPPnz5d5Ln9/f3z77bfQ0NCAtbU1Dh8+/MHXzsvLQ7du3dC2bdtK7Qa/F3odiWdi8OJBOp4npSFs+V68yXuNWg5WlZbhY4Scb4n7AoTtO41H91LwMO4B1k/yg0FtQ1g2qss7GgDh5wMAb6/R8A/YiaBtfyAu7h5+GTsdeXn5GO7xA9dcQj93at1/QMnzTORvWYHipHiwp2kouhWJksxU3tEACDufkD9TAOHn+xT2FS9VkUIVlO/KycnB9u3bYWVlhRo1agAAtLW1ERgYiNu3b8PPzw+bN2+Gr6+v9DFubm6oXbs2IiIiEBkZienTp0NFRUXuuVNSUtC+fXs0bNgQ+/btg5qaGpYtW4Zt27Zh48aNuHXrFry9vTFkyBCcPXsWpqam2L9/PwAgPj4eqamp8PPzkz5fUFAQlJWVcfXqVfj5+WHVqlXw9/eX3l5YWIhFixYhJiYGBw8exIMHD2QK0i9laGgINzc3HD58GMXFxf/qsQsWLMCAAQMQGxuL7t27w83NDc+fP5e7X1ZWFrp06YKSkhKcOnWK29hOkVgEu16toKKuhsdRCVwyfIzQ82loawAAcrJyOCcpm9DyqaiowMGhMUJPn5ceY4wh9HQ4WrVqxjGZPMGdu6atUZx0Fxq/zIG2315ozd8IlQ7deceSEnq+t4T+mSL0fOTrU6gu75CQEGhpaQEAcnNzYWxsjJCQEIjFpXXx7Nmzpfe1sLDA5MmTsXv3bmkLXXJyMqZMmQJbW1sAgLW1tdxrxMfHo0uXLvj222+xevVqiEQiFBQUYOnSpfj777/RunVrAIClpSXCw8OxadMmdOzYEdWrVwdQWsS9X1SZmprC19cXIpEI9erVw40bN+Dr64vRo0cDAEaMGCG9r6WlJdasWYPmzZsjJydH+vV+KVtbW7x69QrPnj2DoaHhZz/Ow8MDgwYNAgAsXboUa9aswdWrV+Hq6iq9T1paGgYOHAhra2vs3LkTqqqq5cr6JQzqmcLjwHwoq6ngTe5r7BvjK6iuFaHnA0pbpD3mjcKdiNtIuSu84SNCzKevXx3KysrISH8qczwjIxO29YTREggI89yJDY2h6tILBX/tw+uQXVCqUw/qbmOB4kIUXjjFO57g8wn9M0Xo+T6GZnmXj0IVlM7OztiwYQMA4MWLF/jf//6Hbt264erVqzA3N8eePXuwZs0aJCYmIicnB0VFRZBIJNLHT5w4EaNGjUJwcDA6d+6M77//HnXr/vPhn5+fj/bt22Pw4MEy3cIJCQnIy8tDly5dZPK8efMG9vb2n8zdqlUriEQi6fXWrVtj5cqVKC4uhpKSEiIjIzF//nzExMTgxYsXKCkp3aI+OTkZdnZ2X3Su3nrbtf7u63+Odyc6aWpqQiKRyHXDd+nSBS1atMCePXugpKT00ecrKChAQYHs+K0iVgxl0ccf9ynP7j+Bf7eZUNNWh233lui18idsH7hYMB9gQs8HAKMWjYGpjRnmfDeDd5QyCT2fkAny3IlEKH5wFwX7twAASpIToFTLAqpOvQRRsAk9n9A/U4Se72OooCwfhery1tTUhJWVFaysrNC8eXP4+/sjNzcXmzdvxqVLl+Dm5obu3bsjJCQE169fx6xZs/DmzRvp4+fPn49bt26hR48eOH36NOzs7HDgwAHp7WpqaujcuTNCQkLw+PE/3/w5OaVdRUePHkV0dLT0cvv2bek4yi+Vm5uLrl27QiKRYMeOHYiIiJBmejf7l4qLi4NEIpEOCxCLxXKLt747zvSt94cCiEQiaaH7Vo8ePXDu3Dncvn37kzmWLVsGHR0dmcvZl7f+7Zcjp6SwGC8epiPt5gOE/bYHGXHJaD68a7mf92sRer6RC3+EQ6fmWDBoNp6n8ZtI8iFCzff06XMUFRXBsKa+zHFDQwOkpWdySiVLqOeOZT1HyZOHMsdKUpMhrvH5PSgVSej5hP6ZIvR8pOIoVEH5PpFIBLFYjPz8fFy8eBHm5uaYNWsWHB0dYW1tjYcPH8o9xsbGBt7e3jh58iT69esnnTUOlBZbwcHBaNasGZydnfHkyRMAgJ2dHdTU1JCcnCwtaN9eTE1NAUDa3VvWWMUrV67IXL98+TKsra2hpKSEO3fu4NmzZ/Dx8UH79u1ha2v7ryfkfEhGRgZ27tyJvn37SocFGBgYIDX1n8Hl2dnZSEpK+qLn9/Hxgbu7Ozp16vTJonLGjBl4+fKlzKWjToMvet2PEYlFUFKVHxcrFELKN3Lhj2jRtRUWDJqNjJSv8z33NQk5X2FhIaKiYuHi3E56TCQSwcW5HS5fjuSYrJSQz11Rwi2IjUxljolr1kbJs3ROiWQJPd/7hPSZUhah53sXY+yrXaoihSooCwoKkJaWhrS0NMTFxcHT0xM5OTno1asXrK2tkZycjN27dyMxMRFr1qyRaX3Mz8/HuHHjEBYWhocPH+LChQuIiIhA/fr1ZV5DSUkJO3bsQJMmTeDi4oK0tDRoa2tj8uTJ8Pb2RlBQEBITExEVFYW1a9dK18Y0NzeHSCRCSEgIMjMzpa2aQGnX9cSJExEfH49du3Zh7dq18PLyAgCYmZlBVVUVa9euxf3793H48GEsWrToX58bxhjS0tKQmpqKuLg4bNmyBW3atIGOjg58fHyk93NxcUFwcDDOnz+PGzduwN3d/ZPd1R+zYsUKuLm5wcXFBXfu3Png/dTU1CCRSGQu5e3udpo6EKYtbKFTWx8G9UzhNHUgzFvVx62DF8r1vF+LkPONWjwG7ft2hN/4lXidmw9dA13oGuhCVa3yx8GWRej5AMDXbzNGjRyMoUO/h62tFdav84GmpjoCg/ZwzSX0c/fm5H4oWdaHWo9BEBuaQKWVC1SduuNN6CHe0QAIO5+QP1MA4ef7lBKwr3apihRqDOWJEydgbGwMoHRGt62tLfbu3QsnJycAgLe3N8aNG4eCggL06NEDc+bMkS6Ho6SkhGfPnmHYsGFIT0+Hvr4++vXrhwULFsi9jrKyMnbt2oWBAwfCxcUFYWFhWLRoEQwMDLBs2TLcv38furq6cHBwwMyZMwEAtWrVwoIFCzB9+nQMHz4cw4YNQ2BgIABg2LBhyM/PR4sWLaCkpAQvLy/8+OOPAEpbDAMDAzFz5kysWbMGDg4OWLFiBXr37v2vzk12djaMjY0hEokgkUhQr149uLu7w8vLS2Yc6YwZM5CUlISePXtCR0cHixYt+uIWyrd8fX1RXFwsPVc2Njbler7PpakvQe9VP0HLUBcFr/KQcScFu4b+iqTwm5Xy+p8i5Hxdh5bOWl3wx1KZ4+sn+SFs32kekWQIPR8A7N17GAb61TF/7mQYGRkgJuYWevQcgoyMp59+cAUS+rkrTopH3rp5qPbdKKj1GYqSzFTk79yAwsv8swHCzifkzxRA+Pk+parucPO1iFhVbZsl3C0xd+MdQWFFQxhLwCiiA6llrz0rFN8aO/KO8FH+Lrm8Iyisdadr8o6gsGY93FHhr9HcpMNXe66IJ+e+2nMpCoVqoSSEEEIIqQjUvlY+VFASQgghpMqrqmMfvxaFmpRDCCGEEEKEh1ooCSGEEFLlUZd3+VBBSQghhJAqj7q8y4e6vAkhhBBCSLlQCyUhhBBCqjxah7J8qKAkhBBCSJVXQmMoy4W6vAkhhBBCSLlQCyUhhBBCqjzq8i4fKigJIYQQUuVRl3f5UEFJCCGEkCqPWijLh8ZQEkIIIYSQcqEWSkIIIYRUedTlXT5UUBJumr4u4R3hg/q8OMc7wkfV06vNO8JHDa5mxTvCBzU1duId4aOikcM7wke1OfaKd4QPuthdm3eEjxLyZx4AtOueyTsCV9TlXT7U5U0IIYQQQsqFWigJIYQQUuVRl3f5UEFJCCGEkCqPurzLh7q8CSGEEEJIuVALJSGEEEKqPMaEPWlK6KigJIQQQkiVV0Jd3uVCXd6EEEIIIaRcqIWSEEIIIVUeo1ne5UIFJSGEEEKqPOryLh8qKAkhhBBS5VELZfnQGEqBCwsLg0gkQlZWFu8ohBBCCCFlooLyIzw8PCASiaSXGjVqwNXVFbGxsbyjyQgMDJRmFIvFqF27NoYPH46MjAze0SpVXc/e6JG+C3aLhvGOIuPnn9yRcPcycrITcTH8CJo7NuUdCQDQrFVTrA9egTMxIbiVfgUu3TrwjiTlMKQTRp1Yhsk3/TH5pj/cD8xHXacmvGNJCTlf31/6Y9nhFdh2azf8I4Mw5fcZMLGsxTuWDCF/7wGASLcG1H+cDu21f0Ky6Si0Fm2GkoUN71hyhPiZpyjnriwljH21S1VEBeUnuLq6IjU1FampqQgNDYWysjJ69uzJO5YciUSC1NRUPHr0CJs3b8bx48cxdOjQMu9bXFyMkpL/1npbOk0tYTasE7JvPeQdRcb33/fGiuXzsGjxKjRv6YqY2Ns4dnQHDAxq8I4GdQ11xN+6h8XTl/OOIudV6nOc+XU3AnrOwpZes/Hw4i18v3ki9K2FURgJOV+Dlg3x17ZjmNl3ChYNmQdlFWXMDp4PNXU13tGkhPy9Bw0taM3yA4qKkLdqBl7NGonXuzeC5b7inUyGID/zFOTcfQj7iv9VRVRQfoKamhqMjIxgZGSEpk2bYvr06UhJSUFmZiYAICUlBQMGDICuri6qV6+OPn364MGDB9LHe3h4oG/fvlixYgWMjY1Ro0YNjB07FoWFhdL7FBQUYNq0aTA1NYWamhqsrKwQEBAgkyMyMhKOjo7Q0NBAmzZtEB8fL3O7SCSCkZERTExM0K1bN4wfPx5///038vPzERgYCF1dXRw+fBh2dnZQU1NDcnIyCgoKMHnyZNSqVQuamppo2bIlwsLCpM/58OFD9OrVC3p6etDU1ESDBg1w7NgxAMCLFy/g5uYGAwMDqKurw9raGlu3bv3KZ//zKGmooen/xiF20mYUZuVyyfAh3l6j4R+wE0Hb/kBc3D38MnY68vLyMdzjB97REH76Etb4bELo8bO8o8i5F3odiWdi8OJBOp4npSFs+V68yXuNWg5WvKMBEHa+Je4LELbvNB7dS8HDuAdYP8kPBrUNYdmoLu9oUkL+3lPr/gNKnmcif8sKFCfFgz1NQ9GtSJRkpvKOJiXUzzxFOHek4lBB+S/k5ORg+/btsLKyQo0aNVBYWIiuXbtCW1sb58+fx4ULF6ClpQVXV1e8efNG+rgzZ84gMTERZ86cQVBQEAIDAxEYGCi9fdiwYdi1axfWrFmDuLg4bNq0CVpaWjKvPWvWLKxcuRLXrl2DsrIyRowY8dGs6urqKCkpQVFREQAgLy8Pv/76K/z9/XHr1i0YGhpi3LhxuHTpEnbv3o3Y2Fh8//33cHV1xb179wAAY8eORUFBAc6dO4cbN27g119/leaaM2cObt++jePHjyMuLg4bNmyAvr7+1zjN/1pDnxHI+Ps6np27yeX1P0RFRQUODo0Revq89BhjDKGnw9GqVTOOyRSLSCyCXa9WUFFXw+OoBN5x5Ag9n4a2BgAgJyuHcxLFoNK0NYqT7kLjlznQ9tsLrfkbodKhO+9YMgT7macA5+5jGGNf7VIV0SzvTwgJCZEWUbm5uTA2NkZISAjEYjF27tyJkpIS+Pv7QyQSAQC2bt0KXV1dhIWF4ZtvvgEA6OnpYd26dVBSUoKtrS169OiB0NBQjB49Gnfv3sUff/yBU6dOoXPnzgAAS0tLuRxLlixBx44dAQDTp09Hjx498Pr1a1SrVk3uvvfu3cPGjRvh6OgIbW1tAEBhYSH+97//oUmT0nFeycnJ2Lp1K5KTk2FiYgIAmDx5Mk6cOIGtW7di6dKlSE5ORv/+/dGoUSO5XMnJybC3t4ejoyMAwMLConwn+gsZ920NSWMLXOg6m8vrf4y+fnUoKysjI/2pzPGMjEzY1hNOa5FQGdQzhceB+VBWU8Gb3NfYN8YXT+895h1LSuj5gNKeC495o3An4jZS7ibzjqMQxIbGUHXphYK/9uF1yC4o1akHdbexQHEhCi+c4h1P0J95Qj93n0LLBpUPFZSf4OzsjA0bNgAo7eb93//+h27duuHq1auIiYlBQkKCtGh76/Xr10hMTJReb9CgAZSUlKTXjY2NcePGDQBAdHQ0lJSUpMXihzRu3Fjm8QCQkZEBMzMzAMDLly+hpaWFkpISvH79Gu3atYO/v7/0MaqqqjLPcePGDRQXF8PGRnawdEFBAWrUKB3fN378ePz88884efIkOnfujP79+0uf4+eff0b//v0RFRWFb775Bn379kWbNm0+mL+goAAFBQUyxwpZMVRESh94xKdVM6mOBovdcWXAUpQUFH76AUShPLv/BP7dZkJNWx223Vui18qfsH3gYsEUbULPBwCjFo2BqY0Z5nw3g3cUxSESofjBXRTs3wIAKElOgFItC6g69eJeFAn+M0/A545UPCooP0FTUxNWVv+Mi/L394eOjg42b96MnJwcNGvWDDt27JB7nIGBgfTfKioqMreJRCLppBh1dfXPyvHuc7xtDX13Yo22tjaioqIgFothbGws97zq6urSxwGl3fdKSkqIjIyUKXYBSFtkR40aha5du+Lo0aM4efIkli1bhpUrV8LT0xPdunXDw4cPcezYMZw6dQqdOnXC2LFjsWLFijLzL1u2DAsWLJA5NkijAdy0Gn3W118WnSaWUDPQQbtTS6XHxMpKqN7aFuYjvsFx06FACb+/OJ8+fY6ioiIY1pQdCmBoaIC09ExOqRRHSWExXjxMBwCk3XwAkyaWaD68K47P3MI5WSmh5xu58Ec4dGqOeQNm4HnaM95xFAbLeo6SJ7ITXUpSk6Hi2J5Ton8I/TNPyOfuc1TVruqvhQrKf+nt0jz5+flwcHDAnj17YGhoCIlE8kXP16hRI5SUlODs2bPSLu8vIRaLZQrfT7G3t0dxcTEyMjLQvv2Hf9hNTU3x008/4aeffsKMGTOwefNmeHp6Aigtmt3d3eHu7o727dtjypQpHywoZ8yYgYkTJ8ocO2016rPzluXpuZs423GKzLEmq39CTsITJK47zPWDFSgdZhAVFQsX53Y4fPgvAKXfPy7O7fC/DXwmMCkykVgEJVWVT9+REyHlG7nwR7To2grzBs5CRkrVWj6svIoSbkFsZCpzTFyzNkqepXNK9A+hf+YJ+dx9jqq63M/XQgXlJxQUFCAtLQ1AaZf3unXrkJOTg169eqFFixZYvnw5+vTpg4ULF6J27dp4+PAh/vzzT0ydOhW1a9f+5PNbWFjA3d0dI0aMwJo1a9CkSRM8fPgQGRkZGDBgQIV9XTY2NnBzc8OwYcOwcuVK2NvbIzMzE6GhoWjcuDF69OiBCRMmoFu3brCxscGLFy9w5swZ1K9fHwAwd+5cNGvWDA0aNEBBQQFCQkKkt5VFTU0Namqyy5aUp7sbAIpzXyPnziPZY3kFKHyRI3ecF1+/zdga4IvIqFhERFzHeM/R0NRUR2DQHt7RoKGhDrM6/3yP1jYzgW0Da7zMykbqY76/AJymDkRiWAyynzyFqqY6GvRpA/NW9bFr6K9cc70l5HyjFo9Bu94d8NvopXidmw9dA10AQF52Ht4UvPn4gyuJkL/33pzcD82ZflDrMQiFEWehZGkLVafuyA/05ZoLEP5nnpDPHal4VFB+wokTJ6RjFrW1tWFra4u9e/fCyckJAHDu3DlMmzYN/fr1w6tXr1CrVi106tTpX7VYbtiwATNnzsQvv/yCZ8+ewczMDDNnzqyIL0fG1q1bsXjxYkyaNAmPHz+Gvr4+WrVqJV1ns7i4GGPHjsWjR48gkUjg6uoKX9/SDwZVVVXMmDEDDx48gLq6Otq3b4/du3dXeGZFs3fvYRjoV8f8uZNhZGSAmJhb6NFzCDIynn76wRWsQdP6CDywQXp92kJvAMDB3SGY5bWIVywAgKa+BL1X/QQtQ10UvMpDxp0U7Br6K5LChTGrVcj5ug4tnVW74I+lMsfXT/JD2L7TPCLJEfL3XnFSPPLWzUO170ZBrc9QlGSmIn/nBhReFsa5EzJFP3fU5V0+IkZnkHBytOYg3hE+qM+Lc7wjfFQ9vU+3fvM0uBr/9RgVVTSEvbzP7ddpvCN80MXu2p++E0fhxww+fSeO2nUX7thuna1/V/xraH291Tde5iR++k7/MdRCSQghhJAqj9rXyocWNieEEEIIIeVCLZSEEEIIqfJolnf5UEFJCCGEkCqP0U455UJd3oQQQgghpFyohZIQQgghVR51eZcPFZSEEEIIqfJolnf5UJc3IYQQQggpF2qhJIQQQkiVR5NyyodaKAkhhBBS5THGvtrl31q/fj0sLCxQrVo1tGzZElevXq2Ar7BiUUFJCCGEEMLJnj17MHHiRMybNw9RUVFo0qQJunbtioyMDN7R/hUqKAkhhBBS5fFqoVy1ahVGjx6N4cOHw87ODhs3boSGhga2bNlSQV9pxaCCkhBCCCFVHvuKl4KCAmRnZ8tcCgoK5F7zzZs3iIyMROfOnaXHxGIxOnfujEuXLlXY11ohGCEK7vXr12zevHns9evXvKOUifJ9OSFnY4zylYeQszFG+cpDyNkqy7x58+TqzHnz5snd7/HjxwwAu3jxoszxKVOmsBYtWlRS2q9DxBgtvEQUW3Z2NnR0dPDy5UtIJBLeceRQvi8n5GwA5SsPIWcDKF95CDlbZSkoKJBrkVRTU4OamprMsSdPnqBWrVq4ePEiWrduLT0+depUnD17FleuXKmUvF8DLRtECCGEEPIVlVU8lkVfXx9KSkpIT0+XOZ6eng4jI6OKilchaAwlIYQQQggHqqqqaNasGUJDQ6XHSkpKEBoaKtNiqQiohZIQQgghhJOJEyfC3d0djo6OaNGiBVavXo3c3FwMHz6cd7R/hQpKovDU1NQwb968z+pe4IHyfTkhZwMoX3kIORtA+cpDyNmEaODAgcjMzMTcuXORlpaGpk2b4sSJE6hZsybvaP8KTcohhBBCCCHlQmMoCSGEEEJIuVBBSQghhBBCyoUKSkIIIYQQUi5UUBJCCCGEkHKhgpIQQgghhJQLFZSEEEIIIaRcqKAkCuvatWsIDg5GcHAwrl27xjuO1K5duz5425QpUyoxSdnOnDnDOwIh5AtkZ2d/8LaEhIRKTEKIPCooicJ59OgR2rdvjxYtWsDLywteXl5o0aIF2rVrh0ePHvGOh59//hnHjx+XO+7t7Y3t27dzSCTL1dUVdevWxeLFi5GSksI7DiHkM/Xo0QMFBQVyx+Pj4+Hk5FT5gd4TFBSEo0ePSq9PnToVurq6aNOmDR4+fMgxGakMtLA5UTiurq7IyspCUFAQ6tWrB6D0A3X48OGQSCQ4ceIE13xHjx6Fm5sbQkJC0K5dOwCAp6cn/vzzT4SGhsLW1pZrvqdPnyI4OBhBQUG4desWXFxcMHLkSPTt2xeqqqpcs72lp6cHkUgkd1wkEqFatWqwsrKCh4cHl63JGGPYt28fzpw5g4yMDJSUlMjc/ueff1Z6pndNnDixzOPvnrs+ffqgevXqlZysVG5uLnx8fBAaGlrm+bt//36lZ/rQ91tZnj9/XsFpPqxbt24QiUQ4fPgwlJVLN7qLi4uDi4sLBgwYAD8/P27ZAKBevXrYsGEDXFxccOnSJXTu3Bm+vr4ICQmBsrIy958NUrGooCQKR11dHRcvXoS9vb3M8cjISLRv3x55eXmckv1j586dGDduHE6dOoWAgAAcOnQIZ86cgY2NDe9oMqKiorB161ZpN/3gwYMxcuRINGnShGsuX19fLFmyBN26dUOLFi0AAFevXsWJEyfg7e2NpKQkBAcHY+3atRg9enSlZvPy8sKmTZvg7OyMmjVryhUiW7durdQ873N2dkZUVBSKi4ulf3DdvXsXSkpKsLW1RXx8PEQiEcLDw2FnZ1fp+QYNGoSzZ89i6NChMDY2ljt/Xl5elZ4pKCjos+/r7u5egUk+Lj8/H507d0bt2rWxe/du3Lp1C506dYKbmxtWrVrFLddbGhoauHPnDszMzDBt2jSkpqZi27ZtuHXrFpycnJCZmck7IqlIjBAFY21tza5cuSJ3/MqVK6xu3bocEpVt/fr1TE1NjdWuXZvdu3ePd5wPevz4MZs3bx5TU1NjmpqaTElJibVr147dvHmTW6Z+/fqxDRs2yB3fuHEj69evH2OMsTVr1rCGDRtWdjSmp6fHjh49Wumv+7l8fX1Zv3792MuXL6XHsrKy2HfffcdWr17NcnNzWZ8+fdg333zDJZ+Ojg4LDw/n8tr/BS9evGBNmjRh3333HTM0NGSTJ0/mHUnKwMCARUVFMcYYa9q0Kdu2bRtjjLGEhASmqanJMxqpBNRCSRTOoUOHsHTpUqxfvx6Ojo4ASifoeHp6Ytq0aejbt2+lZ/pQN+PevXvh4OCAunXrSo8JoSWhsLAQhw4dwpYtW3Dq1Ck4Ojpi5MiRGDRoEDIzMzF79mxERUXh9u3bXPJpaWkhOjoaVlZWMscTEhLQtGlT5OTkIDExEY0bN0Zubm6lZqtTpw6OHz/OfejCh9SqVQunTp2Sa328desWvvnmGzx+/BhRUVH45ptv8PTp00rPV6dOHRw7dgz169ev9Nf+kI9NdnmfRCKpwCTyysqWmpqKLl26oGfPnvDx8ZEer+xs73Nzc8OdO3dgb2+PXbt2ITk5GTVq1MDhw4cxc+ZM3Lx5k2s+UrGooCQKR09PD3l5eSgqKpKOI3r7b01NTZn7VtZ4J2dn58+6n0gkwunTpys4zcd5enpi165dYIxh6NChGDVqFBo2bChzn7S0NJiYmMiNb6ssZmZm8Pb2hre3t8xxX19f+Pr6Ijk5GbGxsfjmm2+QlpZWqdmCgoJw4sQJbNmyBerq6pX62p9DS0sLISEhcpM0wsLC0KtXL7x69Qr3799H06ZN/1Uh9bVs374dhw4dQlBQEDQ0NCr99csiFos/OYaSMQaRSITi4uJKSlXqQ9ne/uoWiUTcsr0vKysLs2fPRkpKCn7++We4uroCAObNmwdVVVXMmjWLaz5SsZR5ByDk31q9ejXvCHIUaSme27dvY+3atejXrx/U1NTKvI++vj7Xr2nOnDn4+eefcebMGekYyoiICBw7dgwbN24EAJw6dQodO3as9GwDBgzArl27YGhoCAsLC6ioqMjcHhUVVemZ3tWnTx+MGDECK1euRPPmzQGUnrvJkydLW++vXr1aqeN57e3tZYqihIQE1KxZUzDnT8g/v0LO9j5dXV2sW7dO7viCBQs4pCGVjVooCfnKXr58ieLiYrlZtM+fP4eysjLXbqnCwkKMGTMGc+bMQZ06dbjl+BwXLlzAunXrEB8fD6B0BqmnpyfatGnDNdeAAQNw5swZfPfdd2VOypk3bx6nZKVycnLg7e2Nbdu2oaioCACgrKwMd3d3+Pr6QlNTE9HR0QCApk2bVkqmf1NQ8D5/5MudOHECWlpa0tUt1q9fj82bN8POzg7r16+Hnp4e54SkIlFBSRROcnLyR283MzOrpCRl69atG3r16oVffvlF5vjGjRtx+PBhHDt2jFOyUjo6OoiOjhZ8QSlUmpqa+Ouvv6S/NIUqJydHugSPpaUltLS0OCdSLHl5eUhOTsabN29kjjdu3JhTolJZWVm4evVqmUsuDRs2jFOqUo0aNcKvv/6K7t2748aNG2jevDkmTpyIM2fOwNbWlvsKCKRiUUFJFM6nxjvxHkdUvXp1XLhwQW7SwZ07d9C2bVs8e/aMU7JS7u7uaNq0qdz4RKEpKSlBQkJCmb84O3TowCkVYGtriz/++IN7YaGoIiIiUFJSgpYtW8ocv3LlCpSUlKQT7XjJzMzE8OHDy9ycAOD7+XLkyBG4ubkhJycHEolE5nNQJBJxXSMTKB2/e/PmTVhYWGD+/Pm4efMm9u3bh6ioKHTv3r3SxzuTykVjKInCuX79usz1wsJCXL9+HatWrcKSJUs4pfpHQUGBtKvxXYWFhcjPz+eQSJa1tTUWLlyICxcuoFmzZnITmcaPH88p2T8uX76MwYMH4+HDh3j/b17ekw9WrlyJqVOnYuPGjbCwsOCW40OEuHD4u8aOHYupU6fKFZSPHz/Gr7/+iitXrnBKVmrChAnIysrClStX4OTkhAMHDiA9PR2LFy/GypUruWabNGkSRowYgaVLlwpmQtO7VFVVpesA//3339IW0+rVq3OZAEYqF7VQkv+Mo0ePYvny5QgLC+Oaw9nZGQ0bNsTatWtljo8dOxaxsbE4f/48p2SlPtbVLRKJuBccQOnYPhsbGyxYsKDMxa91dHQ4JZNdZUBDQ0NuUgnvViIhLhz+Li0tLcTGxsLS0lLmeFJSEho3boxXr15xSlbK2NgYhw4dQosWLSCRSHDt2jXY2Njg8OHD+O233xAeHs4tm6amJm7cuCF37oSid+/eePPmDdq2bYtFixYhKSkJtWrVwsmTJzFu3DjcvXuXd0RSgaiFkvxn1KtXDxEREbxjYPHixejcuTNiYmLQqVMnAEBoaCgiIiJw8uRJzulKf3EL3b1797Bv3z65dSiFQIirDLzr+PHjOHr0KNq2bcs7SpnU1NSQnp4uVxSlpqZKlwHjKTc3F4aGhgBK/3jIzMyEjY0NGjVqxH0Gf9euXXHt2jXBFpTr1q3DL7/8gn379mHDhg2oVasWgNLvybdLCJH/Lv4/vYT8S+93nTDGkJqaivnz58Pa2ppTqn+0bdsWly5dwvLly/HHH39AXV0djRs3RkBAgCDyvfXmzRskJSWhbt26gvhF/q6WLVsiISFBkAUlz633Poeenh63fbo/xzfffIMZM2bg0KFD0pbmrKwszJw5E126dOGcrvQP0/j4eFhYWKBJkybYtGkTLCwssHHjRhgbG3PN1qNHD0yZMgW3b99Go0aN5FrHe/fuzSlZKTMzM4SEhMgd9/X15ZCGVDbq8iYKp6xJOYwxmJqaYvfu3WjdujWnZIohLy8Pnp6e0v2L7969C0tLS3h6eqJWrVqYPn0654TAgQMHMHv2bEyZMqXMX5xCmRDz+vVruVnAvHcrEeLC4e96/PgxOnTogGfPnsHe3h4AEB0djZo1a+LUqVMwNTXlmm/79u0oKiqCh4cHIiMj4erqiufPn0NVVRWBgYEYOHAgt2xisfiDt/EeW/xWYmIitm7disTERPj5+cHQ0BDHjx+HmZkZGjRowDseqUBUUBKFc/bsWZnrYrEYBgYGsLKy4tbSlp2dLS0kPjX4nHfB4eXlhQsXLmD16tVwdXWVjmc7dOgQ5s+fLzfpiYeyfnEKZUeQ3NxcTJs2DX/88UeZM/Z5/1K3t7dHYmIiGGOCWTj8fbm5udixYwdiYmKkLfiDBg2SyyoEeXl5uHPnDszMzKCvr887jqCdPXsW3bp1Q9u2bXHu3DnExcXB0tISPj4+uHbtGvbt28c7IqlAwurnIuQz8Ngd5VP09PSQmpoKQ0ND6OrqfnCrNN7FEAAcPHgQe/bsQatWrWRyNmjQAImJiRyT/UPI4zynTp2KM2fOYMOGDRg6dCjWr1+Px48fY9OmTTL7KvPCYy/7f+PcuXNo06YNfvzxR5njRUVFOHfuHNclod7HGIO6ujocHBx4R1EI06dPx+LFizFx4kRoa2tLj7u4uJS5gw75b6GCkiik4OBgbNy4EUlJSbh06RLMzc3h6+sLS0tL9OnTp9LznD59WjpuTehbpWVmZkonHbwrNzf3k/sZVxZzc3PeET7oyJEj2LZtG5ycnDB8+HC0b98eVlZWMDc3x44dO+Dm5sY1n9B3mnF2dpb+8fWuly9fwtnZmfsfXAAQEBAAX19f3Lt3D0DpUlsTJkzAqFGjuOZauHDhR2+fO3duJSUp240bN7Bz506544aGhnj69CmHRKQyUUFJFM6GDRswd+5cTJgwAUuWLJH+AtLT08Pq1au5FJTvtprWqVMHpqamZY7zTElJqexochwdHXH06FF4enoCgDSnv78/1/Gnhw8fRrdu3aCiooLDhw9/9L48Jx88f/5cOstWIpFIlwlq164dfv75Z265FMXblvr3PXv2TG5NVB7mzp2LVatWwdPTU/rzcOnSJXh7eyM5OfmTRV1FOnDggMz1wsJCJCUlQVlZGXXr1uVeUOrq6iI1NVVuabLr169LZ3yT/y4qKInCWbt2LTZv3oy+ffvKdDE6Ojpi8uTJHJOVqlOnTpktMM+fP0edOnW4t8AsXboU3bp1w+3bt1FUVAQ/Pz/cvn0bFy9elBufWpn69u2LtLQ0GBoafrTblvewAUtLSyQlJcHMzEy6a06LFi1w5MgR6OrqcslUvXp13L17F/r6+tDT0/toSzOvdTL79esHoPT98/DwgJqamvS24uJixMbGct+nHSj9g3Xz5s0YNGiQ9Fjv3r3RuHFjeHp6ci0oyxrfnJ2dDQ8PD3z77bccEsn64YcfMG3aNOzduxcikQglJSW4cOECJk+ezH1bSFLxqKAkCicpKUk6O/RdampqyM3N5ZBI1odaYHJyclCtWjUOiWS1a9cO0dHR8PHxQaNGjXDy5Ek4ODjg0qVLaNSoEbdc7+7o8v7uLkIyfPhwxMTEoGPHjpg+fTp69eqFdevWobCwEKtWreKSydfXVzpmTajrZL5dIogxBm1tbairq0tvU1VVRatWrTB69Ghe8aQKCwvL3P6xWbNmZe6AxZtEIsGCBQvQq1cvDB06lGuWpUuXYuzYsTA1NUVxcTHs7OxQXFyMwYMHY/bs2VyzkYpHs7yJwrGzs8OyZcvQp08faGtrIyYmBpaWlli7di22bt3KbRbrxIkTAQB+fn4YPXq0zJItxcXF0r2KL1y4wCUfqRgPHz5EZGQkrKysBLOckZAtWLAAkydPFkT3dlk8PT2hoqIi98fB5MmTkZ+fj/Xr13NK9mHh4eHo1asXXrx4wS3D2yE9BgYGePr0KW7cuIGcnBzY29sLav1dUnGohZIonIkTJ2Ls2LF4/fo1GGO4evUqdu3ahWXLlsHf359brrfdUYwx3LhxA6qqqtLbVFVV0aRJE0F0yQOlLYAJCQll7vXMa5btmjVrPvu+QthvHChdh9Lc3Fxwk4iE+P6+JcRJQ2//GARKu+T9/f1x8uRJtGrVCgBw5coVJCcnc++2ff9n5O2mDsHBwejWrRunVP9ksbKywq1bt2Btbc19PVFS+aiFkiikHTt2YP78+dJlbkxMTLBgwQKMHDmSc7LSLlE/Pz/u601+yOXLlzF48GA8fPgQ7//48xyf+LE9xt/Fe7/x4uJiLF26FBs3bkR6erp0Yfg5c+bAwsKC+/egEN9fBwcHhIaGQk9PD/b29h8d48mjh8HZ2fmz7icSiXD69OkKTvNh7/+MvF2D18XFBTNmzJBZqoeHBg0aICAgQFqIk6qFCkqicN5dRDwvLw85OTnSCTBC3K4vOzsbp0+fhq2tLWxtbXnHQdOmTWFjY4MFCxbA2NhY7pf727FupGwLFy5EUFAQFi5ciNGjR+PmzZuwtLTEnj17sHr1aly6dIlrPiG+vwsWLMCUKVOgoaGB+fPnf7SgFGILJvk8R44cwW+//YYNGzagYcOGvOOQSkYFJVE47du3x99//y0zSxQA4uPj0alTJzx69IhTslIDBgxAhw4dMG7cOOTn56NJkyZ48OABGGPYvXs3+vfvzzWfpqYmYmJiBFd4v+v+/fvSpXmExsrKCps2bUKnTp1kxvDeuXMHrVu35jqODVCM91fIRowYAT8/P7nWvtzcXHh6emLLli2ckpVijOHZs2cQiUSoUaMG1yzv09PTQ15eHoqKiqCqqioz8Qrgt8IAqRwf3hiUEIHS0tLCt99+KzPjMi4uDk5OTtyLNaB0J5D27dsDKF03jjGGrKwsrFmzBosXL+acDmjZsiUSEhJ4x/goKysrmJmZYejQoQgICBBU3sePH5dZrJWUlKCwsJBDIllCfX9zc3Px888/o1atWjAwMMAPP/yAzMxM3rHkBAUFIT8/X+54fn4+tm3bxiFRqbS0NAwbNgx6enqoWbMmDA0NoaenhxEjRiA9PZ1brnf5+vri999/x5YtW7Bx40b4+vrKXMh/G03KIQrnzz//ROfOneHm5obdu3fj1q1b6NSpE9zc3Lgt2/Kuly9fSnfNOXHiBPr37w8NDQ306NEDU6ZM4ZIpNjZW+m9PT09MmjQJaWlpaNSokdz+yUKYqZySkoKwsDCcPXsWv/32G0aPHg0TExN07NgRzs7OXHcssbOzw/nz5+Um4uzbt6/M5awqgyK8v3PmzEFwcDDc3NxQrVo17Nq1Cz/++KPcYt28ZGdngzEGxhhevXols8RXcXExjh07VuYOU5WVrU2bNsjJycHw4cNha2sLxhhu376NXbt2ITw8HFFRUdDS0uKS761BgwahqKhIsDP4SQVjhCigFy9esCZNmrDvvvuOGRoassmTJ/OOJGVtbc327NnDcnJymIGBAQsNDWWMMRYdHc1q1KjBJZNIJGJisZiJRKIyL29vE4vFXPJ9yt27d5m7uztTVlbmnvHgwYNMR0eH+fj4MA0NDbZ8+XI2atQopqqqyk6ePMklkyK8vxYWFuyPP/6QXr927RpTVlZmhYWF3DK96+35+dBFSUmJLV68mEu2hQsXMisrK5aRkSF3W3p6OrOysmJLlizhkKxURkYGc3V1lf58tmzZkt27d49bHsIHjaEkCiE7O1vuWGpqKrp06YKePXvK7JjDe3b1//73P3h5eUFLSwvm5uaIioqCWCzG2rVr8eeff3LZ6/vhw4effV8hLIGTl5eH8PBwhIWFISwsDNevX4etrS2cnJzg5OTEZXvNd50/fx4LFy5ETEwMcnJy4ODggLlz5+Kbb77hkkcR3l8VFRU8fPgQJiYm0mMaGhq4c+cOzMzMuGR619mzZ8EYg4uLC/bv3y/tZQBKl/0yNzeXyV6ZWrVqhTFjxmD48OFl3r5lyxZs3ryZ24SwESNG4Pjx4xg/fjyqVauGTZs2wdjYmMtnHeGHCkqiEMRicZkzQ99++4pEIukONby3NgSAa9euISUlBV26dJF2Qx09ehS6urpo27Yt53TCp6qqCj09Pbi5ucHJyQnt27eHnp4e71ikHJSUlJCWlgYDAwPpMYlEgpiYmM9eMqoyPHz4EGZmZh+diV7ZqlevjkuXLqFevXpl3n7nzh20adOG26QXU1NT+Pv7o2vXrgCAe/fuoX79+sjNzZWbPEn+u6igJArh3+wx3bFjxwpM8u+8W/AKxbJly1CzZk2MGDFC5viWLVuQmZmJadOmcUr2j759+yI8PByqqqrSVkknJyfY2Njwjibn/v37yM/PR/369SEW85/nKNT3VywWo2HDhlBW/mfofmxsLGxtbWU2AeC109W7zp8/j02bNuH+/fvYu3cvatWqheDgYNSpUwft2rWr9DzKysp4/PgxatasWebtaWlpqF27NretIZWUlPD48WMYGRlJj2lqauLWrVuwsLDgkolUPpqUQxSCkIrEzxEQEABfX1/cu3cPAGBtbY0JEyZwnUzy1qZNm7Bz50654w0aNMAPP/wgiILy4MGDAEoLjrNnz+LkyZOYM2cOlJWV4eTkhB07dlR6psLCQixevBhRUVFo1aoVpk+fjiFDhuCPP/4AANSrVw/Hjh3j/gtUqO9vWetL8h66UJb9+/dj6NChcHNzQ1RUFAoKCgCUTrZbunQpjh07VumZGGMf/WPlbQ8NT0pKSnLXeWcilYtaKInCysvLQ3JyMt68eSNznPcs5blz52LVqlXw9PRE69atAQCXLl3CunXr4O3tjYULF3LNV61aNcTFxcl1M96/fx92dnZ4/fo1p2TyGGO4fv06zpw5gzNnzuCvv/4CY4xLS8ykSZMQHByMPn364PTp02jYsCHi4+OxYMECiMViLFq0CI0aNeJS7L5Lkd5fIbK3t4e3tzeGDRsms87o9evX0a1bN6SlpVV6JrFYDB0dnQ/2dDDGkJ2dzW24T1n5srKyIJFIZAphWofyv41aKInCyczMxPDhw3H8+PEyb+c9hnLDhg3YvHkzBg0aJD3Wu3dvNG7cGJ6entwLSlNTU1y4cEGu4Lhw4QK3SQfvW7VqFcLCwhAeHo5Xr16hSZMm6NChA3788UfpGp+Vbd++fQgMDET37t1x9+5d2Nra4ujRo9I9lA0NDeHm5sYl27sU4f0Vsvj4+DL3O9fR0UFWVlblBwKwdetWLq/7uYSej1QOKiiJwpkwYQKysrJw5coVODk54cCBA0hPT8fixYuxcuVK3vFQWFgIR0dHuePNmjXjNsbpXaNHj8aECRNQWFgIFxcXAEBoaCimTp2KSZMmcU5XateuXejYsaO0gBTCdpBPnjxBkyZNAAA2NjZQU1OTWeDcxsaGS+vV+4T4/n5q/+538R5DaWRkhISEBLmhC+Hh4dx2b3J3d+fyup9L6PlI5aCCkiic06dP49ChQ3B0dIRYLIa5uTm6dOkCiUSCZcuWoUePHlzzDR06FBs2bJBbZP33338XRAvWlClT8OzZM/zyyy/S4QLVqlXDtGnTMGPGDM7pSkVERPCOIKe4uFhmkXBlZWWZcWNisVgQY8aE+P727duXy+t+idGjR8PLywtbtmyBSCTCkydPcOnSJUyePBlz5szhHU8hvHnzBhkZGSgpKZE5LoTloUjFoTGUROFIJBLExsbCwsIC5ubm2LlzJ9q2bYukpCQ0aNAAeXl5XPN5enpi27ZtMDU1RatWrQAAV65cQXJyMoYNGyZTlFT2zj7FxcW4cOGCdAeVuLg4qKurw9raWpDLewhpnKxYLEZQUJC0tXTQoEFYvXq1dOZtVlYWhg8fznXIhaK9v0LEGMPSpUuxbNky6WeJmpoaJk+ejEWLFlV6Hj09vc9u3eU9RvHu3bsYOXIkLl68KHNcSEu6kYpDBSVROM2bN8fixYvRtWtX9O7dG7q6uli2bBnWrFmDffv2ITExkWs+Z2fnz7qfSCTC6dOnKziNvA9N2hCSzMxMeHh44MSJE2XezuMX0+csCSSEX5qK8P4KWWFhIVRUVPDmzRskJCQgJycHdnZ20NLSwtOnT6Gvr1+peYKCgj77vry7ntu2bQtlZWVMnz4dxsbGcoXw2yEj5L+JuryJwvHy8kJqaiqA0qVIXF1dsWPHDqiqqiIwMJBvOEDwu0M0bNgQ9+/fF3TBMWHCBLx8+VJQ42Tf774TKiG+v4rUyvbDDz9g3759UFVVhZ2dnfR4eno6OnXqhJs3b1ZqHt5F4r8RHR2NyMhI2Nra8o5COKCCkiicIUOGSP/drFkzPHz4ULp9W2W3HiiixYsXS7vvmjVrBk1NTZnbeW9dCQh/nKyQCfH9Xb16daW/5pdKTk7GqFGjEBAQID2WmpoKFxcXNGjQoNLzlLXt7Ifw/tm1s7PD06dPuWYg/FCXNyFfQb9+/RAYGAiJRIJ+/fp99L5//vlnJaUq27tdt++2GglpnJPQx8kGBwdj48aNSEpKwqVLl2Bubg5fX19YWlpyX6xbEd5fIcvMzESHDh3QrVs3rFq1Ck+ePIGzszOaNGmC3bt3V/puSB/advZdPN/bdwvea9euYfbs2Vi6dKl0HO+7eBe8pGJRCyVRGJ+7fuPcuXMrOIm8dxf1FcISNx/zsS75GzduVGKSD6tXrx7i4+NhYWGBJk2aYNOmTbCwsMDGjRthbGzMNduGDRswd+5cTJgwAUuWLJH+EtfT08Pq1au5F5RCH3LxrtevX8tNuOJddBgYGODkyZPSLRZDQkLg4OCAHTt2cNlaU+jvp66urtwfLp06dZK5D/0xUzVQCyVRGGKxGCYmJjA0NPzg8iwikYj7OnaK5tWrV9i1axf8/f0RGRkpiA/97du3o6ioCB4eHoiMjISrqyueP38uHSc7cOBAbtns7OywdOlS9O3bV2YnlZs3b8LJyYm6/D4hNzcX06ZNwx9//IFnz57J3S6E7z+gdMZy+/bt0aVLFwQHB3/2GNCq5uzZs599X0XbQpf8O9RCSRRGt27dcPr0aTg6OmLEiBHo2bMnlxaDLxUbGwtHR0e5Fhlezp07h4CAAOzfvx8mJibo168f1q9fzzsWAGGPk01KSoK9vb3ccTU1NeTm5nJIVDYhLbn0rqlTp+LMmTPYsGEDhg4divXr1+Px48fYtGkTfHx8uGT60KShvLw8HDlyBDVq1JAe4z1pCBDWe0tFInmLCkqiMI4ePYonT54gKCgIU6ZMwZgxYzBs2DCMGDEC9erV4x3vk3jtQf2utLQ0BAYGIiAgANnZ2RgwYAAKCgpw8OBBmRmtPBUWFsLW1hYhISGoX78+AEBDQwMODg6ck5WqU6cOoqOjYW5uLnP8xIkT0rw8CX1r0iNHjmDbtm1wcnLC8OHD0b59e1hZWcHc3Bw7duzgsvi/okwaEvp7u3XrVmhpaeH777+XOb53717k5eUp1Ix18gUYIQrq7NmzzMPDg2lra7M2bdqwvLw83pE+Kjo6monFYm6v37NnTyaRSNigQYNYSEgIKyoqYowxpqyszG7dusUtV1lMTEzY7du3ecco0+bNm1mtWrXY7t27maamJtu1axdbvHix9N+8DR48mLVt25ZFREQwTU1NdvLkSRYcHMzq1avHQkJCeMdjmpqa7OHDh4wxxmrVqsWuXLnCGGPs/v37TFNTk2c0wRP6e2ttbc1Onz4tdzwsLIzZ2NhwSEQqExWURGHl5eWxoKAg1qJFC6aurs5evnzJO9JH8S4olZSUmLe3N7t7967McSEWlEuWLGHu7u6ssLCQd5Qybd++nVlZWTGRSMREIhGrVasW8/f35x2LMcaYkZGRtEjT1tZm8fHxjDHGDh06xNq2bcszGmOMsUaNGrGwsDDGGGOdOnVikyZNYowx5ufnx2rVqsUzGmOMscjISBYbGyu9fvDgQdanTx82Y8YMVlBQwDGZ8N9bNTU1lpSUJHc8KSmJVatWrfIDkUqlOAPQCPl/ly5dwujRo2FkZIS1a9fC3d0dT5484T47NDs7+6OXV69ecc0XHh6OV69eoVmzZmjZsiXWrVsn2AkkERER+PPPP2FmZoauXbuiX79+Mhfe3NzccO/ePeTk5CAtLQ2PHj3CyJEjeccCUDrpxdDQEEDp2MDMzEwAQKNGjQQxYW348OGIiYkBAEyfPh3r169HtWrV4O3tjSlTpnBOB4wZMwZ3794FANy/fx8DBw6EhoYG9u7di6lTp3LNJvT31tDQELGxsXLHY2JiZMahkv8mGkNJFMZvv/2GwMBAPH36FG5ubjh//jz3CQbven/5jPex/186g5dWrVqhVatWWL16Nfbs2YMtW7Zg4sSJKCkpwalTp2BqagptbW1u+d6lq6uL/v37845RpqSkJBQVFcHa2hoaGhrQ0NAAANy7dw8qKiqwsLDgmk/ISy4BgLe3t/TfnTt3RlxcHKKiomBlZSWIn+e7d++iadOmAErH/nXs2BE7d+7EhQsX8MMPP3Adbyn093bQoEEYP348tLW10aFDBwCls8C9vLzwww8/cE5HKhotG0QUhlgshpmZGXr27AlVVdUP3m/VqlWVmOofn7t8hpBmRcbHxyMgIADBwcHIyspCly5dcPjwYd6xBK1jx44YMWKE3ASD7du3w9/fH2FhYXyCvZNDqEsuKQKJRILIyEhYW1ujS5cu6NmzJ7y8vJCcnIx69eohPz+fWzahv7dv3rzB0KFDsXfvXigrl7ZXlZSUYNiwYdi4ceNHP7eJ4qOCkigMJyenT7bwiUQinD59upIS/XcUFxfjyJEj2LJlC9eCMj8/H6dOnYKzs7Nca2l2djbCwsLQtWtXqKmpcUpYWnC8bVF7V0JCAhwdHZGVlcUn2Afk5eUJZsmlt0JDQ+Hr64u4uDgAQP369TFhwgR07tyZczLAxcUFpqam6Ny5M0aOHInbt2/DysoKZ8+ehbu7Ox48eMA7opQQ31ugtJU3JiYG6urqaNSokdyKCOS/iQpKQr6yjh07YuTIkfj++++hrq7OO45C8fPzw+HDhxEaGlrm7Z07d0bfvn0xbty4Sk72Dx0dHYSFhcmtRRkZGQknJyfuY2WF7n//+x+8vLzw3XffoXXr1gCAy5cvY9++ffD19cXYsWO55ouNjYWbmxuSk5MxceJEzJs3DwDg6emJZ8+eYefOnVzzvfX2VzctuE6EggpKorDevHmDpKQk1K1bV9q9IgQTJkzAzp07UVBQgAEDBmDkyJFo1aoV71gKoUWLFpgzZw569epV5u0hISFYuHAhrl69WsnJ/tGrVy+oq6tj165dUFJSAlDawjtw4EDk5uZ+cI3AiibkrUnfVbt2bUyfPl3uj4L169dj6dKlePz4MadkH/f69WsoKSnJ7U9d2QICAuDr64t79+4BAKytrTFhwgSMGjWKay6g9OcgMDAQoaGhyMjIQElJiczt1Hv030YFJVE4eXl58PT0RFBQEIDS7hVLS0t4enqiVq1amD59OueEQFFREQ4fPoygoCAcP34cVlZWGDFiBIYOHYqaNWvyjidYenp6iImJgZmZWZm3Jycno0mTJnjx4kUlJ/vH7du30aFDB+jq6qJ9+/YAgPPnzyM7OxunT59Gw4YNueRSlK1JtbS0EB0dLTdk4N69e7C3t0dOTg6nZMI3d+5crFq1Cp6entLW3UuXLmHdunXw9vb+7D8qKsq4ceMQGBiIHj16wNjYWK711NfXl1MyUim4LFZESDmMHz+eNWvWjJ0/f55pamqyxMRExljpenFNmzblnE5eeno6W7RoEatWrRpTUVFhffr0YaGhobxjCZKWlha7du3aB2+/du0a09LSqsREZXv8+DGbMWMG6969O+vfvz9bsGABe/bsGddM3bt3Z9WqVWN9+vRhhw4dYsXFxVzzfMigQYPYb7/9Jnd8+fLlbODAgRwSySoqKmLLly9nzZs3ZzVr1mR6enoyF5709fXZzp075Y7v3LmT1ahRg0MiWTVq1GBHjx7lHYNwIpx+QkI+08GDB7Fnzx60atVK5i/gBg0aIDExkWMyeVevXsXWrVuxe/duGBoawsPDA48fP0bPnj3xyy+/YMWKFbwjCkqDBg3w999/o1mzZmXefvLkSTRo0KCSU8kzMTHB0qVLeceQIeStSdesWSP9t52dHZYsWYKwsDCZMZQXLlzApEmTeEWUWrBgAfz9/TFp0iTMnj0bs2bNwoMHD3Dw4EHuwwUKCwvh6Ogod7xZs2bct3UFAFVVVbmWZ1J1UJc3UTgaGhq4efMmLC0toa2tjZiYGFhaWiImJgYdOnTAy5cvuebLyMhAcHAwtm7dinv37qFXr14YNWoUunbtKi2Aw8PD4erqSt177/n9998xceJE7N69Gz179pS57ciRIxg0aBBWrVqFH3/8kVPCUllZWbh69WqZ48SGDRvGKZWsc+fOYevWrdi/fz8aNWqEv//+m9sksTp16nzW/UQiEe7fv1/BaT6ubt26WLNmDXr06AFtbW1ER0dLj12+fJnrpBxPT0+oqKjILY02efJk5OfnY/369ZySlVq5ciXu37+PdevW0WShKohaKInCcXR0xNGjR+Hp6Qngn1mO/v7+0hYPnmrXro26detixIgR8PDwgIGBgdx9GjdujObNm3NIJ2w//vgjzp07h969e8PW1lbasnbnzh3cvXsXAwYM4F5MHjlyBG5ubsjJyYFEIpH5xSkSiQRTUDZv3hwPHjzA7du3cf36dRQWFnIrKJOSkri87pdIS0tDo0aNAJSO93z7B2rPnj0xZ86cSs8zceJE6b9FIhH8/f1x8uRJ6US/K1euIDk5WRDfd+Hh4Thz5gyOHz+OBg0ayE1g+vPPPzklI5WBCkqicJYuXYpu3brh9u3bKCoqgp+fH27fvo2LFy9+9uLiFSk0NFQ6WeNDJBIJzpw5U0mJFMv27dvRu3dv7Ny5E3fv3gVjDPXq1cOCBQswYMAA3vEwadIkjBgxAkuXLpXukiMkly5dwpYtW/DHH3/AxsYGw4cPx+DBg7lvTfo+oa7SULt2baSmpsLMzAx169bFyZMn4eDggIiICC7rn16/fl3m+tvhIG+H9+jr60NfXx+3bt2q9Gzv09XVxbfffss7BuGEuryJQkpMTISPjw9iYmKQk5MDBwcHTJs2TdqyQEhF0dTUxI0bN2Bpack7ioz3tyYdPny4ILYyfJ/QV2mYPn06JBIJZs6ciT179mDIkCGwsLBAcnIyvL294ePjwzUfIUJFBSUhX4G9vf1njxnivWyLIhDy4vD9+vXDDz/8IIjW0ncJfWvSt7y8vHDhwgWsXr0arq6uiI2NhaWlJQ4dOoT58+fLtcjxdvnyZVy8eBHW1tYfXB+1sowYMQJ+fn5yu0jl5ubC09MTW7Zs4ZTsH0VFRQgLC0NiYiIGDx4MbW1tPHnyBBKJBFpaWrzjkQoknH4GQj6TEIuNvn378o7wn2Jvb4/JkyfD09NTcIvD9+jRA1OmTMHt27fRqFEjuXFivXv35pKrQ4cOEIlEH+36FMJECaGv0vDs2TPUqFEDAJCSkoJjx44hPz+/zNnVlS0oKAg+Pj5yBWV+fj62bdvGvaB8+PAhXF1dkZycjIKCAnTp0gXa2tr49ddfUVBQgI0bN3LNRyoYxyWLCPkiXl5ezMDAgEkkEjZq1Ch26dIl3pFIBSgsLGT79+9nvXv3ZioqKqx+/fps+fLlLC0tjWsukUj0wYtYLOaaTRGoq6tL147V0tKS/js6OppJJBJuuWJjY5m5uTkTi8WsXr167Pr166xmzZpMS0uLSSQSpqSkxA4cOMAl28uXL1lWVhYTiUQsISGBvXz5Unp5/vw5CwoKYsbGxlyyvatPnz5syJAhrKCgQOa9PXPmDLOysuKcjlQ0Me+ClpB/a/Xq1Xjy5Am2bt2KjIwMdOjQAXZ2dlixYgXS09N5x5O6du0agoODERwcjMjISN5xFI6ysjL69euHQ4cO4dGjRxg8eDDmzJkDU1NT9O3bl9s2biUlJR+8FBcXc8mkSN6u0vCWUFZpmDp1Kho1aoRz587ByckJPXv2RI8ePfDy5Uu8ePECY8aM4TZ+UldXF9WrV4dIJIKNjQ309PSkF319fYwYMYL7HuhA6Y5Rs2fPlhtyYWFhIdgtNcnXQ2MoicLLyMjA77//jiVLlqC4uBjdu3fH+PHj4eLiwiXPo0ePMGjQIFy4cAG6uroAStctbNOmDXbv3o3atWtzyaWo3l0cXiKRSBeH37lzJy0O///eXVrmU3iPoQwPD0e3bt0wZMgQBAYGYsyYMTKrNHxoUfuKpq+vj9OnT6Nx48bSJaEiIiKkee7cuYNWrVohKyur0rOdPXsWjDG4uLhg//79qF69uvQ2VVVVmJubw8TEpNJzvU9PTw8XLlyAnZ2dzBrB4eHh6N+/v6D+4CdfHxWURKEJsdhwdXVFVlYWgoKCpOsoxsfHY/jw4ZBIJDhx4kSlZ1I0Ql8cPjc3F2fPnkVycjLevHkjc9v48eMrPY+zs7PM9aioKBQVFUm//+7evQslJSU0a9aMW8vuu4S4SoNYLEZaWhoMDQ0BQKYgAoD09HSYmJhwbYV++PAhzMzMBDEWtiwDBw6Ejo4Ofv/9d2hrayM2NhYGBgbo06cPzMzMsHXrVt4RSUXi2uFOyBdIT09nK1asYA0aNGCqqqqsf//+7Pjx46ykpER6n7f7fPNQrVo1FhUVJXf82rVrTF1dnUMixaOiosJsbW3Zb7/9xjIyMsq8z8uXL5mTk1MlJ2MsKiqKGRkZScfVGRgYMJFIxDQ1NVmdOnUqPc/7Vq5cyXr16sWeP38uPfb8+XPWp08ftmLFCo7JhE0kEsl8r2lpabH79+9Lr6elpQlijOy5c+eYm5sba926NXv06BFjjLFt27ax8+fPc07GWEpKCrOzs2P169dnysrKrFWrVqxGjRrMxsaGpaen845HKhjN8iYKR+g70ZiamqKwsFDueHFxsSC6pRSBkBeH9/b2Rq9evbBx40bo6Ojg8uXLUFFRwZAhQ+Dl5VXped63cuVKnDx5Enp6etJjenp6WLx4Mb755hvu+2VHRUVBRUVF2hp56NAhbN26FXZ2dpg/f/5HlzyqaB4eHtLFy1+/fo2ffvoJmpqaAICCggJuud7av38/hg4dCjc3N0RFRUkzvXz5EkuXLsWxY8e45qtduzZiYmKwe/duxMbGIicnByNHjoSbm5tgVuQgFYcm5RCFExoairi4OEyZMqXMYhLguxPN8uXL4enpiWvXrkmPXbt2DV5eXjTe7zO9LSYzMjJw/vx5nD9/HhkZGZxTlYqOjsakSZMgFouhpKSEgoICmJqa4rfffsPMmTN5x0N2djYyMzPljmdmZuLVq1ccEskaM2YM7t69CwC4f/8+Bg4cCA0NDezduxdTp07llsvd3R2GhobQ0dGBjo4OhgwZAhMTE+l1Q0ND7tsbLl68GBs3bsTmzZtllqtq27atINa3ffbsGZSVlTFkyBB4enpCX18f8fHxMp+F5D+MdxMpIZ/rU10mhYWF7MqVK5WU5sN0dXWZqqoqE4vFTFVVVebfenp6MhdStuzsbDZkyBCmrKwsXZJHWVmZubm5saysLK7Z9PX12d27dxljjFlbW7MTJ04wxhiLi4tjGhoaPKMxxhgbOnQos7CwYPv372cpKSksJSWF7du3j9WpU4cNGzaMdzwmkUhYQkICY4wxHx8f9s033zDGGAsPD2e1a9fmGU3w1NXVWVJSEmNMdsmlxMREpqamxi2XkJdcIpWHuryJwjA2NkZqaqp00HyjRo1w7NgxmJqaAij967h169bcl25ZvXo119f/Lxg1ahSuX7+OkJAQ6VIyly5dgpeXF8aMGYPdu3dzy2Zvb4+IiAhYW1ujY8eOmDt3Lp4+fYrg4GA0bNiQW663Nm7ciMmTJ2Pw4MHSoRfKysoYOXIkli9fzjkdwBhDSUkJAODvv/9Gz549AZQOFXn69CnPaIJnZGSEhIQEWFhYyBwPDw/nuhXo2yWXduzYgeDgYOmSS5s3bwYAeHp6wsfHhzaA+K/jXdES8rlEIpFMK+W7f6EzVjpoXiQS8YhGvjINDY0yJxmcO3eOeytgREQEO336NGOstNW8a9euTFtbmzk4OLDo6Giu2d6Vk5PDYmJiWExMDMvJyeEdR8rZ2ZkNGzaMbdu2jamoqLB79+4xxhgLCwtj5ubmfMMJ3NKlS5mdnR27fPky09bWZufPn2fbt29nBgYGbM2aNdxy1ahRg8XExDDGGHv16hUTiUTs2rVr0tvj4uKYjo4Op3SkslALJflPEcpyGsXFxThw4ADi4uIAAHZ2dujTpw+UlelH7nPUqFEDOjo6csd1dHRkJpvw8O4WfIaGhoJdBkpTUxONGzfmHUPO6tWr4ebmhoMHD2LWrFmwsrICAOzbtw9t2rThnE7Ypk+fjpKSEnTq1Al5eXno0KED1NTUpNuU8vL8+XMYGRkBALS0tKCpqSk3KUwI43dJxaJ1KInCUIR14gDg1q1b6N27N9LS0mTWATQwMMCRI0cE0S0qdL///jv27t2L4OBg6S+qtLQ0uLu7o1+/fhgzZgznhMKVm5sLHx8fhIaGIiMjQ9q9/Nb9+/c5Jfu4169fQ0lJSW5vdPKPwsJCqKio4M2bN0hISEBOTg7s7OygpaWFp0+fQl9fn0susViM9PR06STJt2tQ1qlTB4BwPptJxaLmEqIwRCIRXr16hWrVqoExBpFIhJycHGRnZwOA9P+8jRo1Cg0aNMC1a9ekf6W/ePECHh4e+PHHH3Hx4kXOCYXJ3t5epoX53r17MDMzg5mZGQAgOTkZampqyMzMrPSC8v1sH8N7tu2oUaNw9uxZDB06FMbGxoJptf+UatWq8Y4geD/88AP27dsHVVVV2NnZSY+np6ejU6dOuHnzJrdsQl9yiVQ8KiiJwmCMwcbGRua6vb29zHUh/PKMjo6WKSaB0i6fJUuWcFsbUxEIecC+kLO97/jx4zh69Cjatm3LO0qZiouL4evriz/++KPMnYaeP3/OKZnwJScnY9SoUQgICJAeS01NhYuLCxo0aMAtl7u7u8z1IUOGyN2H95JLpOJRQUkUBq91Jf8tGxsbpKeny33AZ2RkSMeLEXnz5s3jHeGDhJztfXp6ejJ7PQvNggUL4O/vj0mTJmH27NmYNWsWHjx4gIMHD2Lu3Lm84wnasWPH0KFDB0ycOBGrVq3CkydP4OzsjCZNmnBd+YC2VCQAjaEk5Ks7duwYpk6divnz56NVq1YAgMuXL2PhwoXw8fFBu3btpPeVSCS8YpL/qO3bt+PQoUMICgqChoYG7zhy6tatizVr1qBHjx7Q1tZGdHS09Njly5exc+dO3hEFLSUlBe3atUP//v0REhICBwcH7NixA0pKSryjkSqOCkqicDp27IiRI0fi+++/F+R2XmLxPxtQve2Cf/tj9u51kUhEg9Q/QMjdokLOBpSO90xMTARjDBYWFnKTXHiP8dTU1ERcXBzMzMxgbGyMo0ePwsHBAffv34e9vT1evnzJNZ8iuHv3Ltq3b48uXbogODhYEEN9CKEub6Jw7O3tpctkDBgwACNHjpS2BArBx7rmY2NjBbmUi9AIuVtUyNkA4Y/3rF27NlJTU2FmZoa6devi5MmTcHBwQEREhHRSB/mHnp5emQVjXl4ejhw5gho1akiP8f5jhlRt1EJJFFJRUREOHz6MoKAgHD9+HFZWVhgxYgSGDh2KmjVr8o4n49WrV9i1axf8/f0RGRlJrZKfQcjdokLOpgimT58OiUSCmTNnYs+ePRgyZAgsLCyQnJwMb29v+Pj48I4oKEFBQZ993/cnxxBSmaigJAovIyMDv//+O5YsWYLi4mJ0794d48ePh4uLC9dc586dQ0BAAPbv3w8TExP069cP/fv3p5nen0HI3aJCzqaILl++jIsXL8La2hq9evXiHYcQ8oXEn74LIcJ19epVzJs3DytXroShoSFmzJgBfX199OzZE5MnT670PGlpafDx8YG1tTW+//57SCQSFBQU4ODBg/Dx8aFi8jO97RYFIO0WBSCIblEhZwNKx3iuWLECLVq0gJGREapXry5z4e3Zs2fSf6ekpODYsWNITU0tc2ckIisqKgo3btyQXj906BD69u2LmTNnyo3lJaTSVfpmj4SUU3p6OluxYgVr0KABU1VVZf3792fHjx9nJSUl0vucP3+eaWpqVmqunj17MolEwgYNGsRCQkJYUVERY4wxZWVlduvWrUrNouimTZvGlixZwhhjbPfu3UxZWZlZWVkxVVVVNm3aNMr2EXPmzGHGxsZsxYoVrFq1amzRokVs5MiRrEaNGszPz49brtjYWGZubs7EYjGrV68eu379OqtZsybT0tJiEomEKSkpsQMHDnDLpwgcHR3Zvn37GGOMJSYmMjU1NTZo0CBmZWXFvLy8+IYjVR51eROFo6qqirp162LEiBHw8PCQbvf1ruzsbPTp06dS165UVlbG+PHj8fPPP8Pa2lp6XEVFBTExMTI7W5B/R8jdokLLJtQxnt26dYOysjKmT5+O4OBghISEoGvXrti8eTMAwNPTE5GRkbh8+TKXfIpAR0cHUVFRqFu3Ln799VecPn0af/31Fy5cuIAffvgBKSkpvCOSKoy6vInCCQ0NRVxcHKZMmVJmMQmUru9Y2Quhh4eH49WrV2jWrBlatmyJdevW4enTp5Wa4b9CyN2iQs4GlA67aNSoEQBAS0tLOqazZ8+eOHr0KLdcERERWLJkCdq2bYsVK1bgyZMn+OWXXyAWiyEWi+Hp6Yk7d+5wy6cIGGPSvdn//vtvdO/eHQBgampKnzWEOyooicJp37497whlatWqFTZv3ozU1FSMGTMGu3fvhomJCUpKSnDq1Cm8evWKd0TBu3HjBiwsLGBoaAhbW1tER0ejefPm8PX1xe+//w4XFxccPHiQsn2EUMd4Pn/+HEZGRgBKC11NTU257UnpZ+TjHB0dsXjxYgQHB+Ps2bPo0aMHACApKUlwq1uQqoe6vIlCsLe3/+zFe3kv3Pyu+Ph4BAQEIDg4GFlZWejSpQsOHz7MO5ZgCblbVMjZ3iXUZXnEYjHS09OlvQra2tqIjY1FnTp1AADp6ekwMTGhZbU+IjY2Fm5ubkhOTsbEiROlW4J6enri2bNntGQV4YoKSqIQFixY8Nn3FeK+y8XFxThy5Ai2bNlCBeVH6Ovr4/Tp02jcuDFycnIgkUgQERGBZs2aAQDu3LmDVq1aISsri7J9JqGM8RSLxejWrZu0lfTIkSNwcXGBpqYmAKCgoAAnTpyggvILvH79GkpKSnK7IhFSmaigJIQIhlgsRlpaGgwNDQGUtmLFxMTA0tISAN9WLCFne9ezZ8+ku6ekpKRg8+bNyM/PR69evdChQwduuYYPH/5Z99u6dWsFJyGEVATaepEorGvXriEuLg4AYGdnJ20pIort/aENQtqnWMjZbty4gV69eiElJQXW1tbYvXs3XF1dkZubC7FYDF9fX+zbt4/b1oxUKJaf0PeRJ1UbFZRE4Tx69AiDBg3ChQsXoKurCwDIyspCmzZtsHv3btSuXZtvQFIuHh4e0m7R169f46effpLpFuVJyNmmTp2KRo0aYceOHQgODkbPnj3Ro0cPmTGePj4+gt/rm3yY0PeRJ1UbdXkThePq6oqsrCwEBQWhXr16AEonvwwfPhwSiQQnTpzgnJB8KSF3iwo5G6C4YzzJ5xPqGqOEAFRQEgWkrq6Oixcvwt7eXuZ4ZGQk2rdvj7y8PE7JCOFHUcZ4ki9H+8gTIaN1KInCMTU1RWFhodzx4uJimJiYcEhEiDAIeYwnKT+hrjFKCEBjKIkCWr58OTw9PbF+/Xo4OjoCKJ2g4+XlhRUrVnBORwg/Qh7jScrv22+/RWhoKFq2bAlPT08MGTIEAQEB0jVGCeGJuryJwtHT00NeXh6KioqgrFz6N9Hbf7/95fkWzXokVYXQx3iSr08oa4wSAlALJVFAq1ev5h2BEMGhQvG/7/01Ro8dO4b8/HxpTw0hPFELJSGEECJgn1pjNDc3l+sao4QAVFASBVVcXIwDBw7ILGzep08faRc4IYT8VyjKPvKkaqOCkiicW7duoXfv3khLS5OuQ3n37l0YGBjgyJEjaNiwIeeEhBDy9dAao0QR0LJBROGMGjUKDRo0wKNHjxAVFYWoqCikpKSgcePG+PHHH3nHI4SQr+r58+cwMjICAGhpaUFTUxN6enrS2/X09PDq1Ste8QgBQJNyiAKKjo7GtWvX5D5QlyxZgubNm3NMRgghFYPWGCVCRwUlUTg2NjZIT09HgwYNZI5nZGTAysqKUypCCKk4tMYoEToaQ0kUzrFjxzB16lTMnz8frVq1AlC6HtvChQvh4+ODdu3aSe8rkUh4xSSEkK+C1hglioAKSqJwxOJ/hv6+7fZ5+2387nWRSET7FhNCCCGVgLq8icI5c+bMB2+LjY1F48aNKzENIYQQQqiFkii8V69eYdeuXfD390dkZCS1ShJCCCGVjJYNIgrr3LlzcHd3h7GxMVasWAEXFxda2JcQQgjhgLq8iUJJS0tDYGAgAgICkJ2djQEDBqCgoAAHDx6EnZ0d73iEEEJIlUQtlERh9OrVC/Xq1UNsbCxWr16NJ0+eYO3atbxjEUIIIVUetVAShXH8+HGMHz8eP//8M6ytrXnHIYQQQsj/oxZKojDCw8Px6tUrNGvWDC1btsS6devw9OlT3rEIIYSQKo9meROFk5ubiz179mDLli24evUqiouLsWrVKowYMQLa2tq84xFCCCFVDhWURKHFx8cjICAAwcHByMrKQpcuXXD48GHesQghhJAqhQpK8p9QXFyMI0eOYMuWLVRQEkIIIZWMCkpCCCGEEFIuNCmHEEIIIYSUCxWUhBBCCCGkXKigJIQQQggh5UIFJSGEfICHhwf69u0rve7k5IQJEyZUeo6wsDCIRCJkZWVV+mu/fw4IIaQsVFASQhSKh4cHRCIRRCIRVFVVYWVlhYULF6KoqKjCX/vPP//EokWLPuu+vIrAZcuWQUlJCcuXL/9Xj3vw4AFEIhGio6Nljvv5+SEwMPDrBSSE/CdRQUkIUTiurq5ITU3FvXv3MGnSJMyfP/+DBdSbN2++2utWr15d8Ivnb9myBVOnTsWWLVu+yvPp6OhAV1f3qzwXIeS/iwpKQojCUVNTg5GREczNzfHzzz+jc+fO0vVH33bRLlmyBCYmJqhXrx4AICUlBQMGDICuri6qV6+OPn364MGDB9LnLC4uxsSJE6Grq4saNWpg6tSpeH9Vtfe7vAsKCjBt2jSYmppCTU0NVlZWCAgIwIMHD+Ds7AwA0NPTg0gkgoeHBwCgpKQEy5YtQ506daCuro4mTZpg3759Mq9z7Ngx2NjYQF1dHc7OzjI5P+bs2bPIz8/HwoULkZ2djYsXL8rcXlJSgt9++w1WVlZQU1ODmZkZlixZAgCoU6cOAMDe3h4ikQhOTk4y5/Pdr3n8+PEwNDREtWrV0K5dO0REREhvf9syGxoaCkdHR2hoaKBNmzaIj4//rK+BEKKYqKAkhCg8dXV1mZbI0NBQxMfH49SpUwgJCUFhYSG6du0KbW1tnD9/HhcuXICWlhZcXV2lj1u5ciUCAwOxZcsWhIeH4/nz5zhw4MBHX3fYsGHYtWsX1qxZg7i4OGzatAlaWlowNTXF/v37AZTu5pSamgo/Pz8ApV3S27Ztw8aNG3Hr1i14e3tjyJAhOHv2LIDSwrdfv37o1asXoqOjMWrUKEyfPv2zzkNAQAAGDRoEFRUVDBo0CAEBATK3z5gxAz4+PpgzZw5u376NnTt3ombNmgCAq1evAgD+/vtvpKam4s8//yzzNaZOnYr9+/cjKCgIUVFRsLKyQteuXfH8+XOZ+82aNQsrV67EtWvXoKysjBEjRnzW10AIUVCMEEIUiLu7O+vTpw9jjLGSkhJ26tQppqamxiZPniy9vWbNmqygoED6mODgYFavXj1WUlIiPVZQUMDU1dXZX3/9xRhjzNjYmP3222/S2wsLC1nt2rWlr8UYYx07dmReXl6MMcbi4+MZAHbq1Kkyc545c4YBYC9evJAee/36NdPQ0GAXL16Uue/IkSPZoEGDGGOMzZgxg9nZ2cncPm3aNLnnet/Lly+Zuro6i46OZowxdv36daalpcVevXrFGGMsOzubqampsc2bN5f5+KSkJAaAXb9+Xeb4u+c7JyeHqaiosB07dkhvf/PmDTMxMZGeu7df999//y29z9GjRxkAlp+f/8H8hBDFpsyzmCWEkC8REhICLS0tFBYWoqSkBIMHD8b8+fOltzdq1AiqqqrS6zExMUhISJAb//j69WskJibi5cuXSE1NRcuWLaW3KSsrw9HRUa7b+63o6GgoKSmhY8eOn507ISEBeXl56NKli8zxN2/ewN7eHgAQFxcnkwMAWrdu/cnn3rVrF+rWrYsmTZoAAJo2bQpzc3Ps2bMHI0eORFxcHAoKCtCpU6fPzvu+xMREFBYWom3bttJjKioqaNGiBeLi4mTu27hxY+m/jY2NAQAZGRkwMzP74tcnhAgXFZSEEIXj7OyMDRs2QFVVFSYmJlBWlv0o09TUlLmek5ODZs2aYceOHXLPZWBg8EUZ1NXV//VjcnJyAABHjx5FrVq1ZG5TU1P7ohxvBQQE4NatWzLnoqSkBFu2bMHIkSO/KG95qKioSP8tEomkeQgh/01UUBJCFI6mpiasrKw++/4ODg7Ys2cPDA0NIZFIyryPsbExrly5gg4dOgAAioqKEBkZCQcHhzLv36hRI5SUlODs2bPo3Lmz3O1vW0iLi4ulx+zs7KCmpobk5OQPtmzWr19fOsHorcuXL3/067tx4wauXbuGsLAwVK9eXXr8+fPncHJywp07d2BtbQ11dXWEhoZi1KhRn5X3fXXr1oWqqiouXLgAc3NzAEBhYSEiIiK4rM9JCBEOmpRDCPnPc3Nzg76+Pvr06YPz588jKSkJYWFhGD9+PB49egQA8PLygo+PDw4ePIg7d+7gl19++egakhYWFnB3d8eIESNw8OBB6XP+8ccfAABzc3OIRCKEhIQgMzMTOTk50NbWxuTJk+Ht7Y2goCAkJiYiKioKa9euRVBQEADgp59+wr179zBlyhTEx8dj586dn1wHMiAgAC1atECHDh3QsGFD6aVDhw5o3rw5AgICUK1aNUybNg1Tp07Ftm3bkJiYiMuXL0sn7hgaGkJdXR0nTpxAeno6Xr58Kfc6mpqa+PnnnzFlyhScOHECt2/fxujRo5GXl4eRI0d+wTtDCPmvoIKSEPKfp6GhgXPnzsHMzAz9+vVD/fr1MXLkSLx+/VraYjlp0iQMHToU7u7uaN26NbS1tfHtt99+9Hk3bNiA7777Dr/88gtsbW0xevRo5ObmAgBq1aqFBQsWYPr06ahZsybGjRsHAFi0aBHmzJmDZcuWoX79+nB1dcXRo0ely/aYmZlh//79OHjwIJo0aYKNGzdi6dKlH8zw5s0bbN++Hf379y/z9v79+2Pbtm0oLCzEnDlzMGnSJMydOxf169fHwIEDkZGRAaB0zOiaNWuwadMmmJiYoE+fPmU+n4+PD/r374+hQ4fCwcEBCQkJ+Ouvv6Cnp/fRc0UI+W8TsQ+NOCeEEEIIIeQzUAslIYQQQggpFyooCSGEEEJIuVBBSQghhBBCyoUKSkIIIYQQUi5UUBJCCCGEkHKhgpIQQgghhJQLFZSEEEIIIaRcqKAkhBBCCCHlQgUlIYQQQggpFyooCSGEEEJIuVBBSQghhBBCyoUKSkIIIYQQUi7/B+zePgrsPD1mAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "actual, predicted = get_actual_predicted_labels(train_ds)\n", "plot_confusion_matrix(actual, predicted, labels, 'training')" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:42:38.204782Z", "iopub.status.busy": "2024-08-16T08:42:38.204514Z", "iopub.status.idle": "2024-08-16T08:42:59.852070Z", "shell.execute_reply": "2024-08-16T08:42:59.851393Z" }, "id": "Mfr7AT5T-7ZD" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/Unknown \u001b[1m1s\u001b[0m 818ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/Unknown \u001b[1m2s\u001b[0m 1s/step " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/Unknown \u001b[1m3s\u001b[0m 1s/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/Unknown \u001b[1m4s\u001b[0m 932ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/Unknown \u001b[1m4s\u001b[0m 914ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/Unknown \u001b[1m5s\u001b[0m 869ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/Unknown \u001b[1m6s\u001b[0m 865ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/Unknown \u001b[1m7s\u001b[0m 877ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/Unknown \u001b[1m8s\u001b[0m 896ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/Unknown \u001b[1m9s\u001b[0m 898ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/Unknown \u001b[1m10s\u001b[0m 913ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/Unknown \u001b[1m11s\u001b[0m 889ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/Unknown \u001b[1m11s\u001b[0m 841ms/step" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "\u001b[1m13/13\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 841ms/step\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/usr/lib/python3.9/contextlib.py:137: UserWarning: Your input ran out of data; interrupting training. Make sure that your dataset or generator can generate at least `steps_per_epoch * epochs` batches. You may need to use the `.repeat()` function when building your dataset.\n", " self.gen.throw(typ, value, traceback)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABGEAAASrCAYAAAAy46XgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1yV9fvH8TcyBJyAG/cAB27FvVe5yq0lppaWpQ1bWqZ9K2dl5crUtDRz40pNc2LOLM0ciYoL3LJUkHl+f/DjJDK8FTyH8Xo+Hjweeo9zrnNx3wfOxedzfWxMJpNJAAAAAAAAeKJyWTsAAAAAAACAnIAiDAAAAAAAgAVQhAEAAAAAALAAijAAAAAAAAAWQBEGAAAAAADAAijCAAAAAAAAWABFGAAAAAAAAAugCAMAAAAAAGABFGEAAAAAAAAsgCIMAORQ8fHx+uGHH9SlSxfVqFFDnp6e8vT0tEosic8dGBholefHf7LS9+Ls2bN6/fXX1ahRI1WpUkWenp6aPn26tcN6LFkp70if6dOny9PTU6NGjXqs8318fOTp6SlfX98MjuzJCA8P16effqrWrVurWrVq8vT0lI+Pj7XDAgCrsbN2AACQnVy8eFErVqzQ/v37FRgYqPDwcDk6Osrd3V21a9dW586dVb9+fWuHKUmaOXOmZsyYIRsbG1WqVEl58+a1dkh4TImFhxdeeEH58+e3cjSWERwcrOeee06hoaEqWLCgqlevLltbWxUvXtzaoSURGBio1atXK1++fBo4cKC1w0Emlx3v5ddee00HDx6Uo6OjPD09lTt3bnl4eFg7LIWHh+vHH3+UJI0YMcLK0UgnT57U1q1b5e7uru7du1s7HABPEEUYAMgAcXFx+uKLL7Rw4ULFxsZKkkqWLCl3d3fdvXtX58+f16lTp7R06VLVr19fP/30k1XjNZlMWrx4sSRp6tSp6tixo1XjKVeunCTJ3t7eqnFkVTNmzJAkdevWLd0f3LLK92Ljxo0KDQ1VtWrVtGTJEuXOndvaIaUoKChIM2bMkLu7e5pFmKySd6Sfi4uLypUrp8KFCyfbZ+ReLl68uMqVK6d8+fI90Tgzgr+/v7kAs2HDBpUsWdLaIZmFh4eb851ZijAzZsyQt7c3RRggm6MIAwDpZDKZ9MYbb+i3336Tvb29Xn31VT333HNJfsGOjIyUn5+fvvvuO/3xxx9WjDZBcHCwQkJCJEmtWrWycjTSr7/+au0Q8P+yyvfizJkzkqSGDRtm2gLMo8gqeUf69e/fX/3793/s86dMmZKB0TxZifdppUqVMlUBBgCsiSIMAKTT/PnzzQWYuXPnqlGjRsmOcXJyUocOHdS+fXt9++23VogyqXv37pn/7eTkZMVIgMcTFRUliesXyMy4TwEgORuTyWSydhAAkFVFRESoVatWCg0N1SuvvKK33nrrsR7HZDJpw4YNWrVqlU6cOKG7d+/K1dVV9evX1+DBg1WtWrVk5/j6+mr06NHy9vbWokWL5OvrqyVLlujMmTOysbFRtWrV9Morr6hJkybmcwIDA9WmTZtU4xg+fLhGjBiR7LFT4uPjo4MHD2rixInJhk7v27dPP/30k/7++2+FhITI0dFRLi4u8vT0VKtWrdSzZ88kxyc2BN62bVuKfy318/PTzz//rKNHjyo8PFwFChRQzZo15ePjk2LR68CBAxowYIDc3d21fft2bdu2TT/88INOnjyp2NhYVapUSQMHDlSnTp1SzUVq7o81ODhYs2bN0uHDhxUdHS0PDw8NGzZMLVu2lCRdv35ds2fP1o4dO3Tjxg0VL15c3bt319ChQ2Vra5vkcU0mk/z8/LRr1y799ddfunr1qu7cuSMXFxfVrl1bAwYMUL169ZKcM336dPNw+pQkfj8lqXXr1goKCtLChQtVuHBhfffdd9q3b59u3bqlLl26aNKkScleX+L34sSJE+rdu7diYmI0Y8YMtWvXLtlzvffee1q7dq2qVq2qZcuWycHBwXBOz549q3nz5unAgQO6fv26nJyc5OnpqWeeeUbdu3dPkqtRo0Zp9erVqT7WqVOnHvp80dHR2rlzp3bs2KFjx47p2rVrioyMVOHChVWvXj0NHjxYlStXTvX8e/fuafny5dqyZYtOnz6tu3fvqlChQipfvrzatWunHj16yMHBwXyPpGbhwoVq0KCBpKx9D8ybN09//vmngoOD9eqrryaZ2rF//379/PPPOnz4sEJCQpQnTx55eXmpX79+atu2barPcf36dS1cuFC7d+/WpUuXFBcXp6JFi6patWrq0qWLWrdune4cJdq7d6/mzp2ro0ePKj4+XhUrVtRzzz2nbt26JblvEr9X0n/3Xrdu3TR+/HgtWrRIq1at0sWLF+Xg4KA6depoxIgR8vLySvZ895+beN89yr2c1nuv9Gj3U6L7v6d3797Vt99+q4MHDyo8PFzu7u7q0qWLhg4davi+TvwZkpoH85ne6/uXX37R0qVL5e/vr7CwsGSP/6CHvY88mNu4uDitWbNG69at07///qu7d+/KxcVF3t7eGjJkSIrvF/Hx8Vq1apXWrl0rf39/3b17V3nz5pWbm5tq1qypZ555Rg0bNpT03/tzalJ7XwCQNTESBgDSYdeuXQoNDVWuXLk0YMCAx3qM2NhYjRw5Ups3b5YkFStWTCVLltSFCxf0yy+/aNOmTRo3bpz69OmT6mN88MEHWrVqlblXwLlz53Tw4EEdOnRI06dPN3/YyZ07t+rUqaPo6GgdO3ZMklSnTh3z42REU9MVK1ZozJgxkqT8+fOrYsWKMplMunr1qrZu3ap//vknWREmLePHj9fChQslSW5ubqpcubICAwO1bds2bdu2TcOGDdObb76Z6vkzZszQ9OnTVahQIZUuXVqXLl3S0aNHNXLkSIWEhDz2tICdO3dq0qRJcnZ2VsmSJRUYGKgjR45o2LBhmjp1qqpWrSofHx+FhISoUqVKio+P18WLF/X111/r+vXrGjduXJLHi4iI0NChQ2VjYyMXFxcVKVJERYsW1ZUrV7R582Zt2bJF48aNU79+/cznFC9eXHXq1NFff/0lSfLy8kryISml7+eRI0f07bffKi4uThUrVlSBAgVkY2OT5mutWrWq3n33XU2YMEEffvihqlWrphIlSpj3r1mzRmvXrpWzs7OmTp36SAWYjRs36r333lNMTIycnZ3l4eGhsLAw/fHHH/rjjz+0adMmzZo1S46OjpKksmXLqk6dOrpw4YJu3bql4sWLP/J1e/78eY0YMUK5cuWSm5ub3N3dFRMTo6CgIK1du1YbN27UtGnTUvygf+nSJQ0dOlQBAQGSpBIlSqhUqVK6du2a9u7dqz179qhZs2YqWbKkPDw8FBoaKn9/fzk4OCT7QG60p0dmvQe2bNmiL7/8Ug4ODipXrpzy5s1rvpZMJpO5OCFJBQoUUKVKlXT9+nX9/vvv+v3339W/f3999NFHyR7Xz89Pb731lu7cuaNcuXKpXLlycnR0VFBQkDZu3Ki///472ffmcXO0ePFiffLJJ5IS3q/KlSunq1evatSoUfL3939oDmJjYzV06FD9/vvvKlOmjMqWLauAgADt3LlT+/fv16JFi1SjRo2HPs7j3MspedT76UF79uzR+PHjZWtrq3LlysnW1lbnz5/X9OnT5e/vr2nTphmKw83NTXXq1FFwcLDOnz+vvHnzJmnGe/+1n97re8KECfrxxx/N1/e1a9ceGl/ZsmXl5eWV4s/BxDgShYWF6dVXX9WhQ4ckSUWKFFGJEiXMP6M3b96syZMnJytovv/++1q3bp35nFKlSunOnTu6cuWKzp49q5iYGHMRxsvLS/b29inmSlK2mHIJ4D4mAMBj+/TTT00eHh6mzp07P/ZjTJ8+3eTh4WGqWbOmacuWLebtUVFRpokTJ5o8PDxMVapUMR05ciTJeatWrTJ5eHiYqlWrZvL29jb9/vvv5n137941vfbaayYPDw9Tq1atTPHx8UnOvXTpksnDw8Pk4eGRYkyJj92/f/9U4+7fv7/Jw8PDtGrVKvO22NhYk7e3t8nDw8O0cOFCU0xMTJJzzpw5Y/rxxx+TPVZiLJcuXUqy3dfX1/z6f/75Z1NcXJz5eebPn2/y9PQ0eXh4mDZt2pTkvP3795tzU6NGDdO6devM+2JiYkwff/yxycPDw1SrVi3T7du3U32NKUmMtVq1aqaZM2eaX2NMTIxp1KhRJg8PD1OLFi1MPXv2NL366qumkJAQ87nLly83eXh4mDw9PU3nzp1L8rhRUVGmpUuXmq5evZpke2xsrGnDhg2mmjVrmqpVq2a6fPmy4fzdr1WrVuZcjhw50hQWFmbeFxkZaeixXn75ZZOHh4epb9++5tcdEBBgqlWrlsnDw8Pk6+ubeuJScObMGVP16tVNHh4epg8//NB09+5d8749e/aY6tata/Lw8DD973//S3bu+++/b/Lw8DBNmzbtkZ7TZDKZbty4YVqzZk2S743JlPA9+Omnn0xVqlQxeXt7myIiIpLsj4yMND399NPme/6ff/5Jsv/mzZumOXPmmG7dumXelngttmrVKs2YsuI9UKVKFdOkSZNM9+7dS5Ijk8lkmjNnjsnDw8PUvHlz0/bt25Oc7+fnZ2rUqJHJw8PDtHr16iT7Tp8+bapZs6bJw8PDNGLEiGT3w+nTp03fffddhuTo5MmTpqpVq5o8PDxMkydPNkVFRSV5zKpVq5qqVatm8vDwMO3fvz/JudOmTTPnt1WrVkmuhVu3bpn69Olj8vDwMD3//PPJ8pd47vvvv59qbtO6l1N67zWZ0nc/3f++NmXKlCTf03Xr1plzuG/fvlTjSsnDfpak9/quUqWKycvLy7R27Vrzz7n4+Pgk38vUPOznYKKXXnrJ5OHhYerXr5/p1KlT5u1xcXGmBQsWmCpXrmyqXr26KSAgwLzvxIkTJg8PD1OdOnWSXTvx8fGmgwcPmjZs2JBku5GfuwCyh1zWLgIBQFaW+Be3UqVKPdb5ERERWrBggaSE4eb3T/NwcHDQqFGjVK9ePcXFxaXaSyYmJkYffPBBkmlHzs7OGjdunOzt7RUUFGRoikZGCA4OVmhoqPLnzy8fHx/Z2SUdcFmhQoVHGjE0a9YsSVKfPn3Ur18/5cqV8GPL1tZWgwYNUpcuXSQlLLedkpiYGL388svm4yTJzs5Oo0aNkqurqyIiInTgwIFHeo2JGjdurFdffdX8Gu3s7PT+++8rd+7cunLlii5fvqwpU6aoYMGC5nN69eolLy8vmUwm7dq1K8njOTg4qE+fPipatGiS7ba2turYsaNeeOEFxcTEaP369Y8Vb6Jy5cpp8uTJSVZeSe2v4g+aOHGiihYtqr/++kvTp09XdHS0Ro4cqYiICHXp0kXdunV7pFi+//57RUVFycPDQ59++qmcnZ3N+xo3bqz3339fkrR8+XJdv379kR47LYUKFdIzzzyT5HsjJXwPnn/+eXXs2FGhoaHasWNHkv0rVqzQ2bNn5eLioh9++CHZyBY3NzcNGTJErq6uGRZrZr4HGjVqZL7mEzk6OiosLEyzZs2Sra2tZsyYkaz5d7NmzfTxxx9LkubMmZNk3zfffKPIyEh5e3vr66+/TnY/VKxYUUOHDk2y7XFztGDBAsXGxqpRo0Z67733kow86datmwYNGqSYmJg0cxATE6MpU6YkuRZcXV3NI3wOHTqk27dvp/kYGSUj7qd69erp3XffTfI97dKli3mK5YP3RHql9/qOi4vTa6+9pq5du5pHYdnY2DzSaLy07N27V35+fipRooRmz56dZIRKrly5NHDgQD3//POKiooyL3ctyTxSrmHDhsmmRdnY2Kh+/fpWX5UQgPVQhAGAdLhz544kJfll91EcOnRId+7cUe7cuZNMM7nf4MGDJSX8MhgdHZ1sf758+dS1a9dk2wsXLix3d3dJ0sWLFx8rvkfl5uYmR0dH3b59O1mR4VGdPXvWHPegQYNSPObFF1+UlLAM6uXLl1M85rnnnku2LXfu3Kpataqkx89N7969k20rWLCgOeedOnVSnjx5kh2T+GEttec9evSovvzyS7366qvy8fFRv3791K9fP/PqOSdPnnyseBM9++yzyYpjRrm4uOiLL76Qra2t5syZo2HDhunEiRMqXbq0+UP1o/Dz85MkDRgwIMUpUc8++6zc3NwUExOjvXv3PlbMadm3b58mTZqkV155Rf379zfnOnHawYkTJ5Icv2XLFkkJ3/v7pys8KZn9HujRo0eK23ft2qWIiAh5eXmpevXqKR7TqlUr2dvb6+zZs+aCQFRUlHbu3ClJevnll80fyNOSnhzt3r1bUkJxNCVpTQFN5OnpmaxXk5Qwhc/BwUEmk8li778ZcT89//zzKW6vXbu2JOnChQsZFG3GXd+pff8ywsaNGyUlvJ+ntmR4+/btJSW8nyRKnK75999/69KlS08sPgBZEz1hACAd8ubNKylhRMvjOHfunCTJ3d09xQ/sksx/eYuKilJQUJDKlSuXZH+ZMmVS7elRqFAhnT9/Xnfv3n2s+B5Vrly5NHjwYM2aNUtDhw6Vh4eHGjVqpFq1aql+/fpJlu1+mMTcODo6qnTp0ikeU7FiRdna2iouLk4BAQFJ+pRICUWDB0c7JEr8EP24uSlTpkyqjxsQEJDmfin5NRMbG6sPPvhAa9euTfN5Q0NDHz3Y+1SqVCld53t7e2vYsGGaMWOGfv/9d9nb22vq1Knme8Go27dv68aNG5KUrP9BInt7e5UvX163bt0y/2U5I9y9e1cjRozQnj170jzuwVwn9ghJ/ED6pGX2eyC1a+nff/+VlNAIPLXi8v2uXr2qIkWK6Pz58+ZCs9EcP26OwsPDdevWLUlKtQlzqVKllDdvXnOxPSVly5ZNcbuNjY3c3Nx05coVi7z/ZtT9lNrrSe+1kpKMur6fZEE08Vr+7bff9Oeff6Z4TOIKUFevXjVvq1Wrlry9vXXw4EF16NBBdevWVf369VWrVi3VrVs31Z/3AHIGijAAkA6JQ+Uf9y9dib/QFipUKNVjihQpkuz4+6U1CifxL8kmCy6E9/rrr6tEiRL66aef9O+//8rf318//vijbGxszNMX0lp5JlHia03rF2w7Ozu5uLjo5s2bFs9NakuuJhbEHrb/weedP3++1q5dq9y5c2vkyJFq1qyZihcvLicnJ9nY2GjlypX68MMPFRsb+1jxPizuR9G4cWPzSi7VqlVLdbRDWu7/fqV1/ScW7jLyw9/kyZO1Z88eubi46O2331aDBg1UpEgR87Ssb775RrNmzUqW68QP40Yb6qZXVr0HwsPDJUm3bt0yFzrSEhkZKem//Nra2hr+kPq4Obq/CJpWATFPnjxpFmEyy/tvRt1PqX1PjYxKelRP+vrOCInX8vnz53X+/Pk0j71375753zY2Npo9e7bmzJmjNWvW6ODBg+aV0hwdHdWpUye98847GTp1EUDWQREGANKhbt26WrRokc6cOaNbt2498l/kEj9o3Lx5M9Vj7p+7b6m/nqVWKLhfaqN/bGxs1KtXL/Xq1UvBwcH666+/dPDgQW3cuFF79+7VCy+8oHXr1iXr9fCgxNea1oe42NhYhYSEJDk+q/L19ZWUsKJGSlMC0jsCJqPcvn1b7777rqSED2ZHjhzRwoULH3l1sPu/Xzdv3jRP43pQ4l/3M+r7Gxsba+6rM2nSJHOvi/ulluu8efMqNDTUYj0+suo9kPjB+Nlnn9XkyZMNn5dYDImLi9Pdu3cNvZ7HzdH9H97v3LmT6vuRpUYRppe17qf0yArXd+J1MmHChFSn36UmT548euutt/TWW2/pwoUL+uuvv7R371799ttvWrVqlQICArR48eIUlwwHkL3REwYA0qF58+YqWLCg4uPjzUtsPory5ctLkoKCglL9ZT9xCkTu3LlT/cU6oyX+NTSt4pCR3gCurq5q27atPvjgA/36668qWbKkQkNDtWHDhoeem5ibe/fupdpT4cyZM4qLi5OU0PQ3KwsMDJSkFPtLSAm9BTKDjz76SEFBQapRo4a++uorSdLnn39uHrZvVL58+cx/lU9tKeDY2FjztInE6yG9goODzQXER8114jSPw4cPG36+hy3/nZaseg8k5ulRG4KXK1fO3BDWaI4fN0f58+c3F81Ti/PSpUtpjoLJTKx1P6WHta9vI/fm417LDypTpoy6deumzz//XMuWLZONjY0OHz6cpMdXet4rAGQtFGEAIB3y5Mmjl156SVLCyhT3N+ZLiclkSrLKUd26dZU3b15FRUVpyZIlKZ6TuHpS48aNM2zFh4dJ7AsQGBiYYiFm3bp1jzwaIG/evPL09JT036pSaSlfvry5r0piDh6UuN3Dw0PFixd/pHgym8TCV+Jfqu939uzZNFclSTz3/uHwT8Ly5cu1adMm5c2bV1OnTtVTTz2l559/XtHR0XrrrbceuTdSixYtJEkLFy5McdTV2rVrdevWLdnb2ydZ/Ss97p9ukVKu9+3bp+PHj6d47lNPPSUpYZWk4OBgQ8+XOMUpccrNo8iq90CrVq3k6OiokydPPrTvzv0cHBzMI5PmzJljaBpPenLUrFkzSdLKlStTPG/FihWGY88o6bmXrXE/pYe1r+/73wtSuz+ffvppSQm5S+uPEo/C09PTPKXx/p+F6XmvAJC1UIQBgHR66aWX1Lp1a8XExGjIkCGaNm1asg93UVFR2rp1q3r16qWvv/7avN3Z2dm8KsSMGTO0detW877o6GhNmTJFf/zxh2xtbTVs2DCLvB4p4Rded3d3xcTE6JNPPknyS+G+ffs0YcIE2dvbJzvvzJkz+uCDD3To0CHFx8cn2bdnzx5zkcpoD5HE17xs2TItXbrU/MEiPj5eP/74o7mJ7WuvvfboLzKTqV+/viRp6tSpSaag/fvvvxo2bFiaPRkSm1o+iRWEEp05c0YTJkyQJP3vf/8zL8v+/vvvy9PTUwEBAfrss88e6TEHDx6s3Llzy9/fX2PHjk1SxNm3b595KkufPn0eqalzWvLly2fuSTRhwgRzzwdJOnDggEaOHJlked779ezZUxUrVlRwcLAGDRqUbPWkW7duad68eUkKNKVLl5aNjY2Cg4MfebSQlDXvATc3N3Pcb7zxhtasWZOsv05oaKjWrFmTbLrSG2+8IScnJ/P34sGllM+cOZNsWevHzdGgQYNkZ2enPXv26Msvv0yyHPWaNWs0f/78FN/nnqT03MvWuJ/Sy5rXt4uLi7kYklq+W7VqpaZNmyo0NFQDBgwwr5x2v0uXLmnu3LlJinZr167VN998o7NnzyY5NiYmRvPmzVN4eLhsbW3NK5RJ/zV7