{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "3XX46cTrh6iD" }, "source": [ "##### Copyright 2021 The TensorFlow Hub Authors. \n", "Licensed under the Apache License, Version 2.0 (the \"License\");" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:27:46.744456Z", "iopub.status.busy": "2023-05-23T08:27:46.744222Z", "iopub.status.idle": "2023-05-23T08:27:46.747895Z", "shell.execute_reply": "2023-05-23T08:27:46.747371Z" }, "id": "sKrlWr6Kh-mF" }, "outputs": [], "source": [ "#@title Copyright 2021 The TensorFlow Hub Authors. All Rights Reserved.\n", "#\n", "# Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# http://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License.\n", "# ==============================================================================" ] }, { "cell_type": "markdown", "metadata": { "id": "DMVmlJ0fAMkH" }, "source": [ "# Fine tuning models for plant disease detection\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "hk5u_9KN1m-t" }, "source": [ "\n", " \n", " \n", " \n", " \n", " \n", "
\n", " View on TensorFlow.org\n", " \n", " Run in Google Colab\n", " \n", " View on GitHub\n", " \n", " Download notebook\n", " \n", " See TF Hub models\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "OEHq-hV5sWYO" }, "source": [ "This notebook shows you how to **fine-tune CropNet models from TensorFlow Hub** on a dataset from TFDS or your own crop disease detection dataset.\n", "\n", "You will:\n", "- Load the TFDS cassava dataset or your own data\n", "- Enrich the data with unknown (negative) examples to get a more robust model\n", "- Apply image augmentations to the data\n", "- Load and fine tune a [CropNet model](https://tfhub.dev/s?module-type=image-feature-vector&q=cropnet) from TF Hub\n", "- Export a TFLite model, ready to be deployed on your app with [Task Library](https://www.tensorflow.org/lite/inference_with_metadata/task_library/image_classifier), [MLKit](https://developers.google.com/ml-kit/vision/image-labeling/custom-models/android) or [TFLite](https://www.tensorflow.org/lite/guide/inference) directly" ] }, { "cell_type": "markdown", "metadata": { "id": "dQvS4p807mZf" }, "source": [ "## Imports and Dependencies\n", "\n", "Before starting, you'll need to install some of the dependencies that will be needed like [Model Maker](https://www.tensorflow.org/lite/guide/model_maker#installation) and the latest version of TensorFlow Datasets." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:27:46.751360Z", "iopub.status.busy": "2023-05-23T08:27:46.750867Z", "iopub.status.idle": "2023-05-23T08:28:56.722287Z", "shell.execute_reply": "2023-05-23T08:28:56.721383Z" }, "id": "5BDTEMtexXE3" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Reading package lists...\r\n", "Building dependency tree..." ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r\n", "Reading state information...\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "The following packages were automatically installed and are no longer required:\r\n", " libatasmart4 libblockdev-fs2 libblockdev-loop2 libblockdev-part-err2\r\n", " libblockdev-part2 libblockdev-swap2 libblockdev-utils2 libblockdev2\r\n", " libparted-fs-resize0 libxmlb2\r\n", "Use 'sudo apt autoremove' to remove them.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "The following NEW packages will be installed:\r\n", " libportaudio2\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "0 upgraded, 1 newly installed, 0 to remove and 189 not upgraded.\r\n", "Need to get 65.4 kB of archives.\r\n", "After this operation, 223 kB of additional disk space will be used.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Get:1 http://us-central1.gce.archive.ubuntu.com/ubuntu focal/universe amd64 libportaudio2 amd64 19.6.0-1build1 [65.4 kB]\r\n", "Fetched 65.4 kB in 0s (3206 kB/s)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "\u001b7\u001b[0;23r\u001b8\u001b[1A" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Selecting previously unselected package libportaudio2:amd64.\r\n", "(Reading database ... \r", "(Reading database ... 5%\r", "(Reading database ... 10%\r", "(Reading database ... 15%\r", "(Reading database ... 20%\r", "(Reading database ... 25%\r", "(Reading database ... 30%\r", "(Reading database ... 35%\r", "(Reading database ... 40%\r", "(Reading database ... 45%\r", "(Reading database ... 50%\r", "(Reading database ... 55%\r" ] }, { "name": "stdout", "output_type": "stream", "text": [ "(Reading database ... 60%\r", "(Reading database ... 65%\r", "(Reading database ... 70%\r", "(Reading database ... 75%\r", "(Reading database ... 80%\r", "(Reading database ... 85%\r", "(Reading database ... 90%\r", "(Reading database ... 95%\r", "(Reading database ... 100%\r", "(Reading database ... 139798 files and directories currently installed.)\r\n", "Preparing to unpack .../libportaudio2_19.6.0-1build1_amd64.deb ...\r\n", "\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 0%]\u001b[49m\u001b[39m [..........................................................] \u001b8\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 20%]\u001b[49m\u001b[39m [###########...............................................] \u001b8" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Unpacking libportaudio2:amd64 (19.6.0-1build1) ...\r\n", "\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 40%]\u001b[49m\u001b[39m [#######################...................................] \u001b8" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Setting up libportaudio2:amd64 (19.6.0-1build1) ...\r\n", "\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 60%]\u001b[49m\u001b[39m [##################################........................] \u001b8\u001b7\u001b[24;0f\u001b[42m\u001b[30mProgress: [ 80%]\u001b[49m\u001b[39m [##############################################............] \u001b8Processing triggers for libc-bin (2.31-0ubuntu9.9) ...\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r\n", "\u001b7\u001b[0;24r\u001b8\u001b[1A\u001b[J" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting numpy<=1.23.5\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading numpy-1.23.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.1 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: numpy\r\n", " Attempting uninstall: numpy\r\n", " Found existing installation: numpy 1.24.3\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling numpy-1.24.3:\r\n", " Successfully uninstalled numpy-1.24.3\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed numpy-1.23.5\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tflite-model-maker-nightly\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tflite_model_maker_nightly-0.4.3.dev202305230508-py3-none-any.whl (578 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tf-models-official==2.3.0 (from tflite-model-maker-nightly)\r\n", " Downloading tf_models_official-2.3.0-py2.py3-none-any.whl (840 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: numpy>=1.17.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tflite-model-maker-nightly) (1.23.5)\r\n", "Requirement already satisfied: pillow>=7.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tflite-model-maker-nightly) (9.5.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting sentencepiece>=0.1.91 (from tflite-model-maker-nightly)\r\n", " Downloading sentencepiece-0.1.99-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tensorflow-datasets>=2.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tflite-model-maker-nightly) (4.9.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting fire>=0.3.1 (from tflite-model-maker-nightly)\r\n", " Downloading fire-0.5.0.tar.gz (88 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25hRequirement already satisfied: flatbuffers>=2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tflite-model-maker-nightly) (23.5.9)\r\n", "Requirement already satisfied: absl-py>=0.10.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tflite-model-maker-nightly) (1.4.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 (from tflite-model-maker-nightly)\r\n", " Downloading urllib3-1.25.11-py2.py3-none-any.whl (127 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tflite-support-nightly (from tflite-model-maker-nightly)\r\n", " Downloading tflite_support_nightly-0.4.4.dev20230522-cp39-cp39-manylinux2014_x86_64.whl (60.9 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tensorflow>=2.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tflite-model-maker-nightly) (2.13.0rc0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting numba==0.53 (from tflite-model-maker-nightly)\r\n", " Downloading numba-0.53.0-cp39-cp39-manylinux2014_x86_64.whl (3.4 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting librosa==0.8.1 (from tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading librosa-0.8.1-py3-none-any.whl (203 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting lxml>=4.6.1 (from tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading lxml-4.9.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (7.1 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: PyYAML>=5.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tflite-model-maker-nightly) (6.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting matplotlib<3.5.0,>=3.0.3 (from tflite-model-maker-nightly)\r\n", " Downloading matplotlib-3.4.3-cp39-cp39-manylinux1_x86_64.whl (10.3 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: six>=1.12.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tflite-model-maker-nightly) (1.16.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tfa-nightly (from tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tfa_nightly-0.21.0.dev20230418145214-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (591 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting neural-structured-learning>=1.3.1 (from tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading neural_structured_learning-1.4.0-py2.py3-none-any.whl (128 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-model-optimization>=0.5 (from tflite-model-maker-nightly)\r\n", " Downloading tensorflow_model_optimization-0.7.4-py2.py3-none-any.whl (240 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting Cython>=0.29.13 (from tflite-model-maker-nightly)\r\n", " Downloading Cython-0.29.34-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.manylinux_2_24_x86_64.whl (2.0 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting scann==1.2.6 (from tflite-model-maker-nightly)\r\n", " Downloading scann-1.2.6-cp39-cp39-manylinux2014_x86_64.whl (10.9 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflowjs<3.19.0,>=2.4.0 (from tflite-model-maker-nightly)\r\n", " Downloading tensorflowjs-3.18.0-py3-none-any.whl (77 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-hub<0.13,>=0.7.0; python_version >= \"3\" (from tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow_hub-0.12.0-py2.py3-none-any.whl (108 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting dataclasses (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading dataclasses-0.6-py3-none-any.whl (14 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting gin-config (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading gin_config-0.5.0-py3-none-any.whl (61 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-api-python-client>=1.6.7 (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_api_python_client-2.86.0-py2.py3-none-any.whl (11.3 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-bigquery>=0.31.0 (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading google_cloud_bigquery-3.10.0-py2.py3-none-any.whl (218 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting kaggle>=1.3.9 (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading kaggle-1.5.13.tar.gz (63 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hCollecting opencv-python-headless (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading opencv_python_headless-4.7.0.72-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (49.2 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: pandas>=0.22.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tf-models-official==2.3.0->tflite-model-maker-nightly) (2.0.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: psutil>=5.4.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tf-models-official==2.3.0->tflite-model-maker-nightly) (5.9.5)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting py-cpuinfo>=3.3.0 (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading py_cpuinfo-9.0.0-py3-none-any.whl (22 kB)\r\n", "Requirement already satisfied: scipy>=0.19.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tf-models-official==2.3.0->tflite-model-maker-nightly) (1.9.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-addons (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading tensorflow_addons-0.20.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (591 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tf-slim>=1.1.0 (from tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading tf_slim-1.1.0-py2.py3-none-any.whl (352 kB)\r\n", "Requirement already satisfied: array-record in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (0.2.0)\r\n", "Requirement already satisfied: click in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (8.1.3)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: dm-tree in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (0.1.8)\r\n", "Requirement already satisfied: etils[enp,epath]>=0.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (1.3.0)\r\n", "Requirement already satisfied: promise in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (2.3)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: protobuf>=3.20 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (4.23.1)\r\n", "Requirement already satisfied: requests>=2.19.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (2.31.0)\r\n", "Requirement already satisfied: tensorflow-metadata in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (1.13.1)\r\n", "Requirement already satisfied: termcolor in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (2.3.0)\r\n", "Requirement already satisfied: toml in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (0.10.2)\r\n", "Requirement already satisfied: tqdm in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (4.65.0)\r\n", "Requirement already satisfied: wrapt in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (1.14.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting sounddevice>=0.4.4 (from tflite-support-nightly->tflite-model-maker-nightly)\r\n", " Downloading sounddevice-0.4.6-py3-none-any.whl (31 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pybind11>=2.6.0 (from tflite-support-nightly->tflite-model-maker-nightly)\r\n", " Downloading pybind11-2.10.4-py3-none-any.whl (222 kB)\r\n", "Requirement already satisfied: astunparse>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (1.6.3)\r\n", "Requirement already satisfied: gast<=0.4.0,>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (0.4.0)\r\n", "Requirement already satisfied: google-pasta>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (0.2.0)\r\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (1.55.0)\r\n", "Requirement already satisfied: h5py>=2.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (3.8.0)\r\n", "Requirement already satisfied: keras<2.14,>=2.13.1rc0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (2.13.1rc0)\r\n", "Requirement already satisfied: libclang>=13.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (16.0.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: opt-einsum>=2.3.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (3.3.0)\r\n", "Requirement already satisfied: packaging in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (23.1)\r\n", "Requirement already satisfied: setuptools in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (67.8.0)\r\n", "Requirement already satisfied: tensorboard<2.14,>=2.13 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (2.13.0)\r\n", "Requirement already satisfied: tensorflow-estimator<2.14,>=2.13.0rc0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (2.13.0rc0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: typing-extensions>=3.6.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (4.6.0)\r\n", "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1; platform_machine != \"arm64\" or platform_system != \"Darwin\" in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.6.0->tflite-model-maker-nightly) (0.32.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting llvmlite<0.37,>=0.36.0rc1 (from numba==0.53->tflite-model-maker-nightly)\r\n", " Downloading llvmlite-0.36.0-cp39-cp39-manylinux2010_x86_64.whl (25.3 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting audioread>=2.0.0 (from librosa==0.8.1->tflite-model-maker-nightly)\r\n", " Downloading audioread-3.0.0.tar.gz (377 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25hRequirement already satisfied: scikit-learn!=0.19.0,>=0.14.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from librosa==0.8.1->tflite-model-maker-nightly) (1.2.2)\r\n", "Requirement already satisfied: joblib>=0.14 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from librosa==0.8.1->tflite-model-maker-nightly) (1.2.0)\r\n", "Requirement already satisfied: decorator>=3.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from librosa==0.8.1->tflite-model-maker-nightly) (5.1.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting resampy>=0.2.2 (from librosa==0.8.1->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading resampy-0.4.2-py3-none-any.whl (3.1 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting soundfile>=0.10.2 (from librosa==0.8.1->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading soundfile-0.12.1-py2.py3-none-manylinux_2_31_x86_64.whl (1.2 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pooch>=1.0 (from librosa==0.8.1->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pooch-1.7.0-py3-none-any.whl (60 kB)\r\n", "Requirement already satisfied: cycler>=0.10 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from matplotlib<3.5.0,>=3.0.3->tflite-model-maker-nightly) (0.11.0)\r\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from matplotlib<3.5.0,>=3.0.3->tflite-model-maker-nightly) (1.4.4)\r\n", "Requirement already satisfied: pyparsing>=2.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from matplotlib<3.5.0,>=3.0.3->tflite-model-maker-nightly) (3.0.9)\r\n", "Requirement already satisfied: python-dateutil>=2.7 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from matplotlib<3.5.0,>=3.0.3->tflite-model-maker-nightly) (2.8.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting typeguard<3.0.0,>=2.7 (from tfa-nightly->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading typeguard-2.13.3-py3-none-any.whl (17 kB)\r\n", "Requirement already satisfied: attrs in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from neural-structured-learning>=1.3.1->tflite-model-maker-nightly) (23.1.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting httplib2<1dev,>=0.15.0 (from google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading httplib2-0.22.0-py3-none-any.whl (96 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: google-auth<3.0.0dev,>=1.19.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly) (2.18.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-auth-httplib2>=0.1.0 (from google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading google_auth_httplib2-0.1.0-py2.py3-none-any.whl (9.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5 (from google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading google_api_core-2.11.0-py3-none-any.whl (120 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting uritemplate<5,>=3.0.1 (from google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading uritemplate-4.1.1-py2.py3-none-any.whl (10 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting proto-plus<2.0.0dev,>=1.15.0 (from google-cloud-bigquery>=0.31.0->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading proto_plus-1.22.2-py3-none-any.whl (47 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-core<3.0.0dev,>=1.6.0 (from google-cloud-bigquery>=0.31.0->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading google_cloud_core-2.3.2-py2.py3-none-any.whl (29 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-resumable-media<3.0dev,>=0.6.0 (from google-cloud-bigquery>=0.31.0->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading google_resumable_media-2.5.0-py2.py3-none-any.whl (77 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: certifi in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from kaggle>=1.3.9->tf-models-official==2.3.0->tflite-model-maker-nightly) (2023.5.7)\r\n", "Collecting python-slugify (from kaggle>=1.3.9->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading python_slugify-8.0.1-py2.py3-none-any.whl (9.7 kB)\r\n", "Requirement already satisfied: pytz>=2020.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas>=0.22.0->tf-models-official==2.3.0->tflite-model-maker-nightly) (2023.3)\r\n", "Requirement already satisfied: tzdata>=2022.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas>=0.22.0->tf-models-official==2.3.0->tflite-model-maker-nightly) (2023.3)\r\n", "Requirement already satisfied: importlib_resources; extra == \"epath\" in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from etils[enp,epath]>=0.9.0->tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (5.12.0)\r\n", "Requirement already satisfied: zipp; extra == \"epath\" in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from etils[enp,epath]>=0.9.0->tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (3.15.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (3.1.0)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (3.4)\r\n", "Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-metadata->tensorflow-datasets>=2.1.0->tflite-model-maker-nightly) (1.59.0)\r\n", "Requirement already satisfied: CFFI>=1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from sounddevice>=0.4.4->tflite-support-nightly->tflite-model-maker-nightly) (1.15.1)\r\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow>=2.6.0->tflite-model-maker-nightly) (0.38.4)\r\n", "Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.14,>=2.13->tensorflow>=2.6.0->tflite-model-maker-nightly) (1.0.0)\r\n", "Requirement already satisfied: markdown>=2.6.8 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.14,>=2.13->tensorflow>=2.6.0->tflite-model-maker-nightly) (3.4.3)\r\n", "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.14,>=2.13->tensorflow>=2.6.0->tflite-model-maker-nightly) (0.7.0)\r\n", "Requirement already satisfied: werkzeug>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.14,>=2.13->tensorflow>=2.6.0->tflite-model-maker-nightly) (2.3.4)\r\n", "Requirement already satisfied: threadpoolctl>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from scikit-learn!=0.19.0,>=0.14.0->librosa==0.8.1->tflite-model-maker-nightly) (3.1.0)\r\n", "Requirement already satisfied: platformdirs>=2.5.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pooch>=1.0->librosa==0.8.1->tflite-model-maker-nightly) (3.5.1)\r\n", "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3.0.0dev,>=1.19.0->google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly) (5.3.0)\r\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3.0.0dev,>=1.19.0->google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly) (0.3.0)\r\n", "Requirement already satisfied: rsa<5,>=3.1.4; python_version >= \"3.6\" in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3.0.0dev,>=1.19.0->google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly) (4.9)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-crc32c<2.0dev,>=1.0 (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery>=0.31.0->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n", " Downloading google_crc32c-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (32 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting text-unidecode>=1.3 (from python-slugify->kaggle>=1.3.9->tf-models-official==2.3.0->tflite-model-maker-nightly)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading text_unidecode-1.3-py2.py3-none-any.whl (78 kB)\r\n", "Requirement already satisfied: pycparser in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from CFFI>=1.0->sounddevice>=0.4.4->tflite-support-nightly->tflite-model-maker-nightly) (2.21)\r\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard<2.14,>=2.13->tensorflow>=2.6.0->tflite-model-maker-nightly) (1.3.1)\r\n", "Requirement already satisfied: importlib-metadata>=4.4; python_version < \"3.10\" in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard<2.14,>=2.13->tensorflow>=2.6.0->tflite-model-maker-nightly) (6.6.0)\r\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard<2.14,>=2.13->tensorflow>=2.6.0->tflite-model-maker-nightly) (2.1.2)\r\n", "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth<3.0.0dev,>=1.19.0->google-api-python-client>=1.6.7->tf-models-official==2.3.0->tflite-model-maker-nightly) (0.5.0)\r\n", "Requirement already satisfied: oauthlib>=3.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard<2.14,>=2.13->tensorflow>=2.6.0->tflite-model-maker-nightly) (3.2.2)\r\n", "Building wheels for collected packages: fire, kaggle, audioread\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for fire (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for fire: filename=fire-0.5.0-py2.py3-none-any.whl size=116931 sha256=b5d0983c6f20e119d67b025a60628ffb34287149d9ee9a92faed4e6d9051928c\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/f7/f1/89/b9ea2bf8f80ec027a88fef1d354b3816b4d3d29530988972f6\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for kaggle (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for kaggle: filename=kaggle-1.5.13-py3-none-any.whl size=77716 sha256=55cf87aecf50c43057e3168dfe2a031823b6ea6e8fdd654efd2bcb52b586cd97\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/9c/45/15/6d6d116cd2539fb8f450d64b0aee4a480e5366bb11b42ac763\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for audioread (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for audioread: filename=audioread-3.0.0-py3-none-any.whl size=23704 sha256=8a0d19ccc31c8b553fc67e790e15263554c339a7caa854cd0c4eeb5f667906e7\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/e4/76/a4/cfb55573167a1f5bde7d7a348e95e509c64b2c3e8f921932c3\r\n", "Successfully built fire kaggle audioread\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: Cython, dataclasses, gin-config, httplib2, google-auth-httplib2, google-api-core, uritemplate, google-api-python-client, proto-plus, google-cloud-core, google-crc32c, google-resumable-media, google-cloud-bigquery, text-unidecode, python-slugify, urllib3, kaggle, matplotlib, opencv-python-headless, py-cpuinfo, sentencepiece, typeguard, tensorflow-addons, tensorflow-hub, tensorflow-model-optimization, tf-slim, tf-models-official, fire, sounddevice, pybind11, tflite-support-nightly, llvmlite, numba, audioread, resampy, soundfile, pooch, librosa, lxml, tfa-nightly, neural-structured-learning, scann, tensorflowjs, tflite-model-maker-nightly\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: urllib3\r\n", " Found existing installation: urllib3 1.26.15\r\n", " Uninstalling urllib3-1.26.15:\r\n", " Successfully uninstalled urllib3-1.26.15\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: matplotlib\r\n", " Found existing installation: matplotlib 3.7.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling matplotlib-3.7.1:\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Successfully uninstalled matplotlib-3.7.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tensorflow-hub\r\n", " Found existing installation: tensorflow-hub 0.13.0\r\n", " Uninstalling tensorflow-hub-0.13.0:\r\n", " Successfully uninstalled tensorflow-hub-0.13.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[31mERROR: pip's legacy dependency resolver does not consider dependency conflicts when selecting packages. This behaviour is the source of the following dependency conflicts.\r\n", "tflite-support-nightly 0.4.4.dev20230522 requires protobuf<4,>=3.18.0, but you'll have protobuf 4.23.1 which is incompatible.\r\n", "scann 1.2.6 requires tensorflow~=2.8.0, but you'll have tensorflow 2.13.0rc0 which is incompatible.\r\n", "tensorflowjs 3.18.0 requires packaging~=20.9, but you'll have packaging 23.1 which is incompatible.\u001b[0m\u001b[31m\r\n", "\u001b[0mSuccessfully installed Cython-0.29.34 audioread-3.0.0 dataclasses-0.6 fire-0.5.0 gin-config-0.5.0 google-api-core-2.11.0 google-api-python-client-2.86.0 google-auth-httplib2-0.1.0 google-cloud-bigquery-3.10.0 google-cloud-core-2.3.2 google-crc32c-1.5.0 google-resumable-media-2.5.0 httplib2-0.22.0 kaggle-1.5.13 librosa-0.8.1 llvmlite-0.36.0 lxml-4.9.2 matplotlib-3.4.3 neural-structured-learning-1.4.0 numba-0.53.0 opencv-python-headless-4.7.0.72 pooch-1.7.0 proto-plus-1.22.2 py-cpuinfo-9.0.0 pybind11-2.10.4 python-slugify-8.0.1 resampy-0.4.2 scann-1.2.6 sentencepiece-0.1.99 sounddevice-0.4.6 soundfile-0.12.1 tensorflow-addons-0.20.0 tensorflow-hub-0.12.0 tensorflow-model-optimization-0.7.4 tensorflowjs-3.18.0 text-unidecode-1.3 tf-models-official-2.3.0 tf-slim-1.1.0 tfa-nightly-0.21.0.dev20230418145214 tflite-model-maker-nightly-0.4.3.dev202305230508 tflite-support-nightly-0.4.4.dev20230522 typeguard-2.13.3 uritemplate-4.1.1 urllib3-1.25.11\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tensorflow-datasets in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (4.9.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: absl-py in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (1.4.0)\r\n", "Requirement already satisfied: array-record in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (0.2.0)\r\n", "Requirement already satisfied: click in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (8.1.3)\r\n", "Requirement already satisfied: dm-tree in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (0.1.8)\r\n", "Requirement already satisfied: etils[enp,epath]>=0.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (1.3.0)\r\n", "Requirement already satisfied: numpy in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (1.23.5)\r\n", "Requirement already satisfied: promise in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (2.3)\r\n", "Requirement already satisfied: protobuf>=3.20 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (4.23.1)\r\n", "Requirement already satisfied: psutil in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (5.9.5)\r\n", "Requirement already satisfied: requests>=2.19.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (2.31.0)\r\n", "Requirement already satisfied: tensorflow-metadata in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (1.13.1)\r\n", "Requirement already satisfied: termcolor in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (2.3.0)\r\n", "Requirement already satisfied: toml in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (0.10.2)\r\n", "Requirement already satisfied: tqdm in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (4.65.0)\r\n", "Requirement already satisfied: wrapt in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets) (1.14.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: importlib_resources in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from etils[enp,epath]>=0.9.0->tensorflow-datasets) (5.12.0)\r\n", "Requirement already satisfied: typing_extensions in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from etils[enp,epath]>=0.9.0->tensorflow-datasets) (4.6.0)\r\n", "Requirement already satisfied: zipp in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from etils[enp,epath]>=0.9.0->tensorflow-datasets) (3.15.0)\r\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets) (3.1.0)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets) (3.4)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets) (1.25.11)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets) (2023.5.7)\r\n", "Requirement already satisfied: six in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from promise->tensorflow-datasets) (1.16.0)\r\n", "Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-metadata->tensorflow-datasets) (1.59.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow<2.9.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow-2.8.4-cp39-cp39-manylinux2010_x86_64.whl (498.1 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: absl-py>=0.4.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (1.4.0)\r\n", "Requirement already satisfied: astunparse>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (1.6.3)\r\n", "Requirement already satisfied: flatbuffers>=1.12 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (23.5.9)\r\n", "Requirement already satisfied: gast>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (0.4.0)\r\n", "Requirement already satisfied: google-pasta>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (0.2.0)\r\n", "Requirement already satisfied: h5py>=2.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (3.8.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting keras-preprocessing>=1.1.1 (from tensorflow<2.9.0)\r\n", " Downloading Keras_Preprocessing-1.1.2-py2.py3-none-any.whl (42 kB)\r\n", "Requirement already satisfied: libclang>=9.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (16.0.0)\r\n", "Requirement already satisfied: numpy>=1.20 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (1.23.5)\r\n", "Requirement already satisfied: opt-einsum>=2.3.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (3.3.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting protobuf<3.20,>=3.9.2 (from tensorflow<2.9.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading protobuf-3.19.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.1 MB)\r\n", "Requirement already satisfied: setuptools in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (67.8.0)\r\n", "Requirement already satisfied: six>=1.12.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (1.16.0)\r\n", "Requirement already satisfied: termcolor>=1.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (2.3.0)\r\n", "Requirement already satisfied: typing-extensions>=3.6.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (4.6.0)\r\n", "Requirement already satisfied: wrapt>=1.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (1.14.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorboard<2.9,>=2.8 (from tensorflow<2.9.0)\r\n", " Downloading tensorboard-2.8.0-py3-none-any.whl (5.8 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-estimator<2.9,>=2.8 (from tensorflow<2.9.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow_estimator-2.8.0-py2.py3-none-any.whl (462 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting keras<2.9,>=2.8.0rc0 (from tensorflow<2.9.0)\r\n", " Downloading keras-2.8.0-py2.py3-none-any.whl (1.4 MB)\r\n", "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (0.32.0)\r\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.9.0) (1.55.0)\r\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow<2.9.0) (0.38.4)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: google-auth<3,>=1.6.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.9,>=2.8->tensorflow<2.9.0) (2.18.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-auth-oauthlib<0.5,>=0.4.1 (from tensorboard<2.9,>=2.8->tensorflow<2.9.0)\r\n", " Downloading google_auth_oauthlib-0.4.6-py2.py3-none-any.whl (18 kB)\r\n", "Requirement already satisfied: markdown>=2.6.8 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.9,>=2.8->tensorflow<2.9.0) (3.4.3)\r\n", "Requirement already satisfied: requests<3,>=2.21.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.9,>=2.8->tensorflow<2.9.0) (2.31.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorboard-data-server<0.7.0,>=0.6.0 (from tensorboard<2.9,>=2.8->tensorflow<2.9.0)\r\n", " Downloading tensorboard_data_server-0.6.1-py3-none-manylinux2010_x86_64.whl (4.9 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorboard-plugin-wit>=1.6.0 (from tensorboard<2.9,>=2.8->tensorflow<2.9.0)\r\n", " Downloading tensorboard_plugin_wit-1.8.1-py3-none-any.whl (781 kB)\r\n", "Requirement already satisfied: werkzeug>=0.11.15 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.9,>=2.8->tensorflow<2.9.0) (2.3.4)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: cachetools<6.0,>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (5.3.0)\r\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (0.3.0)\r\n", "Requirement already satisfied: urllib3<2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (1.25.11)\r\n", "Requirement already satisfied: rsa<5,>=3.1.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (4.9)\r\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (1.3.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: importlib-metadata>=4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (6.6.0)\r\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (3.1.0)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (3.4)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (2023.5.7)\r\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from werkzeug>=0.11.15->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (2.1.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: zipp>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (3.15.0)\r\n", "Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (0.5.0)\r\n", "Requirement already satisfied: oauthlib>=3.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tensorboard<2.9,>=2.8->tensorflow<2.9.0) (3.2.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: tensorflow-estimator, tensorboard-plugin-wit, keras, tensorboard-data-server, protobuf, keras-preprocessing, google-auth-oauthlib, tensorboard, tensorflow\r\n", " Attempting uninstall: tensorflow-estimator\r\n", " Found existing installation: tensorflow-estimator 2.13.0rc0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling tensorflow-estimator-2.13.0rc0:\r\n", " Successfully uninstalled tensorflow-estimator-2.13.0rc0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: keras\r\n", " Found existing installation: keras 2.13.1rc0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling keras-2.13.1rc0:\r\n", " Successfully uninstalled keras-2.13.1rc0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tensorboard-data-server\r\n", " Found existing installation: tensorboard-data-server 0.7.0\r\n", " Uninstalling tensorboard-data-server-0.7.0:\r\n", " Successfully uninstalled tensorboard-data-server-0.7.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: protobuf\r\n", " Found existing installation: protobuf 4.23.1\r\n", " Uninstalling protobuf-4.23.1:\r\n", " Successfully uninstalled protobuf-4.23.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: google-auth-oauthlib\r\n", " Found existing installation: google-auth-oauthlib 1.0.0\r\n", " Uninstalling google-auth-oauthlib-1.0.0:\r\n", " Successfully uninstalled google-auth-oauthlib-1.0.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tensorboard\r\n", " Found existing installation: tensorboard 2.13.0\r\n", " Uninstalling tensorboard-2.13.0:\r\n", " Successfully uninstalled tensorboard-2.13.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tensorflow\r\n", " Found existing installation: tensorflow 2.13.0rc0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling tensorflow-2.13.0rc0:\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Successfully uninstalled tensorflow-2.13.0rc0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n", "tensorflow-datasets 4.9.2 requires protobuf>=3.20, but you have protobuf 3.19.6 which is incompatible.\r\n", "tensorflow-metadata 1.13.1 requires protobuf<5,>=3.20.3, but you have protobuf 3.19.6 which is incompatible.\r\n", "tensorflowjs 3.18.0 requires packaging~=20.9, but you have packaging 23.1 which is incompatible.\u001b[0m\u001b[31m\r\n", "\u001b[0mSuccessfully installed google-auth-oauthlib-0.4.6 keras-2.8.0 keras-preprocessing-1.1.2 protobuf-3.19.6 tensorboard-2.8.0 tensorboard-data-server-0.6.1 tensorboard-plugin-wit-1.8.1 tensorflow-2.8.4 tensorflow-estimator-2.8.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-datasets~=4.8.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow_datasets-4.8.3-py3-none-any.whl (5.4 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: absl-py in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (1.4.0)\r\n", "Requirement already satisfied: click in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (8.1.3)\r\n", "Requirement already satisfied: dm-tree in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (0.1.8)\r\n", "Requirement already satisfied: etils[enp,epath]>=0.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (1.3.0)\r\n", "Requirement already satisfied: numpy in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (1.23.5)\r\n", "Requirement already satisfied: promise in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (2.3)\r\n", "Requirement already satisfied: protobuf>=3.12.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (3.19.6)\r\n", "Requirement already satisfied: psutil in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (5.9.5)\r\n", "Requirement already satisfied: requests>=2.19.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (2.31.0)\r\n", "Requirement already satisfied: tensorflow-metadata in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (1.13.1)\r\n", "Requirement already satisfied: termcolor in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (2.3.0)\r\n", "Requirement already satisfied: toml in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (0.10.2)\r\n", "Requirement already satisfied: tqdm in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (4.65.0)\r\n", "Requirement already satisfied: wrapt in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-datasets~=4.8.0) (1.14.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: importlib_resources in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from etils[enp,epath]>=0.9.0->tensorflow-datasets~=4.8.0) (5.12.0)\r\n", "Requirement already satisfied: typing_extensions in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from etils[enp,epath]>=0.9.0->tensorflow-datasets~=4.8.0) (4.6.0)\r\n", "Requirement already satisfied: zipp in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from etils[enp,epath]>=0.9.0->tensorflow-datasets~=4.8.0) (3.15.0)\r\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets~=4.8.0) (3.1.0)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets~=4.8.0) (3.4)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets~=4.8.0) (1.25.11)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests>=2.19.0->tensorflow-datasets~=4.8.0) (2023.5.7)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: six in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from promise->tensorflow-datasets~=4.8.0) (1.16.0)\r\n", "Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-metadata->tensorflow-datasets~=4.8.0) (1.59.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting protobuf>=3.12.2 (from tensorflow-datasets~=4.8.0)\r\n", " Using cached protobuf-4.23.1-cp37-abi3-manylinux2014_x86_64.whl (304 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: protobuf, tensorflow-datasets\r\n", " Attempting uninstall: protobuf\r\n", " Found existing installation: protobuf 3.19.6\r\n", " Uninstalling protobuf-3.19.6:\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Successfully uninstalled protobuf-3.19.6\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tensorflow-datasets\r\n", " Found existing installation: tensorflow-datasets 4.9.2\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling tensorflow-datasets-4.9.2:\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Successfully uninstalled tensorflow-datasets-4.9.2\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n", "tensorflow 2.8.4 requires protobuf<3.20,>=3.9.2, but you have protobuf 4.23.1 which is incompatible.\r\n", "tensorflowjs 3.18.0 requires packaging~=20.9, but you have packaging 23.1 which is incompatible.\r\n", "tflite-support-nightly 0.4.4.dev20230522 requires protobuf<4,>=3.18.0, but you have protobuf 4.23.1 which is incompatible.\u001b[0m\u001b[31m\r\n", "\u001b[0mSuccessfully installed protobuf-4.23.1 tensorflow-datasets-4.8.3\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-metadata~=1.10.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow_metadata-1.10.0-py3-none-any.whl (50 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: absl-py<2.0.0,>=0.9 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-metadata~=1.10.0) (1.4.0)\r\n", "Requirement already satisfied: googleapis-common-protos<2,>=1.52.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-metadata~=1.10.0) (1.59.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting protobuf<4,>=3.13 (from tensorflow-metadata~=1.10.0)\r\n", " Downloading protobuf-3.20.3-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: protobuf, tensorflow-metadata\r\n", " Attempting uninstall: protobuf\r\n", " Found existing installation: protobuf 4.23.1\r\n", " Uninstalling protobuf-4.23.1:\r\n", " Successfully uninstalled protobuf-4.23.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tensorflow-metadata\r\n", " Found existing installation: tensorflow-metadata 1.13.1\r\n", " Uninstalling tensorflow-metadata-1.13.1:\r\n", " Successfully uninstalled tensorflow-metadata-1.13.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\r\n", "tensorflow 2.8.4 requires protobuf<3.20,>=3.9.2, but you have protobuf 3.20.3 which is incompatible.\r\n", "tensorflowjs 3.18.0 requires packaging~=20.9, but you have packaging 23.1 which is incompatible.\u001b[0m\u001b[31m\r\n", "\u001b[0mSuccessfully installed protobuf-3.20.3 tensorflow-metadata-1.10.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting packaging<20.10\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading packaging-20.9-py2.py3-none-any.whl (40 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: pyparsing>=2.0.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from packaging<20.10) (3.0.9)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: packaging\r\n", " Attempting uninstall: packaging\r\n", " Found existing installation: packaging 23.1\r\n", " Uninstalling packaging-23.1:\r\n", " Successfully uninstalled packaging-23.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed packaging-20.9\r\n" ] } ], "source": [ "!sudo apt install -q libportaudio2\n", "## image_classifier library requires numpy <= 1.23.5\n", "!pip install \"numpy<=1.23.5\"\n", "!pip install --use-deprecated=legacy-resolver tflite-model-maker-nightly\n", "!pip install -U tensorflow-datasets\n", "## scann library requires tensorflow < 2.9.0\n", "!pip install \"tensorflow<2.9.0\"\n", "!pip install \"tensorflow-datasets~=4.8.0\" # protobuf>=3.12.2\n", "!pip install tensorflow-metadata~=1.10.0 # protobuf>=3.13\n", "## tensorflowjs requires packaging < 20.10\n", "!pip install \"packaging<20.10\"" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:28:56.726176Z", "iopub.status.busy": "2023-05-23T08:28:56.725940Z", "iopub.status.idle": "2023-05-23T08:29:00.598908Z", "shell.execute_reply": "2023-05-23T08:29:00.598146Z" }, "id": "nekG9Iwgxbx0" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_addons/utils/tfa_eol_msg.py:23: UserWarning: \n", "\n", "TensorFlow Addons (TFA) has ended development and introduction of new features.\n", "TFA has entered a minimal maintenance and release mode until a planned end of life in May 2024.\n", "Please modify downstream libraries to take dependencies from other repositories in our TensorFlow community (e.g. Keras, Keras-CV, and Keras-NLP). \n", "\n", "For more information see: https://github.com/tensorflow/addons/issues/2807 \n", "\n", " warnings.warn(\n", "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_addons/utils/ensure_tf_install.py:53: UserWarning: Tensorflow Addons supports using Python ops for all Tensorflow versions above or equal to 2.10.0 and strictly below 2.13.0 (nightly versions are not supported). \n", " The versions of TensorFlow you are currently using is 2.8.4 and is not supported. \n", "Some things might work, some things might not.\n", "If you were to encounter a bug, do not file an issue.\n", "If you want to make sure you're using a tested and supported configuration, either change the TensorFlow version or the TensorFlow Addons's version. \n", "You can find the compatibility matrix in TensorFlow Addon's readme:\n", "https://github.com/tensorflow/addons\n", " warnings.warn(\n" ] } ], "source": [ "import matplotlib.pyplot as plt\n", "import os\n", "import seaborn as sns\n", "\n", "import tensorflow as tf\n", "import tensorflow_datasets as tfds\n", "\n", "from tensorflow_examples.lite.model_maker.core.export_format import ExportFormat\n", "from tensorflow_examples.lite.model_maker.core.task import image_preprocessing\n", "\n", "from tflite_model_maker import image_classifier\n", "from tflite_model_maker import ImageClassifierDataLoader\n", "from tflite_model_maker.image_classifier import ModelSpec" ] }, { "cell_type": "markdown", "metadata": { "id": "fV0k2Q4x4N_4" }, "source": [ "## Load a TFDS dataset to fine-tune on\n", "\n", "Lets use the publicly available [Cassava Leaf Disease dataset](https://www.tensorflow.org/datasets/catalog/cassava) from TFDS." ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:00.603102Z", "iopub.status.busy": "2023-05-23T08:29:00.602664Z", "iopub.status.idle": "2023-05-23T08:29:04.548644Z", "shell.execute_reply": "2023-05-23T08:29:04.547994Z" }, "id": "TTaD5W_1xjUz" }, "outputs": [], "source": [ "tfds_name = 'cassava'\n", "(ds_train, ds_validation, ds_test), ds_info = tfds.load(\n", " name=tfds_name,\n", " split=['train', 'validation', 'test'],\n", " with_info=True,\n", " as_supervised=True)\n", "TFLITE_NAME_PREFIX = tfds_name" ] }, { "cell_type": "markdown", "metadata": { "id": "xDuDGUAxyHtA" }, "source": [ "## Or alternatively load your own data to fine-tune on\n", "\n", "Instead of using a TFDS dataset, you can also train on your own data. This code snippet shows how to load your own custom dataset. See [this](https://www.tensorflow.org/datasets/api_docs/python/tfds/folder_dataset/ImageFolder) link for the supported structure of the data. An example is provided here using the publicly available [Cassava Leaf Disease dataset](https://www.tensorflow.org/datasets/catalog/cassava)." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:04.552614Z", "iopub.status.busy": "2023-05-23T08:29:04.552306Z", "iopub.status.idle": "2023-05-23T08:29:04.555510Z", "shell.execute_reply": "2023-05-23T08:29:04.554941Z" }, "id": "k003tLvflHpC" }, "outputs": [], "source": [ "# data_root_dir = tf.keras.utils.get_file(\n", "# 'cassavaleafdata.zip',\n", "# 'https://storage.googleapis.com/emcassavadata/cassavaleafdata.zip',\n", "# extract=True)\n", "# data_root_dir = os.path.splitext(data_root_dir)[0] # Remove the .zip extension\n", "\n", "# builder = tfds.ImageFolder(data_root_dir)\n", "\n", "# ds_info = builder.info\n", "# ds_train = builder.as_dataset(split='train', as_supervised=True)\n", "# ds_validation = builder.as_dataset(split='validation', as_supervised=True)\n", "# ds_test = builder.as_dataset(split='test', as_supervised=True)" ] }, { "cell_type": "markdown", "metadata": { "id": "hs3XCVLo4Fa1" }, "source": [ "## Visualize samples from train split\n", "\n", "Let's take a look at some examples from the dataset including the class id and the class name for the image samples and their labels." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:04.558334Z", "iopub.status.busy": "2023-05-23T08:29:04.557908Z", "iopub.status.idle": "2023-05-23T08:29:06.174364Z", "shell.execute_reply": "2023-05-23T08:29:06.173627Z" }, "id": "89GkD60Eyfe0" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtIAAALcCAYAAADKYFfaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9x69la5rf+X1ft+z2+/iwNyKuTVeZVVkmy5BNK7Ua1EAiKECABE0EDaSRAEF/gSBBgGYCBGnQkBm1kSAKZLNVIptVKmZlucybefN6E+7E8dvv5V+jwclqoCeq6kqS97Jyf4CYBQIrIp619++s9bzPI0IIgZ2dnZ2dnZ2dnZ2d/1rkl30BOzs7Ozs7Ozs7O/8u2gXpnZ2dnZ2dnZ2dnb+CXZDe2dnZ2dnZ2dnZ+SvYBemdnZ2dnZ2dnZ2dv4JdkN7Z2dnZ2dnZ2dn5K9gF6Z2dnZ2dnZ2dnZ2/gl2Q3tnZ2dnZ2dnZ2fkr0F/2Bezs7Oz8Oe89Z2dn9Pt9hBBf9uXs/DsihMBms+Hk5AQpd8+HdnZ2/u3ZBemdnZ2vjLOzM+7du/dlX8bOv6NevnzJ3bt3v+zL2NnZ+QWyC9I7OztfGf1+H4D/y//i7+K9RKg+1iuESflXH3/M9z/7CFfV9LMERA9nAiGV9A6n3Hn9EGP6zOYlzhucT1FakqeSQR4R8AQPWWO5P5ry8rOnfPJHH/Cto4e030i4XL/i+vkK6w2alv5hTHPjGLg9fvzjDwDBpD+hWzek2vC933kHGTtuFg2n5wt6k5rny5a733qdj9/7gNG+IuoniDilrS1VXZHEKVnc4/jeI3rjMe//F9/n788eMFuu+I8//30q6Zn2Bjw8OmAy6KONpA2OWjhE7WjLQAWYXBGNFMtyhm89oUpwZQy+Zr26oKkdST8lyiR5mqCdIjWKYtmghaZzlvXG8Xf+1t/i4vKc+fySEDqsaEi9Ytpm6MbRhI65WhGE5158wPfu/zpX9YrFY0V4vMfZ+TXbL645fvMR0TTDRwKpY8pNS9N6TKQIvkMbgYljqqqldS1RqjBa0NWWJFNU5ZrtpmK53hBwSEAgCMHjRcc0GHrbmu5yTjFb4axnOBwihcA5R7HZ8P/4ePZf1s/Ozs7Ovy27IL2zs/OV8eftHEYGdKxBKqKoRys0zoAa9wiRoqwajh7tM3ltgkwVbacIIgeZE6cRLkiMjhn0I9JMkkSKs/NrvJeMcoU1JVVaEo4TYuGZmoSZdSRa4axFSU0aJxw87HPz8ZZenBI8KAFtBKuu4LNXFwz2U8YPp9ydJKQseH7+KW254uGbD7hZvcJ6Rz81jCdDxkJgm5bVqxkf/PCP+bXf/h3uPLhDMQ8c5iOyfp+ubaiqlm3bMNA5USTQwSF7Kb7RuGJN3ycMdJ9WbSi0orMKYRRCd7hyixGQDfcRcYeKIUtjXGXxTUsWZYAgTWKO9/YZDnq8eLFFyo5AyyBXDLuItAl0EWxlAyFwrE/4nXu/DLScdRdsy5g+CfffusemN4Y4Ix/0SQcx67KkrC1aaqQSxEmMEB4tBVKlRDbBho6usVirWFVbmq4gCIjiCE+HEp6ucYAgj2IGwWA3c1aXV2Aded5DBot3nrosabv2v1I/Ozs7O/+27IL0zs7OV44n4LxDa0UQkrbtWG62JHsjzP6IcdZjdHSIHijSPOP6smRbQNQ5kjQjjg2agJAdVV0RREQrK0IQLKuSTbDUx56D4RHuwtNberIiZc4MYTzKTMhGGX7jcFvHNBviuvY2HGaKppWcn17Q2D4XqwsevvkGiRlwZ3/M/Pycwb1D+qMRQsfoJEFEmiSOEf2MveGYF1884/33/5S3Xvs6da/iievzjd/6Jh+9ekE7LxCTlDBOaZqGKIqI9voMh0dclS94NHzIN771Du+ef5/F8xnWAp0DW4NrkF4w7A1Yt3NUJpAS2rpFBkOeJCgCeS/j8aPXuTx9zqpakCCZjHtI3eFnDcQRnQwsyoLDaMiv3/llchPz0+1nNHGFsorm1TXxpiOPh5SxQBrBerNmXRQ4H/BeIZRCmQhkwGiJ7CSRNjRtQ9EUlHVDUxZI4yAEImNoO0vbtrgAWmpGWU64WTN7+QpX1+xNJyRRRFM3VHVN03V0zn7ZJbuzs/MLahekd3Z2vnLStIcPASk1XiiqtuPsfE544w6HD44Z9FKMUbRtS1dKoiinA5IkY9BPkKJlU2zBB1pbUzYFxnjK+ZJ3//A9+vsjksOMdBDR3B0jX0J2KlB7giapGAwDcVyz+dhzX5xwY5Z0WUccR9wUBZFJqcoZqUm5ns/54Q9+yNfffgOBQLQNq/kVUa/H4qzg7jcfoGNNJA1CC2QE97/2iMVsxtqumTzYo39huPvkDuFxRhYijDCIINh8dorJIoISFPMb3n7rDb7x5NtI09K8LMgjA96S6IRC1GwchBCxuFki+4K4Z2iXLb50mDynl0b0swQZx1wvrjg/OyeJNG/s3UWYJcuyQacpsqco5ytMq/nWyTc4Tka8v3iX82TD8Pgep4sL7Kc3mPGW/IlCZIbOd7SuQ2pII01ZdATAYRHCUTUdtgloEaElaGUxkUeJhM476lCQyow0joAW27WYKKLf63H17BW2aej1M5I8IjQt3jZ0tqXzjhD8l1yxOzs7v6h2QXpnZ+crJ8tH+ODwIqVtJXUQTO4/IuyfEFSM8wojNEobXFDEiUEm0NUt221NCDUqgnq74frlBeurNa89uU+zuKZ+1eHOtsj4hvikx52/PeAm3fLA9/msyOk9EoyHDrtekXcHPE6OiITmPF4Ta3jUPyLrHfL8+ccYJcnSjMuX15yaM6p6iRhpwMGiQiwaVG0hl0ipiKRGGAjKMjZD2sLipx6/EIyGU+qRRnTg6wCdxPRzRNfApqOerbn37W8RR5bPXn1IqCru5vt0I4eSks+KFRaNznt0tSWNJUZoiqIhUgnD7DZIp/2Y69WK2eKMzOT8+sMniGrDtatIsgwRxRSbkqYO3Mvv8vbwMc9Wz/mTs4+wk5zx22OuP/wJh8ETj0ZYHG3rqRdrutBhEkUSxdjO07nAdlOgTEAJg3eOJI9IE02HwOCIkphNWVK3jrrdkqUJ/UEMW4skUDYWKyVBS0ajEVkaUXUdzjog4EMgiN2kjp2dnS/HLkjv7Ox85Zgop25LdBTj0KxVR//+fdooxgeoW08QlixPcZ2nahvKpkL+eY9saGgWBaurK2ZPX9LNA8/WLaSWOMrRpITO0xMJlQl8MjvlN7LXeZwf0e5f05ULujJmqAxGBA7GE5pIUazmbMsNr7/xDUbjmGdXn5H3Yu6nh/imxggFXhK2Ab1tOJY90tZjlcBLR0BgjEFqQ1lt0Imk1luCikiI0AYCkiDAG4gmGe2rLaEJPBwd0TMR1hZUmxUPpveYv7xgGCdYI0j7A2QjUEToWJAkjtA6fAV702PeePIApT1fnD1lPl+QRjnffPKYeNNxsb7AjyUCQ+s6yqJhZHN+87VvcVNc8VxcsRKg2sBiu6CnJQdpiosFLYK6qUDdtnLUlcPbEqkkQiiMjpAabNcilEMaR9U0tF1LWW1wISLLcqq6oqwqRFsxTDLSJCZYTdV5OqXxWhNFGiEEzjqcd1hrcc7jUV9uwe7s7PzC2gXpnZ2drxxtUmIJnRc4bVgJgcsiUqkRcUCqCCkd22JNWVb4AEJJpDS0bYVSDmcM/aN9sjxjeVpw83JBvAr0taQNNUhFPDQ0oeZqvuIz1vzayT2+v33JzfWWYXwCqaKlZTCZMO46rl6cUtqOq9UpL86eMrnXp3aO4dTQFYHlywK3hHF/yl6eU24t89MLeod3IYsJ0oKQaBkRE5HkCuUcQgRSbv9+TihaZWmEQw8VxYuWcTpkEPfQUjBfzJjmU8qbFYlPGOQp6ckhCyLmzQvctkbrQMAhnGJ/fMjf+dt/nzzX/OEPfp/r2Zos6vHk7gNS2zCfzah6gVdXC4bxkEgpdAPfvfM2e9bwz4t3eeZnVBWMUkVqLPuDlC7U2F5CExRCgdIC68E7hQVGg5Sq8lRNh/SQ5IrxqA/Oc3O5oao6nAs4F7Ctx3aA0IQgKDY1EtDSYJF0QhBlKSEEqqJgWxS0bYfzHiEkYrdbbGdn50uyC9I7OztfOVIl4AKdTjkrPFZn7CcQDDg6tk2F7woENb6r6drbcWk+GOLYYFKDUhaZZejBhEjPqWZLulWH9YbgFcakxHspuizZriuqbxZo3RA979MUS+ppzd70kG7mGQ+gOF2gBhEDo4n6ijK+pixOkSoibDVR2WfcxkS9mGW35vtPP2aaj1leb+iFloe/+oi4H7N4tSBJcnqjPnnUEomU2giSLiCtx2JxOqBcoHAVTd1hMklvkNF0DQGF8hGb9YYoTYj6Y/bGx6x//BxfOlIkIspJEkEcDL/9N36TNHP86bt/zPOzU7J0wDuvvUbiO5ZXV8xdxdVNy4vzLcfHmqkZ8ih6wmvZPt9f/5QX5TXzbcNgPMXIjquPPiEOLXpvjBhP8EmMQNI6h4kEWS/GuY6u7Wgaj+0cRknyfs5oMGZ1s8C7gAeSpE8aKcpqRRJLEpPQ1R2uhbbzJLHAmxZrFOmgT1dXlMuCorJ0LuClul3AYt2XXbI7Ozu/oHZBemdn5yvHWUMd4Gzjuag9Ku+RacuiuKFpC+quwLoSJT2LxRrbSvJ0wCDNMSpGKYHSCVoraBuoWpS11G3A+YBWgSh2xLmgaAoOHw0RdwOnsznfGnwNMRhSGE8v77PdbBikEZVaEzILqqHobhj3Djk9e8V01MdvHLrRjEdj/BBuig3aJqzqktK1lFcz1r+3Yj/qcf35DXmvz5vfeZuDXz4iH/YJmUQ1HdfzGeQKYSJoHMV6g8dj25YozXAiYtLvcbb4lCjS7E/2CDLi2ekps8WSSBliLUiHOcf3+2QiI0sj/uTP/oinL56TZz1+6Z23SZxjeXFNEzw3TcF1UeFlglsqekmP7xw/4s9uPuAiXrDY1oBiNInp6g04T+08QmuUlljfEZxCSYXgtvVCSon3EmMEQgWyfsQgT9gsF6xWG8q2Y11WRFpAF7iN1R5nHbbrEF7inaBtWqTQSGOQUlGstxTbgtZ6hBRIKfDeEWsF7CZ37Ozs/Nu3C9I7OztfOVdty01ruXaK1iiKas2sPKOoFzR1SdWVrIsVtnMokRDFfeq2IthA6lIiEWGyDOU9i8tzNheXVGWLVBF5lDHoG8zYEcUOMxySG0cnFFfG86AcsN/t09RzbrolXVjTLFY4WRNHEcFp+suc3B1gZYLTW1pVsi227D25yzqpsHHMvcMHlJstQyAa9CkXW169/4r2qmZLQ5ydMb3T4/TVBcV2wlE44OzVCzpXMbhzSCOg1ZZeP6Fab1iu12R3D+iqlqbaYpRms93y6vqKi+2GqulIhEaIloOjEaO+oa8H/PS993j2/AVCwduvPyQ3nvX8iryX8unZBcumQ5mUcdajV6d879E3ebp6yVVcsMVytSrQUuB9n6wHznZ4ERNPp7SRRDqLA7xXBK9I05S2rXEOBsOEotqgVKAta0LnCUHggsCF29XeAIFA07aIEHC+Q3iNUpokjgjaUMmGyjlcUWGDAwUheESQpMYQaQM0X2bJ7uzs/ILaBemdnZ2vnE1TI6VibMAXK56e/pRZc8Gm2dDUDhs0UmuEVATp6XxJwBF8R7PZQhNIbZ9eoriZvyJJEqb37tJcluhSEqURw6MIkbZg+jSXz3n+bsGVyIiyIY/EgE9On9IeR8QGRGXpNgFXS04OH6DXGbSSaehRSAgDT5Im5JOULz57ziDv09gtJ49P8Kmgc4F0mKCloni2BKnZ/9oDRG9EsVqy7QXGRKhS8fS9l4wuSnr3JuhBjEkj3FXBtllThi3dpqZYV9i6RSeSbKBIdYpfWHQwxFoxHOXcP7rD04+e8/zZc4IIjAYRSWy5vnzO/vSIxarGm4hcx0hryKzk1568jRvBT7oLRFeT6AGVA9E01GVJHEnazpEMUvR4xMo7YgVxpICIEBybzRwhPQjFershCBCdYrnpcE0LLmAkGBUAgdKa4CRSCLy3t7PDLXhrUUZhIwM+gSyhEwIk+OBQQqAFJNHua2xnZ+fLs/sE2tnZ+cp5uH9IpAxNV/NBccHm6hlrt6RwltgMGWZTnJJ46RDS4YMj0AICE8XITOEoWS7XbMs5zk3IbJ8kjShXW+rzLfXA8OCNPZYXFfYcxs0+e/sTnlY3HNSawTrm3e0lh3f3meyPQVZsm8DqsiQknuN8wn23x7yJSBJJNrpdUpLPoFta0jf69CcpTWyRdSBoydTs0Y8Tvva1b+CHETIO3BnfI00F+XXM62++yavPLtg82xC2NQ8fHZPqIV3jqFYb6nKFrxtAMp7uk6Wg96Fbb/jstIBGIJXiaO+Yq9Ml7//kc4KQ5GPJG2/dZ7G44vzVOaPpCeuqRZuEVASm2Yg3BkccRAnvpddUU0e+0oStJDGKfp7ghKd1CtdBSGJaDb1BziCJ8U5S14G6tiA8UgaiOMJx2+/edRrrJVpJYhNouxolPCFA11pQAakUznYIbp9QewJBgYii2xGAeUZnNME2OA9KQhYbIgl+N/5uZ2fnS7IL0js7O185MkiEgFW54P1nP2VLQ20V9aqj2s5oUk//ZI/B0Qidary0WNsROUMUaUIUqH1F11Y0xRa/FphtwGgNBGKZEUeGsI2YtBn68C5lXTFbn7JabfiX8wV/796vUm97fPzyJaL27A17ZEPoJX18VdN2LZPeAKSlqOasT0vcyhOqgD4UjB/2kD1PUxQ4G6GNwUeWWnZ0qiZLPDppUR7ysUfMPJOJZ/8AQjdmb3LIsZmSx31e+Y7uymFOPMF2IAOD8QgTSmxm0QIio4lFjhSOq2dL3vvRT+hc4PDekMdvj1ktF3zxxUv2hoc0jWBxtcDiidKEE5dyv7/HP/3w91grkMNAQ8NiU/G11w6R1FS5p3AtvSQjOxrjUgh1xcZaghV0rbhdsOglxii870jyhLazeA+2BbwjYHHOYiJJZ2v6/T5NW7OpLUYnNG1N11qEVHgJCEcURdjRgLbfR1Q1UkAcaXpZjJECq1Jg+aXW7M7Ozi+mXZDe2dn5yhFe0via955/xIvtjK0UdD8bchbFiraqufnkFL+siI8m6L0UtKAKDU3VEDUC67eIokM10M9SZGXBKaIkQhuB0ZrVK8c4ymjLwIuzUzrT4puIVVmyrLf8xvQR56trqqpjnZSkccT+vSGRPWT5fMFNsWF8Z4B2gvKmQnUDartmOBB4W3D53pLgY/RQ4nzL8sU1m/maF7nmrfFjpr0IETwRDq9bDrPA9/69h7z4Yc2D47c4Hr1OagybD7aUqwLjNNuipZ/00IngcrPk8vkVce8Q5WMkAuECP/6T96k7z+RQ8MbbB1TVluvTNYej+wyHewSRUHSOJDOkM8Xb917jD5/9kLN4TrexxFlCa7cMJj0GQjNrN2SjAc26QMUxMjdYoFhXOFujhEbKBK0TlIqQUtFZT7et8Vh8AOVvn1B3rsOHQJYmWOfpfENjb/+cxkm8CwQgQZHYQL1ZQz+nG6bI/T38zYyYQJ6k6DhGSEkS9b/cgt3Z2fmFtQvSOzs7Xzk+WF5cnPInP/0JvgdHwz7bVLFKa4IK9EwPueq4/vgVfH5JPMnoPxozPtljMZvjtzX5ANyiwVQRKpcMDnK2qwodGe68foC2UC4ly2bLi+fPKcKWw0cn5GrA8DDharPkgZgwIWYTPFk+oa7XvLp6xTCeMr67h60aatES5TFBAwrGkwGDzHD17pzZ8xlCRHTRjHmxpdyWDKYDzl/OGU2nTHt7yNiiTaAxjr53HDzq04WcqYgYRBmxzumlfZbnc4p1xWKz4d6je3Rpx03b4FyP02dznIM6bJG+xDnP5DDjG98+wnYVs4stMvQY9g9QMkYKg9IxvdbwO5O3uGy3fMEV44Mhl+UVkYiJD2IObEp7eU0YaFSiMIVEpDG1hLZuiHRMbR0hCESQIBTe+dv5GTqgDcSxwXkPdUAKTdW0BBfwjaVqK7zwWNvircW1DucDsYroKYGcL9HbAjPqY/YGiJMRm1cRaefRQoCHxlq21xdfcsXu7Oz8otoF6Z2dna+cxtX85IP3+OyLM/wYDp9MGe89IfWaTVPghEMmMSN7wuynp+hZR9nN6ZseutFsbjr28gHbTUnqh9ApHnz9Ph8+/ZDjoz3SA8PivTndPMK5gJbQy/sc7h/TY8xifcYmzMkXku88fpM/ePERZy+uGY5ySt/gu2vm8znvvPUWnhJZRPQP+iSVIc1GXF7PWD2vSJKIZBSzmpf4RcVgnBIlAoLn1dMzeqnmwVsHOFFTa8hlxtN2TjN09POGUF0g9T3iTNN2LV88e0nvOMX1Az7rSIb7LD+5ZrmokWlKmjjiVjHMB9x/Z4R1Nc8/O2M7h7Q34Hx2w/d+9TcoVlseDA95zU7ASJ5vnpPvDej1MqRXxHqAiwLhfHW7JfGwj+ssxgV0nFKjaZoOqSTKSHAgpMe6BqEN/X6CjB0eC/r2DUMkIpCa2tXooKk3NUIonA90Xbg9cGhLAp48iRhJQXt+gzxb4NxLwoMxveM++WuHdKc3GKuQTrBdrumq9ssu2Z2dnV9QuyC9s7PzlfPBiy/44PmndCFghWZVNQzthsngBJOMKOotjayYPumjvaJ+NkduHFcfXPDgm4/ppg3tFkyZYpSjUy1NJLj33UeMs4Rnf3pBXiY0bYOKNSeHExjFLO2Ks4vPkEHj65bL4ZpvTN/ha/NHvPBLgm/oJUNs3FFPG27kgu3nl3RRi8oDca9jcX1BubXk+5p8qgmZBqfY3LQ0tiPNYJClPP/JGVcfXlL91reIjOcNDHdHI3w+IopWbJMVSdzRbQTpNCc4fbup8O4xXS4IIrB4es3F0xt0k+EGNW/+8oDyfc9ef0Cg4uNPr1jOHHmc4LqKUkhO7t/h/PSaN8Ux+mrLu9W73P/mXd4+/A6T/QO0SNm6htnNBZf1h1xXHxMGAn1hSWWG6vdQKkG4gDcarSRCGqTU6CiiN+gxHGfMNze0nUQgGKQZdVfjREO/H1GVFU0jaIpA3dYQOoxWyGCwtPQzTVR0lMsNzXZDV5WEakFxlnB8eEAdxSAFbddCaIiiL7tid3Z2flHtgvTOzs5Xzu//4Aecvrghmw4Ih32cKFhtl8T9CUmeE8X7bJsC29YcvvUar9Yt8aKlqDquTy/onfQoXm4YhByhalpVs6y3jB/n3MwXrIsS3WmMionjFNttmV2fkb42RStPtWppipbP2nPeuDPn1x8+Ju9v+fHNTylSy+jeEDFsePnigpeffEAWSSaPxmzzjrlYU4mOk7dGmNqxmG3p9XPygaCxLYnKOf38nHoesMHyg//sT0kHCflrisOTY6o6R6UxL8st2q/ZE2fEJxnWWNxWMPuiwC4DnWy4utniXIrLK77zvQmPhwlXL1cE73n6+Yy6FKR5TpyC70d8/egRqYw5aiOypuYT/SH5W4bj4wnDdJ8oTZFJxtTsczzcY6Rjrj9/gTQVkfckUmKFQytFHidIo4mMpBf3cd7TOUfTlszmNTYEvNPEJsI1t1M5rG9pmhbrWmQkSIPBWYmWMVoJirYgEOiqimrW0iw3FHVFwGMsmMJSXS+JoxhJoKoLYiPo3G4hy87OzpdjF6R3dna+cnqzGK0HqCxCxoLKGqo6MJ/dMDqQKDFhNBhR1BW2tUye3GX17hfoBqr5GjOOETEI7wimxEVbVL+iCjCvS3zPUrYVMT2KumCzvsEnFaZJ2My2yC5jMjqgN835tDvjse5xdfmK7ljRP+zjDgStd1TU5Id99k1GUJLh60ckrxWUl3NCaHAbTd/t0fmCfOAYDqZ0FvzGE/uI4C3dyuHrmmV/i6ogER4VRZi4R7AtpBXyniAcdJSrlvB5ia4lK7WgES0hkjx464QHI1j+cIFfWy6XG+qtAWGJeor+MIZIkGuFrj3jbcePzAWf3mkg92DO6djCJibr9hjmBxA0Taho+6B9SyI9kdZ41xEbhZUK7wVdY7G6xkQRQQrqtqOzAqQhCIkQGu8tNjikkpg4oW1blBQM+wlNsaZtWjoPnXNoETBdoLya065LvHMoLQgBjDEkxiADOB9wQSBNDEkGzL/sst3Z2fkFtAvSOzs7Xzm/nD7il+K7fKQu+GQzp1i1nBdLrrM538o1yTQhShIiM2BbtoSppexLdBMIZcfqesnoaEDtN4R4C+OWaNhSbzwCTbwvqNsNB08e4EQEZ5L5zVOEcXTe8taDB7z++js8v3rOp2fvMZxI3hjdpRwofOLofIGvaurFhl6vTxSnnC8uWH1RkO9HpP2I649XzJ+VPHj9bbJeSqqWCAH76QH9+xNePr2kaDyuA29hvlphWuhtWibHQ7baEfdSiq6k7beMfmnIq+/POZQ92rKm6VWEdMtrD+/xZHjI+e/+GDETrEixypIMY2SkMb2EVVnTbxvGmcTOZjyPV7w32rBNBwQ8e/0KGW1Qtk9tLfVqg6gD6+qcOqqJqg7RwvVNgRn1yCV4AVpFSAJaK4bDEct1QWg8SsVIE+G8ACRd1+GEA+EIbYcQAu8cjXUQPHka07U1IShiwG1KtvMVWIvUkhACxhiMMURa4RHUGIpkQDrMSdM+vLsL0js7O//27YL0zs7OV84fLD7gO/Yev62e8Eis+EBe81QvmLklF89echhBXwqEGJOamDAcMXxyl9qeEraezrU0UuIDtEXL/pMxXYD6qmKwt4/qwVlxxXW4ZP/kEUfTeyx+eIowEPUSnGj50Q//mFeLc0RW86G95BvxE57IEVdZgVKW1EmWpaPaWLxzdMERFi2nVy9JejGDwSHZL+/jDgSqlzBUE8qzgnbbcTTdR6N4dXlFuWmonWNTlyg0aT2gufSIiYLIE+uMVVvx5Ncespk/Z/Z0QdyluEiwf2ePJ8dH3Pzu+8inHWpo0NM9SGeYVKGFYystUW/Mw7cOuLPus75Z85OTFq06MgSBCKlg6xqadklUlySLQH21Yu0LGDbUsy3zFw3e9Rg0gTSKMCqjc5LOdkgZ0TSWtrFoFaGUwdqA9x4nAlpqgrAgBHXd4DqLEhrXBXDQ+QYfOiIpGeuY9ewlrm5REhACISGOI5IkJssyCh9IBvt0s4Jn55f8+q88/rJLdmdn5xfULkjv7Ox85Tw/gY8++AG/2jvh9W7K39L3WMXH/NSf8cnympuzGV7GJEOJ1CNSmXJ47y5fnJ9hRIroB6puw7CvieucQTpkNi9onsHeVKDzmGw04Pr5K2zbcnRyj/5RHxssei/lxs8pRUWTdqRZBnspP+lv+Ptyn0+zLauu4PLzDcOkj/WWullgRpI61PR7Q+LEkN4/RvoOS83mZk7iFMd7d+nWivV6i44E++M+152n2HRUjcU6z+X5GcsvKg7fmJB9IyE9hJNpTh1LHvzSPh/7OX2d0eg1Tw5PuPnnH9F+sMRFEYcP75MfZCzbmk5VJIMhUWZwMmWvGCPXgff6CzZJyV6WonTAdhsGeY4rBXGiWN8sqV6sEY1j3a/xomRzbmlL6PUMunKYzmNlwDUWJ2G5qZFFw3DYI8sTui4wn2+RwSMxlHVJUC1RpGiKjrZpMELjrENIQ1k1KC3Jo4ik8hRXW5Iu0IiAF5LEGJI4Zjwc0tcZZWjY/8Yj2AY+/L+fs9wUX3bJ7uzs/IL6Kwdp7z1nZ2f0+32EEP86r2ln5ysrhMBms+Hk5AQpd2uJ/03RD3pE40PeLa752M7Z217xHX+H74l7/Fp7n3fPX3AtLRVror4gwjPu50RC01wXiHXA5Z52P6V3b0BIPd35CrvOCVXM6GRAMewo9zyLsxliVVOLDXJqGLx5BDUkfsBh0qNoOyaDE5jAVX3B8GWPn7xcUbyo2dY16dEQPTUU1QVSSoyO2ZtOaTNDuyxoNgXb50u2q4ombznKX2MQjbi4PAejcVoQtKSzlqZrOb+8JB3sUVxZPvvdT/jlf/8R6d0clwZqX+Nzz+H9Ce2FZ/Gvrmk+rGniCHkc8UX9GXEtObq7T39vD9/XPJtZ7l6PeX2d8/zJkjyfceJbWmKmeY1rGopZwWLeEG0D7UVBmHfMNgt8v4drHHXZ4B1EcYx0ASMEIk/obA1S44Mgz3KaxtI0BdY5nHMkiUEqj1SezgvaFsAgCFhrEbjbp87eEqwnkZrNxYyu6nAuILVGIOjFOZPBmFE2pOs8jfU0XYnKJP+Nf/hbNC9nX3LF7uzs/KL6Kwfps7Mz7t2796/zWnZ2/p3x8uVL7t69+2Vfxl9bxrf07vRZrQvstmI+3PAvxSuOZ0seXiR8p72LD4rLxnN6rCkODJW0bFxLu9xy2Msp8YQji5pEeFpC0yJVznJek+0rxqMeRQei8syfX0HPk+9PiZIcKRUf/OQT7t57zOHJCVGWctgPvHBL3rwYcOjucdpfkUw8+n5OYTd0bY0tLSIMWC436Mst5WqJ6ifEWkOcML+agYl54/477I/2kHbFZlOzqlpsF2jqhtFgwPlyxfxmTYjgx//5p/z2P/guepiy2ZYE5blYXDC8MfgvWlpjyH5pwnnzgt6hZPT6AeZwjyxLGShIZpo3tymboys+71/j2xZ8waRZEq5qXNFRrizLRUd1U2I3LbZy1KZhL5lSzLZslx2hEiglcVVLuy3o8hhpDEYnoCQBDwGk1LeHEn0NwqO1IMkUoeZ2a6EPKKmomwpjPEoFIh2Q3qPWNfOzGaJ1+CAQSLRQJIM+vbvHuF7Ci5stYnQPVcVcvf8ufa0R1W5ix87Ozpfjrxyk+/3blay//eYTssSQJZrlfEFroQmCTbUlywxJFuHKFqFj0tSQC2hsx2g8Jcv6BO9p2g4hJKPxGAE0dYMMUJYl+EAax0SRIQBBKkrjqeMOlgVZpYlzzcVoxtPogpuupqkkdCkmxOyPeuQ9Q1kVbLYVk8kJ33zju6gXG+qfPkXohuuDludiybZrSVSPk8Ed3sxOWPzZJ6hti0ZxOD2glVCVNc4FvPU0vgMfaFyFHXm4l3EuKvRc8MDvM6kTIgxCKSCAuF19W+tA/ltjTk0HckQa3y6FUC4DH+i6LSgNasPZ1ceYa8vRrM/+asBRlTMKCjlwhD1PsWdYRC3nmyvWsaPd62Ndg20tddXRdZ59+nDucFayuL4mXnp+xX2d16Z3+NHmh1xyTm+U4dcNOrS80DOawxwbV7z+9ddBen760x/gO9ibHnKU3eXwZUq4WFONJY2B4BxFXaCEwyqPH8QUseFitcEHT5YbHj04QkvP9rqgXbZMpeM73/kmf/z0Oa+Kc1SWMD3Yw3sHtSW91uTPDfXlhtoV6MmUovNs2xahAjapcVOHHwh85Ane41xB3XRIEaFUinO3p/uREus8UZJgG5AK0njMyBySmYbr8vs0VYWzMB0c8/U3/z2Oj7+Fl0OUGdNUgR/8838K7jn/7J/+3n9Z/zv/ZtRXC2St6QXNqjX4yQDhAx/dnPPeesXovMe39+7wZnvCQZuxbRSng4bPXWDZU4ixgSjQn8QkxtOVNU3bErKarW1omoTDvZRN2xIOcmZXkn6vzzAfE2SgPxpweHLCcLqHNhnZNHCzWbLaehJ7zSP6fLB5BscpRwcHiHXO+SctiUlovCTEGVHTUtkWpQ2VLNBIjkZH2JVgPp8htGcv7dENO9Zli7UVTd3w4PAu6cSR6QyjDV+cfsFPf++UO9+9R7XpiERCt4V6ITEmZvA39zl1X5AazeNvvEEhYta2B1VH3kq+M5tw1p/z+d6csOw4f7Fh/vELVtc3ZCgGUhGco0LROo/1At85gnS4DlZnAd8lpCkoJbBVzXa5xPY1ab6HEpKgHIGAEJLgPT4ExuMhrS3RxqOFpG5q4iTCWYG3oO3tx1y5LZF4IgnFxQy3rlAOvAflIe/3mT68R/7Oa3SjGP/+M+afX9BvW5KbFTJ0HBw9/LJLdmdn5xfUXzlI/3k7h9KGNI7wXfWzwfwJoQvkiWR6MGbVLCjriskoYX/Q42SYs65LGgdtveXO0QFN3bFab6nXC9I0JYs1CEXbVGzLLVW5YToYsDeZUjQOV1kyp4njMdmeYJ2vuA5zbvyWrhFIFxPpmOFkQD7QbIs5pa2IexPefufbjHUP2dbIeMgpp5RRS+M6PB6hNNIkJL0hRsd40WLjQJsFvIVOOELwmNggIkmrNMFlWAp0KZn0xrT9hqppECImFxEoRQj+Z/9uimSa4o80oRTkpk8QLcpHSBchbUCKBCckWTZi2+UcbSSvX/eZugQ9dEQPE4pJynV1w3p2hZg7ekVDN5RU3YL0zoA2gn4/ITUZslBYArYT5D3D6NJwcj4kFZrNeo0MLeumZSs6JkKwNxxTDBWVannt7h32jyacnr7Hcl5gi5btas3BQmPQLF1JZRtcuSXpp1RVycy3TO++jhSSWFvqusIpy+nVKyaDHkJLGCa0oiEbGF4/Oeby4wVdYamWC/LUMZr02DRrLvstT7+4IjY5gzrGhAilPF2/QR0GQg+ECUgZ8LbF1hVKS+I4pbEOG1pMrJA6Qrjbp2ZRBOiSg3uv8/DgO7z47A9wdHihsM4RpGR6cEgUw7paMByNEXHOb//dv0N19QH/7J/+3q6d6d8w1XfU2xWZS1ALS30+Y3BnSnQ85dw33Hy24iqqeK8559vXd3h9scd3xvsMorf48f1T5NcOOFufI8eOzm5plxWdFeRHfURiaDqBxnB3mFFuG0Q/Zf/oGJMbZKwREdx9dB9BStKL6do1i7rGblvem13wd7rH7OU5n87OGF33KDqL7STWewaHI+LDCcviGe0g4KmQAubXW7aVJI9HbKoNUnb0QsZev0+IE25OrzFo0jymERDJmMlwRBz3WOkZpx9fghcYLcjaASIW3PlbJyzuXGEuat5+4w32jw95sbCsWkO+9uydZSxWFZ8NF5z+2RXtvME7QbQc0m4DLjSgQBtPZRyFEWAUcZbjjaAMffYP+lxdPSO2lslgxKy8ZnWzRO/3iRKJlLdBWRpN5z1dsGgpyXsx9WyDjAyb7RopAr0swbUNm7rCO4HQism0x+KqQIeE9axEBY2jAy3JBiknD+/iZZ+LWU3aE+yNI5bbS65vzogDxHGPQX70ZZfszs7OL6if+7DhoJcx7sfc3GyJkpQo6RM3loNsipOWRasovYBlgRaSXEKeCeJI0VmwdUViEkKW0tUdvm4p2i3bqqSuG3p5jrWBui7xbU4io9uxSkIgophiuOIpZ1x3G9rOI6uESPTYP5gQDyXb+opVtUL7Pl9/4zvcGZ9gn14RbVqapqFOLa3yyBChcPjO0dmAlZpSdrRxwSZqOC+WRNbgSkvuMqbREGEMYpBSGM8akKEjLR19nZCYQJA1MREm5FStAgRKCeRej5esibM+1CBiSRIZusIipcFrQeM74lbz3e4ub24teRaxOTZsDxwXbFm+XLE4XVG2AmViDAliU1OUV1yuLtGHPQZZiqhK1HkgDQnCtrBuyZdT0iDobMFieUXlNzRRoEwEHdDP+4RgmPaGPD65R+G3uNZTF55QlKTllq7N2DYt621N52qasmUTQWUUg28+YXDvPrRzmrBFrQyb1Yr1okAI6NpApyOqWNDEhkePHvFnV2t6seLunQn19orWb1npNfbY0fcJ7VWgWGyJZQbDDrffEkYeqUFIiRIBgkOLFJ3GiC6g2grVCxgjcc7RtbdvBHQs0XGLSTxOOlQksZ0ndAIsxFqTGIvSFdY2VNsrTHYXYRL+yX/6z3/eW2bnL0FoSX+csz3fILXGrRtunp3Tvz9m/7Up6yyiaFa8ijaQz/nMNjyuAm8thzzuf41L2+Pje8fMOGUlr6gSg48Kgm3IjcDZwE3pOB5lDPodx/fukOY5JBJFjCBCKU2kU7TyLNYl26phtb5kcXNFauGbkzs8c3NOP/mcwZ0+B3eO2NQVsp/Rdi3rek1nK/pxRmdhNDrBu4jZcsmmXtMbRdRRx97+hNeO9zh6zdCIGQcHd1gnW6yvqFLB6HAMdcerly/R6rYVwpU1b//6W/TflMxffcG3f+Vtpr0hDS2yadk7a/naZp/u2Zx3N6c8l3OUl2TRGNHUbGzJJO9ztWqo24YsyyhTiZnkjPaGJHmKCwohYm4Wz9k0GwbpgFF/RLUqmRU1Qx3hnERJiJOYqq3pgiXOI5I4xrkWpQzOglIx3lZsNxu8Cwihf9YKIogTSWQMAzlkayXBBYRUTKcjju8eM7l7yKuLGh0EN2efIm1F0jYkSPJ8xGT/HioffNklu7Oz8wvq55/a4Vu62mLiDBn3cB4OplMm0zEfffwhftMxiHtkOkIj8MFyMBriCdig2Ww7FtuCrumQToDStF1L8IGqLNFCMhlPuH90QKoVm21FfzKkjTWFc5yrU161JVULqpJIMkbTfdIRlM0N680cZzXvPP4WTx68QbtYUb88g1lNUW+JRxmGCk0A5RHe4byn0h3XccFGbFirmuA9xhjSXgwhIgstSatQtSNLFVshaRB4OgaVZOgFbz+aMvSSeqO4mAc6H+hCTTzoU7nb158qCKyHOBEI1VHUjk60SN/SKsOj+3c48Bte+C0X7ZzFq5q6Bl9pnEuQ3qHRNK6gDQ21ElSzGlO0pLHBNgozEyitaboVcm3oNVN0P+bcXqFGBi16KKUYJIrUCBrjcKViLKYUP13y4/mPEQ0M1ICRmbJfZ2AVs2ZL1ZVkkSHpDVlVHdG9EaNHdylsS3AOmgpbFSQqogktVmi88jjbYUXMy9NrvvVkQjZI0FnCa2+8Q6a+xYuXH9MExTUXmLuB/uGA+jPYbjtEvyIbWnzkEVIiEYggCM6hTUblFLrxDCNDE20JQUO4/T2RicinGYQC50qq7gpnN3gbEG1AVILLZxf8ofrP+Zt//x9gVAvlFVHvmEpphvnhz3/X7fyFLp4u2TtMEKkiyRKcVjTWcX19RRwyenfHyJWlWG44ly0XqaccXvHD+QseXSX8avMmf3Oyz9n+Iz7tD7lMt1yML7mYn5IO9olEyrbTVBam/QHFUCLjBCEDJkR4K5EyIkpjynqGx5KPMkx6h+ndY+bXHb1ZjyfVAT8pP6I+nRMdHtC/8xpJ1mdzfoEZaOpVwAtFNhkwmRyRPexzvnhJ/zBhuJ8xmCQI6/CpZS87ovzREmdA3+1QfUVRtZRuydXlGVuxQhDQNjDd3+f4jRg33fJW9BCVOzYvb9huBPpc8bX5AVkr+HB7zTxq8CvJweiQ+689pKy3ZMlLXp69xDWCkGZkd+4xmKbEhzleeaQP0HQUizXb9QakIMlzBv0+26zHjA6lDCZJEFKyKQtMDHmikUbRy1K2qw1d1yCEom06oiimay1xnFLXFh9aqs7CskHUAnyLEQqTZuzvTxmPR4RUsxQdyUBjNwv8zRVdW9JDMx1PUTonzQY0dfVll+zOzs4vqJ87SBstsUFg0h4mzrBtDa6kXLYcDnN6AmIlmA5jhpmk2Fzw8PiYOOvx/GxBVTQQHNbVRFKRpgkXs2uIUsbTffZHE/IoRocIbwUiMkSJxruKVm24cTNWvsXWCtMohuM9hsMEa69omg2u1tw9eMIvfeOXiJVm62q21HSpI5gM1ZPsTyZMejFJHPPs+ecIHLXpWCaBjU7obIQOgUp7bKSxoaYSngetJrEdcSXIM0MnHZ1QVHhGOuY3Hj2mbbacXbTM1yXOahrVEQ0skVTYIAkScAaBIssj2rYDQNYSqxo+GC74RM9YPFsTikDnHCEIcOCtw2gNBFpnaZzFiJiJUAwC5JVDixYVC+q2oagbRgzoyxEmTtnUNboXkbrbhQc6FWS5QuWGTWcwzxJaVlRmzTCecFelpG5EEhRN01F7hUXTtp4shuFBRnw8JIiOoqy5OjvHrtb4poHaMMlHKBMRp4JmucESWJUls9UKiSN4z2y+4uDRW4ynllntKVxOqbYIZ9BPHMzmEFf4pEMojSJCBIHrPN4GvKiw2xxchMtblJTYNmCtwEQZcZaC6AheUNclbTanKGbIBsrZbfDRcUt9r8bKhsOh4f70mJ+cXqGyOxw8fAh/+vPeNTt/kVApOlKc8ljRUsoGEStSk2KDI+o8ozzH9HvUOsHkEb2e4XIs+XhtacKae03M3QvJ37zZ43oy5eNsyMu9MWQJxAbtFNrBIEm5iRsaCZQNUWKQUmASQ+O3VHaLjkBEApPlaDT+CJ6+Mrx9+RrvXZ6jxor86B7RcIJ0HY1zaKVJkh5xnDKdjOilitEoQBFjBhFtaNjqDeNoxGxTUrcRmYhwjaTzEUEpSAxV1XC+vMKKADrw9tcf8yuvfQ+pW2aqxNfw+Y8+4vrpivbTht/ofYco1vxg9T4XzPEITsb7vPnWWxRtxWqzxgFxkpMkOdM37nL89gOIoZAV62qLcgJXdxSLOXmS0KQWoRW9Xo/xYHS7vjyKcUIidISSkrxviFPJel2xuFkQvAUB1jqEMHjn6ToHaLQyGBPhXQu15PqzC0JIGfb6DHsZeZahY02D5+rqmmZdIKoK4yzjvE+/1yMIjTY9jIm5Oj/9kit2Z2fnF9XPHaSLumHQy0ljQ1UVuK6in8b4ZoPqPE9OxvQSSHTD3aMh25UlUh37eyPe/+QlF5cL6k6SZzF3752wLVr6/RFOGHpZRhJnSCFZFCWqF1P2FEXUQnDM5ZpZMacsG0STksU5w35G8BUIRySGfO3RO7zx6GvcPXqEdx3VtsC+/QhVO/AOLzviXCK0Buno9VOqwiIC9HSKCRLrQBGwxmOlxwXLwndos2DkOuQmwegIHTXU3lJJQbVt+eBH7xL3FdutIdF9nFLIQc5KrTH0QQSksRiR47xDCY8PHUhopUE6wWVoOdk7pP3pHBUUWI/kthdTaUWkDQFB5AXKC/pOgfQ0tmIeVghlGLCHJiZPpvS7CSM/JI0Nm2qOFQVSCnRfMrnTZ9BPuKgrulmBaaaU2xXz4Q0q7rFvxoRWk4kIEkhMSmYylLMUocDkEWMXsOcrCBvq7ZbOdvQ6QfFii+kpeoMpMjNUWaDYbFiWa0J0e/iI1nN1NWN/vKCsOlYrS9UanMrYlhsKu8KMWowub98eCIEIDjyIIFBo2lXH6vMFo5MeIekQQiOEwroAxhGihsotiYNgu66IohuKbcX8JTTzjihIIg2J92wubiBM+N/+7/93DO+8xXf/g39EOh3+a7jtdv4isUqpGo9VAiFaQnL7fyy1JOunZJHlaC9lME4oW0cXDJ2PGOUB21fMTcxWCxZFypPrhPx0ya+bMa8PBnyutmxzMAr6ccowStjLWwqlePr8Bf27Eb1ehJNQVWt0HIhig5QOoSWdCOACF9OGYFKeHHyXIg8EpYlVhhQbjh/fo7w+5/xigW495mBEPrYkg5ZceuLUsFgLTDyiKi3DwRCHYjDSsCnJTZ9N16Cc4+bVBa4KCGHoT3OctpxePuUkmZCME+ZyxZ2Hh+T9IwZlw2N1wJ+cf07bX3MQDUl1Qhksp4sXzBZLzs6v2Ky3bLuG4esn7H/jEXUG3jZ0VQulRSvDerHCdy3Sg4kNjW2RUpImKbJQ9HojRDa8ba2Sgbbb0rQlWdynpSXNc6RouLm53egIAaUN3gXiKKEqGyQSUbT0nWYvzhAGMJJgJF4JNvMV7WxB8A1JbDjYP6Dfy2i6DmslSZzy/OUp881uq+HOzs6X4+cO0mXdcbCXsbq5wHaeR49fY7s+oylXPHnwmDsHQ4Z9SZ44NrMrBnlENhyxLVvW245tBSEoQNM2lrZx9PMx1jm89WyKLXEU45Rncu8YNY3Yakfoam62LykWFaYOaB0xmPbRqsMLj/Oad17/NR4c/DJ4wfnpgqpeUhQ1zqSEDLpuS9e1GEBYcMphjGLrG0wNk7WCSmGVQkpFsFAph4skQXpWcgNdQ78AA+z1IuahRUpDMSv4wx++S3+S8PDoTbTq49uaZNzHHcb4MiMykrppES6iszVSBZSWeCROFfRJWJWWYhRjjhRZIZFtREDihEQpja0dbVERd46AZ6srHA110jKPGoa9CbrawzhNL0TsuwlxSGlyz8aV1M7y8OCE4Z2Uol3w7MVnXG070jBgQELjGyrfsU9O23qqmyV5O8TrksZvaLcehaLKBHt39qlGA/x8QV61DFrHRgQymzAUOX4pkGcN6WhMZDy1qbhaXdL6insnD5iVW9qu5dnLLyi2Bev1Da23bLYbXj59hlaW1x+O8N4juA0zQjgEEu8FrgmsvmhQNxJ9vMZFDtn2sBacCzR+hUKgdY0JI3yXsF4VXJ/VbC4hFRAZTz8xhPkabmr+k9/9PT798VPuzxpe+9VfQ/fVz33T7fzFpPd463DBok2E1BIhNQFB20jWvqEvoG1rXKpJYkNRLAkqJo32EaR451lkjhdvxdiJIj1f8mgR8avFgKqUvLrXcpNU9A8S7k8nXJcly1zSb2ru7Mc8vy7RwqPScDtiItz22vsAtpE4qfki6fCJIfgObRLa4EniQAgVlSyx2pMO+qTDnEYr6CJUyIi1Iu8laKnIR4LIWNrbIUCEq0C7qdnGgna1ZbY4I7QGLzzb4oaz9zZM44Rl5OjeHnKjLUmU8bqZcHKkeT8ruDnw2BsNm5ZNuUTpiJubOWfbLbYNEATJyZC9b93Fp4pqteH0k485OjkmzmOK4gIbtmzLgnLVcmc0ol4VWO+IkgRaRc/ssUYgOktQHqXAGIPzLVVVUHcK24BAEJyFSOGdJVgwKiLLMmTl0es1AyVwtgKToIIn0XB5ecHFxTWxkJwcH7I3HZGlMVXX4p1GqYTVaol1BVrtDv/u7Ox8OX7uIH18sI/otuwPDZPxkNV2zuXFmrau6MpPSPQjpnuv8frXX+fFF++zvLmkrDtOZ9cc3X2dm+XnlFVDaz2LTYNUEUIElFbURcFmu2EwGJD2Y5QJjO+M6ZoVy5sZs3JO1UpwmkE/Z2AyaAVNVFN0q9u1tN7QdgWtneNDhTSgvMGFFhcgaEUTWrwocLSk44yirLDzNe3lFtNApAVJdHuSPw6CrJ+R9nvMdEbIAjIBlQQm05ROVvRXKZhAhcatW9xBjRrXmK3DT3tE2RjjJMFbpBBYGiQOi8LRoWVKJFNs0BiZMasaRo+OkD85I05ibAz9CBLnuZjfUC6WqNyT78eYaEBDix0EEjOkS4csqkAWWbyLubMyRFKxyK4JSU0vimiHJR8vb5gvVujVFttlDMU+Wa/HVVyx3QbSdYH0irE2SDzb2rGqLVhHlEvkICMyIxokrQ3oQvCGOqJ2LeW6IbaaTkrczKLnHXEWEUxMScN1s0SmCmMESkRs6oqyq6m6gvVywc35DeVsQ3+iUXGLd+F2NFbwqOBpcVROs/y8xM0Fe+Me/f2WTm6JpKdEsl1Ltt0ai2NvIvGZRaeB5bM59fWGyIMAkr5gkBmqumZ1c8PpF2d0LtCuCv7kn/w/eeu3fvNfw2238xdZzJccHOwRZKDrWqL4do11EBIXPJu15d2frogHffZf3yMZtTS0KOXZrC/Zm/SRSUwdLK/aJYODhOtoyas7S/ZebXh9NuAbq5zyzoSgPAy3jHqa+w/u0PcKVVlE7XCpw8qaECQITWgC9byCeIRW4J3CRJpYK4QSNFWJTAJplFPkOUevPWY4OOKyM4gKBk6QCcM40ajWEoIjTXJEG/CdpN5s6ZY5STFGJzWX55/gbIdTmsKVtNfXTNoTppGmGgdMSOiVCYPCcHwV+PRNzwtXsqgjdM+w+XxOPb9mqiYIHzFNelS6oco1vXdO8EKw/vwFn777E/q5Ye/eIZdXr1htb/BW4gvITI5xhlQGfGfJsgTbdnR1Q1Ax3ra0XUeSSJSUdK6jrhqQBrxEyICUDtd6rPcEAVI4UiHIao8QESLt0XhBF/jZ2Y6G5eyGYb/HvZNjhv0+Wgps1+I6R6QlXVNht2ukuz1gubOzs/Nl+LmDtDSBO4f7JMJyMMmYr5ZsNzHnVclyW/P+h8/49ItTMBkf/ORjgq1QKuf0puDOg3f49e/9Kp98+jmr9YYozQBJVRdYK1Aqpt+7be3YbGv8y0vunYwZDmIWsaDpWrwTSKHJ4gy7cRgLoVexWi44vfiCUf8xgkDVFSAbkihCe4tra4JoCXQI5fF0BOVI4wQdSW7WN1z7FVmeoWNJpwVwO8Kusxu6zhOFgFeeKNfEfYExjr3pgLwQSK9odY9KFxSmYe9Ec5IP2LwWWIhAZBJ8VyGBLlgEEmUihHKI4EmjBO8kxknarkOM95ipOYOlxSSKq3bNenmFbRxx3scnQJwxNAmrZs22XtPmGpNA6WraWGLaFNU44gTy1wIP9od4Ei5PZ4StYbuxxI0nEYYTxgz2IqrHKeEDQT0XHOohE1LGOubu9DG/nni86NhQc6nL23FaS4vdKKIqYSJTUp1y5+iIaBTzdHHNMqzploo8jSlCRSEs3//4M4L7FB+nZL0Jk3xC5xpaW7Nczlit17c93EmgtCVSKLyXmDSnl+0xSu9wcdUi7y+5dpdcsURnoJRHCYlsMqp1g0VSri1VEjCRRDnP/OX17atsAVEEg0FG23ZMe5LNxTXNdouSHutbyk9e8YX/4c97y+z8JUgr2Z5t6R/1EMERXIvKDBiJ0hpfN/SiIb5OuHq1YCxTdD/CKM16vSCS1xwd9XBKgQQkxP0+mwaen3Qs10su6zW/dDOm/68iqoMR2ycxVbJBZND4NT5sMLKjsTXBSYp1xfJVgQl9Jg+OESFCCG43+KWKqikRokMCkUp5MHlMMpUoIbgp1xResi5hfNBHSVCdZTvzPP18RapTim3J9qNrBpsRPHO8+mKG0hEGj0oke/1juqqP/6Tl+mCBjyX2vecMpgl36pyzcUmxXzOuoM5SbtSGcT7Fjx3bz9ZQQSIVwnRER4Pbt2pfXPDZn/2EkRJ8561HZE1FLR0r49g0DeW2YNobkEnFKB3ibEBliraucLYl1hlZb0TnG9brFXiJkgIhBW3ncF1HHEms9XgH/cGAEALVfEnawdh6SHq0TuCrBrwjFpJyveS1u3cZ7+0TxxGS28PEXXN7uHg5v6EsS4KHPOuTTfrA+ZdbtH9N7bYY7/wi+q+zxfjnDtLrzQp9b5+ublgsF/R6EVlukEaxWjbU5QIhJZ9+cQ1qwosXnxKlhige8qN33+XJm2+jowgTRSAl3gXSPKNrwVlHFMW3vbAtlC/nfFL8Ke5uxpXZ0pQOnCSPesRqgK4FutnQhCVN5Xh59oL7dy7Isx4qAiEFXjQEYfGhRGmH/NmXrHUeaQSdddgQaFVJM4U2anHy9svRC0EkFSpAz1iGOiWKInyq0MOY/jjhfpZSuRVXdUdzOCAf77Oa9NELx+PnNe10QNxPkUmGDx0yS1AtdJ1FIICA1orQeozQtFJhvWTRNRy8dYfy935MvaiYdSVWW7LhgE4atkXF+mzLfmxx3hJMjVcWERxtrbA2QhaWfhcRDQe8Wn1OdeA4mR6RhgkXr54iS0VwhkGccicfMXycoZ7A1z47ZsSEr0fHaNWR3hsxPpkw2y54MV9xvr1m3vNs2y0bW1O6OUo05G1CdgVR1TEeTFmEazaiRm4d3VJjstvDjrWBQZQhTYQQgsbVWNsyHAw4+eXvUBUtAkNvbIjigBSO2MQkwx4Hg0OaV4Ll+ow7X7+L14ZlKLF5g2oN6yvP+qwhj1K6rsI1HXWtiNaQtA67bJEOjIH+QBPHMWVRQTxEHz7g+HHK7PMPaYqGaBzx6uLzn/eW2flL6NYWW1hc6egfxDTeUZUFUa9HOhjQBUdXremPUsx4iIkNXWspmoLhZICMBC50OAtBOBpv6Wc5TVVTxZaLcc01ljtvnNA9r+HPTple7JE9nKAeJ7ysv+D06UdkR3ewviDpGtYfnLHawGvf/k0QEiEFUgS0EQgcrqtBWAQRwQm8gLYo2Zxfs902DB/coVINVdHQqD43LzrOfnRNsVgTCPSmQ8ayT6d7dHOPKzO06dPLc0ScEOcRm+olb9y9z7/4/I95Pfk63xQPGVjN+rDip+MFJ2kPXzbcHeXIsEW4lmzUwx/3+eyPrgg24JTHuRb/8Tlm3pF08NZbj3gw6FNUBbaz5PsD1NiigmUgQdcdm1XDsqgYj8cIPMFauqZG4ym7CoGi6zwqEphIUTYlSZKjhCSODNuyxDpLqGvEeoPb1JTbGny4fVpdt+T9jNgoDu7dJYpjbACLIyCpqgYCzC4vKas1Js2J8ykiGdIM+8BPv+yy/Wtpt8V45xfZX2aL8c8dpL2Fm/mGxc0Fq8U1Sivmmwopb59U5ImmrCuulxVNUfHiYoUwDY8fPMB2jk8/fU7ay+nalmcvXpJlOdPpPtPxFOccdV0jhMA2LYWraRuPbhKkSInEEKsV0/EdMnOItoKm2VC3FV2ryOIRSS6ouxWIgFYOIS1YTxAWow1BQt01tK4iCEHXOFrbYX2g0RaZSlDgOofUMXEck0uDCYL6Z1v8nA9kwUBnUEEiDiJcF2FXlrpR9D9SfLc64O7RAb+XWYSMSOOUti1wrkZJaEWLdQLvBdYJDPL2IGHQKNNxev2SZJpQ7ze4osWblG1Ts5Q1natI91Nc3dKEjri7/ZLLio5Ut9S14c74hIfthMz3aKXnxeczThczPpAX4B1iHTGRI5wuOYoHHBzkfNY95eKja9I2J2SGj6szkq7jsjvlZlFD62nalut6xv1vvMUylMxurqjNgsR4mk3MhWuZbVYcD4+ZHba0OjDKeoiRQMYa7RwyGIrSYbSjKUsqXd0eHlSSutqQJDlCGDaFJnUZSkLXOoKMWdSetrLUweO3gc/fe0HvrRZfSa4/gouPVygvufvte0zuPuR6+Rl0AbcSnH7xAl91SHX7Q9b0IKZYljR1gDSBO8c8+K2HeLcmHxqy1/a5//gJn/6v/8Of97bZ+QsYr4mUpl1aNr6md7fPcrNl9fkVk+OASiJuzrf4xjMcj+hUhXWWVnR0FhjG1K5FKA1agIDCtsTDlHK1QUtwbeCDxTnfeusIcWBINgl8uKD/UrIfpbyVvsFlLRknMa89THnn8D6vFjHzaIqT4H7WF5xo6BpL4jQr1eBFhwuKLpXoKMOf5nz2p0852FiGTwxdkiDNIelUorNLpr5P1wObWrZXBfVRnzp2DKqcUbjHs0uJSAsmwbC/N6KZzXglbti3NVOXUtiOTwYtbbBcl4FCGu7ElofTPrapQdRsI3jw68csXlzCNXTXLeF6ySjq887jY964dwxdxbPzGe+9esH4GxOy4x6juzn19Zb1zJL4HqeXlzy6/4A4Tgi0tLaisw3WNYQgSJOYxjo664hjjUIggsK2AaMSpAqIqqL4/CXVpmQtJHEUQ2c5GI3YGw+JjEJrgQsB79rbX43HVg3rqqKpKlSak07vcHDnMfLkiDPtv+yS/Wvrz7e4/r3f+WW0UYQgCOF2i6WSGoHAqMBoOLidhtRYCAopJAZ4+fRz4uD43jfe5nd+9ZeQrmW1WdLvD5gvl7y8vuGf/eG7nM43CB1jpcEHcN4BAe8DCIGU6nZCk4M0TjncG2Ncxzcf32eURzx7/oyHjx7x+9//AZ+/fEWSRAQ8XdvR7w2RUmKM4v79A/57/4P/gIvZgv/z/+E/IrSBX//uL7MtO8aTEzDR7dtubt8OJ0kEBM7Pz2ntbXtS5xyuc3Rti+1aprHk7373Gzy5e0xbVvyT//R30VLzO3/vN3j56gXz5ZInTx6TpDk3ywU/+uhTGicZTcZ88flzZvMVD0dH/M//p/9L/sU//X/xf/1X/4RaK4bjAfvTCavZgif3j/mH/82/wYfvv8/LV+f8j/5n/xP6acyLn75HphTBB5S8XToWfKBqGrIsR0qJdw7nPAHBp188589+8iHz9Yrf/t73WNYN/9kf/BFr1yJiQ4ujDh3W+9uFzIDCc5Rl/Le/+23eevwQV9YM+z16aU4Azi8uyft9pNBcXl1R2I4/+OhdNrLDabDcnssQVtAWnmpR48rA0GT8g7/97/PFs2d8+Nn77H/riPE3jhBxRK/Xx1lHv9fj5atXlGWFbT2h7aBoUIXjb73zW5w/PeXDzz7CZJqNLWlcS0uHig0eB3hMJBkPhqwWC167/4B7JyccHx8wnhzx+O1v8/TTp/y///E/5hvf/jrzakWFYzZf8b/63/xHf6ktxj93kG7Lhr3pHm295cOPn+KEIenl5HGGsIGqCwRpWK1XxMJysL/HtnEs1xu0SSgbR38U0bUdTdOyWReUZQM4pHNU5QaZJrR9Q5loukHG4OSIVCjuDA1tXTGIx6guYbueQyxQPsI7QZrsobSmqrYgHVZY8lghlUIbTRcc1nYU7ZpONDgHdWNpuo7gJUIrFJJEaowCg2FITBwkZVlSSUvaE6RdirzwzNcl60FBYx39csDby4S3tsf8ij6iuRfz/82fspWBLH6DrglEJsKT0lYFaarQKArfok1CLADBba943XE9X4Fa8M53nnBxekmlBNtyw7pa4fFo4ZE9WARPtLmdha21JDYpe8mUeOaJrwVaGEq3ZHmzRmBQJymL7SVHJidPUspO8vDomHQq+OTmKeddRVT2aWi5UxoOa8+r5ZKNbxD9CDORxLnm5PEe3WLG05nFxbezYBupIR9SjlOqu3uoVNBsVlyR0NgWV1iiYFDCIHTA6JjeoE9T/azfMQTSXkqS9PBeY+KEPM7pbE0cdxwM9lhdVRRdST7pUdw05LFipDPmn2xZvu+JGo2KPNVmzuB+n6kY0qwrNjdbilmJDhKpYTowuNBRVh1GC45O9jl8cMj+4xN+83cec1XNKJ1A+/jnvWV2/hLGkyGDXspNuaRqGpogoBchuobt1RwVK6QLFPMa/3xGchLTio7SdmQu3LYdtDmDyTEhgDARzkp6eU5nUhrh2QTP51dL6CRff/wI/WhC9nDMxWcXlO9LvtvcY9NLuRh4orRhw4ptY1CdRAUgeCKjCMJRhRpkIBcpEmilBaBVEYvNFlc1OOvJ+j3iYcZGCqI7Gb2HE8rPNgweTnGpZZjknFZzOhwP8iHT1PDhYkl7fcZg/4Q3ezn/YvkBb339DX47fcRFs+AnyRxrRygki5XDCU1nW7LYkwiBEznXRU2YOB4f7cEfP+PsosAJwfBowGQywUhBOYq5GniSMmc7L+gfj9B5Ao1EXLVIJbmZXdM2LVnWRwhouwYfFCJYRqPbsFLX7raf3DmqrkbKCCkMWmmy0LF59hJ1s8QGgTOKOE05PDhm2MtJlCZNEqz3t1NCfrZuvI0ElRNEJiMRY7ok57PzGRc+4pu/8hbdavZllutfa3/ezhFF5jZI/yzYKqF+tgxLkEaKQT+jri0BddvigyT2HW+e7PGrX3+TvTTGFStkHHNy5x7eOYKSrLuGg70cr2FRWLaNuw3NShG43VobAK0keIFEcrC/T6QUCggSbq6v+bXvfIvr+SX/4//hf4d/9ru/j2sbHt69w9PTM37y0edUzvH6N5/wD//R38MHxX/4f/xPKMuO3/jm1/jv/t2/wX/x+z/gi4uX3H30OkIarJeIALhAmsUcH+4zmy1orEU5iZUKrSSdlizLLRfLLXXxOScHR8R5zna55cUXp+yf7DPZ2+PZs2ccHB1QNZbKB67XBZ0yrKoaieL143tM8wFnl6+wShAENE1DksZURrFeLvni8xecvbrkYDTkp//qD/hv/ff/Eap6xPzsFOUFznbM5zOKquK1J68jpcLWNUEI4khjrUd5y72jfb72zltsq5Y/fPd9tq29HWDgwUQa6wNId/vZGQIKqNqWYX/AcDjERwnKe6rOMjk4JJktOdk7JI4j8jhmcLDPItT80Uc/QUmJlgpnA8WyZr0oCU1Aoym7hv/4n/1jyq5Bak398orJ147RWt3O9I8VQVju3Tvi+YuXhCignMa6gN0W/P4f/ksePX5MvJfR4XCNpGkcnQCEQwCGny15CrA3mpAmGY2zBBEoVzf84J//E5rCcu94n6OjKd11hXEdVSz+K/X//8/PHaSP9hN6piVXFY/vjJkVgaoN+NaSJjGtlQRbsbh8xTffvEffDJmXgavZiptlybpoyPKULE0wJsLZgJCSsm3plqvbgz5DjT9IWYuCtD8gaIVSOUb1kTojKIOIOnyyoFiusd6gsGRxjnIRblvS6JqQOgbZAGUstm2pXYOTJT4uKOsNUkQ03e1PMJaATGNSEdNXKVJ6OtewsiVeSFwCuR4woE983VCrms2xoXcOB5eab7tjvm33GB9O+dy95IeLp3zsCu5k32E/0iihaLsU5wxGO7yoGWUJUTC0bcAEw818y9Vsw/XVFV1VIZ1jKO9wPtO045I2BWUMOEfbdjjpAIucQHCBSBs0ms16xmCRc7+8j5KS0tdUUhN8B70UI0as6wpdevI44+j+MWfNgspZIpviOjBCMRQZ1tQsEwkbx8auSSNHbxwxPRpwWi6RWqBUTtwfcvTkPk0baF3LzFrcokYh8a5DWU+kE7x3t4c4tUEi2W4b4jhDe4+JJcJERHGfLBqhRUpKhx4laGl5+cOPef/PPqL1juH+lE5CdjdmEO9xdfaUPHTECFobqGc1ghJtFcvTms2iARuQSpAqwbRnOJ0Xt6/Yhxo9HrIuS5JsydakeJGhCNSV+3lvmZ2/BK1+tvFOBLZrS6wMvTt72HRLs7nCtAG7BlpBcd5hnSR/0KMXVYS2pdt0vDz/gNff1qT7hxA0PkBTB4aDKdfzBiUVbYC1h+uyZvHqc9JlzY1bUL8z4tNlwTvPSr7+asDivqY+2Ee7ljL1aAnGeqIQsW5aWi/ABL7VDQi+Ya5usD6jaUAngqinSXQf0WWsV44o1YAj3x/w8pMzqhvLa689wClBYVY4LNFwgk0XzOuPOX3/lLSqWdyfkk5H/KZ+G72t+VP5iou4JHGCxCWEUCGUw9YGEdWQdJR1TuFSFBUmb/jOb0/Q9QXt1R6PH5xQ1QWfPH1F9LWc/N6Qzz+75M7+hG7dsrhaM+ll9JKETCd0RcPlq5fEUUKkM4yBznlirVBKUVUVTdMg4XZ2tHJ0viN0NeMswVzOyBclKI2SinuHe5wcHZEnEVoKhDLEcYLSmrIs2W4E665lPVLEd/dZf3bO8NEjZJaz1mecfOtruCzGXtVfcsX+9aekREmF/PNzCtbh/e0PjEKq2xZMKW6DhxAoPMMs5jd/7W/Qbhf86IMP2T885tnLU7Z1Rde1rMsVRAKUIu9pVnUHMoCQgEIED0JAuJ1KZbRh//CILE0J1oIT5MMBF5tr/uz9d/nVX/klernhrTcf8PjBfWRZ8Nu/8jZ/8KM97r7+hP29nLpY8vFHH+G2Nc4Fnj1/yXA85rd+87v88P/0f2Pv6BiT5TjnkELgQ6CzjtFoQl032M0G/bPWLqEE3ne02vD99z9jmmdc/X/+kMTBNMs5P7/m4OSAzXrOyZ0Tyq5FRCnXq5Kyc2zOL9k2NUMV8eThG1TLJc9nl3ipsN5S1BXPXr4g1xFewOVyybrY8uS1u2TK8MX7H/DojdcplwtsXaOFIc166CTFS4EDlus1SRQRmYimbrh754Qky7lYlPzuH/0JV9saLyU2ePABLSRSCoQXtxN3hCcEQYNjdHTA69/8BpdPX3Lz4hV/9sM/Ze/4DsV2Qxs0BwdTuhC4vpnx5r3HXF5ec7mc0zrP7GrBdlMhZESSJjx88BovX5xzM1siI02kBdt1zdUX1xy8eUiI/3/s/VfQZVmanoc9a63t9/Hn/D7zT2/KV1d1TXX3mG7M9BhggAGIIUiIAoMkpBBlqGvdKqQ73Sh0IYmKoERRIAmQxBhgDMehe6anfZfpslmZlf735vhztl1GFycRYlARQkcUBxMxqvcy8+KP/HOtvb/9fe/3vBFGWJQRtFtNOu0mutIESDINWV5xcn7Kaxc3Oa3nPLh3h8oZUBIpJcquEo+tczgN5aQgTBIWwxmL+ZLj0zPefP1VLl/ZYXg2ZXNnk5PjIx4+/ITe5oAo/MkJXZ+5kH79uUsEvqHVjLl5fRfpNXn7vY/pdVqkUcBiWeJsQrMRMp7mHJ+eEXfXSZodLne3WWQ1ul4i04D19S7nZ0MCT+AKw0TX2H6fwfXbzOMxZjlD+oJAGSDDSg8V+Bir0drQu7iN3wzJhwcEuSQQAuYF04NzTBucM5SpotHsUpwvyeuKIIWkGVBJgTSCRVYSOh8lHSqJ8YVP5Ry6qihFRakkkYhYUw3SvEVzBNbV5H3NZpnw/OgCP+N6dCOPR40pv1W+w6Sc46oGwu/StH18GVIJjyBQBKGkdjVOBjhjGAwaTGcFeik4P5uzt3/EYnlIa2BpdxtU5yVqrKjJ0U2D8BXKkyAVHgKJw+iaKi8oqopTMyQNEjpRQjpPieMWT+SQLDUYoamXq6TE0dwQZxU7nQ2aSZO39z7EaUtcwnSa49UlqQnJmj5es0kUBfjOUJuMrCzZOznmZHxKs9chihskUYvxVOOsQCmPKEzQIqLI82e0ErlauFQGow1JHK9GdlGM50U04oRGq0FWWQLVxHMNdvsbTI/f53z4gDLTMHcMBil7J2eMRyesbWxw8ZUvgjEUQ8vZch+0RRmLWxrMOGd4MmZ6VkANvoAAR6cdMcxrisLR8CSDgaSwQ95991v4QYv++hZps0no9wn8xme9Mp/rJ5A1evVw9i1Rv8HZ4RnrQUCz06TRy7GLitoplqcGFlCdOYxZsnE5xXgVYZQQpB5ZMSSybZz2UF6IsRZrfeK4RZnXlNTsnZ9A7bjzR29zS/foRD7ZTU18dcCHm7DIlvSeLrg1XCNuNXjQXjBKQYQetXS4uibQAc2w5pIydKXHk9jy6Sjj+GRBXhzR2RAU8xFPPjiltduk2+4SBhXJRsELX7tEdjJmsveU0ZEh2m7jGUmr2+Jo9Bgdj1jb6PN6c4v92RlfDC5DDd9r7DPxJ5RkVDOwckCQBOTZnHmxThcf2dacTysMCd1eiJaKQmpu/cw1pvciTK55PNzn3ukeV67s4mtHdlygWwJP1tTHBtPUrLe3KOYFQRKzv/+YZHuLOIkRNkcITVUbOn6boiiIoogqr9CVRXgShSbAkkxnJCcjYilxccTV7V0G7RYCi6ktla2xlJxPJ+R1hbaWk+GYhQVKSVobZLdD2WohhCTY6RGvdZg9PmZ25/gv+8j+/4UcYExNWZUoKVfd4mcdu6Is0Ro85VNbgxTgBwE//OAjnuw95e6jx3jBPcqyRgiNJ2F9O6XR8KkKjTWKusrxZIhF8MxZsEKdAhjL1vYGrbSFkgHLxRKrJLKpeOXnX2Ryes6oHpHogO2Lazzef0y33cKvPL70yiv83je/gy5yvv71n+Hy9jZhuHofGSH57d//Y7qNlNvPPcd4dM56nKKFxNhVUa+1w1hDr9cFB6UxWFYfAOOJxCKo8pJRXtLe3GKyt09eVUjfp9/v0V1rUdUVT87HfP+9O2TOMStKnHUI5ZH6Edd2djk9PmRSZ6DECkDgSaQnQUlU4PPrf//v8Vv/+L9gbW1AqxmTnZ+z3L2IbDSolnOkg6TdIM8KCutIB12qszMCB8s8J/QDfLkadz85OmGSVRTa4KRFSPHMHuLhWYPB4VZrWzzDwCPimAcffMz85JyqtviNFt966z0WecF7jw5pNhLqsmY0mtDupNy+dZPpqOTxg/sYAWEY02w1SDtt1i9tcPfRY1zgI54thXtCcv7wiM2NNiqIV7Y8Bbou2Nla5+z4lEGnx0lt2OgOODkd8+neI+7tPUZLiXMCoSRCspomsCpyNxsdvvbFn2Lv6VMq4Xiw/5TSE7ztfYznB1zevYzvx/xn/7t/xO61LcZnp4gw/onvxWendgiPsjYsCsv56RlanyGFJI5jfE8S+AbPj6l0RT0vEV6D0WiBVB6NRkQSSKzxyZdL8qxAIpAOgkDAwCe8ehUzGFDk5/hhhFQ+ngCtlzjnQDqErJGhQxuHaIUM0i3SXodmW1AWI+qzMflJTvfFDcq6xLgCY3OssyRJCxkrap1Qzwyu0PheglUVypPUuqauDbqusM4SioQ11aM780jnmgYxIlnnedXkzWWP53tXKGXBt/KP+KPGEx6oUySKLdmgRU7sFwS+xFpJHCuq2hD6MctMI3xBM0k4Pxvy6ME+R0enLPIRQZLR7sVoMmZuycRknE+GLGpH3ErwohArJE6AJzw8FeGpgKrMqXTOtC6xWtA0IWk75SSesexYjNFMsymj4zH5VLOlPQbNNvks53Q4RsWObJYzPpmxVvqotMWJzbGRJG61SDyPsZkyVRPe+eQRjf46a+2EbKEp89U4VyqLcDXC+ZRljSMmigRGVxgt8P2YZiPGaIunPJQMaLd6RFGCtqttf19EJFHK3gd3OPz0LXJ3xnyUE8qE9sU1dq7vIMMIaxyz6Tm1KWlsJ0ThBYaPzpjt13jaUZ1lzA4KqMBTq0COXidASTgelgRKEvmW9ppHQUklSiaTCdP8jCAKSMIu3cbmZ70yn+snkAoVVkBWQbrWJLE15+89obrYZe2mTxVB52qP9lrE+Sdn6FGNPTYsvAUXXtpmsLNNHRSUSGqniZRcQZqloCoNYZigyjECjXGaw+MzjvcmhOOMv/nKG/zOH/yQ+PV1Xvnay5xcnHIv36e/P+dyfpVXc59RQzIdeDz1ZlQ2x/Pg0gVJLHKivYCu2ybxp3Q7AdfWPNzZiI/fO2WwucbO7UvIyLKsR1hlWCoosozDu0OCdB0l5qSqRRo0+fTJp7iW4gV/iyhS7HhbhIsO38k+ZnG9oqynWOHQ+RjPKOKgRT4+4+69Gfqsy87LEaby0FqjnWW8iNB1k4AJrmf53jc+ofF8i8HWRYazOaaouHh1ExfU1N4CGTnSKmFyNMHgEEjmyyVXrmxSm4LeoMV4NkTakLzIqet6teHuVs5KbE1oDY3K0JotiZYFCywbO5vs9DdBCKzVaFdjBcwWM47OTymFwwYec+Go8HAPDln3Y7ybl1jWhmq+YO36ZfYO9qjvnDF9Mv3LPrJ/5WWtQzqDECubhRDiWZdaEMURZVljtMT3Q4QA7Sx//O3vUJcltdY4BCIvcQ6UUghp+MW/+Rr3Hzzi6YMRZVXhyZUXOqtWdg6EwFmLlLC1scHl3QuMR1OsMwSBT41mWeX0Qo/+5QFJ4IMQ1GbJYLvF7GxCdHGHP/zNP2ByOuTf/PW/zXd/8A7v3HtCoTXNKGG90+Zb3/oeYZoQhiHbO7vEkY/NHDUOzcpiKYVPURV0Oh2OT06ZZxm1ttTW4oQEJSjLGqUcjV6XfDpnssj44z/9Lo1+i1rCdz64Q+0FWOnhBQF1XUENa2mHQavL9975AXNbIT0FWDzPQzhBM00ZDNZZFiX//n/4P2Xy8DF5NiNfZDz85C7Pv/Ii1XJOAMwXC7RzdPt9muub5B/dhapEGYeMBJ6nOB9P+PjhI5ZljdYWp1bTBO00QRogEEgBzlqsBGEdwtS8/9Y7nAYhSRChjeCH73/M0XRJrQ3DRcmg30NXNb4XsH804cGjP6fWBe1GC5WGhI0YLWr82KfZb2OEIQif2b6ikG4c8vUvv8l4eYY+mkNTgYgwvkez3WGsJPt7+xSLCr8RkHZbVFi0UBihQLoVQMJakIIAyfNbF/nVL/8Mf/L7f8Da1ga7GxtIJ3hwdsDjR3tkheXShVO+/FNf4sLFK8xHY5ppzHTykz9TPnMh/a0ffcJgrc9iUTLPVpxXmXQ4GmeESuAHEQEBFnC6xhofz60CFzqJj1KW4Rhm85qqMDTiFlEc46IC19DIXozBIK0h8hKioIUTAiNqPAfWVviRQwmHFArjrx72SStByAXTIoPFHO9oQrjVo+wFSGWodUFdW5ZLic1qlA1YnJ+jawu+o0RTmRWz1FQGYaDjNbnkbdGeR3gTaGmf1IvYXcS8nG7QWkv5s+IOD8/3uOdOedyvEY2IhcvY45SW8cl1xUYrphhmYFdJhg5L5KeYeoFwAfNZyenpkPHsKVG7Zm3QxFSG8awgaC546B9QkFEXksppmrKDikJWJygELGGkCMOAPFOUJTT9Ji0RUNolj9w+e+qEWFoqzyPqJVivwp/Bdr/HZDgjqBWlWTKrDFpAn4jK1hwdHzNZOop+k8Z2h2lYUEYhm+tXCcMu+XJBJBv4fkKRZ0hZEUQBWVHgeQHautXXorAoqXAOgmdBFs1mZ/WwKjROQNJo04kCXF1RVXM++P53sOMR+I4kbDM9PGS0f0br6hZ+p8V0OiMvMnpbXVTqw3pMt71LkA4xoynVzGIXAs+TqMDQbPl4kWIyLpBW4ilYW5d4DZ/DaYkfNyimcybzMd1OA1PWzMezz3plPtdPoMFfu0KxnNIdeuBZpJXoMXiZpTzWFJklTDTS1USRhw4snvLReU0cdkjTNhPbxJcKJX2aSURZaXJtsL5EOkUv7mO1pkx9EJbWhS6n5YhPpwe8Hl/kT77/iJ2rm2y82kFeWeeoE7K0lnBUcf3M40qV4LUi7qGIW5o4CNivZyxdRX08oIpKRGiodIfmWpObb666Nfs/vI8vQhrXQkRTUXkVi3GOV4d4bUUpDev0qGZnzMsRjbjBjWSdvm5gu01+87t/ygfTh1xNdjnanyKVT3ezi5EZQb9BJAKm8ynf+L17XHu6zYUvP4cKBdIKmokiDVtIBLNgSueVENnPkZVCGEfQabJ9e4PpbMz46ClracBFNSBfZlTWMF/MCa2mMgW4knJhCUOf2liW2RxdmWcjYYn0HbECcbJAnizxREFmM4xSbA628aMUrSuUtdQajoZj7h09ZZnntNIe9VTjBRFpwxJeWacoQZY1c6splzXhaUYa+LgXN5jO67/sI/tXXg4LCIRYFdE4h3xWTEspn9k8VoWvrwS6KMmKDGefdTaFoHb2WcqlIIg8ev2U+bsLHFBWJd1Oh9GsYmVKEKsuqBCs9Xt84ZWXKPIS5wzWOtyzXrVz0B8M8DwBRjMbj/ECie8JJrMR77/3Hn/97/063/yjb/LxR3fZPzzndDTHOsvWxoB/8G/8Kvt7e3znnQ94+GifJ/sH/PrFi1RViRfFq0LTSfKipq5X7dkwivCKHCMdEgFGIJRCeB6LomAtTSiLkqVxHB+ec3b/IarZwIYJQkqcs+S6RFhH4CQXe+tEUvHoZJ8wjUEKKDMEoCtNkS958PAhP/jR2/wv/pf/kMXRCWY2JW00KCZzsrygMPD47l2kJxls7eAlCaW1bF69ykd//l167Rb3nz4mCEM6/Q38OMXOS4R0q7pNSsARBz6FNhjrMMLxL1vSaZqijWaaW8bLigePjzibZRgkzWYDWxmqRUkYBJTLAlMbGnHIr/zKr3BxZ4N//Nu/QeU0TlgW2ZJ33nmbNE6olgZTlNTa8IXnX+R6c41ZmLJgycPxPl4aYPKSxXTG5sYGHxyeshgtSFWEs4ZLl3a5c/8hToiVp95ahLME0uPVG7f45de+wr233+X6latsbm9R1RXdKOa128/zzt27nJ2cUWlLlLb5xb/7d/mn//l/zff+7H1uvXzlJ74bnx1/lwvq0wV1XaONhx+F6NpgtUEG4Qq9bME5D6EkylckwiP0La1mgKkXUGeEjQYuTLClRQYedVzhpREqLAl9g98aIH1LGKQoX9KKukSxh3ElQbDywuTFErHMQfo4YVab5LEifbXHcjlj8dFj2v0bsFWSJB75NMc5qIoatGWxrHDCo7aapc4R2kLhCEVIr9nhom4xGDfxiojUKLbzmE1P0e1aHvhP+X55xgezY/qFQlcFYR6jE0kYKjKtKeuSaTkhCASddsDp+RQpBYGCLCuJPR+MZblYoEXNoDehtxkzzyumkylS1exeWcdPa/LSA+cwhWZ+Pibtt4jaLZQMwWiKeok1FYEfEvgp69MWSS3Iwopjt8C5ikLWCBEjPI/2oMmNtQ7tZsyPn9yBzLD2XJ/80ZBcBKyFEXldUZiC5bJilhSM7RKCkJdf/irOpFSlo6oywkBhbInyDX4QUhUaIQKkBCGfdZ6FQGJppjHtdpNl6VFWYrXtLUOc8zDOo3aSMHQ8fvA+uZizGE9RZcnua5e5dfkVvv3DT3j44RM6610a22v4nuXk4Sl4ks3rO4hYkN5os3xoOHl0RBwKVOTwPQ+FYpYV1J4jAi6sSa5d9TgfGTIkYkfS7vUZPXxCdnRCf6OkFW181ivzuX4CqbUWGxf68PQYPV0iC03SUOQzmJU5TluWaoJRgtRLqD1NkKZsXLmI11lnanyUFCS+Txj7eNJgA83S1JRlDS6mFTZpREuEXbKo5lx4+QL1WpNTV/KlapPr7yac3D9i54UudRCjY585gjyOuLer2H94yJXDkM24yamac3ZwTu6VHPsNXltKAleT2QmTsSAqYbg8pdtqM344IwwiBl/cwcaGhJr1L2xwf/kYWgJnBQPVYFiMqDsh15KLvOhfQDQCfm/xgOFAEcsmaiEY352wde0KVy5ewxMVeAbhecS9mCv9K5zNTjFHD+lv9mmuNZCUTDNIgiaFrnnhJbh//Cm1DOleHhD4KdZFZOc5oYzotLqksglOEDjLZDrF+AodKjqdlMVysRrn+z7aGYx0VGWJk5ZO3KB6Oufpt9/mZ25fo6pzKmdJ0waR8gjF6kO6tpasqvn04IBhvcAmEpsWeNrh8gmhFnjr6yzmlsAUOFuwu9nl5OEBeVFz9fZNervrf9lH9q+8nHP/vT8RGK3xVbBaQHxG87DW4KuA+WyKEgIjVmWAc45nbWYcDs+TZEvDbFpgEQShR7MVMF4UwL/0FAhCP2BzY4PpeEwUJeAgSSKWiwKBwFQ1rUZCFIY8+fQBofBwTmO04fr1a8yHC7xA8nf+7V/n/Xc/4OloynZRsVzmnA3P+I//s/+S3Z0d4qhBf63P+toGH773HofHZ7zx5Z9B+QEI0M5RWwu1oNPpUtYlsipWnV6lqCtB5cBqzel4wk6nQ5llpEnKqMjI8pJlkZM2W2htyLISYSxS+Fze2CHPF9w/PwBPoTwF5SoAqdls8XNv/hS//4d/wttv/ZjpdAFxzOHxCZcv7iC15ekn97n24nNMjo9XDUvrqHSNLXLSjTXO53POxhPitMHbH9xjoe+xf3q+oqMIt6oljEZJQzuO8GuDKQwSCU6jpKLdadLqNWjJgIePzri/f0ZeV/i+j3YVm2vrzOczsmyJcI5GHPC3f+3r/K1f+0XG4yG3P9il9j3eu/8pxhi0thRFgakcnlKEwme9M1iFXOmA0eEjrt2+yFLVjGZzcgRb19fpJg3m9ZiyyPjSl95AyHiVmGoNDrcicPW77K6vMWi3WC6m7F6+RIDE9zwy67h57QaXXniebn+Ts2yOUYqsrJhrzb/3H/1H/LN//I9oBD/5x/lnp3Y4iykrPM8jCGOklOhqhS8ri5KsKAijiDBc8aANlpqSuJHy9PCM2fgMj4g6qhFeCJ5hKeaIRo3X6BBEPsqv0ZkhLzJcAwLlIQBTFAS+QzhJu9Og2/G4JHYwsELDzeeU2YLJ5YTEvwYfntAYZXimwc5mn9niCc5VSA8m0wVOSgQCnZeEyxprJEGQcmXtMn3XRD1Y0q5SujphRws2Wz5H/Zzf7Z3woDHlTM/J5gWq9ki0RBYCHYKSHk6Alpqz0SlZNqeuBZ6SGOPwvJpG06G0Qsqa9TWLcEuksUzzgofHJc4IlK/JshmXr25z5/4R1mjAYeua+XCENRrZFCilVmM06WOdIxUhnSrEQ3LulxTOIYxASLXiyjqHb+FSs48xmofLE4LaEBKynJb4VUgzavC0HlMEjqoJ8VZMGWouX7gOJgATYOvVoqCxFaaqCCMPIRVlXSEEKxQWgsBfoZEG/QFJmmKd5GQ0Q8kEgQ9Iai2RZU4YWUw5Yjx6gksMGTmqqLh//wl//W9f52u/+FW+/4P3Odg/QASS5oU+halYTOac3HtKu5fQXmsjfIsXO6KGRNQWXWsWWuMBCXDrZsz1qwac4NGPMkamZt23hP2Uncs77H16yOnpFJ38918mn+svQsuyJml2WLt8lfmTI9zCktkhphBIHYAzRA2J3w3xA49GV3Lz+ct0Lm4xl45CafwoQQhBYfJVvHW1ipb2ozZWW0rhaDe6lPNi5UJoSsqlIGp3+XTp8fPjl/ijowcs5hrXCKnxsUogI0FOxv5awYOzKZfPNLfzPlW+xafqkKetObv2mDUbMPIdEzuBqsnBnTH9L/fofylAjyzVkSbebSKCAtWNYeBjvIpW1aBtEvbiJRcuXOVNfZU47fPn4ojxRoPd9dt0601kmdPamNDc2UbFPonns7QZrUEfHWYUVGxsXsRvReh5wZM7Gb2tDaZFSbulCZsJDa+kHfpYHeA8DyMlopYoQqSpefrpIY2LKcIJQi9CqQCRhMTbA6bVgkpXNOImOIvn+9S2xFHTsI7i3mM+/e4dWspyVp4RWwnG0mg0SeOQMs8xdU1pNfOqphCKyOuS1QXT8YKdXodmEOE6MftUlHJBkE1x0gc0jbUG40+OePjeQ7zgM7/KPte/UqvOpJCsqBo40I4gCKjr1Z4SyJXtQmj6vS6jJGVWFGhjMc4hxarQ1s6yWJT8iz98nyJXqEDQ67f5qTff4NF/+ceAt/pZQtDutPE8D8dqyTcKfcqyeNYhh6Ko2Vrb5pOPPub03hFH95/wN37tV3jlS69hK8f46IQsL9i/ew9VFvzDf+/f4YP3P+DRwz2CMOTD+w+483iPMPSJ4pinR/uYStPrtHnvvbd5/Us/jQWMsQgpsQKcEKyvrTEcnuHyHKsEIvCR4lkN4QTTsmCj0wHj0FaQFRlEEVEUcz4cguVZwRmR5QVv3fuY0/mEXGoUK9tjVS+4ee0KzSikrgzCSj79+D5f/KmXiKTgfH+fDz++QxDFDC5dpnPhIud7T9BCAh6LRU6r2+fSK6/x+7/5z9C1odXt8eDOPXJjV/8W9+z/1mkG3Q5fuH2djx7eY1YVWOeQAvqDDnEcczQZMzIB94+GKxCAdewOdvilr/0yFy5e4P/6f/k/4vuKMFA89+JVvvyVLzAdnXK6f8DX3vgiv/3Nb1KUGhUGWG2xdU0ofK5uX+SX/9rPc/3KZZSSLPMlf+2nbuP3PI5mxxycHZDVGfPzEbtbW2z31/C8kMdP9ml1NpA4OnHMpcsXWF/rEYUSt8xIA0XgCdba62As9+7eI89yXnrzi9iqYnR6xrVXX4IoQvgR7Y0NGu0Ov/Rv/jrvffdbP/HN+MxPH+crKqPJiwpVKXxWXkQB2NrgByuW6L8soqSAtJmsQk+MR+0aCBS2csS+YOlybAhRWxF3W2ijySZHGGMQQUQlDdpVFLXBD0NqKbHKUeUzhMsIAkMaxTSSgN1el2Ies7fMOdGONL1AM1b4YsKFzR3ypaKwBcvc53RRQSmoFzW6BG19mu0+L249z8Wiibs3oTvtcVussd3vMosWfKf9gB83TtmLliu7yqJCY9Gxj8wNKgfXECB9lA/a+JwPl1RVjbUhUdig1jnKW+J5hkimtFqK9UGFKk+JVYdv/ugAKROcFQgFZ8sjbl19g8dPhggkWqxY3q7WlOMppqxJm008P0T5/io8JvdpzT2CJGGanpKGbbLlij9tLRjrCIxgI4g49wvm6xHrZzWLvSXFzNCxAZGXcioOmKQa70JM1TQMttbZ3bpEmXsoP+TsfEQQewjhEFjCMCFbZqsNYLEaCVorSZOEOI5xKmLveIrnJyRRjyhqYzQI6ailxYoMz86Yz/epVYlsKvyGRz3TnJ7lfPf7H/D8F7/I9edfYT5Z0vQDwkVNS/mk2xtURUFdOMysJC8mNNYkRjjcRCB8h1UQm4DtAF65XhH5ER/8sEF5IEi8mvzDGv8LNY2uz9XL2+ztP6HMx5/1ynyun0CNZpfJrCSNYzau3eQgqymPZ9ilw8eRpgm6qfH7kmYn4KUXXmB9u4P1PDJjmGQ5mS2YjeeoyjE7PGM+nDFf1Dz3xpdQbYHGkvoNEr9N4ZVoVxHGKfgp437Eg8aCX3/5qzxslYwqi1IRUiqksizzBbWrGIo5j8WIh2ieO+nwnL9GZzLlMMy5pS5yr35IZydAjSD0DUpWiIHPcpjx4Ef3aB31uPnaFayfkGx0mZ0f0dFNAp0S9gWvJltsFm2+Hw550KpwTiKdD2FMFlrWX71Bc9CgdiVlrdBSIiKFNAZXKsIwQhBSjYc8uveEwSWfYD2mM0hwLqM2bbrBFQ7uHOC3wfk189E5jz54ijcvkdOA08aE9UYL4QS+F0DiE6x1mVRL4qSJsxJTa+IkRtcFAY7Z/QMO3r+H50t6mx0m0wl15dFKEtbWBzgFtTBoCYssZzybM1+W4IVUmaYR+iQyoQ4E0c4mIQvykwPCxKNqJozqilmeodoey/MZ3ujzxL2/aPmeRxzHtFpN8rwA51DOEQYhZa5xSIRYJU+mgc9/8D/597n78Qf8ye/9AeejCaen52gLVS1Wi2wanj45p9tvgBOUlebP/vwHz8KOVj8zbSQMBgMsDm0sta6IEp9YJpyfj0E6tIXFpGJ9c5cnbz3g/OmQu995n4aJaWxtEDZaNMMG2irG4xnf+v0/5Atf/WkmozEbW9t878fvcTaeID1FEEYESvHTr75Ms9ngn//xN7lz50Oef/FlEArrfASOIi8IA0mr2Vw1iiQrsoWoUCqhUopqsWBUFVza3CYeDxmWS7bXB2xsb7J/sI/DEUiFtPDte+8DMMkydORhpcb3feJOl4PTc548fkIQxUxnc956611u375Gb2OT+WzO5oULtOKUo0dPuPbyi9z96BPWdq+x9/SYSVEzKCXdzV2CVo/5ySmhWZGsjHPgKeSz/RHpBO1mSugJuo2Yo+kIIWBjMGAw6COt5cbLr3Fh/RI/9QsKYSXL8zHP33geVcI3fvf3CH2JF0nWNnr8rb/zN4gin2w25fT0nKOjE85ORpilIZYKjwA/7fOzb3yF115/nQLH+4+f4hRsXdxYYf/KgqzQeF5IU0omp+eURUmpNZNJwcNHT3nt9TY/++Wf4me//CWUspyfHDA+OWX70lUGSZsffOPbvHjrBdbX1nn+hefJ8gyM5nT/gP1HTymU5O/8B/8uBweHRL5HXma0+n20+/+dZvjf1f8Ay4arNEDnHJ7ycLUDC0pJvMAjDFYWhKqqSJOEKPJX26XCw9QGpXywjsBTREpSxQGmF1F6NbZcUC1KpFsdYE87BCVeaVYRz8kcck05q5CRBGeplYfqG/DmlC5HegFXmzG3ui1yVbHUE8KyIjAjvvzcZfIlfHhvxsPliDp31KWHFAEX+uu8ce1VtqYp9UdHdGdNLnfWuNbpc2iP+UP/Dj9unLGQObKyaAJmFrSwlIEkkJLAa7BEU1GgfA9bO4zxcQ6clWgtcBaU8FHKp9WKabUciSeo44DlJObsxGHjitB3uGQ1npYsudwYcHh+zhyN832cFThrMHnFOD9HhB5pu0krbdCoFZ2FB13FKFriQkU7WKPIluTLOTjDgISBbPFWfsahyklbHmu6xU7T0SsUlYQjucSsB3h9DxHUvPTcTQJCpPXJigInNGUBfuDjnMYaQV2bFRNSeFRlTbPVpjIe0/McpRy1VsTOp9YWQU0YRkSxT15M6TjF8tGIsp4TBD4mlLQ6bWanGls5Htw5wsmP6W5u0e+1KBYZo0eHFFXB4FqfjWubLLFUxuB1fHwc1cKhOiF5sSCoJH4J12/FNHzBe29rDg99krYkbHuUUY2X5XS3A1TH59KFi+TLjMM/+TyK+C9acdDAk47lYg6px9YrL7Bx6QKnd44YH55QljlpLyXuerzyxVu0WjGzymEqTVkXeMJQzU+ZH45J5iHROGc5XuBKy/TJMc2LkqCfUlY1g6QPWjO2Y5J+QMcPOciGHN+Q1L2atQWMUCg/IBIKawuG