P3PmTIoFYgDZBz1hACCdbGxsNH36dE2ZMkU//fSTZs6cqVmzZqlkyZJycXHR3bt3FRgYaF5BoWHDhknOf+WVV+Tv76/NmzfrtddeU/Hixc2rGt2+fVu5cuXSuHHjVLNmTYu9ply5cumDDz7QiBEjtHnzZu3evVvlypVTSEiILl++rB49eujSpUvmRoOJYmJitGrVKq1atUpOTk4qXbq0HBwcdO3aNfOHqTZt2qhjx46G4ujWrZtOnDihhQsXaty4cZo+fbqKFy+uoKAg8wfdV155xTxCISt74403zKMw2rRpo3Llyik6Olrnzp1T8eLF9dprr2nq1KkpnpvYe2P8+PFasmSJ3NzcZGNjo27duql79+7pji0qKkpvvfWWIiMj1b17d3Xu3Nm8L3fu3Jo6dap69OihVatWqUmTJurUqZOhx61QoYImTZqk9957T8uXL9cvv/yi8uXLKywszNzsukmTJuYeNBnl3Xff1dChQ+Xn56cWLVqobNmyCg8PV2BgoKpUqaJGjRpp/vz5yc7LnTu3Zs+erSFDhujff/9Vt27d5O7uLldXV12/fl3Xr1+XyWTSU089ZW64WbBgQbVs2VI7duxQz549ValSJXPvkw8++EBVqlRJM9aseg+8/PLLCg8P1/fff6/3339f//vf/1SuXDnZ2trq1q1bunz5skwmk7y9vZOcV6FCBU2bNk1vvvmmNm7cqF9//VXly5dX7ty5FRQUpNDQULm7u2vo0KHmcx43R5UrV9YHH3ygTz75RHPmzNGyZctUunRpXb9+XdeuXdOgQYO0ZcsWBQUFWaxvR3ruZWvdT+lhzevbxsZGzzzzjH766ScNHz5cFStWNK8kNmTIEDVv3lyS9NVXX+mNN97Q3r179fzzz8vNzU0lSpRQfHy8rly5Yo5z+PDh5scOCQnRrFmzNGvWLBUsWFDu7u4ymUwKDAw0F37feeedJKN7qlSpIg8PD/n7+6tdu3aqUKGCuSfN1KlTM03hDED6UYQBgAxgZ2enDz74QM8//7xWrFih/fv3KzAwUFeuXJGjo6PKlSun2rVrq0uXLqpbt26yc7/55hv98ssvWrlypU6ePKl///1XLi4uatGihQYNGiQvLy+Lv6a2bdvq+++/17fffqtjx44pICBA5cuX16uvvqpevXrJx8cn2Tlly5bV+PHjtW/fPp04cUJXr17V3bt3lS9fPjVu3FjPPPOMunbt+kgrbXz44Ydq2rSplixZor///lsnT55UgQIF1KZNG/n4+KhRo0YZ+bKtxtPTU0uXLtU333yjP/74Q+fOnVPRokXl4+Oj1157Lc3pSAMHDpSU8NfXCxcumPs+PPgB93FNnDhR/v7+Klu2rD766KNk+ytWrKgPP/xQH330kcaNG6caNWqYR8o8TMeOHeXh4aHvv/9e+/fv16lTp+To6Kh69erp2WefVffu3TP8A3DTpk21cOFCzZw5U0eOHDEvfTts2DC9/PLLmjdvXqrnlipVSqtXr9aSJUu0ZcsW81+tCxUqpCZNmqhDhw5JVjSTElZjmjZtmnbt2qXTp0+bR1zcPwonLVnxHrCxsdF7772np556SkuWLNGhQ4d05swZxcfHy8XFRU2bNlXLli3Vtm3bZOc2b95cmzZt0oIFC7R7924FBQXJxsZGhQsXVtOmTdW1a9dk5zxujp5//nmVLVtWc+fO1dGjR3X27FmVL19er7/+unr27KnVq1dLSnsFpYyU3nvZGvdTelnz+n7vvfeUN29ebdmyRRcuXDD30+nWrZv5mPz58+v777/Xli1btG7dOh09elT//vuvbG1tVaRIETVu3FitW7c2TweTpA4dOig+Pl4HDhzQmTNndO7cOcXExKhQoUJq2rSpnn/++WQ9qWxsbDR37lx9/fXX5u9d4ntF4h9xAGQPNiZLrlsKAAAAZAHBwcFq1KiRbGxs9Mcff1hsaXIAwJNx/Phx7d27V//884+OHTumoKAgSdK2bdtUsmTJVM+7ePGipk+frn379iksLEzFihVThw4dNGzYsMdauY2RMAAAAMADEnt83N9IFQCQdc2cOVPbtm17pHOOHz8uHx8f3b17V9WqVVO9evV09OhRzZ07V7t27dLPP//8yD8jKMIAAAAgR1q/fr3y58+vpk2bmqfpxMXFaeXKlZoxY4YkqX///tYMEQCQQWrVqiUPDw95eXmpevXq6t69e5orn8XFxWnkyJG6e/eu3n77bXM/sujoaL3++uvasWOHPv/8c33yySePFAfTkQAAAJAjTZ48WfPnz5ezs7PKli2rXLly6fz587pz544kqXPnzvriiy9kY2Nj5UgBABmtSZMmunnzZqrTkbZs2aIRI0bIw8ND69atS/Kz4Pr162rVqpUk6ffff5eLi4vh52UkDAAAAHKkp59+WuHh4frzzz8VGBioiIgI5cuXT02bNlX37t3VsWNHCjAAkEMlLorQoUOHZD8LihQporp16+rAgQPatWuXnn32WcOPSxEGAAAAOVKNGjVUo0YNa4cBAMiETp48KUmprlJarVo1HThwQP/+++8jPa7xNUIBAAAAAABygMuXL0uSihUrluL+okWLJjnOKEbCAAAAAACATK1NmzZp7n/UlY8eJiIiQpLk5OSU4v7E5anv3r37SI9LEQbIIiK/f8faIWQJNUfttHYIWUZA2BVrh5AllC9Q3NohZAlcTwCAnCY2OsjaITyWmJsB1g4hR6MIAwAAAAAAMrWMHunyMM7OzgoLC1NkZGSK+xNHwCSOiDGKnjAAAAAAAAD3KVGihCTp6tWrKe6/du1akuOMoggDAAAAAABwnypVqkiSjh07luL+48ePS5IqV678SI9LEQYAAAAAgJwiPi5rfllYq1atJEmbN2+WyWRKsu/69ev6888/ZWdnp+bNmz/S41KEAQAAAAAAuE/r1q1VtmxZ+fv7a+7cuebt0dHRGjt2rGJjY9WjRw+5uro+0uPSmBcAAAAAAGRrO3fu1KxZs8z/DwsLkyQNHz5cDg4OkqQWLVrotddekyTZ2dnpyy+/lI+Pj7788kv9+uuvKlOmjP7++28FBQXJw8ND77777iPHQREGAAAAAICcwhRv7QisIjg4WH///Xey7SdPnjT/u3z58kn2eXl5ac2aNZo+fbr27dsnf39/FStWTC+99JJeffXVR14ZSZJsTA9ObgKQKUV+/461Q8gSao7aae0QsoyAsCvWDiFLKF+guLVDyBK4ngAAOU1sdJC1Q3gsMddOWTuEx2Jf1NPaIWQIesIAAAAAAABYAEUYAAAAAAAAC6AnDAAAAAAAOUV8zuwJk1kwEgYAAAAAAMACKMIAAAAAAABYAEUYAAAAAAAAC6AnDAAAAAAAOYTJRE8Ya2IkDAAAAAAAgAVQhAEAAAAAALAApiMBAAAAAJBTsES1VTESBgAAAAAAwAIowgAAAAAAAFgARRgAAAAAAAALoCcMAAAAAAA5BUtUWxUjYQAAAAAAACyAIgwAAAAAAIAFUIQBAAAAAACwAHrCAAAAAACQU8THWTuCHI2RMAAAAAAAABZAEQYAAAAAAMACmI4EAAAAAEBOwRLVVsVIGAAAAAAAAAugCAMAAAAAAGABFGEAAAAAAAAsgJ4wAAAAAADkFPH0hLEmRsIAAAAAAABYAEUYAAAAAAAAC2A6EgDDomLjtPzwef126ooCbt3WvZg45XGwU8XC+fV0FXd1q1FatrlsrB2mVRUq4qbGzb3lVauKqteqqipennLO46TAi5fVum5Xa4eXKTVsUFcjR76sJo29VaBAPl25cl2/bt6hiZOm6fLlq9YOz+q4ph4d15Qx5MkY8mQcuTKGPBlHrp4ME0tUW5WNyWQyWTuIR3Hz5k21aNFCsbGxatu2rWbOnGntkBQYGKg2bdrI29tbixYtStdjTZ8+XTNmzHjocRMnTlT37t3T9VyPytfXV6NHj5Ykubq6avfu3bKzS7mOt3jxYn3yySeSJHd3d23fvj3dz9+6dWsFBQXp1KlT6X6srCjy+3es+vyhkdEaunSf/G+ES5KK5nOUm3NuXbtzT7fuRkmS6pZy08yeDeRob2u1OGuO2mm155akF17upw8/ezvZ9sz4gTkg7Iq1Q9DgQf307azJsrW11Y0bt3ThYqAqVSynAgXyKzg4RG3b99bRoyesGmP5AsWt+vxZ5ZrKDNeTlDWuqcyAPBlDnowjV8aQJ+OyQq5io4Os+vyPK+rsfmuH8FhyV2ho7RAyRJabjrR+/XrFxsZKknbt2qXg4GArR/RklC5dWt26dUv1q3Tp0laNLzg4WH5+fqnuX716tQWjgSV8s+uk/G+EK7+jveb1baTNw9rp5xeaa9tr7TX12XpysM2lPy/d0g8Hz1g7VKu6c/uu9u46oDnTftCIwe9r4kdfWTukTMvLq7JmzZwkW1tbTfl8hkqVqaOGjTqqZOnaWvzzKrm6umjl8nlycHCwdqhWxTVlHNeUMeTJGPJkHLkyhjwZR66QnWW5Ikzih/siRYooJiZGGzZssHJET0bdunU1adKkVL/q1atntdiqVasmSVqzZk2K+8+ePat//vnHfByyh51nEoZ8DmlUSfVKF0qyr7VHcfWrW06S5HfmmsVjy0xW/bxOA3u+pi8+naHN67fp+tUb1g4p0/pozEjZ2dlpz56D+uDDieYCe2TkPQ0Z+o4CAi6ofPkyGvhCHytHal1cU8ZxTRlDnowhT8aRK2PIk3HkCtlZlirCnDx5UqdOnZKbm5vGjBkjiREX1lCmTBnVqlVLO3bsUHh4eLL9icWZZ5991rKB4Ym6FxMnSSrjkjfF/aVd8kiSYuOz1AxHWImzs5M6Pt1akvTd3OTTOKOjo7Vw0XJJUp/emWfKDTIvriljyJMx5Mk4cmUMeTKOXFlAfHzW/MomslQRJrHg0qlTJ7Vu3VouLi46fvy4/P39kx3r6+srT09PTZ8+XZcuXdLIkSPVqFEjVa9eXV27dtWSJUuUUjscHx8feXp6KjAwUBs3blTv3r1Vu3Zt1atXT6+88opOnDA273Djxo3y9PTUa6+9luoxixcvlqenp0aNGmUwA8n9/fff8vT0TLPgsXPnTnl6esrHxyfZvk2bNmnQoEHy9vaWl5eX2rVrp8mTJyssLCzN533mmWcUHR2tjRs3JtkeHx+v9evXq0iRImrcuHGq5+/YsUMffvihOnXqpHr16qlGjRrq0KGDJk2a9MhTzMLDw9W/f395enpq9OjR5kq5JP3zzz9666231KxZM3l5ealp06Z6++23dfbs2WSPc/81k5Lp06fL09NTvr6+SbaPGjVKnp6eOnDggPbt26cBAwaobt26ql27tnx8fLRv375Hej2ZVZWiBSRJfwXeSnH/X5cStlcvUdBSISELq13LS05OTpKk3btTnpfs55ew3du7tmxscnbDZzwc15Qx5MkY8mQcuTKGPBlHrpDdZZkiTGxsrH755RdJCSMs7O3t1alTJ0lpj4a5dOmSevTooUOHDqlBgwby9vZWQECAPv74Y40dOzbV83788Ue99dZbsrGxUatWrVS8eHHt2LFDffr0MfShul27dipcuLB27typa9dSnp6xdOlSSVLfvn0f+nipqVmzpqpVq6aTJ0/q6NGjhp/HZDLp/fff15tvvqm//vpLHh4eat06oeI8f/589e7dW7dupfxhW0oohNnb2yebknTgwAFduXJFXbp0SfMNcdSoUdq4caPy5Mmjxo0bq3HjxoqKitKCBQvUs2dPw4WYa9eu6fnnn9cff/yhl19+WRMnTjQ3C162bJn69OmjjRs3qnDhwmrTpo2KFSumX375RT179tShQ4cMPYdRv/32mwYPHqywsDC1bNlSlSpV0sGDBzVo0CCtXbs2Q5/LGoY3qywH21xa9EeA5u7z1+WwCEXFxuliyF1N3XFcG04EqVg+Rw1t7GHtUJEFVKpUXpIUFRWlS5cup3jM2YALkiQnJyeVKVPSYrEha+KaMoY8GUOejCNXxpAn48gVsrssU4Tx8/PTrVu35OHhYe41kjj6Y/369YqLi0vxvLVr16px48baunWrvv76a33//ffy9fWVi4uLli9frm3btqV43k8//aRp06Zp2bJlmjp1qtavX6+3335b0dHReu+993Tv3r0047W3t1fPnj0VGxurlStXJtt/+PBh+fv7q0qVKqpVq5bxRKSgX79+kv4rttzv6tWr8vPzk5ubm9q1a2fe/sMPP2jNmjWqUaOGNm3aZH69mzdv1iuvvKLz589r/PjxqT5ngQIF1KpVKx0+fFgXL140b08siD1sKtKnn36qPXv2aPny5Zo2bZpmz56trVu3atiwYQoKCtLXX3/90Nd99uxZ9e3bV6dPn9aYMWM0cuRI876jR4/qf//7n/Lly6eff/5Zvr6++uabb7Ry5UrNnj1b0dHRevfddxUTE/PQ5zFq0aJFev/997V27Vp9+eWXWr58ub788ktJ0scff5xqMS6rqFPKTd8/11gNyxXWrN2n1PG7bWowdaO6zt2un/88p+frltPiAc1VNJ+TtUNFFuDqWlCSFBKS+qi74OAQ879dChZ40iEhi+OaMoY8GUOejCNXxpAn48gVsrssU4RJHHHxzDPPmLdVr15dFStW1I0bN/T777+neJ6Tk5PGjh2bpHO2h4eHhg4dKklauHBhiue1b99eHTp0SLJtyJAh8vDw0PXr1/Xrr78+NOa+ffvK1tZWK1euVPwDc9iWLVsmSerTJ+VmUqtXr5anp2eqX/fr3Lmz8ufPr40bN+r27dtJ9q1YsUJxcXHq3r27OQexsbGaM2eO7O3t9c0336hEiRLm43PlyqU33nhDlStX1q+//qqQkBClJvF7kfi9uXv3rn777TdVrVpVHh5pj4Zo3769nJ2dk2yzs7PTm2++qSJFimjLli1pnn/kyBE999xzunHjhqZOnZpsqtWcOXMUFxenjz76SHXr1k2yr1WrVurXr58uX76sXbt2pfk8j6JGjRoaOHBgkm2dO3dWy5YtFRERkWIxLqu5HBapW3fuySTJ1dlBVYoWkKuzg2LjTdpy6oq5eS/wMInDjKOjUy+E3rsXZf63szPFPaSNa8oY8mQMeTKOXBlDnowjVxZgis+aX9lElijChIaGavv27bK1tVWXLl2S7EssBKQ2JalJkyZydXVNtr1r14QmTocPH07SQyTRg88jSTY2NubtRqayFCtWTK1atUr2YT88PFybNm2Ss7Nzis8jPXyJ6vs5OTmpW7duioyMTDLtJS4uTitXrpSNjU2SYs+JEycUHBysatWqJSnAJMqVK5fq1q2ruLg4HTt2LNXX16JFC7m4uGjdunUymUzasmWLIiIiDDfkDQoK0uLFizV+/Hh98MEHGjVqlEaNGqW4uDiFhISk2pdm586dGjhwoGJiYjR37lx17Ngxyf74+Hjt2bNHdnZ25ilWD0pcXervv/82FKsRnTt3TnF74rWW0dOfLG3RH2f1/ro/de32PU3v4a3twztoyQvNtX14B03r7q3o2Dh9uvmolvx5ztqhIguIjIyUJDk42Kd6jKNjbvO/IyIin3hMyNq4powhT8aQJ+PIlTHkyThyhezOztoBGLFhwwbFxMSoadOmKlq0aJJ9Xbt21VdffaXt27crPDxc+fPnT7Lf3d09xccsVKiQHB0dde/ePYWGhqpQoaRL7pYsmfLcwsTtV68a+4v/c889p61bt2rZsmVq1aqVpISRI/fu3VOfPn2UN2/KK80kLlFtVL9+/bRw4UItW7ZM/fv3l5RQrLh69aqaNm2qUqVKmY8NDAyUlDCa5MFRNQ9KaySMvb29OnfurEWLFunPP//UmjVrZGdnl2ph6X5fffWV5s6dm+o0Mkm6c+eOChRIPrzwtddeU2xsrBYsWKBGjRqlGHNERIQkqXbt2mnGkdbre1SpXWuJ241eM5lRcESUZv5+SpL0TutqalYh6X3YvGJRvdO6mj7aeESzfj+lHjVLy8HO1hqhIotIHGLs4pL6EGJXV5f/jg9Nu1k4wDVlDHkyhjwZR66MIU/GkStkd1miCJM43SUgIMDc/+R+dnZ2ioqK0saNG9PV5PZJaNy4scqWLSs/Pz9duXJFxYsX1/LlCUuqpfRaHle5cuXUqFEj7d27V3/99Zfq1KljnvL04PMkrgrl7u4ub2/vNB83pZEy93vmmWe0aNEizZ49WwcPHlSLFi1SHHl0v19//VWzZ89WkSJFNHr0aNWuXVtubm7m6VJ9+/bV4cOHU1y9SkoYpbR69Wp9/vnnWrBggQoWLJhkf+LULwcHB3Pz5tTUrFkzzf0pPW5OdOJqqHmJ6kblCqd4TJNyRSRJt6NidDHkrioWzp/icYAk+fsnrFCWO3dulS7trosXg5IdU6F8GUkJfxG7cCHQovEh6+GaMoY8GUOejCNXxpAn48iVBcSn/odwPHmZvghz9uxZ86o/ly9f1uXLKXfIlhKmJD1YhEnt+Js3b+revXtycHBI9iFeSpgqU7ly5WTbE0eRPDgiJzU2Njbq16+fJk6cqOXLl6tp06Y6ffq0atSooSpVqhh6DKOee+457d27V0uXLlWxYsW0e/duFSlSRC1btkxyXLFixSQlFGEeZbRNShL78uzevVtS0p49qdm8ebMk6ZNPPjGPDrrfhQsX0jx/woQJsrGxka+vr1544QX98MMPcnH5rxru4uKi3LlzKz4+Xp9++qns7VMfyni/xOPu3r2b4v4rV66keX5q11pQUMIPDqPXTGZ0Nyr5lL20RMXm3IIVjDl85JgiIyPl5OSkZs0aavHiVcmOad68oSTpjz+OpFqUBRJxTRlDnowhT8aRK2PIk3HkCtldpu8Jc39D3lOnTqX4deTIETk7O+vIkSM6dy5pP4o9e/akOOUkcbnr2rVrm5c0Tmn/gzZs2CBJql+/vuHX0L17dzk6OmrlypX6+eefJaVvWerUtG7dWsWKFdOvv/6qefPmKT4+Xr169Ur2+qpXr64CBQro77//1o0bN9L9vL169VLBggXl7u6uNm3aPPT4xF4vxYsXT7Zvz549D12eOleuXJowYYJ69+6tf//9Vy+88EKSc+zs7NSwYUPFxMQ8UuPdIkUSRnI8eA1JUnR0tA4ePJjm+YnXxoPWr18v6b8+NFlRGdf/ps3tO5fyNfP7ueuSJFsbG5VyyWORuJB1RUREatOv2yVJQ1/qn2y/g4ODBvj0liQtX7HeorEha+KaMoY8GUOejCNXxpAn48gVsrtMXYSJj4/XunXrJKXcKDeRk5OT2rZtK+m/ok2iiIgIffbZZ4qOjjZvO3PmjL777jtJSraqTqLNmzdr69atSbZ9//33+vfff1W4cOFkKyelJX/+/OrUqZOuX7+uX375xfz/jGZra6vevXsrKipKixcvNv//QQ4ODho6dKiioqL02muv6ezZs8mOCQ4ONk9nepiBAwfqwIED2r59e5JVqFJTvnx5SdLixYuTTPG5ePGixo0bZ+g5bWxs9Mknn6hv3746depUskLMq6++KltbW40bN05+fn7Jzo+KitKmTZuS9GmpXr26nJ2dtXv3bv3555/m7dHR0fr000/NI1pSc+TIES1atCjJto0bN2rHjh1ycnJSz549Db22zMizSH55FEmYXvTF9uPafTbpctt+Z67py+3HJUmtKhVTfkdjo4+Qs302/mvFxsaqSRNvTRg/2lwwdnJy1JzvvlD58mV0/vwlzV+wxMqRIqvgmjKGPBlDnowjV8aQJ+PIFbIzG1MmHr+1Z88eDR48WIUKFZKfn59sbVNv9Onn56chQ4aoePHi2r59u9asWaPRo0frmWee0c6dO+Xk5KQ6deooPDxcBw4cUExMjHr06KEJEyYkeRwfHx8dPHhQPj4+WrRokWrXri13d3edPn1ap06dkoODg2bPnq0mTZqYzwkMDFSbNm3k7e2d7EN4omPHjqlHjx7m5xgzZkyKx02fPl0zZsxQ6dKlky2tfL8mTZqkWJi6ceOGWrVqpZiYGLVu3VrffvttiuebTCZ99NFHWrFihezs7FS5cmWVKlVK8fHxunjxovz9/eXs7JxkRR9fX1+NHj1aHTt21FdffZVqbInOnj2rjh07yt3dXdu3bzdvv3Dhgrp37647d+6obNmyqlq1qsLCwnTw4EHVqlVLsbGxOnz4sLZt25akQXLr1q0VFBSkU6dOJXkdn376qRYvXqxKlSrpxx9/lJubmyRp5cqV+vjjjxUTE6Py5curXLlycnR01JUrV3Ty5ElFRkZqzZo1SaaFffvtt/r6669lb2+vevXqycnJSceOHVN8fLyaN28uX19fTZw4Ud27dzefM2rUKK1evVr9+/fX4sWLVblyZVWoUEGBgYE6cuSIbGxsNHHixGSrWj2qyO/fSdf56XX25m29vGyfbt5NWBLQ1dlBRfM56drtSAVHJBQ5y7vl1dy+jeWWJ3daD/VE1Ry102rPLUnFShTV2u2Lzf+3d7BT3nx5FRcXp/DQ/5aQ//Pg33p1wNvWCNEsICztKXaWMOSl/poxfYJsbW1148YtXbgYqEoVy6lAgfwKCQlVuw69deTIcavGWL5A8lF7lpRVrqnMcD1JWeOaygzIkzHkyThyZQx5Mi4r5Co2Ou0/0mZWUSd3WDuEx5K7SvJWFllRph4Jk7js9NNPP51mAUZKaIDr5uamK1euaP/+/ebtpUqV0ooVK1SrVi3t27dPBw8eVLly5TR27Fh99tlnqT7ewIED9eWXXyo2Nlbbtm1TUFCQWrRooSVLliQpwBhVrVo1c+8ZIw15L168qNWrV6f6ldgn50GFCxdWxYoVJaU95cnGxkafffaZ5syZoxYtWujatWvaunWrecrNc889l2oBJ73KlCkjX19fdejQQREREdq2bZsuX76sl19+WfPnzzfcwyXxdYwdO1Y+Pj46ffq0fHx8zFOsevbsqdWrV6tXr16KiYnR7t27tWvXLoWGhqpNmzb65ptvVKFChSSPN2zYMI0dO1alS5fWoUOHdOTIETVs2FCrVq16aJPi9u3ba968ecqXL5927Nghf39/eXt76/vvv093ASYzqFAon1YObqmXG3uoatECio6Nl//1cMXEmVTL3UVvt6qqnwc0t2oBJjOwtc0lF7eC5q+8+fL+/3bbJNvz5U95ZbScZu68n9SyVXetWbtJJpNJ1b0qKzQ0XLO/W6haddpa/ZerzIBr6tFwTRlDnowhT8aRK2PIk3HkCtlVph4Jkx6JozaGDx+uESNGGD4vcSTMg6Mw0uv333/Xiy++qPr16+unn37KsMd9UEBAgJ5++mm5u7tr69atypUrU9fZsoXEkTALFy5UgwYNntjzWHskTFZh7ZEwWUlmGbmQ2Vl7JExWwfUEAMhpGAljWdllJEymXx0pO4iPjzePKhkwYMATfa5Zs2ZJSigmUYABAAAAACQRz0qm1kQR5gnatm2btm7dqpMnT+rkyZOqWbOm2rVrl+HP89dff2nlypU6d+6c/vrrL7m7uz+R1ZcAAAAAAMDjowjzBJ04cUK+vr7Kly+f2rdvrzFjxsjGxibDn+f8+fNatWqVnJ2d1bhxY40ZM0ZOTk4Z/jwAAAAAAODxZdueMEB2Q08YY+gJYxw9PIyhJ4wxXE8AgJwmy/aEOb7N2iE8ltzV2lg7hAzBSBgAAAAAAHIKEz1hrInOrQAAAAAAABZAEQYAAAAAAMACKMIAAAAAAABYAD1hAAAAAADIKeLpCWNNjIQBAAAAAACwAIowAAAAAAAAFsB0JAAAAAAAcgiTKc7aIeRojIQBAAAAAACwAIowAAAAAAAAFkARBgAAAAAAwALoCQMAAAAAQE5hYolqa2IkDAAAAAAAgAVQhAEAAAAAALAApiMBAAAAAJBTxDMdyZoYCQMAAAAAAGABFGEAAAAAAAAsgCIMAAAAAACABdATBgAAAACAnIIlqq2KkTAAAAAAAAAWQBEGAAAAAADAAijCAAAAAAAAWAA9YQAAAAAAyCni46wdQY7GSBgAAAAAAAALoAgDAAAAAABgAUxHAgAAAAAgp2CJaqtiJAwAAAAAAIAFUIQBAAAAAACwAIowAAAAAAAAFkBPGAAAAAAAcop4esJYEyNhAAAAAAAALIAiDAAAAAAAgAUwHQkAAAAAgJyCJaqtipEwAAAAAAAAFkARBgAAAAAAwAKYjgRkESvGXrV2CFnC7mp5rR1CluG+19oRZA0BYVesHQIAAACyCYowAAAAAADkFCxRbVVMRwIAAAAAALAAijAAAAAAAAAWQBEGAAAAAADAAugJAwAAAABATkFPGKtiJAwAAAAAAIAFUIQBAAAAAACwAKYjAQAAAACQQ5hMcdYOIUdjJAwAAAAAAIAFUIQBAAAAAACwAIowAAAAAAAAFkBPGAAAAAAAcgqWqLYqRsIAAAAAAABYAEUYAAAAAAAAC6AIAwAAAAAAYAH0hAEAAAAAIKcw0RPGmhgJAwAAAAAAYAEUYQAAAAAAACyA6UgAAAAAAOQULFFtVYyEAQAAAAAAsACKMAAAAAAAABZAEQYAAAAAAMAC6AkDAAAAAEBOwRLVVsVIGAAAAAAAAAugCAMAAAAAAGABTEcCAAAAACCnYIlqq2IkDAAAAAAAgAVQhAEAAAAAALAAijAAAAAAAAAWQE8YAAAAAAByCpaotipGwgAAAAAAAFgARRgAAAAAAAALoAgDAAAAAABgAfSEAQAAAAAgp4inJ4w1MRIGwGNzLuGqvv/O1YCgnzQg6CflKVnI2iFlOva1aqnARx+p0PLlKrJliwqvXSvXOXOUd/hw5XJ1tXZ4mULDBnW1fNkcBV06ojvhZ3X61D5NnzZBJUoUs3ZomQp5Mo5cGUOejCFPxpErY8iTceQK2RFFmCfg5s2bqlatmjw9PfXaa69ZOxxJUmBgoDw9PeXj45Pux5o+fbo8PT01atQoQ8f7+PjI09NTgYGB6X7ujJYRsWVkbrOaRlNekkM+J2uHkTnZ2CjfyJFy/fprObZpI+XKpdizZxUfFia70qWVp2dP2bq7WztKqxs8qJ927Vyt7t06KVeuXDp2/JRcXQtq2Csv6MhfW1WjRlVrh5gpkCfjyJUx5MkY8mQcuTKGPBlHrpBdUYR5AtavX6/Y2FhJ0q5duxQcHGzliHKmnFwcsYQKvZvLvVUNXdj4h7VDyZTyjRgh565dFXPmjG4NG6abPXsqeNgw3RowQNc7dVLwm28q7vJla4dpVV5elTVr5iTZ2tpqyuczVKpMHTVs1FElS9fW4p9XydXVRSuXz5ODg4O1Q7Uq8mQcuTKGPBlDnowjV8aQJ+PI1RMWH581v7IJijBPwOrVqyVJRYoUUUxMjDZs2GDliKxr8uTJ2rhxo4oWLWrtUJLJzLFlZk5FCqreuOd1++J1Hfl8pbXDyXTsa9SQc/fuirt+XSFvvqnYkyeTHhAXp5gjRxR/65Z1AswkPhozUnZ2dtqz56A++HCiuXgdGXlPQ4a+o4CACypfvowGvtDHypFaF3kyjlwZQ56MIU/GkStjyJNx5ArZGUWYDHby5EmdOnVKbm5uGjNmjKT/ijI5VYkSJVShQgXZ29tbO5RkMnNsmVmDiQOVu2Ae7X9/vmIjoqwdTqbj3Lu3JOnusmUy3blj5WgyJ2dnJ3V8urUk6bu5i5Ltj46O1sJFyyVJfXp3tWhsmQl5Mo5cGUOejCFPxpErY8iTceQK2R1FmAyWWHDp1KmTWrduLRcXFx0/flz+/v7JjvX19ZWnp6emT5+uS5cuaeTIkWrUqJGqV6+url27asmSJTKZTMnOu7+PycaNG9W7d2/Vrl1b9erV0yuvvKITJ04YinXjxo0P7VuzePHiR+r/kpLU+q60bt1anp6eMplM+vnnn9W1a1fVrFlTDRs21MiRI3Xx4sUUH2/Pnj0aOnSoWrZsKS8vLzVq1EjdunXTxIkTdfPmTUkJfWvatGkjSTp48KA8PT3NX/dPT0qrJ0x4eLhmzJihZ599VrVr11bt2rXVoUMHjR07NsXvZ0pOnTql5s2bq2rVqlq+fLmhczK7ss80Uumn6unsqt91xe+YtcPJfOztldvbW5IUfeiQbN3dlffll1VwyhQVnDRJeYcNk13FilYO0vpq1/KSk1NCP6Hdu/eneIyfX8J2b+/asrGxsVhsmQl5Mo5cGUOejCFPxpErY8iTceQK2R1FmAwUGxurX375RZL07LPPyt7eXp06dZKU9miYS5cuqUePHjp06JAaNGggb29vBQQE6OOPP9bYsWNTPe/HH3/UW2+9JRsbG7Vq1UrFixfXjh071KdPH+3bt++h8bZr106FCxfWzp07de3atRSPWbp0qSSpb9++D328xzVhwgR99tlnKliwoNq0aaN8+fJpw4YN6tmzZ7Jix9KlSzV48GDt3r1bJUqUUPv27eXl5aWIiAj98MMPOn/+vCSpSpUq6tChgySpUKFC6tatm/mrWbNmD43p/PnzevbZZzV9+nRduXJFDRo0ULNmzZQnTx6tXLlSmzdvfuhj/PHHH+rfv79CQ0M1bdo09f7/0RFZWW7XfPL+1Ef3boXr0LifrB1OpmRXsaJs/n9+sn3VqnKbP195+vVTbm9v5W7YUHn69JHrnDnK8+KLVo7UuipVKi9JioqK0qVLKffGORtwQZLk5OSkMmVKWiy2zIQ8GUeujCFPxpAn48iVMeTJOHJlAab4rPmVTdhZO4DsxM/PT7du3ZKHh4eqVasmKaEY89NPP2n9+vV65513ZGtrm+y8tWvX6umnn9aUKVPMzaX8/f01YMAALV++XC1btjSP6rjfTz/9pGnTppmLDZI0Z84cffnll3rvvff022+/ydHRMdV47e3t1bNnT3377bdauXJlshExhw8flr+/v6pUqaJatWo9TkoMWblypRYtWqS6detKkuLi4jR+/HgtXrxY77//fpIC1pw5c2RjY6Nly5apRo0aSR7H399frv+/5G/btm1VuXJlbd68WeXLl9ekSZMMxxMXF6fhw4crKChI3bt319ixY83VeEm6evWqecRNan777Te9/fbbyp07t+bPn6969eoZfv7MrMH4F+Toll+7h89SVAjTbFJi6+Zm/nf+kSMVGxCg2998o5jTp5XL1VV5+vWT87PPKq+Pj+KvXlVkDu0Z5epaUJIUEhKW6jHBwSHmf7sULKDzuvSkw8p0yJNx5MoY8mQMeTKOXBlDnowjV8juGAmTgdasWSNJeuaZZ8zbqlevrooVK+rGjRv6/fffUzzPyclJY8eOTdLd28PDQ0OHDpUkLVy4MMXz2rdvn6QAI0lDhgyRh4eHrl+/rl9//fWhMfft21e2trZauXKl4h/oOL1s2TJJUp8+T7bhVb9+/cwFGEmytbXVe++9Jzc3N504cUKHDh0y7wsODla+fPmSFWCkhJwVKlQo3fH89ttvOn36tCpVqqRPP/00SQFGkooVKyYvL69Uz1+yZIlef/11FSxYUIsXL842BZhSHeqqbNeGCtr+t86t3mvtcDItm/uuF1NMjELee08xJ05IMTGKv3ZNt7/+WlH/P1Itz8CBUq6c+TaceF9FR8ekesy9e//1G3J2zplLoZMn48iVMeTJGPJkHLkyhjwZR66Q3eXM3/6fgNDQUG3fvl22trbq0qVLkn2JRZnUpiQ1adLEPILjfl27JjSaOnz4sLkj+P0efB5JsrGxMW+/v3iRmmLFiqlVq1a6fPmydu3aZd4eHh6uTZs2ydnZOcXnyUiJr/N+jo6OateunaSEaT2JqlWrpvDwcI0ePVqnTp16IvHs3ZtQYHjmmWdkZ/dog8WmTZumjz/+WGXLltXSpUvl4eHxJEK0OIcCzmowcZBi7t7T/lHzrR1OpmaK+u+XgnubN8sUlvyvOHf/f5qfbeHCObY/TGRkpCTJwSH1ptiOjrnN/46IiHziMWVG5Mk4cmUMeTKGPBlHrowhT8aRKwuw9lLTLFGNjLBhwwbFxMSoUaNGyZY77tq1q3LlyqXt27crPDw82bnu7u4pPmahQoXk6OioqKgohYaGJttfsmTK8x8Tt1+9etVQ7M8995yk/0a+SAmjeu7du6cuXboob968hh7ncaX2+hO33/86xo0bpzJlysjX11ddu3ZVgwYN9Morr2jJkiWKiIjIkHguX06Ye1quXLlHOu+vv/7SzJkzVaBAAS1evFglSpTIkHgyg7pjnpNz0YI6MmWF7gbl7GWVHyb+vns8NpXm0rH/37tIkmyLF3/SIWVKiUOMXVwKpHqMq6vLf8eHpj4kOTsjT8aRK2PIkzHkyThyZQx5Mo5cIbujJ0wGSZyKFBAQoH79+iXbb2dnp6ioKG3cuPGJNrl9HI0bN1bZsmXl5+enK1euqHjx4uaVfFJ6Ldbk4eGhX375RXv37tXu3bt16NAh7dy5Uzt27NC3336rxYsXq1SpUlaJrUKFCsqVK5dOnjypzz//XOPHj1eubDLVxK1mQkHKa0RXeb2WdGSUje1/r7HTxk9kiovX+XUH9Me45EsK5gRx9xdeoqNTPijmvuG12eQaeVT+/mclSblz51bp0u66eDEo2TEVypeRlPAXsQsXkq9glhOQJ+PIlTHkyRjyZBy5MoY8GUeukN3lzN/+M9jZs2d19OhRSQmjKP76669kX9H//2EspSlJiSMvHnTz5k3du3dPDg4OKliwYLL9QUHJ35AkmZdbfnBETmpsbGzUr18/xcXFafny5frzzz91+vRp1ahRQ1WqVDH0GOmR2utI3P7g63BwcFDLli310Ucfae3atdq5c6datmypa9euaerUqemOJ3EEy7lz5x7pvAIFCuiHH35QtWrV5Ovrq9GjRyfrs5PVORUqIKciBZN8ObrlN+93dMsvpyIFZZ8/587NjQ8OVuz/X7u2qYyGun97/I0bFokrszl85Jh5uHGzZg1TPKZ584Ttf/xxRCaTyWKxZSbkyThyZQx5MoY8GUeujCFPxpErZHcUYTLA/Q15T506leLXkSNH5OzsrCNHjiT7cL9nzx6FhIQke9zE5a5r166dYm+SxP0P2vD/q63Ur1/f8Gvo3r27HB0dtXLlSv3888+Snuyy1PdL6XVERUVp69atkh7+OooVK2Ze2en+Ja3t7RPmkabUTyctjRs3liStW7dOcXFxj3RuwYIFtWDBAnl5eWnNmjV6//33H/kxMqNf2n+ohe79U/xa1eBN83GrGryphe79tfetOdYLNhO4t327JMmxbVvJPvl8Zqf/X7o+/vZtxTyh3kaZXUREpDb9mpCnoS/1T7bfwcFBA3wSlnVfvmK9RWPLTMiTceTKGPJkDHkyjlwZQ56MI1cWYO2lpnP4EtUUYdIpPj5e69atk5Ryo9xETk5Oatu2raT/ijaJIiIi9Nlnn5lHy0jSmTNn9N1330mSfHx8UnzMzZs3mwsVib7//nv9+++/Kly4cLKVk9KSP39+derUSdevX9cvv/xi/r8lLF68WIcPHzb/Pz4+Xp9//rlu3rypypUrm1cXioyM1I8//phif5zEpsLF7+uv4erqKnt7e128ePGRCjFt27ZVxYoV5e/vr7Fjx+revXtJ9l+9elXHjh1L9fzEETE1atTQunXr9N5772WLQgyMi1i+XPFhYbItWlT5R46Ucv/XPM6xTRs5de4s6f8b9Mak3vk/u/ts/NeKjY1VkybemjB+tLnY7OTkqDnffaHy5cvo/PlLmr9giZUjtS7yZBy5MoY8GUOejCNXxpAn48gVsjMbE+O30mXPnj0aPHiwChUqJD8/P9na2qZ6rJ+fn4YMGaLixYtr+/btWrNmjUaPHq1nnnlGO3fulJOTk+rUqaPw8HAdOHBAMTEx6tGjhyZMmJDkcXx8fHTw4EH5+Pho0aJFql27ttzd3XX69GmdOnVKDg4Omj17tpo0aWI+JzAwUG3atJG3t7cWLUq5V8exY8fUo0cP83OMGTMmxeOmT5+uGTNmyMXFRaVLl0719U6ZMkVly5Y1x7tt27YkzYRbt26toKAg+fj46Oeff1b9+vXl5uamY8eO6cKFC8qfP78WLVqkypUrS0pYsal+/fqys7NT5cqVVbp0acXHx+v06dM6e/asnJ2d9cMPP6hmzZrm53j11Ve1bds2VahQQdWqVZODg4PKlSunl156KUkuH4wtICBAgwcP1pUrV1SwYEHVqVNHDg4OunTpkv79918NGzZMI0aMSDO3d+7c0UsvvaTDhw+rU6dO+vzzz9O8Ph5moXvyvwRkBnlKFlKPA19LShgJczfwplXj6VApc8wLtq9eXQUnT1YuZ2fF372ruIsXlcvFRbbFikmS7m3bprDPPpOs+Bbsvve01Z470ZCX+mvG9AmytbXVjRu3dOFioCpVLKcCBfIrJCRU7Tr01pEjx60dptWRJ+PIlTHkyRjyZBy5MoY8GZcVchUbnXJbhcwucu0Ua4fwWJyeec/aIWQIRsKkU2KPl6effvqhH7AbN24sNzc3XblyRfv37zdvL1WqlFasWKFatWpp3759OnjwoMqVK6exY8fqs88+S/XxBg4cqC+//FKxsbHatm2bgoKC1KJFCy1ZsiRJAcaoatWqmXvPGGnIGxISor///jvVr8S5nA/z4Ycf6oMPPlBwcLC2bt2qsLAwdezYUStXrjQXYCTJ2dlZ48aNU9u2bXXnzh3t3LlTfn5+kqT+/ftr3bp1SQowkvTZZ5+pe/fuun37tjZs2KCVK1cmWYo7NeXLl9eaNWv0yiuvqHDhwtq7d6/8/PwUGRmpXr166amnnnroY+TNm1fz5s1TnTp1tGHDBr399tuPPDUKWVfMP//o1sCBili7VqbwcNlVqCCbPHkU/ddfCvvkE4V9+qlVCzCZxdx5P6llq+5as3aTTCaTqntVVmhouGZ/t1C16rS1+i9XmQV5Mo5cGUOejCFPxpErY8iTceQK2RUjYawosXnr8OHDzaMqjEht9EZ6/f7773rxxRdVv359/fTTTxn2uKlJHAlzKof2xHhUmXUkTGaTWUbCZAWZYSQMAABAVpVlR8KsnmTtEB6LU7dR1g4hQzASBpIS+rB8++23kqQBAwZYORoAAAAAALKf5EvuIEfZtm2btm7dqpMnT+rkyZOqWbOm2rVrZ+2wAAAAAADIdijC5HAnTpyQr6+v8uXLp/bt22vMmDGysbGxdlgAAAAAgCchGy33nBXREwbIIugJYww9YYyjJwwAAMDjy7I9YXwnPPygTMip+wfWDiFD0BMGAAAAAADAAijCAAAAAAAAWAA9YQAAAAAAyCni6QljTYyEAQAAAAAAsACKMAAAAAAAABbAdCQAAAAAAHIKpiNZFSNhAAAAAAAALIAiDAAAAAAAgAVQhAEAAAAAALAAesIAAAAAAJBTmEzWjiBHYyQMAAAAAACABVCEAQAAAAAAsACKMAAAAAAAABZATxgAAAAAAHKK+HhrR5CjMRIGAAAAAADAAijCAAAAAAAAWADTkQAAAAAAyCmYjmRVjIQBAAAAAACwAIowAAAAAAAAFkARBgAAAAAAwALoCQMAAAAAQE5hoieMNTESBgAAAAAAwAIowgAAAAAAAFgARRgAAAAAAAALoCcMAAAAAAA5RTw9YayJkTAAAAAAAAAWQBEGAAAAAADAApiOBAAAAABATmEyWTsCqwkICNDcuXN14MABXb9+XXZ2dipdurTat2+vQYMGKU+ePE88BkbCAAAAAACAbO3QoUPq1q2bfH19ZW9vr9atW6t+/foKCgrS9OnT1atXL4WFhT3xOBgJAwAAAAAAsrWPP/5Y9+7d06uvvqrXX39dNjY2kqTQ0FANHjxYx48f17x58/T2228/0TgYCQMAAAAAALKtkJAQnT59Wvb29ho2bJi5ACNJBQsW1ODBgyVJf//99xOPhZEwAAAAAADkFDlwiWp7e3tDx7m4uDzhSBgJAwAAAAAAsrG8efOqdu3aiomJ0bfffivTfc2JQ0NDNX/+fElSr169nngsjIQBAAAAAADZ2vjx4/XSSy9p1qxZ2rhxozw9PXXv3j39+eefcnJy0pQpU9S0adMnHgdFGAAAAAAAcoosOh2pTZs2ae7ftm1bmvsrVKigJUuW6I033tCRI0d0/vx5877GjRurYsWKGRHmQ1GEAbKIz6L/tXYIWcKKgGLWDiHLeLpYbWuHkCWcirxq7RCyhICwK9YOAdlM+QLFrR1CluHpxM8+IzZdPWztELIE7j1kV/v379frr7+uQoUKad68eapZs6YiIyO1c+dOff7559q1a5dmzZr1xEfDUIQBAAAAAACZ2sNGuqQlNDRUb7zxhqKjozV37ly5u7tLkvLnz68+ffooX758euuttzRu3Dht2bJFtra2GRV2MjTmBQAAAAAA2dbOnTsVGhqqWrVqmQsw92vfvr3s7e0VGBioS5cuPdFYGAkDAAAAAEBOYcqaPWHS49q1a5KkfPnypbjfzs5Ozs7OCgsLU1hY2BONhZEwAAAAAAAg2ypcuLAk6fjx44qNjU22//z58+biS0ojZTISRRgAAAAAAJBtNW/eXI6OjgoKCtIXX3yRpBATHBysMWPGSJK8vb1VqFChJxoL05EAAAAAAEC2VahQIY0ZM0Zjx47VggULtHnzZlWtWlX37t3T33//rdu3b6tQoUL65JNPnngsFGEAAAAAAMghTPEma4dgFb169ZKHh4d+/PFH/fXXX9q1a5dsbW1VsmRJ9erVSy+99JLc3NyeeBwUYQAAAAAAQLZXs2ZNTZ061aox0BMGAAAAAADAAhgJAwAAAABAThGf85aozkwYCQMAAAAAAGABFGEAAAAAAAAsgCIMAAAAAACABdATBgAAAACAnMJETxhrYiQMAAAAAACABVCEAQAAAAAAsACmIwEAAAAAkFPEm6wdQY7GSBgAAAAAAAALoAgDAAAAAABgARRhAAAAAAAALICeMAAAAAAA5BTxLFFtTYyEAQAAAAAAsACKMAAAAAAAABZAEQYAAAAAAMAC6AkDAAAAAEBOQU8Yq2IkDAAAAAAAgAVQhAEAAAAAALAApiMBAAAAAJBTmEzWjiBHYyQMAAAAAACABVCEAQAAAAAAsACKMAAAAAAAABZATxgAAAAAAHIKlqi2KkbCAAAAAAAAWABFGAAAAAAAAAtgOhIAAAAAADlFPEtUWxNFGKTLzZs31aJFC8XGxqpt27aaOXOmRZ73wIEDGjBggLp166ZJkyZZ5DlzukJF3NS4ube8alVR9VpVVcXLU855nBR48bJa1+1q7fAylTKeZdSgfUN5NaimMpXLKl/BfIq+F63L54J0cOtBrf9hve6G3bV2mFZHnozh3nt0DRvU1ciRL6tJY28VKJBPV65c16+bd2jipGm6fPmqtcPLNMhT2rj3jOP9/NFw7z0c9x+yM4owSJf169crNjZWkrRr1y4FBwfL1dXVylHhSejUrb0+/Oxta4eR6RUrU0wzfvuvGHnr6i2dP3lOLkVcVammhyrV9NBT/Z/WuP5jdeHUBStGal3kyTjuvUczeFA/fTtrsmxtbXXjxi0dO35KlSqW07BXXlCf3l3Vtn1vHT16wtphWh15ejjuPWN4P3803HvGcP8hO6MIg3RZvXq1JKlIkSK6fv26NmzYIB8fHytHhSfhzu272rvrgI79fVL/HDmpEu7FNPrTt6wdVqZjIxuF3gzVhoUbtMN3u65dvGbeV6VeFb39zTsqWqqoPpw3Rq+2GabY6FgrRms95Mk47j3jvLwqa9bMSbK1tdWUz2do7LjPFRsbKycnR83+doqef66HVi6fJ68aLRUdHW3tcK2GPBnDvWcM7+fGce8Zx/2H7IzGvHhsJ0+e1KlTp+Tm5qYxY8ZI+q8og+xn1c/rNLDna/ri0xnavH6brl+9Ye2QMqWbV2/qpSYvaunXS5L8IipJJw+d1JdvfCFJKl6muOq0qGONEDMF8mQc955xH40ZKTs7O+3Zc1AffDjRPFIzMvKehgx9RwEBF1S+fBkNfKGPlSO1LvJkDPeeMbyfG8e9Zxz33xNmis+aX9kERRg8tsSCS6dOndS6dWu5uLjo+PHj8vf3T3asr6+vPD09NX36dF28eFHvvPOOmjZtqipVquiHH34wH3f9+nVNnjxZnTp1Uq1atVSnTh117txZEydOVFBQUIpx3L59W5999platGghLy8vtWnTRtOmTTP/YHtQXFycli9frn79+qlevXqqUaOGOnXqpFmzZunevXvJjh81apQ8PT114MAB7d27V4MHD5a3t7c8PT118uRJdezYUZ6envr3339TfL7Y2Fg1bdpUlStX1qVLlx6WVmRxMVExioqMSnX/yUMndSfsjiSpVMVSlgor0yFPyGjOzk7q+HRrSdJ3cxcl2x8dHa2Fi5ZLkvr0zrn9BMgTMhrv58Zw7wFIRBEGjyU2Nla//PKLJOnZZ5+Vvb29OnXqJCnt0TDnz59Xjx49dOjQIdWrV0/NmzeXk5OTJOnIkSPq0qWL5s+fr7CwMDVt2lSNGzeWjY2NfvjhBx04cCDZ44WHh6tPnz7asGGDatSooUaNGik4OFgzZ87U2LFjkx0fFRWlIUOG6KOPPtLp06fl5eWlZs2a6c6dO/rmm280cODAFAsxkrRhwwYNHjxYwcHBatasmerWrSsbGxv169dPkrR06dIUz9u+fbtu3LihJk2aqFSpnPvLBxLkss0lO/uEmaD3IlL/pTWnI094VLVreZl/nuzevT/FY/z8ErZ7e9eWjY2NxWLLTMgTLI338wTcewAS0RMGj8XPz0+3bt2Sh4eHqlWrJimhGPPTTz9p/fr1euedd2Rra5vsvF9++UW9evXSuHHjZG9vb95++/ZtvfbaawoNDdUrr7yi4cOHJ9kfEBAgkyn5Umrbtm1Tq1attGrVKvMPtnPnzqlHjx7y9fXVq6++qpIlS5qP//zzz7Vnzx61atVKEydOlIuLi6SEvz6MGzdOvr6+mjlzpt5+O3kjsGXLlmnixInq3r17ku0lS5bU1KlTtX79er333ntydnZOdp4kc7EGOVvDDo3k6OwoSTq2/x8rR5N5kSc8qkqVyktKKLZfunQ5xWPOBiQ0BXVyclKZMiV1/nzOG51InmBpvJ8n4N4DkIiRMHgsa9askSQ988wz5m3Vq1dXxYoVdePGDf3+++8pnlewYEGNHj06SYFFkpYvX66bN2+qadOmeuutt5LtL1++vCpUqJDs8ZydnTV+/HhzAUaSypUrp2eeeUYmk0l//PGHeXtwcLCWLl0qV1dXff755+YCjCQ5ODho7NixKlSokJYvX674+ORzDps2bZqsACNJefPmVZcuXXTnzh3z6KBEly5d0p49e1S0aFG1atUqxZwg58iTP49eHPOiJOnAbwdYJSIV5AmPw9W1oCQpJCQs1WOCg0PM/3YpWOBJh5QpkSdYEu/n/+HeQ6YSb8qaX9kERRg8stDQUG3fvl22trbq0qVLkn2JRZnUpiQ1btxYefLkSbZ97969kqQePXo8UixeXl5yc3NLtr18+YS/Nly/ft287cCBA4qJiVGjRo2UL1++ZOc4OTnJy8tLoaGhOn/+fLL9bdu2TTWO5557TlLyKUnLly+XyWRSr169UhwZhJwjl20uvTvjPRUpWUShN0M164OZDz8pByJPeFyJxfjo6JhUj7l377+pEM7OTqkel52RJ1gK7+dJce8BSMR0JDyyDRs2KCYmRk2bNlXRokWT7Ovatau++uorbd++XeHh4cqfP3+S/SVKlEjxMS9fThiWWa5cuUeKpXjx4iluTyz03L+8X2BgoDn+DRs2pPm4ISEhybalFrskVa5cWbVr19bhw4d17NgxeXl5KSYmRr6+vrK1tVXv3r0f+lqQfdnY2OitqSNVt2VdRdyO0KeDP1HwtWBrh5XpkCekR2RkpCTJwcE+1WMcHXOb/x0REfnEY8qMyBMsgffz5Lj3ACSiCINHljgVKSAgIMU+J3Z2doqKitLGjRvVt2/fJPscHR0zNJZcuYwP5krsKVOpUiV5eXmleWzBggWTbXtY7M8995wOHz6sZcuWycvLS1u3btXNmzfVpk2bZMUq5Cyvf/66WnZrqci7kfrfoP/J/0jyFcRAnpA+iUP8XVxSH8Lv6vrfNNSQ0NSnBGRn5AmWwPt5ctx7yExMKbRegOVQhMEjOXv2rI4ePSopYfRK4giWlKxevTpZESY1JUqUUEBAgM6dO6cqVapkSKwPKlasmKSE3jUTJ07M8Md/6qmnNHHiRP3yyy96//33tXz5/y8z2KdPhj8Xso7hk0eobe92uhdxT58M+kQnDh63dkiZEnlCevn7n5Uk5c6dW6VLu+vixaBkx1QoX0ZSwl+kL1wItGh8mQV5wpPG+3nKuPcAJKInDB7J/Q15T506leLXkSNH5OzsrCNHjujcuXOGHrdx48aS0l7eOr0aNmwoOzs77d69O9VlqNPDwcFBPXv2VEREhGbMmKF9+/apZMmSatasWYY/F7KGYZ8NU4d+HRQVeU+fvvhpjl4VIi3kCRnh8JFj5uH+zZo1TPGY5s0Ttv/xx5EUV9zLCcgTniTez1PHvQcgEUUYGBYfH69169ZJUrKGvPdzcnIyN7FNLNo8TK9eveTm5iY/Pz998803io2NTbL/3LlzOnv27OMF/v+KFCmi3r1768aNG3rjjTd09erVZMdcvXrVcMwp6du3r3LlyqUFCxbIZDKpd+/ejzRlCtnH0P8NVccBnRR1L0qfvfSZju7529ohZUrkCRklIiJSm37dLkka+lL/ZPsdHBw0wCehP9fyFestGltmQp7wpPB+njbuPQCJ+HQIw/bt26erV6+qUKFC5pErqUks0qxduzbF5Z4flD9/fk2fPl0FChTQrFmz1KpVK73++usaMWKEunTpoqeeekp//53+H+ajR49Wy5YttXPnTrVv3159+/bVyJEjNXz4cHXs2FEtWrTQggULHvvx3d3d1aJFC0mSvb29evbsme6YkfUM/GCQugzqqqh7URr/4mc6svuItUPKlMgTMtpn479WbGysmjTx1oTxo2VnlzDr2snJUXO++0Lly5fR+fOXNH/BEitHal3kCRmN93NjuPeQaVh7qekcvkQ1PWFgWOJUoaeffvqhyy03btxYbm5uunLlivbv32/o8evWrat169Zp3rx58vPz044dO5Q7d24VL15cgwcPVsOGKQ/dfBQODg6aPXu2NmzYoNWrV+v48eM6duyYChYsqKJFi2ro0KF6+umn0/UcjRo10o4dO9S2bdsUl8/OqoqVKKq12xeb/2/vkPD2Udy9qA78u9W8/c+Df+vVAW9bPL7MwrNOZfV4JWGp9YjbEer7Zl/1fTPl3kiHth/SipkrLBlepkGejOPeM+7o0RMa8fqHmjF9gt57d7gGDeynCxcDValiORUokF8hIaHq2fvFJCvn5UTkyRjuPWN4PzeOe8847j9kZxRhYNgXX3yhL774wtCxdnZ22rt3b5Jt3bt3f+h5xYoV05gxYx56XIMGDXTq1KlU93fv3j3V57OxsVHnzp3VuXPnhz6PJE2aNEmTJk0ydKwkbdq0SZIMNyXOKmxtc8nFrWAK222TbM+XP6/lgsqE7O9betKlsItcCrukeuyV81csEVKmRJ6M4957NHPn/aRjx/7V22+/osaN6qu6V2VdvXpDS5au0cRJ0xQUlLOvp0Tk6eG494zh/fzRcO8Zw/2H7MzGRNcnIMPs3btXgwYNkoeHh9avz9j5vB6F62Xo42VXnk7FrB0CsplTkcn7RyG5gDA+OCBjlS9Q3NohZBn87DNm09XD1g4hS+DeM87/xiFrh/BY7n6WvC9RVpBnzE/WDiFDMBIGyAAffvih7ty5o127dkmS3nnnHStHBAAAAADIbCjCABlg5cqVsrW1ValSpTRkyBBzc14AAAAAABJRhAEyQFr9aQAAAAAAkCjCAAAAAACQc2Sj5Z6zolzWDgAAAAAAACAnoAgDAAAAAABgARRhAAAAAAAALICeMAAAAAAA5BTx8daOIEdjJAwAAAAAAIAFUIQBAAAAAACwAKYjAQAAAACQU7BEtVUxEgYAAAAAAMACKMIAAAAAAABYAEUYAAAAAAAAC6AnDAAAAAAAOYWJJaqtiZEwAAAAAAAAFkARBgAAAAAAwAIowgAAAAAAAFgAPWEAAAAAAMgp4k3WjiBHYyQMAAAAAACABVCEAQAAAAAAsACmIwEAAAAAkEOY4lmi2poYCQMAAAAAAGABFGEAAAAAAAAsgCIMAAAAAACABdATBgAAAACAnIIlqq2KkTAAAAAAAAAWQBEGAAAAAADAApiOBAAAAABATsF0JKtiJAwAAAAAAIAFUIQBAAAAAACwAIowAAAAAAAAFkBPGAAAAAAAcgpTvLUjyNEYCQMAAAAAAGABFGEAAAAAAAAsgCIMAAAAAACABdATBgAAAACAnCLeZO0IcjRGwgAAAAAAAFgAI2GALCIg7Iq1Q8gSyBMy2u1v+1k7hCwh37Al1g4B2Qzv58Z5OhWzdgjIRrj3gCeLIgwAAAAAADmEielIVsV0JAAAAAAAAAugCAMAAAAAAGABFGEAAAAAAAAsgJ4wAAAAAADkFPSEsSpGwgAAAAAAAFgARRgAAAAAAAALYDoSAAAAAAA5RXy8tSPI0RgJAwAAAAAAYAEUYQAAAAAAACyAIgwAAAAAAIAF0BMGAAAAAICcgiWqrYqRMAAAAAAAABZAEQYAAAAAAMACKMIAAAAAAABYAD1hAAAAAADIKegJY1WMhAEAAAAAALAAijAAAAAAAAAWwHQkAAAAAAByCJOJ6UjWxEgYAAAAAAAAC6AIAwAAAAAAYAEUYQAAAAAAACyAnjAAAAAAAOQULFFtVYyEAQAAAAAAsACKMAAAAAAAABbAdCQAAAAAAHIKpiNZFSNhAAAAAAAALIAiDAAAAAAAgAVQhAEAAAAAALAAesIAAAAAAJBDmOgJY1WMhAEAAAAAALAAijAAAAAAAAAWQBEGAAAAAADAAugJAwAAAABATkFPGKtiJAwAAAAAAIAFUIQB8EgaNqir5cvmKOjSEd0JP6vTp/Zp+rQJKlGimLVDy1TIk3Hk6uGiYuO06I+zGvDT72r6zSbV++IXtZj2q15cslcrj1xQHH/RSoJryhjyZAx5ergynmXUe0QfffLTJ/rx0EL5nlmtpceWaer6qer7Rl/lKZDH2iFmKlxTxpErZEc2JpOJ39weQevWrRUUFJRkm42NjQoUKCBPT0/17t1bnTt3TvfzBAYGqk2bNvL29taiRYvS/XhG7dy5U+vXr9eRI0d069YtxcfHq1ChQqpevbqeeuoptW/fXra2thaLJz18fX01evRoDR8+XCNGjDBvnz59umbMmKGJEyeqe/fuVozw0dg5uFs7BA0e1E/fzposW1tb3bhxSxcuBqpSxXIqUCC/goND1LZ9bx09esLaYVodeTIuK+Tq9rf9rPr8oZHRGrp0n/xvhEuSiuZzlJtzbl27c0+37kZJkuqWctPMng3kaG+99+d8w5ZY7bnvlxWuqcyAPBmTVfL0dLHaVnvuYmWKae7ueeb/37p6S8HXbsmliKsKFS+UsO3aLY3rP1YXTl2wVpiSpE1XD1v1+aWsc01lBlkhV7HRQQ8/KBMK82lj7RAeS4FF26wdQoZgJMxjatq0qbp166Zu3bqpY8eOKlWqlA4cOKC3335b//vf/6wd3iMLCQnRwIED9fLLL+uXX36Ro6OjmjZtqtatW8vV1VVbtmzRm2++qV69elk7VFiJl1dlzZo5Sba2tpry+QyVKlNHDRt1VMnStbX451VydXXRyuXz5ODgYO1QrYo8GUeujPlm10n53whXfkd7zevbSJuHtdPPLzTXttfaa+qz9eRgm0t/XrqlHw6esXaoVsc1ZQx5MoY8GWMjG4XeDNXiqYv1UtMXNdD7BY3sMlKDGgzUe93f1bVL1+RW1E0fzhsjO4ec3Y6Sa8o4coXsjCLMYxo6dKgmTZqkSZMmaerUqVq5cqVmz54tGxsb/fzzzzpxIutUsCMjIzVgwADt27dP1apV05o1a7RhwwbNmDFDX3/9tVauXCk/Pz/5+PgkGwWUFT3//PPauHGj2rVrZ+1QspSPxoyUnZ2d9uw5qA8+nKjY2FhJUmTkPQ0Z+o4CAi6ofPkyGvhCHytHal3kyThyZczOM1clSUMaVVK90oWS7GvtUVz96paTJPmduWbx2DIbriljyJMx5MmYm1dv6qUmL2rp10t07WLS96GTh07qyze+kCQVL1NcdVrUsUaImQbXlHHkCtkZRZgM1KpVK9WtW1eSdPDgQStHY9zXX38tf39/lS9fXosWLVKVKlWSHVO4cGGNGTNGM2fOtEKEGcvV1VUVKlRQvnz5rB1KluHs7KSOT7eWJH03N/n0uOjoaC1ctFyS1Kd3V4vGlpmQJ+PIlXH3YuIkSWVc8qa4v7RLQq+F2BzeF4ZryhjyZAx5Mi4mKkZRkVGp7j956KTuhN2RJJWqWMpSYWU6XFPGkStkdxRhMpibm5skKS4uzrzt3r17WrFihYYPH6527dqpZs2aql27tnr06KEffvjBXNlNTUREhCZPnqzWrVurevXqat26taZMmaI7d+4kOW7cuHHy9PTUjz/+mOpjvf766/L09JSvr68kKTw8XMuWLZMkjRo1SnnypN04rV69ekn+37p1a3l6espkMunnn39W9+7dVbt27STH7dixQx9++KE6deqkevXqqUaNGurQoYMmTZqk4ODgZM/x9NNPq3LlygoNDU2yffny5fL09JSnp6cCAwOT7Nu0aZM8PT316aefphm/lNAT5v4cJBo1apQ8PT114MABHT58WC+++KLq1aunmjVrqm/fvtqzZ0+qj7ljxw7169dPtWrVkre3t15++WUdP35cvr6+8vT01PTp0x8aV2ZWu5aXnJycJEm7d+9P8Rg/v4Tt3t61ZWNjY7HYMhPyZBy5Mq5K0QKSpL8Cb6W4/69LCdurlyhoqZAyJa4pY8iTMeQp4+SyzSU7+4RpSPciUi/WZHdcU8aRqyfPFG/Kkl/ZBUWYDBQbG6uTJ09KkipUqGDefvHiRY0ZM0aHDx9W0aJF1bp1a9WuXVvnz5/XxIkTNXz4cKXWHzkmJkYvvPCCli5dKk9PT7Vs2VJ37tzR999/Lx8fH929e9d87HPPPScpoViRkps3b2r79u0qUKCAOnbsKEnav3+/IiMjVbBgQTVr1uyxX/v//vc/jR8/Xnnz5lWrVq1UsWJF875Ro0Zp48aNypMnjxo3bqzGjRsrKipKCxYsUM+ePZMVYho0aCCTyZRsNNGBAwfM/96/f3+K+xo0aPDYryHRzp071b9/f926dUvNmzdXxYoVdfjwYQ0ZMiTZ80rS0qVL9corr+ivv/5SlSpV1LRpU126dEl9+/bV0aNH0x1PZlCpUnlJUlRUlC5dupziMWcDEprtOTk5qUyZkhaLLTMhT8aRK+OGN6ssB9tcWvRHgObu89flsAhFxcbpYshdTd1xXBtOBKlYPkcNbexh7VCtimvKGPJkDHnKOA07NJKjs6Mk6dj+f6wcjfVwTRlHrpDd5ezuWBkkOjpaly5d0rfffquLFy+qatWqSQoahQoV0vz589WoUSPlyvVf3Ss8PFwjR47Ujh07tHHjRnXq1CnZYx8+fFjly5fX5s2bVaRIEfN5Q4YM0ZEjRzRt2jSNHj1akuTp6am6devqzz//1KFDh5KNWlm1apViYmL0zDPPyNEx4YdhYu+aKlWqJIntUW3cuFErVqxQ1apVk+379NNP1bRpUzk7O5u3xcbGasaMGfr222/19ddf65NPPjHva9CggZYsWaL9+/erffv25u0HDhxQhQoVdP78ee3fv189e/Y079u/f79sbGxUv379x34NiRYsWKBJkybp2WefNW+bM2eOvvzyS82cOVMNGzY0bw8KCtKECROUK1cuzZgxQ23aJHQaN5lM+vrrrzV79ux0x5MZuLoWlCSFhISlekxwcIj53y4FC+i8Lj3psDId8mQcuTKuTik3ff9cY83e469Zu09p5u5T5n12uWz0fN1yGtywktzy5LZilNbHNWUMeTKGPGWMPPnz6MUxL0qSDvx2wOqrI1kT15Rx5ArZHSNhHtOAAQPMU2OqV6+ujh076pdfftHzzz+vhQsXJlnG2dXVVU2aNElW5MifP7/GjBkjSdq8eXOqzzVq1ChzASbxvI8++khSwqiXe/fumfcljoZZsiTpUqEmk8k8QqZv377m7SEhIeYY0+Oll15KsQAjSe3bt09SgJEkOzs7vfnmmypSpIi2bNmSZF+DBg1kY2OTZNTJ2bNndePGDbVu3VrVqlVLMirm+vXrOnfunDw9PeXi4pKu1yFJHTp0SFKAkaSBAwcqf/78Onz4sGJiYszbV65cqaioKLVr185cgJESli0fMWKESpQoke54MoPEIaHR0TGpHnPv3n9DjJ2dnZ54TJkReTKOXD2ay2GRunXnnkySXJ0dVKVoAbk6Oyg23qQtp66Ym/fmZFxTxpAnY8hT+uWyzaV3Z7ynIiWLKPRmqGZ9kPX7CqYH15Rx5MoC4k1Z8yubYCTMY2ratKkKFy4sKaHAcePGDf3zzz/mQseoUaOSLZl29OhRHThwQJcvX9a9e/dkMpnM05DOnz+f4vMUKFBALVq0SLbdy8tL5cuXV0BAgI4fP25uCNy+fXsVKlRIW7ZsUUhIiLko8fvvvyswMFDe3t5JpkpllPsLECkJCgrSzp07df78ed29e1fx8fGSEnrnhISEKCwsTAUKJPQ9cHV1VaVKleTv768bN26ocOHC5oJM4iiUuXPn6uzZs6pQoUKGTkWSlGK+HRwcVKpUKR0/flwhISHmotiff/4pSebpXfezs7NThw4dtGDBggyJy5oiIyMlSQ4O9qke4+j431/hIyIin3hMmRF5Mo5cGbfoj7P6cscJuTg5aHoPbzWrUNS8z+/MNX208bA+3XxU0bHx5pWSciKuKWPIkzHkKX1sbGz01tSRqtuyriJuR+jTwZ8o+FryPoA5CdeUceQK2R1FmMc0dOjQZB/679y5ozfffFOLFy9WfHy8Pv74Y0nS3bt3NXLkSO3cuTPVx3uwyW6itEZSuLu7KyAgQNeu/bccoIODg3r27KnZs2dr9erVGjx4sCSZm+/ePwpGkrlIk1KD3Efh7u6e6r6vvvpKc+fOTdKs+EF37twxF2GkhIKKv7+/Dhw4oM6dO+vAgQOyt7c3F5vmzp1rnp6UWKDJqCJM8eLFU9ye2LQ4OjravO369euSUv8+pfZYWU3icFAXlwKpHuPq+t8opJDQ1IePZmfkyThyZUxwRJRm/p4w/eid1tWSFGAkqXnFonqndTV9tPGIZv1+Sj1qlpaDnW1KD5XtcU0ZQ56MIU/p8/rnr6tlt5aKvBup/w36n/yP+Fs7JKvjmjKOXCG7YzpSBsqbN6/ee+89SQnThMLDwyVJX375pXbu3Kk6depowYIF2rdvn44dO6ZTp07pn38yvkFZnz59ZGtray68XL9+XTt27JCrq6vatWuX5NjEKUQnT540j055HIk9Zh7066+/avbs2XJzc9NXX32lnTt36p9//tGpU6d06tQp1a5dW5KSNSZOLKjs37/f3KS3Zs2acnJyUt26dWVvb28uvhw4cEC5cuXKkH4wktLVGye78vc/K0nKnTu3SpdOueBWoXwZSQl/vbhwITDFY7I78mQcuTLmxNVQ8xLVjcoVTvGYJuUSRubdjorRxZC7KR6TE3BNGUOejCFPj2/45BFq27ud7kXc0yeDPtGJg8etHVKmwDVlHLlCdsenzQxWqlQpSQnTbC5cSGg+tnnzZtna2uq7775T48aN5erqKnv7hOF1Fy9eTPPxLl9OuSO4lDDFR1KSfjFSwqiMFi1a6Pz589q3b59WrVql2NhYde/ePdkUqYYNG8rJyUmhoaHavXv3o71YAxJ73XzyySfq2LGjihcvniSGxBw9qH79+ua+MKdOnVJISIh5KpKTk5Nq1KihgwcPKjAwUJcuXVKVKlWUP3/+DI//YRJzn9r36cqVK5YM54k5fOSYeWhos2YNUzymefOE7X/8cSTV1b6yO/JkHLky5m5U7CMdHxX7+MX0rI5ryhjyZAx5ejzDPhumDv06KCrynj598dMcvRrSg7imjCNXFhCfRb+yCYowGez+okpiM9qwsDDlyZMnxSLB+vXr03y8sLAw+fn5Jdt+4sQJBQQEyNnZWdWqVUu2//4GvStWrJCNjU2yqUhSQpPf3r17S5ImT56cZMnrlCT2QDEqLCxheGBK03L27NmT6jSoggULqnLlyrp06ZJ8fX0lKcmqRA0aNFBISIgWLlxo/r81JE6P+vXXX5Pti42NTdZ0OKuKiIjUpl+3S5KGvtQ/2X4HBwcN8Em4jpavSPuazs7Ik3HkypgyrnnN/9537kaKx/x+LmFapK2NjUq55LFIXJkR15Qx5MkY8vTohv5vqDoO6KSoe1H67KXPdHTP39YOKVPhmjKOXCG7owiTge7cuaMpU6ZIksqUKaPy5RPWuC9XrpzCw8O1du3aJMf7+fkZato6efJk3bjx3y/ft2/fNi/p3KNHD3MH8fs1bdpUZcqU0ebNmxUUFKQmTZqYR+k86K233pKHh4fOnj2rAQMG6OTJk8mOCQ4O1qRJk/Tqq68+NN77JeYgsU9OoosXL2rcuHFpnptYWFm6dKmcnJxUs2ZN877EgszSpUuT/N/Sevbsqdy5c2vLli1Jev6YTCbNmDHDPFopO/hs/NeKjY1VkybemjB+tOzsElpKOTk5as53X6h8+TI6f/6S5i9Y8pBHyt7Ik3Hk6uE8i+SXR5GEAv4X249r99lrSfb7nbmmL7cnDPVvVamY8jum3sQwJ+CaMoY8GUOejBv4wSB1GdRVUfeiNP7Fz3Rk9xFrh5QpcU0ZR66QndmYGL/1SFq3bq2goKBkqyPdvHlT//zzj3nUy7x581SnTh1J0saNG/XWW29JkmrVqqWSJUvq4sWLOnr0qIYOHao5c+bI3d1d27dvNz9PYGCg2rRpo1q1aikuLk4BAQFq2LCh7OzsdODAAYWGhqpy5cpavHix8ubNmzxQSfPnz9fkyZMlSTNmzEjWD+Z+ISEhevPNN819VipVqqTy5cvL1tZWQUFBOnbsmOLi4lSzZk3zClD35+PUqVMpPu6FCxfUvXt33blzR2XLllXVqlUVFhamgwcPqlatWoqNjdXhw4e1bds2lSxZMsm527dv17BhwyRJTZo00fz58837oqOjVa9ePUVFRZlz8mAefH19NXr0aA0fPlwjRowwb58+fbpmzJihiRMnqnv37ubto0aN0urVq7Vw4cIUR9b4+Pjo4MGDyWJdunSpxo0bJxsbG9WpU0fFixfXv//+q4sXL6pbt25atmyZ3nrrLb3yyiup5t8IO4fUmx9bypCX+mvG9AmytbXVjRu3dOFioCpVLKcCBfIrJCRU7Tr01pEjzP0mT8ZlhVzd/rafVZ//7M3bennZPt28m7Acp6uzg4rmc9K125EKjkhoFF7eLa/m9m0stzy503qoJyrfsMzxi3BWuKYyA/JkTFbJ09PFalvtuT3rVNYXa76QJIXcCNGV86lPpT+0/ZBWzFxhqdCS2XT1sNWeO1FWuaYyg6yQq9jorPkH19A+rawdwmMpuGyHtUPIEIyEeUy///67Vq9erdWrV2vNmjX6888/VbhwYQ0YMEAbNmwwF2CkhOWLf/jhB9WrV08BAQHavn27bGxsNHnyZL399ttpPo+Dg4N+/PFH9erVSydPntT27dvl5OSkwYMHp1mAkaTGjRtLSuhb0qpV2jeai4uLfvzxR82ePVudO3dWRESEdu3apa1bt+rmzZtq3769ZsyYYR55YlSZMmXk6+urDh06KCIiQtu2bdPly5f18ssva/78+ebeOCmpX7++bG0TVvl4cKSLg4ODualvtWrV0szDk9a3b1/Nnj1btWrV0vHjx+Xn56fixYvr559/VrFixSQlTK/KDubO+0ktW3XXmrWbZDKZVN2rskJDwzX7u4WqVaet1X8QZhbkyThy9XAVCuXTysEt9XJjD1UtWkDRsfHyvx6umDiTarm76O1WVfXzgOZWLcBkJlxTxpAnY8jTw9nft4ywS2EXVa1fLdUv9/LW/4OStXFNGUeunhxTvClLfmUXjITJxqZOnarvvvtOr732ml5//XVrh5MjDR48WHv27NGKFStUo0aNdD1WZhgJA+RE1h4Jk1VklpEwQE5kzZEwWUlmGAmD7CWrjoQJ6dXS2iE8FpcVO60dQoZgJEw2devWLS1dulQODg4pNuRFxrl06ZJCQ0OTbIuLi9O8efO0Z88elStXTtWrV7dOcAAAAACATMPO2gEgY82bN0/+/v7av3+/wsLC9OKLLyZbwhoZa9u2bfriiy9UtWpVFStWTFFRUfL399fly5fl7OysCRMmyMbGxtphAgAAAEC2Wu45K6IIk83s2rVLBw8eVOHChTV48GBzQ2A8Od7e3nrqqad0+PBhnT59WjExMSpSpIi6d++uIUOGmFeIAgAAAADkbBRhsplFixZZO4Qcp2rVqvriiy+sHQYAAAAAIJOjJwwAAAAAAIAFMBIGAAAAAIAcIjst95wVMRIGAAAAAADAAijCAAAAAAAAWABFGAAAAAAAAAugJwwAAAAAADlFvLUDyNkYCQMAAAAAAGABFGEAAAAAAAAsgOlIAAAAAADkECamI1kVI2EAAAAAAAAsgCIMAAAAAACABVCEAQAAAAAAsAB6wgAAAAAAkFPQE8aqGAkDAAAAAABgARRhAAAAAAAALIDpSAAAAAAA5BAsUW1djIQBAAAAAACwAIowAAAAAAAAFkARBgAAAAAAwALoCQMAAAAAQE5BTxirYiQMAAAAAACABVCEAQAAAAAAsACKMAAAAAAAABZATxgAAAAAAHIIEz1hrIqRMAAAAAAAABZAEQYAAAAAAMACmI4EAAAAAEAOwXQk66IIAwAAAAAAcoTbt29r/vz52rp1qwIDAyVJRYsWVd26dfX666+raNGiT/T5mY4EAAAAAACyvTNnzqhjx46aNWuWoqKi1KxZMzVs2FC2trZauXKlLl269MRjYCQMAAAAAADI1sLDwzV48GCFhobqiy++UJcuXZLsv3jxovLmzfvE46AIAwAAAABADpFTe8LMmDFD165d0+jRo5MVYCSpdOnSFomD6UgAAAAAACDbioqKkq+vr5ycnNSnTx+rxsJIGAAAAAAAkG0dO3ZMt2/fVt26deXk5KR9+/Zp9+7dunPnjkqWLKm2bduqfPnyFomFIgwAAAAAADmFycbaEVjcmTNnJElubm56/fXXtXnz5iT7v/rqK73yyit64403nngsFGEAAAAAAECm1qZNmzT3b9u2LdV9YWFhkqQdO3ZIkt5991116dJFtra22rRpk6ZMmaJZs2apRIkS6tWrV8YFnQKKMEAWUb5AcWuHkCUEhF2xdgjIZvINW2LtELKEp4vVtnYIWcapyKvWDiFL4P3cuF5xBa0dQtbA+5Qhm64etnYIQIaLj0/oRhwTE6MRI0bopZdeMu/z8fFRbGysJk2apFmzZlGEAQAAAAAAOVtaI10extnZ2fzvlIosvXv31qRJk3T58mVdunRJpUqVeuznehhWRwIAAAAAIIcwxWfNr/Rwd3eXJDk4OKho0aLJ9ufJk0eurq6SpBs3bqTvyR6CIgwAAAAAAMi2qlatKkmKjo7W3bt3k+2Pi4vT7du3JSUdNfMkUIQBAAAAAADZVvHixVWtWjVJ0oEDB5LtP3TokGJiYuTk5PTEl6qmCAMAAAAAALK1oUOHSpKmTJmiwMBA8/Zr165p/PjxkqSePXvKwcHhicZBY14AAAAAAHIIU7yNtUOwiqeeekr9+vXTkiVL1KVLF9WpU0e5cuXS4cOHdfv2bdWqVUtvv/32E4+DIgwAAAAAAMj2Pv74Y9WtW1eLFy/W4cOHFRsbq7Jly6pz58564YUXlDt37iceA0UYAAAAAACQI3Tp0kVdunSx2vNThAEAAAAAIIdI73LPSB8a8wIAAAAAAFgARRgAAAAAAAALoAgDAAAAAABgAfSEAQAAAAAghzCZcuYS1ZkFI2EAAAAAAAAsgCIMAPwfe/cen3P9/3H8ee3EzDZmThvmkOawySlncipFDqNQ/Sw5laI0JUpUFKWDIiIhQuSsk3ImmvMpIcbGnOa0GTvYdv3+2HdX1jY+ZruuXdvj3m23m30+7+vzee3l+lz08nq/3wAAAABgBUxHAgAAAACggGCLatvKsSJMTEyMrl+/LrPZnOUYHx+fnLodAAAAAACAXbmnIszZs2f1xRdfaN26dYqJibntWJPJpEOHDt3L7QAAAAAAAOxWtosw4eHh6tmzp65evXrb7pc0RsYAAAAAAADkV9kuwkycOFFXrlxRpUqVFBISotq1a8vb21smE9tdAQAAAACQF5lT+H92W8p2EebPP/+Uk5OTZsyYIV9f35yMCQAAAAAAIN/J9hbV169fV6VKlSjAAAAAAAAAGJDtIoyPjw/rvAAAAAAAABiU7SJM+/btFRYWplOnTuVkPAAAAAAAIJeYzfb5lV9kuwjz/PPP6/7779err76q06dP52RMAAAAAAAA+U62F+b9+uuv1ahRI3333Xfq0KGDmjVrpooVK8rV1TXL1wwaNCi7twMAAAAAALBr2S7CTJ48WSaTSWazWUlJSVq7dm2W21ObzWaZTCaKMAAAAAAA2BBbVNtWtoswXbp0ybLoAgAAAAAAgPSyXYQZP358TsYBAAAAAACQr2V7YV4AAAAAAAAYl+1OGAAAAAAAYF9YE8a27rkIExsbq8WLF2vDhg0KCwvT9evX5ebmpipVqqhly5bq1q2bihYtmhOxAgAAAAAA2K17KsLs379fL7/8ss6fPy+z2Ww5fv36dV24cEF//vmnZs+erS+++EKBgYH3HCwAAAAAAIC9ynYRJioqSgMGDNDVq1dVtGhRPfHEE7r//vtVsmRJRUVF6ejRo1qyZInOnj2rAQMGaOXKlSpZsmROxg4AAAAAAGA3sl2E+eabb3T16lU1btxYn3/+uTw8PDKMeemll/TKK69o27Ztmjlzpt544417ChYAAAAAAGTfLZNYYAPZLsJs3LhRzs7O+uSTTzItwEiSu7u7JkyYoIceekgbNmzIN0WY1q1bKzIyMt0xk8kkT09P+fv7q3v37nr88cfv+T6nT59WmzZt1KBBA82dO/eer5dXDR8+XMuWLctwvEiRIqpUqZLatWunZ599VoULF7ZBdEjjXaqEmrRooIDa1RVYu4aqB/iriJurTkecUet6nWwdXp7TqGE9hYQ8r6ZNGsjT011nz17Qr6vXa9z4L3TmzDlbh5enkCtjyNOd+fn7qeEjjRTQsKb8qlWUezF3JcYn6syJSG1fs12rZq/S9ejrtg7T5vg8vzs8e3eviI+XOq37UC7urpKkJQ2H6PrpizaOyvb4jLp7PH/Ij7JdhDl79qyqVq0qLy+v244rUaKE7r//foWFhWX3VnlWs2bNLFOsEhMTFRERodDQUIWGhmrXrl0aPXq0jSO0L9WqVVP16tUlSSkpKTp//rx27dqlv/76S7/99pvmzZtHIcaGOgQ9orfGDrV1GHahz3NPaeqUD+Xo6KioqEs6+NcRVb2vkga+8Kx6dO+kto901/79h2wdZp5ArowhT3dWxq+MJv/+peX7S+cu6eTfJ1S8lJeqPnC/qj5wvx79v8c0+v9GKfxIuA0jtT0+z43j2cuexh/1sxRgkIrPqLvH84f8KttFGEdHRyUmJhoam5iYKEdHx+zeKs8aMGCAGjZsmO7Y+vXrNXDgQM2fP19PPvmkatSoYaPo7E/btm01ePDgdMdOnTqlHj166ODBg/r+++/Vu3dv2wQHxV67rq0bQ3Vw3986sPdv+fiW0Ygxr9o6rDwnIKCapnw5Xo6OjvpowmSNGj1BSUlJcnUtrK+mfqRnnu6mxYtmKKBWS8OfofkVuTKGPBljkklXL17VT3N+0vql63Q+4rzlXPX61TX089dUunxpvTVjpF5sM1BJiUk2jNa2+Dw3hmcve6p0byHfVrUU/vMO+bV/0Nbh5Bl8Rt0dnr/cxRbVtuWQ3RdWrFhRYWFhOn78+G3HHTt2TMePH1fFihWzeyu70qpVK9WrV0+StH37dhtHY//Kly+vHj16SCKftrZk/kr1fuIlfTxmslavWqsL56JsHVKe9PbIEDk5OemPP7brzbfGKSkp9S9RcXHx6j/gNYWFhatyZT/1fraHjSO1PXJlDHky5uK5i+rXtK++n7gg3f/cSNLfO//WJ698LEkq61dWdR+qa4sQ8ww+z43h2bt7rqWKqf7oZ3Qt4oL2Tlhs63DyFD6j7g7PH/KzbBdh2rVrp5SUFA0aNEh//fVXpmMOHjyol156yTK+oChRooQkKTk52XIsPj5eP/zwgwYNGqSHH35YDzzwgOrUqaNu3bpp9uzZlg8WI7JzrdOnT8vf31+9evVSYmKivvjiCz388MMKCAhQixYtNHbsWMXGxmZ5z99//139+/dX48aNLa/p16+fVq5cmWl8M2bMUNeuXVWnTh3Vrl1bXbt21XfffZcuJ0Zlls9bnT9/Xu+//77atWunwMBAPfjgg3ruuee0adOmTMevX79eb731ljp06KD69eurVq1aateuncaPH6/Lly9n+prWrVvL399fkvTDDz+oS5cueuCBB9SsWTONHTtW16+nzt+9evWqxo4dq5YtWyowMFDt27fX0qVL7/pnhn0qUsRV7R9rLUma9nXGdZwSExM1Z+4iSVKP7gV73QVyZQx5Mu5mwk0lxCVkef7vnX8rNjr1z7ny95W3VliwUzx72dNwXG8VKuamP9+YqaQbWT+PBRGfUcbx/CG/y/Z0pF69emnFihU6fvy4nnjiCdWrV09Vq1aVt7e3Ll68qH/++Ue7du2S2WxW1apVFRwcnJNx51lJSUn6+++/JUlVqlSxHI+IiNDIkSPl7e2tSpUqKSAgQNHR0dq3b5/GjRunP//8U1OnTpXJdOfWsHu51s2bN9W3b18dOnRIDz74oO677z7t3r1bc+fO1bFjxzRr1qx0r0tJSdEbb7yhlStXytHRUQ888IB8fHx04cIFHThwQGFhYerU6d8Pv8uXL1uu7+Xlpbp168rZ2Vl79+7VmDFjFBoaqi+++MLQz5nm4MGDkqTKlStnOLd//371799fV69eVYUKFfTQQw8pOjpau3bt0tatWzVixIgMU5iGDx+uxMREVa1aVU2aNFFiYqIOHz6sWbNm6bffftPixYuzXOvoww8/1Ny5c9WgQQOVL19ee/bs0dy5c3X8+HF9+umn6tmzp65fv666desqJiZGO3bs0IgRI+Tg4KAuXboY/plhn+rUDpCra+oc+M2b/8x0zKZNqccbNKgjk8kkcwFdnp5cGUOeco6Do4OcnFP/2hPP/xziDnj27l7Fzo1V4dH6Or5ki85uOii3ct62Dsmu8Bn1L54/5HfZLsK4urpq1qxZGjp0qHbs2KGdO3dq165dlvNpD0KDBg308ccf5/sFVRMTE3Xq1ClNnTpVERERqlGjhpo3b2457+3trZkzZ6px48ZycPi3ASkmJkYhISFav369fv75Z3Xo0OGO97qXa+3Zs0e1atXSmjVrVLx4cUlSVFSUevTooW3btmnHjh1q0KCBZfyMGTO0cuVKlStXTl999ZWqVq2a7mfetm1buuu/+eabOnTokJ544gm99dZbKlKkiCTp2rVrGjJkiH777TctXLhQPXv2vO3PmJKSogsXLmjlypVasWKFPDw89PTTT6cbExsbq5deeknR0dF699131aNHD0txJywsTP369dNHH32kpk2bpot7zJgxatasmSU2KbV4NnnyZE2dOlUTJ07Ue++9l2lcafGkFdiio6PVo0cPbd26Vb169ZK/v78mTJigQoUKSZI2bNig559/XpMmTaIIUwBUrZpaKExISNCpU2cyHXM8LHWxPVdXV/n5ldPJk6esFl9eQq6MIU85p1G7xipcJPXvIgf/PGDjaJDX8ezdnUJe7mowppfiL8Vo5+jvbB2OXeIz6l88f7nPbGZNGFvK9nQkSSpVqpTmzp2r7777Tv3791ebNm3UqFEjtWnTRgMGDNC8efM0Z84clSpVKqfizVOCg4Pl7+8vf39/y9STH3/8Uc8884zmzJmTbjFiLy8vNW3aNF3RRJI8PDw0cuRISdLq1asN3fdermUymfT+++9bCjCSVLJkSUuB49Z1VxITEzVjxgxJ0ieffJKukCFJLi4ueuihhyzfHz58WOvXr1fVqlX17rvvpityuLu7a9y4cXJ2dtaCBQsyjW3y5MmWfFavXl0PPfSQPvnkEzVq1EgLFy5U+fLpWzOXLl2qCxcuqHv37urZs2e67prKlStr+PDhSk5O1qJFi9K97pFHHkkXmyQ5OTlpyJAhKlWqlH777bdM45Okl19+OV2Hk6enp6WgdObMGb3zzjuWAowktWzZUv7+/jp9+nSGbc2R/3h5FZMkXbkSneWYy5evWH5dvJhnboeUZ5ErY8hTznDzcFPfkX0lSaG/h7LzCO6IZ+/uNHz/WRUu4aEdo79TwpWsp7cjc3xGpcfzh/wu250wt6pfv77q16+fE5eyK7duUW02mxUVFaUDBw5Y/qd/+PDhcnFxSfea/fv3KzQ0VGfOnFF8fLzMZrOla+jkyZN3df/sXMvHx0f3339/huNpU30uXLhgOfbXX38pOjpaVapUUe3ate8Yz5YtWySlLk7s5JTxrVWqVClVrFhRR48eVXx8fIbuqFu3qJZS11c5evSotm7dqjFjxuijjz6y5PvW+z388MOZxpP2nty/f3+Gc5GRkdqwYYNOnjyp69evKyUlRVLqujNXrlxRdHS0PD0zfqDf2t2Uxs/PT5IUEBCQ6TSmihUr6siRI7pw4YJ8fX0zjRX5Q1rrbGLizSzHxMf/22JcpEjB3b6TXBlDnu6dg6ODXp88TKXKldLVi1c15c0v7/wiFHg8e8aVb1dPFTs1UuS6fTqxbKutw7E7fEZlxPOH/C5HijAFVWZbVMfGxmrIkCGaN2+eUlJS9M4770iSrl+/rpCQEG3YsCHL691uYdxb3cu1ypYtm+lxNzc3SUq3xdvZs2clyfDOVqdPn5YkTZ8+XdOnT7/t2Ojo6AxFmMy2qE5OTtakSZM0depU9enTR8uXL7d0GKXdr1+/fre915UrV9J9/9lnn+nrr7++7SLBsbGxmRZhypQpk+FYWldNZuduPc/2eflfXFycJMnFxTnLMYUL/9spdeNGXK7HlFeRK2PI070xmUx69dMQ1WtZTzeu3dCYPu/p8vnMF2AHbsWzZ4yLZxE1HPecbl6P15/DZ9o6HLvDZ1TmeP5ynznF1hEUbBRhcljRokU1bNgwbd68WYsWLVJISIg8PDz0ySefaMOGDapbt64GDx6satWqyd3dXc7OzkpMTFRgYKDhe9zLtf47hSknpXWTPPDAA5kuonsrZ+esP1Rv5ejoqJdfflkLFy7U0aNHtWnTJrVq1Srd/dq0aSMPD48sr3Hr1Ktff/1VX331lUqVKqURI0aoTp06KlGihKVjqWfPntqzZ0+Wi3vdLn+5mVvYh7S22eLFs26L9fL69/145WrWbbb5Hbkyhjzdm5cnvKyWQS0Vdz1O7z73ro7uPWrrkGAnePaMqTfyaRUpXUw7Rs/V9chLtg7H7vAZlTmeP+R3hoowaTsb+fr6aty4cemOGWUymfTtt9/eZXj2KW3tkuTkZIWHhyswMFCrV6+Wo6Ojpk2blqFgEBERcVfXz8lr3U5a14zRaVJp41u0aKFBgwblWBwODg7y9fXV5cuXFRYWZinClC1bVidOnFDv3r3TLSZ8O2lr5bz33nuW69wqPLxgz8HFvTl69LgkqVChQqpQwVcRERnXAapSOXX6WlxcnMLDT1s1vryEXBlDnrJv0IeD1bb7w4q/Ea/3nntPh7b/ZeuQYEd49owp8UAlSVLA4E4KeKljunMmx3//carDz+/JnJyikytDtWN0xi2HCyI+o7LG84f8ztA/3W/fvl3bt2/Xvn37Mhy7m6+C4tZCSNpUlOjoaLm5uWXasbFq1aq7un5OXut2atasKU9PTx0/fjzTdVX+q2nTppKktWvX5ug2cSkpKZapR2lzRG+93++//274WtHRqZXyzKZl/fHHH7p8mRZQZN+evQctLbTNmzfKdEyLFqnHd+zYW6C3UyRXxpCn7Bk4dqDaPdVOCXHxGtN3TIHfaQR3j2fv7rh6e8q1VLF0X4VL/Pv31MIlPORaqpicPVi7Q+Iz6k54/pDfGeqESet+cXd3z3AM6cXGxuqjjz6SlLpga9q0nEqVKuno0aNasWKFOnfubBm/adMmzZo1667ukZPXuh0XFxf17dtXn376qUJCQjRt2rR0OwMlJibqzz//VIsWLSRJtWrV0kMPPaSNGzfqzTff1BtvvKFixYqlu+aJEyd05MgRPfroo4ZiSE5O1hdffKErV67Iyckp3cK4PXv21OzZszVv3jyVK1dOzzzzTLoFgc1ms3bt2iWTyaR69epJSl2A+I8//tC8efP07rvvWqYQRUREaPTo0dnKE5Dmxo04/fLrOnUN6qAB/f5P8+YtSXfexcVFwb26S5IW/ZBzBVN7RK6MIU93b8C7A9Q+uIMS4hM0tt9Y7f9j351fBPwHz54xPz7yVpbn3Mp5q1voREnSkoZDdP30RStFlbfxGXVnPH+5L4Utqm3KUBEmKCjI0LGCZvr06Vq2bJmk1P/hv3jxog4cOGDpVBk/frxl2+SBAwfq1Vdf1bBhwzR//nyVK1dOERER2r9/vwYMGHDHhWxvlZPXupP+/fvryJEj+umnn9SxY0fVqVNHZcqUUVRUlI4cOSI3NzetW7fOMv6jjz5S//79tXTpUq1evVrVq1dXmTJldOPGDf3zzz86deqU2rRpk2kRZs2aNem2cU7bHSkyMlImk0lvvPFGum2qixYtqqlTp+qFF17QBx98oBkzZuj+++9XsWLFdPXqVR06dEiXL1/WiBEjLEWYXr16admyZVq0aJG2b9+uGjVqKDo6Wtu3b1ft2rXl7e2tPXv25Fj+UPCMfX+iOnVsp6ZNG+iD90do1OgJSkpKkqtrYU2d8pEqV/bTyZOnNHNW5lu1FyTkyhjyZFzvN59Tx+c6KSE+Qe/3Hau9m/faOiTYMZ495DQ+o4zj+UN+xsK89yBti+Q0rq6u8vX1VefOndWnT590U17at2+v4sWLa/LkyTp69KiOHj2qqlWr6sMPP1SXLl3uqnCSk9e6EwcHB33yySdq27atfvjhB/3111/at2+fSpQooQceeECdOnVKN75YsWKaN2+elixZop9++klHjhzRvn375OXlJR8fHwUFBal9+/aZ3uvw4cM6fPiw5XtnZ2eVKlVKjz/+uHr16pXpNtmBgYFatWqV5syZo/Xr12v37t1KSUmRt7e3atasqdatW6cr+Pj5+Wnp0qX65JNPtGfPHq1du1Y+Pj56/vnn9fzzz6tv3745k7h8qIxPaa1YN8/yvbNL6sdHWd/SCj28xnJ81/Z9ejF4qNXjyyv27z+kwS+/pcmTPtCw1wfpud5PKTzitKreV0menh66cuWqnujel92yRK6MIk/G+Netpm4vdJMk3bh2Qz2H9FTPIT0zHbtz3U798OUP1gwvT+Hz3BiePeQkPqPuDs8f8jOTOZuT6Nq0aaNatWrps88+u+PYkJAQ7d+/X2vWrLnjWACZu79kfZve37d8Wa3ffeeWz9A/dqlXl+etEFHmwqLP2uzet2rcqL6GDn1BTRo/KE9Pd507F6Vffl2nceO/UGRk3ogxryBXxuT1PD1Wpo5N7x/QKFDjFhmbKr32hzWaOHRi7gZ0G0fiztns3hKf53crrz97kjSzZMbNBmwtL05H+sHxqs3ubU+fUb+cyztd4Xn9+UtKzLhosD04Wt3Y0hB5zf1//2rrEHJEtosw1apVU7169TRv3rw7ju3Vq5d27typv//+Ozu3AiDbF2HsRV75SztQ0Ni6CGNPbF2EsRd8nhuXF4sweZEtizD2JC8VYfI6ey3CHKn2mK1DyBb/w7/YOoQcYWh3pHuVlJRkWQAVAAAAAACgIMr1ysjNmzcVHh4uT0/P3L4VAAAAAABAnmV4Yd4dO3YoNDQ03bGzZ89q8uTJWb4mPj5eO3fu1JUrVyzbGAMAAAAAANswp7BFtS0ZLsKEhoZq8uTJli2XpdQizJdffnnb15nNZrm6uuqFF17IfpQAAAAAAAB2znARplq1agoKCrJ8v2zZMpUoUULNmzfP8jWurq6qUKGCHn30UZUpU+beIgUAAAAAALBjhoswbdu2Vdu2bS3fL1u2TH5+fho3zthWawAAAAAAAAWZ4SLMf61du1aFChXKyVgAAAAAAEAuMpttHUHBlu0ijK+vb07GAQAAAAAAkK9le4vqnTt3Kjg4WAsWLLjtuPnz5ys4OFi7d+/O7q0AAAAAAADsXraLMMuWLdOOHTtUs2bN244LCAjQ9u3btXz58uzeCgAAAAAA5ABziskuv/KLbBdhdu/eraJFi6pWrVq3HVerVi25u7vTCQMAAAAAAAq0bBdhzp8/r3Llyhka6+vrq/Pnz2f3VgAAAAAAAHYv20UYs9mslJQUw2Nv3ryZ3VsBAAAAAADYvWzvjlS2bFkdP35c165dk7u7e5bjrl27puPHj7ObEgAAAAAANpZizj/rq9ijbHfCNG7cWMnJyfr8889vO+6LL75QcnKyGjdunN1bAQAAAAAA2L1sF2GeffZZOTk5ad68eRoxYoTCw8PTnQ8PD9ebb76puXPnysnJSb17977XWAEAAAAAAOxWtqcjVahQQe+++65Gjhyp5cuXa/ny5SpWrJg8PDwUExOjq1evSpIcHBz03nvvqWLFijkUMgAAAAAAgP3JdhFGkrp27aqyZctqwoQJOnTokK5cuaIrV65YzgcEBOj1119Xw4YN7zlQAAAAAABwb8ysCWNT91SEkVLXhlm6dKkiIyN19OhRxcbGqmjRovL395ePj09OxAgAAAAAAGD37rkIk8bX1zfLHZASExP122+/6fHHH8+p2wEAAAAAANiVHCvCZObgwYNasmSJfv75Z127do0iDAAAAAAANmQ22zqCgi3HizBXr17VihUrtHTpUh09elSSZDabVahQoZy+FQAAAAAAgN3IkSKM2WzWpk2btGTJEq1fv15JSUky/6+8VqNGDXXr1k0dO3bMiVsBAAAAAADYpXsqwoSHh2vJkiVavny5oqKiLIUXSXJ3d9d3330nf3//ew4SAAAAAADA3t11ESYuLk6//PKLlixZot27d0tK7YRxcnJSy5Yt1aVLFw0aNEiFChWiAAMAAAAAQB6SwhbVNmW4CLN7924tWbJEv/76q27cuJFuulFQUJAef/xxFS9ePNcCBQAAAAAAsGeGizBPP/20TCaTzGazvL291bFjRwUFBen+++/PzfgAAAAAAADyhbuejuTp6amXX35ZHTp0kJubW27EBAAAAAAAcoGZ6Ug25WB0YP369SVJ0dHRGj16tJo1a6Zhw4Zp69atuRYcAAAAAABAfmG4E+a7777TqVOntHjxYq1YsULnzp3TypUrtWrVKpUuXVqdO3dWly5dVKlSpdyMFwAAAAAAwC4Z7oSRpPLly+vVV1/V+vXrNX36dD3yyCNycnLSuXPnNH36dLVv315PPvlkbsUKAAAAAABgt+56TRhJMplMatGihVq0aKGrV69qxYoVWrZsmQ4fPqwDBw7IZDLpypUrGjRokIKCgtSqVSs5ONxVvQcAAAAAAOSw/210DBu558pIsWLF9Oyzz2r58uVaunSpnn76aXl4eCg5OVlr167VoEGD1KJFC02YMCEn4gUAAAAAALBLOdqeUqNGDY0aNUqbN2/WJ598osaNG8tkMunixYuaOXNmTt4KAAAAAADArmRrOtKduLi4qEOHDurQoYPOnj2rJUuWaPny5blxKwAAAAAAALuQK0WYW5UtW1aDBg3SoEGDcvtWAAAAAADgNlLMJluHUKCxWi4AAAAAAIAVUIQBAAAAAACwglyfjgQgZ4RFn7V1CHahsmdZW4eAfIZnz5hfzu2xdQh24+qgerYOwS7UnWvrCOxHn6j1tg4BgB0xMx3JpuiEAQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAKWBMGAAAAAIACgi2qbYtOGAAAAAAAACsw1Alz5syZHLmZj49PjlwHAAAAAADA3hgqwrRp0+aeb2QymXTo0KF7vg4AAAAAAMges60DKOAMFWHM5nv/bcqJawAAAAAAANgrQ0WYw4cP53YcAAAAAAAA+RoL8wIAAAAAAFgBW1QDAAAAAFBAsEW1bdEJAwAAAAAAYAX33AmTkJCgdevW6e+//9bVq1d18+bNTMeZTCZ98MEH93o7AAAAAAAAu3RPRZgNGzZo+PDhio6OthxL2wXJZDKlO0YRBgAAAAAAFGTZLsIcOXJEgwcPVkpKih5//HHt3LlT586d04svvqirV69q7969OnTokAoXLqynn35aRYoUycm4AQAAAADAXTKzJoxNZbsIM3PmTCUlJentt9/W008/raefflrnzp3Tyy+/bBmzbds2DR06VH/++acWLFiQIwEDAAAAAADYo2wvzLtjxw4VKVJETz75ZJZjGjdurM8++0yHDh3S9OnTs3srAAAAAAAAu5ftIszFixfl4+MjZ2dnSZKjo6MkKTExMd24hg0bqly5cvr111/vIUwAAAAAAHCvUuz0K7/IdhHG1dXVUoCRJDc3N0nS+fPnM4z18PDQmTNnsnsrAAAAAAAAu5ftIkypUqUUFRVl+b5SpUqSUqcp3eratWs6ceKEHByyfSsAAAAAAAC7l+3KSEBAgC5fvqyYmBhJUosWLWQ2m/Xxxx9r06ZNunHjhsLDw/Xaa68pPj5etWvXzqmYAQAAAAAA7E62d0dq1aqVli1bpo0bN6pjx45q3LixmjRpoq1bt+r555+3jDObzXJyctKLL76YIwEDAAAAAIDsMYstqm0p250wrVq10qpVq9SkSRPLscmTJ6t79+5ydXWV2WyW2WxWtWrVNG3aNNWrVy9HAgYAAAAAALBH2e6EcXZ2VtWqVdMdK1KkiN577z2NHj1aly9flqurq4oWLXrPQQIAAAAAANi7bBdhbsfR0VElS5bMjUsDAAAAAADYpVwpwgAAAAAAgLwnxWzrCAq2bBdhli9fftev6dKlS3ZvBwAAAAAAYNeyXYQZPny4TKa7W1WZIgwAAAAAACiosl2EefDBB7M8FxcXp/DwcF27dk3Ozs6qXbt2dm8DAAAAAABySApbVNtUtoswc+fOveOYlStXaty4cfLz89PYsWOzeysAAAAAAAC7l6sL83bq1EklS5ZUnz59VLduXXXt2jU3bwcAAAAAAJBnOeT2DRo3bqyyZctq/vz5uX0rAAAAAACAPMsqW1QXK1ZMx48ft8atAAAAAABAFsysCWNTud4JEx8fr5MnT8rBIddvBQAAAAAAkGflamXk8uXLeuONN3Tjxg0FBATk5q0AAAAAAADytGxPRwoODs7ynNls1qVLl3T69GndvHlTjo6OeuGFF7J7KwB5SKOG9RQS8ryaNmkgT093nT17Qb+uXq9x47/QmTPnbB2ezXmXKqEmLRoooHZ1BdauoeoB/iri5qrTEWfUul4nW4eXp5Cru8OzZxy5ypqpeCm5vT3D0NiUS+d14/3+uRxR3sVn1N3j2TOGPBlHrnJHiq0DKOBMZrPZnJ0XVqtWzdA4X19fjRgxQm3bts3ObWymdevWioyMTHfMZDLJ09NT/v7+6t69ux5//HEbRXdnafEfOXIk0+OS9Oabb+rZZ5/N9PXJycl66KGHFBUVJUkaN25cntvdKjQ0VMHBwQoKCtL48eMNv2748OFatmyZ5syZo4YNG+ZihDnLycXX1iGoz3NPaeqUD+Xo6KioqEsKjzitqvdVkqenhy5fvqK2j3TX/v2HbBpjZc+yNr3/s88/pbfGDs1wnL+0Z2QvuQqLPmvrEOzi2csr7CFXVwfVs9m9Te7FVPjZ4bcd41DRXyYHR93cuV4J8z+zUmQZ1Z17xmb3luznM0ric8qekCfj7CFXSYmRdx6UB/1euoetQ8iWh88vtHUIOSLbnTDjxo3L8pzJZJKrq6v8/Pzk7+8vk8l+F/5p1qyZSpYsKUlKTExURESEQkNDFRoaql27dmn06NE2jjD7VqxYkWURZsuWLZYCDCBJAQHVNOXL8XJ0dNRHEyZr1OgJSkpKkqtrYX019SM983Q3LV40QwG1WioxMdHW4dpM7LXr2roxVAf3/a0De/+Wj28ZjRjzqq3DypPIlTE8e8aRqzszX7uquMlZF2EcfCuryNCJkqSk7WusFFXexGeUcTx7xpAn48gV8rNsF2GCgoJyMo48a8CAARm6JdavX6+BAwdq/vz5evLJJ1WjRg0bRZd9NWvW1F9//aV//vlHVatWzXB++fLl6cblJyEhIerfv798fHxsHYpdeXtkiJycnPTHH9v15lv/FmHj4uLVf8BratyovipX9lPvZ3to+tdzbRipbS2Zv1JL5q+0fN+hyyM2jCZvI1fG8OwZR67unVOD1M7llItnlXzsgI2jsS0+o4zj2TOGPBlHrpCfZXth3jNnzujSpUuGxl66dElnzti2pTQntWrVSvXqpbYSb9++3cbRZE/nzp0l/VtsudW1a9e0du1a1alTR35+flaOLPeVKlVKVapUkaurq61DsRtFiriq/WOtJUnTMvmDLjExUXPmLpIk9eiet1q0AXvGs2ccucoBjk5yrttCknSzgHfBwDiePWPIk3HkKveZZbLLr/wi20WY1q1b65VXXjE0dsiQIXa3JsydlChRQlLq2ilp4uPj9cMPP2jQoEF6+OGH9cADD6hOnTrq1q2bZs+eraSkpAzXOX36tPz9/dWrVy8lJibqiy++0MMPP6yAgAC1aNFCY8eOVWxsbKYxXLt2TePGjdNDDz2kwMBAPfLII/ryyy918+bNO8bfpEkTlSxZUqtWrVJKSvqlmX755RclJCRYCjWZOX/+vL7++msFBwerZcuWCggIUMOGDfXcc89p3bp1mb5m6dKl8vf316RJkxQREaHXXntNzZo1U/Xq1TV79mzLuAsXLujDDz9Uhw4dVLt2bdWtW1ePP/64xo0bl2GdnltzMXbsWD300EMKCAhQmzZt9MUXX2Sa8+HDh8vf31+hoaHpjvfq1Uv+/v46ffq0Nm7cqKefflp16tRR3bp11bdvXx04kPW/CC5btkxdu3ZVrVq11KhRI7366qs6deqUJk2aJH9/fy1dujTL19qDOrUDLEWrzZv/zHTMpk2pxxs0qGPXUxCBvIRnzzhyde+cAhvJ5OYhc0qyknZk/mc58F88e8aQJ+PIFfK7e9qi+m7W9M3m+r95UlJSkv7++29JUpUqVSzHIyIiNHLkSO3Zs0elS5dW69atVadOHZ08eVLjxo3ToEGDsszDzZs31bdvX3377beqUqWKmjdvroSEBM2dOzfT18XGxuqZZ57R7NmzlZCQoFatWqlixYqaNm2aoeKYg4ODOnbsqPPnz2vbtm3pzi1fvlwuLi5q3759lq///fff9fHHH+vcuXOqXLmyHn74YVWpUkWhoaEaOHCgZszIeueFkydPqlu3btq5c6fq16+vFi1aWD5o9+7dq44dO2rmzJmKjo5Ws2bN1KRJE5lMJs2ePTtD4USSYmJi1KNHD/3000+qVauWGjdurMuXL+vLL7/UqFGj7piL/1q4cKGef/55paSkqGXLlipbtqy2bNmiXr166fjx4xnGf/rppxo+fLgOHz6sunXrqnHjxtq3b5+eeOIJnT59+q7vnxdVrVpZkpSQkKBTpzLvajseFi5J/1sPqpzVYgPyM54948jVvUubipR8ZI/M0ca6nQGePWPIk3HkCvldtteEuRtxcXFycrLKrXJVYmKiTp06palTpyoiIkI1atRQ8+bNLee9vb01c+ZMNW7cWA4O/9a3YmJiFBISovXr1+vnn39Whw4dMlx7z549qlWrltasWaPixYtLkqKiotSjRw9t27ZNO3bsUIMGDSzjJ06cqCNHjqhevXqaPn26ihYtKkk6ceKEevXqZWhR3S5dumjmzJlavny5mjZtKkk6deqUdu3apXbt2snT0zPL19avX18rVqzIsEvWyZMn1bt3b3322Wfq0KGDypbNuFPNjz/+qCeffFKjR4+Ws7Oz5fi1a9f00ksv6erVq3rhhRc0aNCgdOfDwsIyLWKtXbtWrVq10pIlSyzFnBMnTqhbt25aunSpXnzxRZUrZ/zDefbs2Zo1a5YaN24sKbWA+M477+j777/XjBkz0i1KvXfvXk2fPl1FihTR7Nmz9cADD0hKLaq99dZbmU73skdeXsUkSVeuRGc55vLlK5ZfFy/mqZM6ldthAfkez55x5OremIp5y/H+//0ZFspUJBjHs2cMeTKOXCG/u6dOGCMuXryo48ePW3YYsjfBwcHy9/eXv7+/AgMD1b59e/3444965plnNGfOHDk6OlrGenl5qWnTpukKMJLk4eGhkSNHSpJWr16d6X1MJpPef/99SwFGkkqWLKmnn35aUvq1Z+Li4rRkyRJJ0ttvv20pwEhSpUqVNHDgQEM/m7+/v6pXr641a9bo+vXrkv5dI+Z2U5Gk1C3KM9umvGLFinrxxReVlJSU5bSkYsWKacSIEekKLJK0aNEiXbx4Uc2aNdOrr76a4XzlypXTdR6lKVKkiN5///10a7xUqlRJnTt3ltls1o4dO277s/xXr169LAUYKfX3Jq276L+dOPPnz5fZbFbPnj0tBRhJcnZ21ptvvqkiRYrc1b3zqrTcJiZmPdUtPj7B8usiRVhvB8gJPHvGkat749SgjUwOjjLHRiv5L/tc7w62wbNnDHkyjlzlvhQ7/covDLenLFu2TMuWLUt37OjRowoODs7yNfHx8frnn38UHx+fYYche3HrFtVms1lRUVE6cOCAFi1KXQxq+PDhcnFxSfea/fv3KzQ0VGfOnFF8fLzMZrOlg+PkyZOZ3sfHx0f3339/huOVK6e24124cMFy7K+//tKNGzdUpUoVVa9ePcNrOnXqpPfee8/Qz9elSxeNGzdOv/32m7p06aIVK1bIy8tLLVq0uONrb968qa1bt2rfvn26ePGibt68acmRlNqNkpkmTZrIzc0tw/GtW7dKkrp162Yo9jQBAQGWNXpulVnujHjooYcyHPPy8lKxYsUyXGvXrl2SlOnUrWLFiqlZs2b67bff7ur+eVFcXJwkycXFOcsxhQsXsvz6xo24XI8JKAh49owjV/fG+cE2kqSbuzZIyRnXUwOywrNnDHkyjlwhvzNchImMjEzXjWEymXTt2jVDuwPdf//9GjJkSLYCtLXMtqiOjY3VkCFDNG/ePKWkpOidd96RJF2/fl0hISHasGFDltfLapHdzKbtSLIUKxITEy3Hzp8/L0lZbrHs7u4uDw8PxcTEZBlHmo4dO2rChAlavny5ypcvr1OnTqlXr14ZulD+6/jx43rxxRezLCpJsnTX/FdWcaftoFWpUqU7xn2ru8mdEVnF5+bmpqtXr6Y7llaUyeo1WcVmb9LaQYsXz3qKmpfXv11cV65m3T4KwDiePePIVfY53ldLDiXKSJKSQn+3cTSwNzx7xpAn48gV8jvDRZi2bdvK19dXUmpHyJtvvqmKFSvq+eefz3S8yWRS4cKF5efnl2m3hj0rWrSohg0bps2bN2vRokUKCQmRh4eHPvnkE23YsEF169bV4MGDVa1aNbm7u8vZ2VmJiYkKDAzM8pr/ncJkRE6sBF6iRAk1a9ZMmzZt0ldffSUptTvmTl555RWdPHlSTzzxhJ566in5+fnJzc1NDg4O2rJli/r27ZvlIsSFCxe+57hvlZ3c3Q4rrGd09GjqgsSFChVShQq+iojIuEtVlcqp25nHxcUpPDx/LEgM2BrPnnHkKvucGv5vQd7wI0o5F2HjaGBvePaMIU/Gkavcl5+m9tgjw0WY/64BMnnyZFWrVk1BQUG5ElheV758eUmpW1SHh4crMDBQq1evlqOjo6ZNmyYPD4904yMicu4vNaVLl5b0b+fIf127ds1QF0yazp07a8OGDdq8ebOqVq2qgICA244/fvy4/vnnH9WsWVPvv/9+hvPh4eGG730rHx8fhYWF6cSJE3ZTuCtVqpROnz6tM2fOZDol6uzZszaIKuft2XtQcXFxcnV1VfPmjTRv3pIMY1q0aCRJ2rFjb77aDQ2wJZ4948hVNhUuIqfA1HXQbm5nQV7cPZ49Y8iTceQK+V22WwjWrVuniRMn5mAo9uXWokra4qvR0dFyc3PLUICRpFWrVuXYvWvWrClXV1cdO3ZMhw8fvud7tWnTRr6+vipWrJieeOKJO46Pjk5t+ctqqs2PP/54V/dP06RJE0nKsPZQXlavXj1J0q+//prhXHR0tLZs2WLtkHLFjRtx+uXX1IWWB/T7vwznXVxcFNyruyRp0Q85914HCjqePePIVfY41X1IJpdCMifEK2n3JluHAzvEs2cMeTKOXCG/y/XdkfKj2NhYffTRR5IkPz8/ywKwlSpVUkxMjFasWJFu/KZNmzRr1qwcu7+rq6ulA2ns2LHp1pk5efKkpkyZclfXK1SokNatW6fQ0FD17t37juMrVqwoBwcHbdu2TceOHbMcT0lJ0eTJk7V79+67un+aJ598UiVKlNCmTZv0+eefKykp/cKAJ06c0PHjx7N17dzy9NNPy2Qyaf78+dq/f7/leFJSksaPH68bN27YMLqcNfb9iUpKSlLTpg30wfsjLNvOu7oW1vRpH6tyZT+dPHlKM2ctsHGkQP7Cs2ccubp7zg1SpyIl7d8qJbC4JbKHZ88Y8mQcuUJ+Zng60n8tX75cI0aM0IsvvqjBgwdnOW7SpEmaMmWKPv74Y3Xo0CG7t7OZ6dOnWzozzGazLl68qAMHDli6XsaPH29ZQ2TgwIF69dVXNWzYMM2fP1/lypVTRESE9u/frwEDBmj69Ok5FldISIh27typHTt26OGHH1aDBg0UHx+vbdu2qVmzZjp8+LAiIzPOn8wJXl5e6tmzp+bPn68uXbqoYcOG8vDw0IEDB3TmzBn16dNHM2fOvOvrenh4aNKkSRo4cKCmTJmixYsXq06dOjKbzTp58qSOHj2qcePGZbpNta3Url1b/fv31/Tp0/XUU0+pQYMGKl68uPbu3avY2Fh17txZK1asuONCx/Zg//5DGvzyW5o86QMNe32Qnuv9lMIjTqvqfZXk6emhK1eu6onufe96IeT8poxPaa1YN8/yvbNL6sdsWd/SCj38b6v/ru379GLwUKvHl5eQK2N49owjV3fHoUwFOVaoKkm6uZ0Fef+LzyjjePaMIU/GkavcZRZrYNpStjth0rbdvdP0la5du8psNmc6XcMebNmyxbI99/Lly7Vr1y6VLFlSwcHB+umnn1S3bl3L2Pbt22v27NmqX7++wsLCtG7dOplMJn344YcaOjRn/3B2d3fXvHnzFBwcLGdnZ61du1ZhYWHq37+/Pv/88xy9V2befvttjRo1SpUrV9auXbu0detWValSRfPmzVPLli2zfd169epp5cqV6tWrl1xdXbV+/Xpt27ZNktSnTx81atQoh36CnDN06FCNGzdOVatW1c6dO/XHH38oICBAP/zwg6X4UqxYMdsGmUO+nvGdWrbqquUrfpHZbFZgQDVdvRqjr6bNUe26bbV371+2DtHmHB0dVLxEMctXUfei/zvumO64u0dRG0dqe+TKOJ4948iVcU4NH5YkpVw8q5Tj5OW/+Iy6Ozx7xpAn48gV8iuTOZsrGbVp00YJCQmG1rxo1qyZXF1d9fvv/CsLCo7k5GR17NhRYWFh2rJli7y9ve/pek4uvjkUWf5W2TN/bAuOvCMsOn8ssI284+qgerYOwS7UnZv5BgTIiM8pwDaSEnNn5kFu+6n0U7YOIVs6nM8f08+y3QkTFRWV5cKs/1WmTBlFRUVl91ZAnhYWFqbr16+nO5aQkKDx48fr+PHjatq06T0XYAAAAAAgJ6SY7PMrv8j2mjCFCxc2vA3ytWvX5OjomN1bAXnaggULtGjRItWoUUNlypRRTEyMDh8+rIsXL6pEiRJ6++23bR0iAAAAACAPyHYRpmLFijpw4IBOnTql8uXLZzkuIiJC4eHhqlGjRnZvBeRpbdq00blz53TgwAEdOnRIZrNZZcqU0WOPPab+/furdOnStg4RAAAAAJAHZLsI07JlS+3fv19vv/22pk+fLhcXlwxjEhMTNWrUKJlMJrVu3fqeAgXyqkaNGuXJBYMBAAAAAHlLtoswvXr10vz58xUaGqqgoCD17t1bderUkbu7u65du6Y9e/Zo9uzZOn78uGU3IQAAAAAAYDspbFFtU9kuwri7u+urr77S888/r+PHj2vUqFEZxpjNZnl7e2vq1Kny8PC4p0ABAAAAAADsWbZ3R5KkgIAArVy5Ur1791bZsmVlNpstXz4+PurTp49WrlypgICAnIoXAAAAAADALmW7EyZNiRIlNHz4cA0fPlzXr19XbGysihYtKjc3t5yIDwAAAAAAIF+4p06Y/3Jzc1Pp0qUzFGD27duX6XQlAAAAAABgPWY7/cov7rkTJiuXL1/W8uXLtXTpUh0/flyS9N577+XW7QAAAAAAAPK0HC3CpKSkaMOGDVqyZIk2btyo5ORkmc2pNatatWrl5K0AAAAAAADsSo4UYY4fP66lS5dqxYoVunTpkqTUnZFKlCihTp06qVu3brrvvvty4lYAAAAAACCbUmwdQAGX7SLM9evX9fPPP2vJkiXat2+fpNTCi5OTk5KSkuTl5aVNmzbJ0dExx4IFAAAAAACwV3ddhNmxY4eWLFmi1atXKz4+3jLdqHr16goKCtLjjz+uJk2ayMHBgQIMAAAAAADA/xguwnz11VdatmyZIiIiLIWXEiVKqGPHjgoKCpK/v3+uBQkAAAAAAGDvDBdhJk6cKJPJJGdnZ7Vq1UpdunRRixYt6HYBAAAAAMBOpJhMtg6hQHO42xc4OjqqcOHCKly4MAUYAAAAAAAAgwwXYV588UWVLVtWcXFxWrlypfr06aNWrVpp4sSJOnnyZC6GCAAAAAAAYP8MF2FefvllrV27VjNnztRjjz0mFxcXnT17VtOmTdNjjz2mnj17auHChbp27VpuxgsAAAAAALLJbKdf+cVd7Y5kMpnUpEkTNWnSRDExMVq1apWWLFmiQ4cOae/evdq3b5/ef/99SVJKSopSUlLk4HDXM54AAAAAAADynWxXSDw8PPTMM89o6dKlWrFihXr16qVixYopMTFRknTlyhU1a9ZM48eP19GjR3MsYAAAAAAAAHuUI20q/v7+euutt7Rp0yZ9/vnnatGihRwcHHT58mV9++236ty5s5588smcuBUAAAAAAIBduqvpSHfi7Oysdu3aqV27djp//ryWLVumZcuWKTw8XAcPHszJWwEAAAAAgLuUYusACrgcLcLcqnTp0nrhhRf0wgsvaMeOHVq6dGlu3QoAAAAAACDPy7UizK0efPBBPfjgg9a4FQAAAAAAQJ7E1kUAAAAAAABWYJVOGAAAAAAAYHspJltHULDRCQMAAAAAAGAFFGEAAAAAAACsgOlIAAAAAAAUECliPpIt0QkDAAAAAABgBRRhAAAAAABAgWI2mxUcHCx/f3/5+/vr+PHjVrkvRRgAAAAAAFCgLFy4UKGhoTKZrDs9iyIMAAAAAAAFhNlOv3LSuXPnNGHCBDVv3lw+Pj45fPXbowgDAAAAAAAKjFGjRiklJUXvvvuu1e9NEQYAAAAAABQIy5cv18aNG/XKK6/I19fX6vdni2oAAAAAAAqIlAK8Q/XFixc1btw4BQYGKjg42CYx0AkDAAAAAADyvffee0+xsbEaO3asHBxsUw6hEwYAAAAAAORpbdq0ue35tWvX3vb86tWrtXr1ag0YMEDVqlXLydDuCkUYAPlKWPRZW4cAALdVbPIuW4dgF2I3fmzrEOxGrU6f2DoEu8DfEYCC6+rVq3rvvffk5+enQYMG2TQWijAAAAAAABQQKbYOIJvu1OlyO+PGjdPFixf18ccfq1ChQjkY1d2jCAMAAAAAAPKttWvXqlChQpoyZYqmTJmS7lxUVJQk6Y033pCrq6ueeeYZPfroo7kWC0UYAAAAAACQryUkJGj79u1Znj9w4ICkO689c68owgAAAAAAgHxr586dWZ5r3bq1IiMj9fPPP6tKlSq5HgtFGAAAAAAACgizrQMo4GyzMTYAAAAAAEABQxEGAAAAAADACpiOBAAAAABAAZFisnUEecu6deusej86YQAAAAAAAKyAIgwAAAAAAIAVUIQBAAAAAACwAtaEAQAAAACggEixdQAFHJ0wAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBa8IAAAAAAFBAsCaMbdEJAwAAAAAAYAUUYQAAAAAAAKyA6UgAAAAAABQQZpOtIyjY6IQBAAAAAACwAoowAAAAAAAAVkARBgAAAAAAwApYEwYAAAAAgAKCLapti04YAAAAAAAAK6AIAwAAAAAAYAVMRwIAAAAAoIBgOpJt0QkDAAAAAABgBRRhAAAAAAAArIAiDAAAAAAAgBWwJgwAAAAAAAWE2dYBFHB0wgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBawJAwAAAABAAZFisnUEBRudMADuSqOG9bRo4XRFntqr2Jjj+ufINk364gP5+JSxdWh5CnkyjlwZQ56MI1fGkKc7S0i8qe9Wb9P/vfe1mg4cpwb9x6rT8En69PvfFB17w9bh5RnepUqo0xOP6c2xIVrw4wztPblZR6N2at2ulbYOLU/i2TOOXCE/MpnNZhZHvketW7dWZGRkumMmk0menp7y9/dX9+7d9fjjj9sourvj7+8vX19frVu3LlfvExoaquDgYAUFBWn8+PGW40uXLtWIESM0aNAgDR48OMPxWzk4OMjT01PVq1fXk08+qfbt29vkZ7HWfZxcfHP1+kb0ee4pTZ3yoRwdHRUVdUnhEadV9b5K8vT00OXLV9T2ke7av/+QrcO0OfJkHLkyhjwZR66MsYc8xW782Kb3vxp7Q89PmKPD4eckSRVKe8m9SGEdj7yg+MQklSxWVN8Mf05+ZUrYNE5JqtXpE5ve/9nnn9JbY4dmOH464oxa1+tkg4gyFxZ91tYh2MWzl1fYQ66SEiPvPCgP+rzC/9k6hGx5JeI7W4eQI+iEyUHNmjVTUFCQgoKC1L59e5UvX16hoaEaOnSo3n33XVuHly94e3tbcvzYY4+pZMmS2rp1q1599VWNHDnyjq8/ffq0/P391atXLytEm78EBFTTlC/Hy9HRUR9NmKzyfnXVqHF7latQR/PmL5GXV3EtXjRDLi4utg7VpsiTceTKGPJkHLkyhjwZM/LrZTocfk5eHm6aO7KvVn34suaPHqC1n7+mRxsGKOpqrIZ8sUBJycm2DtXmYq9d19aNoZr+xWwN7vOGxr39ma1DypN49owjV7krxU6/8guKMDlowIABGj9+vMaPH69PP/1Uixcv1ldffSWTyaT58+fr0CGq2veqcuXK6XK8atUqjRkzRpL0ww8/aPPmzZaxP//8s2bPnm2jSPOft0eGyMnJSX/8sV1vvjVOSUlJkqS4uHj1H/CawsLCVbmyn3o/28PGkdoWeTKOXBlDnowjV8aQpzs7FnlBm/f9I0l6rWc71bqvvOVcUdfCeqdPJ5X28lDYmYta9cc+W4WZZyyZv1K9n3hJH4+ZrNWr1urCuShbh5Qn8ewZR66Qn1GEyWWtWrVSvXr1JEnbt2+3cTT5U/fu3dWgQQNJ0m+//WY5XqVKFVWoUMFWYeUrRYq4qv1jrSVJ076em+F8YmKi5sxdJEnq0T3vtB1bG3kyjlwZQ56MI1fGkCdjdh8JlyQ5mEx6+MEaGc67FnLRQ7XvlyT98ucBq8YG+8SzZxy5Qn7H7khWUKJE6lzh5FvaVePj47Vq1Spt3LhRR44c0YULF+Tg4KDKlSurY8eO+r//+z85OWX87dm/f7+++eYbHTx4UBcuXFCRIkVUqlQp1a1bV88995wqVqyYbvz58+c1Y8YMbdq0SWfOnFHhwoUVEBCg5557Ti1atMgy5qSkJM2YMUPLli3TmTNn5OnpqdatW+uVV16x/DxpoqOjtWrVKm3YsEFhYWGKiopSoUKFVLVqVT355JPq2rXrPWTPmJo1a2r79u06c+aM5dh/12qZNGmSJk+eLCm1IObv728Z26BBA82d+++HfEJCghYsWKBffvlFx48fV2JiokqVKqU6deqoZ8+elsLarVJSUjRnzhz98MMPioiIkLu7u1q0aKHXXntN3t7eufWjW0Wd2gFydXWVJG3e/GemYzZtSj3eoEEdmUwmFcTlpsiTceTKGPJkHLkyhjwZEx0bJ0kq5l5ELs6Z/3W5jJenJGnfsdNKSUmRgwP/toms8ewZR66Q31GEyWVJSUn6+++/JaV2ZqSJiIjQyJEj5e3trUqVKikgIEDR0dHat2+fxo0bpz///FNTp06VyfTv/mEbN27UwIEDlZycrICAANWqVUtxcXGKjIzU999/r7p166Yrwuzfv1/9+/fX1atXVaFCBT300EOKjo7Wrl27tHXrVo0YMUK9e/fOELPZbNYrr7yiTZs2qWHDhqpevbp27typhQsXasuWLVqwYIFKly5tGb97926NGTNGZcuWlZ+fn2rXrq2LFy9qz5492r17tw4cOKDRo0fnfHJvERsbK0lydnbOckz16tXVrl07rV69Wt7e3mrevLnlXOXKlS2/vnTpkvr27au///5bRYoUUb169eTu7q4zZ87o119/laOjY6ZFmNdff12///67HnzwQVWuXFl79uzRsmXLdODAAS1btsyu56xWrZqan4SEBJ06dSbTMcfDUv/V0NXVVX5+5XTy5CmrxZdXkCfjyJUx5Mk4cmUMeTLGvUhhSdLVazeUeDMp00LMucvRkqT4xJs6cyla5UoWt2qMsC88e8aRq9yXn9ZXsUcUYXJJYmKiTp06palTpyoiIkI1atRI9z/93t7emjlzpho3bpzuX05iYmIUEhKi9evX6+eff1aHDh0s52bMmKHk5GRNnDhRjz32WLr7nTqV/oMnNjZWL730kqKjo/Xuu++qR48eloJOWFiY+vXrp48++khNmzZV1apV0732zJkzSkxM1PLlyy2Fo4SEBIWEhGjNmjUaM2aMpaNESi0uLViwQHXr1k13naioKPXv31/z589X586dVbt27Wxk8s7i4+O1detWSamFlqy0bdtW1apV0+rVqy1ry2Rm2LBh+vvvv9WsWTN98sknKlasmOXc5cuXFRYWluE1kZGRcnR01C+//CJf39RdjGJjY9W7d28dOHBAP/30k4KCgu7hp7QtL69ikqQrV6KzHHP58hXLr4sX89RJFbw/DMmTceTKGPJkHLkyhjwZE1gl9c/yFLNZa3f9rccaBaY7H594U5v2HrV8f+16nEQRBrfBs2ccuUJ+R99kDgoODpa/v7/8/f0VGBio9u3b68cff9QzzzyjOXPmyNHR0TLWy8tLTZs2zdC66uHhYdnlZ/Xq1enOXb58WZLUtGnTDPcuX768ypf/d9G4pUuX6sKFC+revbt69uyZrqOmcuXKGj58uJKTk7Vo0aJMf5YXX3wxXedOoUKFNGrUKLm4uGjNmjXptuSuUKFChgKMJJUsWVKvv/56pj9LTkhMTNTff/+tl156SZGRkSpcuLCeeOKJe7rmgQMHtGXLFnl5eenzzz9PV4CRUn/f6tevn+lrR44caSnASFLRokXVt29fSfa/HlBaS2hi4s0sx8THJ1h+XaSIa67HlBeRJ+PIlTHkyThyZQx5MqZmJV89cF85SdKE+b9q+98nLOdirsfpzWlLde5yjOVY3G3yCUg8e3eDXCG/oxMmBzVr1kwlS5aUlDqlJyoqSgcOHLAUOoYPH55hSsr+/fsVGhqqM2fOKD4+Xmaz2TKn8eTJk+nG1qxZU8eOHdOwYcM0cOBABQYGZjn/eMuWLZKkhx9+ONPzaYWE/fv3Z3q+U6eMi1yVLl1aDRs21ObNm7Vr1650BQez2awdO3Zo586dunDhghISEmQ2m3X9+vVMf5bs+u9aLmmKFSumCRMmpIspO9I6atq1a6eiRYsafp2Tk1OmxbG0aU4XLly4p7hsLS4udW68i0vW070KFy5k+fWNG3G5HlNeRJ6MI1fGkCfjyJUx5Mm4D57vpv7jZ+vMpWj1//BblSzmLs+irgo/d0k3k5L1RMt6WrxhlySpqGuhO1wNBR3PnnHkKvexgo5tUYTJQQMGDFDDhg3THYuNjdWQIUM0b948paSk6J133pEkXb9+XSEhIdqwYUOW10tb5yTN0KFDdezYMa1fv17r16+Xm5ubateurWbNmikoKEjFi//bBnv69GlJUr9+/W4b85UrVzIc8/DwkLu7e6bj04oc586dsxyLiorSSy+9pH37st6i8b8/S3bdupaLg4ODPDw8VL16dbVp0+auiiZZSVvY978LHN9JyZIlM11I2c3NTVJq1449S2sHLV7cM8sxXl7/vv+uXM26fTQ/I0/GkStjyJNx5MoY8mRcuZLF9f27z2vOr9u0bvdhRUZd0Y34BNWpWkG92zeVu2shSxHG2zPzvzcBaXj2jCNXyO8owuSyokWLatiwYdq8ebMWLVqkkJAQeXh46JNPPtGGDRtUt25dDR48WNWqVZO7u7ucnZ2VmJiowMDADNcqXbq0Fi9erO3bt2vjxo3atWuX/vzzT/3xxx+aOnWqvvnmG9WqVUtS6k49ktSmTRt5eHhkGd+thZvsGjlypPbt26fWrVurX79+qlKlitzd3eXo6KgTJ07o0Ucfved7pLndWi62lN93RDh69Lik1GlpFSr4KiIiMsOYKpX9JKX+60V4+GmrxpdXkCfjyJUx5Mk4cmUMebo7nkWLaPATbTT4iTYZzi3dmFqA8SnhKS8PN2uHBjvDs2ccuUJ+RxHGCtLWaklOTlZ4eLgCAwO1evVqOTo6atq0aRmKJBEREVley8HBQY0aNVKjRo0kpXayfPzxx1q8eLHGjh1rmfpUtmxZnThxQr1791aDBg3uKt6YmBjFxsZm2lmSthZM2u5IN27c0KZNm1SiRAlNnjw53bo3d/pZ8iIfHx9JOTd9Kr/Ys/eg4uLi5OrqqubNG2nevCUZxrRokfqe3LFjb4HdJpA8GUeujCFPxpErY8hTzlm3+7AkqVXdajaOBPaAZ884coX8Ln//830ecWshokiRIpKk6Ohoubm5ZdqlsmrVKsPXLl68uEJCQiRJR4/+u0p/2vokv//+e7ZiziyGqKgohYaGymQyWbZovnbtmlJSUlSqVKkMBRhJWrlyZbbun1vStrBOSkrK9HyTJk0kSb/99ptlPRukzrX95dd1kqQB/f4vw3kXFxcF9+ouSVr0g/H3b35DnowjV8aQJ+PIlTHkKWfs+PuEtuz/R85OjurZ9u7+sQsFE8+eceQq96WY7PMrv6AIk8tiY2P10UcfSZL8/PwsC7VWqlRJMTExWrFiRbrxmzZt0qxZszK91qxZs3T+/PkMx9PWlSlbtqzlWM+ePVWyZEnNmzdP3377bYaig9ls1s6dO7Vr165M7/Xll1/qxIl/dwJISEjQmDFjlJiYqFatWqlcudQdA7y9veXh4aGjR48qNDQ03TWWLFmin376KdPr24qXl5ecnZ0VERGRaSEmMDBQzZo106VLl/Tqq68qOjr9HNPLly9r586d1go3Txn7/kQlJSWpadMG+uD9EZY1cFxdC2v6tI9VubKfTp48pZmzFtg4UtsiT8aRK2PIk3HkyhjyZMzBsEht2HNYN5OSLceSU1L0y58H9OoX38tsll7q2koVSpewYZSwJzx7xpEr5GcmM/1b96x169aKjIzMsDvSxYsXdeDAAUvXy4wZMyxbOf/888969dVXJUm1a9dWuXLlFBERof3792vAgAGaPn26fH19tW7dOst96tevr9jYWFWtWlWVKlWSo6OjwsPD9ddff8nJyUmff/652rZtaxl/4MABvfDCC7p48aJKlSql+++/X8WKFdPVq1d16NAhXb58WSNGjFDv3r0tr/H395ePj4+qV6+uzZs3q1GjRnJzc9OuXbt04cIF+fj4aMGCBSpTpozlNTNmzNCECRPk4OCgBx98UCVLltTRo0d19OhRy8/SoEEDzZ071/Ka0NBQBQcHKygoKN0aL0uXLtWIESM0aNAgDR48OMPx/17ndvz9/TPkUErdfnvt2rWqUqWKatasKRcXF1WqVMmyiPHFixf13HPP6ejRo3Jzc1O9evVUtGhRnTlzRocOHVKHDh3SxZzVfaTUBZLbtGlzV3Fnxcnl3nZ+ygn9+/2fJk/6QI6OjoqKuqTwiNOqel8leXp66MqVq3q4XXft3fuXrcO0OfJkHLkyhjwZR66MsYc8xW782Kb3X7F5j0Z9s0KFnJ1UtoSn3FwL6dSFy4q5Hi8Hk0n9O7XQi0GtbBpjmlqdPrHp/cv4lNaKdfMs3zu7OKmoe1ElJycr5uo1y/Fd2/fpxeChtghRkhQWfdZm905jD89eXmEPuUpKzLhejT34yC9jh5E9GBb+na1DyBF0wuSgLVu2aNmyZVq2bJmWL1+uXbt2qWTJkgoODtZPP/1kKcBIUvv27TV79mzVr19fYWFhWrdunUwmkz788EMNHZr5H05vv/22OnXqpOTkZG3dulXr1q3T9evXFRQUpCVLlqQrwEipXR2rVq3SwIED5eXlpd27d2vNmjU6efKkatasqdGjR2e6FbXJZNLnn3+u559/XhEREVqzZo3MZrO6d++uRYsWpSvASKk7MH322WeqWbOmDh48qI0bN6pYsWKaPn26evTokQOZzVljx45V165dde3aNf30009avHixNm7caDnv7e2tRYsW6bXXXlPFihW1c+dOrVu3TpcvX1b79u3Vs2dPG0ZvW1/P+E4tW3XV8hW/yGw2KzCgmq5ejdFX0+aodt22Nv+DMK8gT8aRK2PIk3HkyhjydGe1qpRTt5b1VK5UcV2KjtU/p86raOFC6tSstuaN7p9nCjB5gaOjg4qXKGb5Kupe9H/HHdMdd/e4950s7R3PnnHkCvkVnTCAncgLnTAAAFiLrTth7ImtO2HsRV7ohEH+Yq+dMOPttBNmOJ0wAAAAAAAAMIoiDAAAAAAAgBU42ToAAAAAAABgHaxHYlt0wgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBawJAwAAAABAAZHCqjA2RScMAAAAAACAFVCEAQAAAAAAsAKmIwEAAAAAUECk2DqAAo5OGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgDVhAAAAAAAoINig2rbohAEAAAAAALACijAAAAAAAABWQBEGAAAAAADAClgTBgAAAACAAiLF1gEUcHTCAAAAAAAAWAFFGAAAAAAAACtgOhIAAAAAAAVEisnWERRsdMIAAAAAAABYAUUYAAAAAAAAK6AIAwAAAAAAYAWsCQMAAAAAQAGRIrOtQyjQ6IQBAAAAAACwAoowAAAAAAAAVkARBgAAAAAAwApYEwYAAAAAgAKCFWFsi04YAAAAAAAAK6AIAwAAAAAAYAVMRwIAAAAAoIBIsXUABRydMAAAAAAAAFZAEQYAAAAAAMAKKMIAAAAAAABYAWvCAAAAAABQQKSwSbVN0QkDAAAAAABgBRRhAAAAAAAArIDpSAAAAAAAFBBMRrItijAAAADIc4o+9JqtQ7AbcWc22zoEu+Dq09zWIQAA05EAAAAAAACsgSIMAAAAAACAFTAdCQAAAACAAiLF1gEUcHTCAAAAAAAAWAFFGAAAAAAAACugCAMAAAAAAGAFrAkDAAAAAEABkSKzrUMo0OiEAQAAAAAAsAKKMAAAAAAAAFbAdCQAAAAAAAoIJiPZFp0wAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBa8IAAAAAAFBApNg6gAKOThgAAAAAAAAroAgDAAAAAABgBUxHAgAAAACggDCzSbVN0QkDAAAAAABgBRRhAAAAAAAArIAiDAAAAAAAgBWwJgwAAAAAAAUEW1TbFp0wAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBa8IAAAAAAFBApMhs6xAKNDphAAAAAAAArIAiDAAAAAAAgBUwHQkAAAAAgAKCyUi2RScMAAAAAACAFVCEAQAAAAAAsAKKMAAAAAAAAFbAmjAAAAAAABQQbFFtW3TCAAAAAAAAWAFFGAAAAAAAACtgOhIAAAAAAAVEiq0DKODohMkHWrduLX9//3Rf1apVU8OGDRUcHKwff/zRJnH5+/urdevWNrm3tWMIDQ2Vv7+/hg8fnu740qVL5e/vr0mTJuV6DNbSqGE9LVo4XZGn9io25rj+ObJNk774QD4+ZWwdWp5CnowjV8aQJ+PIlTHkyRjylOripctatXqdxk/8Sr0GDtWDbboooOljeqTbs4Zev3nbDj0fMlLN2vdQvVad9XjPfvp0yjeKuRaby5HnPbynjCNXyI8owuQjzZo1U1BQkIKCgtS+fXuVL19eoaGhGjp0qN59911bh5fj8mOBI6/r89xT2rhhmboGdZCDg4MO/nVEXl7FNPCFZ7V39xrVqlXD1iHmCeTJOHJlDHkyjlwZQ56MIU//+mXNRo14b4K++2GF9uw/pLj4BMOvnTxjrga+Nkp/hO6Si7OzqlSqoHMXLmrmvMXq9uxLOnchKhcjz1t4TxlHrpBfUYTJRwYMGKDx48dr/Pjx+vTTT7V48WJ99dVXMplMmj9/vg4dOmTrEGHHAgKqacqX4+Xo6KiPJkxWeb+6atS4vcpVqKN585fIy6u4Fi+aIRcXF1uHalPkyThyZQx5Mo5cGUOejCFP6bm5FVGj+rXV9/+e1Kdj39Trg/sbet2mrdv11az5kqQ3Xx2otcvnatHMSVq7fK4a1a+ts+cv6LVR43Mz9DyD95Rx5Ar5GUWYfK5Vq1aqV6+eJGn79u02jgb27O2RIXJyctIff2zXm2+NU1JSkiQpLi5e/Qe8prCwcFWu7Kfez/awcaS2RZ6MI1fGkCfjyJUx5MkY8pRe18fbacbn4/TqwD56pFVzlfT2MvS6yTO+kyR1eLilnn6ik0wmkyTJ08NdE94dLrcirtp74JC2/Lkz12LPK3hPGUeucpfZTv/LLyjCFAAlSpSQJCUnJ1uOxcfH64cfftCgQYP08MMP64EHHlCdOnXUrVs3zZ492/JB91/79+/XK6+8ojZt2igwMFANGzZUx44dNXr0aJ08edJQPOfOnVOHDh3k7++vzz//PN25rVu36oUXXlDjxo0VEBCgli1batSoUTp//ny6cb169dKIESMkSZMnT063Hk5m05OSkpL01VdfqV27dgoMDFSzZs00atQoXbp0KcPY6Ohofffdd+rXr59at26twMBA1a9fX0899ZSWLl1q6GfMb4oUcVX7x1LX1pn29dwM5xMTEzVn7iJJUo/unawaW15CnowjV8aQJ+PIlTHkyRjylDNORZ7VoSP/SJJ6BHXIcL54MU893KqZpNTpTvkZ7ynjyBXyO3ZHyueSkpL0999/S5KqVKliOR4REaGRI0fK29tblSpVUkBAgKKjo7Vv3z6NGzdOf/75p6ZOnWr51wpJ2rhxowYOHKjk5GQFBASoVq1aiouLU2RkpL7//nvVrVtXFStWvG08x44dU9++fXXhwgWNHj1aTz/9tOXcxIkTNXXqVDk5OSkwMFClSpXSiRMntHDhQq1du1Zz585V5cqVJUnNmzdXUlKSdu/erWrVqql69eqW69z6a0kym8165ZVXtGnTJjVs2FDVq1fXzp07tXDhQm3ZskULFixQ6dKlLeN3796tMWPGqGzZsvLz81Pt2rV18eJF7dmzR7t379aBAwc0evTou//NsGN1agfI1dVVkrR585+Zjtm0KfV4gwZ1ZDKZZDbnn2q1UeTJOHJlDHkyjlwZQ56MIU85Y+/B1L+DOjs7KbBmtUzHPFg7UMt/+t0yNr/iPWUcuUJ+RxEmn0pMTNSpU6c0depURUREqEaNGmrevLnlvLe3t2bOnKnGjRvLweHfhqiYmBiFhIRo/fr1+vnnn9Whw7//ajFjxgwlJydr4sSJeuyxx9Ld79SpU3eMadeuXRo4cKDi4uI0ceJEtWvXznLut99+09SpU+Xn56fJkyfr/vvvt5z7/vvvNXr0aI0YMUILFy6UlLr+jbe3t3bv3q22bdtq8ODBWd73zJkzSkxM1PLlyy2FqISEBIWEhGjNmjUaM2aMJk+ebBlfpUoVLViwQHXr1k13naioKPXv31/z589X586dVbt27Tv+zPlF1aqpxa+EhASdOnUm0zHHw8IlSa6urvLzK6eTJ+/8nshvyJNx5MoY8mQcuTKGPBlDnnJGeMRpSZJPmdJydsr8fzvK+5aVJJ0+c1ZJSclycnK0WnzWxHvKOHKF/I7pSPlIcHCwZUpOYGCg2rdvrx9//FHPPPOM5syZI0fHf/9Q8/LyUtOmTdMVYCTJw8NDI0eOlCStXr063bnLly9Lkpo2bZrh3uXLl1f58uWzjG3NmjXq06ePUlJS9M0336QrwEjS1KlTJUkffvhhugKMJPXs2VOtWrXS3r17LV09d+vFF19M1wlUqFAhjRo1Si4uLlqzZo0iIyMt5ypUqJChACNJJUuW1Ouvvy4pY27yOy+vYpKkK1eisxxz+fIVy6+LF/PM7ZDyJPJkHLkyhjwZR66MIU/GkKecER2Tuv20p3vRLMd4erhLkpKTU3T9xg2rxGULvKeMI1e5L8VOv/ILOmHykWbNmqlkyZKSUqfgREVF6cCBA1q0KHXO5PDhwzOsIL5//36FhobqzJkzio+Pl9lstrTz/XeNl5o1a+rYsWMaNmyYBg4cqMDAwAxFnMwsWrRI77zzjry8vDRjxgxVq5a+HfXSpUs6dOiQSpYsqTp16mR6jQcffFDr16/Xvn37Mkw3MqJTp4zzRUuXLq2GDRtq8+bN2rVrl3x9fS3nzGazduzYoZ07d+rChQtKSEiQ2WzW9evXJWXMTX6X1hKamHgzyzHxt2xVWaSIa67HlBeRJ+PIlTHkyThyZQx5MoY85Yz4xNQcOTs7Zznm1r+bxsXHW4oy+Q3vKePIFfI7ijD5yIABA9SwYcN0x2JjYzVkyBDNmzdPKSkpeueddyRJ169fV0hIiDZs2JDl9WJjY9N9P3ToUB07dkzr16/X+vXr5ebmptq1a6tZs2YKCgpS8eLFM1zj3Llzevvtt+Xk5KRvv/02XTdKmrQulKioKPn7+9/2Z7xy5cptz2fGw8ND7u6Z/4GeVng5d+6c5VhUVJReeukl7du3L8tr/jc3+V1cXJwkycUl679EFS5cyPLrGzficj2mvIg8GUeujCFPxpErY8iTMeQpZxR2Sc3RzZtZ/890YmKi5deuhQvneky2wnvKOHKF/I4iTD5XtGhRDRs2TJs3b9aiRYsUEhIiDw8PffLJJ9qwYYPq1q2rwYMHq1q1anJ3d5ezs7MSExMVGBiY4VqlS5fW4sWLtX37dm3cuFG7du3Sn3/+qT/++ENTp07VN998o1q1aqV7jZeXl+6//3798ccf+uCDDzRlyhQVKlQo3ZiUlNTmsmLFiqlVq1a3/XmqVq16jxm5s5EjR2rfvn1q3bq1+vXrpypVqsjd3V2Ojo46ceKEHn300VyPIa9JawctXjzrdk8vr3+LcFeuZt0+mp+RJ+PIlTHkyThyZQx5MoY85QyP/01DuhpzLcsx0f875+joILciRawSly3wnjKOXOW+/LTdsz2iCFMApK3VkpycrPDwcAUGBmr16tVydHTUtGnT5OHhkW58REREltdycHBQo0aN1KhRI0mpnSkff/yxFi9erLFjx1qmPqVxcXHR1KlT9dJLL2nz5s0aOHCgpkyZosK3/EtH2bKpC7K5ublp/PjxOfIz3yomJkaxsbEqWjTjfOS0Lpy03ZFu3LihTZs2qUSJEpo8eXK6dXSk2+cmPzt69Lik1LV0KlTwVUREZIYxVSr7SUr914vw8NNWjS+vIE/GkStjyJNx5MoY8mQMecoZFf3KSZLOnr+gm0lJmS7OeyryrCSpnE/ZfLsor8R76m6QK+R3LMxbANxaOCjyv39hiI6OlpubW4YCjCStWrXK8LWLFy+ukJAQSdLRo0czHVOoUCFNmTJFDz30kP744w+98MILio+Pt5wvXbq07rvvPkVGRt7Vwrtp84uTkpLuODaznykqKkqhoaEymUyqV6+eJOnatWtKSUlRqVKlMhRgJGnlypWG48tP9uw9aGkNbd68UaZjWrRIPb5jx94Cu00geTKOXBlDnowjV8aQJ2PIU8544H/bUt+8maT9Bw9nOmbH3gPpxuZXvKeMI1fI7yjC5HOxsbH66KOPJEl+fn6qXDl1y7dKlSopJiZGK1asSDd+06ZNmjVrVqbXmjVrls6fP5/heNq6MmkdLZlxcXHR5MmT1apVK23btk0DBgywfLhK0qBBgyRJQ4YMyXQtltjYWP3www/pijelSpWSJIWFhWV53zRffvmlTpw4Yfk+ISFBY8aMUWJiolq1aqVy5VL/pcbb21seHh46evSoQkND011jyZIl+umnn+54r/zoxo04/fLrOknSgH7/l+G8i4uLgnt1lyQt+sF4ES+/IU/GkStjyJNx5MoY8mQMecoZFcr5qIb/fZKkRcsz/h3qytVo/b5+iyTp0TYtrBqbtfGeMo5cIb+jCJOPTJ8+XcOHD9fw4cP1xhtvqG/fvmrdurW2bNlimepjMpkkSQMHDpQkDRs2TD169NDQoUP15JNPqn///nr22Wczvf6XX36phx56SB07dtTLL7+sV199VV27dtWbb74pJycnDR069Lbxubi4aNKkSWrbtq1CQ0M1YMAA3fjfVoSPPfaYXn75ZYWHh6t79+7q3LmzXn75ZQ0ZMkRPPvmkGjVqpJEjR6ZbvK1OnTry9vbWb7/9pmeeeUYjRozQW2+9pbVr16a7r4+Pj2rVqqVOnTqpf//+GjJkiNq2bavVq1fLx8dHo0ePtox1dHTU888/r+TkZPXu3VvBwcEaOnSoOnbsqDfffFP9+/e/+9+YfGLs+xOVlJSkpk0b6IP3R8jpfy3Frq6FNX3ax6pc2U8nT57SzFkLbBypbZEn48iVMeTJOHJlDHkyhjzljBf7pv5P9E+/b9D8xSstXQvRMdf0+ujxun4jTg/UrKYWTRrYMkyr4D1lHLnKXbbearqgb1FtMtO/Zfdat25tWdvkVq6urvL19VWTJk3Up0+fDJ0q27Zt0+TJk3X06FElJSWpatWqevrpp9WlSxf5+/vL19dX69ats4xfsWKF/vjjDx08eFAXLlzQzZs3VaZMGdWpU0e9e/fOsPV0ZteQUlfIDwkJ0W+//ab69etr+vTpcnNzkyTt2bNH3333nXbu3KlLly6pSJEiKl26tGrVqqVHHnlELVq0sBSSJOnQoUP69NNPtX//fsXExMhsNmvQoEEaPHhwuhhWr16tadOmadWqVYqMjLQsAvzyyy9btvW+1c8//6yZM2cqLCxMDg4Oql69umWR3jZt2qhBgwaaO3euZXxoaKiCg4MVFBSUbl2bpUuXasSIEeliyi4nF987D8pl/fv9nyZP+kCOjo6Kirqk8IjTqnpfJXl6eujKlat6uF137d37l63DtDnyZBy5MoY8GUeujCFPxthLnuLObM71e5w9H6Unnxtk+f7mzZu6fiNODg4OlgV4JalOYA1N+nB0utd+Pm22vp6zUJJUyruEvEsUV9jJU4pPSFCZ0iU1d8rHKlumVK7/DK4+zXP9HndiL++pvMAecpWUmPH/wezBsxW72TqEbPn25BJbh5AjKMIAdiIvFGEkqXGj+ho69AU1afygPD3dde5clH75dZ3Gjf9Ckf9bXA/k6W6QK2PIk3HkyhjyZIw95MkaRZjIs+fV7onedxxXv06gZk/+KMPxjVu367tFy3XoyDHFxcerTKmSat28sfoH95Cnh3suRJxRXijCSPbxnsor8nquKMJYF0UYAFaVV4owAAAgb7FGESY/yCtFGOQf9lqE6eXX1dYhZMvc8KW2DiFHsCYMAAAAAACAFVCEAQAAAAAAsAKKMAAAAAAAAFbgZOsAAAAAAACAdbAorG3RCQMAAAAAAGAFFGEAAAAAAACsgCIMAAAAAACAFbAmDAAAAAAABUQKq8LYFJ0wAAAAAAAAVkARBgAAAAAAwAqYjgQAAAAAQAFhZjqSTdEJAwAAAAAAYAUUYQAAAAAAAKyAIgwAAAAAAIAVsCYMAAAAAAAFRIqtAyjg6IQBAAAAAACwAoowAAAAAAAAVkARBgAAAAAAwApYEwYAAAAAgAIiRWZbh1Cg0QkDAAAAAABgBRRhAAAAAAAArIDpSAAAAAAAFBBmpiPZFJ0wAAAAAAAAVkARBgAAAAAAwAoowgAAAAAAAFgBa8IAAAAAAFBApNg6gAKOThgAAAAAAAAroAgDAAAAAABgBUxHAgAAAACggDCb2aLaluiEAQAAAAAAsAKKMAAAAAAAAFbAdCQAAAAAAJBv3bx5U6GhodqwYYNCQ0N16tQpJScnq0yZMmrWrJn69esnX19fq8RCEQYAAAAAgAIiRQVvTZgdO3aob9++kqSyZcuqadOmkqT9+/dr/vz5WrlypWbMmKE6derkeiwUYQAAAAAAQL5lMpnUrl07Pffcc+kKLQkJCXrnnXe0dOlSDR06VKtXr5azs3OuxsKaMAAAAAAAIN9q3LixvvjiiwydLoUKFdLo0aPl7u6uyMhI7dmzJ9djoQgDAAAAAAAKpMKFC6tixYqSpAsXLuT6/ZiOBAAAAABAAZFi6wDymOTkZEVGRkqSvL29c/1+FGEAAAAAAECe1qZNm9ueX7t2bbauu2LFCl2+fFleXl6qW7dutq5xNyjCAAAAAHbM1ae5rUOwC3FnNts6BLvA+wkFyenTp/Xhhx9Kkl599VW5uLjk+j0pwgAAAAAAUECY7XSL6ux2umQlNjZWL774oq5evapHH31U3bt3z9HrZ4WFeQEAAAAAQIGRkJCggQMH6siRI2rcuLEmTJhgtXtThAEAAAAAAAXCzZs3NXjwYG3fvl21a9fWlClTrDINKQ1FGAAAAAAAkO+lpKTo9ddf18aNG1WtWjVNnz5dRYoUsWoMrAkDAAAAAEABkWKna8LcK7PZrJEjR+qXX35RpUqVNHPmTHl6elo9DjphAAAAAABAvjZ+/HgtWbJE5cqV07fffqsSJUrYJA46YQAAAAAAQL61Zs0azZ49W5Lk6+urzz77LNNxbdu2Vdu2bXM1FoowAAAAAAAUEGZzwZuOFBMTY/l1aGholuN8fX0pwgAAAAAAAGRX165d1bVrV1uHIYk1YQAAAAAAAKyCIgwAAAAAAIAVMB0JAAAAAIACIsXWARRwdMIAAAAAAABYAUUYAAAAAAAAK6AIAwAAAAAAYAWsCQMAAAAAQAFhltnWIRRodMIAAAAAAABYAUUYAAAAAAAAK2A6EgAAAAAABUQK05Fsik4YAAAAAAAAK6AIAwAAAAAAYAUUYQAAAAAAAKyANWEAAAAAACggzGbWhLElOmEAAAAAAACsgCIMAAAAAACAFTAdCQAAAACAAoItqm2LThgAAAAAAAAroAgDAAAAAABgBRRhAAAAAAAArIA1YQAAAAAAKCDMrAljU3TCAAAAAAAAWAFFGAAAAAAAACugCAMAAAAAAGAFrAkDAAAAAEABkWJmTRhbohMGAAAAAADACijCALgrjRrW06KF0xV5aq9iY47rnyPbNOmLD+TjU8bWoeUp5Mk4cmUMeTKOXBlDnowhT8aRK+nipctatXqdxk/8Sr0GDtWDbboooOljeqTbs4Zev3nbDj0fMlLN2vdQvVad9XjPfvp0yjeKuRaby5HnTbynkB+ZzOb834vUunVrRUZGpjtmMpnk6ekpf39/de/eXY8//rjV4/L395evr6/WrVtn9XtbO4bQ0FAFBwcrKChI48ePtxxfunSpRowYoUGDBmnw4MEZjt+qUKFCKlq0qMqWLauaNWuqXbt2atKkiUwmU67GbkSvXr20fft2rV27VuXKlcuVezi5+ObKde9Gn+ee0tQpH8rR0VFRUZcUHnFaVe+rJE9PD12+fEVtH+mu/fsP2TpMmyNPxpErY8iTceTKGPJkDHkyzh5yFXdmc67fY+7CZfrwi+kZjvuUKaXflnx729dOnjFXX82aL0kq5V1C3iWKK+zkKcUnJKhs6VKa+9XHKlOqZK7EfStXn+a5fg8j7OE9lZQYeedBeVBz3za2DiFbNkeutXUIOaJAdcI0a9ZMQUFBCgoKUvv27VW+fHmFhoZq6NChevfdd20dXo5bunSp/P39NWnSJFuHkm3e3t6W37NHHnlEAQEBunz5shYuXKg+ffqoS5cuOnLkiK3DLBACAqppypfj5ejoqI8mTFZ5v7pq1Li9ylWoo3nzl8jLq7gWL5ohFxcXW4dqU+TJOHJlDHkyjlwZQ56MIU/Gkat/ubkVUaP6tdX3/57Up2Pf1OuD+xt63aat2y0FmDdfHai1y+dq0cxJWrt8rhrVr62z5y/otVHj73CV/IP3FPKzAlWEGTBggMaPH6/x48fr008/1eLFi/XVV1/JZDJp/vz5OnSIf8nIaypXrmz5Pfv44481ffp0rV+/XkuXLlWDBg10+PBhPfPMMzp+/LitQ8333h4ZIicnJ/3xx3a9+dY4JSUlSZLi4uLVf8BrCgsLV+XKfur9bA8bR2pb5Mk4cmUMeTKOXBlDnowhT8aRq391fbydZnw+Tq8O7KNHWjVXSW8vQ6+bPOM7SVKHh1vq6Sc6WTq9PT3cNeHd4XIr4qq9Bw5py587cy32vIT3FPKzAlWEyUyrVq1Ur149SdL27dttHA2MqlmzpmbPnq0mTZro2rVrevPNN20dUr5WpIir2j/WWpI07eu5Gc4nJiZqztxFkqQe3TtZNba8hDwZR66MIU/GkStjyJMx5Mk4cnXvTkWe1aEj/0iSegR1yHC+eDFPPdyqmSTplzUbrRqbLfCeQn5X4IswklSiRAlJUnJysuVYfHy8fvjhBw0aNEgPP/ywHnjgAdWpU0fdunXT7NmzLdXY/9q/f79eeeUVtWnTRoGBgWrYsKE6duyo0aNH6+TJk4biOXfunDp06CB/f399/vnn6c5t3bpVL7zwgho3bqyAgAC1bNlSo0aN0vnz59ON69Wrl2VNlcmTJ8vf39/yldn0pKSkJH311Vdq166dAgMD1axZM40aNUqXLl3KMDY6Olrfffed+vXrp9atWyswMFD169fXU089paVLlxr6GXOCo6OjRo0aJZPJpL1792rv3r2Wc6dPn5a/v7969eqV6WtDQ0Pl7++v4cOHpzt+6xSu8+fPa8SIEWratKkCAwP12GOPac6cOXcVY2Jiol555RX5+/urX79+unHjxl3/nHlBndoBcnV1lSRt3vxnpmM2bUo93qBBnTyxTo8tkCfjyJUx5Mk4cmUMeTKGPBlHru7d3oN/S5KcnZ0UWLNapmMerB2Ybmx+xnsq96XIbJdf+UWBL8IkJSXp779TP8yqVKliOR4REaGRI0dqz549Kl26tFq3bq06dero5MmTGjdunAYNGqT/rmm8ceNG9ezZU7/++quKFSumtm3bqk6dOpKk77//Xvv27btjPMeOHVOPHj0UFham0aNH65VXXrGcmzhxop577jlt3rxZfn5+at26tdzd3bVw4UJ17dpVYWFhlrHNmzdX3bp1JUnVqlWzrKsSFBSk6tWrp7un2WzWK6+8oi+//FLly5dXmzapCzUtXLhQTz75ZIYCz+7duzVmzBgdO3ZM5cuX18MPP6waNWro4MGDGjFihFXX16lUqZJq1qwpSdq2bVuOXffMmTPq1q2btm3bpgcffFB169bVqVOn9P777+vLL780dI3Y2Fj169dPv/76qzp37qyvvvpKRYoUybEYralq1cqSpISEBJ06dSbTMcfDwiVJrq6u8vPLncWJ8zryZBy5MoY8GUeujCFPxpAn48jVvQuPOC1J8ilTWs5OTpmOKe9bVpJ0+sxZJSUlZzomv+A9hfwu86e8AEhMTNSpU6c0depURUREqEaNGmre/N+VwL29vTVz5kw1btxYDg7/1qpiYmIUEhKi9evX6+eff1aHDv+2DM6YMUPJycmaOHGiHnvssXT3O3Xq1B1j2rVrlwYOHKi4uDhNnDhR7dq1s5z77bffNHXqVPn5+Wny5Mm6//77Lee+//57jR49WiNGjNDChQslpa5/4+3trd27d6tt27bpdh76rzNnzigxMVHLly+3FKISEhIUEhKiNWvWaMyYMZo8ebJlfJUqVbRgwQJLkSdNVFSU+vfvr/nz56tz586qXbv2HX/mnFC9enUdPHhQx44dy7FrLl26VD179tTbb78tp//9Ybhr1y793//9n2bMmKHnnnvutgWVCxcuqH///jp8+LD69OmjYcOG2XWV3surmCTpypXoLMdcvnzF8uvixTx1Und+z+c35Mk4cmUMeTKOXBlDnowhT8aRq3sXHZO6/bSne9Esx3h6uEuSkpNTdP3GDcv3+RHvKeR3BaoTJjg42DIlJzAwUO3bt9ePP/6oZ555RnPmzJGjo6NlrJeXl5o2bZquACNJHh4eGjlypCRp9erV6c5dvnxZktS0adMM9y5fvrzKly+fZWxr1qxRnz59lJKSom+++SZdAUaSpk6dKkn68MMP0xVgJKlnz55q1aqV9u7da+nquVsvvvhiuk6gQoUKadSoUXJxcdGaNWvSbfFdoUKFDAUYSSpZsqRef/11SRlzk5uKFy8uKXWaVE7x8fHRm2++aSnASFK9evXUvHlz3bhxQwcPHszytSdOnFDPnj115MgRDR8+XG+88YZdF2AkWVpCExNvZjkmPj7B8usiRVxzPaa8iDwZR66MIU/GkStjyJMx5Mk4cnXv4hNT8+Ps7JzlmFt3AYqLj8/1mGyJ91Tus/W0ooI+HalAdcI0a9ZMJUuWlJQ6BScqKkoHDhzQokWpCzsNHz48wzZn+/fvV2hoqM6cOaP4+HiZzWbLNKT/rvFSs2ZNHTt2TMOGDdPAgQMVGBiYoYiTmUWLFumdd96Rl5eXZsyYoWrV0s8FvXTpkg4dOqSSJUtapjf914MPPqj169dr3759GaYbGdGpU8ZFrUqXLq2GDRtq8+bN2rVrl3x9fS3nzGazduzYoZ07d+rChQtKSEiQ2WzW9evXJWXMTW5K+/3IyUJHw4YNVahQoQzHK1eurI0bN+rChQuZvm7//v167733FBsbq48++ijTvNqjuLg4SZKLS9Z/OShc+N983bgRl+sx5UXkyThyZQx5Mo5cGUOejCFPxpGre1fYJTU/N29mXXRITEy0/Nq1cOFcj8mWeE8hvytQRZgBAwaoYcOG6Y7FxsZqyJAhmjdvnlJSUvTOO+9Ikq5fv66QkBBt2LAhy+vFxsam+37o0KE6duyY1q9fr/Xr18vNzU21a9dWs2bNFBQUZOnYuNW5c+csU16+/fbbdN0oadK6UKKiouTv73/bn/HKlSu3PZ8ZDw8Pubtn3tKYVng5d+6c5VhUVJReeuml265x89/c5Ka0n9nT0zPHrlm2bNlMj7u5uUlK/wfhrV5//XUlJSVp7Nix+aYAI/3bDlq8eNY59vL69/195WrOdSXZE/JkHLkyhjwZR66MIU/GkCfjyNW98/jfNKSrMdeyHBP9v3OOjg5ys9M1Bo3iPYX8rkBNR8pM0aJFNWzYMEmpHSkxMTGSpE8++UQbNmxQ3bp1NWvWLG3btk0HDx7UkSNHdODAgUyvVbp0aS1evFjffvut+vTpo/vuu09//vmnPvzwQz3yyCPav39/htekTXtKSkrSBx98oISEhAxjUlJSJEnFihVLt8BuZl9Vq1bNqdRkaeTIkdq3b59at26t+fPnKzQ0VIcOHdKRI0f066+/5vr9/yttCtZ/p2ndTlpOs2KkgykzHTt2lJQ6fczIOkD24ujR45JSp6lVqOCb6Zgqlf0kpf7rRXj4aavFlpeQJ+PIlTHkyThyZQx5MoY8GUeu7l3F/y0se/b8Bd3MYgfWU5FnJUnlfMrKyckx0zH5Be8p5HcFvggjybJWS3JyssLDU1faXr16tRwdHTVt2jQ1adJEXl5elnmaERERWV7LwcFBjRo10htvvKFFixbpjz/+0BNPPKGYmBiNHTs2w3gXFxdNnTpVzZs315YtWzRw4EDF/2eeZ1pXhpubm8aPH3/br7Zt2971zx8TE5Nl50paF07p0qUlSTdu3NCmTZtUokQJTZ48WfXq1VOxYsUs6+ncLje5ISwsTIcOHZIkNWrUyHI87fcqbXrUf509ezZX4hk0aJAGDRqkyMhIBQcH55tCzJ69By2toc2bN8p0TIsWqcd37NibYeewgoI8GUeujCFPxpErY8iTMeTJOHJ17x7437bUN28maf/Bw5mO2bH3QLqx+RnvqdyXtsSGvX3lFxRhlL5wkLbjTXR0tNzc3OTh4ZFh/KpVqwxfu3jx4goJCZEkHT16NNMxhQoV0pQpU/TQQw/pjz/+0AsvvJCuEFO6dGndd999ioyMvKuFd9MKEUlZVNRvldnPFBUVpdDQUJlMJtWrV0+SdO3aNaWkpKhUqVLpFjJOs3LlSsPx3avk5GS99957MpvNqlevnmrVqmU5V7x4cTk7O+vUqVOZzq/dsmVLrsU1ePBgvfzyyzpz5ox69epl9cJUbrhxI06//LpOkjSg3/9lOO/i4qLgXt0lSYt+MP585DfkyThyZQx5Mo5cGUOejCFPxpGre1ehnI9q+N8nSVq0/KcM569cjdbv61P/7vpomxZWjc0WeE8hvyvwRZi0BVQlyc/PT5Urp+5LX6lSJcXExGjFihXpxm/atEmzZs3K9FqzZs3S+fPnMxxPW1cmq3VGpNQPk8mTJ6tVq1batm2bBgwYYKkAS6kdFpI0ZMiQTNdiiY2N1Q8//JCueFOqVClJqd0id/Lll1/qxIkTlu8TEhI0ZswYJSYmqlWrVipXLrVN0tvbWx4eHjp69KhCQ0PTXWPJkiX66aeMf3Dkhr/++ku9e/fWtm3b5Onpqffffz/deRcXF9WpU0cxMTEZfr8WL16sn3/+OVfje+mllxQSEqKzZ8+qV69elg4rezb2/YlKSkpS06YN9MH7Iyw7R7m6Ftb0aR+rcmU/nTx5SjNnLbBxpLZFnowjV8aQJ+PIlTHkyRjyZBy5uncv9k0tNvz0+wbNX7zS8q/+0THX9Pro8bp+I04P1KymFk0a2DJMq+E9hfzMZM5PfT1ZaN26tSIjIzPsjnTx4kUdOHDA0vUyY8YMy9bLP//8s1599VVJUu3atVWuXDlFRERo//79GjBggKZPny5fX1+tW7fOcp/69esrNjZWVatWVaVKleTo6Kjw8HD99ddfcnJy0ueff55uupC/v3+Ga9y8eVNDhgzRmjVr1KBBA02bNs3SnfPll19q0qRJMpvNqlatmvz8/OTg4GDpkLl586Z27Nhh6d5JK6BcvHhR9evXV4UKFeTg4KDWrVurTZs2lhh8fHxUvXp1bd68WY0aNZKbm5t27dqlCxcuyMfHRwsWLFCZMmUsMc6YMUMTJkyQg4ODHnzwQZUsWVJHjx7V0aNHLblp0KCB5s6da3lNaGiogoODFRQUpPHjx1uOL126VCNGjNCgQYM0ePDgDMe9vb3VvHlzSamdL9euXdPRo0ct06Rq1Kihjz76KNO1cLZv367nnntOSUlJCggIkK+vr44dO6bw8HAFBwdr5syZhuNJM2nSJE2ePFnjxo1T165dLcd79eql7du3a+3atZaClSR9/fXX+vjjj1WqVCnNmTNHlSpVynBNo5xcMp8Ta039+/2fJk/6QI6OjoqKuqTwiNOqel8leXp66MqVq3q4XXft3fuXrcO0OfJkHLkyhjwZR66MIU/GkCfj7CFXcWc25/o9zp6P0pPPDbJ8f/PmTV2/EScHBwfLArySVCewhiZ9ODrdaz+fNltfz1koSSrlXULeJYor7OQpxSckqEzpkpo75WOVLVMq138GV5/muX4PI+zhPZWUGGnT+2dXI5+Wtg4hW/48s8HWIeSIAtUJs2XLFi1btkzLli3T8uXLtWvXLpUsWVLBwcH66aefLAUYSWrfvr1mz56t+vXrKywsTOvWrZPJZNKHH36ooUOHZnr9t99+W506dVJycrK2bt2qdevW6fr16woKCtKSJUsMuCQ6KAAAol5JREFUrdfi7OysiRMn6pFHHtH27dvVv39/y7omL730khYsWKDHH39cV69e1bp167R161bFx8erc+fOmj59erpdjlxcXPT111+refPm+ueff7Rs2TItXrzYsoZKGpPJpM8//1zPP/+8IiIitGbNGpnNZnXv3l2LFi1KV4CRpH79+umzzz5TzZo1dfDgQW3cuFHFihXT9OnT1aNHD8O/H0ZcvHjR8nv266+/at++fSpevLh69uypmTNnaunSpVkuRtygQQPNmDFD9erV0/Hjx7VlyxZLMaRly5Y5GmdW+vfvr+HDh+vChQvq1auXoa6kvOzrGd+pZauuWr7iF5nNZgUGVNPVqzH6atoc1a7b1uZ/EOYV5Mk4cmUMeTKOXBlDnowhT8aRq1QpKSm6Gh1j+br+v+2T/3v8WibrFr7yfG99OeFdNX6wjhISE3XsRLhKlSyh3k9105LZX1qlAJOX8J7KPSky2+VXflEgOmGA/CAvdMIAAADYK2t0wuQHeaUTxh7YaydMA5+HbB1Ctmw/s9HWIeSIAtUJAwAAAAAAYCtOtg4AAAAAAABYhzkfTe2xR3TCAAAAAAAAWAFFGAAAAAAAACugCAMAAAAAAGAFrAkDAAAAAEABwQbJtkUnDAAAAAAAgBVQhAEAAAAAALACijAAAAAAAABWwJowAAAAAAAUECliTRhbohMGAAAAAADACijCAAAAAAAAWAHTkQAAAAAAKCDYotq26IQBAAAAAACwAoowAAAAAAAAVkARBgAAAAAAwApYEwYAAAAAgAKCLapti04YAAAAAAAAK6AIAwAAAAAAYAVMRwIAAAAAoIAwMx3JpuiEAQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAKWBMGAAAAAIACIsXMmjC2RCcMAAAAAACAFVCEAQAAAAAAsAKKMAAAAAAAAFbAmjAAAAAAABQQZrEmjC3RCQMAAAAAAGAFFGEAAAAAAACsgOlIAAAAAAAUEGxRbVt0wgAAAAAAAFgBRRgAAAAAAAAroAgDAAAAAABgBawJAwAAAABAAcEW1bZFJwwAAAAAAIAVUIQBAAAAAACwAqYjAQAAAABQQLBFtW3RCQMAAAAAAGAFdMIAdqKyZ1lbh2AXwqLP2joEAACQB7n6NLd1CHYhduPHtg4ByNfohAEAAAAAALACOmEAAAAAACgg2KLatuiEAQAAAAAAsAKKMAAAAAAAAFZAEQYAAAAAAMAKWBMGAAAAAIACIsXMmjC2RCcMAAAAAACAFVCEAQAAAAAAsAKmIwEAAAAAUECwRbVt0QkDAAAAAABgBRRhAAAAAAAArIAiDAAAAAAAgBWwJgwAAAAAAAWE2Zxi6xAKNDphAAAAAAAArIAiDAAAAAAAgBUwHQkAAAAAgAIihS2qbYpOGAAAAAAAACugCAMAAAAAAGAFFGEAAAAAAACsgDVhAAAAAAAoIMxm1oSxJTphAAAAAAAArIAiDAAAAAAAgBVQhAEAAAAAALAC1oQBAAAAAKCASBFrwtgSnTAAAAAAAABWQBEGAAAAAADACpiOBAAAAABAAcEW1bZFJwwAAAAAAIAVUIQBAAAAAACwAoowAAAAAAAAVsCaMAAAAAAAFBAprAljU3TCAAAAAAAAWAFFGAAAAAAAACugCAMAAAAAAGAFrAkDAAAAAEABYRZrwtgSRZg8qHXr1oqMjEx3zGQyydPTU/7+/urevbsef/xxG0V399J+niNHjhh+zenTp9WmTZsMx93c3FS5cmU98sj/s3fn4TFf7//Hn5ONRGwJQexBJMTWWEKILdraxRaigkaprYpqqdqrykftW9Wu0YglEXvsSyxBxB7UFhK7ELEkMpnfH36ZrzSLsc17Yu7HdX2uj3m/z9TLuUbM3HPOfT6nW7du5MiR40NGFVkoYGdLHY+auFR1plLVCji7lMcqlyU3o2Np5NpK6XgGx62WK4MH98a9Tk3y5s3NrVt32bptNxN/n0ls7G2l4xkUmSvdyDzpTuZKNzJPupF50p3MlW5knnSTmPSS1buPsfXIGa7eus/LZDWFbfPSoGp5/FrUJa+1ldIRhXgnKo1GWiMbmtSiRd26dSlYsCAASUlJREdHc/r0aQB8fHwYPXq0kjF19r5FGC8vLwBSUlK4efMmkZGRqNVqKlasyPLly7G2tv4ouQ2NY8Hqiv7+3Xp3ZsSvQ9JdN7QizJXHt5SOwNc9OjNv7iRMTU25d+8B16NvUq5safLmzcPDh3F4ft6RU6fOKR3TIMhc6UbmSXcyV7qRedKNzJPuZK50kx3mKWHvFEV/f4BHCc/o/b/lRF1/VZQqUciG3FY5uRxzlxdJyRTMZ82iYT0oWdhW0Zw5a3dW9Pd/V4XzOSsd4Z3cfnRe6QgfhPSEMWC9evXi999/5/fff2fq1KmsWbOG+fPno1KpWLlyJefOGcc/ZKlzMHnyZFauXElgYCDW1tacPXuWP//8U+l4RiPhyVMO7j3CgplLGfD1T0wcOU3pSAbJxcWJuXN+x9TUlMn/m03xkp/hVrsZxUpUw3/lWmxs8rMmcCEWFhZKR1WczJVuZJ50J3OlG5kn3cg86U7mSjcyT7r75a8goq7fxiZPLlb84seGSd+xcnQvds74gS9ruXDvUQLfz/yHZLVa6ajZkkajyZb/+1RIESabadiwIa6urgCEh4crnEYZLi4u9OjRA4DQ0FCF0xiPtStD6N6+H1PGz2bbhp3cvX1P6UgGaeQvgzEzMyMsLJyfR0wkOTkZgOfPX/BNrx+4cuU6Dg4l6d7NW+GkypO50o3Mk+5krnQj86QbmSfdyVzpRuZJN//G3GX/yUsA/NDpCyqXLa69Z22ZkzFft6KQTR6uxN5nQ9hJpWIK8c6kCJMN2dq+WnanzqDye/r0aQYNGkS9evVwcXGhbt26DBkyhMuXL6cbe+TIEcqXL8+wYcN48uQJv/76K/Xr18fFxYXGjRszc+ZM7T8O/6VWq1m7di2+vr7UrFmTSpUq0ahRI/r378+ePXsyzR4cHEzbtm2pUqUKNWvWZMCAAVy/fv2t56BChQoAaXrnDBs2jPLly3PkyBEOHjzI119/Tc2aNSlfvjznz//f0rW3mSOAsLAwevXqRYMGDXBxcaF27dp4eXkxceJE7t+/n2bsqVOnGDhwII0bN6ZSpUrUqlWLli1bMnr0aK5du/bWf06RvVhZWdKsaSMA/vxrRbr7SUlJLF8RCIB3R8PZwqUEmSvdyDzpTuZKNzJPupF50p3MlW5knnQXceHVZwMTlYomNSqku2+Zw4L6VR0B2HL4tF6zCfEhSGPebCY5OVlbUChTpkyae6tWrWLs2LHafimfffYZMTExbNy4kV27dvHXX39RvXr6viLx8fF4e3sTFxdH9erVefHiBceOHWPOnDncvn2b3377Lc34Fy9e0KdPHw4ePIiFhQWfffYZtra23Lp1i7CwMB4/fkyDBg3S/T5Tp05l0aJFuLq60qBBA86cOUNoaCgRERFs2LABGxsbnechISEBIMPlmps2bSIwMBAnJyfq1avHrVu3UKlU7zRHAQEBjB49GhMTE6pVq8Znn33GkydPiI6OZunSpTRp0oQCBQoAsHfvXvr06YNarcbFxYXKlSvz/PlzYmJiCAgI4LPPPqNUqVI6/xlF9lOtqguWlpYA7N9/OMMx+/a9ul6zZjVUKtUntbTybchc6UbmSXcyV7qRedKNzJPuZK50I/Oku8cJzwHIl9sKC/OMP64WtskLwMl/b5KSkoKJiawtENmHFGGyiaSkJG7cuMG8efOIjo6mQoUK1KtXT3v/1KlTjB07lty5czN37lztliWA3bt3079/f4YOHUpoaCjm5uZp/ts7d+6kYcOGrF27VvuPw9WrV2nXrh3r1q2jb9++FCtWTDv+t99+4+DBg1SsWJE5c+ZQpEgR7b2EhARt8+D/WrVqFWvXrsXJyUn7Z/ruu+/YvXs3K1eupH///jrPx65duwBwdk7fVGrVqlVMnDiRtm3bprn+LnO0YMECVCoVq1atonLlymn+excvXkxTOFq4cCFqtZrp06fTtGnTNGNv3Lih859NZF/lyjkAkJiYyI0bsRmOuXzl1bc7lpaWlCxZjGvXjPO1IXOlG5kn3clc6UbmSTcyT7qTudKNzJPuclvlBODRk2ckvUzOsBBz++FjAF4kvST2wWOKFcyv14zZXYocUa0oKRkaMF9fX8qXL0/58uWpVKkSzZo1Y+PGjXTp0oXly5djamqqHbtgwQLUajUjR45MU1yAV31kOnfuTGxsLHv37k33+1hZWTFhwgRtAQagdOnStG7dGo1Gw9GjR7XX7969y9q1azE3N2f27NlpCjAA1tbW1K5dO8M/z3fffactwMCrVSx9+/YFXm2NepOUlBRu3LjBpEmT2LJlCwBdunRJN65u3brpCjDwbnP08OFDcufOna4AA+Do6KhdBZM6FsDd3T3d2OLFi1O8ePF018WnxcYmHwBxcY8zHfPwYZz21/nz5f3YkQyWzJVuZJ50J3OlG5kn3cg86U7mSjcyT7qrVKYoACkaDTuPpz8N50XSS/ZFXtQ+fvL0ud6yCfEhSBHGgNWtWxcvLy+8vLxo06YN7u7u5M6dm8DAQKZNm0ZSUhLwqjgRFhaGmZkZjRo1yvC/lbrF5uTJ9M2rXFxctH1mXufg8Kpif/fuXe218PBwkpOTqV27Nvb29m/156lfv75Ov8d/pRainJ2d8fT0ZPHixZiamjJo0CCaNWuWbrynp2e6a+86RxUrViQ+Pp7hw4e/8YjtihUrAvDjjz9y8uRJUlJSshwvPj2phcykpJeZjnnxIlH7aysry0zHfepkrnQj86Q7mSvdyDzpRuZJdzJXupF50l3F0kWpUvbVKvz/rdxK+Pmr2nvxT5/z85/ruP0wXnvteRZzKoQhku1IBqxXr17UqlUrzbWEhAS+//57/P39SUlJYcyYMcTFxfHs2TMAqlWrluV/My4uLt21/65mSZUrVy4AbbEHIDb21fLJd+ltklHRxtraGoCXLzP/4enl5QWASqXCysqK0qVL07hx40xzZ/T7vOscjR49mv79+7Nu3TrWrVtHvnz5qFatGvXr16d169ZYWVlpxw4ZMoR///2X3bt3s3v3bnLlykXVqlW1xbT8+WWZ5Kfu+fNX38RYWJhnOiZnzhzaXz97Zrzf3Mhc6UbmSXcyV7qRedKNzJPuZK50I/P0dn7r3Y5vfl9K7IPHfDNpGQXz5SavtSXXbz/gZbKa9g1cWbPnOADWljne8F8T/2Ws/YYMhRRhshlra2t+/PFH9u/fT2BgIIMHD9auuLCwsKB58+ZZPr9KlSrprumrkdW7/j6///77W43PmTNnumvvOkeOjo5s3LiRgwcPsn//fo4dO8aePXvYvXs38+bNw9/fX7vNqFChQqxZs4bw8HD27t3L8ePHOXz4MGFhYcybN49FixZluK1JfDpSlxjnz5/5EmIbm/8rxsU9ynxJ8qdO5ko3Mk+6k7nSjcyTbmSedCdzpRuZp7dTrGB+Asb2ZvnWQ+yKiCLmXhzPXiRSrVwJujdzJ7dlDm0RpkDe3AqnFeLtSBEmG0r90K9Wq7l+/TrOzs7kyJGDlJQUxo8fn67x7oeUusokux23nD9//neeIwsLCxo0aKA98en27duMHj2aPXv2MHXqVKZNm6Yda2JigpubG25ubsCrVTVTpkxhzZo1/PrrrwQGBn7QP5cwLBcvvjrmPEeOHJQoUZTo6Jh0Y8o4lARefSN2/fpNveYzJDJXupF50p3MlW5knnQj86Q7mSvdyDy9vbzWVgxo35gB7Runu7du76sCjL1tXmzy5NJ3NCHei/SEyYaio6O1v7ayssLMzAw3NzdevnyZYePdD6lWrVqYmZlx6NAhbt269VF/rw/pQ85R4cKF6devH/DqhKSs5M+fn8GDB+s0VmR/JyLPaJcb16vnluEYD49X148ejTTqpaAyV7qRedKdzJVuZJ50I/OkO5kr3cg8fVi7IqIAaPiZ0xtGCmF4pAiTzSQkJDB58mQASpYsqW1s27dvX0xNTRk9ejT79u1L97zExES2bNnC7du33+v3L1iwIO3atePly5f079+fO3fupLn/9OlTDh069F6/x8fytnP0/Plzli1bxqNHj9KNTS3kvN6XZsmSJenmA2DPnj3pxopP07Nnz9my9dXx6b16fpXuvoWFBb5dOwIQuHqDXrMZGpkr3cg86U7mSjcyT7qRedKdzJVuZJ4+nKPnr3Lg1CXMzUzp5FlT6TjZUopGky3/96mQ7UgGbMGCBQQFBQGvmifdv3+f06dP8/jxY3LlysXvv/+OSqUCoGrVqowbN44xY8bwzTff4ODgQOnSpcmZMye3bt3i/PnzPH/+nODgYAoXLvxeuYYPH87Vq1cJDw/H09MTV1dXbG1ttb+Pi4tLpsdUK+lt5+jly5f89ttvTJ48GScnJ0qUKEFKSgqXLl3i8uXLWFlZMWDAAO1/f86cOUyaNIly5cpRunRpTE1NuX79OmfPnsXMzIwhQ4Yo+KcX+vLrhOm0avkF7u41+W3CcEaN/h/JyclYWuZk3tzJODiU5Nq1Gyxe8o/SURUnc6UbmSfdyVzpRuZJNzJPupO50o3Mk+7OXInh/uMnuFcqh7mZKQDqlBRCw88yYdlGNBro17YhJQqlP+FVCEOn0shaN4PTqFEjYmLS7xO1tLSkaNGi1KlTh6+//jrDlRWXLl1i2bJlHD58mDt37mBhYYGdnR0VKlSgSZMmNGrUCAsLCwCOHDmCr68vXl5eGTa/XbduHcOHD6d///5pig0AycnJrFmzhvXr13PhwgVevnxJwYIFcXFxoX379nh4eKT782R2xHP58uUpWrQou3bt0l67efMmjRu/2v/5pqOhUw0bNoygoCCWL1+e7lSpd5mj5ORkAgMDOXLkCFFRUdpjtIsUKULt2rXp3r27tj8PwPr16wkLC+PMmTPcvXuXly9fUrhwYapVq0b37t1xcnq/5ZKOBau/1/PfV2H7Qqzf5a99bG5hhnVua9RqNfGPnmivHw8/SV9f5QpOVx4rv03um55fMXvWb5iamnLv3gOuR9+kXNnS5M2bh7i4RzT5oiORkWeVjmkQZK50I/OkO5kr3cg86UbmSXcyV7rJDvOUsHeKor8/wPr9Jxi1aD05zM0oYpuXXJY5uHH3IfFPX2CiUvFNKw/6ejVUOiY5a3dWOsI7scldTukI7+Thk0tKR/ggpAgjRDahdBGmaPEi7I548/LYI2HH6dqmtx4SZcwQijAAtd2qM2TIt9SpXYO8eXNz+/Y9tmzdxcTfZxITYxgZDYXMlW5knnQnc6UbmSfdyDzpTuZKN4Y+T4ZQhLkae48VoYeJvBTN3YfxJL5MpkBea6o7l6azZ00qlLJXOiIgRRh9kyKMEEKvlC7CZBeGUoQRQgghhMiODKEIk11k1yJMfuuySkd4J3EJ/yod4YOQxrxCCCGEEEIIIYQQeiBFGCGEEEIIIYQQQgg9kNORhBBCCCGEEEIII5GCdCRRkqyEEUIIIYQQQgghhNADKcIIIYQQQgghhBBC6IEUYYQQQgghhBBCCCH0QHrCCCGEEEIIIYQQRkKjkZ4wSpKVMEIIIYQQQgghhBB6IEUYIYQQQgghhBBCCD2Q7UhCCCGEEEIIIYSRSJHtSIqSlTBCCCGEEEIIIYQQeiBFGCGEEEIIIYQQQgg9kCKMEEIIIYQQQgghhB5ITxghhBBCCCGEEMJIaJCeMEqSlTBCCCGEEEIIIYQQeiBFGCGEEEIIIYQQQgg9kCKMEEIIIYQQQgghhB5ITxghhBBCCCGEEMJIpGikJ4ySZCWMEEIIIYQQQgghhB5IEUYIIYQQQgghhBBCD2Q7khBCCCGEEEIIYSQ0sh1JUbISRgghhBBCCCGEEEIPpAgjhBBCCCGEEEIIoQdShBFCCCGEEEIIIYTQA+kJI4QQQgghhBBCGAkN0hNGSbISRgghhBBCCCGEEEIPpAgjhBBCCCGEEEIIoQeyHUkIIYQQQgghhDASckS1smQljBBCCCGEEEIIIYQeSBFGCCGEEEIIIYQQQg9kO5IQQgghhBBCCCE+eUlJSSxZsoSQkBBu3LiBlZUV1atXp0+fPlSsWFEvGaQII4QQQgghhBBCGAlj7QmTlJSEn58f4eHh2Nra0rBhQ+7du8f27dvZs2cP8+bNo169eh89hxRhhBBCCCGEEEII8Un766+/CA8Pp1KlSixduhRra2sANm7cyJAhQxg6dCg7duzQXv9YpCeMEEIIIYQQQgghPlnJycksX74cgNGjR6cptLRo0YL69esTFxfH2rVrP3oWKcIIIYQQQgghhBDikxUREcGjR48oVqwYlSpVSne/WbNmAOzcufOjZ5HtSEIIIYQQQgghhJEwxo4w58+fB8i0+W6FChUAuHDhwkfPIithhBBCCCGEEEII8cmKjY0FoHDhwhneT73+6NEjnj59+lGzyEoYIYQQQgghhBBCGLTGjRtneT+rrUTPnj0DwNLSMsP7VlZW2l8/ffqUXLlyvUNC3UgRRohs4uK9Y0pHEEIIIYQQQmRzyUkxSkd4J28qwmQXUoQRQgghhBBCCCGEQXufprmpK12eP3+e4f3UlTLAR10FA9ITRgghhBBCCCGEEJ8we3t7AG7fvp3h/dTr+fLlkyKMEEIIIYQQQgghxLtydnYG4OzZsxneP3fuHADly5f/6FmkCCOEEEIIIYQQQohP1meffUa+fPm4efMmp0+fTnd/8+bNgH76zkgRRgghhBBCCCGEEJ8sMzMzfH19ARg7diwJCQnaexs3bmTv3r3kz5+fdu3affQsKo1Go/nov4sQQgghhBBCCCGEQpKSkvDz8yM8PBxbW1tq1KjB/fv3OXbsGObm5sydOxcPD4+PnkOKMEIIIYQQQgghhPjkJSUlsXjxYkJCQrhx4wZWVla4urrSr18/KlasqJcMUoQRQgghhBBCCCGE0APpCSOEEEIIIYQQQgihB1KEEUIIIYQQQgghhNADKcIIIYQQQgghhBBC6IEUYYQQQgghhBBCCCH0QIowQgghhBBCCCGEEHogRRghhBBCCCGEEEIIPZAijBBCKCAlJUXpCIqJiYlROoIQQgghhBCKkCKMEEJ8IKtXr9ZpXEpKCj/88MNHTmO4mjRpQq9evdi1axcajUbpOEIIIYQQQuiNSiPvgIUQOrh37x5r1qzh2LFj3L59G4BChQpRo0YN2rZtS6FChRROqDwXFxdmzZpFw4YNMx2j0Wj44Ycf2Lx5M+fPn9djOsNRt25d7t+/j0qlolChQnTo0IEOHTpgZ2endDQhhBDio3nx4gU5c+bUaey1a9coVarUxw0khFCEFGGEEG+0YcMGRo8ezfPnz9OtXFCpVOTMmZMxY8bQunVrhRIaBg8PD+Lj41myZAnVqlVLdz8lJYWffvqJDRs24Orqir+/vwIpladWq9m5cyerVq3i4MGDAJiamtKwYUO8vb2pW7euwgmFEEKID69Xr17Mnz8fE5OsNyNcu3YNX19f9u3bp6dkQgh9kiKMECJLhw8fpkePHgDUr1+fVq1aUaxYMQBu3rzJhg0b2LNnDyqVikWLFlG7dm0l4yrqwoULfPXVV5iYmLBy5UrKlCmjvafRaBg2bBjr16+nWrVqLFq0CCsrKwXTGoYbN24QGBhIUFCQdnVMsWLF6NixI+3atcPGxkbpiIqbPXu2TuMsLCzIly8fzs7OVKpU6SOnMny3bt3i7t27JCUlZTqmRo0aekxkOIKDg3UaZ25urn1NGevfxZcvX7Jp0ybCw8OzfD2pVCqWLVum53TK0fXnUkZUKhX9+vX7gGmyDycnJ7y8vJg4cWKmY27cuEGXLl24d++e0a6YBYiOjubkyZNUq1ZN+74T4PTp00yYMIELFy5QtGhRBg8eTKNGjRRMKsTbkyKMECJLvr6+HD16lD/++INmzZplOGbz5s0MHjyYWrVqGdWb0IwcPXqUnj17YmNjQ0BAAIUKFUKj0fDzzz8TFBRElSpVWLx4Mbly5VI6qkFJTk5m+/btBAYGcvjwYQDMzMz4/PPP6dSpk9F+WIZXb9pVKlWaa6n/dL9+XaPRaB87ODjw22+/UaVKFf0FNRDr169n9uzZ3Lx5841jjfUDTkavqayoVCrc3d0ZOXIkJUqU+IjJDMuDBw/o3r07//777xv7V6lUKqN6PaW+ht7lY4SxzdXrBg4cSGhoKH5+fhn2hrtx4wZdu3bl9u3bDBs2jO7du+s/pIEYM2YMq1atYseOHRQtWhSAR48e8fnnnxMfH68dZ2Zmxrp163B0dFQqqhBvTYowQogsffbZZzg6OhIQEJDluE6dOnHx4kUiIiL0lMxwbd++nYEDB+Lg4MCKFSv43//+x7p166hUqRJLlizB2tpa6YgG6+nTp8yePZslS5Zor6lUKsqXL8+QIUOoV6+egumUERQUxKlTp/jnn3+wt7fniy++oEiRIsCr1R7btm0jNjaWTp06UahQIY4ePcrBgwfJlSsXa9euNaqeAkFBQfz8889oNBrKly9PyZIlsyx4ZvVt9Kds1qxZxMTEEBwcjJWVFXXr1k3zmjpw4ADPnj2jTZs2mJmZceLECS5fvkyBAgVYt26d0fRvGj58OEFBQVSqVAk/Pz8cHByyfD2lflA0BkFBQe/1fC8vrw+UJHtJSkqiZ8+eHD16lGHDhtGtWzftvRs3buDr68utW7cYOnQofn5+CiZVXsuWLTExMWH9+vXaa0uWLGHSpEl06NCBQYMGsXv3bkaMGEHbtm357bffFEwrxNuRIowQIkvVq1enQYMGTJkyJctxQ4YMYe/evRw7dkxPyQzbP//8w9ixY8mbNy+PHz+mQoUKLF26lDx58igdzSCdO3eOgIAANm3axLNnz1CpVHh4eFCnTh02b95MZGQkKpWK3377zejevJ87d47OnTvTo0cPBgwYgKmpaZr7arWaWbNmsWTJElauXEnFihVZuHAhU6ZMoV27dkyYMEGh5PrXvHlzrl+/zpw5c6hfv77ScQzWjRs3aN++PQ0bNmT48OHkzZs3zf34+HgmTpzIrl27WLNmDUWLFmXixImsWLECX19ffv75Z4WS65e7uzumpqZs2bJFVi+KDyYhIYEuXbpw6dIl/ve//9G8eXNu3ryJr68vsbGxDB48mF69eikdU3Fubm5Uq1aNefPmaa/5+flx5MgRwsLCtD+32rZty7Nnz9i6datSUYV4a3JEtRAiSxUqVODy5ctvHHflyhUqVKigh0TZQ+fOnenXr58UYLLw4sULVq9eTfv27WnXrh2BgYHkyJGDb775hh07djB//nx8fX0JCAhg8eLF5MyZkwULFigdW+9mzpxJ8eLF+f7779MVYOBVU+Pvv/+e4sWLM3PmTAC+/vpr7O3ttVu7jMWNGzeoWbOmFGDeYNq0aVhbWzNhwoR0BRiAPHny8Ouvv2Jtbc3UqVMxMTFh6NChFChQgL179yqQWBlPnjyhatWqUoARH5S1tTV//fUXhQsXZtiwYaxdu5Zu3boRGxvLwIEDpQDz/z179ixN7zyNRkNkZCQuLi5pfm6VKlWKO3fuKBFRiHdmpnQAIYRh69OnD35+fqxYsYKuXbtmOObvv/8mKiqKRYsW6Tmdsnx9fd84xszMjJSUFPr375/murE1cXzdhQsXWLVqFRs2bCAhIQGNRkO1atXw8fHhyy+/xNzcPN1z6tSpQ/369dmxY4cCiZV14sQJnU6MKl++PAcOHADAxMQER0dH7elTxsLW1laKnTo4dOgQderUybCol8rU1JSqVatqX0MWFhaUL1+e48eP6yum4kqUKMHz58+VjiE+QXZ2dixatIjOnTvzyy+/oNFo6N+/P3369FE6msGws7MjOjpa+/j06dM8ffoUV1fXNOPUanWG7xuEMGRShBFCZMnMzAwfHx9+++03Nm3aRPPmzbX73mNjY9m4cSMnT56kS5cumJubc/To0TTP/5QbqoaHh+s0LioqKt21t2mK+alJPcrc0tKSDh064OPjg5OT0xuflytXLpKTkz92PIOTlJTE7du33zju9u3baU5uyZEjh9G9MW3cuDHbtm0jKSkJCwsLpeMYrGfPnhEXF/fGcXFxcTx79kz7OG/evEb1s6t9+/ZMnz6d27dvU7hwYaXjGJThw4e/83NTt5Yag9jY2Ezv5ciRg9GjRzN06FBatmxJ27Zt0423t7f/2BENVsWKFQkNDSU0NJQ6deowd+5cVCpVupWOV69eNZo+VeLTIT1hhBBZ+u8JCLqc0vK6T/kEhJiYmPd6vjE1cXxds2bN8PHxoU2bNtKkWAedO3cmMjKSefPm0aBBgwzH7N27l2+//ZZq1aqxcuVKALy9vXn48CHbt2/XY1plPX78mI4dO1KhQgVGjx5Nvnz5lI5kkNq2bcvFixf5559/Mj3O/PTp03Tu3BlHR0fWrVsHgI+PD7dv32bXrl36jKsYjUbD0KFDOX36NL/88gvu7u6YmMhOfkCnwnlmjOl0JF1OInv9ZLvXqVQqzp0797GiGbxTp07RuXNnUlJSgFfz5OLiwpo1a7Rj7t69S/369WndujW///67UlGFeGuyEkYIkaU2bdoY1Tefb8NYiyjvK7XHhBRgdNOrVy/69OlDv379+Pzzz2natGmak2y2bt1KaGgoAL179wZeFSPOnj2b6bHyn6q8efOyatUqunbtiqenJy4uLhQuXDjTDzjG8m38f3Xt2pXhw4fTrVs3fHx8MnxNrVy5ErVard12+ezZM86dO4eHh4eS0T+qxo0bZ3g9NjaWXr16YWpqip2dXaavJ2PaLrl8+XKlI2QLn/Jq4I+tcuXKzJ07l4ULFxIXF0fFihUZPHhwmjGbN2/G2toad3d3hVIK8W5kJYwQQgi9cnZ2pnr16qxYsULpKNlGQEAAEydOJDExMcPVaDly5ODnn3/G29sbgJs3b7Jz505q1qyJs7OzEpEV8ezZMwYMGMDBgwd509sbY/o2PiNTp07lr7/+ynLMN998o/3Qc/XqVf755x88PT2pWbOmPiLq3fus7oCMt54KIYQQ/yVFGCGE+EAuXbrEtm3baNSoUaYnRZ09e5bdu3fTtGlTypQpo+eEhqFWrVrUq1fvjceei7RiY2NZvXo1ERER3L17F3jVuNDV1ZX27dsbde+AVL/++it///03pUuXplOnTpQsWTLN6Rr/9akWE3R18uRJ/P39M3xN+fj4UKVKFYUTCiGEEJ8eKcIIIcQHMmrUKNatW8fOnTspVKhQhmPu3LlDo0aN8Pb2ZtSoUXpOaBi+/vprHj16pO0zIcSHUq9ePeDVEvXcuXMrnEYIIcS7evjwIdeuXaNUqVLY2Nhor8fExDB16lQuXryIvb09/fr1o3LlygomFeLtSU8YIUSWgoOD32p8mzZtPkqO7CA8PBwnJ6dMCzAAhQoVwsnJiSNHjugxmWHp2bMnfn5+BAcHG/XrRXx4T548wcPDQwowQijk1KlTbNu2jWvXrpGQkJDhtkCVSsWyZcsUSGc4Xrx4wZkzZ7h7926aU+3+y5j/jVywYAHLli1jw4YN2iLM8+fP8fHx4e7du2g0Gi5dusSxY8dYv349xYoVUzixELqTIowQIkvDhg3TqTFvand/Y37DcOfOHZ16ChQvXpz9+/frIZFhMjc3p2PHjgwfPpzNmzfTuHFj7O3tyZkzZ4bjpbHh/1Gr1cTFxWX5pt2YtyWVLl2ap0+fKh1DfCIiIiJYvXo1HTp04LPPPstwzPHjx1mzZg2dO3c2+m/jx48fz8qVK9Ocmvh6ESb1sbE3+583bx4LFy5Mc/z7f8l7qldfbJUqVYqyZctqr61fv547d+7QoEED+vbty969e5kzZw7Lli1jxIgRCqYV4u1IEUYIkaV+/fpl+IYpJSWFW7duceTIEWJjY2nXrp32dA1jpVKpsvxwnCopKUl75KIx6tq1q/bN+L59+95YkDLm5qmpwsPDmTNnDidOnODly5eZjjP2I019fHwYP348V69epXTp0krHMWhXr17lr7/+Ijw8nLt372b6ujLm11RAQADbtm3jp59+ynSMg4MDmzZtAjDqIkxQUBD+/v44OzszdOhQAgIC2L59O1u3buX69euEhISwefNmevfuTceOHZWOq5gVK1YwY8YMTExM8PDwwMHBgVy5cikdyyDdvn2bSpUqpbm2d+9eTExMGDt2LIUKFaJy5cps3bqVQ4cOKZRSiHcjRRghRJYGDBiQ5f2kpCTGjx/P7t27Wbt2rZ5SGaaSJUsSERFBYmIiOXLkyHBMYmIiERERRr1sVo49fzsHDx6kV69eJCcnkydPHsqWLStv2jPRoUMHrly5QteuXRk4cCD16tWjcOHCSscyOGfOnKFr1668ePECjUZD3rx5KVCggNKxDM6JEydwdnYmX758mY7Jnz8/FSpUICIiQn/BDNDq1avJkSMHCxcuxNbWlg0bNgBQqlQpSpUqRf369alTpw6//PIL1atXp2jRogonVsY///yDubk5y5cvp1q1akrHMWhPnjzB2to6zbUTJ05Qvnz5NNu+y5UrZ9Sri0X2JEUYIcR7sbCwYOTIkezdu5dp06bx+++/Kx1JMY0bN2b27NmMGzeO8ePHY2Jikua+RqNh/PjxPH78mM6dOyuUUnnG/Bp5F7NmzUKtVjN48GB69OiBubm50pEMVupx3BqN5o2Nr415hce0adN4/vw5nTp14rvvvkvT9FL8n7t37+q0usXe3p4LFy7oIZHhunTpEtWqVcPW1jbN9de3H7Vr146lS5eycOFCbRNtY3Pz5k2qV68uBRgdFChQgDt37mgfX7x4kUePHtGiRYs04/77XkuI7ECKMEKI92ZhYYGLi4vRfxPRrVs31q1bx7p16zh9+jStW7emVKlSAFy7do2QkBAuXrxIkSJF6NGjh7JhRbZx/vx5XFxc6NWrl9JRDJ6xb4nUVWRkJOXKlWPMmDFKRzFoFhYWPHny5I3jEhISjH51X2JiYpoCTGqPrydPnpAnTx7tdUdHR6N+r5AnTx7y58+vdIxsoVy5coSFhXHmzBlcXFxYsmQJKpUqXQEvOjqaggULKpRSiHcjRRghxAfx/Plznd6sfspy587N4sWL6d+/PxcvXmTKlClp7ms0GsqWLcusWbPSvCk1dteuXSMuLo58+fJJH48MmJubU6JECaVjZAu7du1SOkK2oNFocHR0VDqGwStTpgzHjx/nyZMnmZ64FR8fz/Hjx43+Z1fBggV5+PCh9rGdnR0AV65coWrVqtrr9+/fN+qeaPXq1ePIkSOkpKTICo436NatG/v27aNjx47kzp2b+Ph4SpQogbu7u3bM48ePiYqKokmTJgomFeLtyd9+IcR7i4iI4OjRo/JBkVf730NCQpgxYwYdOnSgbt261K1blw4dOjBjxgzWr19v9G/W4VUvoWnTpuHm5kbTpk3x8fFhwYIF2vvBwcF4eXkRFRWlYErDULlyZa5evap0DPEJcXZ2JjY2VukYBu/LL7/k6dOnDBkyJMOTbJ4/f87QoUN59uwZzZo1UyCh4XBwcOD69evax9WrV0ej0bBw4ULtCUnh4eEcPXoUBwcHpWIqbtCgQSQlJfHrr7/q1MjfmLm7uzNmzBgKFy5MUlISrq6uzJ49GzOz/1tDsH79epKTk6lVq5aCSYV4eyrN62fHCSHEf8yePTvTe0+fPuXq1ascOHAAtVrNyJEj8fHx0WM6kR0lJibSvXt3IiMjsbW1xcXFhT179uDl5cXEiROBV8d9169fn969ezNo0CCFEyvrxIkTdO3alYkTJ9KyZUul44hPwN69e/n2229ZunSpfHjJQlJSEh07diQqKgpbW1u++OKLNFtMQ0NDuX//PuXLlycwMDDThuzG4O+//+bXX38lICBAu/KlY8eOnD59GltbW+zs7Lh48SJqtZqpU6fStGlTZQMrZPbs2cTGxhIUFESRIkWoVasW9vb2GW5nU6lU9OvXT4GU2ceLFy94+fIlVlZWmJqaKh1HCJ1JEUYIkSUnJyftccKZsbS0pHfv3nz77bd6TCayq3nz5jFjxgy8vLwYPXo0OXPmxMnJKU0RBqB58+ZYWVmxevVqBdMq7+jRo+zevZulS5fy5Zdf4uHhQZEiRTJdyl6jRg09JzRcT548ISEhIdOfX/b29npOZBhiY2MJCAhg2bJl+Pr6vvE1ZazzBPDw4UOGDh1KWFgYgPbDcupryt3dncmTJ6drSGts4uPjiYiIoEyZMhQvXhx4tfVoxIgR7N+/n5SUFPLkyUPv3r3x8/NTOK1ydHlPlUqlUnH+/Hk9pBJC6JsUYYQQWQoKCsr0nrm5OXZ2dlSqVAlLS0s9pjIMqcv5CxUqhKmp6Vsv7zfWDzYtWrTg6dOnhIaGak/6yagIM2DAACIjI426iSOkf9P+pgagxv6mPS4ujhkzZhAaGkpcXFym44z5dKTXX1Nvej0Z8zy97syZMxw8eFD7c97e3p46derg4uKicDLDl9ozrkCBAkbfByWr91QZ8fLy+khJsg+1Ws2ePXs4deoUcXFxVK5cmfbt2wOvVs3GxcVRtmzZNNuUhDB08moVQmRJ3gBkrlGjRpiYmLBp0yZKly5No0aNdD4hw5g/2Ny4cQMPD483HrVsYWHBo0eP9BPKgLVp08boT17RVVxcHB06dCAmJoaCBQtiY2PDgwcPqFq1KtHR0Tx8+BCVSkXVqlWN+g27rJZ6ey4uLlJweUeWlpZG+UVNRuQ91duJiIjghx9+4NatW9qi8cuXL7VFmBMnTjBo0CBmzpwpzXlFtmK870CEEOI9pX6QSX1zKR9sdGNhYcHTp0/fOC4mJibTE0mMye+//650hGxjwYIF3Lx5k759+/Ldd98xfPhwgoODCQgIACAsLIwxY8ZgZmbG4sWLFU6rnBUrVigdIVvw9fWlXr16fPPNN1mOW7RoEXv37mX58uV6SmbYbt26xfHjx7l9+zbwarWoq6ur0a7+FO/mypUr9OzZk6SkJLp06UL16tX5/vvv04xp1KgROXPmJDQ0VIowIluRIowQQieyHDS9/36QkQ82uilbtixnzpzh8ePH5M2bN8Mxd+7c4fz581LYEm9l9+7d2Nvb079//wzvu7u7s2jRIpo3b86CBQuk6aXIUnh4OEWLFn3juKtXr3L06FE9JDJs9+7dY/z48ezYsSNdzxOVSkWjRo0YOXIkhQoVUiihyE7mzp3L8+fPmT9/PvXr189wjIWFBc7Ozka7slhkX8bzaUkI8c5kOaj4kLy8vBg1ahTDhw/nf//7H7ly5UpzPykpidGjR5OUlETbtm0VSimyo1u3buHu7q7tO5H6/y9fvtRufytRogQ1a9Zk06ZNUoQRH0RSUpLRn8zy8OFDOnXqRExMDBYWFtSqVUtbwIqJieHIkSPs2LGD8+fPExgYaLSNjIcPH67zWJVKxW+//fYR0xi2w4cPU6lSpUwLMKmKFCnCpUuX9JRKiA9DijBCiCzJclDdydJ13bRv356tW7eya9cuvvjiC+0RuWfOnOHnn39m//793Lt3jwYNGtCsWTOF0+pfcHAwAJ6enlhbW2sf66pNmzYfPFN2YWFhgYWFhfZxaoHv4cOHab59z5s3L8ePH9d7PqWkrtKoXLkyOXLkeOtVG7IiLXMpKSmcPXvWaIsKqaZPn05MTAyenp6MGjUKOzu7NPfv37/PuHHjCA0NZebMmYwdO1ahpMp6U2Pe10/fMvYizKNHj3T62fPixQuSkpL0kEiID0eKMEKILMlyUN3J0nXdmJiYMH/+fCZPnsyqVavYtGkTAJcuXeLSpUuYmZnh4+PDsGHDFE6qjGHDhqFSqahSpQrW1tbax2+S+qbdmIswhQoV0vahAChVqhTwarXel19+Cbyap7Nnz2a6Fe5T1LVrV1QqFZs3b6Z06dLax7oyphO3fH190zzev39/umup1Go1169f58GDB0bfcHX37t3Y2dkxderUNIXQVAUKFGDKlCl4enqya9cuoy3CZPblS0pKCrdu3WL//v1s2bIFPz+/N64A+dTZ2Nhw48aNN467evWqbHET2Y4UYYQQWZLloB+eLF1/Vbj75Zdf6Nu3L+Hh4dy8eZOUlBSKFCmCm5sbBQsWVDqiYvr164dKpSJ//vxpHos3q1KlClu2bOHFixfkzJmTBg0aMGHCBCZOnIilpSWFCxfG39+f6OhovvjiC6Xj6k3qCVupja7lxK3MhYeHa3+tUqm4f/8+9+/fz3S8mZkZjRo1YujQofqIZ7AeP36Mp6dnhgWYVBYWFri6urJz5049JjMsNWvWzPK+l5cXderUYcyYMUa9shjA1dWVrVu3EhkZSdWqVTMcs3//fq5cuULHjh31G06I9yRFGCFElmQ56IclS9fTsrGx0a5QEK8MGDAgy8cic56enuzcuZMDBw7g6emJvb09PXv25M8//+Tbb78FXq2Esba2ZsiQIQqn1Z//nrAlJ25lLrVAoNFo8PT05IsvvuDHH3/McKy5uTk2NjZG1ZA+M/b29iQkJLxx3NOnT+WUpDdo3749S5YsYdasWSxatEjpOIrx8/MjNDSUPn36MHLkSBo1aqS9l3pYxOjRozE3N6dbt24KJhXi7cm/GkKILMly0KzJ0nUhDEfDhg05fPhwmmuDBg3C2dmZ0NBQHj9+TOnSpfH19aV48eIKpRSG7PUtpf3798fZ2VmnbabGrk2bNsybN49r165ptwH+17Vr1zh8+LC2ICoyV7ZsWcLCwpSOoSgXFxdGjRrFuHHjGDJkCKamptptlZs2beLly5eYmJgwfvx4ypQpo3RcId6KFGGEEFmS5aBZk6Xr7y42Npbw8HDu3r2b6SoqlUolJ9iI9/bll1/Kiivx1jI76lyk980333DmzBm++uor+vfvT4sWLbC2tgZerX7ZuHEjc+bMwcPDg969eyuc1vDFxMSgVquVjqE4b29vnJ2dWbBgAQcPHuTZs2ckJiaSI0cOPDw86Nu3L1WqVFE6phBvTaXRaDRKhxBCGK4zZ87g7e1Nnjx5tMtBq1atipeXF7/++qt2Oejjx48JDg42um8jYmJiAFm6/jbUajWjR49m3bp1aDQasvpnSKVSGVVTUIDZs2e/83OlaCXehhRCxbtq3LhxumsajYbY2Fhtv6E8efIAEB8frx1TpEgRTExM2LFjh36CZjNqtZrFixfzxx9/UL16df7++2+lIykmKioKExMTHB0dgVevr7i4OFJSUsifP7/R99YT2ZsUYYQQb7Rq1SrGjRtHSkoKpqamqNVqLCws0Gg0aZaDtm3bVumoipo9ezZOTk54enoqHcWgzZo1izlz5pArVy5at26Ng4OD9ijhjBjb1i0nJydUKlWWxanMGGPRKiOXL18mMDCQkydPEhcXR+PGjbXF0YiICM6cOUOrVq3Ily+fskEVIoXQjDVu3BiVSsWSJUsoXrx4hoWGzKhUKqMqLDg5Ob3X86Oioj5Qkuwls+3K8GrF0M2bN4mPj8fU1JSFCxfi5uamx3SGxcnJyegLUeLTZdxfxwohdCLLQXUjS9d1s379eqysrFi3bh0lS5ZUOo7BmThxotIRsrXly5czefJkkpOTgVcfjuPi4rT3NRoNEydOJEeOHHh7eysVU1Fz585lzZo1OhdCjUXqysbU107qY5GesRZR3tfrW5gzYmZmRo0aNRgwYIBOhyJ8yvLmzUvhwoWVjiHERyFFGCFEllJSUjAxMaFy5crMnj07y+WgDx48MOpTfx4+fKhtSmhjY6O9HhMTw9SpU7l48SL29vb079+fSpUqKZhUWXfu3KFOnTpSgMmEsa38+ZD279/Pb7/9hr29PcOHD8fV1ZU6deqkGePq6kr+/PnZuXOn0RZhpBCasf8WFqTQID60rI7nNjc3J3/+/Jibm+sxkeGqWLEiV65cUTqGEB+FidIBhBCGbeTIkWkeq1QqbGxsKFCgQJoCzMOHD43+iMAFCxbQpUsXHj58qL32/PlzfHx82Lx5M5cuXWLv3r10796dmzdvKphUWba2tuTIkUPpGOITtGTJEnLmzMnixYtp0qRJmmLo65ydnbl69aqe0xmOO3fuUKNGDSnAiA9m9uzZWRYYUu3ateu9+l5ld0WLFs30f3Z2dlKAeU3Pnj05f/48wcHBSkcR4oOTlTBCiCytXbuWggUL8v3332c6Ji4ujm7dunH58mX9BTNA4eHhlCpVirJly2qvrV+/njt37tCgQQP69u3L3r17mTNnDsuWLWPEiBEKplWOp6cnW7Zs0W5pE1n79ddfcXNzo0aNGuTNm1fpOAbtzJkzVKlSJdMjclPlz5+fiIgI/YQyQFIIzVpYWBjbtm0jNjYWCwsLnJ2dad++PUWKFFE6msGaPXs2Xl5eb+yjs2vXLtauXSvbd8UbmZub07FjR4YPH87mzZtp3Lgx9vb25MyZM8Pxxr59S2QvUoQRQmSpevXq/PnnnxQsWJAuXbqku59agLl06VKWDeeMwe3bt9NtM9q7dy8mJiaMHTuWQoUKUblyZbZu3cqhQ4cUSqm877//nkOHDjF48GDGjx+f6WoF8crff/+Nv78/KpWK8uXLU6tWLWrVqkWNGjW0R8CKV168eKFToSouLk57gosxkkJo5kaNGsXq1asBtA2Ld+/ezeLFi5k9ezbu7u5Kxsv21Gq1Uf/dO3XqFIcOHeLff//l8ePHqFQq8ubNS7ly5ahduzYuLi5KRzQYXbt21Tap37dvH/v3789yvLE0EBefBinCCCGyNG/ePHx8fJgwYQK2trZ8+eWX2nuPHj2iR48eXLx4ka+++oqff/5ZwaTKe/LkSboPxSdOnKB8+fIUKlRIe61cuXJvfDPxKRk+fHi6a6VKlWLnzp0cPnyYihUrYm9vn+Ebc5VKxW+//aaPmAZr2rRphIeHc/jwYc6fP8/58+dZtmwZJiYmODs7a4sy1atXx8rKSum4iipSpAgXLlzIcoxarebSpUtGvRVHCqEZ27x5M4GBgQDUrFmTihUrkpCQQFhYGLGxsfzwww/s3LnT6P+evY8bN26QO3dupWPo3ZUrV/j55585efIkQLoTyVL//atevToTJkygRIkSes9oaNq0aWPUBTvxaZMijBAiS7lz52bRokV4e3vz448/kj9/fmrVqsXjx4/p0aMHUVFRdO7cmV9++UXpqIorUKAAd+7c0T6+ePEijx49okWLFmnGmZgYVzuuoKCgTO89ffo0y9MipAgDTZs2pWnTpgDcu3ePI0eOcOjQIY4cOcKZM2c4c+YMixcvxtTUFBcXFwICAhROrBwPDw/+/vtvVq9eTYcOHTIc4+/vz71792jfvr2e0ylHCqG6WbNmDSqVinHjxqV5/SQmJtK3b18OHjzIzp07admypYIpDcd/e7tERUVl2u9FrVZz+fJljh8/Tr169fQRz2CkflEVHx+PSqWiYsWKODs7kz9/fu1hB+fOneP8+fMcPXqUjh074u/vT5kyZZSOrqjff/9d6QhCfDQqzX9LsUIIkYHLly/j4+NDSkoKM2fO5H//+x/nzp2jY8eOjBs3Tul4BqFXr16EhYWxatUqXFxcGD58OMHBwcyfP5/69etrx7Vv356EhAS2bt2qYFr9edORnG9Ss2bND5Tk0xMTE8Py5csJCAggMTERlUpl1Euy7969S8uWLXny5AkdO3akSZMm+Pn54enpSffu3dm+fTv+/v7ky5ePDRs2kD9/fqUj64WTk9M7P9eYXlO1a9fGzs6O9evXp7t3/vx5vLy86NGjBz/99JMC6QyPk5OTdrtI6v+/SYECBVi4cOF7vSazmzZt2hAVFUWdOnUYNWpUpj2rrly5wrhx47SF0bVr1+o3qBBCb6QII4TQWWRkJN27dycxMRGNRkPbtm2N5htSXYSFheHn54eJiQm5c+cmPj6eEiVKsGnTJszMXi08fPz4Me7u7jRp0oRp06YpnFhkR1evXuXIkSMcPnyY8PBw4uLi0Gg05MiRg2rVqrF06VKlIyrq1KlT9OvXj3v37qVb2aHRaChYsCDz5s0zqt4LUgjVTYUKFWjatCl//PFHunsvX76kUqVKtG/fnl9//VWBdIYndZWjRqPh559/xtXVNdMVZubm5tjZ2VG1alUsLCz0GVNRBw8e5Ouvv6ZmzZosW7bsjdtrUlJS6NatG8eOHWPx4sXUrl1bT0kNw7Nnz/jzzz/TNcb+6quv+OKLL5SOJ8QHI9uRhBA6q1q1KjNmzKBfv360bNlSCjD/4e7uzpgxY1iwYAFxcXG4uroyevRobQEGXp2WlJycTK1atRRMKrKT2NhYDh8+zOHDhzly5Ah3795Fo9FgZmZGlSpV6NSpE25ubkb34SYzqc2v165dS1hYGDdv3iQlJYUiRYrg7u6Ot7e30TU0NpYiyvtKSUnJ9O9Q6tHBarVan5EMmpeXl/bXQUFBeHh4pLkmYNu2bahUKoYPH65TfxMTExOGDRtGu3btCA0NNaoiTFJSEl27duXcuXPaVVVJSUkcPXqUY8eOMWjQIHr16qVwSiE+DFkJI4RIw9nZ+Z2fq1KpOHfu3AdM8+l58eIFL1++xMrKClNTU6XjKOLWrVscOXKEKlWqULp06QzHXLlyhVOnTuHm5kbhwoX1nNCwpP6dNDU1pUKFCtSqVQs3NzdcXV0zPapTCPH2nJyc8PLyYuLEie90X4j/at++PQ8fPmTXrl1v9bxGjRpha2urPanLGPz111/88ccfWFtb0717d21j7J07d7J161bMzMzYuXNnmoMOhMiuZCWMECKNIkWKKB3hk5YzZ06j/+C8bNkyli1bxpYtWzIdk/ptoJ+fH0OHDtVjOsOT+l1JqVKlcHNz0xZg5Ghh8a6kEJq5/fv34+vr+9b3VSoVy5Yt+5jRso2oqChOnTpFXFwcZcuWpXHjxsCrVQ1JSUlGtRLt1q1bVKpU6a2f5+joyOnTpz9CIsMVGhqKmZkZy5cvp0KFCtrrLVu2ZNKkSSxdupQdO3bQpUsXBVMK8WFIEUYIkcbbflsjMnb8+HGOHTvG7du3AShUqBDVq1enevXqCidTXlhYGI6Ojpk2J4RXBQdHR0cOHDhg9EWY8ePHa7ciLViwgL/++gtzc3OqVKmiXRVTtWrVNNvexP/RaDTs27ePK1euYGlpSb169ShatKjSsRQlhdDM3b9/n/v377/1fTlKF65du8awYcO0xzDDq6a0qUWYkJAQRo4cyYIFC4zmhKSEhATy5Mnz1s/LkycPCQkJHyGR4bpy5QpVq1ZNU4BJ1aVLF5YsWcLVq1cVSCbEhyfv2IQQ4gP6999/+fHHH7WniaSuYkh9g+7s7MykSZMoV66cYhmVFhsbi7u7+xvHlSpVisOHD+shkWHr0KGD9rjcy5cvawsyR48e5ejRo8yZM4ecOXPy2WefUbt2bXr27KlwYv1KSkrin3/+4ejRoyQnJ1O2bFk6d+5M0aJFuX//Pn5+fly8eFE73tTUlOHDhxv1t6lSCM2YbDN6d3fu3OGrr77i/v37NGzYkBo1ajB58uQ0Y5o2bcrYsWPZvn270RRhEhMT32nrsampKUlJSR8hkeF6+vQpxYoVy/BeauH82bNn+owkxEcjRRghhPhAbty4QZcuXXj8+DG2trY0adJE+8YhJiaGHTt2cO7cOb766ivWrFlD8eLFFU6sjJSUFJ3HJiYmfsQk2U+ZMmUoU6aMtoAQFRVFUFAQAQEBhIWFcejQIaMqwiQmJvLVV19x5swZbcFzz549rF69mlWrVjFu3DguXLiAjY0NRYsW5ebNm8TFxTFhwgQqVapE5cqVFf4TKEMKoRmTprLvbu7cudy/f5+xY8fi7e0NkK4IkytXLpydnYmMjFQgocgOMltRlnpdWpmKT4UUYYQQb+XJkyckJCRk+g+hvb29nhMZjunTp/P48WO++uorhg4dmq5nx88//8zkyZP5+++/mT59eobHoBqDokWLEhkZiVqtzvQbQrVaTWRkpFH1otDVgwcPtEdUHz58mBs3bqRbcWUsli1bxunTp7G1tcXb2xtbW1tOnz5NSEgI48eP59ChQ/Tt25cBAwagUqnQaDRMnz6dP//8k7///jvdh0RjIYVQ8aHt27cPR0dHbQEmM0WLFuXgwYN6SmUY3tRnKCNXrlz5SGmEEIZAijBCiDeKi4tjxowZhIaGEhcXl+k4Yz8d6eDBg5QsWZIRI0Zk+GHYwsKCESNGsH//fqN7E/q6evXqsXTpUmbPns3AgQMzHDNnzhzu3btH165d9ZzO8MTHxxMeHq4tuly+fBl49Y2gSqXCycmJWrVqUatWLWrUqKFwWv3aunUrFhYWBAYGpunz4uDgwNSpUylatKi2AAOvfkYNHDiQDRs2cPz4caViK04KoeJDu3fvHlWqVHnjOLVazfPnz/WQyHC8qc9QZoytqA4QHBxMcHBwhvdUKlWm9439/afIfqQII4TIUlxcHB06dCAmJoaCBQtiY2PDgwcPqFq1KtHR0Tx8+BCVSiWNQYHnz59Tp06dLN84qVQqXFxc2Llzpx6TGZavv/6adevWMX/+fM6ePUvbtm21vSmuXbtGUFAQ+/btI0+ePPj5+Skb1gDUqlUL+L+iS9myZbUNeWvUqEHevHkVTqica9eu4erqmq7RbuvWrZk6dSqOjo7p/j6amJhQvnx5wsLC9BnVoEghNGOzZ89+5+eqVCr69ev3AdNkL3ny5OHOnTtvHBcdHY2tra0eEhkG6TP0dt51u5FsUxLZjXF/YhJCvNGCBQu4efMmffv25bvvvmP48OEEBwcTEBAAvGrwOGbMGMzMzFi8eLHCaZVVsmRJHjx48MZxDx48oESJEnpIZJgKFizIn3/+Sb9+/di3bx/79+9Pc1+j0WBra8usWbMoVKiQQikNR+rR1LVq1aJmzZrY2NgoHclgPHv2LMPXiJ2dHQD58uXL8Hn58uXj5cuXHzOaQZNCaMZmz56t3bb2toy9CFO5cmUOHDjA5cuXKVOmTIZjTp06RVRUFC1atNBzOuVInyHdGfOXU8L4SBFGCJGl3bt3Y29vT//+/TO87+7uzqJFi2jevDkLFiww6jeh3t7eTJgwgcjISKpWrZrhmMjISI4ePcrPP/+s33AGpmrVqmzbto1Vq1Zx8OBBbt26BUCRIkVwd3enQ4cO5M6dW+GUhiGrY4RFxkv2jXEZ/9uQQmjGZNXCu/P19WXPnj3069ePyZMnp2t6HRUVxY8//oiJiYlRra4SuvvvikYhPmVShBFCZOnWrVu4u7tjYmICoP3/ly9fYm5uDkCJEiWoWbMmmzZtMuoijI+PD9euXePrr7+mS5cutGjRQvumIjY2lo0bN+Lv70+XLl2M+njc5cuXY2lpSYcOHfDz8zOqb9qFMBRSCE1PVi28uzp16vDtt98yf/58vL29KViwICqVij179uDp6UlMTAwajYaBAwfq1DtGCCE+ZVKEEUJkycLCAgsLC+3jXLlyAfDw4cM035DmzZvXqBtdAjg7OwOvvkVeuHAhCxcuTDdGo9GwYsUKVqxYkea6MTWV+/333/Hw8KBDhw5KR8mW5ISytKKiojLt5ZHZvfPnz3/sWAZNCqHiY/j++++pUKEC8+bN0/4di4uLIy4ujrJly9K/f3++/PJLhVPql/QZEkJkRIowQogsFSpUiNu3b2sfp/YNOHHihPbNlEaj4ezZs0bdIBRefYMs3szGxgYrKyulY2QrckJZ5qKiooiKisrw3vnz5zO8l9rk2FhJIVR8LJ9//jmff/45Dx8+5ObNm2g0GgoXLpzmS5vnz59jaWmpYEr9kT5D7+fRo0f4+/sTHh7O3bt3SUpKynCcSqVix44dek4nxLuTIowQIktVqlRhy5YtvHjxgpw5c9KgQQMmTJjAxIkTsbS0pHDhwvj7+xMdHc0XX3yhdFxF7dq1S+kI2YKbmxsRERFZHo8r/o+cUJY52T7ybqQQmrHhw4e/83NVKhW//fbbB0yTvcyaNYsBAwZoH9vY2GTYRPz58+f06tUr3WrQT5X0GXp30dHR+Pj48ODBAzn9SHxyVBp5VQshsrB7926GDx/Or7/+iqenJwDTpk3jzz//1H6TrNFosLa2JigoiOLFiysZV2QDN27coF27dnz55ZcMHz7caL4RfVeTJk1iyZIl6U4oS13un3pCWeHChVm8eLG2V5MQmfnhhx+IiIhg+/btUgh9jZOT0zs/V6VSGfU2NycnJ8aOHYu3t3emYxITE+nZsyfHjh0z6rkSuvnuu+8IDQ2lYcOG9O3bFwcHB+2WeCGyOynCCCHeydatWwkNDeXx48eULl0aX19foz52Wehu9uzZXL16lc2bN5MvXz7q1KmDvb09OXLkSDdWlmPDl19+SVJSEjt27MDExCRdEQZefWPYvHlzvv32W6OfL/FmUgjNWHh4+Hs9v2bNmh8oSfbTvHlzrl27xowZM7Rf2LwuMTGR3r17c/jwYT7//HNmzpypQEqRndSqVYs8efKwZcsWo1vlKT59UoQRQoh3FBsbC7zqm2Nqaqp9rCtja6CaysnJSec98sb+7TK82hLo7u7O3LlzARgxYgTr1q3j1KlTaVa9+Pn5cevWLTZv3qxUVIOTlJTEo0ePsLCwIF++fErHMRhSCBUf2u3bt/H29ubRo0csWrSI6tWra+8lJibSp08fDh48SJMmTZg+fbqswBJvVLVqVRo2bMi0adOUjiLEBydlRSGEeEeNGjXCxMSETZs2Ubp0aRo1aqRzs09jbKCaSvbIvx05oeztBQYG8s8//3Dx4kVSUlJo06aN9nW3bds2NmzYwNChQylZsqTCSZXxerPQuLg4Nm3alOlYKcIIXRQuXJhFixbh4+NDv379WLFiBY6OjiQlJdG3b18OHjxIo0aNjK4AI32G3l2ZMmWybEQvRHYmRRghhHhHNWrUANAu5U99LLL2Ns1UDx069BGTZA9yQpnuUlJS+P7779m+fTtmZmY4ODhw6dKlNGPKly/PwIEDcXFx4dtvv1UoqbKkECo+hrJlyzJv3jz8/Pz45ptvWLp0KRMmTCAsLIwGDRowc+ZMoyrAAAQFBb3zc429CNO1a1d++eUXLl68iKOjo9JxhPigZDuSECKNxo0bv/Nz5YhA8SFcv36doKAgQkJCuH37ttGuGEo1YsQItmzZwsGDB8mZMyexsbE0adKEAgUKMG7cOO0JZatXr+aLL75g+vTpSkdWjL+/P+PHj6du3bpMnDiRggUL4uTkhJeXV5rCQ5MmTShYsCArV65UMK3ILk6dOsW2bdu4du0aCQkJGW6lVKlULFu2TIF0hmfHjh0MHDgQlUpFcnIy9erVY86cOWlW9BkL6TP0fqZNm0ZgYCADBw7Ew8PDaLdxi0+PrIQRQqQRExOjc7+O/9J1K46xi46O5tmzZ+91EsenJiEhgc2bN7Nu3TpOnjwJvFrdYWtrq3Ay5Xl6erJz504OHDiAp6cn9vb29OzZkz///FO7kiP1hLIhQ4YonFZZa9euxcbGhunTp2NtbZ3puHLlyhl9cU/oZvz48axcuVL7b+J//31MfSz//v0fT09PxowZw8iRI3F3dzfaAgxIEeVtODs7Z3hdo9EwduzYLJ9rzFu8RfYkRRghRIZcXFxo06YNtWvXljeXH9jQoUM5ffq00b9h0Gg07N+/n+DgYHbt2kViYiIajQYrKys8PT1p2bIlderUUTqm4ho2bMjhw4fTXBs0aBDOzs7pTigz9iPir169ipubW5YFGAArKysePHigp1QiuwoKCsLf3x9nZ2eGDh1KQEAA27dvZ+vWrVy/fp2QkBA2b95M79696dixo9Jx9UqXVbNmZmZcunSJpk2bprkuq2ZFRooUKaJ0BCH0RoowQog0Ro4cSXBwMKdPn+bs2bPY2dnRqlUrWrduTdmyZZWO98kw5p2g//77L0FBQWzYsIF79+6h0WgwMTHB3Nycly9fcujQoQxPaRFpffnll9qeMOKV1O0Pb3L79m2srKz0kMiw3blzh507d75xm42x9qVYvXo1OXLkYOHChdja2rJhwwbgVV+mUqVKUb9+ferUqcMvv/xC9erVKVq0qMKJ9ScmJkancXfv3v3IScSnYteuXUpHEEJvpAgjhEijS5cudOnShStXrhAUFMTGjRv566+/WLhwIRUqVMDLy4vmzZuTP39+paOKbOTRo0ds2rSJdevWaVcAaTQaypYtqy3yDRo0iBMnTkgB5j9q1qxJuXLl8Pf3VzqKwStdujTnzp3jxYsX5MyZM8Mxjx8/5vz581SoUEHP6QzL4sWLmTp1Kmq1Wnvt9S03qY+NuQhz6dIlqlWrlm5b5Ovbj9q1a8fSpUtZuHAh9erVUyKmIqKiopSOkK1JnyEhjJsUYYQQGXJwcGDIkCEMHjyYw4cPExQUxPbt2/n111/5/fff8fDwoHXr1jRq1Ahzc3Ol4woDNmDAAPbs2UNycjIajYb8+fPTvHlz2rRpg4uLi9LxDN7Lly8pXLiw0jGyhaZNmzJlyhR+++03xowZg4mJSboxkyZN4tmzZ7Ro0UKBhIZh9+7dTJ48mSJFitC3b1+2bt3KwYMHWbRoEdeuXWPjxo2cOHECPz8/6tevr3RcxSQmJqYpwKQW9p48eUKePHm01x0dHdm/f7/e84nsSfoMCSHSvzsRQojXqFQqateuzeTJkwkLC2PixIm4urqyZ88evv/+e5o1a6Z0RGHgtm/fTnJyMnZ2dsyaNYv9+/fzyy+/SAFGR6VLl5b+JTrq2rUrzs7OrF69mjZt2jBt2jTgVa+YOXPm0LZtW9atW0flypVp166dwmmVs2LFCszMzFi2bBkdOnTAzs4OAHd3d7p06cI///xD//79WbZsWaYrioxBwYIFefjwofZx6jxduXIlzbj79++TkpKi12wie0rtM+Tk5MTixYv5/PPPAdi6dSt//vknzZs3B6B3795G3zdn7969+Pr6puuJ9rpDhw7h6+vLgQMH9JhMiPcnRRghhM6srKzw8vJiwIABuLu7o9FoSEhIUDqWMHCmpqZoNBru3r3L2LFjmTJliixlfwvt27fn2LFjMmc6yJEjB4sXL6Z+/fpcvHiRP//8E4DIyEhmzZrFuXPnqF+/PgsWLMDMzHgXA589e5aqVatSokSJTMf069ePIkWKMG/ePD0mMywODg5cv35d+7h69epoNBoWLlyoXbkQHh7O0aNHcXBwUCqmQYiOjmbDhg3cvHkzzfXTp0/TqVMnqlWrRosWLYy+78frfYbq1KlDrly5ALQ9hv744w9+/fVXFixYkK7YZ2zWrFnD2bNnqVy5cqZjqlSpwpkzZ1i7dq0ekwnx/oz3HYgQ4q3cuHGD9evXExISwo0bN7T9PNq3b690NGHg9u3bR0hICMHBwVy4cIGlS5eybNkyypUrh5eXFy1atKBgwYJKxzRYPj4+XLp0iW7duvHNN9/QuHFjihYtarRHvr5J/vz5mT9/PlFRUYSFhXHz5k1SUlIoUqQI7u7uVKpUSemIinv27BmFChXSPk59LSUkJGhPllKpVFSqVIlDhw4pktEQ1K9fn/379xMZGUnVqlWpUaMGlStXZufOndSrVw87OzsuXryIRqOhR48eSsdV1OLFi1m1alWa1RuPHj3Cz8+P+Ph44FVT9u+++45169bh6OioVFRFSZ8h3Z09exYnJ6csm6hbWVnh7OzMqVOn9JhMiPcnRRghRKYSEhLYvHkzwcHBnDhxQtvPo0uXLtLPAxg+fPg7PS86OvoDJzFstra29OjRgx49ehAVFcW6devYtGkTFy9eZPLkyfzxxx+4ublx+/ZtpaMaJGdnZ+DVm/Q//viDP/74I9OxKpXK6I8+T+Xk5ISTk5PSMQxSgQIFePToUZrH8Opn0+sNi+Pj43nx4oW+4xmMVq1aUaxYsTQfmOfOncuIESPYv38/9+/fJ0+ePPTu3TvdMczG5vjx4zg6OqY5ISooKIj4+Hg6dOjAoEGD2L17NyNGjGDp0qVG2+xZ+gzp7v79+1SrVu2N4woXLsyZM2f0kEiID0eKMEKINFJSUti3bx/BwcHs3r2bxMREzM3NadKkCa1bt6Z+/fpGvYz/dUFBQeka6unKWBvuOTk58fPPP/PTTz+xb98+goKC2L17t3Y/t0qlYvjw4bRo0YI6deoY7Ty9rkiRIkpHEJ+YEiVKpNk2UqVKFTQaDQEBAYwbNw6Ay5cvc+TIEcqUKaNUTMXlyZOHBg0apLlWoEAB/vzzT54/f86TJ08oUKBAhg2gjc29e/fSfWA+cOAAZmZm/PDDD+TNm5d27drh7+9PRESEQimVl1WfoapVq2qvS58hsLS0TDNXmXn48KEcECGyHfkkJYRIo169etp/9KpUqUKbNm1o1qxZmm9oxCv9+/dXOkK2ZWpqSsOGDWnYsCGPHz9m48aNrF+/nlOnThEUFERwcDC2trY0b978nVccfSqMvYfC29iwYQPTp09nzJgxmS7j379/P2PGjGHIkCFG21i8bt26/PHHH1y8eBFHR0fq1KlDyZIlWb16NefOnaNIkSIcOnSI5ORkvL29lY5rkCwtLbG0tFQ6hsF49uxZmm0jGo2GyMhIXFxcyJs3r/Z6qVKl2L17txIRDYKDgwOXL1/WPn69z9CsWbNQqVTaPkPGvtq4fPnyREREcOfOnTTbJ193584djh8/LttMRbYjRRghRBoPHjxApVJRoUIFihYtytGjRzl69KjOz89qq8SnRoowH0bevHnp0qULXbp04cqVKwQFBbFhwwZu377N8uXLjb4II3QXEhLC06dPcXNzy3RMrVq1SEhIICQkxGiLMK1atcLKykq7is/MzIy5c+cycOBAzpw5w5kzZzAxMaFz58507txZ4bSG4datWxw/fly7bbJQoUK4urpib2+vcDLDYGdnl2ar7enTp3n69Cmurq5pxqnVaqNetSB9hnTXunVrwsPD6devH3PmzElXiLlz5w79+vXj5cuXtG7dWqGUQrwbleZd1tELIT5Z79NDQaVScf78+Q+YRhgrjUbDwYMHCQ4O5n//+5/ScUQ2Ub9+fUqVKsWyZcuyHNetWzeio6ON+hv5zFy5coXHjx9TsmRJbGxslI6juHv37jF+/Hh27NiRbuupSqWiUaNGjBw5MtNv6o3FwIEDCQ0NZcaMGdSpU4cffviBvXv3smzZMmrWrKkd16pVK1JSUti4caOCaZUTHx9PREQEZcqUoXjx4sCrrUepfYZSUlK0fYb8/PwUTquslJQU/Pz8OHToEBYWFtSuXZtSpUoBcO3aNQ4dOkRSUhK1atViyZIlsi1QZCtShBFCpBEUFPRez/fy8vpASbKf4cOH07lz5yyPUxTiTVJSUujQoQMxMTHMnTuXzz77LMvxERER9O3bl1KlShEQEKCnlIapUqVKfPHFF0yZMiXLcUOGDGH79u1yoobI0sOHD7V/Fy0sLKhVq5a28WxMTAxHjhwhKSmJokWLEhgYmO7EG2Ny6tQpOnfurO1jotFocHFxYc2aNdoxd+/epX79+rRu3Zrff/9dqagGS/oMpZeYmMiECRNYt24dycnJae6ZmZnRtm1bfv75Z22DYyGyC9mOJIRIw5iLKO8rtZeJs7MznTp1okWLFlkerShERkJDQzl79iy+vr5vLMAAfPbZZ7Rp04Zly5axc+dOGjdurIeUhil37tzcunXrjePu3Lkj/TzEG02fPp2YmBg8PT0ZNWqUtolqqvv37zNu3DhCQ0OZOXMmY8eOVSip8ipXrszcuXNZuHAhcXFxVKxYkcGDB6cZs3nzZqytrXF3d1copWGTPkPp5ciRg3HjxjFgwADCw8OJjY0FwN7enlq1amlPdhMiu5GVMEII8YH4+/sTEBDApUuXUKlUWFlZ0apVK7y9veWoXKGz77//nu3bt7Nv3z6dv1l/+PAh9erV48svvzSqvkz/9c0333Do0CHWr1+f6ak+ly9fplWrVri5ubFo0SI9J1RGcHDwez2/TZs2HyRHdlOvXj1UKhU7duzAwsIiwzFJSUl4enqi0WiM/khh8Xakz5AQxkuKMEIInT1+/JgzZ84QFxeHvb29Tt/SG6PIyEgCAgLYunUrL168QKVSUaVKFTp16kSzZs0yfTMvBEDjxo2xtbUlMDDwrZ7n7e3NgwcP2LFjx0dKZvi2b9/OgAEDKFGiBFOmTEm3NfD06dMMGTKEGzduMHXqVJo2bapQUv1ycnJ6r+PejbXXV+XKlfH09GTq1KlZjhs0aBA7d+6U7W1CJ9JnSAgh25GEEG/08OFDJkyYwLZt21Cr1cCrb0ZTizCBgYFMmTKFuXPnUr16dSWjGoSqVatStWpVRowYQVBQEIGBgURGRnLy5EkmTpxImzZt8Pb2xsHBQemowgDdv3+fKlWqvPXzihYtSlRU1EdIlH00adKEli1bsmHDBry9vSlTpkyaRo6XL19Go9HQvHlzoynAvK5ixYqUKFFC6RjZhr29PQkJCW8c9/TpU1m9IHTy8OFDOnXqlGWfoR07dnD+/Hmj7zOUKjY2lvDwcO7evUtSUlKGY1QqFf369dNzMiHenRRhhBBZio+Px8fHh2vXruHk5ISrqyv+/v5pxnh6ejJ27Fi2b98uRZjX5M6dG19fX3x9fYmIiMDf359NmzaxfPlyli9fTo0aNfD19cXT01PpqMKAmJiYpGtAqIvk5GRp5ghMnjyZcuXKsWjRIv7991/+/fdf7b28efPi5+fHN998o2BC/StQoAD379/n7NmzmJub06ZNG5o1a0bu3LmVjmbQ2rRpw7x587h27Zq2mPdf165d4/Dhw3z77bf6DWegNm/eTGhoKNeuXSMhISHdSg9Au8XLGEmfId2p1WpGjx7NunXr0Gg0Gb6WUkkRRmQ3sh1JCJGlyZMns3jxYnr37s3333+PSqXCyckJLy8vJk6cqB3n5eWFSqVi3bp1CqY1THfu3CEwMJA1a9Zw584d4NWHwcePH2u3Ks2aNYuCBQsqnFQYAk9PTywtLdmwYcNbPa9ly5Y8f/7caD/c/NfLly85e/ZsmkaOFStWxNzcXOFk+peSksL+/fsJDg5m165dJCUlYWFhQcOGDWnTpg316tXD1NRU6ZgGR61WM3DgQCIjI+nfvz8tWrTA2toaeLX6ZePGjcyZM4fKlSszY8YMo55DtVpN//792bNnT6YfllUqlfaesa7akz5Dups1axZz5swhV65ctG7dGgcHB3LlypXpeDlYQmQnshJGCJGlHTt2ULJkSQYNGpTluBIlSnD06FE9pcoe9u7dS0BAAPv37yc5OZmcOXPSrl07fHx8qFixIgcOHGDevHkcP36cX3/9lRkzZigdWRiAKlWqsHnzZi5cuED58uV1ek5UVBSXLl2iRYsWHzld9mFubq7dGmjsTExMqF+/PvXr1ychIYHNmzcTHBzM1q1b2bZtGzY2NrRo0YLWrVtToUIFpeMqJqOTxTQaDffv32fs2LGMHTuWPHnyAK9WiaY6d+4cX3zxhVEXQFesWMHu3bvx8PBgxIgRzJ07l5CQEE6dOkV0dDQhISEsXbqU7t27v/H9xKfs8ePHeHp6ZtkbzsLCAldXV3bu3KnHZIZn/fr1WFlZsW7dOkqWLKl0HCE+KCnCCCGydOvWLRo1avTGcSYmJjx58kQPiQzbvXv3WLNmDatXr+bWrVtoNBpKlSpFp06daNeuXZrl/3Xr1sXd3Z22bdty6NAhBVMLQ9KyZUs2bdrEL7/8wvLly994ZOnz58/55ZdfUKlUtGzZUk8pRXZlbW1Nx44d6dixIzdu3CA4OJj169ezbNkyli9fTtmyZenQoQO+vr5KR9W7mJiYTO+lruB4/Phxunupq62M2caNG8mdOzdTp07F2tpauzXS3NycMmXKMGjQIFxdXenduzdly5Y12p9V0mdId3fu3KFOnTpSgBGfJCnCCCGyZGVlxcOHD9847saNG+TLl+/jBzJgAwYMYPfu3ajVakxMTGjcuDE+Pj7UqVMn0+ekbu8y1qXZIr0GDRrg5ubG4cOH6dChA8OGDaNu3boZjt2/fz+TJk3i8uXLuLm5Ub9+fT2nNUzHjh3jyJEjb2zk+Ntvv+k5mWEpXrw4AwYMYMCAARw7dow///yT/fv3M2/ePKMswsjP4Xd35coVqlWrpt2ulUqtVmu3aXl4eFCpUiX8/f2NtggjfYZ0Z2trS44cOZSOIcRHIUUYIUSWKlSoQGRkJHfu3Mn0uMQrV64QFRVFgwYN9BvOwGzfvp0CBQrQoUMHOnXqpPPxkk2aNNGejiAEvGre2LVrVy5dusQ333xD3rx5qVChAvnz5wcgLi6O8+fP8+jRIzQaDY6OjkyfPl3Z0Abg6dOnDBgwgEOHDmXZxBGkCJPq+fPnbNu2jfXr1xMeHg6QZd8FITKSkpKS5ouY1BV88fHx2p9b8Krwt2fPHj2nMxzffPMNZ86c4auvvsqyz5CHhwe9e/dWOK2yPD092bJlC4mJiVKMEZ8cKcIIIbLUsWNHDh06xMCBA5kxY0a6wsKDBw8YPnw4arUab29vhVIahqlTp/L5559jZvZ2P1obNWqk05YvYTzy5cvH6tWrmTZtGoGBgTx69IiDBw+mG2dpaUnHjh0ZNGgQOXPmVCCpYZk+fToHDx6kaNGi+Pj4vLGRozE7dOgQwcHBbN++nefPn2Nqakq9evVo3bp1hr1RhMiKnZ0dd+/e1T5O3Upz4cIF3NzctNdjYmLe+t/I7Ez6DL2777//nkOHDjF48GDGjx+PjY2N0pGE+GDkdCQhxBv99NNPrF+/HnNzcypWrEhkZCRFixalWLFinDx5khcvXtCxY0fGjRundFQhPjlPnjzh8OHDnDt3jri4OADy589PhQoVcHNzk2OGX1O/fn0SExPZtGkTtra2SscxOJcvXyY4OJgNGzZw584dNBoNzs7OtGnThpYtW8qHnExcvnyZwMBATp48SVxcHI0bN+bHH38EICIigjNnztCqVSuj3pI7YMAATpw4wYEDBwA4ffo0HTp0oHr16syfPx9ra2tCQkL48ccfqVGjBitWrFA4sX44OTm91/ONeYvc8OHDefLkCTt27CBXrlxUrFgRe3t7VCpVurGyslFkN1KEEULoZMmSJSxYsED7ITBV3rx56dWrF35+fgolE0KIVypVqoSHhwdz5sxROopBWbFiBcHBwZw7dw6NRkPBggVp2bIlbdq0wdHRUel4Bm358uVMnjyZ5ORk4NWHvTZt2jBx4kQAjh8/zldffcWYMWOMejXo6tWrGTlyJEuWLKF27doA9O7dm71792JmZkauXLm0Kz2WLFmSZnWMEBl5mwKWSqXi/PnzHzGNEB+WFGGEEDpTq9WcO3eOmzdvotFoKFy4MJUqVcLc3FzpaIp4n8aVKpWKZcuWfcA04lMVHBxMs2bNsjzSVLzy+eefU7ZsWebOnat0FIPi5OSESqWiQoUKtGnThjp16mhPr9FF6dKlP2I6w7V//36++eYb7O3tGT58OK6urtSpUwcvLy9tEQagTp06uLi4sGDBAgXTKisxMZHo6GhsbW21K6qePXvGlClTCA0N5dGjRzg4ONCnTx+aNm2qcFqRHaT2qNJVzZo1P1ISIT48KcIIIcQ7ep9lxvKtjdCVk5MT+fLlo02bNnh7exvtB2JdzJw5kxUrVrBz505tnwXxf0WYd6FSqTh37twHTpQ9fP3110RERBAcHKw9ycbJySldEcbPz4/o6Gi2b9+uUFKRXcyePRtnZ+c39l3atWsX586do3///npKJoTQJ+PpjCWEeCe+vr507tyZJk2aGFUzPV3s3LlT6QjCCHz++efs2rWLpUuXsmzZMmrWrEmnTp3k72QGvv32W44ePUqvXr2YMGECZcqUUTqSQUhtkirezpkzZ6hSpUqmRwmnyp8/PxEREfoJlc0kJCRw/fp1LC0tcXBwUDqO4mbPno2Xl5dORZi1a9dKEUaIT5S8exNCZCk8PJyjR49ia2tLu3bt6Nixoxyn/P/JPAh9mDlzJg8ePGDNmjUEBgZy5MgRwsPDsbGx0f6dLFasmNIxDULPnj1JTk4mMjKSli1bUqRIkSwbORrLlsBdu3YpHSFbevHiBXnz5n3juLi4uHdeaZTdRUVFER4ejlqtxsHBAQ8PD1QqFS9fvmTixIkEBgaiVqsBKFmyJJMmTaJKlSoKpzZ8arXaaF9T/6VWq9mzZw+nTp0iLi6OypUr0759ewDu3LlDXFwcZcuWlS8lRLYir1YhRJbmz59PQEAA+/fv588//+Svv/6ibt26dOrUiQYNGrxVXwEhxLuxtbWld+/e9O7dm/3797Nq1Sr27NnDggULWLhwIe7u7nTq1ImGDRsa9d/J13sIpKSkEBMTQ0xMTIZj5QOOeJMiRYpw4cKFLMeo1WouXbpEyZIl9ZTKcIwfP56VK1emuVahQgWWLVvGtGnT0t27du0aPXv2ZOPGjRQqVEifUbOdGzduyMl3vDp97IcffuDWrVtoNBptgS+1CHPixAkGDRrEzJkzadKkicJphdCdFGGEEFlq0KABDRo04M6dOwQGBrJ27Vr27dvH/v37sbOzo0OHDnTo0EHeUL0mKSmJrVu3cuzYMW7fvg1AoUKFqF69Ol9++SU5cuRQOKHIzurVq0e9evW4d+8ea9asYfXq1Rw4cIADBw5o/0526tSJAgUKKB1V72SLoPiQPDw8+Pvvv1m9ejUdOnTIcIy/vz/37t3Tfig0Fps2bcLf3x+VSoWrqys2NjacP3+ec+fOMX36dFatWkW9evX48ccfKV68ONHR0UyaNImwsDCWLFnCsGHDlP4j6M3s2bPTPI6Kikp3LZVareby5cscP36cevXq6SOewbpy5Qo9e/YkKSmJLl26UL16db7//vs0Yxo1akTOnDkJDQ2VIozIVqQxrxDiraSkpLB7925WrVrFgQMHSElJwczMjAYNGtCpUyfq1q2rdERFHTlyhB9//JG7d+/y3x+vKpWKggULMmnSJO0RnkK8jyNHjrBy5Uq2bduW5nqOHDnw9fXl+++/x9TUVKF0QmRvd+/epWXLljx58oSOHTvSpEkT/Pz88PT0pHv37mzfvh1/f3/y5cvHhg0byJ8/v9KR9aZbt26Eh4czf/586tevD7wqIPz0009s2rSJPHnysGvXLnLlyqV9TkJCAo0bN8bOzo4NGzYoFV3vUhtjp67k0OWjV4ECBVi4cOF7HQCQ3f3www9s2rQpzWsso8bYPj4+PH78mE2bNikVVYi3JkUYIcQ7u3XrFgsXLtR+GwZQrFgxvvrqKzp16mR0Kz7Onz+Pt7c3SUlJODo60rJlS23fmJiYGDZu3MiFCxfIkSMHAQEBODs7K5xYZEePHz8mKCiIVatWce3aNTQaDSVLlqRTp07Url2bzZs3s2rVKuLj4/n6668ZOnSo0pGFwt7nZ40xn44EcOrUKfr168e9e/fSbWHTaDQULFiQefPm4eLiolBCZdSqVYuSJUsSGBiY5vrly5dp3rw57u7uLFq0KN3z/Pz8iIiI4MSJE/qKqrigoCDg1evl559/xtXVNdOVU+bm5tjZ2VG1alUsLCz0GdPg1K1bF3t7+zSvsYyKMEOGDGHfvn0cPXpUiZhCvBPZjiSEeCeRkZEEBASwdetWAExNTSlXrhznz5/n999/5++//+bPP/80qtMQZsyYQVJSEj/88AM9e/ZMd/+bb75h0aJF/O9//2PGjBnMnz9fgZQiuzp+/DgBAQGEhoaSlJSEiYkJDRs2xMfHJ80KNCcnJ7p160bbtm0JCQmRIoygSJEiGV6PjY3V/jr1SO/4+HjtNTlVCSpXrszWrVtZu3YtYWFh3Lx5k5SUFIoUKYK7uzve3t5YW1srHVPv4uPjKV68eLrrJUqUAMDOzi7D5xUsWJAXL1581GyGxsvLS/vroKAgPDw80lwTGXv06BE1atR447gXL16QlJSkh0RCfDhShBFC6CwhIYH169ezatUqLl26hEajoXDhwnTs2JGOHTtSoEABrl69ypw5c9i4cSMTJkzI8JuwT9Xx48cpX758hgWYVH5+foSEhHD8+HE9JhPZ2YoVKwgMDOTff/9Fo9FQoEAB2rVrR6dOnTL9cG1ra4ubmxshISF6TmsYNm/eTGhoKNeuXSMhISHD5f8qlYodO3YokE7//ns6UnJyMgMHDiQpKYk+ffrQunVrbSEhISGBkJAQ5s2bR4UKFZgxY4YSkQ1Krly58PX1xdfXV+koBkOj0WS4UsPc3DzL5xl7Q+wVK1YoHSHbsLGx4caNG28cd/XqVelLKLIdKcIIId7o9OnTrFq1ik2bNmm/wapduzY+Pj40atQozWkspUuXZsqUKcTGxhrVcmN49cGmbNmybxxXtmxZoqOj9ZBIfAomTJgAgKurKz4+Pnz++edv/KAD4OjoSPXq1T92PIOiVqvp378/e/bsybTvgq49GT5lCxYsICwsjPXr16c71cfa2hofHx/q1KlD69atmT9/Pv369VMoqRCfrqioKO2xy2XLlqVx48bAq+b+SUlJRrnC6nWurq5s3bqVyMhIqlatmuGY/fv3c+XKFTp27KjfcEK8JynCCCGy1LZtW86fP49GoyFPnjx07NiRzp07U6pUqSyfV6pUKaMrwjg6OmZ6HO7rYmNjKVeunB4SiU9Bp06d8PHxwdHR8a2e5+fnh5+f30dKZZhWrFjB7t278fDwYMSIEcydO5eQkBBOnTpFdHQ0ISEhLF26lO7duzNo0CCl4ypm/fr1uLm5ZXmscqlSpahduzYhISFGW4SJjo7m5MmTVKtWjWLFimmvnz59mgkTJnDhwgWKFi3K4MGDadSokYJJlXH//v1M+3Bkdu/evXsfO5bBu3btGsOGDePkyZPaa23atNEWYUJCQhg5ciQLFiww6hOS/Pz8CA0NpU+fPowcOTLN3zG1Ws2ePXsYPXo05ubmdOvWTcGkQrw9KcIIIbJ07tw5KlSogI+PDy1atCBnzpw6Pa9Dhw467eX9lHTr1o3BgwezY8cOPD09MxyzY8cOTpw4wdSpU/WcTmRXY8aMUTpCtrFx40Zy587N1KlTsba21q7SMzc3p0yZMgwaNAhXV1d69+5N2bJladmypcKJlXHr1i2dmvXmzJmTW7du6SGRYVq8eDGrVq1Ks23t0aNH+Pn5aXvn/Pvvv3z33XesW7furQul2d2BAwc4cOBAuusqlSrTe8buzp07fPXVV9y/f5+GDRtSo0YNJk+enGZM06ZNGTt2LNu3bzfqIoyLiwujRo1i3LhxDBkyBFNTU1QqFZs3b2bTpk28fPkSExMTxo8fT5kyZZSOK8RbkSKMECJLgYGBVK5c+a2fV61aNapVq/YREhmuqlWr4uvry8CBA/niiy9o0aKF9nSk2NhYNm7cyLZt2/D19aVq1appmmKCNMEUb5aUlMTZs2e5ffs2AIUKFaJixYpGdxJZZq5cuUK1atXSLeNXq9Xao7o9PDyoVKkS/v7+RluEsbGxITw8nKdPn6Y5Qvh1T58+JTw8HBsbGz2nMxzHjx/H0dFR+3McXjVWjY+Pp0OHDgwaNIjdu3czYsQIli5dym+//aZgWv2Sf6/ezdy5c7l//z5jx47F29sbIF0RJleuXDg7OxMZGalAQsPi7e2Ns7MzCxYs4ODBgzx79ozExERy5MiBh4cHffv2pUqVKkrHFOKtSRFGCJGldynAGKtGjRpp+01s2bKFLVu2pBuj0WhYsWJFuuZ8xn4MrMja8+fPmTlzJoGBgTx79izNPUtLSzp06MDAgQOxsrJSKKFhSElJIV++fNrHlpaWwKuTXPLnz6+9Xrx4cfbs2aPndIbjiy++YNmyZXz77bf88ssvlC9fPs39ixcvMn78eOLi4oy6Ge29e/fSfZlw4MABzMzM+OGHH8ibNy/t2rXD39+fiIgIhVIq47/NnoVu9u3bh6Ojo7YAk5miRYty8OBBPaUybJUrV2b27NloNBri4uJISUkhf/782sK6ENmRFGGEEGkEBwdTokQJPvvss7d63saNGzl9+jTDhw//SMkMn7FtvxL68fTpU7p27artzeTg4KD9Zj4mJoYrV66wfPlyjh49yooVKzJd2WAM7OzsuHv3rvZx6rf1Fy5cwM3NTXs9JiYGMzPjfQs0YMAADh06xNGjR2nTpg1lypTB3t4elUpFbGys9iQuR0dHBgwYoHRcxTx79ixNYVOj0RAZGYmLiwt58+bVXi9VqhS7d+9WIqLIZu7du6fTyg21Ws3z58/1kCj7UKlU2NjYkJCQQFRUFJaWljg4OCgdS4h3YrzvQIQQGRo2bBheXl4ZFmGcnZ3x8vLKcMl1WFgYwcHBRl2EkaMnxccwd+5czp07R9WqVRk5ciQVK1ZMc//cuXOMGzeOkydPMnfuXIYOHapQUuWVL18+TUPwWrVqodFomD17Ni4uLlhbWxMSEkJkZKRRF02tra1ZuXIl06dPZ+3atfz777/8+++/2vuWlpZ4eXkxePBgoz6hxc7OLs1JdqdPn+bp06e4urqmGadWq3U6sUyIPHnycOfOnTeOi46OxtbWVg+JDE9UVBTh4eGo1WocHBzw8PBApVLx8uVLJk6cSGBgIGq1GoCSJUsyadIk2ZIksh0pwgghdKbRaIz+aFch9G3Lli3kzZuXhQsXZviBuEKFCvz11194enqyZcsWoy7CeHh4sH37dg4dOkTt2rWpVKkS9evXZ+/evbi5uZErVy7i4+NRqVRGe+JPKmtra3755Rd++OEHzpw5o11BZGdnh4uLi85N2D9lFStWJDQ0lNDQUOrUqcPcuXNRqVTUr18/zbirV69iZ2enUEqRnVSuXJkDBw5w+fLlTJvJnjp1iqioKFq0aKHndMobP348K1euTHOtQoUKLFu2jGnTpqW7d+3aNXr27MnGjRspVKiQPqMK8V5MlA4ghBCfqpSUFB4+fMjDhw9JSUlROo7Ipu7fv0+tWrWyXJGQO3duatWqxf379/WYzPC0atWKDRs2pOlxMm3aNHx8fMiXLx9Pnz6lXLlyTJ06Nc32JGOWM2dOqlevTrNmzWjWrBnVq1eXAsz/5+fnh4mJCQMHDqRGjRrs2bOHihUrUrNmTe2Yu3fvcunSJVxcXBRMKrILX19fkpOT6devH6dOnUp3Pyoqih9//BETExO6du2qQELlbNq0CX9/fwBcXV1p0qQJxYoV49y5c0yfPp1Vq1ZRr149NmzYQGRkJCEhIbi7u/PkyROWLFmicHoh3o6shBFCiA9s9+7dLF++nBMnTpCYmAiAhYUFn332GV999RWNGzdWOKHITgoWLKhdep0VtVpNgQIF9JDIcOXIkYNy5cqluWZlZcWoUaMYNWqUQqlEdlW5cmXmzp3LwoULiYuLo2LFigwePDjNmM2bN2NtbY27u7tCKUV2UqdOHb799lvmz5+Pt7c3BQsWRKVSsWfPHjw9PYmJiUGj0TBw4ECj22ITGBiISqVi/vz52tVmarWan376CX9/f/LkycP06dO1fc8cHR2ZMWMGjRs3JiwsTMnoQrw1KcIIIcQHNGrUKFavXq3dtpX6jfKLFy84dOgQhw8fpn379owfP17JmCIb+fzzzwkMDOTBgweZ9gi4f/8+hw8fpmPHjnpOJ7KzY8eOceTIEe7evUtSUlKGY1QqlVEdvfxf9evXT7f96HXdu3ene/fu+gsksr3vv/+eChUqMG/ePM6fPw9AXFwccXFxlC1blv79+/Pll18qnFL/oqKitFtIU5mamtKnTx82btyIi4tLusbz1tbWuLi4GN3pZCL7kyKMEEJ8IAEBAQQGBpI/f3569epFq1attB+aHzx4wIYNG1iwYAFr1qyhQoUKdO7cWeHEIjv47rvvOH78OL6+vgwbNox69eqluX/gwAEmTZpEmTJl+O677xRKKbKTp0+fak9IelOfL2MvwgjxMXz++ed8/vnnPHz4kJs3b6LRaChcuHCavibPnz/H0tJSwZT6FR8fT/HixdNdL1GiBECmfZcKFizIixcvPmo2IT40KcIIIcQH8s8//2BhYcGKFSsoW7Zsmnu2trZ0796dunXr4uXlxapVq6QIIzLk6+ub7pqpqSmXL1+mV69e5MmTJ80R1fHx8QBUqVKFb7/9lmXLluk1r5IymitdqVQqo5qr102fPp2DBw9StGhRfHx8cHBwMOqjzYXQl1mzZqU59t3GxgYbG5t0454/f06vXr2M6tRFjUaDhYVFuutvOnlMpVJ9rEhCfDRShBFCpBMREZHpUdOZ3Tt+/PjHjmXwrl69Ss2aNdMVYF5XtmxZatWqxdGjR/WYTGQn4eHhmd7TaDQ8fvyYx48fp7sXGRlpdG9Gs5qrNzG2uXpdaGgo+fLlIzAw0GiPwX0bmzdvJjQ0lGvXrpGQkJDh6iGVSsWOHTsUSCeykzlz5mBnZ4e3t3emYxITE+nVqxfHjh3TYzIhhD5JEUYIkc7169e5fv36W98z5g818Gpvcp48ed44Lk+ePPKts8jUzp07lY6QbchcvZuHDx/i4eEhBZg3UKvV9O/fnz179mS6bUulUr1xS5cQqcqUKcO4ceOwtbXF09Mz3f3ExER69+7N0aNH+fzzzxVIqKz79+9n+iVVZvfu3bv3sWMJ8cFJEUYIkUb//v2VjpBtubm5ERERwcuXLzNdPvvy5UsiIiKoVauWntOJ7CJ1q5F4M5mrd1OkSBEpHOhgxYoV7N69Gw8PD0aMGMHcuXMJCQnh1KlTREdHExISwtKlS+nevTuDBg1SOq7IBhYtWoS3tzdDhgxh0aJFVK9eXXsvMTGRPn36cPjwYZo0acK0adMUTKqMAwcOcODAgXTXVSpVpveEyI5UGvlXWAghPogbN27Qvn176taty8iRI8mXL1+a+48fP2bcuHEcOHCANWvWZNiATgghPraZM2eyYsUKdu7cqdPqPWPVvn17rl+/zu7du7G2tmb48OEEBwdrT7QB2LdvH71792by5Mm0bNlSwbQiu/j333/x8fFBpVKxYsUKHB0dSUpKok+fPoSFhdGoUSNmzZqFqamp0lH1qlGjRu/1/F27dn2gJEJ8fFKEEUKID2T27NncuHGD9evXY2lpSd26dbXf1MfGxnLgwAGeP39O69atKVasWJrnqlQq+vXrp0RsIYSRSUpKws/Pj5cvXzJhwgTKlCmjdCSD9Nlnn1GtWjUWLVoEoC3CnDlzJs0H5I4dO2JiYkJAQIBSUUU2c/z4cfz8/MibNy9Lly5lwoQJHDhwgAYNGjB79mzMzGSzghCfMvkbLoTI0vDhw+ncuTOVK1dWOorBmz17trYvzvPnz9m+fXuG44KDg9NdkyKMeBNpDqo7maus9ezZk+TkZCIjI2nZsiVFihTB3t4+w75exnyKVEpKSpoVjanHBcfHx5M/f37t9eLFi7Nnzx49pxPZmaurK1OmTGHgwIG0bNmS5ORk6tWrx8yZM6UAI4QRkL/lQogsBQUFERwcjLOzM506daJFixZYWVkpHcsgTZw4UekI4hMkzUF1J3Olm9dPlUpJSSEmJoaYmJgMxxpzw3U7Ozvu3r2rfWxvbw/AhQsXcHNz016PiYmRD87irXl6ejJmzBhGjhyJu7s7c+bMyfCIZiHEp0f+xRBCZGnkyJEEBARw7tw5Ro8ezaRJk2jVqhXe3t44OTkpHc+geHl56Tz20KFD1K5d+yOmEZ8KaQ6qO5kr3cipUropX748J06c0D6uVasWGo2G2bNn4+LigrW1NSEhIURGRlKjRg0FkwpD1bhx4zeOMTMz49KlSzRt2jTNdWNerSfEp06KMEKILHXp0oUuXboQGRlJQEAAW7du5Z9//iEgIIAqVarQqVMnmjVrJt/e6OD69esEBQUREhLC7du3OXfunNKRRDawceNGcufOzdSpU7G2tsbExAQAc3NzypQpw6BBg3B1daV3796ULVvWqJuDylzpRk6V0o2Hhwfbt2/XFs0rVapE/fr12bt3L25ubuTKlYv4+HjZTioyldkKs/96fcWVEOLTJ415hRBv5cmTJwQFBREYGMi///6LSqUiT548tGnTBm9vbxwcHJSOaFASEhLYvHkz69at4+TJkwBoNBpsbW0JCwtTOJ3IDqQ5qO5krsSHlJiYSHR0NLa2ttjY2ADw7NkzpkyZQmhoKI8ePcLBwYE+ffqkW8UghBBCZEZWwggh3kru3Lnx9fXF19eXiIgI/P392bRpE8uXL2f58uXUqFEDX19fPD09lY6qGI1Gw/79+wkODmbXrl0kJiai0WiwsrLC09OTli1bUqdOHaVjimxCmoPqTuZKfEg5cuSgXLlyaa5ZWVkxatQoRo0apVAqIYQQ2Z0UYYQQ7+TOnTuEhYVx7Ngx4FXhIW/evISHh3P06FGqVKnCrFmzKFiwoMJJ9efff/8lKCiIDRs2cO/ePTQaDSYmJpibm/Py5UsOHTpEjhw5lI4pshlpDqo7mau3I6dIvZuEhASuX7+OpaWlrP4UQgjx1uQdiBDirezdu5eAgAD2799PcnIyOXPmpF27dvj4+FCxYkUOHDjAvHnzOH78OL/++iszZsxQOvJH9ejRIzZt2sS6deu0PV40Gg1ly5alVatWtG7dmkGDBnHixAkpwIh3Is1BdSdzpRs5RSprUVFRhIeHo1arcXBwwMPDA5VKxcuXL5k4cSKBgYGo1WoASpYsyaRJk6hSpYrCqUV2EB0dzcmTJ6lWrRrFihXTXj99+jQTJkzgwoULFC1alMGDB9OoUSMFkwohPiYpwggh3ujevXusWbOG1atXc+vWLTQaDaVKlaJTp060a9eO3Llza8fWrVsXd3d32rZty6FDhxRM/fENGDCAPXv2kJycjEajIX/+/DRv3pw2bdrg4uKidDzxiZDmoLqTudKNnCKVufHjx7Ny5co01ypUqMCyZcuYNm1aunvXrl2jZ8+ebNy4kUKFCukzqsiGFi9ezKpVq9KsLnv06BF+fn7Ex8cDr1bVfvfdd6xbtw5HR0elogohPiITpQMIIQzbgAEDaNiwITNnzuTOnTs0btyYxYsXs3XrVrp3756mAJNKpVLh5OTEkydPFEisP9u3byc5ORk7OztmzZrF/v37+eWXX6QAIz6oVq1asWHDBsqXL6+9Nm3aNHx8fMiXLx9Pnz6lXLlyTJ06Nc2WG2Mkc6Wb10+RKlmyZIanSM2aNYsFCxawYcMGhdPqz6ZNm/D39wfA1dWVJk2aUKxYMc6dO8f06dNZtWoV9erVY8OGDURGRhISEoK7uztPnjxhyZIlCqcX2cHx48dxdHRMc0JZUFAQ8fHxdOjQgYMHDzJhwgSSk5NZunSpckGFEB+VnI4khMiSk5MTBQoUoEOHDnTq1Ennb/p27drFuXPn6N+//0dOqJyKFSuiVqtRqVTY2trSokUL2rRpg5OTU5pxPj4+nDhxgvPnzyuUVAgh/o+cIpWxbt26ER4ezvz586lfvz7wauvWTz/9xKZNm8iTJw+7du0iV65c2uckJCTQuHFj7OzsjKpgJd6Nm5sb1apVY968edprfn5+HDlyhLCwMPLmzQtA27ZtefbsGVu3blUqqhDiI5KVMEKILE2dOpU9e/YwcODAt1pq3ahRo0+6AAOwb98+fvrpJxwdHbl//z5Lly7Fy8uLVq1asWTJEu7du6d0RPEJS0hI4OzZs1y5ckXpKAZP5iqtrE6Rel3x4sW5dOmSPqMpKioqSruFLZWpqSl9+vRBo9Hg4uKSpgADYG1tjYuLCzdv3tR3XJENPXv2DCsrK+1jjUZDZGQkLi4u2gIMQKlSpbhz544SEYUQeiA9YYQQWWrWrJnSEQyWra0tPXr0oEePHkRFRbFu3To2bdrExYsXmTx5Mn/88Qdubm7cvn1b6agiG5LmoLqTuXo7copUxuLj4ylevHi66yVKlABezVtGChYsyIsXLz5qNvFpsLOzIzo6Wvv49OnTPH36FFdX1zTj1Go15ubm+o4nhNAT4/mXVQghPiInJyd+/vlnfvrpJ/bt20dQUBC7d+/mwIEDwKs+OcOHD6dFixbUqVMHlUqlcGJhyKQ5qO5krt6enCKVMY1Gg4WFRbrrb/owLD/Pha4qVqxIaGgooaGh1KlTh7lz56JSqdKsvgK4evVqpkU/IUT2J0UYIUQavr6+7/xclUrFsmXLPmCa7MfU1JSGDRvSsGFDHj9+zMaNG1m/fj2nTp0iKCiI4OBgbG1tad68OcOHD1c6rjBAqc1BVSoVrq6u2NjYcP78+XTNQX/88UeKFy9OdHQ0kyZNIiwsjCVLljBs2DCl/wh6I3P1buQUKSGU4efnx44dOxg4cCCAdptbzZo1tWPu3r3LpUuXaN26tVIxhRAfmTTmFUKk8d+msm9DpVJJ89lMXLlyhaCgIDZs2MDt27dlrkSmpDmo7mSu3k1iYiLR0dHY2tpiY2MDvOpVMWXKFEJDQ3n06BEODg706dOHpk2bKpxWf5ycnKhXrx69evVKd69r166Z3vvzzz8JCwuTn+lCJ3v37mXhwoXExcVRsWJFBg8enGZV3tKlS5kzZw6jRo2iZcuWCiYVQnwsUoQRQqQRExPzXs9//dhFkZ5Go+HgwYMEBwfzv//9T+k4wgDVqlWLkiVLEhgYmOb65cuXad68Oe7u7tpTbV7n5+dHREREmm0mnzqZK/EhOTk5vdfWIinCCCGE0IVsRxJCpCFFlI9LpVLh7u6Ou7u70lGEgZLmoLqTufqwEhISuH79OpaWljg4OCgdR+9SGxQLIYQQH5MUYYQQQggDIs1BdSdz9XbkFKms7dq1S+kIQgghjIAUYYQQOklKSmLr1q0cO3ZMe+RyoUKFqF69Ol9++SU5cuRQOKEQQojMyClSQhiOzZs3ExoayrVr10hISCCj7hAqlYodO3YokE4I8bFJEUYI8UZHjhzhxx9/5O7du+neKKxZs4Y//viDSZMmUbt2bYUSCvFpuX//PkePHn2re/fu3fvYsQySzNWbySlSQhgGtVpN//792bNnT4aFF3hVfJGWnUJ82qQxrxAiS+fPn8fb25ukpCQcHR1p2bKltm9MTEwMGzdu5MKFC+TIkYOAgACcnZ0VTixE9ibNQXUnc6UbOUVKCMOwdOlSfv/9dzw8PBgxYgRz584lJCSEU6dOER0dTUhICEuXLqV79+4MGjRI6bhCiI9EVsIIIbI0Y8YMkpKS+OGHH+jZs2e6+9988w2LFi3if//7HzNmzGD+/PkKpBTi0yHNQXUnc6WbqKgoKlWqpC3AAJiamtKnTx82btyIi4tLmgIMgLW1NS4uLkREROg7rhCfrI0bN5I7d26mTp2KtbU1JiYmwKs+VmXKlGHQoEG4urrSu3dvypYtK0dUC/GJkiKMECJLx48fp3z58hkWYFL5+fkREhLC8ePH9ZhMiE+TNAfVncyVbuQUKSEMw5UrV6hWrRrW1tZprqvVakxNTQHw8PCgUqVK+Pv7SxFGiE+UidIBhBCGLTk5mbJly75xXNmyZUlOTtZDIiGEEG9DTpESwjCkpKSQL18+7WNLS0vgVaH0dcWLF+fSpUv6jCaE0CMpwgghsuTo6EhMTMwbx8XGxlKuXDk9JBJCCCGEyH7s7Oy4e/eu9nHqlsoLFy6kGRcTE4OZmWxYEOJTJX+7hRBZ6tatG4MHD2bHjh14enpmOGbHjh2cOHGCqVOn6jmdEEIIXcgpUkIor3z58pw4cUL7uFatWmg0GmbPno2LiwvW1taEhIQQGRlJjRo1FEwqhPiY5HQkIUSWYmNjWbp0Kf7+/nzxxRe0aNFCezpSbGwsGzduZNu2bfj4+NC9e/d0z5fGmUIIoSw5RUoIw7B69WpGjhzJkiVLqF27NgC9e/dm7969mJmZkStXLu3WpCVLluDm5qZkXCHERyJFGCFEllLfvGs0mkzfxGd2T6VSce7cuY8dUQghRBYaNWr0Xs+XBshCfBiJiYlER0dja2uLjY0NAM+ePWPKlCmEhoby6NEjHBwc6NOnD02bNlU4rRDiY5EijBAiS127dn2v569YseIDJRFCCCGEEEKI7E2KMEIIIYQQQgihkISEBK5fv46lpSUODg5KxxFCfGTSmFcIIYQQQgghPpKoqCjCw8NRq9U4ODjg4eGBSqXi5cuXTJw4kcDAQNRqNQAlS5Zk0qRJVKlSReHUQoiPRVbCCCHeSkpKCo8ePQIgX758mJjISfdCCCGEEBkZP348K1euTHOtQoUKLFu2jGnTpuHv75/uOblz52bjxo0UKlRIXzGFEHokn56EEDrZvXs3PXr04LPPPsPd3R13d3eqVatGjx492Llzp9LxhBBCCCEMyqZNm7RFFldXV5o0aUKxYsU4d+4c06dPZ9WqVdSrV48NGzYQGRlJSEgI7u7uPHnyhCVLliicXgjxschKGCHEG40aNYrVq1eT+uMiZ86cALx48QJ4dQpS+/btGT9+vGIZhRBCCCEMSbdu3QgPD2f+/PnUr18fALVazU8//cSmTZvIkycPu3btIleuXNrnJCQk0LhxY+zs7NiwYYNS0YUQH5GshBFCZCkgIIDAwEDy5cvHTz/9RFhYGJGRkURGRhIWFsawYcPInz8/a9as4Z9//lE6rhBCCCGEQYiKiqJSpUraAgyAqakpffr0QaPR4OLikqYAA2BtbY2Liws3b97Ud1whhJ5IEUYIkaV//vkHCwsLVqxYQY8ePbC1tdXes7W1pXv37ixfvhwzMzNWrVqlYFIhhBBCCMMRHx9P8eL/r707D6rqPv84/r4sQhVE1qksRgyLsSadxMStNioYTcYlEM1iCalOo8a9yTSNSevUNlXHqF2QJM5oFbGNNkbALcYFXGKIGhIbkghBRQggsohAFDGI9/cHv3viDRcERC62n9eMM9dzzvd7n3PuGYb78JznG9Roe69evQDw8/OzOc7X19eoNhaR/z5KwohIs86ePcvAgQMJCQlp8piQkBAGDRrE2bNnOzAyERERkc7LbDbTpUuXRtudnZ2bHWcymW5XSCLSCSgJIyLNcnNzo3v37jc9rnv37o1KakVEREREROR7TvYOQEQ6t8GDB/PZZ59RV1fX5F9u6urq+Oyzzxg0aFAHRyciIiLSeZWXl/PJJ5+0al9ZWdntDktE7EirI4lIswoKCpg0aRLDhg1j4cKF9OjRw2p/VVUVf/rTnzhy5AjvvfeezWefRURERP7X9O3b95YeLcrKymrHaESks1ASRkSaFR8fT0FBAdu2beNHP/oRw4YNIyAgAIBz585x5MgRrly5wuOPP05gYKDVWJPJxOzZs+0RtoiIiIhdRURE3NL4tLS0dopERDoTJWFEpFmWv+K05UeFyWTSX3FERERERET+n3rCiEizli5dau8QRERERERE/iuoEkZE2s3HH3/MkCFD7B2GiIiIiIhIp6RKGBG5Jfn5+SQnJ7N9+3bOnz/PyZMn7R2SiIiIiIhIp6QkjIi02qVLl3j//fdJSkri888/B8BsNuPt7W3nyERERERERDovJWFEpEXMZjMffvghKSkppKWlcfXqVcxmM127dmXUqFGMHz+eoUOH2jtMERERERGRTks9YUSkWadPnyY5OZkdO3ZQVlaG2WzGwcEBJycn6urq+M9//oOLi4u9wxQREREREen0VAkjIo1UVlaya9cukpKSjB4vZrOZkJAQJkyYwOOPP86LL77IiRMnlIARERERERFpISVhRMTK3LlzOXjwINeuXcNsNuPp6cnYsWOJioqif//+9g5PRERERETkjqUkjIhY2bdvHyaTCT8/P37/+98zcuRInJz0o0JERERERORWOdg7ABHpXBwdHTGbzZSWlvLHP/6RFStWkJ2dbe+wRERERERE7nhKwoiIlcOHD/PKK68QFhZGeXk5CQkJREdHM2HCBNavX09ZWZm9QxQREREREbkjaXUkEWlSdnY2SUlJ7Nq1iwsXLmAymXB0dGTw4MHk5uZSXFxMVlaWvcMUERERERG5IygJIyI3VV9fz+HDh0lOTubAgQPU1dUBYDKZiIqKYty4cQwdOhSTyWTnSEVERERERDovJWFEpFWqqqrYuXMn27ZtIzMzE2hIxnh7ezN27FheffVVO0coIiIiIiLSOSkJIyJtlpubS3JyMjt27OD8+fOYTCY9niQiIiIiItIEJWFE5JaZzWbS09NJSUlh+fLl9g5HRERERESkU1ISRkRERERERESkA2iJahERERERERGRDqAkjIiIiIiIiIhIB1ASRkRERERERESkAygJIyIiIneUY8eOER4eTkRERKN9sbGxhIeHk5SUZIfI2teqVasIDw9nwYIF9g6lXYSHhxMeHk5hYaG9QxEREbEbJ3sHICIiIvYTGxvL8ePHrbY5ODjg7u5Onz59iIyMJCYmhq5du9opQvvJyspi//79BAQE8MQTT9g7nDbbunUrr732GgCTJk1i8eLF7Tp/YWEhycnJuLu7M2XKlHadW0RE5L+NKmFERESEnj178sADD/DAAw/Qv39/HBwcOHHiBCtWrCA6OpqSkhJ7h9giPXv2JDg4GHd391ueKysri/j4eJKTk9shMvvZunWr8Xr37t3U1NS06/xFRUXEx8eTmJjY7HHBwcEEBwfj7Ozcru8vIiJyJ1EljIiIiDBx4kTmzp1rtW3Pnj0sWLCAvLw8Fi1axNtvv22n6FrujTfesHcInUpeXh6ffvopAN27d6e6upoPPvjALpU9H3zwQYe/p4iISGejShgRERGxacyYMcycOROAgwcPUlVVZeeIpLUsVTADBgxg0qRJVttERESk46kSRkRERJo0ZMgQAK5fv05+fj733Xcfx44d47nnniMgIIC0tDR27tzJ5s2bycnJoaqqisTERAYNGgRAfX09KSkpbN++nezsbC5fvoynpycDBw5k2rRp9O3b1+b71tXVkZCQQEpKCt988w3u7u48+OCDzJ49u9l4LT1uli5darPao7q6mn/+858cOHCAvLw8amtr8fX1JTw8nDFjxhAVFQVAREQERUVFABw/fpzw8HCreVJTUwkMDLSaNzExkbS0NPLz8/nuu+/w9/cnIiKC559/Hm9vb5vxVlRUsGrVKtLS0qioqMDX15eRI0c2qkpqC8u1B4iOjua+++5j3bp1ZGRkkJ+fz1133dXk2NraWt5991327t3LqVOnuHz5Mj4+PvTp04dHHnmEiRMn0qVLF6ueQkVFRY2u0433gmXfD6+dxeHDh3nnnXfIzMykuroaDw8PfvrTnxIbG2vchzf64X2YmppKQkICWVlZXLt2jdDQUKZMmcLYsWPbdP1ERERuByVhREREpElms7nZ/UuWLGHDhg34+PjQq1cvq94xVVVVzJo1i4yMDAD8/Pzw9/cnPz+fnTt3smfPHpYtW9boS/J3333HjBkzSE9PByAwMBAPDw8OHjzIoUOHbpqIacqXX37JCy+8QFlZGQB33XUX7u7uFBcXk5aWRlpampGE6d+/P87OzuTl5eHm5kZYWJjVXC4uLsbr7Oxspk+fTklJCU5OTvj7++Pq6srZs2dZt24dO3bsYN26dY3mKCws5Nlnn6W4uBgHBwdCQkIwm83861//4tChQ4wYMaJN52nx4YcfUlpaiqurK4899hhubm785Cc/4auvvmLr1q289NJLNscVFBQwffp0cnNzAfD39ycoKIiSkhLS09P56KOP+PnPf05gYCBhYWFUVlaSk5NDly5d6N+/v9VcLe3Ns3jxYqOnjLe3N3379qWwsJDU1FRSU1OZOXMmv/71r5scHx8fz6pVq4z7sKCggMzMTF566SUuXrzIs88+26I4REREbjclYURERKRJR48eBRpWTPph5cT58+fZtGkTy5cvZ/z48ZhMJsxmM3V1dQD85je/ISMjgwEDBrBo0SIjCXH9+nUSExNZtmwZr776Kv369SM4ONiY96233iI9PZ1u3boRFxfHsGHDgIakziuvvEJcXFyrz6O8vJwZM2ZQXl7OwIEDef311+ndu7exv6ioiPfee8/4f1xcHElJSUZ8GzdutDlvZWUlM2bMoKSkhKeeeooXX3wRLy8vAL799lv+/Oc/k5KSwrx589i5cydOTt//6vXb3/6W4uJiQkNDefPNN43re+bMGWbOnMnmzZtbfZ43sjx2NGrUKNzc3ACIioriq6++IiUlhfnz5+Po6Gg1pra2lhkzZpCbm0tYWBhLly61SqxcuHCBpKQkY7WshQsXGhUpvr6+bNq0qdVxJicnk5iYiKOjIwsXLuTpp5/GwcGB+vp64z55++236du3L48++mij8aWlpaxZs4YVK1Ywfvx4AK5du8bixYt55513WLlyJVFRUcY1EBERsSf1hBERERGb9uzZYzTjHTFiBB4eHlb76+vrmT17NhMmTMBkMgFgMpno0qUL6enpHD58GH9/f1avXm1VBeLg4MCUKVOIiYnh6tWrbNiwwdhXU1NjJDzmz59vJGAAPDw8WLlyZZuWy167di3l5eUEBwezZs0aqwQMQEBAAPPnz2/1vOvXr+f8+fNERkby+uuvGwkYaKgCWbJkCf369ePs2bPs3bvX2JeRkWE0zF2+fLlVguvuu+9m6dKlRjKrLSoqKjhw4ACAUd0DMG7cOJydnSkpKeHIkSONxm3ZsoUzZ87g6elJQkJCo8oWb29vpk2bZnWet+qtt94C4Omnn2by5Mk4ODT8euro6MjUqVONxMqbb75pc3xdXR0zZswwjgNwcnJiwYIFeHl5UVNTw7Fjx9otXhERkVuhJIyIiIiwdetWJk+ezOTJk3nyyScZPHgw8+bNo6amht69e7No0SKb45588kmb299//30Axo4dS/fu3W0eM3r0aAA+/vhjY9unn37KpUuXcHV1tTl3t27djAazrWFJgEydOhVXV9dWj2/K7t27AXjmmWds7nd0dCQyMhL4vqoI4NChQwA89NBD3HPPPY3GDRgwgHvvvbfNcW3fvp26ujr8/PwYOnSosd3Ly4vhw4cDthv0Wq7TU0891WQfm/Z05swZvvnmG6Dhs7HlV7/6FQA5OTmcO3fO5jG/+MUvGm1zcXGhX79+AMZ7iIiI2JseRxIRERGKi4spLi4GGipV3NzcuP/++4mMjCQmJsZm9Ymnp2eTX9Szs7MB2Ldvn1Hx8UNXr14FGh5rsrD0IQkICGiy4iU0NLSFZ9Xg0qVLRpPd+++/v1Vjm1NTU0N+fj4Af//735tcwvvChQsAxvWF788zJCSkyflDQ0P54osv2hRbUlISABMmTGj0yFF0dDT79+8nLS2Nixcv4unpaezLyckB2vc6Nefs2bMAuLq60qtXL5vHhISE4OjoSH19Pbm5ufj7+1vt9/T0pEePHjbHWu7Py5cvt1/QIiIit0BJGBEREWHOnDmtXpGnuceCqqurAcjLyyMvL6/ZeWpra43Xli/LzVVhtLZC48Yv4E1V5bTFt99+a7z+8ssvb3q8rfP08fFp8vi2VqJ88cUXfP3114D1o0gWw4cPx8vLi4qKCrZv384vf/lLY9+lS5eAljfUvVUt+bydnJzw9PSkvLzcZjKlufvQ8mjTzRpMi4iIdBQlYURERKTdWb4YL1myhIkTJ7Z4XLdu3YDvq0dsaW5fc3NCQ3Loxz/+cavGN+XGL//79+8nKCio1TGVl5c3eUxrz9PixseMxo0b1+yxSUlJVkkYNzc3KisrrRJMt1NLPu9r165x8eJFq+NFRETuVOoJIyIiIu3O0ojXUpHRUn369AEaViu6cuWKzWNOnTrVqjnd3NwICAgA4MSJEy0eZ2k23BR3d3d69uwJtP08z5w50+QxrT1PaHjEa9euXUBDI2MfH58m/0HDY2M3VvFYPrf2vE7NsVyH2traJvu2nD59mvr6eqChabGIiMidTEkYERERaXePPfYYANu2bWu22uOHBgwYQLdu3aitrbVaMtri8uXLNhvK3syYMWMASEhIMHrR3IylgW9TySD4/jwTEhKMREFLPPzwwwAcP37c6J9zoxMnTrSpH8zevXuprq7GycmJ3bt389FHHzX5z9K09sbraVkCesuWLVRUVLToPVtynZrSp08fY2Wo9evX2zzGsj0sLMxIeomIiNyplIQRERGRdjdy5EiGDRtGZWUlzz33HBkZGY2OKSgoYM2aNWzZssXY1rVrV2JjY4GGZrfp6enGvurqal5++eU2NVl9/vnn8fHxITc3l+nTpxsNdS2KioqIi4uz2mZJDpw+fZqysjKb806bNg0/Pz8++eQT5s6dS0FBgdV+s9lMZmYmixcvJjMz09j+0EMPGc1vX375Zatxubm5LFiwAGdn51afpyWhMnz48Jv2lHniiScA2LVrl5GYmjRpEiEhIVRUVDB16lROnjxpNebChQusXbvWKkHTq1cvTCYTFRUVNhNKNzNz5kwA/v3vf7N582ajf8v169fZsGED27ZtA2D27NmtnltERKSzUU8YERERuS3++te/Mn/+fNLT04mJicHb2xt/f3+uX79OcXGx8UV+zpw5VuNmzZrFiRMnOHbsGFOnTiUoKAgPDw9Onz4NwLx581i5cmWrYvH29mb16tXMnDmTo0ePMnr0aHr37o2bmxvnz583qnXmzZtnjLnnnnsICwsjJyeHRx55hLvvvtvoA/OXv/wFX19fvLy8WLt2LbNmzSI1NZXU1FSCgoLw8vLiypUrFBYWUlNTA8CoUaOsYlq+fDkxMTHk5OQwevRoQkNDMZvNnDp1isDAQJ555hk2btzY4nMsKioylsFuSR+e8ePH88Ybb1BVVcW+ffsYN24cLi4urF69mmnTppGdnU10dDQBAQF4eXlRWlpKaWkpZrOZRx99FC8vLwB69OjBiBEjOHDgAJMmTSI0NBQ3NzcAXnvtNZtLcN8oOjqakydPkpiYyB/+8AdWrVpFz549KSoqMu6RF154wajSERERuZMpCSMiIiK3Rffu3fnHP/7B3r172b59O5mZmWRnZ+Po6Iifnx9Dhw4lIiKC4cOHW41zcXFh7dq1JCQkkJycTGFhIZcvX+bhhx9mzpw5VFZWtimee++9l507d7Jx40bS0tLIy8ujuLgYX19fRo0aZTyyZGEymVizZg1/+9vfOHr0KF9//TV1dXUAVo80hYeHs2PHDt59913279/PqVOnOHfuHK6urgQFBfHggw8yatQoBgwYYDV/UFAQSUlJxMfHk5aWRm5uLr6+vsTExDB37txWJWAAkpOTMZvN+Pj4NLqmtvTo0YPIyEh2797N1q1bjSa+QUFBJCcns2nTJvbu3WtUAvn4+PCzn/2MMWPG4OfnZzXXsmXLiIuL49ChQ5w6dcq4TpZVsm7md7/7HcOGDWPTpk18/vnnZGVl4eHhQWRkJLGxsQwZMqRV10JERKSzMpm1Zp+IiIiIiIiIyG2nnjAiIiIiIiIiIh1ASRgRERERERERkQ6gJIyIiIiIiIiISAdQEkZEREREREREpAMoCSMiIiIiIiIi0gGUhBERERERERER6QBKwoiIiIiIiIiIdAAlYUREREREREREOoCSMCIiIiIiIiIiHUBJGBERERERERGRDqAkjIiIiIiIiIhIB1ASRkRERERERESkAygJIyIiIiIiIiLSAZSEERERERERERHpAP8HnacPlteZNGAAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "actual, predicted = get_actual_predicted_labels(test_ds)\n", "plot_confusion_matrix(actual, predicted, labels, 'test')" ] }, { "cell_type": "markdown", "metadata": { "id": "FefzeIZz-9aI" }, "source": [ "The precision and recall values for each class can also be calculated using a confusion matrix." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:42:59.856245Z", "iopub.status.busy": "2024-08-16T08:42:59.855986Z", "iopub.status.idle": "2024-08-16T08:42:59.861417Z", "shell.execute_reply": "2024-08-16T08:42:59.860819Z" }, "id": "dq95-56Z-_E2" }, "outputs": [], "source": [ "def calculate_classification_metrics(y_actual, y_pred, labels):\n", " \"\"\"\n", " Calculate the precision and recall of a classification model using the ground truth and\n", " predicted values. \n", "\n", " Args:\n", " y_actual: Ground truth labels.\n", " y_pred: Predicted labels.\n", " labels: List of classification labels.\n", "\n", " Return:\n", " Precision and recall measures.\n", " \"\"\"\n", " cm = tf.math.confusion_matrix(y_actual, y_pred)\n", " tp = np.diag(cm) # Diagonal represents true positives\n", " precision = dict()\n", " recall = dict()\n", " for i in range(len(labels)):\n", " col = cm[:, i]\n", " fp = np.sum(col) - tp[i] # Sum of column minus true positive is false negative\n", " \n", " row = cm[i, :]\n", " fn = np.sum(row) - tp[i] # Sum of row minus true positive, is false negative\n", " \n", " precision[labels[i]] = tp[i] / (tp[i] + fp) # Precision \n", " \n", " recall[labels[i]] = tp[i] / (tp[i] + fn) # Recall\n", " \n", " return precision, recall" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:42:59.864105Z", "iopub.status.busy": "2024-08-16T08:42:59.863878Z", "iopub.status.idle": "2024-08-16T08:42:59.879756Z", "shell.execute_reply": "2024-08-16T08:42:59.879115Z" }, "id": "4jSEonYQ_BZt" }, "outputs": [], "source": [ "precision, recall = calculate_classification_metrics(actual, predicted, labels) # Test dataset" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:42:59.882607Z", "iopub.status.busy": "2024-08-16T08:42:59.882381Z", "iopub.status.idle": "2024-08-16T08:42:59.886800Z", "shell.execute_reply": "2024-08-16T08:42:59.886240Z" }, "id": "hXvTW1Df_DV8" }, "outputs": [ { "data": { "text/plain": [ "{'ApplyEyeMakeup': 0.5333333333333333,\n", " 'ApplyLipstick': 0.6,\n", " 'Archery': 0.6666666666666666,\n", " 'BabyCrawling': 0.8,\n", " 'BalanceBeam': 1.0,\n", " 'BandMarching': 0.875,\n", " 'BaseballPitch': 0.8181818181818182,\n", " 'Basketball': 0.5263157894736842,\n", " 'BasketballDunk': 0.8333333333333334,\n", " 'BenchPress': 0.9}" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "precision" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T08:42:59.889364Z", "iopub.status.busy": "2024-08-16T08:42:59.889128Z", "iopub.status.idle": "2024-08-16T08:42:59.893449Z", "shell.execute_reply": "2024-08-16T08:42:59.892880Z" }, "id": "be1yrQl5_EYF" }, "outputs": [ { "data": { "text/plain": [ "{'ApplyEyeMakeup': 0.8,\n", " 'ApplyLipstick': 0.6,\n", " 'Archery': 0.2,\n", " 'BabyCrawling': 0.8,\n", " 'BalanceBeam': 0.2,\n", " 'BandMarching': 0.7,\n", " 'BaseballPitch': 0.9,\n", " 'Basketball': 1.0,\n", " 'BasketballDunk': 1.0,\n", " 'BenchPress': 0.9}" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "recall" ] }, { "cell_type": "markdown", "metadata": { "id": "d4WsP4Z2HZ6L" }, "source": [ "## Next steps\n", "\n", "To learn more about working with video data in TensorFlow, check out the following tutorials:\n", "\n", "* [Load video data](https://www.tensorflow.org/tutorials/load_data/video)\n", "* [MoViNet for streaming action recognition](https://www.tensorflow.org/hub/tutorials/movinet)\n", "* [Transfer learning for video classification with MoViNet](https://www.tensorflow.org/tutorials/video/transfer_learning_with_movinet)" ] } ], "metadata": { "accelerator": "GPU", "colab": { "name": "video_classification.ipynb", "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" } }, "nbformat": 4, "nbformat_minor": 0 }