8wlZbTHDKZ1eh0U/4MM849OZ5QuLFi8sYvqiS7/TZGz2KRy8+NVrhHHI/NAnXHbxt2vqouDeO3foXLlMaSqUkfR1isOnUyRcCRp8WB/xaSOnrGqEgTkGXeSU5RK/FZG0IpAeJTBbZriFxZVmNeGzMbIK8b0O/R3orm8yKmYc7+f4niUOFevxDr4Zcvrxil5SlIYL/QscjfYIvJTz4YxO3CCWjlbSYJkIlhgM4Pse+TJDU4Mx2GXG/OEe53f38dIGWy9soc+GtIYaCcTtmDRpUZY1VlrwPcbLnKOzc4LEp3trB78oceMxlahY4thsx4hpRewGtHQb3epS5zX52SmBlOSpJf//sh18rv/BJVbvq9FwQq1rPCkIPEWaJIBBSoFEEEpFXeT84I+/wc//2i9zsTfgk+//gDRKefT0kPF8yeF4xMOjQ4qsoEw1yo+onabVWuPSpR6VUWSlJm2sKElGm9VSra6py5wwBF8JjHDURYU2iq2NCxw+PWRrMGB3a4Phk8fsPbhPs7/B7o3r7Fy7Qtps8sFbb3P3rXfZ2FrHs5oL6wP2j89RXkAUReR5xvFszrv37mP9kOPTY+QnPs+/8BLWuJVFRViStIGzNUJKZvM5i2WBsxZj7Wq6HQbMy4K981M2Lm5xshiz3u/x6d1PcLpGIrHGIqUgx5CVJbm1VGWFpyD2FA7IyopWo8W1aze5d/cTDg8O2Xu8z+2XbhE3W4zHU4pFRlNaPD/g1quv8ej+Q2zQYJ5XNEvLweOnfPUXfom3f/Qjvv+DH65Qd0IAz/zuK/MNxycnmPoyV3c3IHAEjZSw0aDb7nP7+vNYIzkdzgBvRQBpN5jrnGK2wOtGpL0GW1vr/Nq//Xe5dusa50d7HJ+P8ZMWQbTgpede5eBf/DmNJORLr77BRm+dzto6Iow4ONxjVFd4fkBSa4rjE/JqTm/QpBG1uPvh+zx5/IDLN68yX2SoIOLWiy/QXe+z1uuzttlnen4CecnV9U3Gh+e4tZTnbz7H7u4uJ6en9Ho9wjBCa81ivmSxzCnuPeTO93/AjTdeJSsr2nGL8XzC86++9BNfjc9cSOuyJvR8wjBESg/nr8DXuqxW/iVjEEIQBwGB54MBoR1OGITVYCu0dbiiQtc5ou9jA0lZK6jnKOvj6zaiAN8uMeWUeTZHWoUz4IzB6ApPOISFsJkwvdGk7C6xYcZ6v82FtQHbmx2u9RVdv42LLzA+q7DLhNeuvMqVxQk3nvY5P8kZzUssHleTG+ycddGP5/hik2gQMg4K/sniQx6Udzm8OGeqArQLMLUGI7ElOCWppKNY1qSVwJMetZCrRYhAMp3naLNajFI2IEkkpg4osoLpdEo7bbDW22V49iF3H55S1U2Er3CiIG5WNPuSIj/nWvcKblqS+B4LV2PUCntna7FK9qkqRsMziuWCS/OURh0QpiHnbk5ta7SxK0xdGLOYzdnIU7CC+9mQIrRMEkNgG1xphSRZyahaUvc8/EGA8you7WxyZXeH7bXn+MGPPmU5nrLMZzSSLnVREcUJ+bJE1w5PgpOGjY11ZrOceV4ihCL0JJ4IqDMDniKvczzPEruILeDTb77L+OAM2bc0L3rUyqczWKMxFtSZJc9LDu/vU5qMWzev8fjRKadiTr/X5kZvgBIhR67CdBXNZgu5sFTnc1pbTXpEHL83QilDOBD80dsli9xj+82StBUj/AjjDMIqZocjvA1Fux+wnP7kX6mf67PIp91JkUJS6ppJXTLYHnD70kWGh0OOPv2Uqizpb++QmxBXK0aLgrysqPMlrpwyL84531tg7hW8eukKIm2h7YLhgydYbeiEF0maPk0/xiU9ZtUSV2eUQUUfj6gX82gxol828AcdMutIlWah52ijCWtFnjZpdbdQgcdM5kxVydvLOWuTKa/sVby2uEi9qThOhlQB9PsdOqlioTSTeAk6YnY6RIxHuEVBYxmxsQihIbgutvnk7e/xO/Ye3Vu71HLlMxXWQJVhFlNMM8K02zgB59MJZrpEVpo6ksR9RRAK5gfH+M2YeGeNUkGapJSZZpItkfOC7oVNXnn+Mt988j2qUYSuahA13biDrQ3LvGRcLOlEPr12E50U5DpD+zFVXWDIUNpihjMef/vHiGFOUCsWYomKG9jNGDss8E1FM07xRUxpDKEfUZaCJyfnBIMmay1BcythMSxRQcxsnrMsHU/uH5EVM9qqi61D3EwTzQTd2RraGKxcUKfVX/aB/SsvrWvKUmKtQwiw1iKEh9H2v0PXcHjWcnZ4xHceP2XycJ8rVy5xobvGeDgmsoLJ6ZDxZIwzDl8qnDGrhT0hsM4ipUfoR3ihREqFJyWeJwl8Rb/fZWd7jfl8zvHxOY8e71OViiROGD85xC81P/vmm8S+4Oz0lMl0wcNPHzE/P0cpn63bN+htb3D79Vc4evqU+XBMIwpppilaetRlTVFr3rlzF+lWXeZaa+7cvUOSNrhy+TplUeGkQyifPM8QiFW4jLUo5eFjV80y3wdgVpXUwnDt6hUePnjAdLFY2WLcioMjfEmNZV7nVMJSaUM+r5AWQt+jdJZCKTxPsrE+YDIe8c7bP+bWS8+xeekSz7/4EvsP72OKguHhAbs3rnNyeMKiFOjSIVzAbFlSFJoLu9f4WtLhj//0G6ugFreqoQQWKaCXxHjWcnlrg50LG5xO54TNLjdvvEi2tCyrAj+IkMLD9zyEsUyyKe1uwotffZ2XvvYKwhi2blxhlC95+HSP8fEZo8mML/z0z/Gf/Z/+U17YvMHPvvlldi5f4mQ+5Wg+Y3x+DElA1GwQRRFWOwg9uv11tte7/PY//i/45IP3WN/sQWXptDuk/QFBnKAtyMAjThLKIMavAw6e7tMKElpBytqlHrP5HKyjyPJnH0KCH/zobWpnaChFNRpiZhNmsxmP9h6TtFvk6J/4bnzmQrqoMnzhoaRH2kqotVmFbliH0xakJYwigiBiPl084wQ3qesSz1MoLTBOU1NSRkvCToDn1TRLhZ5b7LhGLCt8G5BGCZKIxUxTlCVCejgLGH/lv3KOfFSxrDPMdsDe4pxPbMZad8GtGzG/+AvrbF11hJ5iYlp4cgdhPV54YY1raQt5vMH5vTmn+4fUZ2DqIYs6Yz9SDJ1mWuTMqzl5y1KnHlYIrLbg1MrOIkAi8RVkpcacT7H9EBEJpK0IApjlOfMiY9BZQxBgtKDC0Eq6xDJmerKkcj1K2+Q8m2E9h7MFzhOkviKOfBbZMTe2bqKWfWau4PHZkLlwLH3wlcMzEUprjAXmlv48JghSKn/J8eycuGPJPIe2hkCG9LotbtomZyJjrJYENYw8y9TT7IYRZU9wUk9xfY+0EfDCK6/x3Es36Xb7FAZmWUFWlHh+QF1lKOsTxC0WRYaTPlGU4gWQ5TlCRMRSIqVHFKT4MkTgoUIPFY7ZkhXF2z/GHC25kPnIsEmuNZNPjpFdSyhCMpGT5Qu0dkxzzbpaI+00aETnXLncZPfqJmkYs3f/BGEM7VcshSx47vlf4s8+/lOmoyEbOx1alwL6PZ9hpIguR8TWURQlxx9nnB5pqmXNlf4WQbNPPpzS+brl4rU+cPBZr83n+leoNhrlKfprawxHI1TgU1qP5TInHHS4sfVFpFt57Apbk1eGpXbki5rje0csj0/ZuNyim/RYemccPTrk6ovXifyIe0/2SMMLmGpBkYfkQUzcbtEqm1SeoDIFXqY5ePKIU+Gx2d0lWu/jS4EQhnw2W0Vgq4jBVg8tJJFQxMJn6dUcNx2TwHJweI+fO73GFxY3WfTOeW/tKXvmUza6m5xNphQfQnIhpRm3KZcaJh7JeUTbtWj4AdnhGDmz3PDajH58wtnknMzWhGEAdUH7So/mRsry8ITxaML4cIEdanSk2fryZSyGRT5lMjqhxxpBFFBhEJ5AKUFkY47fPeP77x7wyhcu8IXLN3h/cgQoOM3oxilZUlO4JdNsghm0iBsxSWLp9BpY6dB1QepH5J+ccP7hU8KDirxw5KqkoQpak5zz7T52awvv5IhWHGOKEqxH3OozNRnW9zhbntDuJaRTSZj6JLevENWC0eGYvJziAkU+tdiqpF34NERE2gxYTJesxwmp/LyQ/ouWc2IV88yqmSnEagpdliVluSJbGGOxzmLyirKsefDxfU4fH7DW62Ks42Q8ZrbMqe2Ky6ypkcJH4VCej+8HVNrhrOUZDwOHwxhD5TR1VfH2O+9yYWeLnZ0Bo9E5uiohy/jgez/kZ37qNTbXOxzvH/Huj9/HTxq88PqrxM0m1hj+5Dd+m91bN9ju97h+/RrnzVMq69g7PifTguPxECVW3mXDKjVRKoESkvfef5d2q0272cFYga5XC3MCQafToSxOVsE0Uq7ACkpSS0ld1wync3qtBq1mk9FsujK6OkHoBfgqACmptV79XiUooKpKcBaHz7IouPfoMf/g7/86Lzx3g7e/9yOOn+7RbLfYvX6NtBFx9+OP+OE3v8mFGzcpsowHnx7Q373OeDShkbY4PDigzHIE8Kt//W/yu3/4+2TVKshIIOilCb/+9Z/DiYx6UdPeWkd6Lfpbl8jmNVleIZE0m03yZU4+nREpydbFdWxdoE1FnCbkWca9jz/CUx6N7hq1ltx84ysc7p1y++J1bl+/jYtCngzP+fT0EL+ZIsOANE5QbkUJcc6x1h/gBfC7v/nP+fjdD7m8c5GNrR7UK3yeETUoiKKQui6o6oqTg1O+9Qffpul53Lp+dQVvmM2oigJTa+q6pixL/ChcoToRDPpdNno9iukUZTV1seA4mxGEyU98Nz5zIe0rnyiMkEpRFSXWOFTgE6bRanvbWKqqwmgDVqDNytvstMRh8AIfGRvCgSLYaNNodDl9MKM+L1HWw6slUq/iMo1UeGG4itP2aqSB2tWUXoUJDAQGvy2RA4W/JllLLhC3LJuDDpc2OqQtUGGCZAflSRwBx4sTHpsJd06PKKcJ3nqE7mQcvv+Qe8ePWGpBU22z5m3SUR1KB/MEslBjhUApibEW457FcouASARELUlhc+rCQByipUE94zIOz/dY7wyI/JBKC8IoJQgSZOWjoib7J0uG45BKQqMHThiSSKFQCGtQcUWcFuj3c04fniEsRImPjBOmfoF1mkB6eKHEE4oBbZIwpvA008mYJIoQvmOkc4yr6GlLt+5w3nL01zboFAvyekEtNWXkM1oWjIqCKAi4/dKLXLp2jeFkRJbl6CKiqgyz+YK4EVHXFiHBiBwvyOhttEEoiplHRIM0DVnmS9rtNkoprLV02jENm7HmKYpH5/zBN77PZtjgytplNo3g6cmMRTZDzCusH2FKQ+AHOGmRtebo8RnZ5IeYfMbG5Q57n+wRyZBko0HvUo+qsaAdJmTVCevXApTXwksqtl8IyU4Fd75jUNOIsswwFiQt6rxmno84qSbcbu5QnMbMPxmx8eL8s16Zz/UTSPk+cZrgjCNtpiuvXFkhpEB5kEvwpCRMUmxtyRdLRABJO+LSzZRpss6sPMf3FLLTpBrVfHznMc/fvsy1zU1iT7DMcvRwzlxFNJoN1tp9TqY1ZVaRFxWj43O6FzbJO008KwmUYFkvqKocVzvCKCQKE7KyJDOGIEqI6xrnDEjBeb/NxAvoV8ATy1emNzhuFzwtMvy+RhwuEQcFwbbPuJ7TdD0uxBdoFk2Gjx4xys9pRoKfS9eRccBk6zJ7+YSjbMJYzAhdTDksmB6dYxZL8plBFR7TYsGgdni2RktDd7PDfDylLnPSQQ+vFWPMqnvYen7A/vdGfPPPP+S5rctEXsrCzfCVj1CORughwzZFXWIcaKFprXeppaWqC5KZYHZwxsEPH1NPlmTzBbmuaHUiXthZw5uNCTY6mI01svGQVq+LrisgQAUhd+6+h3WCdrNDK47Qs4r0QgcbeKjIY/3SgHv3H2FkTXsjRQlDlebMjUE0FaQeJqspy8+TDf+i5Z6h6IQQSOnwPZ/AD8izCmPB93yUk+iqptFoYCg4Wy54PB5TPX7MxYsXOBkNmZc5NY4ag/JWjGZrDDeu36K3eZEf/uADBKCkWIUaumfFuYNlllMUFXfv3eell26zc2GN48d7nD054ODBI669+hKtRsKymfDGG6/xdP+QYj7n8s3rNNMGUZLyg2/8KWQZP/erv0S/32U8m/IP/8N/l+/+4F0+/PAes/mS6XJBUddY5xAocBata95++y1+5eu/iKklTj9D9ClFoHx6vR6nwxF1XWMcGGOwzqF8H1n7DKczttfXuaIUT588RaKIvQBPSoSUJEmCL1mFHAiL1hqcQGuNqSowhof37vLa89f5pa9/ldPTE6Iw4GB/n6tXdnFGMxmPOD88wAsbbG2uoa1mMh7z2htv4oTH04ePyOcLrF7yt//Gr/FPf/s3sFg6jYRXrl+kmE/pb3QZjuZ01lNcXfP00QnNThdnBI1GyvtvvcP3/uxbZIsZNy/tcnTzEl/4wktIT3FydMAsW7K5c5GyNojQozXYwDhJf2uL9t9aY3o0ZF4U7C+nlJ5ABIpWq7FyLoQhoS/wpeDR/bv87u/9BpQVV69co5skSCOYjecMOk1mkynzZUGctqi8gKLIOD08YzHPSNod8rIiryqODw+ZjsY4YPfyJSbzGd1gwPXrV5l99CGdVovTo1O2mjGEgsT3yPOcWv9rpHYosULeaKup6lUB56xFhZJIKYplRVlrAgRJlOAFAdoaKl2jTY3vK7zYo72W4hJLcV5jjiWR6xGGIU49u0SFwbcCXylIA5yDPKwwscDvxvhtQdjxiLseXkMhfU2nEbLebbCW9FiPB/SbTXShGS5HHA1rGnGb82nF6bLisJa4jmNRnOJ3QH1tg/BcUewtUE8UYekQdYGHoQ4ctTRYI5BuNXKxtV0l86CItMA5izAGfw6imVIqsQqP0ZrT8xNuXqtImz6xjKi0wVqIAh/hPDqNTXx/l87glMSOcLqi20zISnCVxQUhcyM53J/CXKKqiij3aDYT2oFPrkqyQKM9x5rfZbtMaEUB9YakEYRMpnPiTpvZdIEsK9ol+A3Yq+dYadnZXiMQHbZkyMALmJwsCRYhtzefI4xSzobnLKsJ/W6LQK7Qgis0qCZuGkw2p9vyuLW2jfAduJTW9gUiG1FlpxzvD1HjU0LfZ7iY8tGHZ9iy5IvbfZ5ffw4vijlaLmgtxlxb2yVQAuFqxvWM6WRGXlT4ygelUAiyyZxWJLm8u86Dx+cMjzO63Sbrax5EkrPzY3a3NsndCesvRgQLn6cfnmDsgMnTnEgHOCMxeUWhS4JE4wWOSCvmxZLT06e0021G78Z4/uSzXpnP9RPIDwKqusYaQ9IIKXQG1tFMG0hpqXMQkcIqR2E1UaONJ2CeTcH36He7NKtLVNWcsJdz/O5D8lHGk0dHXNhdQ2c1dVXz5MPHvPbXf4Eqr2gmIVG08k3bTov+1hpVXSOCGE8GBFJwPD+nNBWRi4mFT51XKKXQWAIpUUiMhNJzFKrkvhlxbXebHw8/pvXxgtudl+gP1zncKphe85lnI07L+whT0JqX9KYaScnG9T7v3L+LCaEaZ8Rjj1aU0On12L34PHEjwPiGJ/NznhYlw5kBKkTqoAyp9jO8hsClHirxCEgZf3TE8O4RF25fZTabEHqSRrvL5uYu2XLIUJUkaymYBeFGH88ZmjjUTLCcZSznJeubA8o0ZSFW7Fx7vCB7/wg5qiiNJgsq4lDz4oUevYZjWc9oz5ZMe33E+iaq2UZnBV4Qsrf3iHff/SFhM6UnB3Dm4WTI/Tt7bAjwmyG2NqR+A6Mq/CDEKY+FrJFKUOmcXrOFbxRR+3OP9F+0Qt9fMaOFRAmL73n4fsBc5zgngRVLuXIldx4+QNrVCN0KMDim+3v01vpIX1BnS/Szv68t+FLx+ld/lo8+vk9lLJ73/wkEwTmCwCONQgI/IAojlpnBGMPaoE1xfsp/+1u/yS+88UW21teoqppmu0VRlrz55utoawkVPLzzMXme82/8g3+LRx/d45O33mX3pefY2NpieH7Kz77xMl/96S/x3gef8L3v/ZCnhycUxqCkXHXIlWS+mPL0ySNeuPUC02wJCIxxCOFodTvMsyXaWlYY7GecayCVCqNrxrM53XaTF59/nr1He6RBjFQKbS3LIkdLcFJgjMY6ixKKQHlYY8htzvBswj/7zd/jxtVLXNy5wNHePvMsYzyecuO5F3jy6BECxcefPmL7+vNoL+Huo0MmoylffONLZMuco3Kf5XJJEMS8eOMFPrrzLhfW+vQaKWUt+PCjh/QHGywzyCuBlQqrIY4T3vnhj/jun3+LhufxhS++SisKuLa7w9Vb1xienPDwow/IswIzy7AWHj085sGne0TNJltXL7O9u4sTiuPhCD+O8NKYRrOJsxad5xT5kt5mjwf3P+Gb3/pDpHK0m02GkymPPn1Iu5GwsbuGzjXbl7bIdI3wJJ1GgnCa2WjGw6eHjJIRL71wCwH4YUiz16Xf7ZIXBZWuWeQZvUEfz/PY3NrCVAWPPvqE3Zdu0ogjxnnGbP6vMZClKkuQCqkUYRIjkUhPEPqKMi9WvMjAR0kPpEBbs8pB9z0sBgfoWnJ2P8fWeuWJdiFCgrWrw+QphYsEOja4jqFuCMrAp0gEIhXo2CJihw1ABR7Ki0nChHbcJaYJC8l0mDNjSO0VxIN1VBhzvsiZLyuWZcR0JvCbmjAJ8LBY4Vjf6bO1uQ3blvpRwfLBjLoucZ7Edz7aseqQiRVg3QkD1MjMkY0WSKHpJB1sEVI2HZWscULz4Okpr75a004NURxB6YOTK66qsUShTyPeJIkdg6YhdJJA1ZyOBFIJSkoWjHnuC7d570/eR5iKQPvElUTqkJYXUGmDsYINGmyVHq225LRnaKYps7OaTK86TGt+h528Salg7lvaSYwfK2xds6SkXM7IhGb7wlWOz2F+fIKMamSU0+4Y6ipD2xqpJHVV0m/7XLt0m5evvEgjjDGlppppJqdjHt37IU8efki2zPCtot3oUAc+IQFKKRbLHJmEEATkRU3VTng6O+FCq8c13eGtozGLRcVCrzycvlKEvuLqtT6dbou7d48YTwtMKPAv+kRbgun4FHskOT9eEEQG2VZ0W9v4VtFc9oljw3h5jhCapJEQmBArHNJqahVRE3A4GtFtbsM4Ye/9zxPU/nXIw0c4CAJL4EO3mbLIDdYKIj9Eq4KyrqksgGBRZsShT7vTpsprimVNIBVBFOGikq1ul+X5hPrBIftHE1qdhPblHnv5ksXZMdGFdUQdM2hsUOZLUDFqZxs7mpN4MX6kKMsRxWxKLcDbm7OQDu/iBiDADzC1IAhWKa7CWpQM2CdjOs/ZbIR8cGmP8elH7D6+xHp9AzzBabRHbgt2vE2+Yi/Rtg3SRsQBc04jTeYqlnaGLxRqMaU6fUz0NObKrYsMWh7rzSa3X30ZjM/e9Ji5V/Hh/aeMxnPW/Q5+mFB6FaOHI/LDBXZRMpx8SphGeK2E8d5Tujs7ONXALqb0my2K3XX8nU2Wj46ZnEzwhCJSDUbLiqueYuJrZrMFydyQ3TkmdQ3O7IyqsMjKcuPyGhsNH9+raVgB0xllb4NwZ5cgaCCzmtyVvP3Ju/i9EOF5zBcZ86yklivL3/m7B1SRobkzIAx6+HVJfmwp6ymdQYMg8UiiCEpDNplTNbO/5BP7V1/Xrl/h7PSUYplT2hpnfaIgIggDykJjrMX3BaPpGC1XU2TxzPesxSrv+3Q6odNp4tsAUzqMMxS15Zd/+ZcoJHhJjAo8nANrDVIo4jgh9BXWaLSuV5g9Jzg5OSVNt7h56wqDMOTmzg6z0yFFkdMfrNHp9hiPxijfY//BE9JWm3d++CM6zSbPv/Qihwf7vPvd73PtpZe4uL3DoNfj/Xd+zPXtHi/8w3+Hb//oXf78z77N9etXuPvwIdOsBBztbsxgs81ib4l0EmdAKo+iquj0ulgHRb16VgkhKMuSuqqw1sfWK+tKr9UALEI4nDVkRU5elehnvhmLw1qHQjMYtNB1xWK54ON7D/jO8JzXXriFJ+Dv/4//Htdv3WRyckblBDvXrrNYZjw9POaDx8esX7xKd22Hx4+fcHH3Mrdu3kYYwYNP73NycsILzz/P3pNPGZ2ec6ANwsFsNuEgGeF3dhBxRNiMsHZl5fn4kw/o9xr83Guv8td/+a+h0ghdlszHIxIEz12/QWlBeyn/r//knzCeZDjnCKqK4/MhD57u8fzrr2M9SdCI6fZ6VFVFnWeIqqSZxKS+5P7dD/B9BUIwWWQUeUE2mfH8C88hKDnZP2bzyi5OraLNEyVYDmd8+tGnKM9jY3eHm2++TqQcXlUg0pCg10ZVCVG7gZWCB0+ergJchOL45BQwPLn7KTd/6lWiwGO6/MmfKZ+5kK4tKOOIVEAQhvihTyOKsFVJVS1ZuX0EyvdwUlDWFc8ox89weB5oiTQrRJ7DYZSldBrPrQoaF3vkDUnRBteoqSMLsQJfrsJYlEQJSSACEr9HSAi5ZDSrWboxwakkezBjas7YeXOTq80OReU4HY4wamUvqcqaeV3jxzWtVJJ44SpBSVWYzYC43YFwyuTOkMB5RL5HqQy20uDcKmjEEwjjKOZzrNYEfkIjb1GNIPYFdQza8xlNKpbLKbJXU1fFChtVOpzVJGkT5Ue8+uLzJM09xrPvEcglxcLn9GTGzqUGV7YHNGVIYyulqrMVp9pCWecIJRB4JM5HCp8tk9LQEUHo8yg7ZOgsc0/isAw6PfqyRV8nVE0P1fJwVc7peIo2NbLbpnJzct+w/3iPyVSR5SVeVNFZr5lNIRYtktBjsQRP+7xx7RV+/qe/Tj0yFKcLDj95wDvf/i53H37C2nZ/NSbzaprdlDQOqSvwCks1rtFOII2hFQUo61P7Pg/ORswWM75y4wZxnPDf3r9DNp8SKouNDC+8fI1uGPDB+/dw0ufKyxeILifkjSVFUNGzfUZnOdKPqTuStY1twqhF0naIvCSJQwjWGJ+dIj0PPE1pS4paYyKFMKsIY4ND6yXK2wYOP+u1+Vz/Cgmh8YOYdqeN0zVR6FNUY4xxGOtotltMZzOUVCilCAJJkS+p64IkTmh32+gspy5KXBxhggDViOHiJuXeOdlkQtpscvn2FcanB3QjiLd3wQtoNNvYpcZreshKUhc5jX6bvfkUB1zMEoZPjhFbbUTUgDJH1BLhSRphi9wtEVoQKkctS97Kj/naznWObjqYa8qZ4s7TR0znkDVy1lvXeMFs0XERidUUHc0Du4dPjpfL1fQFh5GCKpAsywJ9dsZTXbPZaGGXD1ivu+wmHS5HPV5+ZYfjPGfsDOPccrTMCUeCLdlCN6oVP7rTJAx8FhqWJyPKsqLpBAezIY3nLiP8GG0ClGphhaUdJ0zLOcuGRx15JJXDPTlHzkrqIKS91kCODP1kh5ev7ZB4NdZVYGq0FjS0pNGMqbBY6fHdjz/mzv4+zpNILLpe0mi2OZ+MWO/3mI2GqE5Ay1NktWFbNZkdn+ABztTUvQzbFNQDiRFznB7+JZ/Yv/r68Yd3eO3lFwk9j8ODPZwxlEWJtQKpFFJKhIOz83NqsZoQCFbMZackzjq00YwnMxpJxKATM8vmoDyWZc3Tw2NkFBKlEcVc46xEhQptDflkgScdnpfiBwFFWWGtwPd9rKu48fwtRvsHRElIP02Yz2ak7S5prfn00wd8fP8BX/7az/LCS89z7/Fj7u7tc+vmdaxzHB0d4Op1EJJLt2/wznd+wOmHd7i0vs7P/W/+12xvrvEvvvVt/pvf+xf019YYbA+YVxPSVkg1WSUAOuvQVY3yJGvrA44OT1iUBbpeWT6rusLZ1QeAEjBfLLl0cZfJ+TkCqHT1rHNvQXjgBFKsFhJb7QTfRmTLBb7nIaVkZ3ODR/fv88Hb72CyBePJlOl8zhde+wJ57RguS/ZORzw4POVnv/qLNFo+h3sHWG2Rns9gbZ3jg30WswVf+eKbuOWMxWiInpe8ePkV6sAjCZvMypK0G+JYWVWSZsKVjR5vvHKbxekRSbtN0upw/8ETFIqHD/c5Opvw4cePKCvNhcu7vPGVL/Ho6RO2Ll1CS0HtIPQaJGlKVVXoqiYJfNZ6HQaNhHfe/T6j8xMajYhX33idP/vW90iDNp7ymOdLkkBy/do1XF7hedBupLSjJv/Vf/xfs5a2+el/+D/i/OgQY2qSzQ0udtscHh7S3NyASnP04BHT8Zj9vX367Q79dpvg0iUWixnH5ye8++1vs377Gr74yadcn7mQjpIGjTjBVz6NOKJGM5lOV4uGKkCuLPur+Ewl8aSPMBZrHVJ6IDyEUPiBR+ApnK6wxhCisCEUiU/RC1iEFhMrZKJQgUUJixSrhDrnLFGQkKZNytyQjSaERiIKg308xT9VKGK4mOL3+syXgqODMafnI4g1OzubNJKU+XRKaaHUOYOWR7PVpCpXS3tVUBNcj2kyoFyOsEKvfntmVQB7vsDToHLD5CyjQYrzw1VwzHRB2JIkgU8hV/6nu598zK3tm3hCUFVLfC9CCY8gDhDCcGljwFbv51mWHQ5P3iNfhLQTxdXdF7h59XXymeSb7/0+ve0WfhlwNp2wFBlZpBFxQjvtoaKIm+MET8QsheajkwOOvRwtJNJXdIOYNdtE+I4HasbZfIhZjmmt9whaHUo0U3NEo5vQUwHzao6oV7ge6QSCiDRJuXErwT0+5kK6xq/81C+QjzU//OZ3+OQ7PyA/PKaXNrjU7zOaLzChIZ/lnNeOcLuBKTWmqChCR0GI8iUXtzaYnxdk4znFsuSpzuDRx/ytV77EWT7lz+9PCDoeL//UC1gjeevbd5hlGtGzdDYWRGurbY0w7GCrhOhig0a3g+k0EGmD5eEpsVU4JbAOBBaTSKbVglE1pfRrTGARCpqhoqFCalFDFHH9pS/xJ99867Nem8/1r5DnOaR0WCOpKoWSikacUGuNxSGEWk25nMBaSJOYwPOZL0YUVYmMfda3B+TzBUVWUBUVGEltHOr6DrYcoKQDsaA6mzF9uo90Pu2LHv3OGkaXuCpnkueonsVzBdPlEKnhyjDictXj/nlBbS0ag4dBm4pQeSAc1tWoyEdYyaP5mF+ZDpAPKsbejGQQ465EFOdLhPbZUNdpnknGkyG+UOwPKkaRQY0tSnvEQYwn5SpZzYFyECBYjGs+nBwRBCEnfs70RY+gbUhnOQMdc+ks4ZYXMA0SnrSWPDx5Qn/3IsfTcxajKfOyJIxCzLKmEaSEQlI0BGGzQznNCQuJ8hIyVxNIh/Ql56HBVZLmmWby6TnttI036NJaKloXN7jQ7xKLGoUB5WGqGmUkorK0qgqrKx7snfHu+w8RYUJRzCj0EqvAb0RQG2bDIV4sQWumB3uI2mcvM+i6xk8SjGcpqyXzZUkkwBMaLT5fNvyL1v7JkNNv/BmDXos3X/siF7c3eeedd6hyjadWfOXFYsFkNkepZ6WFEKuIcFao3JW/WmHqiv/5/+p/xqPDA/7Jb/0Gf/qt7/LTv/JV2u2IpJEyOT3BUwH/shxfTXjEKgmzrvE8j8U8Y22wRV0tOJnMSdIGZbag0+oSpSmLvET5PrM8ozA1ZV3xwisv8Xv/t/8H+7Mxt8enXN3dRdQlgysXufejHxMnCTs3rrN74xqT0Tnj0z3KesTNGzt88YUbvPfoEb//jT/m8qVLXNm9vsqy0BaHwLoV/k84SJKYvCjBW1mgPDysERRFSWlqiqXm0sYGCylBQKXr1a7VqgmLfPb7Uig6zZRf/cob/NPf+UOCOGUx84kDjxdu38Bpzdb6Bo20iVSS44ND7j14xHAyw+Iwpubk5IArV2/y5PETLl68yK2bN7nPfZazGYvpkldv3uD8wX0ub6/xlTd/hllRsD85ZVJowihGSZ8sy5ButVg5n8+YTSbQTFlLIkbHx9Sl5Qdvfcide09ZZCVOerR6Pb7ytZ9l89JFjpZzjqczwjii2+3hcFT5ihoSBQFpIOk1U77/3W/w/sfvIYWkkcR0ui38wEeqgDiJGc4XmEbCcDhjWuRcunEJV2isV/LTX/sigQ4osiWBhMnZCa7ImC8LojRmtHfI0eMnHD3ZozIGYeDa1V18IWglDc5Pjhm02izMgunRAXn9r7GQ9nyPWpdEkc9iNkE7izWrdrkUEqlWm7fWrszznuehPB8pVt1oa8AI8D25Sr9THlYJXCQo12LmHZ/ChxqD8CxOaZSwKKdRRhCnESqMsEYwO10SWAhKyeJ8xuhoRDhRJI0YseFobHbIqoDF4YzZcMnJ0SnhIEBGpzQ7LUbLJZUR1LlkZEqMXS0ABJHCOEEtLOm1dUYHOY5iFa3pr/zRxhkCJRHzivmoImi08NOceXNJmRgWFqCNcAHGSu49POTsixMuDrr4MkUqAVZgXEmU+KT0sc6xrG4QBRLlSeYj6Ca3SFyLVkcwnR6hxQKRBgQbCXlDkVUZeD6Z55DaUNSrbsEycpyZGSKEEAWBwvN90qcLRO4xyaYYnVFVmrJp8duC4fwp6+sxs6lhNpuydbHFwcEZvhcRhE1OTjSum9Ndr7mw4/Fz169z/Mkh/+n//T/n3e99l+3Y42dfeonQa1BYx2h4SqAFA5FS53Bwb5/ZfMzFKxcQjSZjXTKkJO+EzPOCNA65nexS1RVaaT46eMzXb95kVp7Ref0KJtN8+9s/Zq4rwkuKy693ae+siAa9sIvqDJhWiuBqCF6DKG3jZZrpkyVx6fCkZOZylq5mYgtOiymZKrG+QDuL8iHpShptn8n+iF67x9r658EP/zoUhAGddo/ptEDXiiTxaSUpWVWQ1ZrFIkOIZwEQQqJriyfV6mWqc5Z1hh4ZksAn7aaEhcCVq9ClSnkUgUCbgubGDpPxgrKq2PvoHnpe03rlNuutAcPREdKTRKFgZmeYOqPcW/DRh6f8wrWXeLI4ojRzjF9RscRzkjwbY63BhZbaCbST+IHh3ukZNyYX+NOTH/Fg+1PalwbUCSjbJAlCsnZGOqkZK8ed6T4Vggs3r3Jw7xAKH98LyesaXRnquiK0DmkbMC0IZYRUOU+DA8KX1un3u5yWI0YfHnE77HJp0OaGbnCrcwtXCO5VNQdhxSStCYSgYcqVdSQQpOttal2xPDihoQXO8/AqgQwc3a02NBXReYZ4UtAWTWocTWm4uLPJertLqBRlXayWxdQqGdUUC8JS022lDE+nfHjvMbqSNLyAze0b3H/6EBX6eCqg2+qQl1Osquh1+0ShR6JC8qpi0ViwCBydZIswajEb5/hRi+HDE9pJ8y/7yP6V12rhX3A2mfOH3/xTdtY3+Okvv8nZ2SlnJ+coKSmKjKqqCCOJEGoVGe4c4plfWADrgy4v3rrKb/2z3yJzoJ3gfDhnuchJkpTZdIFD4laQOKSUeEqtPnxZESbyvEAKx9HRkDQNuDc54vUXbrFYzvnTH36fgIjDk1M2N9Z4/affIIs83rl3l9bOFgtbkSvB08mQzLNct9u8MJuxcekCNi85H53T31inv7nO8dEeRwdPaDZbXLuyztd++Wf43T/5M06HY374o++wtXaBrc3d1U6UUOAkQgo67TZlWbHMV1NiaT2cc/hhSJkX2LIkryr66+scn55RaY1QEt9TWAfWWYQTKCk5Ojll7/CEXqvB6XhGp9WiLguUNWxc2CL0feLBgFLXPHz8lHc//JhOr0tc11TaMjw/o8gyppMp3W6Xixd3uXDhApPxiAWCPCt57eU32Gj3ePutt/j4wT1uvPkac1PS7jRXU2QjMLXl4OCQdGeDIqtIo5SDgyH7Dw74xp9+l+OzGbWVDLY3uXj9BnGjwdk84+mPP8BJn/6gu7L1KoXRGluvljWlMDhbMhtWREqunodVRRIlHD49XNmFlURID+UF5DU82jtmY6tPPsvwfUHu+TTabe689Qnvfv8d6rIgm87oNGKGwwnXr11lNp2wvr7Om6+9xnS+ZDQas725g64052dDnjx6wrVbl+m3OozLfGUd+wn12a0ddU0Q+Uyn59RVRSNt4wUhUimEVIT+KpDFWrsa/QhwtsJasNQIofCkjy8UCEcZK6o0ZN6DLILKt0gcHjWVqQCLchBGMWnQRDvBcl7haYgqiZwbpsMJ08mCEsGkIwjXLBtXU1Qjpqoso8WY2ekZ+/tPudC5ynixxA8C1votjs5GaC1ZVjXG5uRFRZKkeH7Isi6oo4Dm7oDx4QxnqtVFx6Fw+NZDLRx1AGKQYy4azpMZmdIUTuKKBUnaQ7kG59OC77/3Q7a+vkOoWtRGY+oaISqkBC9MicM1ospD0mSWn+AHLbKiQbfdpt3xWVtrst+wmJ0WVbvBvLJ4iw6eccwqTTsPaeerZcZM5SwCTZCGYCRlkbEYZ8TjmKJSiCojbUeYpo9sRFTVCVevdTk6mHD3TsWiKml2j2l0fdqtFGciQq+LlJoocGwk6/jjiP/D//Z/z4PHezhTM9GSyXLB7noXU9RcHKwxmp0RNRL6Wxf53tvvMx0u2OguadiQ0jOMiiWThuJjMyUsSnZpMVAJMSEz4ZiLin/rb/wqH03O+aMf/hCTSHZuNVl7MaS1rvDdBsuhpdO5ROl7qLqk0ezTCPqEMmJ09xP0SUatPIbFBCMdKoxo+w1IYWJnLExOFEq8yHD1uT7l2ZTCQlDM2Vn73CP9r0PO+hijMNrHWnBGIn2PRpJQzCYI6VDSQ8rVqNMaB9InihSudmRlQekspqowCNrNgKlZkNWGxEtphwGeCDCloPN6h/n4jPMHT7j73bdIo4jnvvw8ZTVne2eTTjPkyWQfVxTU4xlPlOHbyQHpjTXOGWNNifUUtXUESmFYpZIpEyJjDz+Oue9J3lxbo73W5ak4RNsZAU3CUDHNjwhixcCT6G7KIO1w8ugM3Q24OOiyODfUWuKEJfV98HykXH38lqqAUJM5QbU3IXUVrS+3OBJzzsZHjDcyZhdbZB88pjdUXE3WeDXe5gVPcELOfM1j2FhwPjklaUW4NGBydo5fG3ASLQy+FOSupndxE+sc6yaikaQkz1+CXkQvDmnHCQLNQmfkpSKfFxzdPySige80pSnJ1pp8cLzH4XSGC3xmiwXhLGF3bZfT+ZjFMAPf0ej38dZB9kKqpaFeLgmiiDhNEZVGTgqiVov2+mUarU28fJ1gPPvLPrJ/5eWHK3uGdVBqw5ODI05+5/d4/bWXuf38dfYf7VEWS6RaFdBKrd732qw60iviB5TZkq31HrP5hLv3H1AjQDt+9J13efHF5zg8OKHT6K263FI8K74kvhJ4no/1V9HgtbbsHxxz49Y1slrw8PCc67u7eHHCf/J//n/S663R2dmgCCSF7zjKJnz89CFvfuVL/O63/pzKWbSneHx+yjfe+j63Ll7mueu36K2vcXJ4zM7Ny/T7LQ4On3I6HnN8fsKV29f4+s+9QdRoYrRjeDzh6dMhdb0qeoVYWVaNtfT7XcRErrrQZU1RG7TRq6ma0QwnU65e2MGenmKcQ0i54sSv+trYZx8hp5Mpv/dn3+a1524zmi04G0/YGKzRbyWUVcVv/sZvg/R4vL/H2TxjuMhI0pRLV64ymc84PDzkkzsfs719heUyY5ll+GFAf30NawyVgLmu+N3/5h9x98EnXLxxg7mzGN9DhSFVpcmWOUncJgpikqTJWm+by5evcPfeY37nn/8Zs8WSoJnwy7/8S9RSMVqWLKqC6WRKkES0Ww3iKKKua7IsRziHM5Y0jKnmU771zT/k+u42mxs9bl+9zsf37nF+dMbJ8YiqrqDWBGGEk97qA0sJzk/HnJ+e8NJrz9GIU2I/5PGDx88+RKDZaNFuxjx88Ig8y7h86Qp7e3tkeYHRGmcF2XzJJ3ufEEchcZiwXOQcnB6xdWOXRrf/E9+Nz1xIW2tZLGcYXdJMm/jKI/ADLAILaK0JgtUymTEGTwqkrTFYBApfrSJF0RqTBmQNSd4NmcUGIQ2+NBhR40mNsgYnJK20RRqllLml1AZPCLxKU53OKY9rqqJEe5IykfgDQXcrIY4COt0ui+WSXC9YZCOm0yHt5RYmguFkyNbaBmksKWY5xkmq2lHpJcuiIPIjhPWoPU2jndLMO1Tjc4zWq8Je+dSzEj+TXLzawexWTFtzllVNVUmsllBprMsJ2jFWKN6782PefPl1bu5sYjR4noc2htxWHCwKfK8gDVPa8U2qXBPEgsvbO5yejfHsJl/6xV/gMDI8KjLOJxqRBxgAk+EpS9NZOhqk7zEipwwMVV2yzDWh1sSVpOfHtC9tkZ8UzGJF3jG0PcPlrQaunrGcKby4Ratr8Bx0e82VjQWfxDd0WhXW5FTTiN/8Z7/D2d5TcBojBZPacOfpAc2ohZI+7UaDOBKk6wm5XcUN21qQz0qagSYrJixOztlIWxw0u8zkhKOqZDSZ0qwErR5M1jZI6gl95/Hal1/jKDpk2TpAB5Z28yXC8gLxmse01tRVQTvuEtk1Gn6XcjLn8O4TYguFq/CUh7KOjtfCz3J85/CFIHE+oaeQUUG9nOP5ChUGVKFkOFl81ivzuX4ClTmMhku0BeEEulY4bRkMUuLAkTvLbFFRVyDFajFJ+SHO1gReg6KoMRiE9Clqh5vn9LoDfBacDc8R1tKOY6IoIWh4hFGX3fUuaxubTI8PIL/K5c1NqkaAVAXH+1Oy4ZztV3dRnmIRCzJvQRwEGBcQRDFVVeGeBY0o4YEKiUOPrAzI0pITPWLgbXJsC2TtYytBVSlyOyU+bNDLm7zvnTMtF5RDTZ1nXFjrMTML/MCntpZGFOIHPlXtCJWHNT6JiNDaIG1MPXR4tc/OxW2CFzVJoDg7GVLbglFQMfMsWzqjMRP0VMo1kVB32zxsenyohyzzguXJmE6lMGZVvARpwPbmBTavbaGEZLDVIdkS5ConDyzHe6d8ePcBSzeiXLNkytGUDVQnJCpCzo+PuHh15//N3n/9Wpql553gb631+e3N8Sa8zUhfmVWV5UkWSanUlNQylKBWj2n0DAa6GmAGGMyfoMu5nLkQoO4R1JK6JZFisYqsYpmsLJfeRoY7YY432+/Pf2utudgh3SoxCYkAUe9VBBAnIs7Z6937/d71PL+He6cH7IoYneVYqTBScXx8ypVzF5FmhilK8nnMcFrSbrVxkVRjTZAZMpkSnt+iOUkpjmaU82NEXeOu9YiWKkqr/7KP7F/52t7ewmhNlmYUWb7g8hYFb737HoOzDb78hZd5vLuLQZMXGmMMSi0cUVKKp/4dQVSrYYTla9/8GnfPjpmPYqSAs6Mzfnb8M+pR/ekiTixurqXEYCm1Js/zBQ4PnnKrodfp0261efToAbWmR73ms3njPK4fMhQ59998g8vXrnHvdJ+TyRl/7Ru/w3d/+lOiRoM4KWit9plXJaM44c7OA9r1Jr3lJebDMUubq8RVzjiJaTYiVtZWadsFYaNRq9GIPIbDCZMJSGsxdiHzqLTGYqmF4YLdbBcyVCUFjlJUroPOUk7HI5TnUVlLZRbmSyEUAgFPaSdVZVhZ20Aoh3q7w5OjM8J6nXYz4sn+Aa///JdcvHSJr371K7z54Sfsf/QpOs359M49Ll66SFWVvP/e25zfuojOc0Lfp9vrMZ1MGJ6ekRnLuzt3eOfhHSpZst2oYT0Xx5EI4VAWOXlecLh7wI1zV6lJw8n+gIbXxsxKhBFcvnqFWJdktiIvDaPJBL9ew/ddWp0WYRhSZBlZllOUJZtra4yHA17/8Q8Y7u9x5dwWs3nGu+/+kPPb63zpxZf55OEOgR8wmE3xPIeyrKjVW9x/+JDtrW0moxPOXVqn2ekS1Rv4uFy7eplJb8LdTz/F6JLNzUvsHxwzms7o93IC3+OtX73JxvY26xtbHJ2ecu/BfZ65eYO11VVKW3Ll6nWuv/o8d/b3PnNvfP5BusoAi3J8XMdHSYUVLkiJNBUagbYLuoKwBQ4ghYewJUoqpBC4DmSBYNQ0zEOwTokWZrHy1xVCaBwBgRcR1OoY6TBNS2yWUjc+Xi6Yj8bE6ZwqUBhHUilL2HGor/l4gSXyPKR0OBmPgZI4LyiB+XyO364xzSqCeMbKSp+qKIirahFJqgXVUyZk4LlIBEVV4YYhgW6SnY3RWFQiKO+PCbw2dstlEkzIS0mVh1SZxRQGV1tIM0K3xK355LnlJ3/xI678g0tEfgeDxRofBx/hWSrhcpJNEDrjysYtAptjjUfNX8L1GmxfvULxs58wnmZUpYvUJU5lKSjQSOraJSihcDQHnmWa5egqxcFFq4KNxMMtK+6LM6rtOkWVcm69y2oj4fJ2ndNhk5OjJzihy/pmg1YkmCQKaWv06xGeKpjqCfGw4ErmsX/3PrB4rQRgDRyPRtzZ3eXqxjlajZCVrRb9lVXeee9TXCPBgrYSZRXFNCE7G1FrB7SsQNQbZEVKZTXNoM5zX7zG8eEZnx7eZu3WVfbzEw7FDjXfZbnzAiK/QJJpYpNQCIuv6pBHFJXA5iVHH3xKfHKKVZIwipBmob2tyoqiSHEshMrH5jmRdqCsoULD2tVzNK5uEjZaPP5k+Hlb5jf1Gcr3XHwvwDGWsigxgJIOaVZSVgVGKQInQOc53U6LrFhgjXRZUItCjN8gLjN0ySJF1A8pjaTe72I8ydn+HrPJiFE8xvdDjOMS1huce/kWUVnQ9V2ajodaqnMye8DqUhMbhZSOj/RdTBVjxCKAInIj4kkMQuE7dRphizRJyfKSdFKSa6hmD+nPW1ztf4HTNCe2Y5TyqYxhpd7lcqePSDOqtotDAO6cylRoDa1GnTjNCIOIHJ8iz2jWalgJ4+kUZaEehCRlylykDE/2CLebdK71qPZK5g/OCFxLGcDEZNTaLYL1Ph8+OcQZDNiO22wbh41wheMkZ2ecYJfqLG2tsNTrIJoST4UkaYyTKM4mp2R6zkTM6T9znh99+j533r7D2rkOq0ubjE3K1IG11QZHnxzQ9iw2rXh0uEceeAhnIcXxrIuScDg6YfXaBvs7DxGZpN2oE84lbhrirLfwbAInc8JxQTnK4UzT6NcQRJRoUm8M3Qd/2Uf2r3w1miFKCMoipMoqsiwjS1Nm0xk7T/bJ85xbL9zk/qMDknmOKUqCYBHiUlQaISTWUVRYeutrNJfaPPv8TY5/+ibGSrAGYwy60k9DXyRSLj4jLAZjNWUl8D0PKSTaaA4PTnn0cJeXX3mek7Njdo8HPHNtm9//u3+NN997l52jI8J6jXE658r1qxTzFMcVXL1wnjsHhzz30ktASYnDJC9oNQWdpT5VnqOsYnhySrvdQQrB8889y8HRIdMyJ9MFWMNKp88LL9/gjdc/RBuFsJLKgEYirMHzXFqtJpPpDEeDNgptF0E22nEWfiOtsUo+hS/8RxTD0+8fgzaWj+7c41PAdRcP1D/99Zv87W++xlK3y+ryEi88d4ulXotWq0Fp7MITYjI++fQuGEuexLz5s5/y1de+ztnBAeevXeP0+JQ8r8hNSaPbIRUWLRSlkAjHQSmJoxxKW+AKlzRJ2OyssxoEnO+fY/JkwIfvvcczz9zA7TaJ+j0KKTnePcQJAlqdNkEtotlsMBmNSZMEoyuWlpZ4fP8+f/a9PyGfz6i5Hr9++x2uX77E5uom3/jyqzQaEZ988jHb6+s8e/4cm2trZEXJx/ce8ObhKTotee2rL7G61VsoGcqS/kqPqzcucff9T+h3O0gJQkme7B2R5RlguHLlMpdv3uDxw8fs7u7TbLW4fv0amxub3L13l4SCb/y33yFo19EHnx0q8PnNhkLiey5CSppRRF7aBchaykWUrTAIZaFUeFiUXJgNPBbp7qU05HWHeaiYBQIdOAglgQJrDdhFfKUXRERRg7IylNVCKN4s6nijHDctiNMMS4lSFTZQiFDg90Okr3A8jyCIGE9m5FmJ1SXzeY6UPkVSYaoK5Rhm8YQwcFha7RLv7iOtQgmPykgMirK02KqisuA4Ea1IokLDPJlSTTNqzQjdrThhSpqXSONDagkLi184tFSDmqqjY0kVOKRSc3iwwwcfvM6tZ7+G8HsYq9CipOXWUU6LSRqRmyMG8ZDl+jKe00H7dzidD6jVmqz2+tw+mCzebIRAI0A6eBW0c4WnJdq37MVnpF6OFRZsQaVzlssGM1fxfjFlXBRsbdZo+xndpRZn04qD4RxCwzgesCWXkHjUIx9jNN1eQFQTZJOcmmjy6EcPkMIQOIs3itwsuNrSFRwODzHZhIvnlvnib/8NHj0aMhmN6bYbTGZNdFkyjzN0ASa1CF+jT2f4gSRsKPoX+nzpuWfIREnpuASXtvh4fJ/H88fUV3y2tl7AJGvME0MhUzQVnvDwtYRpTH0WU54+wNy+QyvP0dKh0BnaaMIowroSx29SVWP8qKBeb2BjTY7m8vY1brz0RSaZ5OD+Pvfe2vm8LfOb+gzlCoWwFqzFcRbXedoKykrieg3SPEcIB1dq4vkcKw2V1kixkFc0guA/DdxKOgvDsJbM0wylPFY3thju7WHzOTbJMdJFC5eTYsRyO2K71aCpFWaicZKQeKhJckuiCjQpjjBUssLxAtI8QxoHSUTkLyFLF08oJskZvvKpigx0xVk8YLsObhaiwinFKEc+HnPzpWvYUcHMszibXWpzRWZzVDdkUhRsNVaI7zzCNw6OVUjhUZYlAkHg+wvakdRkJibs+mgRE88SGp0NzvIZblwiQ0nguogSZOBQBRJ/pYXJcga9DrsPd9k0DkumwbnoCt3uCnmjxmM9Y/fogCc7+8xtymSQYsaGL7xwDdMSuO0WV159iSQtqAeSut8Az8N1Ba4tqHcEK7LDex/cIzYZlQDHtTQ9n6Van/paB1Y8RNfHdQXlbIwKNFmeMTs7gQ0f31PglYye7OAVDu16BxW4NDp9MhSFrZgWv5Fc/ZeuIHBxlUJEAcKIxSCd1YiiiHkcM5zOuP/oEX/wt3+P7/6HvyCeJIskxKcmQwFoYzgZjtg/GXF37wndpS6+55LlepHqh0BrjZASKRZ+FPn0167j4DzV2BprEEKSpjkfvPcRL7xwk2vXrvKrt97k051d+v06XrNOU3eRUnE2m3BuY5vJ8ZAsz/nmV19j53/9Yz764DZf+tIXeeH5Z7n30Ufc3nnIxQsXWN5a58n9u0hdgTREQcjxySmlo8gwpE/RvZPpLioVVFWOJQC72J5bxFOikMAPA9qOYjqdUSaL0DqsRanFrNNfXuXeo8dIFrdvLPyHC2OmkThysdnO8pxSL27l7+0dEucltsxYX13i/v0HJJXl3Y/vkhclQbCI8XYM+MKjHdZ46fJFzi91uf/oAcurS7z8ykv82ff/nDQtWFrqsrqxwfHZMbt7+zzz7EsLFG/oIwUkkxmOkTx76SYrrRq3f/0WYbfJ8195ldJ3eXh6yt5gSKYNjufTarcJa4tkwMlovIjmrjTL/SU+/OB93vnVr3AFNLsdvvOtr3H7/feYTMYsba1hq4zRqOCj2w+4c3eXzZUeX37pedZW+pxb7rG9vMz+2ZiPP7pHYQuu9K4gHPCCgMl0zovPv0A7qpFlMXFSUGs2cXKPJKt4cnDAtWdvcuXZm7zzy7dIZhlJpvnej37EzZee4/d+75uoKCDJUsbj8Wfujc+fbIglchZ/TTKbkmmLGzXRlaVIYzylCISlNBrpOPhhgHqKyknRxFIziTRxANpTSGkwVYGnKpSEMivwg4BG2KYsLNpalBb4RqLThHk8QuQJsY5JK4NLg6oukLUaqVBQQTvy8byIs5NThHXI5xlpUuE4EToHKrBWo60hzmJ63SXW1lcYj+eUFdjcUJUV1lSLKye10Gb6qoZtWmYHY7LBhHZ3iTN3QJ4WhE6dlr9Ew4moaYciS6myika/w5mTUTqWSlWMplP+wx/9b3SiJVavvkhhJJ4wVAh8t04r7FO6Fa0gx61CQj8kkgmBV8MC59dX4b1PsdUiAakswXEkPa/Jpm7hCp9EaY7NFC0rMJaqymlKRdcEPGzAkczoNiMuXOwR1VKSKuV0NKRQBetXAnqpR7PdIJ8JKgOgyaoKj4B8rJBngsHtASFNtLP4WZqypDKGIqtY7gdokxI1PBxf8dPX3+D0eEK71+H85grj8QRhLbWgSZlUBB2XjuOgbUWv2+XWF2/gRYr9+3vspY8Z5jHz0QnbWw4Xn9skLRSDIsGKGKELghjs6ZST/TFnT4650lomH46puYrG2jqydLAFlLpAaEuES+JoRjIhW9L0LqwTH2ZEheDiletU2uPwdITbrPHsN17m5x9/+Hnb5jf1n6mqrJBlheN6VE91mVYLLAtKT+g7JElOo95COYbCFCgNVuc4ytJsR+BoJvMMRyk8f+HV8GSDvEzQ1rB9/Qajw0ccfHyHybxgs91ZyMiSjEfjISdnOdyb8/4nH7AbDyCKiDoNXF9SKQH9GrIfgtALE3EeUloHx3cI3EV4hNEJShlct43Tdnl4MiAKeng+DPfGXHP7tBKfZJRgleH40TEyFLgrAeZ8iPTrjHNQukm5PyckwOaSpMyoJATNOlSafJ7imhA9sczvzVm93CfsuyxfX+Vs5za+6DA3BZ1+G+0KBrMR66vrRPUGGMlIxxw4Q26nh4w/PuTqpM2V4026jRZSu3AUsB+kaN/ncXLEPE25dP0Kvh8QNGpcePUSZ08e40Y+dc+loSui4wHLns/Z4IjH6Ziq28C0JE7p06wv4WifsYxZu7hC4Qpmn+TsffQQs6TJjSFo+FhZ4DohSxsblELgli5FDdKaJqwpPLfG+eVnOA02gH/+l31s/0pXVA9pNhok84T5NKasSqQQBOHTZOOiYDieox/c4e/94Xf4/nd/wsHeCY6zQFT+R5pYZQR/9N3v01/u8PVvfwm50GbxlO2B0QuUnBM4CCFwXedpOEtJXuR4notUCl0ZrBHMZjE7O/e5euMKjuuzd3jGyXjIucsbjIoM13OxWjCcxlihsMrjpRe/wKe7pzw5HvCzN37Fo4eP+P3f+S1W+x0eHj7h0d5D1vpdfvXGr7lwbpNWp8UrVy/xwe3bDI+PqaRiMk15cn+Po51D6mGHZ597mVIsAmT+I9736dMBjqOeWiefsqMtVFpTVBVhFOC7DmVRAv9RJ80iStIamvUaFzfWuftwh1wbHMclrTQf3H3AjYubXLp2iVrU4t/+4KcMxjMCzydyfRwjCFHc3LrI3/ob32FpqcvbH7xPrxlxsLvD9Ze+wG//3rf55c9+znQy58a1Zzg8OWIWzxGAdBWNRoNhXpDnCe1WHUnFGz/+C77013+L/lqfx/tHvPn2e8zSglIIgjAiimrUG3UqbZjHyYLcIwSNZoN7D+7zs5+9jtUlnqOIPMlmp87Fb73GdD4nCgPu3r1Lf2mVzV6XJM15+blbtBs19p7scuXyJV57+SX+xX/4Mw4OB4ziGc++8iKtZpu0tPz5j39NP2xwfnOJCxcvYR2HwXhCrVZjMksYj0ZMxzNe+OIX8OoNfvAXb/Dsyy/w1//wb3PtmRtkecx8MuZ0ckacxp+5Nz73IC2EQCpJ4PtM4hnKcbAYXM8lCtqL5ENjQSye0kCgq5Jca2aBYNJUzEON8cCisbZCqYWTM/R8QqdOo15fQLsri/IVgZAUZyPy0ZTUxuQ2RmhDy+vhhG1s3yFtWAoHpHRwVECeVRSFRuKSzQuE8PB9B2VdyrTCjRy0tRQajk6H9BoNPHfhCK3VA7Iip9IVRVFSFAaDIXAiCGpEURPhzZmnBW7s06916botxgdzqnFK0OiiPMOkXjFZSZmFMampkFagBxlpavnev/r3/MH/qcbS1haeDdA6I84OqUV1Giqi7fexWmB0jGv6hKJGUcVc3FxHGYPEoTIGV4HvOpiJxp84FNbD6zeZ+BWOA/k0xzqKDR0grOS0aanLggtrS0yyCaLpkWYxuCWuo9D4OBp8qZANRZZottavMp2OePvTxzh5QP4wZY0luts9Dgb77BwcoWyJFVD3XK6tbrHaa3D15jV+8BdvMhgmdLsdHAekVERLfXzlUxiBIwVLKx2c8CIXLq2jfIc33n+TmSmZF3Pi6pBq5qPOFDdvXaVbX2N/AMrmFKagGI4Yvn9A+Sjh4spFrF9jX1Sc9CyFqggqiRxMCXODw4L+EhVT2r02QdTlweQxO/dvs7W8ydalbRJVkAwPyaocFKTZ6PO2zG/qM1QUSnKTUxYLRKEUkiAIiZMC5VSs9BrYyuL5EXEWL65SsSAcsnzxQea7NQLHLEyJxkPiUpqCetil0imj2Yxaf4sXfvsSp6enzMoM6UhOZhNmyZj5O4+pfZSw0myRF4s+DeYFoesydzRFQ+LhYowiryxKW7StSK2m5wX/ye0uyxKFi9NrkRQ5X7DneXKg8GYlrz5/k9sf3edq1eeAnHKU4/sBeUuSBxlB4JPVfETQI/FhdppjxUL/3dhaITrfJz87Ru6O0KdQxAX53HI2n9NsCpprPsehRzwuSUlJzSmtdkndd3h08gnNeQerPZb7fe5+soOt5zxqnDBsTknaFReLC3Aiedlf5RnR5ayh+ImTcLp3wJWvv0Bc5DRCj6IXYPwOwrF4ZzPqs5ymhrhVcrrk0mzcwGs3qfwScT6njDWjuWFjcwNTdyiNJstztFGkxxlxTSNWPTquSz4riOcF7Y01VFVhXRC1JqWC+d4ubqUpi99opP9Ll3BgNJ9QFhrjCNxaiC40wjU4voObKxxXMc8yfvXWW3z7977Kj3/4C3YfHS5Cy7BYsRjQtFloiT1Psrra4fHDY4RVKAzWVBirF/g3qagqjbUaKQzO07ASkP8J7+b6Lu+98zFf+caXeebWVT78+GOUD57n0ut2cTyP+3f2ufvJIybDMe+/dZv/8R//9/yjf/iH/OTXv2Zla5n93V2+98Pvs9Rt0YpCHCzVzZsE7TajOGX94nn2j064fv1ZLl66xXf/5M/50Z+8DkbiCEUVj4knU6Jmc/GzehrUJqXAUQarDJ1uB6HGJElGWRiQAlNVzOdzlno9Dg6OUEo+/f4W23slwBGa125d5gvXz/EnP/o5w3mGlD4f3HtIqx5yOjij01nFIGnWG2R5QeB4NFyf7f4q3bBGVSacHMfk+QQvFEgbcLj3mMs3nmf3yS4PPvmEeJ4gNNx45gZFUdBpdUmTlOlsSpbHrHTqvP7W67x4/SpePeCnP/8FB2cjpB/S8EKMkkS1Oko6ZFlBWVQovSCx1eohH378AT/68U8WkgthUMrh/MY6tcDDdxRWl2RZRlVUjAan/P2/9R2yvKQRhuiqwPb6IASR5+C5DlVRMT8t+fl33+DCpQ3iRPPmB59ijaUbuvzf/sn/gNaCtz++T6fR4NKFTS6d22Q+m/C97/45L375i/yj//G/4xu/803SNOFofw9d5pyeHSFrHrr8rxgR7kYBwnXQ1lALAvywhnA9rBAIYdBWUJUlnopwkCRJga5ycqWZhYqp52NcH1darC0WEgXjUOaa0rp0212ssWRFuuDGFprZZEo+mCCKikqFGDek7rqEYYRtSFTXw7gZSlgizyUMa5wMJhgrEdoicknkNbDOIi0pmWSE7QghFKUWGJ0zTwTNZp3jkxNQitJUSOUQ1DwqbcnzBKstTuCzfG6DwVGKOq1Y9lZZifqU84T54QmVqTgNY9hwmHcqyjAhnZekccqSqKFmAeSKSmj+6Hv/gudfeZGvXfstfLeGclLKKiHwlpjnBaUo8ESBctrM0owwlFw/f40vPvMsv/z4Y3SjQZFPcZSkLZuca29zdWWTj4ITqtBAXqGEIvLq9IcesQTZqPjtF58laNZ5dPyANI1xHctsnCNUDd/UWeot4zqaeQVFdsrdO/dp1CIa9WXmoxGeDFjZ6tIN6oT1kNNpwrTMUVbSCkLafsTm1jmsjPjw/V1Oz6bM53MadZd64BN5Ho5r8FttLjx3mYu3LhGnXYKa4vVf/ZpHZ/s4jZCJnaBTA0OLmrhsN29x5cLz+Dzm5sV1Prm3x52DGUIFxNmQR/s7tHpLOH4H149IqoK0LNEdzbhIEUVJGU+h0CyVkmoCp5mLnhVMju8xnyak4wwvisgihRQO6xtbn7dlflOfoZQv6DXqzGNNVVp8P0A5iqLUKCnALD5o53GChqe0egMGPC+gKCxRENIMLEhJmouFFt8LQCxoAEIZTkZn1Os1wv4SIYLZbEZpS2bplN7lDdwqxuwlvHTuJrkD4/mYLElASmyjTiIrlCeodIojJVifyrpkWYkvXQoZUlY5jArOHu1ypXeDdRuyXxq+8PwmD+e7JKrCtZZROkGTMU4ylNelsBanWqSeFkKQbfXQyxZXg5uVpFJgu5LQq7O9scp0b8qjN+9QEwpp4Ojdx5yvXVtoVHVF6AXESUHiJgRRDVmzDOQQlUpaWchsmFKrubT6HUqTsDMb8eVv/j1+/uevc296Rrfy2C5a/MO1V3iiMjgtyaI5tY5LIueseiXhWYpzWtJSHidOReqH1JZ73IhWMV5AYXOSbMp8NIOeRHYjjAtmVjGfznB9nxW/RbXqos7XkFUM6RxPBnhhQJKMEbjU6j1ECV0/5P7tj3n0YP8v+8j+la8kzxBSYqRYBOk4iyWaKSqMBqsVZbnYwual5s133uXr33yZn//0XR4/OgRAOAu5g7UG33dwXcHWVo/Z6JRuq0GVVpweT7BVhrURZoH7WJgVEbiei5IK81T2ZS1oXfHrNz/gmx/d5tbL15jMxniBy1Kvw9lgwus/epfbnzzBaokSGsoJr//yF/Q2l7l68yKFWxA2FY93dpgVCaejM1wJw+mYb732NWyVsnt8yM79Hb7kBPTby7S9Glsrazx6vI81FQjN8PCQbmuBhHTkQmesjX7K0l4M141m46kRscIWoCvLZDKh3e5wcHCEMQYrWGylxSIm3Xcczq2tcLz/mK88d4Pv/fJtprMZZZ7i1pqc7jzh9qOPcVyH5W6fk+MTXCvwpOL09Jjj8gn97Q6vfeUV3LPH1OsucZVycrhHvbPEjVvXmE8GJMmEbqfPjWs3ySuN7/l4roN0wAkUQdMl6AREyw0ePNrhcDgBx8MLAhzPwyCRUiGFosor8qwkdFz80OXf/tG/4/GTxxhrcR2XqqyoZEHouxwcn/DMtcukyZwim3Hx3AWOT07YffiYja0NKl1SlAspzSye8/Lzz3A0GPDWex/wla98hfs796iri3zv9R9QVAVIiRe1mSdzhoMpRVEwGA/pj2uIrVW2N1bobayyffM6zVaL6XTM8PSMeDwlT2Ie7Nxj89p5rP7sD+efe5BWOGAVVZnjCGgEPq12kzyNqSpDJSz5U61TWS1YHTg+ZViSBFA6CoVDWWUYkoWJQDt40qfR7IL2yaoEKyTKWoa7JxTzHGsFlfCBOkL5zAJLWTc4fobIq4Vw37MIY8jygnla4kuHQAoi3wMlSauKIi9Jjue0VwO8yKGsNFZnzPKKIPTptLscD4YU1qBsiSvA9z2UtORZijIQ9VqUq33k/jG9QuFkCwLEdr3DqDZhvJ4z6qZoXxFUIXlcgtY4RYFJJXYpYlIrGB4d8f7/910edD7gO7/9t7n+8iXKyGeQznGBMIgIZQvPBet66Cqn6zX5H77z12iHQ379yT3O8gq3ilgNPGR7SCUaFD2fKi6RRU694dAMHNoKeudqvHipTu7D8fQ+7eaQtaU+BwcCV6/Q7TRBp5RyzKPdKUUsaDQU169fIUtTprEhncDJZAqOxcsM9ajJUr/PMJtgSmhGdeq9Dq2NVQ6OxnSiZY5FzCiOmRUJm6s+WxtrXL55mc7GCqfxiN3hHsPpAQfDQ/ZnY7KwJJ+PUEVAnU0ayxFqaUZMSZHA8cM9Vs5bnr95nXqwwmh7zPH5XY4f7hCbCrkc4pYOHA8X8c/ZCB+DsRnaSXAaIXHDUmmN7wUkGdhKEx8mPHn0GNcVeM+0qa9EvPSVv/F5W+Y39Rnq8OyYjUDQbtTIUos2JVmWoqShWW8vNlGuu9DiG4sxwFOUptESz3VRGpZaPc6mI5Ra8GqlcnEcH11YgtDB8WAyGZIUmqjWpNVfxU9cjk5zRianc7OByTNGjFk+1yOODWfjMXGQ4dYcCuUijEK6BlPmyDxDC8gdaId19tMcLX3cvMSbp/RaLr7yubB0jjU/YX+yx9bqKurUofAURSQoWy6ldcgKRZqxCLASEsf3ETVB6QpKafALw/ThASI1jE8OkKnANw6GEt9VlLOS9N6EC5sb7AzuE5UBrhGkgym6G2Eij0k14PL2JgcPdyh0RpBKNrpddvdzatEyk0FMLXLZzUYciznvD59wMVrlUtRj5YNT7HGD/FwH0W0xqbkcO3Pq3YDheMzjyYz5GOLiPltbF1m78ixBFOL4hooZaRVTeQGiEpTHU5LRHHJNURX0ojWCxgoPP/4QOzO0VgOcpKBWSfyoRpkZktMRtVLS8xusXH2Rdz/4zTD9X7KMEDiuRBqLsAsUnpAS1/FwkWjXoVkLSPOS6WzGdDLhZ796m1dfe4kkSxgOJvhBgOe6ZEXG+sYSUmq2tuvcuPYq3ZqLoyU6d3m8O+Xe4wmlVVjL4kbbWqqqwnreQg7ylOiBVPhByHf/9AfceOEKRZmSFynNWo1P3r3Lpx/sYISPNRbXkeiq4ievv86Dx/f5xnd+h7P5iEIXbJ7fJJ7MUP0urpDotODPf/BD/t7f+Q5Pdh9RbzXxfQ9TaFb6S6wuLXHjxk0+fPcD5kdD5gdHzJp1Wks9ZBRQKkth7ILYBSAF2hqiWp2ymoEtwS7oVSCIopA8Lxebarv4fqVc8LTLouDS+XM0WhN+/eFtknJGWVb8+BfvMp3NSedztja36DRaDI8HGAvjeI7RGuUIlq5eoHvxPN3TfQLP44ff/ylBfx2/0WZpaZVzF7cpTcn2pYvkmaYWOtQbdYIwwPUkG5vLGAray332x1MePtqn3urgeC5SLkJVkqxkOp1Q5BprwGDZPz3jnXff4vBoDz9YyN2UFAjrY/KEh492qWZT0vmctZUVrly/zmg4pt1p8+DBA84GI3YPT3j46DFXL57ji6+8wPDkiG994Vlund/Er/mENkEmyUIKKCVWKEaTKX6jzfjREc/dus63v/oKa/0OjisprWHr6mWU53C6v8fg+Ix4OqPfbtHt9anKDCsljvvZx+PPPUhbLRFWIf0IS8UsTXBcRagcXAkVFmMrtDAEoYd2DYUxZG5F7jpUIkAawCyif43QKKlo1OsoT6GrEmkWV/CDw0OSSY61HjgBUjURToBRlsqrKF2LDBSOpyhMgckr6q5LGi9QPXjghg5+D0wiSQYV8TSlNIZ4qIlaCm0rhFig4+dpRj2sEYU+5XyGMQKtBUWxOOBRLUAJxWw+w1+qEZzr4j3RBHFBaTSlqJj1LbMlSWINqlDM5glFmrBUtFGJCz2FWfE4ncfEeYFfuOx/eMT/56P/Nxe+tsFXfvdbXD7/Ao5bR+rFdg0hFtfGJqAwMa1Gxne+eZXf+fomaewTlFtUhy5d7dEwNR7c32H7pM43r79KaymhUDnuyFJJySDdQ2Ql/SYoV5NmCfVokxWb0GpXpNmU4RQa7RZureLg8JgPPspZ3bhAb2mVMFrlE3uX09OcaJLhTHPKbEavVsP32nTbHTIkZycTDh8fEErFWm+JxDTYvLDCa6+9SL0WcvvBDm9++hfQslR1QSymzOczqpkkO00ggaCoURrN0B3RWBIMpgmHgwmNdpuTsydY36PW7DONPWoX1lhZaZLnKYU1jPZPEWLCak1AqjAaxqUmqDXoba4wiKd0+m2qvMCcztFaUKv1cEqJyFPy4wn/zd//DhfOP/N5W+Y39RnKIIjTlHie0muvEkoXWVT4YR0hLGVeghCURUUFSGfBrWchUSTwa3hCY60l8APaYZ00rxZMaiORygMqup01HOkxnExIshwrJYHfZHlpm9HZPoN4QudWg4SK+zymbBTIVR+VlGTTMW6wRhA0SMgoyxI9m+G0JGmRE7mdRdCJkIiag+93WZYR4+GE1bUehSx5+cItZu8cU1YWLneo6grdDMitpEzBDwK0K3CR1HAJlEuJYVokhKmldmopD+b0rKJKK3yvRurk5CYhUjWyvZSNF7YZLDWYHk1ohzVkaan5DonOmc3mmA2XYzuh1W8gpWJre4vx6ZxINnnw8A71jS71bIoZz5g1Pd62x9ypz3nm0lUak5KVdzOeCVqM+gF+1OREzjkLKiqhOTu9S6Ppczi8Tf7YZWV1GyUMTplQEzmkE5JRwel7jwn1guowNwWYkstOh17RwyiXapRztH9E6IVcfeH8AvsXeYSVZaXW4tN37/5lH9m/8qVcB8dzEMYilcJxHHzlISqDqjReM0RXhuF4ivQkfhgyn8W89+FHfPlrX+D1H/0CgQPC0F9ucfnmOSpbIqUkDAOkEPz8p7/i/NY2r776KmHjiHc+3APhPN3QguO6SLUgeTy9g0IbS6vV4O6nO9z++A7NRp08y9GV5qXnnueNX3xEJRZGZG2hNBphNHtPnvD44Q7NtT7tqIWnHDZX1th79ITx6ZAHt+8yH05YXeryla9/kb0n+4xnU374xl9gKkU6H2B1xt/6g7/GR6+/STWaE2QFF1d6iHrA/mC4SHNEUtlF8qHBxTWWIAyoygpHmwVbu8hZXV1lf38PKyVWGxb5M4slZJ4llD4oNL/7lVf493/xC8oK0IKmCOi3I2ZnYx6nBQhIipwkTZGOw2pviaWLF/E6bda3tpiNh4znU955+yOWl9dpNRqUZcHzzz3H4919jg5P0bpCW0uj3aB8VLDUazIdnIL0ubOzT1Rv4Ud1fN/DdT2kcqiFijwrcB2fh48e8qs3f8FgPMZiCTyXRi3Ccz2KIkdZiBp11vodjC6ZzWccHx6CtWxtbpDlGdsXz/PW2++j/Iit8+dYWVviwYMHLPW6dDpbLC11GE8nhL6HzlP+xje+wr/63g+ZZTk136XmeTx+9JhzG8tsrvQWGSZKsH3+InE8x84F+zuPeO/Nt+m1O6w+/zzDk1POTk4JRQsZ/VccpFVNIZVHWVUEQR0rYJZUqPri6aPIUrRdIFuUY/HqEZnJSVVBFliQFcLyFIXn4ziSMAqIQo+qKnGkg6fh8OCA6XBMoCKEUlglCZwSx7cYT6PqYH2NlhZHKXS5wO0ETo3ZuMCUFUZowraDjizKwLjKFyZA4zAbZixvN0GBFR7GKvJKQ5awtrxEkSfEuqCqDMYsnMPWWVzh+GHIPJngnw+ZTieUhwWzeMZ0A4r1iMSZQ+6Rz0vSUUJLhbTTEGSAWvVJGgXFxFCUhoYJcbMAS8bjs/tMf3GC+5M/Yev8DW6eu8b2xjm6YY1OzSMTJZPkhGl2hJEerbDBWqNF3bYwLclkNkS4hq9e2eCm/C0O4w85ne1yZ/+QLLfUmz0QFVL4NBsrFKVPmmYYjnCDKfGsJFR1GMP+zhl7+0PSMsFtDBjEU168JWlGy2xeOceAI4okIR9PmSVz0iQl9Lo4nk/YiLhz+w5nR2dYI7l59TzPvXgLr+7z6MFdfv3xJ5zOpzSutLE1l6PZGJ1UOHMXMZZ44xqysihRIKyhTA2F9ZgPFSejgqLymI7maPuIXt9hayWkERlOBnMGoxhdwNJKiBv7+EdzLD4ijPD663Q2VyilZjD/CJ1XrLR6mEmKqSrEXJPPc2oBrCyv8K3X/iYnI/V5W+Y39RnKaMPJ6QiBQ5pAt91gZbWDVA6j0ZxaECCkT1okgEA8fcCs7MKMU1WWxJbUHRddWUQFTT+gqCqU8rEmQDogsCy3PIyGpMyYxzGlH9L06lzavszR0UNGdkimDA0VUBSabFxh3wlQ0sH/UpMqlPhuQKAUSlfYsoJORGEtdS+gKDNmKqdRuGyKDg+GB+SdQz5xPuF6eokNaoS1iK1zS8zVKbt6Eeji+hIhLIErCHwPqSTTvCBPS5xKo48TlqsaOggxriUPC0SpKacFQjoYFG7lc3Z4zOXrF3l7+C7zfMqNKxcJuzUmswPmw4yhKdDLIXXHgVoNs9JCrvXIZ4qT+Ij1pRukrS6jOCMwEi9zGQ9THtcTWle7JKnDk70ZnUcDLukOG40ue806d8R9ylVBGcyxNsANIEvGyKpgNjikXvPoyg7J6RhxmhLhQl1RthosP3+FJM5wc4nud6mtdGjWLtEKu3S6bXAEkXAZHhzy4c4d/PO1v+wj+1e+1vp9NBqDxXVd0iRlPp8hKoMnoNXtURYlTuogjUF6Lk7gU2DYOzrk5Vdf4t23PiCqefze3/g6Z+MTVtaWiZot1rdX2Oi1+dkPPuBHP/oYrdrcuPkC9x6cEWflIilTOouEZK1xPI8sqxYkEK1xPAfP9/nX//Lf8X/9v/8THj58xJ1P77GyusLly+f49Kn0x2KQAiQCX7ioTPD4/UecDU6ZTSdYozGVxhQltlz4mO7f3+G3f/e3UK7HYDTm4PAAYeC3fuuLxOOY93/6E9xS8vLzz3L4ZJdyOOLCxjWk0ZzOYqZpTi4EpZAYqcDzoLbAAqYqIU0ztK7odLs82dulLBbEMiUEjlrMGlG9QavbJqrX6feWaLbarG1f5t/+s/+FF649gxKSX9z7hElV8u1/8Hf4+a9+yUfvfUCz5jGMp+w+esT2So9mr09eFMySlDLL+d/+zb/hH/1Dj3azzaSC3f198qyk2apTqwecDU4IAo8gDMnCGo8f79HsdAmjOo7ns7a5hTGG09NT4umc0WBAURb87PUfkxQZiIW/BcRiOJeL9EZRWa5d2OYf/v63SOYzHj3codNq8uTxYzzlUG81eLJ/RL23zN17OzjK8MrzN6kFHlKwMHRajRKW0HVJ85LN5S5/93e/Sa1e55NP7/Hg49ucHJ6Arvj03gOanSa3nr/Fk8ePidOUfn8JVVm+/uXXkECVF0hga3ODuVOSi/+K0g7RBle7kHuo/8iRxjDOLbWaR+5YZlmF6/gIFJUVlJFLKgzGB0cnCOOjHA/XCfF9Sb0WYSoN0pBlCePDAybDKQIXIRSeI7HKUDAntxblu0hXLaI4rSHPMqQRhH6Ir0LGRYHreDTqLo60rDSbVI5gtD+hqlIgIh5OKbM2TrNOZTTGVJTaIESJIwVb6+vc3X+MsRrxNDnHVoZcG5SV6ABGjZL6tZC0mJD7hvmGw1gU2ESh45J8VuLgEcUR5STB3aqRuQKlXILAIZ5qXOmBFni2QSJiVCNkeBzz65//BX/20Xs0ggaXl9b52q3nePHKRZAjfA9CtQG6IK80UsyZjM4g9jEOxMUuiT5llOyTOz6r3WtUtiCUio7nMSrgbJYxS89QaESSUTzJ2X0wxu/6TJXL0TylsJBXFTrPOBtM2H/ksXy1zblOD9MrOX08wylLNIparU1U69BotpCU5MmcGzeucOHaZawreP/ebR4/3KWc53iepH+txbRbcjY+pT33qcd16rQwwpL4KZnKkMIjdSH1CoZNGNcltQRs7jKbWN5599d018/Y3LxIr9vnyvY617aWmUwT9s7GjCvF4PQRaSjpXVjhla9/jZOzU956800CWeelGy/T8SIGt4/xKolXVVRCkJmMr/7O19lcPk+Wf3ZI+2/q//9ylYsXBuhKU5qS4/EQ6WnWeh06NYeq0jiOxBECITyMMRhZIVxJbgw2K2hF/sKQVHlkuUPNcfAcd2FyqkVMZzG+4xEqRb/Z5GRiQPlYm+NI6LTa1Gu3OGrvcvhoB89ZpkbGVAzJaxXOQOOdCGphjRUZ0IygtiS5PZjwqLQIV1Ovt0jSgiqquDjQxMs1ghXN++mPeLwyRU7brIiQg7bmjJRngzW+4EWMqowzV3PmVeSOIdVz8nJxK2ashUFM+CChHvUYRnNMqVldWsLzPHYelJSVyzxLqWyOPqwouwFrl9Y52zshbyuKqGCuwVlf5cH0lNhJ2Lr1DFXkMHFzVl68QfWLQ7QVDIqYGzducTCc0K1HlFlFOTggyqGsuxx7GlX3uB9qPhoesDV0ufS4xhWvz17jFg9szFm9iaw87HjEZHCCbPmYeodyIhi8f4yT+4jQ4mw38S5vYmsBeXzG2he2sOt9tC9RSJbCLs2gRpqm7L3/MePBMd56Hcezf9lH9q98ffPVL1LYiruPdni4t0uWZYuwFLnY9B4Pz5jPY1w3ACWRnkJpj8BVFFWFEyja/Rpf/uqr5DpBei4aRRA0ePj4hGdvXOMLX3mVBzvfI8kgTVM21rrce3iAkIqyKpAsdNmO6+D6HoXJ0GVFEEVoT/HqCzeYj04ps4x2u00URfzu73yNOw/+Oa7j8Oyt69z94ENcaTi/usHpo0Peev99glqIUAJrF2QNJRZcayEsfhAwmcaMp3POra7RWWqx3KnTakuefe4m125s8fjN+8yeHBM5Hp9+8CkqCNk7O+FkPCZqNYm63QWEQywkKcZ1CKMAJFS2wuAiFDTqNSaT6UJXbQ0WRVVVDM7OWGnXGJ6NuX3/AV967RuoDL54/jIvnLvCncN9ZmXO4XzK2++9x9L6Gtz+FO26zIqC13/2C9LZnAf37vLyc89zfDQAa8niOa9/78/4+3/vDxmNRnhSoV1NWAuRyqHZbhBEPrPxkMPTEcINWN3YpixLfD8gzXKajSZlUXF2NkRKwfsfvI/GoNxFFLi1BukqLKCrCulIAs9hvdchdAROLeLWzZskScKdTz7l7t27XL56lYPDY24/eEKlNVcubvPw4UP6nRZRGOK7CsdRBJ7H8vISDx49YX9vlzt3H2Cs4AuvvMTG1jle/+VbHJ+d4gbPUW+0eOfdDyiLgs3tbVyhWOn2FtkgecHB/h5O4LB56RyBUzCffXawwOcepCfVkHpQR5UejhMiHQf5NNewKgy1WgPH9UnTAolC64XGTysPXRboSmOkQesS31H4YQNRegsxvo4ZHB8SD1J84S+2NF4IrqSyOXExRbkhkReR6wJpDY4S+K7AdVxqbo0yK5Fisb2qeQ41keALl26vS7KUcfrgkLCyREOF9yjFvxWQey5WSqoyR1uYpznNZpPVpTXi+RwhwXUdiiKlpKIsE4yRVI6L7RYEly2y9EjckqIocbQizTMwFRt6BfdYMO8k1JYVWlp0VpIXJUr5hKaG1RUAXqLIClCNJuEAtA4Zjy3vne3z6e19/i9/5/d56eYa7VCRpg5BtMLJ2QECSdBZZV6cMj/bYaYy7h09oNVwEb5inJ5QURG7irIssUIiCpfA7XN4mDH8cIB4NCXXhqgbcPnaZU7eeQcVlVRljqiX1PsO5XTAhz99g5d/+7dZ3Vjm9O4h86TCDxYb83Zd8spLV7lwZZvO3/6b3L33hB++/gs+vHcPk2sCV+I3HeS2z2FtSj7UeNMa1dAhyTTKz6h7Id1aQC1qYozDbjmhbEoGbsosT4krS5Fl1BtdChNweLpLELXJbItG7lJNj6m34MrFZfzz24zW17i/c0QuJR/efYfJcMi1i+t0/WcZn57x/Z/9OTatECrEVeD4ErnS4eqzL/Mn/+J/5uPh/c/bMr+pz1BlleJLBy+QVNriuA7zdMLu0Zx+p89Kp0ulLWnAInrXSvLKYtXivUcpSVWVyNDDDwJMtZBrKeVSlAsjjFIu2iisUQRek3ZDMU4TXC8g8MDxA8azmE5rBXUp5GzvkG2vxuZSj9CvYz88oSWWcXVEqjMGxZj93SMGJwlBax3TqRNENbxgSi9osTkTjPSAj/QOBw3Q3iZULsE45/55j7frGZ0yZdVrs+yFXFF1bmrJwXTAfQ17GIRTsI5P/umEYl4SbV1AnZUM5hl5miIsNBtNTk6P0ZjFokBX5GcDVrY3iMuUYHOFiVMgfRc7z5iZGBvWSF2HVJa0XM1kMqHpQT4ynHlDrl/2cBsRTuDRqkXk+ZA6gnmekyYFod9mVlMc+SWDXs6TowP6jwqu7l/i95vPM6jFPK6GDDJNjEvr/ArOSohf1HBcSEVB/+ol9MUeVd2j0Bndcx1qnRaVUWjjUHM07eaE0fA2Io+IJ0Osgqjmk47Tv+wj+1e+7ty/z9rGGreu3+Tq5avcvXeXk7Mz5vEcnVdoo3HqNcpyQfWwRiyGKWsQjuJsfMqrX3mO/lqLx4d7rGxtU2mNEQ6jScHRScLXf+u3EKpJVRg6nR5XLrk8eHiINhbEwrDHUzOetRblOOiqol3z+NarX2Eej/jX/+zf8A/+D/+YWZ6wu7eHFYr11Rbnz22xvb7OcOcu33jlZS6tbfPmR7fxPQ+lFvplY+2C/2MtAk1vuc/6xjqzOCHLS5Is5uvffI3Q1XiuwJJx5ZlNzi0v8/73PiAZlzw8PuSnP3qDuMqJmjWk1az2O/SiOoPpjNyKRRCZWOjKg8BHVxVxMufGtSvcv3OXLM1JswzKinmccTqJ2dkf8Kff/wEvf/HLzGY5LUK2z1/gJx+9z+t3P+FJMqVyHd56611WN9cJwwipFFUp+fX7H/Hmex/SbjTY3T9jHmdEuHzr8nP8t7/3HeZxwdlsQrcWMs4F7XYLx/PoLvWp1bf5+Y9/jLWK5ZUVDOCFARcuXOaTjz5m//Ee8WRK0w+IkxnHxwekRY42FqEk4ulG2vL0dTOGVqPGF569AWZhHjdlRate4ytf+TI/fv0NPr1zh6+99iVcz+X4bIDrSC5dusTZyTFvvvk2zz9/i9WVJcpS0+73aQ3GNOo1srKk1e3SbNVZWulx5dIW4/mMB48fcufePTr9Pl/+xtfZv3cfmRW0o4jKQL3RJIxqVGimszk0XTzP+8y98bkH6Wk2p+9m+NKBKsV3fXRVIJ+Gr1S5pdloIIG81FhfkBIj3QpV5CAlrmfxlaJWa+KFjUWDSDg93GdyNiCUdTzfwwhDnCdILTCiZBZPWVnqLNytlkUEpyMoihhtKmouxHmO69Zx3YjQk7jk+KklxHJtfRNxPac7hl7uMhtljIYF42WPTGQIKlwn4vDwlEc7e0gliOdTqqoAYdBW0+52kE5Od6mHowJMXlJfqZPMp2w7LnlWEGgXwTYnD/aoPsrxHJ/6xYiqmyNLl2xmKRNB0wlwZgZlfVypIJWkE5iaYhEPqipaXsSy2+L3vvJ1vvDMC0hlMCQEnqAoNfWwQd2JOJ3NSZSD6bQ52n+CdFd4b3+X9lINx2kgmNIIJYkoUG7I1qXX+MkPz5hNcpZu+njLCYPBjKoG7XaDTi0kc+b49QYTMSZwPLa8Pg/e3uej8E22v/QFOheaTERI5CwwdqvbW7Re2aasLfHDdz7mgyd3OKjF1J/bwKlAFxlOHaqGRCYWOcqohhaVKRK9YHp7MqdI5vR6DfxOjaDps+5beoWmXTpgBZVRhG6TpfVLnI7uMR0/QdV8iqSLLD1ODmP03l0iZVhrtPniy9u4wmfn4SEPDobMdk4ZJLt8evcTKqNZWl7B9+rYtCLPUraXL/JH/9Mf82f//n/llb/12udtmd/UZ6gkT7DJwrlelBrHdfBcSxmGjJ48ZjYZs7m+TbsVEqcls3jBVQ7DGlVVLfSF1mKMQYrFo72QkiwrFqZER2GNpqwsnnLxBDgyx38qC8vQ7OzuI61cXEkql6WLV0kf7+MJh2iSMcpz3vj4fWRtm2rd51gO0fkJWzpi1a/zSFcIVxH6AXaYsNxa4c2jezwJR4iVVaRoEFVQlx52OaLRsajcsFPOuFuN8VNLs5KsBxEvez2+UNQ4URNOzAizMsNGlrk7xasFBPkioKUWhtTCkNFoQBEvNobWaEaDKavXLlK/uEbaCDmLSyqvjlIlIT4A4+NT2IgQMgc1QDYb1GcB4/GIH73xE2bGkBUxQb3BxlIP4QTMC4vjuTjKoRYETCfH5JRE62vsTcbslgeszsdspW2ekU0cGfFQxSROmwNVEfsBbPUo6wlc7FOEDp6Acj7FBHXiKsNW4Lt14mTE2InBmzJ4sE9ASNhsMz4dYt3fSK7+S9dwFpPvHRCcDel3Ozx3/SZKuTx4uMPdhw+YTmcLyoYDrhJEUYTn+uTzhGQ0wpeK5X6Hg8M9lOcT1hrkeU5Qq9Fbcfj1r2/zu9/8FlevXuXRzj5eEKLNZEG5EApYaLMRi1421qIrjTWaeq3BRx/ucDYYUlUFP/rej/ndP/g2xXLB6ekZzz9zDUxJ3bH8we/+FrPjAW/8/OeczGI8F7SpMDwdpK3A8SRbG+tcvHiOi9euIB0XYQW6NEwmY0TDRSqX8Wi4MPfFitXLW0yOZ8gHinYz4ttffI2bz1wlLxIUgiBq8nDvhPc+2nmK5NQYKykcF9/3yYqS2WzGuc0tdp88QQFlUVLkFT/41QdoXfLiCy/RWNtibzwjDuGdu5/ws4/eYvQ0fAq1kK/M4jnNVouyKhd/R6kxpabKJ5zsHlOzLn/41d/jr7/8JXZ27vHTT97h4qsvIA3UQxffk3iewhhNmiSMxmMc10UpxWg0ot1pE9YjPNdlGM+5sNbj3NoSv/jFLyiSlEJXIBVKCDzXXbwfa7NIr7SCbj2g4btYa3CUQ2EMo9GIRqPJM888yx//yZ9w7fpVfucbX2YWp9y794Ddx0+4eOkC8Tzl4aN9ci1o1QOc6QxrNM1Wg9/57W/gBwFJmhP6Hi8+/wz3HjwgLyvcEL7wtW/y/e//kJ2PPuRLL96i7nv0l1dYWlUErSaHZ0Ne/8HP2bi5ztpzFz5zb3zuQbo0kCQZNbdGw4PQM6S6JM9zHD9ACY8yy3BdReUJYpGQEqNNTuguUouELRHCQTou1oKLYHR6xvxoQMOJcN2QzJTM84Qi1WTp4uv751cJ6jW0EoReiKMMpclZQEIWhrw0MwSeInRdtM4ZxlPq2iUvT5kZTdIomVczpn6AUYbEQFyWFLkmUAHD45wqdZlPsqeIvhr1Wp8kiSnKir2zmLAuGJ9MCGsevu+RLdVInYzlVkR7o8V6e5Xz/TWy05i/+Gevc/zwCa2tNnFQkQ8rHFGig4RaqPGVgsxBNTyc5YXus+m4NFZaPHd1m1ee/QZrvSt4qkZlDWk+xSpJZRMKk9PwWgzGQ8ZVSuUGVKEkP7XUgi4nZ7tMJzG+tWyvbUIyoVdvUKqc2fhdvvHKRXbnPsczSXChS302wUpQwYgb1/sE9U2kUEx1hjQFFxvnCYJT5rIAJ8ONYqbdAfuzKYEM+PT+E757/62FVtp4izjSsMBoQ82t4cmAeqsGgcOSV6faLJE5tIMW6SymKg3SOowGZyQUHDkVyrXk2ZSsHHHNvUjbOBSFwySNQXr4MiA+foISGfXVGwjTxXoKWznEec7H94544/6b9Gp1Ll+5wl//zreo4pwHn+ywstFkmsccDUZMk5jtcyukI8l8OOb2m5+QTTN2P/pNsuF/jUrSnMIaPNfFWoE2hrzUzJICKTzifMzJLGNzeZnVbhfPdRnMc8oqw1YO4OK4avGQLRWu61CVFUYLXN9BVxZdGkqt8TwfpRTtZg1kSZoZCnJKFIHjEngBg9kEbTKWN9Z4uL/HmXPIvJtRhJJAz+lrl4aRNKMWW6bJiSrBFVhKGk6Am/oIX/BYniG6TaLaKq51WcliUk9y6hakgxlTISnQRFZSVIaBlAzSGXt1w2rT4bK3zCXd5+hWl+N0xsxV6MOcWuYgC0s8n5NlGa16A8eTVFXBZDLGZBWz0tDY3OAsT6lQCzZ3zSWZZbhC0m3XGVISOhVFI8HtediRpCkj4jjBrdUxSYIuC6IoZDqvMKaGdQVGFgSexBcOVJayUGy0z3M0fchQZswYckemrFc+52yNjbczLuw3yTbbtFav83BtxiwEx4E0nZDkc2q5j2M8hAungz2qcs7xpKCGpHwSk+4NUM02aRETrPp/2Uf2r3xV2lBqg80LDo9POB0M6DZbXD53kcvnL/N4f4+7Ow9IsnQRpFSWpLMpoTRcv36Zx/fusdLtMk1n9Da2mCYpfhDh+nUUDnfu7pDnlq2tyzzcOcT3Q9K8wiKfBpssdLauVLiOgxSC6ukwfXJ6RpEkGAEoh/39fU4O9vHDgCJJubCxxaNHO8TzmIePD3jt1df45MEjgnbAMxtXmcxnJGlKWeSs9Lss9Tp0Wi3OTgdMRiPu3H3AufUtlpfW+eN//b8QBQrXV8xnc2QlaPtNvvjcK1x77iq39++xstzjxtVzBBKU66GLEp0m9N2Adm4h9MiKBEewIJ5Ih8pxSeIZKgjptjsMTgcEgYvRmvkspd5qc/7qLc6mKUWSM8sst48PGeiSSkmMAIXBaMt4PKHf7ZGnGVYbHCQWg2/g8toF/vff+gM2Oj3efO/XjLMJu4ePeLHzZTJXUUmH+fCMbqfF+OSI3d1dlIB2o0GeZTjKAQvv/urX2Kxga7nDSzcv0wolzW+8yju3b/PBwyfkVQnGIKxBwkJ+Zw2R53F5c4Ph2Qkry8vEaYJUAj/wGQzOSEvD1WvXGE0nBDWf9bUVDvb2OT4+YX1zk0xbZmnJn//wJ7xw6xrf/MZXaTRb+J6DtIKiqBb/dp5x7sJ5zl26yDDLmcwz/t0ff5+33vgFz9+4yMrGBg6G7soqD3YPOBtNGcznnM5TglnMqvrsD+efe5D2bYDSPpXVRM2Amh9QZoZplpGkCWHDw1EW6Su8fh0BpMWQojAIaxc4PFEhfR+hLYFj8fKEs/0TVkREGDY4SmZM8xTH88HRGKei3enSW1tGug4oia4yrCmxUoNggZSxkko7WCPwHQddLYJQpmQoazFtnySSJGuKcGWdeJwylwnClpTZQitlKwdpJcu9VWxVMJkk+HKJsLlBmhSkYo7jFFgbY5ICbRzKucUP62SZZpqN6NWX6Pf69LeucnX1Of74X/1LpuGQ5zbW6b3cQgcDhBrTdtusNjYh9thef4XZPKfeaNAJe9T9ECkytPGp8NFSARmVmS70QtKhynM0ipmeczw7wy9qBA60NjuM9+Z0PZe4njONC05mMzqhj0ud2TRnudFikhxizJx+6FCUHkZOcHwXVEV/ySGJE4QIWF1ZQ1clE2FovbRBmKeMZgdIOaPX6lDmmnSeo3AxSjCv5qgiRFqPsqzITU5hxcIkMC6o1SQTNcJoS+jXyEJNq7NKL+ziuRGrQuIHDo/v3+Zw9wGzYoR1PURUIzGCpDDIeEqnFSDnbajmyOOYTkcjQsuQhI3NJZ69/AKzPc1/OPpTBvmMfO+Y/oVNnn3+EtaXPFe/xXQ+45e/eIt7Dx/h+hUjM+alF17h1pWb/Mt/8z9z9OmTz9syv6nPUJ7rEoYhQghALjBXGKwVWA2mtCQ243R4giVlY20VJwgYDnIyC9IJKYzGqQShF5DnCzOvRAISrEVKQ+ArfM9HUBJECiNbuL6lMgVl1Xj6NZr1pYizwRGELq3rF7k/OyNTgkhEaEdykuZIFdJcC5mbgIlXUeQZOkrohW2aTcFwNibYXKHT30CFTUye0p4bJk3YyyaMVU4oFwmMk0AStR2WQpfje3fpbq1x0hDEekYzLukVIc94XQLhM4mmnFQH+J6PdSWdVo+8quPUHfIy4/jwCK8qyCrDaDKnkJJKV3iuYprHSAx1N0RqjVsKrFOyUs+Z1GNEFOHqgM2NDuO4IKt5BL0Grgko4xgfl9jmpGWB47ngBMyE5qRImO5PEUQEnQghKuxZwqDrMAtjzisX98E+jZ0xLzVDlvstPlWWcZhymk6JZcWS76KM5WxwCjJDuJYiC/FNhyydsb3eoyokBycJQb/+l3xi/+qXRVBpi0VjpKK0FaejEUVW4nkBF85d4PKFSxyeHHH709uM0zn90ON8t0fb9Zk6iuV2B6cecjSNUdJDKh+sA9ZhOkv4xS/e5Hd++9ssryxjEJyejdB2gbG1LD7btXRQwkFYcByHUiiSrAAWv8+LlKgeUZUFnucR+iG7jw/pNpc4PNxn8/xldk8GDOOYyxfO015r8sLyNZTUi6HPSk4Pzhidjjg+OOWrX/82rhvSrTe58/7HjI6GVPWQcTrHSkEjCNlabVPr1vG6Pt/6G99gfHrCJB5TlCFFXtJudSiSnMO7T+gbFyrJTz74hKHQdNdWqNXrCM/HmoqsLOgt9xkOhkhj8R0PJ/R5/sVXGAzGKOWSl5bKFhSuS+W6T1nVGvP0dSqrxYZdCKDUCKkIHY+vnb/JP/7236QYTfnB6z/gBx//Cr8RcPPFq1Q2wRUBOs9pN9tEypJMxzhW04gCcq3p95aYJylaa7Qu+flPf8L47ITveg7PPnOVXrdHVVQstXtoAabST//sU600CldYttaWGI9HTEZjzl04h+u5tDpdOp0uw/GUjz+5y+1P73PpyiWK0tLt9djbP+RkMGZn95CTkzOeu3md9Y1NzFOpzHwe0+v3CJpNxrsTmo0mWTIjjmOUELzxvR/iOj795Ra3XnqW5lKfPMsY5zmZEJwlKfMip7/e5avf/iL7k7PP3Bufe5AORR1TSjIFZ7OESguE8olqbfKqQGIIvBActbiecR2qXFHmAmkEQRDiCGhGLTwpaUiw6ZwVv85Se4nYaE6zBMfxkMYjcB38qEmjF6ECj9KWlKXBVgWSCkuJspZau441EsFCV60cyWh8xsngEV4zotVqktmYlBwpNEeHuwivxnQ+oyFLAi9ESbkIQ9AVUSNEKsk4GZPpOYFqYYyh3WqhiZlnU/zQIZ1XhL7L2tIalbBsbW/Q0JpqMiQzmu7SCv/Hf/LfMZ0NWG2vcBofUsgpTbr061fwVZtKC3zpQduC9BG2jhAhRuZAgqnG6GIMwiCMS+Q0SPOY5Xaf09mQRifkQn+N03szfKFww5CCnGe2rvGT/Z8TrTjUQ4+as8yjJw9x3YBpPMPYNn60SsuWLDdCAjllmqXkSYGgYKW/2BAcD+6jMQReg0BGKGPxVEXhWjwFm6srzGY5SZwhhSJONEVpMYWm1AKrBFYLfKdG0++w2unhKoEUPkVhWFteQ1qfVmMZYxSzeUyaGRrb11m5dIUHt9/i6GSHsN6jtB4ShyxPaCjN1voKt269SOQIwuUVdk6mDB6PKGop6/0GKmzw78qCLC4XoRWPJjTkKXfu3UVJwzM3rvP7v/9tvpUVDI8P2NlpsrRaZ7I/59Yzm4wHIx6Ois/bNr+p/0w5boHnuQtfhBNgtMJRCkcqjDZIuQgKEK5mkE6I92JWWn363Q5pAkmZg1QIJFJolCPBuKAXw7TjgCc0mc0wpUTJHBdB6IYYI6lLh0prpnmKqXKEzYj8iPF4hud5XLx8ncd3dnCsh7UKKV2UhXkEqRLklSE7mRG1V9hyazQjOIhSeq01cqs4Gx4TTnOiyiOu24XpyBisrdCuph6VtNoa37Vsb9dohB5zU5HYEXNR8NbZKcU44JxY56XWFs+dv4FKcvYOnjAeT2mvL7F/eszt8hQROXRrPUa1GlNRYZXEkYp4PqbIC1q+y1Krjh1kaKMplWDFCTgoCpajNZJxQupkyI0a6+fW8SpNdVAgC4XQFkcotBGEvkckfHJmZFXO7HiMEpbcbdO+sMY0LKm1HLY2lkmtwy/yXeprNdrHY9b2BN88rHHasPTDOg/DFJuU7KUH5LJC2Bm+EZyrP0N6b4hrPIKogQgljbSgES79ZR/Zv/IlrMToxahmDMjFChQtJUme8WBnB8/xWF5d5Xe/9W3mkwFeVVCMhiRnQ67dvM5oOiFREm0gimp4foTruAgh8d2Qg4MDbn/yERfOb3J6cMr+/tECIScF1i6SAqVSeI6PVBJtLMp1SfOCyPeYzsbkZc7dezuMRgP+/t//Byz11zk5niLxefe92/y6+AAQOK5i9Pan9NYaLK206PVatJoNPMfl8ZNTTvbGeE7I8tIKs+GUmnKIkPy1b36LK9ev8G+/9132jw64eukSN25cJer4/OCNH9DutHGAQHiMxmN8FbJ75yF1GTA+ndClRhaXRNZlfzTiLC/Jm02a3Q6+USAU4/GIc+e3OXqyR+B4dLpL1BttDIqFhUrhei5ZUVAZgxF2sSKQDkabBXVKLySzmYAVr8bf/fLv8NsvfZmHd+7wF+/8jNNiztQVlPmMv//Kcxwd7BPWGigVG+uf1gABAABJREFUYLIEqStCx8GxlnmasrS5xtaFy6RJThYn7D18yEsvvcDOzgOmkymHk5SZmXH91ou83Grj+T5CLDbRB/v7ZElMNp/z3DMXOX/lIp6yjE9PUb7HLE5578PbfPnLr1Lqkt/93W/y8e17/Oj1XyKEIk7m4AY0233G05hZmhBEPnfu3mHn3j0219fIqpRnn38GMxqgjSVNElylOD0+Ji8NtVrEN779LfbPXuTg4IA//enPyfKKvKxotvsIpegsLZFkA6Kmz+Tx8DP3xucepGsra6hSoBHEQuPKhMA6dFsujXad0FXkxmU6LTkZjhg6E0oyJBItHKT08VwX3w/xlaWYTZHTEl/VmcYFM1ugUSjHQxiFpwJEAEEkqaShMgVVlaO1RaEIhI9rwDMRFpfQb6Ach9hOGOkDzj+3SpZ7xHGBZ2sIE2GRCLV4k6g7Dmme0lIBVeaQxgbPazIcVwSRhxE+fs1HyRJRZeRUOJ6gVauzttnGaIcsH6F1wXJvnYZssNoTuEGJ0Blxtovn1FGuYpA8wBN1tlqvoayHNTVcp44jfSwTsmoIxiFwA4SQaJtS6QkP93f4xfd/zMcfPiDWCf+P/+f/mXorxPEbpGKGKEs6QY25XzCY7pKGMdqDUrlc7W5yrI84t3SZH/zbx/iVYcWdM3VOSX0Xv9Fk6+oNpFA0gpDAE+RVjjYppkywBlpuSGENaV6i1BxPVoSmolQuqu6RFAKNR1mAYz3yskTKBQYJ46ApCByJayzbq8v0lnpUuST0ukjr4HsCKRzKomQwOiHNMqJaA2tqVJFkdfslVi9cp1ZvMh1VpAZyLZjNBnQ2LnMUFzx7bpPReE4yy3Cyitkk58Gju9xYfZkwihgcDbCTjPcHb/PBD17n7PQYzxPMDmdcvPUMbuBwNDzjq7/1LWrKZx6N2Vh9lTz3+OU//eeft21+U/+ZCv2AqqooqoIij8G6uI5DPaqBsSRFiZUG6VqEA6A5PhvTb3a4tHWB6D9GhVsDpiDPNcqp4QqJEmBMCaJAVCl+TeIqga2gSlNs1SKzAuEoIj8gMwaBoNdbWYS3pAlhGHLpymUGB6dIFqlenuchDEihCCysN5dZakesjR1qjs+nDY/xfMTYghWSXixwMojJyUgwJuNkMsQGMf2ai1f6VKmHGXrM0ikmrBAmRecZR4MzMjqUzYzjeIcrWcQN22Kzt85ymnFyMqVufK6IDqLf4ElHcWZLtLFId+HWz7MYKSytXp12t0GWaGxeMJtDHNQoRclsWuF363jXO7jLTSo5h2xO2Gyy5C5zXFSktsJVEmEhCgPiXOIFDlNV4TQ8Whc72PMNGtdb1EKf0Tzj7bc+pL+5zmTZZbjhczwsWD1KWDoo+Jqq8aUg4qFUfFCbY+QQNxzhqT4uLvPJjCCH2cmM2GTUltqsLq/+ZR/Zv/plAb3AmZWmQgiohGTuZigpEVWFRrB7cECn0eLK+fPYbE5iFVHYYKsRcvdwn3le4AQRSi4oOr7n41YGpcGRDu+/+w6bqy3GowFJki4WWgIcz0dYS5alEMhFcAkLIkSVWCyWstQIu2BcT8YJ01nK9oWLXL0McZZirKAC8qqkKjKc0iE5tKQlxKkGc0o2LynjElMqLly4wGQ4RWkwScZSvcb68jLD0zOevfU8YdSg31/nyeEZhC7PvPI882RCEifc3dklnhTowsFmloPbj1kmon/5FsVkzvNXb8BRwP39J1TKwWt3GYym5FR4vkslMi5fucDjh09o93tU2iCUQ5wkNOoR6yvLxJMp6AqhBMpzn75MAt/1ubx9gabr8/idD/nf/bW/xzObl3j37Tf5o7d+wiejA87iKU4QUq/57J6Oef/juxR5xdrKKtev3UCUFUIqdFnRrNXI4oSH9+/j+RG7jx5xeHDIbDghKw3C85kXmulggOcFVIMxxycnjEYjyrIEa1ldXqJVr/Hg0RG6sly9ssW5cxfJ5wlv/PQtHu085PKVKxzsH7C2vsZKv8NvfeM19k4GHJ6OeHxwxCePDzk5PaXVrPPRnbtsLPe4cuUiSggCEeI6HspVGAOBH2Cl4OozN6lcl9VnrvPd7/+Qg8MzolpIVRn8oIbWObfv3SXPMl55+QVcH87OhlTlf0X8nd+MmJ8e4+gSayzWb1BrdFlp1/EdQ5pVxHFFkRqqIsP4JcIXWGNQjkIphVcPkUrgJAZ9lCBnGo3mVFWc2Yw4zxb/WRcqEeO5EhlYSiMXLEG5wGUp4WCLgrKEojQgNLWwotVJqPctpynsn8xxRYSjfEy1CG+wViCkQjnOQg5iLEL5OMJHlRrN4io0kjUCb4Msy/H8mE4/QgjvqVFAEMc5vluwttIm8BZbHmkscZwTCgfpaZSqyO2cwKmoeQ4+iiTdoxFtkWdzKj1hcWelCKkjywjl1RhXMR89eYvX3/0hdz/5lMkbj1Fjn5UrXWqhh/RDTpMR1hQst69SUFCaE6J6A6/hUPcEj+8fsNk5x+jwlKwoGR6P+Qevfp2vbF3hT3/4R7z50R329ZD5I1i9XGNpPcJ1LKEXUQ9X8FyP8WTONM6ZzBIcPafmw/JSj6TKEJMZjopIM8Ph8Rh3uUMjWOajwT5ZrkE4IA012SKQFsdN2N7qI0UNrxNBFVKkgLH4UcRsniHxadbbKMdjNJ7QaPUoSg2iznQeU7k57ZUOg4FHWYQY7XN2UPA//dmf0j3XRvW7VDbETguOD8ac3f4RooyJ+hGZtuydDinORlRljpcbfvinP+LnP3qb/uY6K9tL6Px9vvzqy/j1Ot58k6woP2/L/KY+Q+UJWE8iHA+UAbPQSKZ5jtXmaSS4pSoMtjQYW2FD2Ds7RlvN+dU1mrUeOtdUugRhqUyFMYoyS/B8aDZD2m6EF1iSpKIsBEoU1AKXXCuyssCWJZ4TUFU5vufT6bhU+ozUFmyurVAVBfuPT8AuTFDmKf/VRTF2wBMZXqwwmSYvc8IC4mRCrA3h2EeUEUVTYRs56BkySphlY06OG7SiKxzvz1gOe4SNgL2Te9S9gk7Y5PnNNSbHJY6KiHuCX46GHJc512ce51Wdi9sXKZOU09N94szjIKvwfAU2wZqc2XyAxBKGPo1WhLCC8cGURqdGmRTMHUEsBug85sqVc0RbHXIPxoeHSLci6SyIDMFcEj8NqMryhFqrybyaYrSmfnOJ889cxe3XKTyJFKCNxms3ufzlL+AGdWbOgiVqVwSHVyzD2HA0reiXkq7r8iVHc1ZvcJgmFNpnVJ6hGyk1G2GnIPOcZDJh3/sNlvK/dDnCYWN1nbIsSIuM6XxGZUrG0ynNRgNtKipj8FyfUTzl9s4D0umEmxcv4JiK3aMDZNigysZgQEpNns1phgHf+3ffpUpi6oGP73tUZbK4pakWQW3CERRliTUGR8mnki8DGKS0IASe40ClqcoSU2mi0GP/8ICLVy+jXMWdD+6ytLJMs9+m0W2zsrHKufNb9HptwsgnTeecHp/wxg9+wcODhygpOH/uAvfuPGSz1yeZzjDzOdH585wNh/zypz/n0s1n+OTuI1qdDo9+9hHzfI7wK7702vP0Lm5hB2Mit46eVcTTCWJmKXxDIksqR3Du4kVWt7e4++HHmFnMlc1t7jzaQduSuCiQQnDp2lV6qytoKxAsDNhBFNBut5BVSSAkVrmUpaYwJY5yFz+LwvCdL3+T+o2vQpLzwx98j//w0c95kkyY6ZLcWvIiQbqCf//9H4OxKKno9hW1ZgdHOCx1l0nnKXGVM01SqspycnzCeDzC8z1qzcZCu44ljCJmsyllZcjLAi+M6HkeQgiqsqLUltNZxtFwxgf3nmB/+HOaNYftjRUcIXGbbXB9hpMZ735wm//mD36PG6vLfPUP/5B/+k//X5zEO0xLw9LSCs1ayFKvRbMVIgOXrY1N4vkcv9YARzKfz8nTlEwbJvOEX771NhWCWZzR6fZYWl7l9u073L77EcZYhLVcuXQeneUMjg8pkxto/dk/6z/3ID17dJ+TJycQQyeq4a8qKEPAJ3RhPJ4ySTSejLBi4dqUUiKMRqqFaSB0XOqVJJwXyNQgtGBEykk+Y6I0LhJXSKwtEY6k1m6hHYvVC5as7/tI4ZKlOUVVEqiQ0hQIR9NYTvFrFXvHI1yvTlVGCKvRWpBnOZ7nI6WiqDQSiZHgBiEGgbUCN1wEL+SFZDpPsdbFakWz1aPZ6LP75AzXUSAbWHLaXUFYU7TrHq6ToGxMswaOUsySGUZmNEMfZZewSmKRKNtEVxZrNUka021vIp0+jpVolfPre7/kX//4j3lwfJfSTfCwCOWQzoZ89avfpFYPmAvJzskHrLcbhG6HvcMPMSIHYSmzhFqtTbNVp8wVrUaHg+SAzVs9fvnJGxSTGYWo40x94vuHfPjrIz6sK5Yv1jj3fIfmdp1Wv8uVzUvUQ0OjFtKuSXxvFWthlk6pMousKrAJq70GzdBnMs8xZchKb5ORnBInM1qdJg0PtjaXaLW7JEVBK1qi8/9j7z9/bU3T807s94Q3rbx2jifnqlOhq0NVd7NJdmKLoiiKkqihNQqwPJBhOPwfBvzJkGHAM8ZoPJ6hRqTEEZOaTXYOVdWVq06O++yz894rrzc+wR/WEf1RBRWaAmbq+nqAA2ys9bzree/7un5Xe5nRIAdvaLfmqIyh2awRxx6lE46Oe9TrdbSKCHQDoQRVGZCZIUngOH3pAtPJY7aObmIOPf3+kLGQJH6O0ThF+hE7233cyRi9P6EyhqqV4BsxE9ukKh1trfCjCdPplPH2Do8fb6HJ2XvwiG6nw5kzL3PrzuNPemQ+1cfQ8nKbzM0Ch9PcEZAQSIWSAhlJJJK8zCmNm6XJg5B6EpGbipPRCOFgcwFWFpcwVlLhGE5LqkoQRTMEXuCgzDwaQ1ZIdFUjCTRCVRihCAhR3oNQlFKjpGVapBSlp4ole4MeC6uLDCcZvYMRlTXoAAIpcGVFWXjyAfhcc7g/YmM+ZKHe4fGjHYaq5LRfJhAW25aItiXxgrjepOWWSWrr4GLCOEc1odQpcUvQTEIYl6h8HttqMpaeRHhk4NhnStQWDI4OePBgl0hp4mbC6Y3TfEUrblc9tt0+W/0DpHQ4PK1mglaS7HCK7CnOnD3F3ewRRVPgEoGvOR58cJPudJG5C5vUGguEiWOiAow3hKGiUY+pnEPHMVKELMSb6I2A2gsJMoxJS0NZVNjKI5VnaAp8FCBEQSxDpJw1jRJAPifI24IeAQKFM6DFErqpCe0cihz5okWeBNjHFbW8BqElCTv/mb+x/8vXB++8z9bDx7z6hS+wvrAKxtObjCjLiizLCELNJJ2ig4q8KugPhuA9e+MJxXRC6QRpnhPFMaYqURjqMuHHf/oX3H3nJs1mwpULZ3n04B5Pn6yztnEKHUBVgLN+9hKmNULImdVDeIyzYDxSCD7//DXElTPcvvsA3W4znIxQOHafbOPRPLj3gFanyflLF1g/u8HiygJxHOC9xdiSIAiYn18k0gmD/piv/PIv8dyLL9A7PGK4d8BikpBOJjx5tIXUIdcuXOX7P3qTqNUibrVRsabTanLl+jnqcwnDbMokquhnxwhnmb+yhDwuGQcFWd1x5aWXKJTi5ke36MzNMTnp02zUma832e8fU3jDYDgiN45z116g15+gPISBJo5jwihkvtUG55naWWtrqAKUUCwENZ6vL7KsQg5Hx/zwrZ/w+r0b7BVjVC3g5UuXuP/gMUEcU681yCb5zE8eJxz1xvR6A86cP0/lPMeHRxwNTkBrgiTCCUGzXsNLxdzcPM56iqJgOhmj5AxXWq8cVcdh7axddjQaYoqSojRMrMUFsy6AXmk5vrdFK4n44kvX2e2NeOnzr5GVPyYtDPW1JRqLyywtzrO0uszZs2e5dP48zlVoJcmzjMfDiv18l2makhyN2dvfZ2lpkYPjE/YODxmPR2xsrJDUGmzfe8JgMMGam7PGWQeRlFy9dI6Xr1/lxgfv8uLV84jCEsuPH2D+xBdpTgq6QZ1S5Shr6Q+G2DhmOnFEAaTDCYNhSTuxUJ+9uVhnUUoR6IAwimZvUCKg1oCsmLJ3cszWdMjEV4hAg5AYoQFJPWkRJjWmvkIIgxIenMFaN3sT9aAihYoq4oZj5+iAeNykLBoEuk6kJN5qjDFoFWKto7IFz/bDs4Sw9zhlEcLNplkSoiQiCDzTyRitBGWZcHiQYm2MQKNCi/WGSkDuS8bFBPyEcyuL1GRJPWrhoga90TGJWKJKLZmX5D6n28pAaJyY0m4tEKolcHX6xS5//u5f8Ht//qc87Y3QUcnyosKbgl46Ym5V8PlvXKBwltxWJI0pgexSVhleDvCypB7XGI7GFFlAZ3mduw/us9o+x5PJXV55+Rq//+HvcefGEZ1UkEhoxwmyUggTMb5neHdrh8VzMRc/Y+jt7nHm7Gka9QZJEhBqSa02jxx5rIVQJpRVTpAJWj5BasfEwMXzTYRsUqsFlGZMI/FkecBopICItkxoN08RiJS7+3e5dvkUR8cnnPR6tLodhqMxrXZMZTTD4QlBFJA+80g5mZDlYwoTUV+4QsOtcry3BeEUETTITZvpyQluOiLYOEMtaWGqByRpRd0VjIIKVWsgF7q4fMjYpPhQ4AKJqEKMM/z8/i1UHLN8eEI6mn7iI/Op/uNKszE6H7M6P8exDpiMHMZA0BDoJCQ0Aik1oVUEUTKrD8YTx7PAjpeep/1jDkYnrC+t0KrP4cqSqRcoNTvTpopwSpBNZ/5p5R2hquG8wJcVkU5QBJTWoqUj0JJOc4HRwFBlJ5gw4rDMWD+zRjEYIaaOJSNojkum0wlVUbHMMlHhEaZkklgejYdcbM2z0G1Su1sSRQ3ihmVB1RjKGCkDjG4R1Nq40ZRaEKMDmGRDhBZMrICyROQH2HiFzGtcZujELUY+5Z4bs0rF6cJyREE/jHmrgIUi4fn2Cs81LvKo0rzbe8RhkFF3gpprYO7vkVSSqNWi7jrY0DHfrdP6YgdZSXwsGTccQ1MyGY8praOqPMIrvJDgBNZUWG//6pkplSRQEdIphFNoHRAnNQwenCPUnsoXGOcpSwtCgpMIJLm3BEGIxVLYnCI12GIbKAlwtJot1JWAQNQIdUh/8mlu4RctISTD/oi//Pd/wamNTb7w2qsEwRFHoxPyvCBKIoSxVGWFsxbvZpuK/eMTqmI21NHaI4UnCmC+1WLn9jbbtx7wW3/z1+iPTiizlLW1VXonY86c8Xz2lSv8+Ce3QMgZd8J5rJjZOLQOUNJgqKisIc1zPveZ6/z67/59+sMx/4//+7/g8eNtrj73El5qvvaNbyBDyQe3PyCKQ6oyZ21jmWazgfSOcX9AMSnZe/yU3/nd32Hz7CY//fnPUU5S9Adc/eIXeHx4SJ4W7O8/YZxVuLxkUA0I6hEb5+aot0OyKkPakKPJiExU2NAh1OyZVF9RDG2OCQQH+R637jzg0e3HuGlFPQzIpxOWOh1yW/Jw7ylhEjMcjRBSUK8lSK8RRrCytMLjB1uc2jjN4sISj3efMk6naK25Mr/OP/3ab3J6eZU7P3+H24/v8MHuQw7LKaXwzLUatBtNFhcXyEuHCmKShsY7T+UsSbNBYQ1xnNA7PkELyfLyMv10SFam5NZgnAChcNbjjKOW1OjOzYEQTCazrBzMWN9ZlhOFAaPRhJr3dOY6M9ygs3gslanAWt68cY93P7rJmeV5Xrp2jVLHdDZOce/WfVpzC7z2K1/l6OiIjx4+Ym19jcd3H5LlFUor4qQ2+w6kT7HWsDOuMKak3x9ybnODOIx5/WdvMZpkTNIpUgoacULkPa995mU+++LzvP/OW7xw+SILa02kdYTir5EjbQtoteroxS6JVLg8o8yHTMmp4giXG4RWZNoihMDJmflc6ZBQaWphQhJEpPsnnAwH7E77DCZDrJAgJcoDYsaVDqPo2fRZoSTgHcYWOGcwFZS5x5mSZAGipsMrcFmLdBITqIiqMAShesaUDbHWIqQFWc0KYLwGC3PzCxwPjoEMKxRC1KkqQSgj6vUaZZkhlMdWGWE8Q8HouCBqntDuNom0RzOhGyVMj4+oLawxGAoCNO1gA+U0C0srFOUASYFjzNRMCGWbRJ0mtzlPRrf56e03uLO/RXu1xaSqqJDUIo08Mti64B/8s8+iOprSKQ4OHtBtrPLGz7ZZXK/4zOVVzNixPdxiffUy+k6ToTJYDWkZYQYdqs4Jv/w3X+Ff/jd/yZ4RPB8v8coXrvDw4RNuPNzhuFfgrGB6VLB3e8Dma2sktYon4TbW5JzfPIMaD9EypNMJmGSGjmogbUgomngfMZgO0fWcJBaUJiWrYubmlzk8VLQbdU4tbdBNlhCyTppXNOe7VKaiWa/PmJXjAUhLEAaEgaLVmGMwGZBnGbbMkd7gTIkgJs0EOlRsPj/H8e4UGzYp8oLe0THF8VNWW13c3DpyYRO5t0VdzjjUqjelmmq8hlImRI0YpxV5nmMrweraKmVV8eT4KdPB5JMemU/1MdR7dIMWFZ26pF1vM2rVOLSOyk2hX1FoS1YWGOsJTIAUAo0kDCO88wRhxDjvo7XkqD9gdXGNc5sXqOUlpatotLocn0wQSiN1SBQGSGtwogQpUKHGU2KtJ9CCOIAkCaiMZWNlnl4aMsmnGDtlkmacWl1k9KO3CfOCKtZsqibShCxmMJoMaMzFnHRLjtuSauzQR0/5UrhO0UrQkWfdx1glmQaWwAt0luFNQbPVwtshwhl0FKKEwjYCclOQOI+oAnKl8VLSbtUZDIbIVg1VGIJ0ig000wCmPmNnfBNx0uf5ZJG/uf4CZQi36iNkew4+18DrmEG3QY1zjG2PMs8YeYWVJYU1DAcpTkrCIERJgdYCZz14cN7jpQMH1lcIPIEOiMKEOKgjkVSVneVRhECpWSiqNBYvBB6P8xbpPXEUIISgqgryMqewJd6Dw+EdIBQHoyFYSSAioiAi/OQjoU/1H9HsU/JgPE/vPeat7/+Mr//mt3jh5Ws8fPqIdDydlYswe4nKqhztJMe9Y2pJTBhIiqJACEckPMVoysrCAv/H/9N/RaPe4jt/8T1+8OOfcvnSBQQnPNl6wpe/9DLHvSk3bj5GSo3A46ylMrNhXBiE4DxOSUSjzubzz/MXf/In/PyNnzFNS7a2t1k/c44XXvk8mxfOM+j3CNC897O3ufbCFVY6bQaDKXsPnrC//ZTtnUPWV9dodVrcuf+QzvwivrIzGpUQ/OSNn3N5/TQriyuUZY9mGGNtRhQ5woZHKMfC6jyP959SuBIUzEIZAU7DpLDIyqAiyajYQS9J4kP17HKnaTdqnD53hmC+RhlAbzBkcXnpGQZUUQ/rpMOcUIUcHhzNqsNbbeZbbW7dusHlxQ3+q7/1u2jjuPXuzzn19VfZjVO6bsjdB328kOweHjLKcqyBKIyoezVrdJSCz33mJeY7LRYXFxme9Njf3mb3YJ/Ny+cRpaCWJAQO0qzCe8l0nNGoN/jia19knE7Z29tjPE5ZXFxkb28fqRSra+tsP3lCu6Px3tNo1FFa4jwURcZ0OmE8GVOv1VHOcDyZ8Oc/eYNf+pVfYvjGWzx+ukdaObKyorCeSgY8OTyhubhCW0i8EDwjHrNei7FVgSlKeseH/M7v/DZv/uh17t95iDWeJJmVtjhniLTitetXkXnKk7t3ee7iBXb2nzC3WCMUEUqKj302PvHjJ6YkrBy1+qz5Kqtp/CTDDCZ4cgLdIKzX0EGAoZrZmoSZTTG8JdaKYJJztH/EQTrksJqirPirBiOLwyPQ2iOUZ2F5EV/TZNkIUzicm60PysJijKPTSZhfaJEWOfnUgpeEgUPrCu89zjuCMEQKjVIRZZURSYnUM2agNYZ02mN5scPx8RHGWSQBlXXkpiAMYqJEowKHxOEZ0m4FeHqc2rSsNiZY20LKZQRd5jsbCCvJsj6yZtBaULoBR5MeWsVokyA9SGFpdZZ4MBjwB2/9Wyb5EZOsJKtmXvK5uTZOaeKap3I5L7x0hpdfeZFIz6OkZ6Xd4v67h/zB7/17XvjVq1ze+DU8mv3RHmvNFX7033yP7eUxZ3/rCv2TMRvLVzg8vsXZ0yt8/Wuv8kc//DE7ekDLBLz82Ys8/9JV/uJHb/Ho8ISiDvX1eaKFDUY+oCIkKwrM1jbn1jbIBxPqzZDUjimloh4s4q0iCRIun71Amh3i7BQXJdBsILRmvmWQbVjupjQCw6OnT8iKgoXFBl4U1JsaGUMlwXlFURWEuoYOAzKX0lRNKmNm4TFdo7KOoqrIsyGmFnPlK1/meH/I4d4JZdqnnI4YHW2jOx3mNhcpJvuoylOXMdJXZNOKUhi0cdjQU2tHhFGN3EtMasjTFFPmBB//bH2qT6Azqy1c4Hg42OHkwQPyk5Bz85tcfP4UuzKlbx0yqDMxhjw3aO3wymOLEucgcAoVhVgPg6wg399jWhRszM2xvLyElhDiZr7CKp+9DEeS3OSEYUBpc4S0NJsNtBAYYwiUwhlDq1kjSFpE0zGlnZCnJ+ilgKufvY57tM17W3fQqsJXms1kla3dPTbmFhmIETq2HDvP6lDTGDmqBjycCzgIoJQxsXZgchLhSIVBFxBU4IzAo9BRTKkDpnUICoWeOqokpHKCug5ptxWTrMco8HQaTXTDo6QhbIaMyhzRrXGzEbAXz17sU9FgUo6xkaH0I4rBIUGoyO2YMk8JhKSWJMS1Oh0dI2VEmuYYa/DeI6UA7zGuwssZszsSEaHStBpdlAypKk9WGKRX4CXOGpIkeLYN9DP/u3dIBI04Jo5j0jzDeINlVtOMl7Nci1AEQUgQCLSMkH5mCxmn+X/ur+z/4iWEIJCgpafVanDwxPLf/ov/F1euXePX//6v023VGE2HKKVmmEmpwHuEcHiTocIY5w02L1nd3GR1YZlG1CDSAd//4Zv86z/6NlVpuHDZ0xuOuHt/nw9vP+I3f/s36C6+w09++D7eCYJAIgApFcZYtA5wOuTWBx8g0yNanZCvfPUV3nznIwblmLn5OQbDESoM2Ts4Jq41efUzG2gpePT2Az58932O9vZZWpzn/HNXOX35MncfP6b0gqUgYXtvG9NIaLZbfPblV7jxxnvs3N9hZX0dbQzPXV9n/YVNTrIei8ub9HonGFPhBeA8WinQEoQnNYYg0CgvKAKPjxWbr5ym1zhker8H1nB8vM+vfOvLnD++yPbuIWnu6I1GjAZjmlGLWMWMJ2OCKJydOetZjTu89vXf5rMvvMjJ9jbvvvc2j4+e8Pw/+3Wu116hVxxzUAy5v3dIUQJpTrvZIdABpqrQOuBLv/QlknrIaDTms+fPcrz9FKMcKtE83LpPZ2UJgyWKQ2r1BmdOnePx/S1qSYOyyBFAmmazNuhpDkJx6dIVlleW2ds74OLFK+zt7XH56hUePX7EeDLBeYkXms7cAkmoaSYhi50WidY0Ww0mWcri0jK90QRdlbS7HTyAgDiOicKI6XRKWRoQjnoj4tzZy/SO9ln43PM8vHWHj977gOvPPc9wNCatDN7ZWT4kCmjVQiIDZzaWsMZw+cI5uotz7I4OEfqv8SJ97ewmoXSEtToD6yGISaImEzWgzEpUI0YEIdPBGOfLGTIyqkAI4hBq3jLdOeB40OPIz/BLyoKRDoRHSIjjEKklUSuilJbJJCPPc8SzgCNeoIWk1YlptEN6vSE6qCOJcd6B1zg7Y9FaaxHM2I4Ih1IhpsqRGJQS6EDOHtyVoZ3UEDWFKSXKe7JqihcT2q0WjSRg5+iIRqei3alRC1rUhCCfCJrxEt1mQlWU6EBRVgVRonHacpiOEKYHQUmrtUTCJqPJlFBbDk8e8G/evMPt6RNClxIqxWAwxhQSZwLCuIa3klg7vvrrX2S5+wJFFWLdkMiGvPUX72HKitG0x6joYzSMsynh1NHbHfD29h3G5wXXr5+C0QRdJqTDEd/86hW2Dh7wcGefm+GIJ08/5NqlF7j4G6+xVFboVkCpczIs+/mUapwzHTmizQ5TZ2m05hhPC2Ss8cphpGM4GdPf7nHBGF578QqjwQFplpFbhSCm2YHunMKUYCtPe14xvzQPNgCjmUwnFDal3Wni/SxFe9A/pjAlXngqV+GtYL6zikoLjIFuPSKd9HGBY9qQnH5ujnR4QFd4VNTEjFLs4VM4s0Gy2UDtjUmsRkQRTC2Bkwgf0j8ZUuYWHytCIUgPh5RliY4EkQqA4pMem0/1H1HbaQ72hphjw8aWYOkk4PIpRasxpL0q6HUUoyrkWEaMrKHC4qzDeE9VlXgBQRQiZTSryUWyc3LMYDymn045s7LJyuIceWU5Gk3QgSRKakQ6Js/GBFGMcVDZCi8CJlNDYQR5kdNstFA+JpCW0hriWofeMGd5/SzNkeWl3DBNU7a2BohWxDioeJA/JW/HdFTEcDhkJVqgMRUMuoa9OhTa4SkQ1uLKDGtyDJbWOGJl29NcXmcSwFh6cl/RkSFYSd1IghKGcYgpK4K6xnZjUlGgo4D4VI1GWxLUBG21zmickqYZWVEhlCa3FcI5hFJUZYH3hsp4oiCk214iDmNCEeC8ZFBNyasKT4CU0SzgKWZBTyUV3juEsXTqzRnylJBJWoDUSB0hrSRQCq+e2egEGAfCewIdUY9rBEJizczGUxmPkJowENjK4BEEemYF1DLAls+sJd4jPi02/IXLOY9SkiRSfOWXvsxkOGQ4HPLwxh1+v3fEhStnufbSVVrL87OwmRTk0xQU5M7gq4JaHPP8tWssz80RSY1WEffvPeVf/n9+j9xYhPSsn1rj/JkN/tXv/SFeCBZXf86vfvXLxHHCD7/7c7yfNf7BLNzr7awqfJimDIsM7SVFMeKXvvEa87e2UaFiMk1ZanaeWQEivvKVX+HP/uhP+Is//QsEEAWa5158ie7aCu99dBMnNa3uPONphvWSra0dxqfP8PkXX2FJN3h08y7j3gnzizWufPYsE5nRkBHLS/PsHOyTBAHddpPjwQBjLXGSMCln1gvvwQiPqs2IZXk0ZuHlVVaWuxy9t0fim3hbYW1KrTHb6ua9Hs54lE1x2pPlBQsLC1SjAc0w4LmNs1zcPMOdGzd4urfFn7//Y85ePc3TvcfMLXY5f3adpbVV/t//5k8YZUPiICYKQnCzhubPfe7zCC3ZPThmfX0NGUWMi5S8TFlYW+LBwwdkaUpnYYHd/X3a7TZPHj1i/8k2y/NLTLUmiGusLS0xHmVMRmMkipPjPp3WHKGOGA6GBDpkaWGZk+MeWVYQRbMXotlI2aGCiE6ni82mnN5Y56h3jByOOe71iaMYofRsmu0ctThGS0UlFUiP0gH1ICTrjzjaekrnjObdn75FJDVFOmF1cYGHT3dmJTFSUOY5o+GAr7/6ebQQfPe736O90OF67UXGowm+Xf/YZ+OThw3zikSBUxZXAkWFbsS05ufJXEVsFNZYyjJlUkwoE4mIIQxiOkFCtnvM8eEhQ2GwAgIvcc8eikKAUpIgCFChpNatk1FSuArwOGH/Q7cCYSioNQOkVIRhnTSbtaGFKsEZhRcgg5BQS6zxGFOiFLMHvLQIUWENOCGx1iO9JwgiiqIkCGOk0jSbnm7bUg8LhDEESyFSw1p3iZpuM5mMKYMWKmhTi0pKBhxPtlBBHSlC9g6GpGXFfLeJ9g6qhKLKaNTaHN054Ht/+F3SM2eJVBOvoNOpMd9u0e9N8S6kzA1Z1ue5C/Ncv/4S+Hmyqo+OPVu3dth/dIQNoCBnMD1G+DrnNq4QZzW2i2MOwpTj1z9gaVHy6sXP00w0Rh2w0FT8l7/2df5v/+P/zLEKOG4KHuzcResa3eYc62EXFczCmYO9Ps2ww3L7KhDRn/YJmgHWzHGyL1lcEvR7jt2dY5LaPG/eeMholPGVV6+y1EkIdcR07GkkXaJYc2tvl9v3twiaNZa7y3RbC6RlwWA8olZrsriwSpUb+kcZnjGVKWm0G5isQmuJFyVKebQI6ba6dOKI1BboMKTMhpy7dpn0/mOEmR0+e3hCFmYsX1lC1Jrkj3Kcm6W/vXOEIqBb71B4w3gwfbaKFAghmI5L6o3kkx6ZT/Ux1LjvWPOrtKsaRIa92oQ38h3SIQS1kKjyBDS5kJxi6kJ2TUEqNE4blLQYYTBWIW1JKCKCQFM6MCge7e+TpikvXrgCXhD4imIy4aRy1GsRMSFRGFFOC8a5QakIh6TMLVImeCIiFVKP5KxdtDRUNuaJkrx45gJrleSd+zdoDjRiETqrCwzkAYVweJETzoX4A4eRkmHNIL2nayxpYBmVOQmSShqEsRzfOaE+iBGFoHuuzaINkbpJKUH6gHI6JZ7khDXNNJSYSNA+t0jNVky1oa9TmrFiVExQPsYrzUSDxBN6jxYBSkKJR4cJylkaSZ12fQFvFUVRYYLZ7k0GEiUdodRoFVBVJdbnKOWpbEmVZQhh6NRaBEHCeDrj8RfWo6QmUjNesPEWqQSBdHgrUFLSqDfBKUxhEUKiVEAYWJAe72fbSRVEBFIhpZ4NQpxEytlPmFYfH1X1qf7TVBUGpSTTfMLj27f45//ov0BFMX/8x9/mx9/7AZPtAza/8CqvvvJlHu3tMbe0yPf+9E+4fO0C33nzh6ycOYWpCkbDPtpbOvU6+3sn/D//6/+RSZmjQolA8e47N/j6r36F//3/4X/HzZv3eHzvCZ3mbf7u3/stkrjOX/759zDWo2Qws9W7WdgQqXly0Ofe7hM+94XnWdpcwviI6bRCyoQ4SgjDCGNKDvtDPvrgBll/jA40QbtJd3GZR9u7eBRRXKfbmaNeq1GMU2qNLjZzvPGzN2FS0gibBHHMhSttat2IelDHWMN0MgvVLS4tENZiyixjkmWIqkI7R6QUlbU4AVEcMRqPQDhIFPWVJrJ+QJWmPL5xH9WpIy3UazHHx1O8kSAyjHSoQHN64zzl1g5feO5FYud5/fvfY1xOKELPK59/BWJLGEhQksXVFdKnhygvWO3OsbS0zHGvhxSCWj3h6gvX+OjGLaSO+ewXXuPGR+9TTsc4V6GqjEa3Rb/XxyOpcst2fwdhHbv3HzGdP6KcTPjR628St9ucPneJbmue8XTK4PiIe2VBt91iMplgKstbb7yJ0ppQBcyA5BoVKAIlWFte5fyZU/z8B9/jsS1otVvoPGOl1aQSs6aQJAkQ3rO6uIgQgnE9Ym93jzgKyPsj/vBf/QHOVDxdus3awhJnNjZxziDDiPuPt1DCU9OaTqNGEgaMhwPmOl2+/MXXSE3B6uoqVeg4rj7+lusTX6Qf7Z+QBAKpJwgVo2RA6CwylCAdWZqh0Cy3GqzVO+zqCYVLaYZ1gtRTHU/JhCUNHdIIAguZcnjjZz3tOkAAQRwSN2PG3uKFRyqJAcqqQCnP6uoCRZ5hjSatSrSuI4VCSoNzBc46rFUEYUi7W8OMU9IsBdnCeoM3jihsggvwFrLCYvBEcUyelgjnaSSGubalEYJyknb9HL1+D1lUWHdAp11incM6T7+M2e8pyjyk22hgTMGoitDNLtvDAi0NwdGYi/Mhk5uPOf7uMebGBBp9kjMN0lLR7w/YXG7jmwGN+hw4jzWSb7xymUi3mIwtpSpxRvCD77zJeDTErisqKqJaAHlAU89T5Jon8phpx5G4gNd/dJtXz/8SnVrMuHSkuWJ5vcOv/cpX+cPvvsXEQCtRzHcbVFXGYGJYWm6ixoY4gwsbF1k99RIPdp8ynEyw5TFBvkAgrzEcHrG4uMRwsk8UN3j3/h3e/+h9xrnhG798jWJ4wPJch24jZjKCzeULDEaH7A/6mMIR6RBRD0iaI2p1RRwLqDxKeoJAkxDibUUgBfV6RKgttqxo1mpEocMIqCaOtqxTNSO2xkOu/+1vcuPffA+O+wS+pDw+YJIKassLDPdHOFtRzWhBSKloNVr0ByeERiC8Ag8qCDCVYzLIPumR+VQfQ/mJ46QcsJM+5mTSx5cFZSPEywXmMygGQ1rlkBXhOZssstCuY2oNopU2JszYTjN6WUmWGZQOaDYTlIAqtRQRpHbK4fApK3NrdBox44klLQxHWclCPSSSFbU4Is0c1nh0GFAUBcpBlVfUkwQVxXjhQTpiNWRSpuxrze7jRzy4/5i/u/hFnk6GzJ2ZJ909IJwo8npJGGrqE4kzjrTlKVxJGM8mJMI5gprET3OKvQlP7u1Tn58nietsD3bJ1kJMo8NcEVKfZrTadU61m+gVyW6Y0Rc5e3mPIktBempJhBQxga6TFZ68Mij/DO2JxgmJCOQsBNRqEusQ4RWTcQFeIUSEFx7vLIHSJJFGS42zgkhaPCVB5MiKKZkVtFo1uq0uk2lBFMazy4OcocsSNMYrEBohHbGSJEJQa8RkeUleVCgVgvAEBCglKMoU5wWBjEmCBC0FWVng5CzTIKTCGodwn5qkf9Ha391nvl6nIyVP7tzhYS2myA2xs/zKF1+jHUcs1lsIq3jl5S+we/8+nz1/BS9BOoexJYfHffYPd4mV5Lnz5/nZz95jZ/8QFcwmYt7B1tOnfO97P+Fr3/hVup1j/vLbP+CjD+4yP7fAt379V1lZ7fBv/+CPGQ0sgdYUtsQ4j60sc2GXBw92aNze5YWXXsbYWSGcQ1KV1cyipUNCFfJb3/oW92SH+bk5zrxwjd1siqsEUVxjfWODWjJj1kdScubiWfaebjMZjXF5hcVxkg0ZNnKuX7rA4ukFXOVwxpPE8axKPa/YmF/EK0FWVYzGI4oiJ80NMgjIixThDUrMmNiirlg4tczoXo/jnT26agMj7bML+gRJiNCSIND0dvdpOUeQVbjxmHdv3eS4mPDoZJ+90QmNmubVz73E4PiE7vomD+4/4efv3cRbx4VzF9jb3SHwM1vsZz/7JXq9AUoHrK+uMh6POOqdECqH9BUGT9yoM7e4SO9kTKvWRFgYjYacv3yZEMHB0T47u09xh/vce/CAeq3BxuYZTm9sko0tWmsCXyGwmGyMVQqBJ1T+2d8PNa0QJscWKZfOnqamBft720wnKUmzTSupEyYxnWYd6QxFPkIpxVy3QYt52p0ue9s7rC10aHa79AdD7jx8iHWeKEnYfrpN6Sxf+swLrHWaSG9pxDP29mgywns4PDxg6dQq+XSKiv4aK8IDHaACDWECQYTQAUZKjCuxpsBVU0QBhayITUS7GzEKChajmPqxo2cqplGGEg6BAimIrKUKHUrHhDJACtDNGCdBGYeiorAzlBU4LlzYwBuHReDtrI3QuQqlQEmB8QbvDFnpscaTlxOkBC0jqvI/pL0FuUmRQYhHUBpHYUq0TFDeY6zBiQIpNeOJRkjJuDzEuhIlCuZ1HWnqjFJJT6WYiScbNDAuYjQqWF5qUu8sc+feU0pvaScnLHUF41uK/p89YSmao531KO9a7MIlikAxrArcySFxqfEuIYkNq82KxdYCWelJ/Zi9/harapNbP32AYYKptWgmAVJHWBujooJeMOUknHmqAik5PDD8uz/+Kf/4d3+TyUHGo+2cV55v8oXnVjjpX+Z77+2QG0fpS9bW1ol9E6YTDh49pdwb8NoXzrC0usTR6CG3t1O2iwdcO7VAUQmKgWZuqcG5s5d4+uiYjcVLPDEH/OitHUwQc/W5JYqTksVuA6kKFmoRr76wzEG/xc7uIVl+Qr3ZRSmHFA7lZ2/VzVadsUsRMkcHnk5YI4wSysJAJEhij5Q5WnqiMEB7hRaOhbkVsqrPxuev8eDf/SWuKikdBNtjDuKS24/3WOsu0u02qfpjEifxZYXyEEcRcRIjtcZYw6hM8c590iPzqT6GvlPeptybQiFQnZjFlQbznSaHTlJ6SRA3qKoKZz36aELteIpugO9H1FY0i/MddmqOpzpjt5hQjnLaKkJLRSsOaTQaTLIh24cVgaqzsXyOaOIYTjIqYfFVgXMl3gZ4G+NdgHMlYaSQCipbILUGlxFKz/LqMmk2ZDIdMW3FrNcXWKt1+dOTW8wXCWmRI0wdR0BUKuKxQyvBtC1wCoz1mKpCSY93jshZAm2hljHJxzANefTebZKrbUZLY6Zn1jALnrgbMQgyJrakNBNk7EEJFjrLxFHIcDwhSx1TWRLrcDboQCO9JNQB1gdESjHfbNCII6zRZPnMamGtwTqH8pooiJHRbDMjhcIZgUBhbI5zOQEp9fYcncYCZTrLlQTK4X2FNRZFiJQa5T1eeAIp0Sjieh1j3SxArsxf/f+B0lgcTiq8yImSOgJFnqeoMKQWSUzlZn74IEKqTzdFv2hNhxPEOCWsN/jS57/A93/wBseDMcfHx7z0/HWuvvoZ2vUOttdn+2Cf8XTCh2+/hW1INldXELWYSarx1jA/38H4ijRPMb7CP0PaxWGIFgE/+MGPGQ+nbG6c5htf/wZ7e/v8wb/+I95+/z2uXjvLyy89x09++D7OOqIwIsvyWe5KSKyV3LjxmH/9r/6MzY0N8AEbmxfwzqIE7O7t8NF7kldffAGzdUh/54De8QmH2YSwltBaWiAMI7afPME7SyeOaSYxP7t7m9/41jd48PABr7/+BmNTcO92nwfjfb701ZdI4gApJIcHJ0wnOUVpiZIEHUdMiint+Tad+TbznS6FyTg5KVFBOKvPlsy8x2fmOflolzIv0cIjrWfU7yOEwzmLlGCqkvF4yKRZ58nTp9iqZOtknzce3+Y4nxEplHc8PDzkM493+KoJcCri1KmzVC5kd2cXYSuev3qRJ9vbLMzPMclymo0mFy5c4M6d288yEI7gGSGlVovpttscHfTQStOotwiimGKaMkxTRpMpUa3GYDIhL1OOj094tPWI15Xi2oUL/MY3v8X9R3uEUcjm5iZZOiUtC5xQqFATJwnT8ZgHd+7y1s9+TDEZ8vKlC5w/tc5b77zHmfOX2Hn0CCU8165eZHGhg8lGDPpD3n24Rb2RcP3686y0Y5YWunz3J29gnUQGIU56joYDXnrpZXZ3nuKKgisXn2Ox3eJgdw+lFEmc0J2bZ3dvh/ffeY9Tl089cz58PH3ii/TacpckCimdo3AOLx2VlzgivFRoBSJwaB8wnE4YDsfoMzGqrJj0RnhVIBOPFhIvJVVeYp1Ba0UQzKgKIpKoOKQ0BmNmsHVrKlRgObW5zGg0AKuxZUgc1LHWUxUGKz1CFSAtM3C7wNpqdqAUIGYcailCrBVYbxDW4AVUBkyVk/bHSDe7oBdTRU1q4kgwzvp4PWWSlRgjWGjXmatHRFLTTjbo9wEkMixxMmc8ylimxZWFs7y3/Sbz7YTw6Zib336X826d4eiQjbl5DrOC/r0joucXmcqEqigIkOwfPeUzZ+t85uoacSAYjx2jaoBwJfdu3+TkaAc9B1UYE9YEUaiYVoaD3hblSFO1IxJVozZSeFvno3duceel06yd2cQaz8HRDutLc3zu0iX6x4KHh0ekacX+Yc5m2OLRm3e5d/M+3YU5wrBJanMG2YijwwmHvQFH/e/w/OWX0FGTo31BUy3gTICTFh00KHPYeeKpxn3+/te/RizWUfUh/ekezVbC6aDJylybwcRy1B8y7U9IVINarU4uCsJQUI9CAl3DupxIB2AtcahY7M6jRYgznkFvQFKLGacl4+mIKJR4lVB/7hIHt+8xuv2AoApIh45au01nviA3GZmoESCoiwCLZ25hgbzIGE8mpJOMwlQoIbHMsD6f6herquYolhQLyxvUgoTL9TmiJKafHWArQaE8ubAcaMMcFlt5yiIlGcfEFtRAE87N0ayHIAr2s4xMzxBtdR8T1xS94YCVZc1oOiXbLjmzcoGVsMW0zNASKiGpPCgNzlc4V5FlJQGWMBJU5RR8QRwo0rzCFo7jyhBsblJ/54jH+RE9l7I/7dELHdHAkLYixBQ6NoJQMkgKao0mbpLilEAZSTmSpIcTElFw8aun8YcZe9EBu3ZIM6nQcoOyvcQ0LtitUqbjjEgZVha7CC+QIqBRm8MFGmsbZEUGukBLO/OAV4pQabTwKALazQ5JkFDlsxV4ox5RlgXOWYwpwXuiKEJJiVQKAbjKYyoPlaUoc7qteaIwwVZ6RlLwFZUtCKIaRVXgvEc4j5IOZwtiGREHCaWBqpI4NFpprDMIMbNhIQRxnBCHNapKkOUlSkdEsaYoCqSWCKFIojrV6FP83S9agWF2scoN77/zwSy8VVTUak2s95x/8UWiuSbbjx7Qnp/j7PNX+NmPv4/NHFE3YNDvIXF0um2SJGTv6ACvAOHQKiAJNdevXmXr8Q6Rinn4YJunTw64fPEKFy9c5c7dLXZ+8A672wc063WiIEQwpqxmVgfwOA9JEpPlObfvPOXevadEYcRv/uYGg0Gf9Y11yirnaDTg7Xc/5PTF07x/7y75ZEilZ6VscRwyHY8pioxIKzbWV7h15yYPD3b57//sj9g/2CMtCgwOrxzj3YL9f/VjwkAgnEUYN0PGrawyyQ7ZOTikwOBjIBAsLXe4/uJ5Tp1aQ8WaNJ3MQpRyFpyrr7QoRxXTwZT1cxvIMGRnr8d4UhGFmnySY3HoRsz96TFv3driYNhjisVr0B6UFwwLw/39Y/7++iaP7m+xtLjMz999n6pIWei2WV+cB1synYxQtTbdhQUOj44oyxIhnmXKTEGSJHTbTebbbWIdUBYlUoeYylEYy7QsIQi5/vLL3L1/n0ePHmOdQWmF1oKVlXn+8nvf5uatW8x3uvzT/80/oMh6NFXAn/35d3DO84/+8e/y9t3HfP/1n6PDCI/juD/kJ2+/x2g0ZL83YrHT4LlLZ8kGJ+xnE8bjMa12i3/6j3+X0WjErRs3efJ4i3OryxxfOo8KY/aOe+z1ejjvePL0CY1anczBD978kBeuXKQTRywvL1EWBUGoefHFFym9Ifcz4szH1SfH3xmHrmsCDEk5Q4oUTjPISio8IqoTRIpinKKDkLn6PGhLdjTEjyuGaoipV6AChJrROpSWhFoRaEnk5TPMTUBhZnxKvCcKNLVOgHE5QiicU+ADlKjjqJBSUlYlynuEslhXAgKtPGWRYZ0h0IpKQS2W4BWSWYghzTLKEryxaBxaWur1mMW5VSSOMIFIBtx92MOKDkp1qaqI8aDk3HKX7uISebHH1vFHjIseFk848Lz+3gGnT13gzEtzDD/a5vjdHZ7TFwjRPN59ypc++xInd+8QbQ2wS3VUR1B4T6PmWOoKrp/vMl+P0YQQxrN61WqOt99+g3pUJw8sIgYhHfs7u8T2NNYZmgttao0m9jCHo5T5xS5V5fjen/+Qf/Z//id4qTkZJERhycvPn6FkTP87T9k/hsFBn+2bHzC+u0sUai68eo0grLFzsE3KlLKaYGXEVO0xOYloNM9yUjqeTk/IjAIZQs0R1Oo8HUyot9b52YPbDP2YzbkureYytShChYbSCBqNkDiaMhqMsWWKpwBRYUxKHEoikdBozCGFpj/qU5qcqkzRgSBLM4Q0VFVKls0qlz0OW1kmtmT9tZcZPN4mrDzj1MDUcfbcBSajQ0yqCBo1RAmuqrDWIr1EqwDhC4RjVgokFHjzSY/Np/qPaOP8GQZ7B7RbNc7Eq1wKl9i1o9k5NYKaipiIiuOqwEYtAmuRpqAdltScYHLgUaMhC13FpUZM0FD0xCy0lpUF+ydD0BonPZUsedrboSgMZxZPs9Scp8RyOJpgVESSBJRVjtYWrYJZ5kPlJDWFLR3ee5RXRC5mrOosnb3MudMVt+49pJKG/aBknMQkxyl+OSSqQuJKYUKBno+w5cx6lntLZA1HWzv43GMDx1QaknlFJIZ0r8/RWr/I1C9zkqaM7RSJoR0qNlYW6DRXOdjPMc7STzOCpEGnu0rXe7L8GPwEIRMCHREoRaeuCSw4p2eNorKNDjVgSJJkhn80jigIiFRIEIRIIYiiWTAxzy2BFLQa4YxGVJpZPbOKsHKGxfOAls9CYc6iA0eSBMQyxFbgnUCKGULUMStZkAIQs4lcoCW+hLKwCBkgNSx0OwxPeuR5SRREaBTlp4uiX7hCD0vNNufW1vnyq6+hrOW///1/TWe+y9e+9Q3Ofu5zHN76gFgIql6f/PiEv/3P/iFvv/UTjooBMrXUwoBOo0a/32OSphRViZQQSMnL15/n1NoqR3uHaBVRS2aM8OvPP0dnrsuvpF/mwaMHjEZDEu1ZmFsgimvsHRwxmqRorYjiiFotwWExfmazfOn560itaHdaHBwd0GzVkSSMpjmTwHHplz/L4VEfHQZ0l+fxzpFOJ8RRwPrKMu+89y43PniPdJqyMx4BHodDCY/EgQFhHZEPWW53efHKZRpJjbsPHnHQP6bKLSIJcN7PmlCf7HO8t8f8XJ1OZ5EXXnqes2eXkaHmoKg49fJpbv7R+4yOanSX51ntzqNEzKOtfaSYBaCtd0xdxZ2jHfJnE33nBSCwArwUBDpgfeMMP/rLH9JtzfGTN99iPBzTCANee+U6g9EQV1U0600m1rG5ucFb77xDGGriJCZUkumoYDgcEOC4++E9ApkwneRIbZDBDGfX7HRo1JuMJyOuXrtGo9ni3t07gKMRJ9y5d5/9gz3mGg3OLM/znX/3b/jlL3+BMPCELuP8pStUecbdh484HA1oNVqEgWZclJR2FmIcpykbK/NsrG3w5Mlj3n/jbbI048KZ02SjMRurq3SbbdrPP8fR8TF/7298Fa8UP3jjLZw3zHfn2Dk8oDccUpgKqSS3t3f4+udf5typDZpRiMfR7XbpDXtkmaMW/zUWsoxSj9SORiRRDupxTOwCXGXIq4q8lFhKpLM04joymlVlV6UgaYWUGMpyh6KUUEa4YkbgEKEmVIogd+jMoo0l188ezEqhZUAUekw5ayfDAdaSpjlhpLHWzEI0VQWmwlOilKJ0ZtaoFQZIoakqy7Qa4fHkpcN5hbMSa2ZN3ZaC5dUaZ88uIARk05zF1QWOBobptInzbeKgTi0RNBLN6bVTvL/1c3I9oZduMR73MGFE3Jfsv/UR9777HnPnm3RFwOeCU+hOwZPJHlEtIqwnEIU0M8HgncfEn9tk2BZY2+eLr1yk1Yrxpk2aa6SeUtoTXCHYub+LFBZdC9GBot1o0ah3OTmweBWw1OnSzRXVUYFLK5ZxlEGXx3e3eOPd92gsrlBlmtGjPTqDIXNrdb75a5/jR390j3vv32H6aI/IS+bm2px6/hJnL14ge3RCJSfoWp92JFk516T1VNH/cBu5OWAQOpxRzAddlsI2hQwRMmA63uK9n93gwVtwdnOJ555/jrPnLtGuzzEYDplvJ2yuLNJt1dk5OmI0OULrhPlui6PekDiJsNailGSu3WUwOZxZQKRDYqnX62S5IY5jTOGRocA4MNMx0dIc577wGbZ/9i4Yz2iYMak0o34Pm0uyIMGEIXWhkXZGDQhkQKPWgFRQlBM0n/Lv/jrUXF6jImRhoLgSzxEZSSQkylhMKGnKBCcm7PgRZWONBR9BIAmFJR1bhtOMyJVEOMrRkJ4sidbWadYTskqwnw3pzrfZPxwymhZUJUThhIf7tyjydS6euoj0kuOsZFJlBDgur60wHE4ZF4bcFZSpp9GoURYlnSSgsJ6TVFPoAPnyWY76N/C6w93jAXNnG1RNyDSsTxW6kmRdgahJfFExLSyhEEyHPaTyyEaAkoJR6Sl9zMbSEsurqwxJsFVIJAvSNKVeizm9tIYkIStikkYdpSEtxghCpInQQpPUQpzvk1aOQCWEzrDW6pJlME4NYRAhZESgQoR0KO1x1hNHDYSVKKlIwtlU2rkSHNSjEJ1UeCb0RiXe19BSg3c4JEJF4B2BA4RHBookibDOUVWGyjisFSgFgZIYI5CEeCoCJdGBxhhI7SyQBBYpLIN+H60C4igErzGVQHyK7fiFK1EBK3Pz2NGEH/7pv2cwHCHKimww5sPX3+HhzTs0vWNhsc3y2hLm6RNOrVynMddhcDwiUoLFhXkm6YQsy7Bu9nseaEUtSbh5+wFvvPEu2TRjc+MstXob52elaOPRkFazxhe/+EWUluzt7vLmmz9nMp3y8suf4cnWU7YePUErxZUrF9k93Ofxkyc4B5unT7O4tIxUkjiJGE8GNFotjK04zkY055q05DOCjICTk2OUVKytrDLfbfAH/9ObTKZTVDDrvijyAiFACohlwGKzzlyjRTMJWZ1rY4YjWq0OX/78F3j49AAvNAKJwBFIjZACLT3lVPLkcJd3f3Kb6y+e57UvvcTyygrh1YjHP36AzyzZ0Zi5ziK2LtlVR1gPtVqdsipw3kKoqdJi1s8hPNI/s18pTbc7T7/fZ9QfsDg/z+OtLQIJL794hYVunTQd8uJLL2GjBGMd+/v7KCnoNBtYVyG8YzqSTNOSQGQ8uL/NzpM9fuVr36Dd6dAb9JnvLuCAcTpmOJqgtebcuXNEQcC9u7cIlGIyGmMrSz3S/L2/9VUCYRkNxyS1Ot/85lf48N42/+K//e/YO+lhlCCrSpSS5KbC45lfXKSYjLl97zGh1Dx6cI8LF86yMr9AHIaMByMGcY0sTREKzl64wPHxCaGMePWF5/jCSy9y+/FT/oc//Q6ptbNhmIOD4ZTvvPE2cRBw6cwpRsMBOMuli2fxwtOvPn4e6hNfpIXXVAYmfraemfTHJEIT+Bl3EgKCUFNrdakMTNMMNwZhBd56akGALMH7EkqHsnoGXlcRNacJRgUidmgnCITGeImnotbUmLKgKCpwGlvlaOWp7BDHLOiIdwRa4D1INcPOgEAEAUoFCKEItEJJS70e0TseMh5nOKNxJUSJ49y5eToty+pynaMTQ3/kSO+O0HGLWIMXLQIliYThhYsXub/zHj17SIWn1V4hncy8loGUBDrG+4JkrIidJFkMKExK7nJ+9uENcgUujCnTgunuEScqY/HLp7h2YZXVdkQgNc7XmBqFtUO6Hc2To4JhwzGen0IbnChYmuuigphBUXDSH3G5qwh9QTinsF2HikbEKkCFHd5/vMW3zm/Q7q6w9bTkaDgizAy2yvjlL11m/P49yhBkELOwucKpC5fYGx3y6PE2R0cnWJ8T1xLCYonBQ8fwozFzEmpLhqys8GJKTY/pnLrIwWTEzo37PH79Nmk/ZfVKhy/+rc/xjW99necufx0nuhz1x6wueBqxYnO5w+FwRF6AqCcUZYZQsxKHIPAgAuaay1jrKUtDvd0hnRiU0LTqMaVx5FVFHMXEukZeTll58TJbN24TjB15P+Wk1yeKDUEsGRuJCGoIV5FYi5QC4aBeq6F1wDQTjLMUzMf3Tn2q/zRN0oK51TW6gcNOZ4grHXriUDKQFYVWNGpTQpXS811W6qcIgoBxWeINpBQo4dGVR2nI0jGTwx26cytcDDssxppBlTMwFbaqEAToSFP6ksejHaqtilNLp+kmCrIch2C/f0JpJNZJAi0pyxJrJcYKvDC0mjEdkzIuphxuJJhOyCpt9qsQU1jKcw2EcjTHM2vEpB2xVwRMhSerRrT0lDQfUhUKZIkDpNY0lxdprm5yUlqGRYrThlA6Liyu067XqbykcjHOBgg0cRQRhjHeKmpRF4XE+xQjI/xkSKIEUZCQlyFh0CUJC0pjiOIEpTXOVoQBEHmUCvHO48ysvVR6jRSaJK5Q0mArh3MxUnqslYCc/cB7EFIivENrjRQQhjPCUl45rAtmFwrhkBKE8GglcWbG3Q2iBIGntCUwy8lIIZFCzrzkWqFUQFk4rPUY/6nd6hetAsujnac0hCSQCiEE9W4HYw133vsA7Kx1EDUL525c3uTL+SFRIllqtllfXOSk16OcZlR5iQeSMKReq9HrDZhMcvASnGc0nrC05LF43nv/A155+SXyLGdufoGV9Q3KyvHrv/G3efvtt/n5m+/w5Vc/TywVg/GQB48fMM6mlJVDAL3eANgCYHVlmSDQ7B/u4YUntyVojZWCWr3OaDTCOUuWTjl/do2bN9/js688TxyGtGt1AgL294/REuaaNRYaTZpakY5GzM3N4aqK8aDP4PCQpKjw1Szs7IEAObOqCkVNa/7JP/iHCFvxx9/+I54+3uX3bz9kdXmTa1euELXbmKOccpTR3zkkmp+jVa8xSEuMrRhNU7I8fdbP4XHOIjyzjFlco9Ns4Zzj4OCAdrPB0eEewjtWFpawQjItK9ZOn2Pt/BX+/Y9e59KV55gMhpxeXUVKz9O9E0bjMd46aipB6Jjl9XVef+M93nz7bf7G3/gGzUadrCiojMVaR1KblahNRhO67Tk+/9lXKadjlufa3L91k+cunKFRmxXzTCdjijLjB6+/zeODIam1zC0ust87xrhn24TK4axlOBqwtrTAqGdZWV3iS59/CY3DlCUOj7ddBIJAKYaTMQ/uP5zRWSrL0tIihalY6zaYbzUY98cIMWvILJ1jrz/ixx/c5qdv36AoCtYWu0zKivmFNlEz/thn4xNfpKt8TCEtuZAoJVhst5lL6tg8ozQFiACLYzwZk+cV3kpcKdFRjJCG0Esio0ifBQKl9GitaKqQRqqI8gATe4T3M6uzF1g3m3ZLp5BO4KxFK4UQsyCLMRatQpzzoCxSe4oipyzMs/WgQqlZq6H3DqEqnB4xtyJZ32iQjST1WhenMio/wAURR4MxeweGg74lLALq9dn0enVtHl9kPL+2wXB/yNBPcAKss0RhRHuhS3+8i44lmTAoBOlRxurCEvvTMY9O9rl/eMjOeMzhW+/y/OXLmMwxnRaMHhzzhW+e4vmNZTphQqe1ycGRZ5IdkbunTErDo1HCR/6Ew/qAWixZUgH1QJGlBZl1LK9uUAYSfbrBeDHE2oKHvqIKC5StMdg65NFHN/jmr1zivRsVcyttaqGi1fLkyYTf/uff4r/7v/5PDHemvPSF1+i0l/jgzg0OeyNOdgyZd9S6JUf3NeW9KdnBCP/A0KkSytGAcCXB+SlZt6QsoFZqXrp2icHBgFRbBr2MWx++T7d5mmbyPFVV0q1KBJ7CFCzPdUhzT99nZFUM0iEKSVl5lAgQRlOLYyajI0qTkmaGQIZoqWnGTbQpGU8HCBmgVQSNiFOfuc7WD99j3nsCbUAYbK2izBNGRUUtDpHVhFgqgjAAoVDaE8ZNYqHh05rwX7gCqShMSV4PGVeO2HjqYUjbhozLMd4pzrUCGipE9Qu0CzAlRLqGTjwEHi8tUkYESqPkEEOFH09Z1A2EnZLP52yud0iCjKIUVEVKSY4ME3Ymh2RFzsrcMqvdBYZZycAUVEahnCIRAV7JZ6UCAuMLVGhphwqjAvZCw/pL1wlv7WPWGpB47qgJDRHQnAiMUPRbksxmWJdTqyzJxHFymOPDOhaHjAKW1zZYXD9L5jVWgVIFcaToNuqcba+STy2HRY6TAaGqIUWAQOGMJ5QRoYxQAsoKqkIijKCVaJAJk7JGlHSIo5TKDrHWIcWsvttUMxyk82bGaFWaQAXgFFoKoghKl2FLS1WFhKGnKM2McCMlSknwDiEgUAqlBCrwjCZTjFVYP7sU/4dL9F/lDoQFoZAipKqK2cXDe7QSOAdYjZazS3Sel3gvUFpA9Sn+7het3BuO8pw0mIXWFzrznHnuKt47hrt7KANlZTg4OcLHgnPPbZJOTqglS1w6d4W9wwOap+ZoNk5YqwpK77hZPqbKthBeEIQR/tnv+SRNAVBasX94wP0HD1lYXOTw4JDBaMri8jJLyyuEQcKlc5f46Y9+wMriEv3+CcPeYGYrfbY87B+f0Gm3kEpgXcX8fBchPf3hkCzPGU0nhDrC45mmGQiB946iyHn8+DFPt7dpxgmfufgcL56/gh4brl+/ysJ8k+98+9s8OO6zsrRAnqX4yrG2uoJSmsX5ea5evMiTd96HChIVIpRHWc/5zU0urqwR1+HUuX/Ek91tvv/nb9FUTR5+sIXPJa0gwQvJeDBitz9g7cI5po+fgoLRdIx1lrNnz2IeOIqyRAvFl177Erdv36QscipriMOQsspx3jE316VA8sO3PiLSmqvPX2M/VwRhnfF4Sr9/yPriHMdH+9iiQAoJQiGEJgwTLl+9jI6+ze17d1jbXOPSxUssrayw/XQHZwVZVjEaHjOdjMF7kkhxanWV46N9Ll+6wJVLZ/j+937IxQvnmYyGRPUmO0d9jJhZtmavPQJrLcZYQqWxpuL681f41td+la1Hjznc2eGPvvM9fu2Xf4l2kmCNoTcesru7w4VLF4miiF6vT2utzaPHjwniiKX1Fdac5wsvvcDu93+CZVZ3L4SnFsU0Gi22Hm9x/sIFHm1vc/uP/3LWMHlm/WOfjU98kS7cBF84pIjp1hs0goi0yNk92GeSpVTeo7SkVo+QMkCJcAbc9yUyAKs9gZfIWQkhSgqaUcRSlRBnAu2g0GCUn6XovSMMZ1MTW/pnzVnlLADjqtni3WusmP15Tnm8rDBGIHQy+7cSZj5yixBQeUthR3S7CUkcMt9aJq0mDPMJToXs9ks4GJCNG4ynCQmzH6zKG4bDPnMe6sOSP/3//iG1UyFLV9aRbYFpliT1mLENsQXoWkSkoK4kXoXcPznhcNSnwFNrt5BhwKAoqNVibOm5/oVTvPjKArWGBTSm1CBjJmafhUWHsSmH0wGuIQhlh0ortPMstOdJojq1uKTesRybIfWNJdJhSVnkFGWGqSynVJ3LcgW1NeHB1m2++PnnuH37EXGySiAMvgaD5hG/+c+/ybf/h5+SLLVotlvUxzWU0GjVxUx7SFtixlNGuyNip7Ejw+lgmZWgTbNsE3Ua7BUGMci4+eZNXJXSiGu0z6wRBIv0ji2D3g4rV5/HmHl6kzFxAv3JiK4MaNRaxEGN0hr2j45wPiQOOigfoGsgpCAdbWOsZVBOmGt2CIXizMYpdg/2qfKCqawoMYyLlOXL5zi88RDXG9NyIcY6Mq0J4hBTidmE0QlwFi8DhNRU3lM5hdYfH9L+qf7TVVoPCgbaIYWhtCWh8kzHFVoleCNJxzBWHlF6MglEIYEIkWVGpB1GKuKoRb0WE5ZDMp8yLacM0xFH2SH7ZoDMdkmCDolqIgLIbUVegk4Ue9Me/WLKpstYmVtlqdKMTcr86gJpXqADxbSocF4inKZEEiQxzRz2J0OapzbJDns8qp4SdVpILA0RUxMBttUgb2iUH2PSISGKbGxIgi420PhAMbeyxPLqOoVRoKJZ6KchqCUSYwpOxhlK1vBOIqVA6+DZAMFgjcErha1KnLCYKkXbiiSOUXED4Zs0qAOGyo4xdoxxEYFuE+qAaTrAe4cMNbZixpH2FVoJrM0xlaWqPEUpZ6VXQjwLJ80IR97NYrmBViRxiCkL0rTEOoUFrDdYJ9DCI4RHSmZecyWIwogiN4AkCEKMzYgijXeSovCEQYC1Fc4Vz+rGFVp+uiX6RctpgQ8jpsLP1v6THo9/8n1qYUQ3qdNKEoTzxKtNvvZ3vkTlpqwur/LcpWuMTnqo0jEYnzAa9Cms4cGTbX76xgcMRiWlEc+C3AIhJXlV0B/0WVlexljHzdu3+XyrhZCS/cN9rIRT585x8cplBJ5v/vrf5N2fv8XG2jrLK0vsHh5w98EDyqJi98kTrl+/xvqpNSbTMRJPr3dCWRnCKEQ+a++cplM8nrLI0aEiCBUvvnSdL7/2edw0J5hUuNGUn3z/J/R6PX7zN7+Jjuv88PXvsbm2wtde+wxL8y2KMieq1fj3f/kDchnjKjdrSBZQb0Y0whli8jvf/z7dhRpP9ncYjfsEEXTnmywuzpP1Sg7vHxFGIcvLK4z3njLfnWOUl3h5Qn84YDKZ8s1f/Rr/+Hd+l95xnwcPH1GUJb40CO+YX+hSFTl5mqN1wMrqOk+e7lI4gfNw+cVXuH33Aetrm+ztHyB8gTMV0nvqcUIQeZwV5HnO0eEhZzY3+Ju//g1+7/f/LT/44Y9ptTuESUIQxkCORJEkdYqiwJiKsnI83NqhGQWcDDP+/Ls/5pVrlyhLS1Y5bt56wDAvsNKRVSWlMXghcMx84Emo6TTnuHn7Pjdu3CEIApIw4uToiPDNd/iHf+c3oMqYpCkraytkeYrUkv2DfebmF1hYmOe9d97lS/Wv4BG0Y818qGjPddBBwHQyIarVuX33HlEUMRoPGIyHOCDtD+iNRx/7bHzii3S9E1NlBmtytKzTOznhaDRkOJ2S1BsoIZHSYwyzh6UA62bV3hUe4+2MF+0FUkZ0og5LYZfGRGOmBikl1D2VMs+qIS06iCiNRzpNWXlwAZVxeO9QusDZEiFKvJd4B0LOph3/AV2mZYxzFd4bjCupjMGUgnxSg1IycgN8kDGY5hgHWiQIEzIZO5RoUA/nkWUxI5IUOWtzS7z75z+ktlfQPM4Y3p9y3CjovLRO6/QCtaBGJsaE9YA4gkhLBtmYQZ6SAaGK6CRNkijGl46gKdh8bZnP/vYlaBRIMUeztkyWpoyKlF6+TTgJCIFAadYWl3h+fpXbDx/RqkV4JMejMWnhKQ8PaNTrXL94jcyEHJ4cM7I52cGAYZZxWziuNeb48MaHrC3O8/KFq2zt9tjf3+PMxS7h+inKjuWb/9s6i2sbhImlU4vpthfo90vSokfW3ycZO5oyQElP7DXrrRWkElSZp9/Laa7EKJXx1HmGlcWKikAoegdDjncmXDizydr6CaVZRIcCHzqCqMVxLyWNQUrB8soiQRhy/+FTinyM9CEL8x2Oez2KsqLZajL1U6wpKAUcHB5gnEdHNSI841E2K3do1ehsrDIZFjMCjNCEMqJVa9EKE5LM4AYDrBczvmWjTdwOmEyms7V175Oemk/1H1N/MsFZyVAK9oHAeupCUszVkEJjNaRKk4qCSHZ4qgXTfEzTlcxJT114kqSB1AnSBwQiwrqMo3LM9+9tYSNDbbFFMcmYZClRNMf6hXPUmzWO+1PSSQpKMywLelsphydDri6fYbVVQ/iUaVVh0HhAeIvyAZWFqiqZq3cYDXKmqmTYDVA2YpoUqMoROoF3ASaIGFKS5w6QGFmhW5Juo01SCoL5Ls3lZZzXmEoSqRBlLXEUEsmIrKgolSAMBFprwjCglgR4D5NJNqMHSEtpJhiT4d2YRqBotOfZ72XUwwaRr5hWA4wf4yiQzPzPhfNM8hQpJJURSB2ihAUFzpRIXZEWhiLXlMZjyZ5N+zxeCIy1KKlQOJTy4A1FWVBZhTFiFj7B4vE4JNK7me3OzwLgWngK65FaAJZmXaADT1VahJOEocc5qCUJxtrZZV2G/zm/rv+rUCnsrCxNCAQCLSVCg5ceazKGaU63U+O5ly6w09+lU0voNJo8vfeAXq/H6QvnqMsOH93d4u6jbR492WU09TP0HQ7hoDIFQkqch/sPHjA/N4fWGuvh9Td+zuVrl7l89TKVMXhXkWUZQRKTZjm/9Ku/wu72Ez784F26rTZf/aWvcO/OHQb9HstLc5RFRj6dsLCwwAsvXGcwHhPGMXu7u3igLEvKsmQymdJpN/nhT37Gex+8w+rSEi+ev8xGY45CgQlDvv2T1zl36Sxnzp6ltIb+eMqNe48Yry2xtLBAf+eAuN7mo9sPUFbMsleFx4cCoySPt/fY2t9FBv7Z/aRic3OF1XNL1OOE+doCH/7wDroIuHz9Ku3NFX7485+zeeEyjXrJ4sIKhwcntBodwuWIyWDEvVu3OegdUplZgHM6mRIFGmMdn/3s5wl0QFk9pfKOSxevsrW9O7NJxjFaadZWl4njmI8+/JDPvfYa06LguDcgCAJ0GDBNU86eOcXG+go7O0d89MGHzM8vkqU5xlTU6wlSC+J4iSyfgnVk05TBeEoRauphnQ8fbLGyOEdRGV6/eQ9kgOf//+zwgPcO6xxRHHLlykXeeuttpJDEUcxxb4DwnruPd/mXv//vuHbhNOsL8yAqkqTJRzduEOiQ+bk5BqMR7XaHo8NDlhbnuLS5wv/lv/xtTm2uIQX0ByPeu3OPn0vBo6cHmNIQ6WDWpGpKLl44w0+2Tz7W2fjEF+nuXIf+UY/KlfQGRzgDxDGtuXm00EgVICVYZ/BeYJ2YWS9CiXMGYxxCQ6wCamGHZb1CK49xeYqSGhdZ8sRQaoucPcmpKnBOUBUOJfSsiVCGmMpiqtkHMZtwGHAzj6T3FVIFWFNh0QjhsKakMhlJBKurG6TjEtmOyasJ2ShjMvXYqiJRkmYSEoUh+ICaDrFlha08zXpM0etz/PApc7pOkijsKCXuWYrxDv29KfFnO8TtNuXSAH8yIXez4hYXeRIZEAURKo6xaEocAzvi869eZP1sm6rKOde5wGpynvvTI7LqIceju6zMX8SrDlYaMuM4OjwCU7G0tMbJcECUNEhtQTbqESVNFpdWqSpFO6mRTgt24gbi5IhsmPJW74hO3fDmzTe4dv5VxkwodYZN2yy3VjlhyDh+Qsw+5VDhqhyBIooTakkXOzWQDmjHmk6nxcJKHS+g9J50WpGajJVWg3Q64tKZFd698YB8mNLf30M2NZPRiDd+/C5Xr38TJzXTaowXBmFC8mLWhCakoSxLolhx8cIGt+88oTCaw4FhOBlR+pJBOkThwM5wPJkpSI0js4bCGEIdIbyjpGRuY4WT9x9QGsfYVASTiOZig8JYfJXjTYX1EmRAWhQ4YalsiXWfrpD/OqTCBP1s7e99idGOkfBYU9JothhlE8aFAe/Z9iMObEasNSsi4lTcYl3PYXUMvmDkxiBmNoBJUfF4+zFLKx0YJ9TmmzRabZwJONw7JKlHNKKQdlIj955pWeEqz9FkzKS8y7nuEhcW1mi6YBZmfcY7tt6jrUAHAUjP5toKvX6P8OJ5Tu4eI4XFaUmUK4QJUUGdUVjiyimdEFxecHJ0hKq1adZbtDZXGVtFJOrEUlILFM2awbiUwTTE+hZVnmLMhEa9iXSeWgBZlqJcTqA1xmSUTCnKEY1I0mgvMhgNQWjQhuF0QlbsU2tIEBHOO7JyhBcSoyVxECPReO9mCFEBUhicCEgrKG0BQmGtoLQV1lV473HeYS0zvJ6UpMZQIp6tzGchplgrjDF4KpQUJFGAcJIk9nif4ROHjgKk9DTiiLK0lFJhtMdiKE2BsQ5jHEVuSIcff3r0qf7TZD1/hSXEQ+lnxBrpDFMhSHTI+YvLBHMxZTrlxp2HfPiDt1Fo4nqdhbv32Tnq8/bth2QOLAIpBHEYIYJZNXya5ZTG4BBkRcEHH33EC9evA7NJ5Y2PbuO85aWXX6LdrIN1XDh/HnVJ8Sd//McsLSzwd/7u77C3u83Wowf88ldencEHTMbB4SFSaSbTCfaZdWNuoUurXWcyHDIejajXm0gJzlTcvH2baWG4v7XD/UdPiVXAxuIqpy+cYfnief70Bz/in/z9v8tv/sbf4MatW/z4vY9QH2pefflFnr94Ft+bYCuHsgIhJBqN9hHOKCpXQWURgUMFjpdfucrV5y5gSsN4nFGNj5lfnSf0CUmrxno95pXqJZwOEUFMUXqePnnK8f4Jj9U2jVqDPEtxdlZSMzfXZTDo0+osYJxm49RZHjx4SGEcUodcuHyFe/cesrqyTq93gpKe8WjMd258yJPtp1y8NgQ96/XQcURZVTzcfkq7nvCZl1/i5Oi7bG095t69uyyvrCElKOVZXOiwtrbC48ePGQ2GTKcpmTFM8xzXavDowUOyd95nY3ODzFislOggRJoK7AxRLMSsybQ/GPOzN9+hsrP210AHs5ZrAU46tg+OeLqzx+deuMbqQof9hw/Js4znnrtGXuQ4Zzl15hRhlHBwcIwOJEWeEgmBDhTJyjxLiwu8d/P+LBelFGvdBv/Fb3+Lp0+36Cwt8l9/9+2PdTY+8UV6oTFHNcyYlCWFAXRAPZmtv/MsR+GJgwRjLFlWzJY33lCWOY6KKirRjYCaU7TLGJ06yrxAGlBCMKinjAKHKANkFBAlAVlm8C5AiwBnZ0EkxMwzq3SEsTmIHE+FswJrFZ5ZLThCYXyJtwXSGlYW5omSOpO8pKocZpDhkQjRIlSQFYYsg1BKnPA0agFKeUoniRtzLDQ0uz96HZdOcaHD6hhft3SSBnlVMX58gmwLVl89S/vXmrgXc8aTiuG0wA+nhN4TGIvMJMFIkGdHnPnVMzz3yiW69SZaeGpBnXGqGOcGZ3tsLp4lndbIbUWimsRJjcb0hMXFDVbqEadXFvnwXp/UGFZWV8imJaqpyKocj6GTtBAqYKnZnQU2K0deTHl68pTTpx9yce0s2weWe/f3GS061k83+NLzr3B37zFEA7J0yniSUZkCtOayXKNUIUetQ3r9Pv3bB1S6oNVs0u+PqEKB3HrKg5sfcm6uzur8HPs7A7JBH1G0iEzM3v1D0smYsGHxVjFNM/rDIbVah1ZQI7AhaZWhdIb3ljOnl3n05IidgydESYIRJWWVEYeCyluyokAFMRZI8wnOVGgFaVZhXEFndZ4yUuSTHENBeWhox22iMKI3mUCWk3mDqnJUPp29EAqJ//Qi/deier0DavZg9b7E+4JaLWEymSAELHcXGAz7VM7iBeSuovSGqZuyZfsExT41p0n8jA07DTxeOaKaIuzEBM0mUdxFKMU4nxDoGkorJlmJHVeESUyr06HbTtBWMnaOo3zIo75lvtlmo9OhJmFQwpEHGyueZYkwxrDQ7NIMFFnds7tXZ2COadbaJHlCFNZAxTgcCImSAo+nchWi2yLZOIeNEyIfEMuYoMyJI4EBetOUdnMRJTylmdkfrKtoN2o4n1JUY6blGK1nWZBACaLA0m01EEqQm4owSahsSlGO0aGh2WoyGSokEWWVYpxFSY2SMztHZUBogdCOKBJMsxJkiHUlzhmc8zhbPtvylUjliaIA6yxKz9b9iVLYsiCQ1cy+ESkgQDqFVpIoCBACjMxJiwwtIC9TTFVRThWjScpgklJahxOzz1wg4Zkf3EyK/6zf1/81yHsx818CCI8HpJR477FS0Jxr0plvsbC4wKVTL3OndYPb793CFJbDyZTipMfq6Q0uGMu9x7ukhUUKRahn1e9GVHSabQ6OjsnKEoSgPxzwaOsxpzZP43B44KOPbnPnzn021n/Kb/3W3yFKBPfuP+TCpXPs7e7xYHvMxsoKJ70D+r19VhoLhKHi6nPPcXLSm02eq5KyzHn06CGNeoM0S9nd32NlTdBu1tndfco0z2aXSe+e4SkdD4922D7ZY67V5vqFixitkLWAM+fPUAjFwyc7/OC9D7i7vc3ZhTXWWwuUicVJyJ0hMwbjDZmpkMHMLx0oxXSYsnX/Ce12B2kEpXWQS+abTW7cvsX8wiIbG2scj8Y05xc5Ph5QrzcZjSaMWmNcLWYwHJLUYy5eusjW1iOcdRweHfP5z73GYDhGSE293iQtRsRJQqPZIqklM7tnnrH95DFvv/kGFy+cI45rZKbAAyf9Ac46hPeMpxmb6xu0mg3SouLW7ZtIpejOz7G2NmtFHI+GOGuxziOkptZsUeQ5vXHKwvpp7t69xYPtPYIwRCDpdjrkpsR4g0Y9w2YKrHOUVYXWCukd1lS06jW+9pVX6fdOePhwm2xq2D88ZG2pS7vT5PTpDTxgAKckewdHdLtdtnd2URrOnj5FUZWUlaPeqBMHit/+tV/lz773E5I4pkw95zbXKLMx7926+bHPxie+SE9GKR6F1CGh1H/11iqlnK3unKUoMtKsIM9KlJqhX/5/7P3nr27pmd6J/Z6w4pt3PDnXqToVWcWcmqLYSj0zUms0kmEYtuUx/N3/jA2MAcseOWE0o2SppVa3Ws0m2U2yySKLFU+dnHYOb1zxSf6wdms+mhiCbEBT98cNHBzs/a5nvfdz39f1uxQS6y0uOFKVEQIoBMbVKJUio+7fkyl8JFgtCwYiR8YJwXVxoNDiXaBpDHGcoLXA2ALrDFIGQujSt5yFKEppXA2iRWBQQnPx6k0W8yX7O6egBGmq6eucw/0ThOwTZ31MbVFWIugTRQotBygxIM9SNkdAtce8PCTaTih0YBrV+HFGur2GygdsZiOiPELpPqPLAxb5ksXpCX5RMroUMchi0kQgY0cvNEzkFW69fon1jTHSLxn3bmH9OkV9RGlPMf6AZCA5OHZUjWJjaEnqlhd/ss/Ln9O88tt3iLUiBCiKGclWxvkrGzw/WZCrmCjvM1u1nWO5bnB1jXKCkejjxDpN4VmJkltXL3F6WvPze3cJasL5UeDKpM+Lk302JkP2p4Z2sSTGsGUS8tEWR1FLs5EwXkLdNqzpEYeLE3ySMP3hh5zs79I/v8mNW+eZNQ2rvmaV9NFBcjDv9EnnRhCJGGM9Hsfx6T7ppmY0XKeYLvFNhccQ6T6XLm4DluP5DKE8cZxjGts1vASWqxoVaaJIILVmOp+jY01jAkYJQq5Y7CwwriaqBQu9ixsNSUc9yvmciI7qIiUIHN0J/6yR/k2UJCZJE+JEE2uFPzvT49EmdVXhWsu4v0FtK1rX4kwXhEAkqaShEIZTVyONRRtwJuCUJ1aBzS+dJ0t7nMgl5UGJa1ukFEipSeOMVEu0TZhPTxhHPW6dP8/lqxd5vJwxbys+nn3KlG0uZOtM8iF6BZW3tHHnhgdFUS24sDWh6QdeunWHj+//jJ7qIYxmuLmFFQmNr8ljjatXaKW5/uodRpevU9qIKAjyWJNohUhjlquK1rQkWQ44pALnW2RQ3VRXBdq2ZlktMMF0PGhpsKZlazIh72Ucna5onMU0K4LpkJH9QUpZLViuBMFVjMcJbVFhjcbiUQqk9Z1BG4nzHnxgNVsgBOhIdQINGdCRQqmkM+ZGkMYdnq6uW5QCk8VY15nS67rEGUcwcFrWCCExzrE64/jHUYwzAe88SnU4S5QkOEsQDk+gbQL+LMm2qeq/7Ef2P/kKIoDo5JFCSEDAmWkLBBcvrHP54oQrl7aZLk64+fotXv/cm8QiJs+HfPDhx/hgufnSTe4/fsaf//wjDg6mFMUKhUCjaGqDaw2+NQQlUVLy9Nkz0jRhc20D6z1Saay33H/0gH/8//jH/P1/8A/oD3KuX7+BkILZ6QkHB3u88frrPH6SsFie8GLnBe9cuMRkfYOPPniffr9HPa3QSqGEIMtzVKKpTc1GOuan7/8cEzrTGyIgz+QmIXgCgf3lKQc//SE/vfs+X3z9DbbX1wm7+4RUElDsLZd84/UrfPs/+y3aquKTex9zsDjlF4/vctrW2LbFtY400xgRuP/hE56nmjzv8cord1gbb7CcLaimu5zfPo/1jqOTI/LRhE8fPGB7e5Oj41NCEvH46VPeefsthFYsFgt+8d57xFGEpDsbOkrYPzhka3ODN15/jSfPH6GlZGN9ghDgneXo4JCf/fQnOOvY2NxGSo23FXGUIGuLSiLaqqaoG8q64ZU7d/jxT99l/2Cfqq75xje/iTGGwWDAarlkMlnj6dMdyqpGINE6gjjQmpZrN26xv7+Hx+OD53h6inUOby3QoftECFhnUEKQxzGKbmv19S9+jkvrfe5c2+arb79G3bbMj44oiyXedPJfISO2zg9ZnE5ZLpc8efKEjfV1bt++zdrahLpYYm3LYLJGlqXcuXGV93/+AWmesdKB44Mjzm2fw3z84S99Nn7lRnq6LGnabt2HVLgznVGWZaRpimlbrGnBWdK4C1YBB0giofFOIhuNc53bOwSPFy1OagQCITUuGKx1eBNofYNtOle5lx4hBCE4mqamaeuzh14DEu8kWsuzpCx59qJ3DPIeWbbJ3sGc1oJUPZQUlKsKicC2CUprmsoipCBOOte5jPrk2RaxyvB6BvqUJwefIl4a4mUPEwVEniJjSSs1sUhgkNPv9xmqCL+yIBWjSY846SYwg1FGlEhm1TEXro356qWX0aZhqBMG8hrr2RWUHNGUESG+Ty+CVgacTjg9MWwPGm6uTZidJESLilR1jGWlFQLLsBczzHosT3f4+P3nuMJStiuy3ojgBaJtcHWBbxxZLFj1BNmlhGh9zPp6Hxe9QpAl1izIYs16P+CdIZJTrlwfcfzpnHZVcymZEK/FzMee4TLB2AY57tEbDlielhwdzKkixSdtyRfGa7z0zg3uFZb9VhD7ijSLWTQrhnVBpDVV09I0JYiAsSVSbjAYDJnOSxrnOJ4ek0c9rl46T1CO6RkVRoWOidnYFh31KIolxta40MUQCyRKxLQ0pJfGmENNswKFJ3hDrAVIR+tqpO/imqMoQatupWTdZ430b6KsAW0FbegSU5XQSNUZ3ISIiZI+Ojj6KpAk3Vq4rmpQlqJcYs4i7o2qccYCgShKcNbQKmhNgfUepETnMXEiKYuaVWtZ1S06yhjrCfWq5emjZxz8yXOuvXGTycUee77k6e4OzWbDerLicv88Iw9FABugxlIRKO2cPM956fprhMpw//FjQohYv3KZw7YmkjGRdFR1yfD8NuPbt1ig0IVjGEWM+hkmOE6WJSsLcaoZ9BJMUWGCwLoWhMTaiKIoqOsK6zxpr4cLnhhI4wxrPcvWsKxbDB7lW3pZTGgcxaqkP4iIYk9T1fR7OVXpCELjbUMUK3ppIE0U3rYQJBGCtUFMFHVNsbWdoTHLEsqyoChWTNua1gW8jalrixAeFUHT1nhviSJFEid46zmZzvFCEYSkNR7nDKm3ZFGftvU0rkU2Df00Y5DleGWo24amqHFGdZpK8dm5/LWXECgpOX/xPMa2HB4en0W6CyIpePPV69y4cpG2KWmcoV5MubiZMV7fJI17VI2hrAr61vDOG6/whc+9zsd3H3L//lM+eP9j6sqSJTnZ2jp5v8dgNGKxmLGzs8fx7iHrg9FZQ9s1YDKKmS1W/KN/9N/y23/t26RJymCYkSQb7Dx7xrs//ymvvfYq58I5PvnkI/7kj/6Q2y/fJtJgTcWwn9Naw6pa0tia/rjH9rkNfv7hz2mcIenl5GfoxkhqrDOYtoXgcc4DgcLXfO+9H7I+GHHtyk0+f+U8zx4/ZXF8iupnPN15hGtq4lwSG0WcxjTlnMuXtpmvpiyKglz0kWjyvM/m5ho3X77Dm59/m0c/+oT3f/g+dgumxYrDkxOe/PgnzFcNxktu3rrNs6c76Dhi72ifV159lR/96M/Y6K/RTzNUHDOcbPD+hx/x0q1bSK3IdMKd27fPiBgdMu/4cJ+6WPD1L77Nw/v3eOnGdU6nM1pniJIUQqBuGpz3BC/YP5nRH42ROmK1WtKeHPHnP/kJ48mE4XDIsqyoypKsl+EC2Nagzsg9rTH4INg6d44nT58QxRpvHRKBCP9jGB90hvNEa9557SWyOOb9Dz/EVAUv3/wip9NjemnO5oWbPPpU4a3n+bNdvHdsbmxRFiXPnz0nS2LefPM10izj3PlzBAltW7O1tkZR1+A8dVXyta98gY/v3iPfmDAaDzHe8cqdl+Bf/YakHYuiQkjxHw0IIQTatv2PaYRKhG7ak0RoFRHHEXWzwrhO89Ld3xReiP+4LsJ7gjUIIXGtIRiPQJAmGc7ZswAORQgOISRxEp2tnbrVqpTdB9ElZDmC9yidEKcR40lOmvR4+OAEwgDwOOdw1uM9WAuRzhFK44VHKk+ea3yoyeJtBAohG/rDmkafEjYEzvSoXISOBbGMCcEQC8ckU2ysJ+S5pqdjJILMCJyM8dZRVStkHqjagrV8xFiMUU2PJO+x8Anrw228tzSmYm865XD1mO2tIbZwRCHmYH+PW6PzfPWdt7n8X8WMbmkGecJqNWe5KhnkKf18QGOhLEveffeHiMowyDOCyikqx8Z4QBzD0dGC6+evczxz9C5B2Ra8+fJlfvjuXXzIebHc48q5NWI8dbEg1RXGOy5d2aCcHpOsHNsuMKVhoRVL5YmoSM9NOFgW1OsZbT+mSgJPFyWvXz3P4bMjFk1gGQKt9EzLJVc0CKkQQpIkitZ2Ep2m6VLWrPMY5wlKYYPm6HhFnvU5t7HJ8xdTdBpT2ZYoTmlMTZJlhEoQrCVJJEhB6xyknvz6Jtlqm57bxFcFGEVdLihPC6hrnOrWlt57vHZooT6TdvyGSocADox3eCmQ3iCtQ9hAhKDRnsZbokgQuy6IAJEhgH5vCEAv1h3SqipoXUljKhQB5x1NXdO6tpNXSIUQCp1mOGORPuCcYxlW1KGi8BH+2ZLjR7tsXt5keGOL0bVriFrwojrisJjz5oVLXEnHDGeembe4XFKain6qOL+WsP7WG9RHCy70rnB++wbHe/cYuASnBmxf3iIablD5mEkWk0QOKSNOV3NKa2gaiFREMIZICuKe4OhkhqMhTXJ8aGh9oDRFh81zCi0VqUyx3lMVhthIqsojY0gSx8Y4YbbXDUFCEtGPJBtpQk9K1KTf0ToIxEqTBENrazwt85VlPvM0bQOiSz2sFiWFqUiSiCSOaJqSVdVSWkFQEUooYiHQPmCMoalrEDAZavppDx3VlE2NpwuVUBFd4h0lQglc7Wico6pbEilJYkWaJAwyRS1a6qbt/Iuf1a+1vPf40MmQ3n7nTZ48ecqjB49QSL7x9de589o1qqpkPB5TtDXz1YpBueTytqZtDcPRmOe7u5xMHWXTcP3aFb7xzS/y27/9dZ49e8Hjxzt88P5dHtx/yuHBLrPpCV/4wtt86+tf5o//6I8plzN6owmejgNM8IjgKFYV/+S/+2dMJiP+9t/+68SppG4LNrY3mC8WCBt45413eO8X73Kws8Pa+hhnWhpnifKM48NDjPNcuLzJfHbKeGPATXGT2bzg5OSUuigQPqClIs9StIrODL4a8FjbUHrDJ0/vEqmIzckm25u32K8PmC2PWJUrFuWc2raIkeL69kVu3rhAkmhOZwVZ0iNLM67fvM6Nl28yHK1RrApUkrJ3POPesx9QuhonBVHaJ0lyTk5OieLOZJkmKdOTU15/5Q6PH9wjiWNCgBs3b7G3f8i1q1dI0oSr169y75OPqVcLNjc2CN5xdHrCwf4uwZS888p1vvO1LzOrLI9291nb2kRIhQuBXn/A1uY2J8cnHO3tUswXXLt+nZ+//x7OwfOdHX74wx/yne98h9FoRN3U9IcDpJKYpiWEQFGUCClxjSVNY9YmE45PjknSBDzESnH79ks0VUWxWvLql1/lZz/5GfN5wUlzShrlHB0fc3Rywub6GqcnJ1wfDOj1+igk8Y0U6wxHxyeURUMexUzWJhwdHjDZWEOOByRBgtT82fe/j7Mtb7z+OnEcc+nSedpgWc1mEKAxDY1pf+mz8Ss30tZBsB6lPVoq4jRBCIGzpptEEJCiwxhJKTvZh5LI0PFK8Z1wXMVxJzIPdM1y8Agl0AZE4/A6UBUVzhu8U/TyAcaYLqzTd9gcj0QqCdgOpaRjpGgxbYlSjnPbWxTVgkVRg5LYpuXMJkrwAZC0jQGhCGgiLVDaEicpUnRBB0o0JANPHXaYLw5xSKTWZFFEnkT0VEpQgbSfMhwM6CUJWRSjlKYuSgKWKEqRSURhVhyczmic5+K5IbXtc1ANCGFGa09R8h63195g1cLO4gOycYsLA4oyIEWCD5Ysj7kw2WL9rwlOwmPyKGYwmJBk8OL5U5wdk/U2yPMIkddsnkvRdkC1lKAlR86RiIzs8h30xiV8L+WD54dYEbhlHOfGMburmoM51GYPJ0/Zmlzk9q2L7JwsOT4uGX/uAsXTE+6sr5M3ER//osDFKQtds3lrwNroGovpEtoG3a44WlScTmdcGibs784oFHhnePj4Ia+8OiOJtolMSpRCVXVc0aZt8EGgoxgtPMpYrAeIMHXDoDfgxpWcZztHSKFoDVgfCN5gTMBYT57kLFcrsijHBM/5G9d5uPMAbw12AMuTgmI6Qy9Kek7gUR233AaaukULgYp+5SPzWf0SlSXQuoogA4pAJFWnj5WaoDS6daRItFR4azABpIrxZ+xiziYhXX8VE2tNPx8SaU0UR9RVTVEU2LakrktAEklHo1p87DuSD2BjT3OhYv3qJtWuwcgeqetR7R9SzI+ZXL9EnMTsFSe4NLA5GbJmFCnQihQsDPsD0GP+zrf/FukiZl0NGWvN9WSLbPs6TpeUpWdLD3Decbr07O7vY4PEoch0j16SUBanRAqKckEUCdKg0C6QS4FUDhV5pA1k0pOqiMxLTlcltTGgLWsyIUskvb5goCWDzTVsEASpaWuDdoJiZZg3K+arUxrbEkcpfa0p6hKf1JwsG1Yz3XFYsfTjjJ7qE7zowlGMI44SUi0w1mCx3eRcSrCSuq47k2EIHB6fsEpKBv0eWinqpsQJi1Sa0liW1Yo87ROprqk3xmDr7mJR1S1KSrTWjAZ9ZPpZ4uivu6SQiCA42D0gixWvvfESg9Qz7Pf4z/7zbzJfTCmLGhvoNsnO0bQtRVMhfMTtOy/jBXz/e9/De0lZtewcHDFZX8Pahq996wu886U7TKdz9naP+Pm7H/Pk8QMe3P0EJQS2abF1jUwyROgyIzwWpQUhSJ4/fcbhwQG3X7nK57/0Nst5SawTjnZ22dvb4ytf+gqPH98jizWxgMgLatvQy2PGm1s839/lYHpInKT0RgNUkrGxtYW3hrZqONzf5+TwGLzA+79ANUakaUzeS4kzhdaSWbVg7qbsHDmSKGY0GNLbzEldzmy1oq2XvPvJXbSKwENbO+qyJv6Tn9BLR1Rnm/HZ6RxjGuIk5qU7LxNlGdPZisVyRZyknE7nJHHM8fExt29ep5gv+avf+C3KYsVisSCYlls3rjFbFLR1zaN791lMZ+zvveDCxUvUZcHOi2fMZlN6qeLdDz7k6GTK2tYlpNKoKCLrZcj5rMMDrkqqssF7SRCSQX8IKFzweGv48JOP0ZHmjdffwDYtSaw4f/0ys+mcZy/28AhUHKMClHXN2tomTdPgjEVLMF6yv7tHHMeA4vDglNo6Prh3j0R3qZpJlrNcFgwHfXScgI45OJnhliW9/oDVakFdVjx89BjbtIzPb/Bb3/lbzA9P+O7v/we+/LVvsLW5xdr2OYRpsSEQWst0sY8Knu2NDVpjGK+vs17/BvF3UZSC90ilEFIilUJ1pkvwDqWi7mdS0TQN3lukEEg8bXPmMo1SEt1xRDvHpkIEgVeQ+IhMwDJqOy2ekigV0zQNBImQmihKaIzFeocOnUgdAj5YgqtZW0vZ2ByxWhUsFx4VW7QStKHGO3VmlgnkeZ8QBFGsaFyDUppYd9rJXr6GDGDFHotmSWF2MQ60ThgOMoa9lCSOGPe79VMcx/T7fVKd4I0jTRWDfg4EysJS2RX5WNNnQFYavnD9NpXJube3z3htj5e2FNeGbxOZ83h3RD5sKFzLdGF5cuz59N5HNL4kpC3LdsVMnxDFJRuDayyqQNMaRoOMVCrWkzWunHuJ0cXreFnDImMtTxHaYycT0nzEcLSB7EV89OknjNcFn7gFm72MKFX0REq/2uRk/oyk59g7mdI0il5kMdmM0XhJ/soJbbXHrXJELi9x7+6MSCh8X9CLJIPWIWuDNAJXGp7ce8Hn79zgeiwIq4JYWx7/2U+wf+XbJOk2UbrOwhwSkaF1gsPR+kBrOg10ojWtMRgErQ80dYnWknMXcl7szEjiIW1tsa7pzKV4nKuJVEAESUSKUJ7RaMJ8cYQQijaXsJkTaoM57XBgUnZBED54DJ7w2ff1b6RGfclpUWBtS8CA1vR8ykapIcAqdhA8wTlK5bBSIP3/aDiTUlIRAIUM3bvF2cDKtegooKQmisasDTaIlOhMbW3LslxR2gojGkLoApta13BslrChWZQnTE3DwGbQxKyeWDbGm4wvb6MngcNoRi+G7RCzbiTBZ/RdRFoopFvHK0WiJF97+y0u6nX27C6tliyGhmeHezze36d2KfEwwbVgW4lvBa1rkNJzspoiI01lA22wYDsM2cjFbMYZ/UHOKO/RT/uczEriOEbqCOkFkkDtVsyWC05mp9Rlw/F0QRskzkm0jwhSUNmKKJIYWxHrijTbYpBusDTHiKZGKYETHYu2dZZ+JNBKncnvLNJLemkPJVtqZ1jWFY2zVJWBELrgFymx1lAbQ9VWKAR5EjHqJzS2pfAtAU1ZVyi6AYySCh0rgvc4H6ibmuC7S9ZA/PIpZJ/V/7TSZ9/xBHj2eJdeKvi7/+W3GU16PN95wdHxKdevXQGhkUFQFRUnYUpxrkQ4xXAw5q033+LRvSfcv3eP6zevs9+esqoMTdvw4cf3WZ+sk6URN29c4datG5zfPs/+7hH37j5kPlvx7k/exzmPSBICDh1JeoOcYX+D9ckrXL26SVUvmK2mRFHGpSuX2Fhfo1oueXb/LjcuXsRaw2I5I1cxK1ujkgnHixk7L3aQWuOsJ88yJObM7JYQRRFXsmv0ewNePN3FNQZnBYW1lJVhOl2BCCRxRJLFpFlCGkXILOGkLTitl8RRRJImJEmGaTvsbiwivvCFL4GT/OC7f8Z4nHP55m1eevkWp0dH7O08Z308YT5b0BrPaDDCZA4lExCa4D1xFHN8fMr27ZewVYFFsjYcceXWDR4+fYYUYFrDtKw4OTqmKEp2d3dBwP7uDtYZWiOYL1ccT5d8ZbRJlOUsl6sOV+wsRwdHrJYVbdNp2K2xSAJZlrMoFp0vKQQ++OB9hr2cm9euYoNhNOzR7/fZ3T9CO4XSEIvuOarblosXLnGwt8vt2zfZO9zj8PAQHzo2/PPdHQCUjtCRYjDsM10WGBnzox//nHPbW6j0AftHJ+zee8R4PGZ/f5cvf/lLrI0HvPHVL3H55ZdYnZzywU9+xvOHz1lMV/yv/uv/NXfefIvf/+f/HCsFWdbje9/7Hl/6/NtsrK2h0wTrOyngL302ftXD5Z0jUgoBaKkRIgbf/UxrcMEhEDjboaq6zPlAcA5vQ+fdkqFbqUqJEB3+REmBCIrgFHGQRMLRGkOWZlh7lloUPD6AM01nesATHChSfGhxLFlfW0NIwbNnp/TyNerKY+sWQuca96FjlSI8Wkva1qGUII0EAUOSDNEqJ4n6JLmmDStKc4xtPb08J8si1kd9NjbG9LIUhURKiRQCfENZWPb2DsgHisn6gDhNWNQFi+Wc8XiNrX7GlWsX2e5t8Yu798miBRsTyEVLImNq0/Lo+FN25ifsnVRko4zHL045PBVkQ8GTI0E5fIoSj7gzus7hfIWK++RZAkGRR4JeEjPIcqJ0jcYZon7g0o3r6GXDzEuGvRFRIvjkyce0jx7jninWv3mTk/kpa+MxtqrZzvtU1YiTkyVp7lECRknKem/IcraLK/d59VV4uPuM9lzNa1df4v4P9zl6BGW0xDYVEeBDimtXHM9Pma5NeGv9PNnxQ6RI6E8hPlqiNktE2mcQDymC6/TkWhCcI467zzaElsY0CBnjvEFohcWR9FIuXT3Ps+dH6MieffEKnAxYWyGVpGlakAFvDRe2L1EVC2KlSPqSAo3YhHp5ROQM1nXPZRCghP7M1PQbKkWn2ZdO0FjLypasucCbfkLqIlrhcXXLylvuVVN2tKHOdYefC4EkSQhSIGREQCGS7uJlXeiit8/eNT7YLoQAkAjGww3WEUSxpG0rqrpDYbpIUEeGdmBYAqu2IXaeMRHTakr+uOHK1phdCspMU2nJIoYt1SdZaVzd0PMZiUg7ylAB28MtBhJOqmfMj08wRUE/0cSNpZ9pjITGQxJH1EVNLCWycvSThO2QECV9hr0+OtKUwiKibtNXFhW7e/sUQVI5z8lsTlM26EhQ+5o6tCCgn2VIKVnVFY31RDJC/EXMt+v4ti5UHMwPiZY5WS7YyMes8MyaArSjbVvmVYfwcqIzgpk2UDQleZYxSFK8MRSuZWk6PB5CdKgrIUmimNZ0PpqiDlgSxqMRg56gbjxt7TDO4UU3ZAmILhrcWnyQIMB4mNflX+4D+z+D8s4RK9UF4AjB8cGKf/kvv8ubn38dj6FtPfv7S777h3/Kl774NsNxjrXQVA0CzXwxp5eO+MEPfoxtDBsbW1y7fQUvBUmec+HSFXae7XJ8MuXkpKauKrI07gJ4rOHO7ZdJRcTO7gH7p8eMNtZ4+3OvceXaBQajEdOTE5arKYfHRxRlTb834Hj3BVoozm1tcW5rk6PdXbY2NhBpnyA9/Tzng4cPONjdI/cx0mnwghiBbT3edsFQeIEMkq31DdZ6Ex49esp0vuAvJitBgAxgWjDWslq1iNAZc5WELInIIs0gTYmkIpIKFcAHw/3375KmA+7ceY1LV6+zs7fPYlmwWK3Iej1WxRIfPL1ejyzrU6wqWhsISKqqwQVoqprpbMFf+dpXsHXFpw/v8/jpM5qm6TTsWtC6wLJYoiLN6ekJo/EI7x3IDi0YEB0tBdmlQLtAWVbgBVpF9HuaWrXUouqoHLall/dYrhakWcTacMh8NuPnP3+Xl25cZWO4xsnpKdNZQVFWFKWhqQ1RrEiyHKEU3ls2trb4xQcfkuUJnJlYlVQEGYjiGElAxwkOwdF0jogzLl65imsq3n/vPV55+Q6Hj54xHPZ5+3N/HS8CX7z2DZq6ZueTu5iqZmNznfmi4PjklP/rf/OP+N/+7/839DY2KEzg3rOH1E6wf3zKSy/dZFEUHC1PWda/fILxr95IW9e5LOmmElpHeCfOomYdbWPQkUYGzl6eAi10p4eW3cenROcI16qbNgl8B+aPekDXkBa0tFpA6KbbUgoiFWN9wFiH9RatFa51hFAhpOP89jmK0jKfr0jTjLYVuCBwXnZ4leA7pE5w9PIUIUGqLl1R6M4x3Ov16SUDhLQgCyQWXwsG/Q2Goz7ONtSNZzYtKJedeD1NU5IkwYfA9LTh4OCUi2rM2iQiNBGm8fTiCaHqdNCD3hVQPdYmM166rBmLy6z3BuAz6jBl4XZ58HSfhgG2LHm+e0JrDbkMRDJD6X0m/Yw4GnK0nJLrmMVqjsSho8Cq3iOKLZP1jJMy5fzWeazX1G2LtQHrap59+jHH+ztszVvKk4r21ctMlxUHs1OuXLzBleF5CtvQOkNR7rM+iPF4dqenHB0L5vOU07Yg7accFifotuTOl29QvJjw819UmJVCZgnNyBP6fdxQ8lw6LqTw2sVz7D0zuLnku//kf+Ab/wfH+ZtfIfN99DBQVCsILUmSYKygqiqUDiRJxyVfVY6iqdBxTL2q0Trh4qVtnj57hrPujCnebSq8MzgRUErim0Ce9BlkI/IkpreeMJsvafWcvf0Kt1x1sp/gEZL/2FTzmUz6115V1ZD1Mkxp0EqBD1haFrN9qtJT2YqqqHmxWPA09TQXRwgdAzGr1Yo4jhn3ekid4lG0QeNlIEgFOqBjjZIStEDLlGAcsVboJEWFiIBnvDZhQ4PIQEeSxawAcpyPEbYi8pIoeMa9lP4w52F1SqYTskbR9yk9r8iaBgqLlYJGa1q/RCSKKI0p64Z2VZPYwEtyg828x8q11FFAqIDLFCZOcIAfDDuufhCUTUvhLWXd0jRwejRn2jZYPE1bkmYxAVgWNbU3eKERATKvCUESxz3apsFWnjh4zo3GrKoCgqV2nsYIysYw6CmSVLPfzJHGkLWBSX9AlqXEcYAIpvMFQlnG52NmszltLfEhwltoS0MURLedkzE2cVRNTQgO6x1JlKKF7FBVUuCFYFk7jF+RRBn9RGCFo2wcjTMI2ZEdrHXdYEYIpOwIRa36S31c/2dRwQectcRRRJ5nlI3h47u73H98yFtvv8ydl6/x+OEzpicFz5/s87nPv0zdVCyKgvFgnaa1xJGl3xvy7OA5SkTY1iJTjZIwGPSYbIzJez28g5deepn9/T2aqkIJwdMHT1jv53ztv/gbHJwc8Xz/kBePnvD84SPiNKe1DXk/JU4TMJbV6SkrFxj2ejxbzBkkGdvrm5weHHNuY5Oirdg+f5Hv/8m7yGWgR0ySpugoIhjIpKLwVafHBpwFkHgVeOvWK/z8gw9ZFnU3/INueNY1MF1D6F237Q6BtjAgLSLyZFFC1h8wGgxZn6zRWIvKMobDEUVZEMcJ9z59wKOHD2jKFUkSoZViOBzRS/scHBxjbODOnTeQOkJ4T5Tl3H/2nKPjY27fusmDJ09pTINUms2NDXq9nPffe49EKaKkS/W7cP4cURxhXEe7+AucYWMcPkA2jDk4PEVrjZCOuukSTa21ON8pc7M4Q0uJMw2vvfISL17s8vTZc/7Vv/m3fO1LX+LS5St4tyLLcqyrcY5uoyAckY4xjQMUWd5jsZwDAh11ZBTk2cADAUozXSwRzvLJJ/e4sDZka31MXJbMjk+QSvLeL96nPxwwXp9Qn8wRqvNG1U3D9WvXSZIeD5++4E/+9Ef8wR/8e958+23+5I//mE8e3mM6nUHkWN8e0R/0KNuC1vzySM1fuZFOo5hYdbpDHcd473C+w6vZtsU7SzjTsnXRrg7OzEFJFKNENxlSZ05N0TkEUUqSyZQYTewUU7/iwNRnmmsAD8LjfDcV8QjiSCOCJ+87JpM1jg8aqhaUyglIbDAE2SBVgjEOL1zHR3WBKOpcpaBABCId0+tlTCZjIpli7IKiPGA2b9FxDkFw7Gq0VsRR50aNtCfRMbXxuFmB956qAutitM/p2TXK05awVKwqQxz36Mc50sI4lkTnLyH8I5xQBHudspU8Pf2A2hzRlIFGa568eIL1LYiS0WDMdh8mLLg0fgtTR6SZwPkaoQRKZywbRy+RrMo5F85tM308ZVo7TqqKqa2oW0Pj5kzdgkQHBmnG4eqU03lLf9lQyZri6WPOv7bJxlhT2yFudsg4j2lLg6lryjrhZDlG7ldc3EwpTz2DtcDTxaesn7vG59Mhp5/22dtdQqY5EZo2jTgJjp3VMf/563dQ7Q4nM0O8V3L000+5eeObeCFRaUbrG9q2QamIJE4IIaOsT4hiiQqSONZoG2FDQMiYqjbkmebShUs8evQEJSOcA+88UmpaUxIJ3QXKJJJnTuMLSLOEK8MhKj6HfTTlYPW8e5Z94C9U+FpGwGdxxL/umi4qzg/XwZcIGZNGgZUpeehXjOYNDYbDsuHeziHtekp+IUeYQBJptBIoETCmxjmDijLW17dAx4ikhxQS6yzOeYIKKJWQ9FKGvZTgDJqUuqlZ29jm+PgQ0XiqxmOZYJxEoDqJgsoQWUbRC8gocHV9naFUDCpFtpBktKAl1XpEKzX+oCTrD5jKJdmyRW30ONKHrMwRdVUQh5ReiAmNQekes7pmKeYczxeUdYOTiso5VmWDFhkKhW40wglmTYsTYK2jWJYkcYqSEVJURCpBii78yXpPa1uCA2MlJnjCwpInPaLI4oqSNgS00LSVxJQQjMbiMF5QhJKFXJLKmFzn9PUQo1qqVQnBEYTFiYAJkra13bu9rclURC9O6OsIaw1NaPFA1RaUroYgiEkw1lO1NUoEMiGJA2in6GUZANYJWmGRCozvpnJSKKLP3Ia/9lJakeXdFmO5KvB4hFCY1vCLn3yIXxWsjQcQLMvV4ozABaezKWuTc91AQineevst7n58H4Ei1TkByJOc4Bw3b1yjKCqcdSghuXBpC5xjOBgx7o/5wR99j4M/+xGv3LnJYNBnONkgTtMzprjH+abD8QVHoiOCA600UgryOCFVMSF2CCL6eURoA5fWLuAWz6lah20bvOouaUJIMqeQSqIjjQtdGqcLAYHg6y+/yb1Hj6jbFu878oQ8u9wpJVFIkiShFycM85w8idFCE2tNpKMuTdEbJJ7hYMDaxgQVpzx5+pwXuzsEqUjHI6anx5i2obKGptplMlonjhIePXuC94Jef4C1DoXgtKx5//5DZrNThAhMxmPuPbiPqWoubm7zd/7m7/CTX/yM+48esbu3x7nt8+zt7Z6BHrqU1BBAKE3dWIRQeO9xpsAaS/CcETgk3gbyPEOLji3+wx//hMnaOgjBfD7nxz/5KfP5gguXrjDs93A24Dy0TUPwDh88SmmssfQGA06mp12aatPQSzS9NGGxXNKYbuBqRYsOjoO9Q5rpCbdvfaczEz5/wcXL50n6KVdefRmlIz795GNyFMeHx1y+dImHnz7gdLbg448+4EtffIPrl86xOD1mtD7mjfw1vLdoBYtqQeVKatsSdPRLn41fuZG+uLFJ3dQgBUIEirqgLMtOW+oczoPzgTgElFJn6zmPkN34XimFlJ1piBCIdYSWEk3XXDsVMCvLwAjm5xNQEElogkMLSWsKPAYpIrwr2NgYoKMex0cFjfOcoRQ7+Uhw9AY5tVF43+Kt6+QCkaJLgPEoqdFKsTbKyfIh3lk8x0RNzZOf7GNsynA9Ju47xCjGSINIBEk/pbYlRjYgJcZ4GmNwTtJUFTunJad/8Cl26bCxJ4kkl976JvVAs784IsgT+pkg1zlBSYQPFO0Ru4sHHBT7qL5iujykP9HElcc6RU8afDVjfPFN5tWA2fwBVyaS4+mUpll0OkQnWbQVvV7Gq+eu8tGjObNlizMGHzSSgFWO8eYW0WgN0QS89pTZkMNlxbntiNXJEdPlM5arY9Y3N+lF5xhEAjWQLOb7jPueq9sxRTEgXlUMWsVmMuTFbMH89ITU73LhpUvcevs2Jwc1T44bnh0esrSSD6uSl09e8NrLF/nezx8g6yHPv3ePq2+8x9arrxPrEeNswMofkyQxKtJ4oSlbxaDfZzqdQijREtoalPLESYyxBk/LhUtr7O7MiHUXn9y2lljFOGNYupbUFOSnK5CS/dMpcZYgQyCeJPRnPUzZBUbUpqXxLcF81kT/JkppTV2XaB113GgclVQ8EQ1JbImUZd/MKSeW9WsJLreko216/Qm5l/T7I9I8xoeADwriDOdBE2GswwcNAqztUkaDCzRtSxrHpLGGqMfBaUHZQGx1ZyrSEkmLlwEbReigyIRgS2dcTweMVwoTalxw1Fqw7FcspUTlKVvNgNxkyH4GcUu1c0q2t6TanPGwfUojDOfyC8hacbBoqGYlL44OaISlth0tIUt7mMbgGkuUeExr8FKDkGQaGmNpjcVKSV2U9ONAnkokstvihS6+u3EGqXRHpLGBlalYtBaBIYpSlIpQWqHRKCUJtiXYAFZ2U6IAy7qikh7wJKkmljmp08TCsWhr6trivUTGGqsCi7ZFNoZeFDPIekQuJqiAzwyZg+AFtgpYpzs9t1BYD0mc4h1UtUFJSZp0xsQgoHUtrWtRUhHFn5kXft3V6/WA0HmdQoeeVUrhPYjgyHXM/v4RXgCqSya0wXN4OuXGNYc6gw1sbm2gtOJnP3uP7XPnGK2PGA7W+eM/+S4vdnYZTybEUQzBs7Y24uKFc0wXBf/kR7/HT//8F7z26nXGl7Z48423CCEiTvtM1rcolguePLpLXcwoliUkdBdoBFmWkaUpWkqKRUHd1GQyZXl4jGtKvKtxzmJcoBOjSpTSRDJCOoFpGqSQXbMcQIqOaPP5Gy8hQsBbT6Q13juSKDmbTkPrHM57nLOgBEEJKmc4WS5YVRXz1QKpBV+/fYVVVfDBn/+U4WjCweEBpbWdv8e7zodW16xPNsgHI44OT0lTSRJn1E3dkSuEpKpqbAgMxhOsbTieTcl0xO7RC+bHJ/zu3/07XLl2nQfPnlOWLVcuXSR4R/CWk9NThJBY5xB0U+duwOkA0QXEqY5pPzcGJyRJHDMcjmjaitY2TGdThFR475gvF+zsPMc5y/lLV3A+QWioq0BdVQTfMcmdd2cc/05/HyvF67eu89e+9U0+vP+A//5f/FsIHh0nWOs4PDjka7/zba5cu8JidkqmLtMb3KYF8q1tDh8/5fjZDo+fPOPWzRt88uknVGXF7Zdv8zt//ducv7hNXVUYb/jCF7/AP/0X/5qP33+f85sTxsOMJEswOIrfJLVjtlwQxZo4Ts4wchZnLf7skEWRAgSEgFaKNM9RQXTObe/xIRDO1udaKpTsXvrdfDp0GmwnWNMZJ95i0Hjr0UmC95I0zTCd/JqtzQ28DRSFJ4gMoRpEMEgJWZZgbUtR1NgzXVMUCWSkGAz6GNMgFWgliSPdZWYlBi0q8lXD4c+fsr7q4ftDFtMV0kp6OzPa6RQTLDNToWJFnOcY6zDWo+IEshhTl6yWDWklWRYNjZXIjZxX/8oae8UCE1VU5Yw7VyfEScTG5DLPTpd8svuUF6sDHu48RooJvbSmFIbKQZ5PuHrpEhvjdYK8yqc7jwicsjFaI+0NkGqFAnp5n0c7zzm/cYm1XsTWMGFpVaf5bGqUkHgvUDIlyjvd1vZojMtiCk6xXnFhe0xr58SJxAWHNxorY/p5zrnNDYKesVgtUOc2uHJhiAopp4spg71jPn20ovY5u6sD9qYvuHrhJu/cvEL+Xp+7T/eoVMkfPTkke2nEYH3AzskC/2LG4X/zf+bv/R//aybX74Ac0u+fx7UG4TwaSZ70UVKRJIrcRgxGQ6ZzQ906qrJhOBoxmx0TRRHXr13h+YtdXAiEADJoqqrFtQ15kAyKQBJJpq2lXJWcTE+4ef4S9vD0LKlzxLJuOJ4d4p3jM23Hr7+atqZuNP1eHxd6uDbQIDCDPs/nNakCcWGNG6/fYOv8Jm02JErP411nnBNofNJNV4ITtKF7D3kTEKKLvY6iiEGqu3Vma/EhIop7OO9Is5iiWCJVQivAI1jv58Qm0M9iotaTh4j1KGUSxUTKsG+PKKOGlW9Ik5SNLGbpFaq1XFgoNAkzZqyY059A8XhKP8lRJqcIS+bGcyH0KT9+weJ0SeRbts6v8aJc0YSAna0YkLDmU8ysRltBGmu8hN5A47VkZhwNgio4BJ7kbDLvpURLTS8WRCRdmAoCbxVOduSjlAwVQCkI1nVmoiQjWT9HuzRMnUW7wCAI6kRSAj44sC1VIdBCEEcxSSIQSoAVGNHhI2WsMEIiowjiiHZVE6wnixOSJEcKhZfdZUCIQCQUUmoinSEQGN/gjSVFY73A4tCRIk9TIODKz7wLv+6yznRJwiF0jWKgw8Ih+ernbvOVL77G/+1/+FdkecKlK1t4PFkvp64NVdOwNphQFC0/+vFPyPo94ixnZ/eAyeYm3ims1dx7+ALPDkJ0PiMhQjcl9R1W10s4XMx5sPOCk9WCC1uXWR9vYVpHL8vY2tzmWEPrDEkvI+6nCB+YrI27ZtR1fqjlao5OFCLSiEgTJYrBKKH2jmXZ0BpHcB7hLaF1OGuwbQs20Ov1GQ76Z7K/rslVUmKCoTEts3KJC54oTkAKHA6Lw7uA9R4dx9heYOlaZrIiGMef/Oj7TE/mOCeIopxVU9IQaJ1FCkhUxNrmObwNHBydkGV9kjQneE+aJmS9mKZuaW1LbGOiSHPu4kWODvc5OTjAB8/G+fOoNCbvD/jSl77C3U/u0s/7vHL7ZZT0PHv2nJPpAtMadKJIshQda5ypuHjlMt5ZNta3mC9KfvazX5w9E57lasVw2CcVCdZZrPEY7xDAYjYni2NGwyGT8YjtrXV0FDGdzjk9nXF6OsUWhryXgQAlJJPhgG9+5YtoZ/mtL77NH/zh92icZZRF3Lp4hUTDG2++hjtLhrUIWuuJhwPuvvc+zckcHcWkUcKtm9fY2Fyjag2r1Qqc4/GDx2ysrZH1MlZ7+/zN3/4OaQh87YtvY9qKF7s7/Oin75L28l/6bPzKjfS8KchFhog01hiE+Iv1QIe9wwMEsl5KL+8RRxHCBVrRBbf4TniEkPLsduu7hkeBdAIluuCWiARtHSYI4iSl9o6maTvsk1SMRkOKVY1zsjMjqhglInAOH7oP1wdJEud4+xe3IY/SEdY2SEmnBRIe684ioVVB7BrMkzmbi5RssM6jdslgmGLrEn1c0V90CYFYQxQFRFghrUN5CFTYqqAfSybjIU5BfPU8a1vn2XztCif9GWW5YlsN2VzvIShIspSdacGPH+ywX+zR+IZ+uoVtHEgYbmruJNuEwzHJsmHy0g32phHTxpBk8PxkytHuDrO5IF/vU9cVIlI0oeO8vn3nKs+PVrTOU1Y1SMVyVWO9wlhHXbeYWFA34JWmbCMGOseGnHlxiEr6XLv6MgeH+zze3SX4Cu0D1qQ8flZy99kOm+N1XA2Hx0t0FJivSlzwZJHi8f4jxIunvHnnmyRqm/c+rXmmV/zB0095Z3iVZdFiy4B/avnu//tf8+3/nSLdvoDX6yQqQqkYrTRtU+MCFPUKHWvKakkS550OL07wVpDEOXVdksaB9fUJz3f3cN5iQ6d5dc7TzleolSfTnr2DE6blnKateHK8JI9irl6+hiQjL2ryJOV0dgKro1/12HxW/3/KB0ccK5I0pTaWPB+QR4qqcmTpFpPxGj4LjPKUWCcURU1ou89UKUkUd6teKSXSgwyCgMIGiTibjPmgyWSPtUmfZbmgMZ44jmmbBpxDn73LLC3aW/K2YRzFbGcDZGRZuYq9Zpd7RYtSMfNqisKTh5jtQUyhJNZ3yYztwmNyOHIvaNoljY7JN3pkp5LN4TZHwbCqLE92d7j34SNc46lNxeH+AS5KKKzFWY9RGbqB0HiilcEEje28i13MOA5ihceiR5KNayNmbUt+fsJglDKdVzRedImFOGwQVHWB9tBvY26OLrPYnVKXDc54CEtMaIi94vLti9TlgnhZk6yN0f0MpyBJEhKpSYInVooiBIwU1GWJ855YKpQNGCSR0kRaEjbXqdoWZw2NbyFYMp3R04pBFpFGGiciGisIxrJoa4Iz2NkMh6c/GRBnGT5IiuWSZnr4l/3I/idfxpguoS6cKWpDZ9ge9hOuX7/ALz78kLZp+c63P0fWj1msFlzeWudoOudoesxgMORf/f7v8+DpC3SWEOUZR6cnPHjwiM9/6YtkSdppb0NAiIAXEhc8wlq0kkRJirUts1WBlYLpasH+7s+QXtNP+2xtbHDjpevcfv02H31UY2zDoxdPqBZLxoMhmdSEumU8HuO8QJ2Z27YvnON7f/LHbN28RP/CBm0uMUXD/U8fspyXBAvCeWKtuH3jKmuXJ4xHI3pJZxwUvutTlBBUdY0LgafPXzBbrnACnPCoLMZiqYyhdTX98RCV56xvptiipZkvkbGmWtWUZoUh0DiLCwGF4MrV65SrGm88g3xILx90cpJIIKPA4fEeedYjeE/bGpDw4MF9tJbEaUzrLG+89RazxQKlFZPJhCuXLhGsZefxU2bTY3TchbcpOrRfCK7bZsUKvCGWMD3aR6qEUT+nLEqUUjjnmM9n9Hsp57Y2WC5WSJl2VC1rWSwXHO3toGXgzis3ma1WEBxZnrO5tcWTx084f/48sdY8uv+AWEoO9485MC1fO7/F5nDA4XTGl16/zZs3rzAcD6jLFVmW8vDeI9772c/55m99Hbd7wL333qcoavLxmKOTU46Oj7lw7RInqyOePnlGjMRZw+J0yqt3XqauCoZacW404NEnd7n90i0maZ9/+Pf+AWjF/+nf/3Lphr9yIx1CwBlDtSo6KYdz/5G8wZmTNUuzTq9kHUFI5NlDJ85utn/RRCvV5axLzsw2zlHVTQc+F0AsEIlCakWOog4NnkCe95ierlAqweNxoT2LkhUdjUN2TaJWcafxkRFI8N4QRyneN8SJIoo0WgtaU6CzCm0EYuowC0WiUnZ3d0iurBNixfKo6CItZUAlMTpNUFLhGkdrGrz3BCR5kkNfEW5fI97cpH/9KnLQ5zRUjPKWS2s558ZbRHnJyeI+02WFdRd4fLDD/vwhxcrSV+fAVZTCsCYjJr2M3XsHvP7tr/DRJw3PTo+Yp3v0kmO2L08Yb415cnzE871dXrm6wWTY42S6TxZtMsgTLm/HtCZwcDJltiyRMuBDiw8OqQSJSgh066nBZJ2nz5/T+NBdIJqm05tlKTtzS5qOKVdTinrE3Qe7xGsjdvZrtBuwWMXkk4I0Dkgk1nQGVO0Fdw++y8t33qG1W/ziccOLRctWr2A4inm2OqFcaorvf8rRwf+FL/3db3H7a1/AyhE6jGgdiATQFp12zVOkJcEF4hha01JWnQQjijpja5JEbGysMZ0taK2nLEuEDjTGcnSyYEmgKluU1yQuwq4MDBI0Cq0E436PNE662NXPGulfe/UGfVSa0AaYbJ3H4DAhoGNDf2uEinpUtiDLcyIVMQwdNSBNBHkek6QR1arG2YAXAu8VQmiiWHfhTSIglED4QFPWIAS9XkLwFpErIgGDKCbyjl6IyNKcOOsY9cfFCY+WRxwtZtTWYV1gIBzbFzYY9Xqs6x7jaJ2ytnitUW0MJVTrhkbMMLKiJaFOBcNIco4h90TC1M5ZGw1Yraa4JfSGA+yyYtWuEElMlMRMLm5wuHOEWgZCDRmKkdKs99aYzeecLqdI7UlNg9ppWXy0Bz3F8GXHPDuiXetRyYDSUJuWtrHYekke97kQXyN+0hAez9DWgbE477F10ZkBkSQbOY92XtAWC/xwgFeBQaJIfSCtDdumR+kN9fkU2Rqm82m3aq4keuZYlSv0QFJOFGKSoCXsT2e0ziF9QLQtfrFknIzZvnmLZH2AaQxeOJSWPN9/zPHBHu98/UuEyOGbQDObM5z0/7If2f/kS5z5mRAQPGgCVy5t8J1vf4knzx5y98EjLpxb49atSyxXLX/wr/6Qr6oEH+BwOmW++Jg//fOfYFoQIXB4eoJSksOjA9776Y/JtWSQJizqpqNynTXrIZzpkkMgimIiLYmTBOEtUhl2d3aQXjA9OeTTux+wLL/MoljRNC1N07AxnhBrzWqxROuIq6++wsO7n3K8mpOnGfcffMqN2y/zw3d/ytbxeW6//Qa3Xr7IuWvXefr8OXVRYZqGrY0Ja8Mhp6dTTg9XXRqf9RSLFW1rEFJhre0GiUJQW4NMIhpraGdzZKRQSSd18qYiUp18ySnQaYwoutTErXMb9NcmvP/xp7St49rlK8ggkEIzGPTJ0owgAkp3W/9VMef45IQL25dQWiKkoG1bVqsVi+UpG+trRLHi5Vdepq5rvO/+puPJBNs2mNbQ1i1t01IVNYPRiOH6GJFo0jTBNiV4h7GW+WxJkg9QUuBdlxMSa4UQnkgKhDPEAtZGY+JYc//hE5bzBXmS4J6/oDcasLZ1jidPXxCEZjgcsnVuGyR89Wtf42//7b/Dj7//fe49eEpdlbz19pv0s5S6jvnWV7/MWqZY1hX3737K4dEPEV4wGY159vQZOzsvuHrjOm9sb7O+tYFtKq5eu0ZT1iyPTljrj1BC8PIrN3n+4gXDyZjFasVyOuXS9jk2NzepqhLbGgZ5fkYw+eXqVw9ksV0cs4i6sXxnzOomOVHUierTOCGEzq3pZGcS9KHTSQtAKnkWNSo7/jS+ixoPgrKu8DLHCUdNy9JU5L4zKQ5GfVSUsFwUCBF1vOFgQVrcGcMar0jiDGsCQio6e0qEt4Y4SjocnwZ19qXqcGTjCFTBUG3RzFtsE9iZT8lGOTqJmR0fM/CSxHTTlsY5kF3EbaMDUaSxwhAyRe+lq2Q3L7BIEvr5BoWJWTyZM8wU25fH+CD52ccP6PcK3n51xHLlOS4Lln7Gwi44mUru7u7RjyWbF+CFbdHtnK/91TdpwwWmy5SPH3zE8OqUc5OYSLfEYtj9lr2IRTklly3nNtfJ001OnxW0TUFZtqyvr4NSuOlpt4rRskP4GEeeKZIoRqiAVRqf9alDSyQ0s+kxWR5RVTGrMkM4y6o2BJniS0XbVjQFQEaaC5LMoaOGJFYEoFnBrKrZXX7Am597i9Zc5cGjXT6enfKdrfNsrPd5bmZEK5h/0PCu+QHHh3Nuf/l1ti/dIugUhcPYhijR2LIijjOwgijPMWaBsxrjGnxwOC+wwZJkGlVAU5QIIbA+gBRUtmXelDS2heDoZSmbaxfPzLCd3MifmVd6Se9XPTKf1S9Rk63L6DTGB017ZowoywobAjrLaRqHlgohuvjqsjQIEWFaRyU8wUOmh6DAhkBrLWmaYyqLsZ3UTHhPjcMFAV0+EZmE3HU+jEEvJ5FgQ81ps+DuwRFL22mghZU4oSjLhixK2Ti3iT4qKJ/PqBNQ64HVMCZdHzNuFUIZPqqeMS9O6Cc9CFCUKzb7EwanJZd7Q37cHFHULdf/ypuc3N+lriysYsaym6KY1ZLV8Qu2ttc5WM5AC8pVyeVzF5is9Xmy84BgG/oiIbQW4RVSpQwvX0CvD4i8oRACoQOSQNMY6qZCR4LGe3qih24Ew7yPMYbCF2ilaOsIYS3lyRx9dZ1me51Wa6w1RCEgU8FBOef2aJP+bkTdGp7t7p29n+Hg5BTbxuhpyfz5AUIbeq8MsE4SREplPEVTU5Zz2mbFuRCxPChpysCtb7xKlEQopUmE5sL5DQLLTmdeneLnLWFeMDv5zLvw6y4pAwFPQIC33L68xRdeu8OFYY/1V25TzGfMy5oPP7zPaLTFYlbxg++/y+fe/hwv2mM+fv9TWgsOj/ceW1uKpmRTjRgOctYmE772zpt8/8c/xYTQRYH7s/9PdkZaQcdqvnrhAlWxYNoE8kiTxRmP7j+g30+oyhWr1QJrPbHqttKL+QwBnL94mdPFnNNiRV1XbK6vEQ0SRnlOEucc399ljT6f/NlHnJgKEyucgKauefLoKaZtcdafBbg5lOrMjJ3cV2K96wb2omtodazRkcK4zsDoz7Iw4jhG0EkjVOOJXADT/X7FcknjDJnW3Ln5Mr20x/NnuwgUyThFKIFUkOcZO8+fEkcKJbvEya5JpuOvR5oAHJ0ccXF7m+2tbXb290mzFOe7AaRLNDqP6LsB88UM5xxlVXB92Cfp5SyWszNqlWA0mVDXhv29Ax4+eooLgkEvZdQfcP3ShN/93b/K7Zdv8Md/8ANc07C+do5L5y7w8OkzirLC+IIPPrzL9ZcCi2VBUZYUq4LhcNCFsAhBmma8/rm32XvyiA/efZd3f/YhWZbQLzVKBFZlwXh9g7W1Da5fbbh3/wHT4xMO93d47dVX2ZtOGZYF5smCV2/fAGdoy8DGZJ0o0gyHA5Bw9dpVilXB9Rs3IMDznReUzjDe2uL4+JDFcsmyrH7ps/Gr4+8CXQIYdHIJT9cUI9BKo3Q3ltYiQpwJyoWw2LbF+k5zJZUmjRKU7+DfSEmsMhyWXqJRwbHEn61PWqBBpz1q2+Jqh/caoVtQDuwZw1kGRBBEUYIzEOscY2sCLUIJemkMweGUQWrdMa2VxcqG3AfyckhRWFLXoz7cIZKB/tYQd1IymBniRGCkIhgL3mGR+LOXRBRp1IUB4y/exPT7lEYhRc50YdHKkffHkLQcHLW0BzUba4rLF1MSHTOvNyhXBcHVjNMxM1uTJTFlU3A6hTSXTHVBcXPAi08rnEqQUc78oCK9kREJTVVJhB3TX5sxr+dUwYAHN4jAZcTJGnU55+B4xunyiCTA+fEmq7Lm1KwQ0mPDCmU7puZ0KjCu5dbVHnkkMKHg9HhBlDaU8445ORwKblxKefxkhfERjavppSm+iWnjKb2Jom1SymVOuZQEccg8MTyoPuXNdz7Hol6ydyB5dHTCa5euYE3KqjnFtwKx5/jZ//NP+dN//0e88vXP8/W/8VcZTcYE67FS42WH0zGmoVzM8A4QMcZ3t/a2tXgcta3ojzPKYoE1AklGtTzE111SnFaSQT5gMhid8co9qIiyNhRnmKO6/UyL+Zuo+QKU7b48g+iwUQaQRJRNF8ojhMC6QN16hNBkWUZZ1DgTYUWGUYFIKfJEkyUNKoJ5q1Chez8p5UEEZAhkAdK2ZS1PmaRd1HUbWo6Wp9RJzZGbceQXlI1BOMl6PCBNIhKliQLsPH7BnSeBRrYcXNNsTAyHpmGrSRALxywPfFLvEDUgZqPO6DzwvH/0jIlW3CkjLug1PjSnEHk2P7cNxwv2frFHSkSaRKTeUhwtiEiIU41oHMoqThYnlMspaEfdVySXJsQqZvXkkCu3rjFdszTDDtNpdIQPgcgHtPfEUhJiTVIrdNHgGkWapmjdaceruu6+8GvDcuk5nZ5ien20UGjfMEgVq9W040qzhUCSrgKZcxyrORujPhtrI4qiodQRIb/AfG+fiIb14Yhnhw1xllI3Dq0kJpX41rCa1lSHNVtXL9G7vI6KFKhAMpCMyj72pMAvDWa6JBECPcj+kp/Y//Trt/7qV3j04BGHB8cM+5K//de+xt13P+W773/EF7/wOr/99ts82jnmw3uPeaKPUGjKWcV7P32f26+8zHJRIoXAi07Kaa1DxREqjnjy9CnBeW5ducCVzb9JWVWUdcN0Pme+XIDQtD5weHxEGkfM94954/VXeM4LXrt9m+dPn/Pw4T2++NWvY6wDJOPRAHygqivWxiOapubw+JCnz1+AkEwXC6JezualS9x/+JDf+bu/w70fv89GMubuvSfsVwVNJNGJRmlJCJYQLGmq2Tq/webFdcbrA5IswzuPQGCN4/nTPY4O59i20097J7Btx0IPdMjguqmAQKQVeZrzyq2bPPr4IfFaxstvvc7h7hEXLyiKZcPR4Qmj4YQoTgkE0l5EnkXc+/Qui/mcPMtYX9s6Cw4LGGs6/5OGrJchvOGdd96mMYYo7tCYzgWcajk8POb57i5vvfM6W+4Ci/mSxaIACVVVIqVCJimLomZZNDx9vkfbelobKKuCYR7z7a+/zT/8h7/LpRvb2OC4eusiAcU//2f/gT//xfvY0MlfB8MB9WLBZlGwsbWFPD3tPBVxQpIkHB+dcLB3TLFY0NYl/bU1fvSznzPsp3ztK1+kbRsWsxk/+OFP+ebXv9r54ra2ONzb5fKFi1y8cJ4PP/yY2d4en3v9DnhHU9UEwLSWfr/PfD6jNS3r62sYa3ny6DHee+aLJaPJhGR9mzsv38E6C3L5S5+NX7mRdk1BmqRIG2hbi9IaIVSHlvICFRQ6nMHHrQPhcMEhHSQy6tZEUnYT5LOIbyElWkbE3qJiTSstLmlwQhKpHpPhiJP5AmMbtEqQQpEkZ8xpFTrnqbU41zEcO2RNSxQrrNNnhhhN3awIwiND1MkbKOnVgfWThKiJEEbSLJYI6xhvj8E42vmKqPbE6C5h0QSieESw4FJNNI4Yv7xO76XzPF8ZlBycuZtzkkGPOMoQylPahtPpgiQNBFMSScfRiefRbuD9By/IJz3ms4LVwlKVQJAUy07fW44UHz1+jltdx6mGeGiwvs9i2WMWt0ivMdZSVyVtP6EOnraxjELM6bzgj37/R7x54w3OXbiMjyPqekVtWpQSbIwHKKWp6oq6apgXp0zWe6xtjJjXKxCCtfE6i5PHTNZi4gRODjTeN9x+tUecVCwWOS9eeGxTIZMILfvIoFieWBanHY1FaEnTBNK44cnBh3zli5/jx999xOP9gq1Vze3N83xyWlGFmmlbYaxh+qLin/6//jV//KM/552vvM7rb73OuSs38R6iPKMxNY0MkAXq6gRkQttKlARrIARJ3TZcvnKOpiiZTufcPTlBepj0coajMc5AonOs8dgQaMoCgiSoQFHXFO0vf0v9rP6nl1QaYxzGCHSkiUT3BSBReKtAK7IsQ2tFWVq0ymhdII5TCAopNOAxrUQESZLEiGBBW5SQaCSxCgwiTT9S9DKJVJZlO+Ox8YiFo2xqlq7BiJIgLLlMGOUDlJdMJkMWywX1qmR6dEp80jJ8lPJpuiLcPMciEyxMy6VKIr1gNnBEK0Emc/7d7/0HQmP4yrc+zyoK7KoVm3qNK3qLj82SuSkp65beuMfwlfMcPzrBeU3PJ8QioV448rhH6MGimrEKFYuRptjOoBcRtEH6hvRGzCqvmGytk8aS2iwwzpEphbKWYD3OBhIRs1Xm+LKibBR5lhJFEUJ07PUgoVABvz6i0hovFIpAP41JYslRY0l1zGL/iPv3DRvJmHErWUjLvpmyORkhopSdcEQ7kshsE7WlqLUAXRMpyfp4SNFEJI1kbSNBiEB7pHjwo/d5ufdFsq0+NS0+NagAj352j/VkQppoBhfHmOwzkPSvu3q9mN/65pvsPnnMei+mWO7Szz2HxYpRFlOc1MQ1/M43vsGf/uxDXnjBxtVL5IMeP3v3F0ivEEJ179MAAcebn/88t29c45/8t/932rLl7/2dv4lC0lpL0zQcHR1hjCHNUsZrExCC8dqYJE2RQvGsfcEnH3xMUa74/BfeQSjFsqiJ4gSpIgIOA6zamkhrFkXRIdgc5MMxBwenvHrrJf7xP/7vIEgmcZ9FqDlcLGgQHXnLWnr9DGMNWxsj3njjBsO1jFYaQgxCOqJIoqMIoRJe3XoFZwVpkrE+XGPUy3l4/xEff/qAZVkg6NjqmxubXNreph+nzI9PuPvzD/nm3/oO29cuEfwn3H3/IU1t0TJC64go0kjpmayPWD+/xuTyGmmaUK9q9h8dMD1Ydlt3IbqGujFcu3qFv/Hb32KQDijqEqEEWka0yhCplKOjYxZlgcwjvvDOG5wez/nwF/eo25a8l5PqhLppWCxqZvMli7KhWFUEpWidp24Nv/u7f4vzVy/gBMxOTzl4/gx0xve//2OWjUNFGisVZWvJdMxiteTWuXPkeUakI5y1nJ7MKFYVdW26dJtgGWQ9tBaYqqBpDT9570M+/vAuuM4Xt725wfmLF9BaU9ct3hrGgx7Pnj3De0/bWqIo5ejwiMVizptvvknbNpycnJDnaZcfMugxm85Z39hgd2+X9fU1rDUkccp88RuMCL966QJba+skUcwnd+8SRJeKFUcxg/4IJQLBOoQU5HlK09S4FqTUXXpNCNSu0zSnSdbdlrzFOpBCE1RgplfocwMae0IkBsxPLDIaEilPknS650intK1BSt8xon330CEEMhIgHOYMrB5C6PTAwpHKgOoLJlawXYxoFhFtkTEImqO9XbJeQtST9CY9ZidLqC3KSkIDUQhUKqKOE7LNNfy5lPSCYnJrg5NZwXa8iW1zTCJQMiFJepj2jF8tA0lfEjEj1Y5Er7OsEh7vPqAKM+ws4fSkIXiFs6HTdRIRSktZGpwTDEd99mcvmGwJmqYjFHQO5xqd1zR+gQljnNcsy4qd6TPqekTWb/nhd/+/jCeXufDqG2yd24JEdXHM3mOtQWcQqYR5sQsux9QlRwcL0nMXKZqMNNumLU8QFpTPEb5HWe2ztu6YrPc67WjTw7QNi7mlWjXMjj2pSlERZPkaUtasqpY0Fuwd3ePtN6/wH6qanz/f4RtbCVc3zrG3s4OpalQeIWMYqBF7e1P+yf/n9/j93/v3vPLKTb72zpd55eXXEUrTUxm1rTumrc5ZVi2kGULqzgkuoTEVeT8iyoa4N2/x+Oke23kPYxyNDVSNQShF2bbMZlOyLEVJ2QVjfEbZ+o3UZNTHyUDTBpSMEFLSWI+SEZlOCZFG65imaRAhA2Ikbecy956AwTjIdE6wsmuEI0WaCbTXpDKil8UoHTBtQW1XFL7g+eyQWeG4PN4kjROWR3OMNGS9GGscwrYkUcLh0Q6nJzOqeUOy8jTv79GTt/EbfSab2xz4mlF/nbFJqCR8crJLcTpjagqerHYQRrD+fI/48nmileDH/RWfTy/xTv8K79mnHFWB0rdsbuVsK0Px9IikTRhFAzQpppUkmyNcltP4ltQ1qFhQ4aiDw0WKNrLUoWR/r2UUZ2ykGXFoiYJAhO6yIr2i1yRsFhn9kGJ0oJfnGGdpjelCjAhUgxi7NcQoSSIlUbAoCbv7+zipmSQCf1pQNY7j1ZRAw0Dl7GvPfFWTRAnb6RrTdkorYVY5cjKE9iSJJlKBsi7JRUbtHdlGH7FssC9mfPTvvseF25fpbWU4SmpXsX1tE9FqbF9iruTUn91vf+31/PkeW69e5K2XL5BJx/xwnzhueeftG2hvUcZwY2ubrckm08uXeffTxzx9utt933q6vIlI43AIEdg+f45br9zm2o1rrG9usvPsOUdHMyajCXGakw8mbF+8SpxqokgSCCzmK6bTOQ/v7/L40ROSTPH5L7zDYjXl4PgUGwLDfNT1FY3n81/4Ap98/CHWdUmJWkY4F2idwzeO1sDu4YxlY5kvl+y6E7QXtInC1F0Sp3OBxWyF9IZ5a6m3N5HLmqe7+1gEXgpa71msSqTSWAvOAXRZGgR456tv8fYX3wQVsM4RgiDWMXsPd/jj7/0U4RyvvfMW4601poenPLj/mOnxHCE0m5sD4kST5RH9Uc6HH3/A6Y+nfPVbX+fCjStc2DzPv3j4L3E2IBVEUUc+s67lyeNn/OG/+yP+F//VP6CsGuI4Addt/pM0Yf/wgNY67n7ykN/69jdZm1zgyuU7fPDeB1R1zWRtTLtc4J0njhLG43UEK5xdoFRFWbT803/+R2x9f8Crr9+maWd84zuf59/8sz/i8acv0HRD1TTOsN5hWsvB7j7jwYjbL7/Ecrnk6e4hy2VB8BLjOtmM9xa85QtvvsbDex/z8w/vMkhjjHMMspTtc9u8+tINtNY8TTN2dnb46le/wGt3bjObnvL4yTP6/T6f3L1P07RcOLfVBbkpQa/fw1jL2vqEpm5ZLld89Ok9Pn3wiLW1NdYmY7SWZ7jHX65+5UZ6vLbBYDTGO8fm1hZ1UzPoT7h08Rrr61sY27KYTzk9OcK0NZVtqFtHFEX8xQzBExDB471DKYk7A6sjPCUt5bpgLpfINKFcWfq6T6RTQvAEZ/DBddgrKxDSI0VMFCuCaDHO47HdQbSBJO7RmgpjHAPt2coS4laz7dd58sFjhmsXuLqxxcHduxztPGbz2gb9S0NET2KflEgvQEW4SOGzCLU1Ypj3sKKid6NPNFYohuT0aYzCK0+cRERaUaymaB0jhcO7EhEXTEYl587nVK7lyU7B0xcnWLUk0Y44SqhlSwgCgcbahgiFLWua6Rw10ORyA9opoYVxL6WnA/tHU3QSsWph92hOb5SwKuHw8IjTk2NIA3feeoUPfnCXk6Mla+cucPXll7ly/Qr98YDZasrRYkHbWsom4mjniEGc8JU3XiNWPYyt0EkfaLHVkrVJn6KC02nFoKc4nj+jDg1F3adeKkCSRIq10YBgS0SssUZSLnOcT5kLTxJNUSPBG69c4t3ZQ36095Qvn7/Jhc1tHp7scSJaFj5C9PpopchFyVqSUNw95ccffZ8P419gpScapwzWt8lG68i+YvPaBg0jnMtxTtGaFaApF0t8ZIguZKy/cYXpey8IPtBYhwueetXFSZ8uFrQn+0zGI85tXOwChT6rX3utapBxxzOOtSIWkkGSIGQXnORVimkbtOhCRkxjSbQmuM6jEASY1tO4hlRLslwyGURkwiMEBG9pmpadxQwjHYviFCsMVdtSFo4jPScWCmMsQQmasmA4iAkWdg8POK2X6MIzqGIWf3yf635E8Yrm/DeuMBsmiKC4nKwxMYEn7pT3jw/JK09EgzMV1il2dvd56eoWViqmleV5XPBSf53n832WgxZbt6waR7KWMbQT7P0pyyKQppo8zhgPFPM8wpSQLgFvIErwkaP2DdILrOg2gUZ7KjyZUghrKdqGpvUM8pyRH2L3G/KhQqQxrWtYlSWNc+weHuK8x0wibCZAde/c/qDHdHZM6yw6grX1jDSeUJsGji1iJdEnC/ppTBm3LJuGjd6Ajckap7NTmsawamvSLGaxkqwPUy5MAvNqSVl5qtMWUy9JLw5oGsuDH3zCaNCnzRr6L/d57cZlNGP8KMdFjmU9/8t+ZP+Tr8Wyoihr3r59ifL0kFIajFqxvb1GEIYoErz06is8efwM13gylVAaiw0BpMSFQCwEwTvSPOXv/y//Pmme0tqWm7eu86OHj/m3v/d7bG1s0zpLmqX0hyOiOCbLusRB50DriHPnzvFb37pE2tMIYWhchSMQJRnG2o5tLQV51ufylau8eP6IxXQJwaGjlOnJnKqx2NaifMTlS1eYfvpRN8gTZ8ZKL8FYgvNoBImKePXGLdb7Gzy4+5Dj/RleKJwQrNqaxjl00ml967bj0/+FWfKP//UPuffRY/7af/Et1rb7VKZFCLh46xLDUR+FoKharHG8eLzH2nCLtdsXWK0KpIasl7K+Oebh4wfs7r8gAP/+3/whH/38I771jb/C9HgOXiCkwBmLt128uXOWL37hyyil8aFCCKiauguY8Y7dvb2zEBTHP//v/w1aR3znt/96Z55UkqKoEGcbhG7b53F9idYJcRKzPDnh4HDF3V/c5bv/5gesrw355L0nfPz+XUTTmYdRAq8DDk9pDJGSPHv8iEjC5rlztM7Q6/eIo4SibFitqo5v31S89/HHvHLzCta0vP3aLfoRTIYDgjNIKQne8/Ltl3jx4gUHB/vMZlO+9VvfZH5GJxkM+iwWS65duUxZlgyyPpkU7O7sYkzD1rlz9CYjXHDkWc7+3gHr4xFFUSC1/KXPxq/cSDfGs1pVxFpx4eIVWtPiWoP3jjZANlxjvHWRrcsFe88fs6ruU68WNG1NL8vwEvCWWGt8COC6B1gADkPbK+Fi9zL2pWYQRSRa0IQGAR3UP3hqt8LL0BEaouTsD+1RwkNwCOFJE4kIKyYZrEcxE59w7yf3SF1GtJUQbW2iBzFKlcSZYevKGiZpiXsR85MlvrDEqgeDPuHckHjUQzYOUy6Jr0pYb9nKb+PKAZNsgJuckPU9Sdxjd++Isj6k3xtizIrepCLvK/JhtyJqV45Hj+ZUVSBEkqKcc357i2KxQAqPMR4hLDLERDLGNgEGMctlyzBRvHrtFUb5KfsnJ0gSIqOwPuCM4GS64tGTBaP+eeanBxyvjrn++XMMJwOKmeD0xT7Tg2Oe3H/IF77wDjfv3GSQT3i8d0yoz3McSmanM9RNgfQxp8sFcWI5tzai8JbxqM+Dpwdsrl1EiRVFabl5dY3dPcFBW2ObjppggyPtpbhgsE1LVQRCiAgi0PYlD45OePX8gNdvXuaD957w7v4T3rl0nTxd59PDRyjdZ2tynu3+NlJukVUSdqFtAlMjKISnKo+JTxsmW4a9k2e031tw8fpVXnvnS+i8hw+OJki8cjRFQZYKtt65xN4nz/GrQF22tKagqJb08/8fe38Wq+uWnedhz5zz67+/X/3u+9PVqcOqYlWRVewpUqREiW4V2ZYUx44TOEAuEgNB7nKRIAh8ExgJEhhpHRgJAsuiJVFmL7JIFsnqyKrTn93vvfru7792drn4NiuXrrgiEqBq3OzLtfbCnP8/5hjv+7xD0rRH3VbMllP2Nq+Qpz8wG/5FVNt44iDCOkXtQMQxg6RHHEAQGFZNiwi6qaq3Dm1AC0GaxESBwpqWWLVEwtFPY4a9kDBwNNawLldczhc4Qi7XC7Q3WDTWa7RzOKEomgItFUEcEQrY2NxgXa54/uIIbEzQCnp1xOeOQv4gCjFXevifuEoxCVhWmp6PyeoArOHJbIopHKUS9E1DEhp0rFlUL1DtbeLBiHVVcVxOuZKm3Nu9gVnuUyWGVWtom5LRlSvUNuXsg2O2bEtYaErTIFLJ2htUzxGEgDBEpkUKh3mF3gpUl/bY+VMcQaAQQYCSgnyjx43kGouXz7moamxVsF4uEQjauqY/jHluF5jNHjUOb0KQnmWxZrWu8D7EWYkJR0zjBnk7xO806POG1eUKLVLQMdKHLFYrJpMx441NlssV1hjKdQ0iYCk117Y3CGRAYxasaDpGbivpjbdxIfT7fZZnC+rjmotkxq03biFHPbxuIP++v8p+UP8N5TzsH12wuNtndyNj0ruJLhuqRcHmqEdwdUDZLvjK7/0RG9dukUiFwmCE6CKovUNKmIwH/Dv/4O+xc2WH2fQcafrsTEZ86v4drLa4tqLVhqbVrIqGJEu5c+cuD157jSzNMabFOYNUjrouaHTJYl0gVECjDdlgSBgoLs/PuTg54fzwiKvbV8jDHhdnczSQZ33C0LFaFfQHIz73zg/z7icfo4XFqy6SJcxCRAVeexRwbWuLvckG3/yTP2W9qgnCBC8kxpmORqagS2UOCAM66g2u47I7OHp+wj/9f/wq/8H/+N8mGwyoraF1huHumNXlkm//wbu8/Zbio+88olq1ZPGAyWSMx9DLM85Pz3j29CmvkCZIL7g8veQrv/X7ZEGG9OpVAm/nV2vrBnAs5gtao4niCKEETlryQcbX//hPqOu6k6QIwfRiStNqjg+PXskrBM55gjgiQ7BaVdRN3WGLnSOOExgMcEDW73O+XHF2MmV29qcMooSff/NzhCrkxdkxx4sp+/MLaiyzpiFW27x8+gxrLFc2tyjLiiTNiOKIKI44P7+kahrW6wWL+YwvfuZt3nrzNRJpsW1LKAXz+ZyyKPnk8VOOT09BKvqDAR98+CG3bt1Cm5b+IOfunVsIIXj2/CUPHz7hzp2bOOdp6oblfEEvTfnZn/xJnjx9zNbebqdn1y3i/wewwP8fzIbdS0rkGVd2ryEDxctHjzk4OGKxatna2iLOe4wmm9y++ybVusK7FzSmQKgWUVucdjgpscKjlCQIIox3SKeJRYCtFYMFjEUPGkETWNxGikkkpW4QHkIcQjqs8ERKg7QgWrz0hHGERBB7SU/G9G3GUKVsbG/T/8k7KK9QziMiSR4GDESAmyh6Hpwoacqa409eEqoIfX2LbGtCaDTieM7KH7HxuW2ivasEwS6hH5JlIxABYe65+XrEqlgTxjmCLUwbE6cJyaRk3a5ZrR2DdMRqCicnF8igpXHQGFivNOtljbMJeImzIUYrrJUsixKz3aCSkuGmorENy8oQRYosiHFHNXEcUK48K+cp65Bq3bJaSQKV8PD4GdtXJjRnl9i207Nfnj3hKw+PWP/yT3PzjTfZGE5oveedT02QrmDVKNzKc3wBmzsTkBEqdMRhzI3dES8Oj8iyTYa54XwxZzQYs7gIWJcxXjjq1rAquyhhJSRKReDA4dBNiBUBT06e8vbtL/D4yZilU3xcOzZ3r/HO9Q1u37xK1r/LZTnDqhmXJxcUwuCtR7saK2vKeUlhV3gXsbJrlqsFJ9/6Mz5490MGYc6N8Tabk02SvAehpB0odq/t8OnPf4ZPvv6Q1axguVzSmoJ+PiRLUnTbo9Fz1npOnPe/3yvzg/oeKggjApUAwSu3e4i2gixWBMqRxB4vYDAYMbssWawqnHdIbwm9pR9L0l5MGkiiUCBiw9PDfWqribOQpatwtGjRYpxBqG56NV8ukcoTBFCXa0b9CSGSs+MLzqZTWiPx1qIahzsuGV30iF/fJv3hezycaBoh8ToiDXNSI1nqlrN6jTeeldWMIsW9G1cxoqYta8zlBToMsd4za1oO6hW3+yPus8OxWbE4OSYKUs7qCkYh/U/foD6v0POCjJhrRYAsKg7zggu3Ju5niFi9CrUK8Eqgm5ZAdb83SmC8Q3uL8Y5gUVM/e8lEJcxncypd0XiDy2PCmxl1VHM0q8gnMVpKEiRhILiYnQECbz3D3gBXxnhnadOGJmwplGEa1CzXF8RuwGS0hxchi6IkT1OyJGO1WCF8iHaW+aqkn6XsjTZZOt99zlWCwycn7PV63P/xT4FtWH+t5PTFDDt/zu7ua4RRjLAe6b73ON8f1H+78s5zOS15djBldH+DPIqJw4A8jRBtBV5xdjDjYrpk46Yiy1KkblAILKILOook/94/+Lu88anX2D88YNRLWV+esTHIqHc3OHp5gDXw4O59ZkVDbzjhjbfeZDgc4T1o3eC9JVCwf/CiSy8VnqpqqVtLYyybUcin33mLp598xO/9zq9z9PKYv//f/fe5fnWD1ewTdFMzHG6wKiqkjPj44UN+/Ec/z97WJs9Pj5BS4eUr4m4SUpsSjGOYpURSEUcJa6nR3mGcpWo1GocMQvCvjIWuC65RUiFUB2DAdyEl58+OsN6i44DXP/smXglWl0uiIGJ2siCLBoioBgdS0EkLgScPH5ElEbX1NK3GOY8gwhuPE45QRV1+hxQI2XG/syTizu073bY/FMgQBpMBz5684A/+6Kt42UWaO+ex1uGs5bd/67f50S/9GI1u8R6yLMP5Cig7kEIvQmtLVaxxYUhVV9y8fpXNzSEffed9sI7JeJc8iBnKiCtX7yFuKC6KFR+fHfDw9CX6confkDx/+IjR5iZ37t1jMBpR1g11c0oYhQxGY7w1XZK1scRpyriffNeMuHNlpwNcSPXd6b8QChWE9AcDjs/O+NZ3/pQvffELbG6MyfOMoljRNBWD4YAgCGnqluVijTaaJI65OD4j7g25//nPE2xvf8934/tupIMwZjya0O8PsSrCScnOzbuMN0pcq7k8eYkhYLFY0+8PibIB2UYOkcC2De6kIRIJYRC/cuJ7nNMYZ1BeomYCsaqZ4FD1JZaQYCPGhQLrIZUeYRyx9aANhXYEWYSKQ6QQhGlIFvcZpgO2oyFxI6hKSwy0pwU96Wlay7qsMbrGpTFn0xmnBzOWlSEbCa5e2egcnbeuIKSiPjrBzKa4bc+NL9+i2YgQckzqdwiEAurOxevh8qzgcr5msZCsVx6comoblDaICHCaIkp4eXCOoUKGDWYtcDaiKizOqs60GSQ4E6BNlxK10ZeoULOxmyCzksPLM4RbsNVfUamYVR2jm4o03qJeNgTKc3p6hHExg40eZ6sVk2hMqCvCQjDKN1C1p2ws8+kaTvY5PDrgbH5BnifkWURDQWw3ma0LjIhIRU7EmFwblHBM8pjTyxUytYwncH5xRhDViNCgjSIgJ1TjburgLG3TEicBoQqw2mCEYe4Nj5ePePDDD7icSpa6ofYFNyY5g1GGtgHzueF8eYwQErIBptbQaCgLkhCIBI2eg+xMKutVRbVuiITg+PKAbAjazrmcz6hUw9m1DRKbcX50RCgUSRSjAqjKCiE0QnoGgyGBjHHafb9X5gf1PVQvTxBBgBQxnSO50x22XuGcIoq6IKWmXiOEppcI4iCgnyr6WYj0mtZr1vUKX2mWznBSrVkWJXvRBCctwjrSUCLiBG0NTmv2trZZl2uEa9m7sovyIS/2D2naFqMlGIfHYcqCm+uQIrHc/uJ9lsOUVSkINQjToiYe6QynFASBwCgDtUbGAyIdoNc1sqqx0Roz0kgZ4TVcNC3bqWE7G9I4SIIzzldrnLREgaAeKFQSozdCnh3U7L5csy1jxtE2x03IebViETdUyhBGCVESE0dRJ52zljBO8LYz0p7P5zhT0h578nhIMwwI+jkijXFZyCqpeHl5QjlUxEmIsJIkVKzWcxpnENaSxyH9QUjgu8RPKbqQFx8K6AuCSlNOj+hHEdFgj8Za9GLFxmDEcKAw8ylatxhvOZ8t6Ke7pOEAG1mqgSa7OmLrxjZRr8/lvCC9PSI4WZOVCfP3XjKSAX6U0hjzl31k/8qXUAGta/jgk1MOnh0QtEv6kWRnY0SzLtia7HH6suHLP/FZPnl5iooj4iTCG40KYLIx4pd+7mf44hc+jfOCSHl6WcLLo+eERcmdG1cZhhHWOHZv32Ln9l1klLIuS5yzr8yvhmK94ODgGZ/69JukecqqKHlxeEpVt7TO8PLgJVvbfXb2xrRv3CSNE/6T//h/z7/z9/4dNje22H/vPc4XC6wXKKGYX17y+MlTxv0BBycn3cNdObyybEw2ub33Do//9H3u3LnNo48fMZ2tQAQ4AWVT0WiNk11cttGGLhqJLvTJGFQoO4yq9wjree9PP2G5KDg8O+a3/vHv8qnPfor7r93j7rU7nBzMGfZG3Lw65uT4hMlkRBIL2rYkzyL+/v/w36d2XZjdiycv+PDPHlEvDeIVONjjaLWmbVu8d2xtTZiMJyyWU5RTxNJjvWa2OCLthdTTChVFGGsQWtC0LfuHh9y6fZfRZBPvRWcMfYXV6/VykjhnY2ODg/19pueKulzStC3XblzhyeNPWM7WvDg/oViX7OZDBlHKOO0xiVJ+6tZbfPneWxyvpzy5PGIlDKvLKe9V3+GHv/AFrHVUVUMUJUSR7LTSpkWqiOWqZGPY52vf+DPu3b1JNhigq4qzswtuXr8BHpqmYTAYcHZ2xnsfPuQb3/qA04slD25e5/7dW1y9KlFSIrzgO995jyAIuXv3LpfzNTt373LvnXeI+kOq+YJ/9H/4v37Pd+P7bqSPD18SCMFwOEbJgDjtEw5j/KSlXs4IU4mTEWEyZLlcU2lDvrVDUx2yuLwk8AH9pN8xnd2rtCSrEa/iw10DSd3pkKx1BGFAFHhU3tJmLdZ1ZA7ZOCIbUV3WrBcemfYY9noEZLRaMb9omR0+RJ0taOZzdCCwPUW6m5PHGaIGaxz59jZNG0A2IskjwrFDbfeJU8PyYE707AxlK/zNlPzn7tION8nMGIdgaQ9IfA/nWnrZJlUTs9wPaXUP7yxhsEabTjNUlB6hC25f26Kp4fnBMUKFtG2FMyHOOmrfEkWdOcJajRce7VpaoymqNWWzppUtp89P6eeS8SAhDxsGUY7C4oIAYyzDXoytpwzuphwcFbQVVDahEIJeGEFjSZRlnAxZKkMoJV5YptMD9g8edvgxBVvbE770mZ9ltBGQJRllqWh9TORWDBNPmkT0Bp7WpzT1mp3NmOEwZrawnBy1LC4Fto0ASxxLhFKoQNI2FdYYgkhgibmsztm+eZV8NOFyaRBSkW149s9fcHZxzLpuaXVJ5CPsakG9BtE6EhOgwohlu8BHkKcRoQ9ofEUtLOeuZCkDIhZsyJy2aoiNo15dcljvo7ygNxyjwgGz1RIQVPUabRqSZEK9Mlj7vUPaf1D/7UsFr7BThJ3ezxqkCCirhqwXkyUpdm1wTcUwCciHCcErKcP57IjFaopXnlE/xvuGw9mcEkWpC6ZzTxYq0iAm6fWI45jZfMaqWJFHQwIXEYUZi9mSy8slrYVWg9GWJLaU6xXJZcVo2WP16R2279/m8vCEVgsSIzGRJ8BR6jUPp0es2wIhHJKAVguaec1GvMUirZhXLaF1xCokjEIsgperC+6Mh8h1TSwFcRpg2o6Ja7xj7grCPCa91WOmKhITsblO2FB7rOUGi6BhX19yqFe0rWYeeaIwpN9LCPDYULIwJUZ6Vqlk894YN95EJiE66CY7RjcsmxmL4pze5M0uUjwUFG1B/Yqbn0QQK4sSNWXZULs11lisFlhhGbQhm+GAjRs9+rvbHC7gpDVEQlCWa8IkZTQcICpBa1pK3fL8/ILNQZ+4UdSF5dr2Ltu7O7gGrAvRUchguMmXb3yeNIw4fLYkuBFSteu/7CP7V76kChA4LpYNW7e2sDPDo2fPef70AKzAu+dkyQZ30iGVaQmk52///JcobYGNVCfPmsQYWyPoEj+l8JTrNT0LrfFc2d0jS3NK7UBbGlt1EdyvhmxVs+Zb3/pjrl6/wqMnTzk6PcNLRZLmeBzXb15jY3vE8/0n3Liyxd3XbpImOf/wP/81/qv/8lf4N//e3yUIQgIZUpcltTZoa1mtCjY3NvAPNXGSMNnZZGN3kySN2R5MeP3+L3L4wXOOzs5BShwCbR3GC5xUIATeebTW3w2Zi5QEJXGvmNMeTygV3gum8zm6atGV5mu/+VWWBxe88fY7LKOGQCY4bQmVRHjDqD/m4Mkx9mLBP/k//ufwihAS5Tmv37zHxx89A68IwgjvLI1u0UYjpeD+3btIPFVZ0FMpumwxtuKt169z89ov8Z/9338FGaQIISjLTrohleKDj97nx37spykLjXeC84sZk8mE4WDCcrni2bPn6LolDCOCXg9ra2aXF/z1n/9Z/vP/4ld4Pr/gYDFlGKVsxL3OH5EPGaU5vTRllPa4Ptnmvf0nEEC5Knn86AlXb9zqEi5ROARNWWGlZVVWHJ1csDsZ8IUvfpF//s9/hy8NR2zu7DK5NuV0f59r6gq379zi8vKCi4sZDz95jAxCnr88QNgWrUse3LtNmqb0+j3uPrhPYRzR1Wt86W98Duccj979DoluOD08RDV/gRzpwBuKxYyDl8+YbOzSHzqGW9uoICIdDZB5hHaCNB2gooA8T5hOT6iezEhrTxL2kAR45zqm9Kt4SilUJ++IAkKlOgajA+8tRTlDLltUZhEoLBGCAF2VKFdhdYqIE6z1FGWNwREZS1wsCNsS2x+RZANMQCf8yjPSa0NUEGOSHOUEQwe0Cl+e0syncLykf2Tw0rLYEUx+4jaD/CaRzGlkjfCWcS/GK4EKUtrKIl411WEoaKs1URwgI40NLBhHkgX08pCXLy5obE1dexotOmyfM9RaM0gHaG2wWiPoolM9HqEkFs9ironiAdsjSaCeMOlvUM4rTN3S6BLdCGQQc+fKHgeHZ4z6IYf7a9ZaMbMNN7MB1q0p10vifsBwdwcVhbSFx7QRoYxxAVgsxWLNycEB493b+NYiw4woiNjbyzH1Pl44VOW4OADHkGxgaJuGl89XJPEEITV1vei0WmFCIAOMtcggJA4VbVPRamjdmpfHH3Bn/ClOP3nCeGeCHk1YFSWLqiWNE5p1RYd5ViSDEa6RBG6DvF4QuDOOjl9g0xqRBqR5RCQSilVB6BwFK8p6ifEtfZURWIegC+DQbYUQkkCFSCnwWIztUqKKoO445z+of+EVhRGoEPUqkdDLgDAIEN5C4xFZw7CXIBxEyhMrw3Qx56woOZ1d4jD0s5ieCun1ctKmplxWxKFivVoR9oc4XTMtCoTw2Lbh+u4OeRyxnK85Orqgbk1nVm4blAgZjyKQC9IwYfHJFHPnJuaNa7y8mOOtJMpjIhshI8+Gijgt5+wXU+a6IpEBSihcu2BrHDBRA1yT0KQxxjmkNQivqMqSNnekOuJWPmF/cQmjmOVyRasN3nkCKdG2RdOgrseEjcR/cMm22mCrv0O/adgORuw15yzNmlNZIxqHHwSEYcTJ2RFV2XJ/6yaj4YTAS5K0j5IBlekCm6T02EajiIlVD+kkKhDMSw0oIiWx7YrS1kx1hSekoUL4bs0qvCM8NuwMxry9d4fzZoFVMUXjaQNLHTSs15rdyaSTmhQWLz2rqsQZy27YRy6nZNYTpn10Y+kxQFw2fOrObfrJiNXxHLuuKC8PmLfzv+wj+1e/hOzSgREcnJ/x3/n5txnIB1TrOU3VYI0kTHb4nd97yrwQ6Kbh6qTH5rUb/Nnjx8zbAuN1p1fwEEURUkCUJDRFyXi8STWvef/dj3j45Cn/xr/79xjtbuBF95CuyzXvfefrfPnHvsDlsuDl8RmDyRZZnqO9IVN9+uOcg6OXhEGX1rsu5+zs9fj7/96/zuOHLzg9OyYMA3TbcnZ6TrFesbmxyWKx4Jf+5i9y981b7J8/x0dd4qB2judn+wzvvcXHL5/TOpBCYIWgbOou8+IVc915TxiESNmZ1P783878aAiDgCRJyMKAz775Gn/4J99ASsHr9+9w+8ou4yzmSVnQtiVKRqzXSzY2UrYGMZe+RRYVTeWQoSDsDzjdv6BatEgCgjAE0QXmGKPRxhLHMffu3qGtGyICJtmQ5eqSTAiUAYtkezjgctkgggBjDVXT0LQddnB2eUmajaiqGutgOpvz6NFTFosVTdOC9WRJyM7WkCxN2D98yenFBa0ArQRaeLRvmRWXvCymhE4wTjK2BiPGwwFpL2e8ucny8gyL42D/gOF4k36/33nvihLwKKWYL9esG8OT5/t8+u3X+Ws/+9dwzhLEMV/8hZ+lWa84/fgRddsyHA7Z3JzwH/4Hf48kiRHecXh4zLVrO2irUSrGJylvvP1pgt4QU7Ysnj1jfnRIM71EZTnewunx8fd8Nb7vRlr6iLbRFOsl48kmWtdcnh6i226aShgSRglpHjLY3GW1WJDXNZtbt1heHOONAaex1ncHT0harQmCiECGCKGQUmJdN8kVImZdLFk8qQlyiQjBLhrsrIHKInoRIuoRBxlagIgESkUI55FbghpJ1t/Bt5IQz2R3gol85741DbZo0bWG0jJ9doRfLBkMQnpJglMBVRIy/vwWbRayLEvi2tJLe4zzIV4LgmCAVIo6MTjAxoLWGiIkUDAct8zLc+5sBVTThl444vTiKS0tTnm8VaAgFApnPVJFWF0TeHBWEoY5+IZVWREGCZFcsnslIhtqTs9KirXm7GCNaWIaZWmZEZqE1TTl4HnLRakRJASmZt3G2HxEY5cY71jVC9om4Eb6GoNen17SgyDChSVJLEhcxMfvfszP793FJTFGhwRxzMVyShoMULEhTSqybMDp4pDAKy4vPJdTkEGBkileKZwztHWDEALd1oShwFlBGKdY5yhNzEW9Zs/N2doYMRnt8PgbHzKdF1y9cpu0kaTJmPnlgrxx2NBRyIQyyfDpDnG2STaTFCeH2KAg383RWUA8SWjWS5aloWkNLmoom5bcdqlJiQ9IZYQQvJrKd8EdvTQnSRPCQAGCh+X3zpf8Qf23qzCIME52/odQEAhJGnmiwBNKQyZKoihgvio4uVxirGWxLCidw75SZYLn7GLK0WlLkg+RhKRxwrpZU5WOJIgwWOqmZms4Ign7PH70kkXraVqHMy3SVvQikGgCUyNj021hrm0w/9QNqsCjjSSKUkIVIuOAaypkO074VnFIgcFahzYGgWVjK2AzyVntl6SrFCklunS4vmBl21doTsXRrGB70uO13Ts8XD7H5wGV9ngXEFUBHsGqrpjWDXKQkF3LePnohM2iJY0yQiW5HW6y8Bl3G82skWxOtsn6EUZabmX3UW2AE4LaG8pihtEtjWuoXUNTlXQfuWOEjAiDjGJdIpxHCY1tlggqkiTAeoM0ip7r04qKJFMkS4k49+RhytlHFxhv2bmzy/zwGcuNgFUiiX3AfLkiTVNy10OUJaEAI2F/vWDQy0hVzEY6YFFXXJw1rB/OOKBhFZ2zk28xjjPm6xWj5Q+4lP+iK5CgVID1gnnV8vJ0xU9+KkeMNrDGIEXGV79+QpIPyU3F7jgnFQ5bFqRKMneGsi6pdEOkMkaTTdbLBVdu3uLrX/1DtnZu8Gv/+Hd58dFLEJJ/+A//Cf/u/+Dvo4Rhdn7M0fEBb3/qTWarFR88eoqXIXcfPGC5WjKdz3HKsT5bEQaepq158nTF9PSUL7zzeb78M++wd3OD2bQhiAKkEmRJys7WDlmasF5e0u/3+Lmf+Wm+/dG3+ODZhyybEpAk/ZgPn37MZ3/88/zur/wOeEFVVjj8K9VZp0vGdUMupSTQ0Tq6lMOu+Vaqgyj0kpjPPLjDy4ePmC6XvHX3Jtvbm2gJcRLSaEPdNljTkCvHve0Bd378C1yTCbODKVEaYqOQN+5PWMmAhwdnAFhr8d53wAermWzvsr2zRV2XZGHIy48ecnV3G2FaPn74EXEv5e6VqxTrZ6gkYblaEoYBRWGpyoLnT5/x5lufQUr1qrmtEYEgTCKEVAgHUkJR1WTJACcCHj1/iTYOJzqCSItDKkHrLN5bZkXNUb0in0eM+n3yfp84TbC6ASl5/uwpb7z1Ns53YpUoDsErsJ6TywVNsWQ46PHag3tMz0559w/+CJXE3Pv8D3P7yz/C/OCA2f4+1fmC7a0doqiLa78/7OMFRGFM//pNssGQ5ckFzcEBFwcvGQ/HPH3yiCzNef/Djzm9uMSJ7/0z5fu3OkuB9GCahrZYkUcRISHYFldW+CAjUynVfAVCURQFhAl7124QCcP89AQp/CusVceV7qyn4tWLzmOtRXhJpCKMcEghSJKMiJxmpSnPS9bTml4/RyR9kqSHklGHzopytKBL9cljdoZXsQtDm8GVu1coyyllsSJuAlLXEFQty7MpozCjuVgQiZCoCVGJoNlo6d3dI7q1Q6Elg2hEmuT0+wOchTzLyWVOWRX085T5cooJoaxrlLJEyqJUzdXNiJ1RiMp2ODouODs5w5gGoz1KhDhv8d694mm3IExnpIpiwkwgQugPJzgn2LsywJjHnJ6ULNeCsrhkMt7j9GhBKyzTVY1vPDM/4+yypXaCQIC3kqJskf0MEQb044Rl3nLAlIFYc3dwDyljZKxR6Zx+b0hY5tRrODo6YOdmRhhJVBAQhmOsjSiqitbmTLYka72PYsb2hqIuA04vW9YlQNpprqxEW4u1AqkEtXGoLvKK0KdURc3xxTmfffszPPr2EdP3V8hUEm7GLOcFG2NJL+txMS/ply3KFgTJjKbfQ/f7TN55QHa6wWL/OddVjhSCs3bFaehoTYMWBq1anOx4oyMXsdYeoow4ShC+iw8HgXOOPM86Wor5Af7uL6IiGQEQK02oNHEkiBOJkAatS5brNa5QHJxfcrksscgu2UtKQgVxYAHFfFXQGItae6zzWKHxGqIkRoQxXrdsjrZQQvHJo32qqoUoAKPZSAXXhjl127BYrohURa0NiJztd97gxFn6eUwiIFIhygWEacw1GWFoOS4vsVgCLzDaQxxidczxUcmqTVDCoy5WxCLE5KOOUa4NpoYCxePpite2x1ztjYlaOF7NWa8aqtIiFOBBJREz12CuJdxO9jj5ylOyrMfWZx6gtnKyZcPFtz7mam+b623Aoi65tj1hNa1oqgbta+auJl63+FoTqZhGtsSBoy40cTBEyACtW/AN/V5LP4ZRvo31JWGsiMOY2UenpJcSMY7I+jF27aBvMIWgVYpWKMzxgqGJKfZn5NGQOnRYPNaVjIYjlJc0TUVjNMZ7kl7CvNCcf/CCl48PyTZTVC+HAkIkl5cXGGsJswgVRH+Zx/VfilISoOsMPQEfPb7kp97eRogCqSKqNuTwqACfcLS/zyRNaF7bY3d7zCTvsfbdo/VyMWdjEBMGCUXTkgzHbN26zUenh/zUv/6v8H/7T/5PmHXFk8fP+I//V/8bfuidB9x/cItbN69TaMsHj15ivSJPE2pdsVjP2bu6x8n0jLotCcMIbSzbW5uMe0P+6T/+bf7Bv/9v0eLoTQa4ZUOWpQxGBqUCZCDRxmKMZTFfcnXnKg9fPES4TnNscRihWYoluw+usP/wiNK2WN8NXMIw7HTV1nabdd9hfPEAEik83nfx31EY0NYtd67s8vf/lV/gn/za7/CZ1x9Q65YXi4JlWVBpzyDrc+/WfW5fnaAQCAf3rl7jrBD8yBe/xPPjffY+9Tr/xR98FRxoY/GAsZqqKhDCsre3RZanLKsVUlse3LjCR3/yp7z56bd57c4D4jjEaMfpZMbxfAXWsTUeY9qG1arg4vK806ZLSRLFCOXI8pQsyynWFa41XXKjt6zKhi98+UcxX4Ozdz/shp6vtOJCSZASg0OgaKXAOY20Lev5FKQnjENwMLu84IP33uX+a6+TpSEIiTEavKQylsxEHB1ecv3KDXABV3ausC7XvP+VP+D6m29w94s/zOjePZrFino+x66XrJZL+jvbjHb38B4un79g/ugx5WpJFqeUy4KLkwtsY/nGt7/GnXu3+Pzn3qF1jv/dV775Pd2N71/aIQVhIFFKsjg/YXV5ihAC71wXzegcQimCMCbr9UnzESrMaNolVjd0d9MThK/WI851jOlXrzpnDQgIVDehNrYiEApJSvFCs74sqBYt0aTH+MYNSmkxDrxscIXB1RoRd8al3mQT5SP0YsHte9dZNjOWqzlYT2gd7nKKXZXIxZoiXCOtwcmAFkktHeJmgrvTxwdDRionCzNUENJqi5MeYwpWrgThyWVCNEqYDFKawxUqAisVQkAv9EReURXw9W9+m7yXU84rfJdtjbMW57qXrbE1Qhq808hQ4DBY3WJKSJIQ78/Y2Rjy6PGC2cJjaGjKI9o2ZG1ber1NVqahrDVxGmLLFl052lbjU6hHlqUo0UoxHwdUGwGFK6mLEuVjgsjTHztC6zh+cUo7g2q55Od3rhImLVXjWa9XbI1HVHrJer1keytia9yn1kuiqObNt3bZXSY8ebZmftlga4Fz3UvT+5CmsYgoRhtLIGLSQKF9zLI2fHL0CVdu3OH8O+cIa4ltSllVzNfnTG7f4CyRLC5aQmuQbUFbnaN3NmnCjGxryF7+Dn5+QbBcks5KtiIo04S5eMX5pAsAarV49cEpUGHU6URfGZi01jRNS+U0uv2BtOMvosJAkCSKJG6JgVBIVnXBqi6YrxfgDSqKmJUFjXfIQHbhIcYSSUGioK0rWu3QTqJb0z1WRU0W5R2cH8Wo36cuas5Xa4wDZx25qcgTQV9UbCrLSVMhTcNkHDFvFUGyg89HbLYBSa+H0yV4CAlIlWIzTvng/BGlrlHOo4SiUQIVhSyendE7tbR9jYlX9M8c62XD4OoVVCjpxz2MtqwtHLQlkyzi+mQLWnhxeU7RepwIcb7uzNm2owMUVBxtBAz+1uuYVlPFa9rygvXBgvs/9IBbgz0CvSJMc8rzC06/uU95scYPLbe+8A6HX/+QTEsui1PKTcftz9zmG08/ZvjaDxGEkraqGA8FW1sxZ/vP2Lh6j1WpmS7PuHbjJlvbEYfv7nN9+yq2qYmTAfHeFs8fv2QwzjCjHqaqOZsvUKuCOI9wtyeUvgHrKYqSLM3RwpHYAI2mkJ46Upw/fIh+eMzmbo/d2zdpqwVNVVGVmtZZTNmZin9Q/2IrCDzWSfCeUHTDkRdHDfev9xEEfPjwkOnlkjfvDbnyxdfYHO6gi5p3v/EBN3/kU5zWJZWxzBdzNoe7iEDhVcCiaJjsXWfRvmQdev763/1l/p//6X+Gqxtee+ctPv2FN0AqXpxf8vjgGKcisixmc2vEej3nN3/jtwiilLd+6G2u3dijqlc4B8enJ1zd3uS/9x/+HQ6Pj3lxdIqUGU3l2NzeJsly+nkP6wxVvaBpW2prSDPFF975HL/39T+kMA1KQiMtJ/MTRrcnfPTxM7ySnQEPQAistbRaA55QRiBkN4zBI15JnaIgIs8znh8c8f/6p7/G3/mFn+Xv/PIv8iv/9NeReZ83vvB5+v0BUWQJlUIqyVe/9k2+HUqGQUJxdMnNeERQOVTt+ce/+uuca421XfaBkIKqLF79LMmD+3dxTlMUBR9//DE3fvrLfO6Lb/Pk8XPuvfEmjW7ZGm9w72rFs8NvIJwDbfipL36W3/zdP6Cu1l3DK0PG4xHLNTDy5L0+SZLx0XsfUKzXCDxlVaHbln/r7/6rfPjhJzjZpSsKD95ZpApxaAIlQEpUGBD3IlxdURYF3oSMNze733c+5dFHH/Lam2/iEWgpKEvNrFjReM9OnPPoWw+5/eAup08fkaYRd3Zv4hYVf/L//qfc+8IPc/Mz7xDGMcX8ksH8ElPULA6OEFVNNZ3z5NEj6rohDiNevnjJvXt3GAz6PHjtHg9ev8d4NODo/OJ7vxvf7+UKI0WoBEoIcA5jLdZ2+BcpBN42WGcprGN2KojjjEBGeFejhCcQQWci9F3qoLWWtm0JQ4sxBu8ded5DSEWrG7RuoPVUZ5p1s0YvDc572jGsVfcSzJ2nlQ2iWaNPz6llSP/qFYJEU7UNW1c3WOy/ZHF5ho0DJIrp2QVJWTBOUprK0FQVXoNzBU62RNsjRveuUCpHr8lQQYaIQsIkomoK6romH2ZMqxVYMGpMIAIWxydsb2dczi9xRqMbw+4wQ7iEg6M558slPun4t6YtMVqD62LOrdG0rkUFXbOXxB4VaiaDPnd2btPWCwYjyfOPz3j86Iw2MFy9GeJraB24NuLwbI7VAuk8F0eXZHGKbRWhUhhXc1lfsPPGNqVeoSYhaR4z7o3IRcj2YJcLNyIKLpkdtJiFoid6bGQ99GpBGmqsDPAi5uh8znCY0E9zJn2FqbY5mjUUzZJHj48o6hRrI0aTGGG6uPPVwoALkDJAODDGYxFU2mIQ1GXDWp8zzTT3v3SN0z/ZRxDQG+4QXF7g5xVXdq/wqJrTLj15XZLphurwEDkZUueGMkgQocIt1oTCIitPWBr2hj2WwlPVJaY1VFZTGoORktC0HXPXuy5q3lmKYk0Yxayr4vu9Mj+o76EGkSOIoTUVy9ZQ1I7ZckHRVDRWo6RlPPCEgBECR/1qdRp0a+YgpKkdysekUlHpNUI5vAjQrsNQDYYp63XJdLnAOEsoJIkK8GbNKJcUi4Bj3+Iijw8MTo7IR9fQZotBnBNGDqdrdOupGkPiK7JI0EY1F82SygU4a0myEFcbEu9I1tA+XBFsJcR9wWJ/ClHItVCxFPYVDlIRCIiloLIWaQKkTfAyx9N0BAAR4fFUtsR5RxIkXLg1ZhiyQYZZtURqxPVP32CgIopMI8OQWbEkS/uMbt/E6mNat6A+O0fNAl6eHsJey/Rkye76BnJvj3hzSNAUVGcvuf7mDbIsY5GnnK4uyNMMa0OKVcv42oDs8xXj4QbNsmK8e4XT5pDBrTFSSKgqWr1mPOhRLlpcW3HzesyjswJrY2oMTbNm1BuyWCwwvqXFUEvIrg4J2opIeIrignAYIbwirC2RinAyRdsf0HT+RVeWRlgi2trQVNBqy1f+dJ+7t7+ILlu++fVH3L4+5K/95BWeP7rg+ZMZYdJjVZS0xqK1Jh/2aNqKpq1QQQYqYDmbEcQxQZIwq1Z84Sd/hK999Q9ol1O+9JOfY/vGFr/5+9/kw8cn3Lpxk70r2wz7AVkW80/+ya9zdnwBAl48fcp4MuHO/VsMhinjScrZxTleOISM0d6yt7XJatYwGUzI+x2QQAXQNCu+/s1vcnJxyBc+/2mu39zm9rWrfPjsCXEYYNOIBk/Ujwl7MabWeGewwn+3ZzHWIiTf7X3wHuc83loCIUmSBBkoirbhzx4+YW97i5/+4uco6oaicbyT9hkOBhwdnzMcDJktl3z8bB+cQbSGQHvC3YD5xZLtbIOHj38ftbtDx66WCAG6qYijgPF4wBtvvk4Uh3zw3rvIYk1ZLMkE3Li5xx/+/h/yoz/104x6G+yNNf0spzYLTFlwZ2eHf+3nfobf//p3aKsKlTiqqsA5SxQG3L15E6VC8jDi/ffeoyoLdNtg2pbbt6+R5Sll3QDilVTN4Y1Bik51oJSk18t4cP8m/+Dv/jLzkxOctizLmn/0q79J2Trqas3BsyfcunefVnd/X6cNRdlwcXiBPZqxeHJMXRVkg5T58Yz9i2OGu5uo7EOGuzs02nB5esLq+XNEU4P1PH/2nHWxoj/oMZlMSOOY9WqF1i3Xr1+j10uoioq2bYni9Hu+G993Iz3Me0hnUAJa4yhq3TlGhSeLAyIVIYSirluEVMRxTFNX1E2FVRIXCKJA4X0XSeusp+vJ3StpRzelrtuCsq5xWmO0Q1hBouMOiZN4su0J9BJ49SUpW41vDakSbA6HDPI+88tzRlvbrJZnLF4+IQ5jRr0rXB5dYKY1iVS4SJDmKWLtqZxGaUs2zOm/cY2ptgQiR8gAFcesi0uaRhDFMbEUmLImCiRls0KQEAUZWZJ3UedOkCYZ4ywFtwbf59sffZvGe0ytyaOQOAiwTY0Q0CkIutjupBeBrIjStjuUviVJJLPLM87PC55+ckClW0gLirUkETl5luBUj+WspqoMzdoi6FOsSqJIYbQjiiMKWzJ+7Q7VmUbXLYNgQChTtne2iPMhZ9/e4vDsCLmWXB8MmB1WXJQLXgwe8tkfv0vdpARK4HXA8eEld3YTcN3/YXoJX3v3JdomDIZjvAtYtZYkdOT9BIRltaxwHfKbOEyw1uF9QKwSGuNZF2ucmzMYJmy/eYWL8wbV26JRC9R8RTBsicc5s6rGmYSes5j5HN1cYLct2c4eRIKpB7/ZxzUGvWxoVxVuXhLUGiUDGmlorGNRrpHOsz3apK1atNVIqairhnVbo9v6+70yP6jvoXRTMK8azmYXrMsaVETV1DgBznvyOEAiCCOFVa4zFAch9doSBRHGwKJs0YaO5SolSZwirCWLEnppymw+o20MxmqCUCKd4ejoiH4SQmEJok3qSLHT61O0C6ZmE98MUGFIWUzRbUO/P0KKDKlAxgHbPmSuawrpyCJF6aBqKpxXJDZA2AQ/2qHSNfNPDsgKQX4tIk4bsJJl1aKkIAoj+llK0WhezBZkw5SdeEQhLmikR3mJse0rDabAeg0YVqsp48EeQkZEPiURCYMooRA1xmuWs4YkSMl2rsBgSNVWrA+fY22D3lGM3tjAXkgujk64mU9YvzxEXMs5uXzO9qXk9sZtdveu4oTCAxvXclarNYkdsHN9wvTDCzITcG4vmLJAxR7VaK6MJ1zUmtZ7mrnECcMoUFyJEuar7nugtJqybOj3+t2q3XtwBhc03HjnJplzeOmI4pzAKrLGEcgQ5wWtDeFXv/KXfGr/apfH4L1AKUGaRDTe8uKk4uGLgpPnL8jTlL/xc/cResqDB2O+/o13WVcZ/Z0+pbXIKGJdVkxnc9StACUV3nmM96xXS8JQUa1mTKcn/Jv/1i9xuP+U958f8NHRJVUruXvvDtvbG0yGCdeubPCNP/42+0+PUTLEOt0h4Lzn63/8TYJQ8vpbd7l1Z48w66FCgROS0XjC80cfkMcD1sWKNAoZ9/rcv3eHx08es6o1v/e1b3LvYo8337rL+fScy7qkqGyng1aOyd6Y/YsTvLcgAlqjcc515A4PWnfDxEB2SSyBhEGekUYRwncyU4vkK9/8DnGcUtSawe4GZ6fHHOzvv8qcEBwdHWFfDROFEFhveTE94+XsnM89eJNJv89KSgLRxZQXxQpjWqIw4v6DuwwGCcvLS2Il6W2MefT8BW/cvc3Z6RnjzQm/99u/x4/9xE+w7rfcGm+zWiyweL7y1a/hgTiQNOWaJFSURdGxr1vNt7/9HUxrCIOQ0WiEkoKqFBwenVJWLT/70z+KlCG/+5U/4nK67B4XvpNEhkFAnsWEEv7mL/48r7/9GrPNMb/+q7/B73/lj7lx4wZHx6ckoaQtF5yfdAbE0aDP5ekFSMn55RRtBWFvSBJF+LWDxLHb2+X2Z7/A+OouH/36H7NezLj55n1CK/mzP32fqix5880H3Ly+S3/Yp64rdKtJkpAPPvgA6wzz2RK8YLIxZmPne99yfd+NtG5qAumRoSKKA4LW0GJpdEMWK/qDPk2jsdahVNC9SKKYUHQNsgrDrnH23SWVUhKGHdfVGIPRHTe5NQbj7KsD+0rgLxRBEhLn0M96xC6hLBaINCXzEfNiRrUskGGCmE0ZjTcx0xnV5QmjVJFu9FjOpzSzKVJbRJKAF2xtjJk7Sepa1HZM8M4es4GlNRbnGo7NM3oMubF9g9ViTV1qlArACaSCfj9DuzWRciyWLUmT44hpdEFgHWHU45MnR0zXK2QQYWrNqqnpxTmNMGhvO4G976QGYSiQoUCGFu8lZVNStHPmc810umZdKbxwJATMZ5ZmOePuzRGBAqUkRVEQyXH3hSskUljiICYQCVWrKQONEwbpYXo55f1HH7Ix3KBZLTh6vs985dmRMWaxZHlWYrzgWfyIz375x+jlN1gX5wRhitI94txQtgVpPyPPewzyjCCxaD1Dmz6CIctVQaBKrPEkeYQUivW8xFrTNdUiwNuQUI4QFmzZ8lzP6F/dRi4Uq1oTZn3M2tCuVmwM9pjP1xSV4rRxqMqzkWaEMudyes7OrU2sSzm/mGKVI9hMSQcZTdOgXsWoSt9dBoVHeksUSuoGWqtRUjLuD2lxRP2cl2en3++1+UH9N9Th2Slr1zIrC7SxCBqMNSgpCVSn6ZeqpXUtjbbIsOMs90Y9rIV5uaLUBq27FKwkjhBOMc6HBEqxmC+xWiMFxIECq1mv5kQJ1HVNZGOcqbAGkiDAuA1kfh/rAkaZRKWCoui+MK1zCKHIooitKOeRPuW8WBN6yyBNmC6XhHGAiy2P8xnVTQiTnMFr97nWu0q+rbjQSxQDQCCBWAmUlJS150VTcjOK2Qj6HIs5jdQEotNlamsRssNrgUUowaJZsjHYJg0iIut4+O5HjB7skaUh3/7Kt9idXKV/d494kpPEI9yVa4h4yOY6wpolwgCt5dn+x7S+4bVbb/PFn/xhLs4Oefjkfa7fuE+YjNEIlHKkMXz47Q95a/ce58cvuXvjBuftnO0bt5l/eE51VuDjFcGm4rA+QvQNPjDo+RxzdkZ9qRjdvIJG0mqDkJLBYISbzdAIDAEXlcWfTpHTNde2r3B2OmV5PCORCUmSMRiM/jKP678UtbWzwcXlsjOTAUEUY2rLb/zh+yS2YCsXKBmwrhSiceyfrHj09Dmf+YnPkC8WnC3mqCgjiUrqpuDJwxd8+/2HvDw4JM5i7ty7RRRITo73CZ3DBxnz4oJnH33C5vYu25sBd27toqh49vAJv/Jf/DpVaxEBBFGA954v/8SXOD4+IE4S0l5K2TQcnl4QRin4kHVRIJVgPBphjWa9XjMZD7hz6zbrouDJ0UtKV/P+k30uiyVvvHaXxaNPCEWI957FbMre9W2evX+IFx4h6a4er0JXZHcnVbdgR2LpJwk/8SOf59nz52hjaY3p/l0VrI0lSVI2tzaJ0pQ06zEebzLIe/zp+TledPHq4HECpk3Ns8tT7tW3CFVAKMCGilZCVVddOrSAe/dug3A0rWG0tcv7732Hr37nPe48fsnF6RmXZ+dkMuJiOuOX/vYv86/+jb/Ny//Lf8qsXlOUNV/+4ueZbG7y8fNjAqloa02YhLS6ZDqds14V1FWNd45enpFnKVVT81u/8Qf8rb/xc3hjONg/YLn4ECfAW0sYKtKkC8cLlWQ2veSb33yf//P/9j9lPpvz4LXbbG/2ubo94uMnL1iUDfOLU6IwZLKxR9PvMc5z5KrALNecmwIzOyOVIb08J04znv76H4GSRElIMsh4/9e+gowUr127w2R7jIoETVNxcXLG4fERWmuGgxF379wlCkPatmE+W6O1ZnNn93u+G993Iy2UIggU1lm8NiRBgHWSKEg6xmCQUpeGQMVIGaKEJA47h6sTjjiIgI4T6b1EygAQaFNT1fV3J9PWWpzv1nf+lRU2iALiIMYohzuYY+c1VCXB0CKlgnlD34X42uD60E7XVCeXRKJm69Y2rdAIvyAUJQKF9J4s7ZFmOevU0HOK9fWc80mICHNUA9ZqrF3TG0ZMV3PKSiOkI/CCLO84rcNBj6JecTafgkipqhVSarJIYq2kqiM++OQpMlBIHEkSoHyIcN3/31mP951YPwg8xq4Zb+R4EdJaTT9OOj7sfEEUJwjpqOoWi6FuLJEPESZgNVtRrixKKYwuEaJ7pFjhiINO3K+to6xqVrMZXiq0ELw4Kfn4+ZiDTx5SLy7JhKeeTqmXNUEc4YyjWK4oFzMGu93k3jsPQUuUStZLOD65IMsVN28lhJlhOQs42q9pqs5AYJ0giDriixSewXhM0zQ0TdM9knyCcBnSe6xZYxU8nZ7w4P6nKZ5LTKtY6iWiqHGqIM0yqnXJmVmxGads9yb0kwmXR094tP4QEXWbEW8F2rYYJfE3NpBnK9TZEmVb1KsLEUqFM7aTAEgJQmCsZZDnRH/+CfmD+hdax9MZJvQYLMZbrHEdqvKV/GKQKWSmqM5risoTG0jyhDyIuJhPWZZzPJIslfSzkEl/DD5gXWrKokS3ppvmKrBNTbWaIQNL3g+RmUI2irgf0tQ1+zPJ5o1bNLZjoDvhiZQiyzNwEW0NSgomXlGFgqeHJ5RVg/SGngwIpSAQFZNeyCyu8FaQ9xKSLOFMtTgj2dQ9xr0+rW3YGE3IIsVyXWBQOJFwPi/Y3RixWSyhKdHG0bQt+A4V6qyklwcoZVnXC3CSyXib80+OOH+5T3B9C9dKrt+6wro5p101xNWAyfY2ad6nSUP6awl1SdpvGU+2CDefMl8ecfnskO3Pv4Pb3mB++ZyHH3+L67c+Tdob4wtHsnK8OdmjPDnGyDWH8ohodxO/btgJt1kGa56fPCMygvHumMlGjgg1l+0l+RCu7t5m/+SCUX/ISkrqtu2oQVmP5XIJQlALQdafYE5rWqfId/bQLuVw/4xBIJmfz/6yj+xf+dra3aJtDTO9xjrw1uGV4mRa8DOfvcGtoeTX/uv3+Oi9IwiGpPkO+aDmh3/qs3x08QIjAiQSLwL+7L33+Mpv/BGQgVAcPN9HlyV/7ad/DKsbnr14xsX5jEZb3v7UG1y7fo2mWbA1STk/POOPvvJ1ZssaoRTSQRQrQPKHf/DHjCYj8p6jbFqqpiQZxOxduwLOkucZu1d2UYHi4mLKulyzWq9Ikp1cF2gAAQAASURBVIDtrQ3yXs5iUeDwHJ7NWdcfsbU5ojWWUCiKsiSfJNy8t8fzDw8QwhNGEcgQa+13fTV4j8CjhGDcHzBJIw6Aom06mYvpUL/f+M573L15k6vXrtJ6QRBG/LnBvWnqVxto3w0dBTgJR+WU33j3a5S6xdkQqzwOh3UNSkGvn3Pt5nWCOObjxy/48L1POD4+p6gr9P4xaRSgejlJnNC0Jb/3z3+LH//pn+H21eu0B09ZVSXbWxusqoogCBBC0BpDQEoYJkRRjAwqRBhgtWa+WjFbLAgCiX34gv0nT3j7rQfdBB5HoELiLCUJu34nDQNCIfj6H36dR588wjQNX/rhd/jsO68TJ4pvfOM7hM4QCYfBcn5yhBABWa9HjaMN4N/47/8dXnvtLo//5Bu8/5Vv8vG3P6YXpQwHfYa9AaKNsVWDFI7ASdzSsHJLVtUSbRuMM+xt7jFfLjg6PObmrRv0+jnXr1/l5g1JURY0dfk9343vu5Fu2pa2ARDgOuSUIOjcrN6xWs67abQMCQKJ9x6rDcJDEsXf5S4KIXAOlAw7iYfnu7xJD9hXB+rPS0oBdIlB0kvMvIWVI3Iet15DpBjKFIQnDFMSq9DLNRtxn+3tXZJewsPpAf1eH5/VGOPoZxlShlxcLEjTlFVuiD99jbVtUOuEOBgShxYVtTRVi2vPEQKiMCTNE2SgQUbMp3PSLAEX4pUkCEC+SjXyOuA7D59ivHz1epS0jcO1DnRDkmRQ153LVzqC0DMc5ajA0Zga5zUqTIiiFO+XVNUa6FKfyrUhkJo4jwilZ2MUcX62RiqLdQ3Chwgb45A02pBGAUKFLNYNB09nWFeRbfXJ9raZXp4xPTnG2xrrHLHrLlQQQes0vqmpF0tG27b7otMlwx60RiCinKjXI408p2cxp+dzZpeeqs6wLkDICNNaAucJw1cT6aokCgOSPKGpK3AGbxVK5q+wZQGlqWhTTZgMaMqMQp0SS4ekIY07mY8hZO7XTF2JubCMdYB3imXdIpKw4+Nag5UKmwT0tsfoyuDnGmHppnzGdDIC79HOdB84uiVsAuI8/n6vzA/qe6hl2SBjUKHHu85MI6UgUAF5EpP3Ig4ujymrmqoC4UKm0wVVKFmVK6QwhEnC5rDHrau7VKuWw8NLisbgXxl6YyXxvqWsS6IoRsWWNA8wa4cMJWEkyOIxTo7xwZA8ijG0eCWo6ooo7EJUtHH0o5CtNOXx4ph5tSYIArwXrMuaOJZkiWM4TvGxwlaO2jqshd08oagd80XBoL+BCCzL9QqXxtRti5MhOE8DEERc3d1h/vQRhfbIICIUAuE9XjkEsvOR4JjrOdN+iAvW+FTinKT1EGwljAYDeukm5w9XzItLBuGArV7OdKxYNj1srZlpS5hlbEebtCcV9bMZjAxJnhPGjsdPPuTBnbeoXlTUz9Zc6Y853H8JI4GaJGhZEJcNFy8aVmcN82ZKOS349OYPkcqIg8t9gr2Q1UlJ1q6JE0fdrMjzCVUUUNcNeZLhnKNtCiphKfsQ3h4zv5yCDBntbVFpx/UHD3j+0cu/7CP7V76qqubqtV10+5K2grWpcUgQIR98csDNH7nHW2/fY3Zheffdc6xc8m//j/41GIC5BIfAS4E2lq9/+8+QYch/9B/9z+n1+vyv/5f/CzKlODs+4+LyAt069vZuMJoM6Q9S7t26wnpxytHzl/zqf/U7PHp4gjEege2GQkKQZzlVUXNx8Qzruh4hihU371/n6g2PUN1215qG6WJKkuU0xhHFaedxyiJuXN/laHGOR2KcZb4qqJqa1+7f4u7N67z//vtcLhf81C98nneHG3z8nYcID9boDpcquh5HiO6zSlrN1c0xWRqTxAq9Lmm0xSIIpCTpDfBBgAwi6qKhqhoGfUVVV5RViZQK8QolFycxznpeLC+ZlgVOKkxTUmqHlh4lBSoIGYyG5KOcVVHy4YePaC2MNrdZ7r9gVRY4n5IkCbvX9rh3/SbjvSvM9ZrdnS1enh1QmoaD03MePXnKxt5NUqm6EJpXEIQkSek7i2XdbbmlQmtDYzSromZtG04v19RlSxgEZL2cOA5IgoDJcIBuGi5OTvnO5ZR/7Zd+kYcffsC9G1eYZAlCwGfeekDa6zEvGz548oIn+2cs5lN2BwNEGNI6yx/8ydc5OzrgzpVttl6/ye/9wVfJ45SkWdOfT+lHCYMkI41joiyhXjaESdglXQ9z8nFGlEfcu32fg60Djo6PuHH1OtevXWf/YJ/haMh08b1jbr/vRtoLCFRIEMS0uqasCnCGvd0trmwMOL64YFVUCGnRpupCVZwjUAolO1agtRZrPXGcYJ2jblqs++6+pEO/SfmKy9ilH0opEQhUoAiCECUVVlta78jCmDAOaHyJyyOSNKc6X2AbxzJxXB1fo1XQG1/Bty2D/gghNWmUsFyu8Th6/RD5Q1c4iiqSKieOuvRC7+2rx4BGesl4OCaKEgIZMZ0vqH3BKIqQ3tJLRizLAoQjjgTCWGzrePj4KQTdyqZc1jRadPR3Y4kTRxA4nG2RArIsQRtNlErCSJMnEXmkCIO40/a2FR7TGTud6IyJusSZJf2+ZzAUFFozHISsFy1tqbC+C4fwXuCcZ1U0DPIdTl88wekl16/dI3EKXdQoCV4qlIqRtJhXPEhhYXl6wd5NQygDXGAY9XIClbNYr2htgygtO5sP+PDpistpgXUaWKFkDMjOnNo0KBWjggT/SuITpRGxCrENtA1oHdLWEhWkEAq8dxgfMnUtSVNw++oupo1YJSG6DGlD+GR5xM1wwNCkDKoAmwqWsqV1dZc8ZQVKgYsjxOaIdjEH1YXhlLrBLOZYIWmtJg9yxoMR1bpkvvwBQ/ovoqR3eCsxGBwtSI8MAoTUJAkcTy+ZzVuwikA6PF0z2QhovCUOArI8Y2O0wfnJgumsYl0bLBY8JJGirxxaNNTKslwaRklCUxlkk6F9g122DHobDEc7QIxuPUGSonWLCiO8j6ibzhg8EBIbGCpdYGi7CZE2tMZjgX4/pCwLIgn9NEKpgMCHrFtNliSUumHdFrhWY4KYVa2xDoQzeGEIoxzvJP0kZdLPKZcV3oK0kKqQKA1ZrZdo9+epa5rj9ZTJVo/IRmjXEgUeF0miMKM5mmNfzKEV7Edr9syE3mSAj2O0i7GmBcZgI4YDjTtoyFyEyTbY3t1BtoeEpaA8axjUfYppQaQVwc6QRVVwY7BBshuxfNni1xARkKcT1k/mFA9L1HXJ9ttX0ccnnH5yTO8zQ0Ikx49eEN65hlGStmrIB0P0zCBNC94hezn1symXl5fI22NaLVi2liuf/Rx89bf/cg/tX/EqqpLRsMd40md6viLNY9rA0taOy9rw7Wcrjh8+Z//jU7wFHwhm7ZzZkaY2GvFqYNa0LUVZMMjGjIY90iTmrdfvEoeCdVkQZz2STBInXWO7Me6hrObZw0P+63/2zzk4vGRVtWjvO3Zz2xDrblBnO2QX6hW7WaL45N2nfOqH3iLuJVRtzfXr1zg+mtIYzbPnL3ix7whCy6c/dZ9BPycKJY21SBWglERry8cfPUNYwcZkm9liyfHZCQ8+e40oEbz7Jx/h/J9vkQVKBQhE15xHAUmSUSznvHHnOvsXH3Z9hOg2nc8PDpkvlnz68z9KnAecn5f0sz7z2Vkn3QhVx+7GdV4xZ5nrBkvno9CNoXIaG0gCJRFIrl7bI4wCfve3/ojVsiKJE6I4IMt71FWBki03rlzn4dPnnJyec/X2Vf4n/7P/KdOTfcS7FikEDx8/5fDomGy4Rdy3CKcQiC40T0kcHiEFQRgiZAAiwLYCYx2DfMBv//OvILBMJmP29nYpihXKw/OnT0kCxWfeepNqcYlvC6SA3/zt3+EXfu4nubZ3hdF4wtlsSm9ji5/9hXvceXnI+x89I+rllNqS9nI+evochSCPYz745CMm17eIw4DVsubs/Jh3HtwnHuacH5wiF5IsycizjCiJaIuG9XRFnCUsz5ZcuXaF4Z0hRwdHXL91lZ3NHcq6ZDp98T3fje+f2qEEUSBIE9WtNnRDFsTs7WyxOclYVyVFUeGcp2k7/VsUqi41zjmMaRBBiIwkMpC0VUvb1DgsEoHzIBEgwRiDsIJ+mjIZ5qxajfYKGaUI5zFmTRQr8jylalqkSkmCDL2ukNaiJeg45AyLrmraakUmJWE/p595ynXL2mtirTndibBZg/EORIR1JdZbrF0jbNPJOOI+qwrsqqTXB+MdzhsqJ2nrNb1AEkmD9A1CQtNYnj97ybRcEIaKPBug6wLrxasveMNq1ZLGIcILRKgJ0gYCT+sDhBTYouL6Rs76osYJTWMaGlNjvUZI8EZCBCryJGHEznZDmPUAj1SSk7LGm4wWTasb+lFCUddsbg+YvRRkYUaCwC5mDEJF4yxewtbGiJXzLBfnCGuQwlOvlijpUa5H5guUSTg6LCmahjAK2RwlzC+XbPU3qIvOiKqwSKG7abzXqCBFSo9rGmQYEYiQttYYURNFEUZoUAqhQmSc0lhP2re4KqDX7iL0c+KmIiai349ZtzFVlTEr14xsjWgrvBckptOFKxlQYzpda6AQYUw0VNRpQrMuOxyjkLTOUvsWj6coFvRjxSgb0TTN93tlflDfQznZ4IXEuJooVlit8dYiAoFGM7tcUjeGTpvhEEqAV6zXJUqGDPp90iDj5OCSsqzxKsJYD9YSBpKmWOJEyWCYMeplCF2Rq+58xOMQGWY0rWK8vYcjBRXhrSMMQpw3ryQdHTJxmGZs9HKqZknVVgQq6B71zmC9pG4EixkExpBGGU1pqIqSOEqZpD2yNCdUEWWtca7THeME3trvoqI0MFuuGeaSe9du4Q5esmoqjAsIkERxBM5RNTV10yI8LKc1K+nY3d3EO0tdWUpjWV+syUowdYV5dEzv/h6LdUHpNNlwjJcgghDr+hhiylEDukJMV6SXkuLJGRtZyuXZc9p5y9bePZamZBBmZDLnbD3H5paTVYHIIobXM+xUk3jFZDwE1yPczRHhkPyK48XjD2kvDMbA/GRFEoXE13eovcMWFcP+EDObYoWgkZ5kd5ve7ASlAtK7N1heLkm2rvxlH9m/8mW8Z7FaMhmPmU1XWDReAEqhXch7L0+4c+UqtwXcvrFHNOyzqpcUAhyyk8k5j/WGKFLU1ZrV9JyLqmJ7skHTtqyrzsTWyxPu3b5GGghW56d84+vv8o9/9Z+zWNYgFY013f3wkuDVUM0a24VpxQFvvPGAwaCHs4Lf+rXf42tf+TZ/7Zd/grPplC9/9nWevzxhZ3cHFYbs7GySpwEfPXxCqUvu377F/ukJrdU0TbetbqzhW+9+wLW9HT7/Q1/gcn7B/vEJD96+ja4NH/3ZY7wVr7brkrquccbSKs+Hj5/w17/0t7h2bYd/9HvfxL+aMAshMB5qbWm05fq1WxztXzLpj5hfnJJEIaHqTL0O0aU7K2jx1M6Ct6RpTlt32FwpFUEQ8Ol33uLg5RFf/f1vonzYCQVeDRC0NmAN927fZDk9p9UVy/NTCGDv+ibDfs60qgiVZDIcUVcl3mqkCjDGdEoAGdIbDIjilOVy1XngnAOlMNbSmJYr16/xxhv3qeuSjz76kPOzM27v7fI3//rP8vjjD+mFnrd+6E3e++AD7t69x/Uf/WHCQNBaTds4sp09Nm/e4eX+IdPZmtdfe51l1XC5KmmsQwQBf/LeBwx6OW/+0Kd5/f4dqvWSX/+13yWe5Lz1xTfYGA6o3rrBalGy/8lz1qZAX86JwpgsSYniBqUEq9MVvVGfMIg4e3bO1pUdbC24efXO93w3vu9GWimFd5aqKmibhkAqnHM8efaMw0NYFQ2eACRYuqQ4h8c7R6QCBOC8Q3hBU1WUZdUJ7F+pOMSrnxGIEEWElJ7XHtzj7bfucnJyzJ+994iibVFBTBylxGlElvZxrkQbiy5NJxMJEvr9AdlwiJ0WLKcXmLaELCHf2Og40cqRhxXFjiK44WiUwZmMXjqkXtdYqTupiOpj25jKdg+CKIqpmpogVGRyhMAiaCmLKWli6PdVFz4iFY9e7qOtxzqNFHUncK9avKB78XkIwxgXGkTkcKprHhpb0Qsj0kBxZfsq33g8w1qHMRbnWqyrCSJJr5cSKMO0LMklLAtN03jCMCBNYwZDWM8t3nYcTNO2mEAQD3KGGxtcuXGFQdLDnF9yReY0kWGpNHkqCfoDnuojsN2azOoW5wzYgF4vZ74o8E7QekVlLc6vcKbgxtUAlUiePa+pVz0aqZGhR+JwWnRA+yhA0NC2FhV20wXnGtIsxBjwXgOSSldsDce4dcSQLapijlWS1jSEvRB34VEqwciUaVUQBxGpDQi0IPc5QiWc2hkEHqksqTfYdUEkA8wro5eUiiAMaZuajgsaIFqHE6DUD6QdfxHlREtrPEJ1SX9OG4IgJI5jLhZz1oUGLwhU99AWXlDXljjKGY0HtE3N5fmMujU42ZkJcS15HFAtl9TVFNUXTBc1gYrZ2ppQLTXGOJIt0AZGm1cgSjCmw3smSUQUCIQMcF7hZUAiAgYCklBwtlyxshW10a+0oALrDEGQUDeSWkES5gxymIxS0izH1C0vzi6woSBJU0bjDbTtVtZSOOIoJIwTnPWsW4NAsJf1uTIa8uysAiVpGkujK6z1KBkRx11ai/eOhW44qi7JhyGbPkKtQduQpa259dn71PsneNEyc4Zl0TXh460tZKBwxHgXY3NJHCfUFwVDQqr9Ncv9C0y5ZrQ5QscV8Y2M8vkc/WzGcKuPdo7NK9c5ennAarHEOsHaW/a2N5DWdxHCTY7vW/p3dqmaNcPtCf3eDV48OySpJ6xCCKwnICYOU9ZFgZMCM04IxxGlmdHbHLO6mKGa+V/2kf2XoBTIABEodq9s8+TpPl6CVwLvFXVjOV8v+eVf+jGO9p/jUyirBhOEIDuushKCXpZwbW+H0xenPPzwOxjtaJqWRjtUEBLFIW+8do8khNn5Kd/6kz/ln/36H7IoNBaPs/pV1olC4DBakyQpQaQomopBP2cwHnNxfs7x/jECwZMPn7F7bZv7b91jvpwTxgGz+Zxev88HH3yMbkoGw4SrN7Y5mp5y69Z1jk5OMLrFCQtSoGTE5XzJH37ta11ycxyTbib85M9/jmpV8vSTI4xtMca/Cu7yVI3GSMcXf+IzHOyfsSiKrqnBgQrxCMqmpWkMG6MNNicbVKs1vTjl6tYWG+MBy9WSg4tLtHcY59DCYgQY2xn9wixi1dbUdcPm3ha3797mN3/99whFSBTFBIFCG4PWmigKEU4znU3RRvOlz3ya7VHG8uKUpJ9y6+YeT07O+dSDN/nxH/kSv/LPfh1nDZEUxFFIbbqBoW4Ni8WCtu041lIIVBDg8Gjr+PznP8+3v/0tHj98iLXd59iNmzf54KOP0HXDYNhHIhkPR2ztbDDZ2mK+WvHiYoWLU44fH/H4v/wNDo/OiALF3/jFn8c4xzBNWFQto8GYw/0j/vhP3+Xzb9xlcbzP5995ix/54lu02vLkxRPUnTs8ffSEK1eu8CO/8CNcHJ0grOLxe49ZVWvEuiSNQnSlqddN97cJJa6WnE8vUL2/QGqHtZ2ZTYjO9JLECiVhWZRM5y1WRqR5ShSGeFocnqptCRDEWUgk5Hez6K11COG7Jsp0hsE/10WHQUwexygBQRTRHw9Bt/SSl+gaVJQgwhgpHKv5ClSA8BLhDEKF5IM+Ko5ZXc7JmprUebRR1FXNwewlPo7JA0M2MdjPXmGdRCAzpAN8SZJ5aiMwGtpGkKU9AtU10mVZEEbdlFUFNWHgUcrQ64WMhh3m7fDFGSdnNbUxeB/gnKEsKvJkQFFqhHvFnRSestbk44CiLTsTogzQTU2e7BB7jS53KKsp1ngUHm+7te1wlDGc9JjPp9RWMj+vmM4brJYkkSBPMnAFSRRhW4UIQoS3WKtRqeLKzZtkeQ9lJdu7e9zZ3uaTg4fUyyMaX5OlA0IVoZsaL0E3DVEgiaMIYxzWgxCKMOxzOfeczefEtmIYQJZpbt/LOTn0nE1bjOvS4OIwwfsG55qOUBJHgO4eV5IuqEdJmrqlbR2LomVzcIVaVzigQTFtCozTGCLsnxsfZcjKa/qyiyIOnETPavqjHBP3mJkVYWQR6yXN2QzftEjvu+2H6FZ08pVO3zlHrVuEWxPFPwh++Iuoqq5xr1akvjFEKmGQ9fFWMVuVtI0gDkPCICAJA+I4Ih/0cN6xmHdcUG1aDHSGPKfJQofVBbpcEAWCLM2oXIu2LU5qPJI8G5ElCUYmOBmjkgSlBd4anDdIIUkTgXEK52NiJ9jMAqwpWZo1S1PRCkfgAKHw0pDmETSePOsxPdlH6xBXalbLFUnYp3Wa8XCAqZb0kw0WJQgpMNqihKAfxNRYirbCtZ68arrY+ihlXdY0FpyzVFXZ4QHpgiBC6YkEeGvYX16g+jvUaYBbhcz2D9DyhNtvbJK2DZdVjU97rNZdhHI27BEmMd4E4HNqqYlvXKGYL+k/6HHxdM3x8wVVGrN7K6Zpa6JlH2aCxcOCZLPH4MqA53MNtWI9bZnOZuxt3ebu7h7nl1OeHz5GbkW0szW5TFidrGhoCWcl9uNDJm/fplSSRdswyHN0o6l1i40t2+/somqLbBdMxiHu7Nlf7oH9l6C8g6bVpEnMYDJgOB8wvew2qs55RBAyK2q++u1PGOQhxlQ0CrQF8PR6OVmUEjjoZyn927cIpGRRrFiuCpCS4bDPoJ/iTMXJdMrZ0QW/9lt/xKLQtM7g3SvrlHedGV9KvKfDxAmPMY62tbz33idcnF2QxRneCaT2vPuH7zLuj3mx9ZLxZMj52Qu2d7YZDPpYm9AbxKACrIejoyPyfspodJ3TkzOMNjR1Q1011KXHGI1bFpycXTLIE77wU2/z2lu3+fj9Zzx6+AzhHcKDQnHz+hXSYcazr51gXCfDFFLivcDKLszlxYsDNgbPMNp0YWBNw+0rV7l5ZYv1ekFRlhxeLtC6M19HBASBZL5YopKg29YheO31N2grw4fvfsJ8viBJE7I8xXqDx5PEMbo2PH/xEudh0ssYD3JOP3nE1s0bvP32A7754VOeP9/n5z8X8Olb93n/8BlB5onjuIv6NrYL5QlDvO9oJbrVKAlhFII3fP1r3+TZ86cY0zXZURzzR9/6NhjHII+pHES9Pnfuv87FquTjl9/hdLbiYr7kfLZivlx1AW0SBlnEb/7mb+Galh/58peY7OwQ7G7w8lnGyfkl9q173Lp9jSwNefPBHS7Pp/zqb/w2Wje89fqDDs8rW7Q0RKnijR+5z8H+GXtbexTzNWcvT3GXC0IZkKQZ9aomCALKcv09343vn9ohxP/XVSoVQkgQlqb1EGT4IEaLsEPfAUY3341eDoOAPEwIgi4uumgajCtobaePNsZ8t1HvJCSKOE5YLEsePn5JU1S0RKiwI11YXWN1hXEeFcV4BEJZ4jjFak29Wnei2yBCegm2c/w6aXCNZRpXiM/2iPY2yJsJeEMYFWitkTLGms5YB5ZWr2mdZTwe40WXqtY0JYl05NkI4SPq0nJUrlisFkRxn/0XT/HOIgg6E41uiIKOU+xtN+nSpqGoW3KnCKwiMAmBkZ1G2XuSRFGuE2ptKKslUmrGoz5BCFVVMrtouvhjGXE5K3DEFGWDsCHtusW3IXVRE4c5gchRymLsjMo2TMYTqlWDKWbooeczn33Att7gYHVKL0wZRCP6WZ/1soJQMsh7SN/hCKu6QQQRSZQyWxXoJqCuYWPcJ6SkuDRMy4p8MmEnzFitCtpG0/qmC/OhM2po3QCSIFCvPmwc1jqSpEMi1rbGSot2BqM9rWmZFgWCIVnSZzIZcTE9p7WCNvbMZUFiPZkPUDXoS0ucwigPKahpyo73qWQI6hXOzFq8NcSBwAQeLR3LoGEpG0b9MZx/v7fmB/XfVMZpgsjjbIC3kiBRCKVYl0X3YI0lMhDk/Yx+lqGEZ10UrOsGhwE0BkXoIfEaZIvRJXW1ZFqXJA42nWYwyahzSd2WzJeOeBLjg5wwGGFchjYeZ7sErChSJL2YpikRIkDjCRuNTyTH8wuW9RrlLcIZtAfhQOCo6xU9mfP/Ye/PfnU90/NO7PcM7/jNa157HrhJbrKKrLlYZZUky5YdtW21ZVntdtxuII0ESIAc5CAI0GcB8i90giQOkgM33N1pD+2p3VJbVkklVblKNbI4bW7uTe5xjd/8veMz5eBdIhIggCvNSALUvAGecHNzr7X2+3zv/dz3df2utmn48OkzRDSgl6cMkkBpLFE8YjmtSaJAsV5ifQ90j9YpUuExrgUcShiMgWUJ/fGAvcGE5+uPsEZgrMESUFKB73wcbWux1hBpTeMqnpdTdvpDXNWytbNP8/SIIIecnk7ZuznAxwlP12s2m4KybeiPxug4g6CxcaC2Ma3PeXLvAcVyCqOI8dVL1JmgpOSFL1xl/d0VWT2irjzTh3Ps0rCZrzusXXAczZ9w+/Z1+psBH/3eN0mv5PRGPXCW1dEMtbfTXXynC5qHT4hvX6GVjspB3s9p1xZPxKJZMbI1tlpjbML18acX3D/u8j6gdETdNqzWKy5fPaRpn6K1w0QR2IArJQ9PV1y/vM3u9pjF8hwZSYbjCXVlWBdrxkmP7d4Whzcu4b1ERTFRbNjZ3aI/TLG25vz8hDhNef2LX8H/P/4xgYAP9uOBHXiUEl0YnIqp65JEZjjnWCxXBLpNlam7ACOJRzaKH/zuDxE28OU3vsTO1oCqWHLtyiHHx8e0TUNrNEIpRKRZFwVR1HL1+hXm0ynPn64RBIRSKDTBdiSxZVHz3ocPGOQxr79xg89+8Q4/+PbbPP3oCC0kr969TVU1PHh23Pm9BHRhJZ3h2IfAe/ffJ4365FFGU2wQznPzylUOd4Y8t4bJYMiTs1mnT/YBGzpfSGsMtq0RWhHFMZPJhAf3PgKnyfKMDhQcaNoOH5rGkkhrsrxPP4m5vL9HL4/xTReXblFsTbZ5/Pgp/+V/84/5iz//5xnvbPPWo4+IhCCJNI01ZHlOFMe0raFpGuqqoq3rjlYiIpq6IEniDo4gBUIEvBA4PIvNht/9wx/xk3sPGA+GWCE4mS2YztY0bYPUmoBHSH/B5bYUZc3Lt6/z2Zdu0oZAqgWfffk23/n+m5zNl9x8+RrWB+I45fDwgN/4tV/Fe8ve3i7OOs7nU5yw7Fy9ThTFjK/sszw6ZXeyS3+nj6sCs+MzNmdL/MaTxAleqZ/5bHziRtq77rXlfYc5cRes5yAFxlis1HhniIImy3NkI8EqhHWYpsVJTZpkZFlG3ushJEzniy5gIY5wruNNW2uIlaZtA8tNxcnZMVHcA5UQZHewdByhNSjnLppo1f3lOYt3DtG2KO+RUYxQilgZfNviREASw0Tgr00wVqFDDXiiuIfMRng0xp9R1SugxvmLpJ1nU+I4ptfPuqlYqllNCwQJUvY5ni5BCqQsqKoG6z1epLStQ3hBsanI4h6mBYcnRB4hul/LorzTPFtFlCik2rAz2uHoyRG1nyN1RZbENE3LbLoh0hHWGpxp2d9LiFWC8xJbt5StQyMRISWOBZvlmsloQLAKGaUsihW7Wwe00xrROs7KU37vm7/NMMoxTwtit0W6HzMYDnl2dAoIsrxHQBNFCXUbyLIUZxpM63FNhC8c6S7EkSGEhLL0LDcNoelu5VkvxjqH9wZF3D1L1gEe5xVap4BDRzFtWyMlNE2BVS0ijRGtxjQWLxuEdsRWoCNJ3ouxIkWlA4RfEVygLRoyIRBeEtWBoA0ms7hUQC8hcqCkvGjUHEoEtiYD1FZOk0EbBXwMhQ3w8JOemk/r31VSKvI8o6669FOlFbPFDOMsWZIwzAZsjbeQQlCsNyzKNZWp8VKhNQjniAmMlUY3DXWoqNqC5XQJtkKEgB7kCC/pS8v2OCJqFI0zWKeJVIzSMc629HsXxt6mYbnsBgZSRKAUsVbYEPjw9IyFr4mThF7sqesKR2CQxeRZRo+Es6NjoihDImmrDXI8wpYGU8/QKGI5AqPpDyNKF3BNJ7eQQTMcDAhCYFpPWRnKJObK9gHHmyVP3RoRHBoNAbTQ+ODwosOFGtuSxSmVralEjEoUpDF3b92l+OkJb91/wJXxLcRAUQlLHBSSnGK9QuuWQX+Ck2DRRHmfw7u3icQW1CuMbbAeAobSbfAqsFyvkSFi9vQU52p8WiH6nvRSgroTU+96tM24eeM66ICzkPVGzMyG6tkaGUsqQBmPOZkxPNghCEkcxWT5gLqpMTYwnS8Z9Q5I8glPHz//031g/8dQIZClGWWxujDXeUajHifllEBnuo3TBGsET45nDHe20Sqm3xuyWqzACA6Ge3zm9iucnZyzWpSsNiVl3ZDnOTvbIwajhOmsRakB/eEWUdZjd3+XxfIjJF08OSKglGAwzBn1+zRt28V1h04jje+IXpILWlaAKNLgYXGy4F//i9+ln/R45dW7nJ6ecenOPta0zFfnH+MWEQIvBGXTUD5/ztZoxEt3X2J6fkZRVDRNlx0hLljuVV1Snhecn83p5ymf/+pNfuEXXyOPYkb9iH/627/DT999l/Gwz3yx7jZOoZO1BgJPj54S64QrO5c52NklImK+WLOcnfLww4e8/+FHxHFEULqbSjtH0J1EVoqOhNIf9dgaTnj85AghBHEc4QECeGMxTYuNJXGk2ZQlr968zO7eFm1jeXz0jDqK+Mf/7b+hthKXKH7/3R9RG8t/+Ou/weWi5LgqsNYgQug+03o9Zos5ca3Jkpj1UlykUTtW6xXGGoRUDAYDxMXXGWWKyWhEL88JxjBflxydnLCua4SKulAd55Goj/HAQUDV1JwcHaFMxaTXo1gbrh7uMnvxFidnc5o710CD0hot4fbWDZ4fHSFk56+7dHCJujUM9w/YunKNp/fu8f4ffJur125S1SUHe3sc3HiZ5WxFs26YPj/n5Hj6Mx+NT9xIF1VLrDtdtHUXVA3Z3TIdFudbgnE0ShBphWkdyoFG0hhDQUkUx8SpwtYlyjt6sSKYgFYC4ztttRIKHcX44PEhYJ1HKUkSdZG/joANoGSCkl00Z5IkIARN202pWgEG0BcQd6EliUxRskdJweDlHtF4TMIQJwxaDwjEIA3TxREqikllhrUGYwzg0ZFAR92UerEoCW3O9nhMVXtOFys2ZcuNy9s8evwABDRB4I1ByRjvLG3jGKSK1tcEKYhjhRQO0zr6wwjnJUoJiATet0z0AY82BSKWDNM+s/M51gZ0NEBIifMVpnEkSrGeb3AmQbcRyC7jxVpHa1qyXsKmPGVruIdzGXW5wF82VL7BukBcKCq9ISiL2qSwiZH7MOhnIEFoGF++hEyG2LUhSRUJDitb+nlOUQ3wleRgZ0LVeMaDEU+PS1rjkfJiupdIbOuoiwbnHOJCA+99SwgRdVPjvCOOLUpLnLEgDMtmTm/nJtYIpFKdfjq2tHaDqQrW6zNUlCDUEKmAKJDHkrgSGNuhiUb9DJGsMM7g0gxRgnQXDmlrOTjY5eaNSzwvzjGJwaYeaSFq3Sc9Mp/Wz1B50kdeSLPSXoKjCz7Js5zxaMRoOMI0LWfnU5q6ATzBG7T0RBZoDMXmjOP5kq04xSWSEAvaasnBCC7vj/GyoRUxW5FA1CvSeIt0sEvW34eQESUJIur0xm3b4p3AO0mc9QheEaPopYqT9TFLE1g3gcS2ZInCBU8UK1Qa008Troy2eH7/PioEcu3RacZ6VRPJnEt7PcrVkuliTmXg7sEW2ksaC23rWBYVrRMoEYi1Ioo0rfVUpeXycJdpVaNjQVv5LvVVKDwCJzzOSaAbdAQdWNmCg61tqmXBclawm+9y/U6gKSC4ktEkY1Nt0EjauqE0JaH29LfGOOcwwsMwpRV9EutYnJyxc2UCfUm7tuxMtqn7lqfzI2ITE00049E2pS9womVuj1mHc65OLnNpZ5eTj06YrZaow5Srl66xPF8wK1fo3S22tg85XpxikxV6NKT1gSTLaY2nNxrjbM3x8YyrVw4p0599evRp/Q8rJTsZX112YADrHfsHu6wXayosLgChQ7AFUh48eMpLr75AXZUkVnK4c4nYJzx+8Ji6daA0xgeEVFy5fMjB3jbLYk5rHVImECXIOCZLE3a3xuT9lPV6jcMSxxGXr1/m9OQY6cG1/gIV1yUjh+AIQuAFRFFEJP5oAuxwteO//+9+l7qq2dvbQ+LIEkWVxMynUxwWHzyxjvHK451jtd7gnWM0GDIYjqmqmtVqTVlVBDxRFCGUQPru/Xo8PaHobVCAOFU8f3REs2n43N2r2Ebwg7fvU7YO35mjMK7h0fNHLGZzVqvL3Lh8iUf338fWS375l/8Cs7blbLnGInC2k7s6AsZZkjghAFmSYk3g8ZPn3cVGChQBYxpaU+G8xTjH4aVDfFtTtS1l1RCcJUty3vzRWxxPF9S+G2QsmpLff+f7OBX40pffQJoWJQRKSNq64uT4mPVmg2270DLvHDrSRFpR1xUheJIoIo011hpGwwlJmrHZrJk/f06sJAfbuwwHQ8qmRUlJlqVdaI7U5FlHSJIhEAnB9rDPanqOqUtyoTHB8dqLt3nznQe8+8FTvvRXfgGaEmc6s/WdF25TFCWPHz/GeZhtKuRowvVXeiRScu3GDfYu7RJaz3q5xOsM1e9ocq++cJdbtYff/82f6Wx84kZaCtnFekuJMZ06L4rVhWFLERmDtZZitcJVNVpK+nFEGsUEZzE+sCpKnBBYayibFoSkn+bdRNt5XGNonSTLJFLHpFkMQpDoTtZB2yKc67SQSqJ1920p1YnsvXV47y60SUCo8EYSiRSlY7yNUJdWjF8fU2cTBqGPynKsC6zrBevqhHU9J4rHGGtx1qGUJrlAYREkxcbgnMT2NM/PV1SVYV225GnMk2ePWWxWDPojmvkaJyTOOpwNSKk62HkkLr5WSxIHokghhCdJU6QGobogirZU1LVhOJhwcvQUfUG9EEgQAduU1HVDUxvSpI+hA8V7D85CCJ02q25K0jhnsTpla7KLtz1m8xnjnZT2WBCbhAEJWiQI5Sm8ZSIVO70ePSnYv7mDGOY0riGJBFGUEytB66PuRawMe4cTCtdgAownPbJY0TjdGRWdo6kFwSmyLMFZg20d3gu0yhFCI3B4a2m9J7oA1SME3jWMBynVeYf+87Uh72mUFCSxxmSW89UpOpvgVYzNLanVbOucWipOp2s2z0pM35JojSbCKU8QllhFONdSVYb37z1BxIJ8khM1IK0lsQnvMvukx+bT+ndUsGAb6GU9vHcEGdja3mI0GNLWNU+PHuGMQbkATctmtiCNJct2zXq1JI8SarMgWteMxrvMK4veG3P56gGX9/v0U0eWKqqiQy4ez1sq13LlsA8yhqCw1hNMlxYY6Di1RVFS1xVpmpNqSaQ8z2bnbFqL9wKCxLQWpRPMhV47Vp1uMI0cW3sjolQTGkU7D/g6sHp4Rn/YY2UdZbnG1g2oLrxKyITaGGxZEiuBTBXjXsxiXbKsHJcnQ670R5y3MyokjfA46/ChY8sDXaCV92Ab2mBZmQ3pTo9np0fce/SAvWt7vJBd4Z0Pv0t5eNoh5jYVg3SPgMCYmunpCdt7O0gdU7aWyuX4LMKmASkG5FmfvhVMn04ZRgMO9gxqKKixzM8XrJYLDq9sEfVjVtWKlRvRG4/o5yXWCHxpSCYR/UTT1BGJzKhOptjNFEtNJAJRPKBFkKc9lHMML+3Syw2L82OUqv+Un9g/+6WVpmlanO8GVSEYhIer1w558tERlevSiUXQ5L2EYrXArlsGaU5/q8+Nw5ucny1pgkWEGu8hz3r0+zlJrAgClusCGxR51mNVVAzH0Bsm/OV/78vcuXsFY1veeu9DvvPtN8knOa/f/Azv/PgtlmcliYqQBggOqRRZHJPoiMoXSCso6obGGLyC09Mz/sk//Bfs720z7Oe89oXP4p95goZpMcOszvHO4y8yGlCKqqpoF3MiJZmMx0SxpN9kzOcLTNug0IwHYyLdbYaEEPT7A5azFcYHVBQxHo/40ot3uX39Bv/P3/wWi7LsUL9BUpUbXN1g2grvSn75l36B46ePuX//AdZamrZG6BilJCJ4Quga8UD3c5RS8+TJc8qqRmlN2zYY0+BD50FTquvVVssVo37GYrXht/7Nt7h18xrj7V3K1tMfjVmdnSEuEpaFEHz7ze/z8PFHXL50hZuvvkoSaSob0FFEFCU4G6jrmqapSZOIg8Nd0jTGe8toOECIznu0XC4pnx93w7FIceXqVR4/ekwQoEIgkZBFGpEmNE2DKTedREcq8izil974AvvjITrNcFLCpkFZeOnWDd7+6U95enLO/ii9kGY6pJZUTQV08pBv/u53OCsqXv/6lwHP3v4+zjqOnj/j4GCfxra0oSXuxcyLBcb97OFrn7iRTiNBpBRt03YP8IVD3pgudUhdJPx47/Fti4gUsYrRkURGGeLCbHi+WBK8o6wqpBT08wilFP3BgDg2VLWhbmti2UPpGBUlBOG7SbT3KKVwvmMthhC6NL+LJhofOvMYnXkt0xIhLtIYhaUdlGSvZpQ5DJM+sY1QsiXLE1a1xYeU/mCHQKfZjrKESMcY4+jlI5qLdL7GlpydT9E6paktygf6WcpPHj6m9YbRcAdbGoKI6Ky7Eh8EjWnoZRGN9yA9CE9rDLnM8M6QpClREnNpfMjyvGNQ1uWaJE4pqxKt5cfrLhcicBZjGvYPtpieNtS2oSxrnPUoFaFVhpcNdVOTRglVsyEfbTE9XfHFK9usi3O8iShWhsVyCekI0UsR0kFs2L055uUvv0I8GGPbljxJECJCqhatPNtbPaomJsknnCyeU9eGVFnGI03R1p3L22maOtDLhrRVSRRBmkW0DUgy/AVv/I+MJLWxyChCZx58gbdz4iDJraatI3piTJxPSDLHaLJD9f4UazYoITEbS9tkrKwgGU4IUtGWEC4kM/1+jE01wrXgJVJAUTYM8z4D1SO1KWXVEKHpRZ9SO/4kSsoYHcdIEbpV4mBImkRspnOK6QIRt+SRolosOX/yjOnxGdt7E3RfIX3F9GxO3HdsjxLiPNCLh9QqQeiEZ1PPKIfDccA0a5YGTgrN/sEevbxHaQJ4j0QihEarhNYa6qbDPwkZCKFhkEQ4W1HYGhVJ+nkf5w1FURHFispanFcsi5qn9pjhOEXkljZ2yFqzundO3yb4tsEOPWkiIXNUJ2vY3yIEQSRTrKqRKiDwHQ82jVivGwprmTQtr1y5ysOVZ16uKYqWYl2jtaKxAaclgY7DL6QnOMOsXDBJx/Rv7OE2FdOnzxFPS3p7A8ywxcSC4WRCJobU85ZgLM5YpkfH9MdDsjSDSFELT3ppm/l6Q1/1kTJjp7dDNSvIE0kwhtV8TV4pxnYfVwj2D++wXpfIQY90TyOenHNldJVVvaEOFToTpDZidX7KeTllcnnI9MmH7GmYLp6Qbu3Rv3EdqVV3qdYtly7tUDz8dFP0x11RFFEUJc4HtI66z2Vbs7+7Q7+fYpsNwQsiGfFzX/wyJ8+eEkWSF67fIk1zjo/OcNbTGEucZURpQpYlTMZDkliz2dSoqIe3FbUNqDimMZbPf/0LCAo+ePqY3qDP7pVDWn5CQ8Nkb5+/8Cs/z3tvvsf8fAnLgnHWZ3f/EkmcIgM8efCY+fGC1ho8vsuhEAotJbs7Y5JEk6U5W+MdWusZbo04NAc8fPSA2XIKqiNSILthl6AjfmgliSLFlcv7bI8GlJslSaRxzlO1LcZCZRqCVF1AjIMHj4/41h/8GOcVVdN2m2Iv6UBlgS5czXJyesTTZ8945cWX+cmbb1IWNVpIrDfIIPDeEad9XNsNCeM4QivNwwePkEqhlSZNE9q2wnuDVBCJiChJ0FGX8tvPM7Jen9/85nfZOMvu/j4Hly5xOp8BgmF/hPSOWElsMJzPTtgvrpDv7OLoIAhCyi7MSiriKILQabYP9/c5Pz/rqGzO0zRNZwgNAa0UIgRG/T7zLOHOSy/ywfsP8MGzNx5iKkWSTJitNsxXaxSCF64ckCg4Pz/DeM/lG7d44YXb/OTd9xn1Il6+fY1+b4CxLUIoGmOIE8F4NEEKyaooMdYyOz1neXTCvbff5tb1G3jTUUeMtSitmGxtMT87Zzwac3r+JyjtSKVn1MsohUXKGIKkMS1Vaz8W5nuh8IAE0kh3koYahOxE70p0sbB1XWNcF/Bhgr8gNuhO43SRnle2NXE6IAkBp+mQJWlEcIFg+XgK80dxne7CBRvHuosfDwHhPSJ4CBajWtI7Fn17n3R0jb4RyChDedisFyAdQnXmMyUVo9GYqjI4B1JkbNYNTVN3eLk0RmvJqmhxpmVr0GM5O8EFiwse7zyxjGgduNAFTBjvsN4BCu8NIRiU6lY21mp0HHU6KgcxI5ZrRVXXNL4meEGSKJw3NE2J1BKtItAKHXsi1ZL3oS0tOvJI2a28YjVCkiC8hWARwSDagFfbHNUt1169wuL+MUWxoGwCg3EPEQlCqNC7Mdf3X8Clml4yYph3sdmV1cis02FnZEynKcv1grOlZL2BYbpiaytmVi5Ylx7veigxwDuFcwrvW7Q2RHGCaRzBQ6x1xx/wCh8CbWhxvsS6JTrZIKqKrJyhbYk0GwocTs042B3x4o07DPsp8+cfUbzfUIaWOoDbnGGlxwmLcprIJchWEOsYowItFhEEaZKS5RlZnBJaSEWC8IFiYz/pkfm0foYKTuC8IIkEsdSExrHYLCgenVB+cMzu1QlzSkJsybYEPRdRuopMpSSjlHyQs91veOFSjzSKOKlTZm2GEgItY5xvOFqUCDLqVjLojdjbvUJZRzgkSnXIriAMhhYbOsxjpBO0iog9DKXkqJ1jZE0aa5zteKo+QNXWaB0R6QTnPaumBG9RpAShETJgzmvW5y2ZgvWTkqBi0jhhUT8l/cUBUspuKh1pJI7JsE+aRDTO0jpLJCIaFzBYBnFMUylUFCMThydQWk8SxdRtAwJ0FC6SaC2LeoMebiEmI8LTguPVCdPNkuuXb2BTSRNpqGr28z7jNqLJJUfFivJ8huvn9LfHSC1wvYhgEmztmAnHOBbkg5ijZYkLsHV1n2q1Jm81cpyzldzgybe+yzJ5zp3XP0N9tUQHiWZIuV5RmoJ6mDBuM6LCU0UNvXSAoIHpOYtHUxCWrduXcEqRDFJ6esL4yg7wO3/aj+2f6fIXAShKR518wwa0iliv11y+fAnpTzClpR/1SZTmjS985ePGqWxr+qMhp2fnTLZHqDimqiqGg5yyKFBySG/QJxERmYjZFCWTfkYUJzgVWCwXRFFMNhzx+OkR/dGQxljWm4omqrnzmdvsbY15+uw5phZUTaAoGnCewyt7HD89IY41AUGWpjRVBcHz9a99gbyvODs/pdhUFOuCyMW89MrLfPVLX+G/+Mf/ObPVopswh4AMF42hdRglsd5imor9rQEvvnADIQLzxZInRyeUdQ1BUleGpmyInGJyaYfpWcmHR6dYumRjpOzOp1aI0PVTsVT85K03ee/993n99c9x9zOf4cNHD2mamqZu6A+HzKdz8rSH9R7nPaHTtBB8IE0yJuMt4iRisTijNQ1aR6RZipAS6wIffviEX/rbf5P3Hj5kfbIkqHNe2t1DClAXYTDCB27cvs5f+Wt/BQWcns1ZFvZC5hMRb291HqS6xpsWgkWpQHKB3fOum4Sb1lxIbjyCTj6JNezvTKiLgnE/5+mzZ6yE5bMv3uQv/vzXSeKYH7/1LsvVkt1BnzyJsVLw7rv3KMuG7eUGs1yws3tAf3fIqJdhqkBrLEhF3bao4IFAv9dje2fMarOg3my4fHDIsD/k+dMnjEZj8AHbWob7Q8pVgdQSFf0Jmg33tnokWhILRRwnWBsomxatJE3rkEIhIkVLp4VK8h6uNTR1i1aBXg5SCZQMHXM1inAB6tqTZnSrCa8IMiLIgG8dxtQY6YiHCX47pW0CnLVkUuOExRpHCIJAwNqWEDxxUCQ6wbQt1nconYQUr+folyek4z49PSGSGXXVUDWSIBPSuEEqhQsZRRkIXuAvRv46kvimC4Ow3uJtx2vu5zHrdkOSptz76AnWd2gY7yqiRNI2gUh15A4VQtfwk+KtJEpSRLBIoYmjAbHq09M5aTzm9BxcHHPt6i2eHz9luVrisegI0qxLOWxdg5KStm0JyoAKjHcGTM9n2AaC0+AdUSRxtosOrk1LaKb4kPM0aOSh5sqdy8xOI4bX94iFpqyWHNsZNs2oQkOk+2jRQ7QVw50hPcBJRRT1WBQty9JyMnU438N6y/F8yd0rEYMkBqEo1hXeSUzbHfwgusMttSXJJU3ZoGKFFd3FCiMItce2jtZt6Pcdz04foqoZQXpmj9/kpF6we5CzNbjDOO9z7fJlru3u0B6uOHv+jKNH58hmiPAKaHHWEGUpsVR4mZDlmtYYaiNQUuFbS0PLoNfrJD1aoeJP6QB/ErUba6gNRVlSp6EzzKkEuTakbczp955xZqZc/eI+0cSTDBTzWckoSdja7uMt7E/GJHlnUoudJA1Q1SXNBZJpOBwSQorQCePRZYLeoTECR0DhUMKhtbswMHu0EuADkdAMdEAIz/PpKVY4bG1QUnf6ZO8JOGIVdw250rBsaVaeXpIQtCJSEOsYIQPOBhLdwwdJJCPa+Zx+2VClGi8kWRyTJhqtY8qyZtVWeKfpD3s0tmW2rBjvbLFcrxCpAJXRtAbtIBBT1JLWGggeFzrzDbZm0yzYevGAZrqmdCuyy7uIyQSdgKssxdmGtauxG8Fgf5u9wQBrJc+Xc878jOHOTvfyJ2CspZWG5HIfu92wrW6wWiwxeWB4OGJsI3rRFmLTcimf8OS9DznYPmTzfMHpyQkHL9ykT5/9K5dJ5ic8fOctwDO+sYfLJbZsGOY9QrEhWszJzQ6FbAnacDR7xr49+NN+ZP/Ml3euo3Ih4IKLIaWmrkr6aZ/o4tcOd3bIk4w4SsiylKqt2CzWLNYb0kGGjAUei9Keulrx8MOnvPn2ff7ar/8N8tEAITVJmqCVJs96OB9wQTIejvnw0XN8EGzvbbEuNrTGEWvN1taIwbDHYNXjtFrggsTTeQNUoohTTSwz+v2Uv/s3fhVbV/zu732bz919gUW7oVivkSJmOl2iVgrTvsuNG4d84ytf43e/83usNgUygHG+25Z2q1IgIkh4+OgxedYN0xabNbWxeCEINlAXFTuDAbYI3L/3Iaui6rZdga75BRAB7xyIwM7OmJ3+kOlyxQcPH/H46Jj+sIe1DXGkGOY5L926wY8XK1QIBOdwrSGOugGkMa4jXtGRe9q2C2PRkb5IlFbMZjNMseHk5Ji9nV0encxZrde44Mh7PTabEh86s3IInt3dMTdeuEbbeP7ZP/0dKuvJ+z0ATNMSS5DEaKWwtqZYr0jVH309Lc61qAtcsHct0nnaquTWpX2enZzyS1//HPPpVeqyZL1YcHp6xgs3r/Glz77Mk8dPSJIEpSRNY/na17/K0fEZR48f8+Ldu52ZUU6QviVNFVGUU1Q11js2ZYVtDFmaEsURtm5o1gWR1BwfHbHaFJydnrK7s8XW1pjZ2Rk721usNyt29/Z+5rPxiRvpfioZZCkmVRgLjfII2el4tA40touNFASUBGMtBEGcZmRJ2sVtW0ue5YQQ2FRVp00KASF0J+IXMVJqjGkoZEk0ybCpwA48Ia2J8wRZK8K0oa4b4qiPUhpzsUoQdJpcZyzeeYSHVMf0spjRC2N6N69QtDG29rhg8b7GBo8QXUMlTYyUiiwJ9AZD2udHNK1hUzS40OkRpZK0xtDWa5JYMRzknM7OqUyLc4FYKNq6JU77rKrq4kOpQwd2U3SJ1hF4T5L1cLaiqVviXIKTZPGQJ0cz+rlkmI+4efM6H370mKIs8KGhaQ0heKQyxFFCkmien23wNgcfyLI+67pGiQykxhiLEN2U3nhB1Rgi1bJZFdwrj4lv3KJ/a58iSBCW4myGUw0qpJyfLbl27TV6vQmDNMEJ110gkjHWWI6eH3N+vsY4TfAaU0PTSqazNVmcUJiCXj9js2gJvsOaaR1jTEtTW3wUGI5jGlOipes42WmKVxJbware4DBgDLGVpDqmLebsyEAxm3LUy7l961Vk3ufSzReJX5RcOnpI1nuTh+8eYdctWoITnWPaWEdrLv4u6aD3AYiTlF6vT57nBB+YbTaI/x+QOJ/W//BaPHlIs6nYunlI7QyjJGX9aM5H37+PXnu0V+Q7vS6C2wb0YMCt3X12tgcXdE2FCZrZRlIWJZUXLOs1vV5MfzAgijK0zonjiLK2jLaGCOUJLqClvtDmaUKA4OiY8QJs2xCUoN9PWZZLStcQRYqm6szCTdPpE7USpFHCsDdmvlgz/eics3vvc+PVW+zevYyramxTkemcIAJGOiq/gSjlcHSIqmpandA4j3KKXjpmtaqw1qJFBE7S1BYhPfhAr6fppSOenT+lsZ6AxrQG7wMEgbOeSCUde1dJItVh8uaiZP+NF+hfHaKyCN96dBvoyZR5WXOyOCZxFW53xdZgj3HYxpiYp6sVSx/oDUekaQ+HwAjHtO+JR4r+OGMSp2ijaD5YEeaB83CKbgvinqPpFRzPH7M73mY1nTJ9esyl/ACRAGtP6iLydAK2T9MG/MbRrCxlU8LijPxkRO/qGNnPIepRPqn+lJ/YP/slZIcv87Zbh2vVkTC8g+Vixe72DiZq2J1sk6cZzjvyfo9MZpyvz/GFJUlirlw74OjoiOFwgLeW5WbDk6Nz/uk//y3++t/8VbJe1nmQorSLcJMSpOLkfEbdWqz3RGlENa0YjEbcuHrI8ycPybO04/yLbsIbRZrmAkTgpWSxXNAWmrd/+CbL2QzbGnb3djl5OKc3irFWoYgo1hXLxRMkga/9uc9x6/INvvO9PyRIgbW+a3pDwHtLU3VBHo32PD854bXPvExe9BCLEik0q9WG5dmKr3/mczx85yHHT86Idcze/oDT2YLWWbwPaAHBO+I0Ztwf8s5791g1DV6C95blYoHEQaw52N/hYBDzi195nXfuP2GxqmibivPTY3YOLnXvr+ARQlKUJU3TomQAGtL0oudyFqklm7Jif2cbLQWFadms14wnY6bT2UXPJjl69Jg3v/UtEvcFRpNd9raHbI6WNE3JcrkC68miCGebznCoJbeuX+Pm4S7f/d6/pSmLDvsrBFme0rZtt/WNNF/87CsME8FX7t4mS1+iaQ0/+OHbvPmjt9gslrz2+qtcv3kdayzGtPREIM9TLl0+5F/+5u8wny959e4drt24Sr1Z0Ov1AM+o3wU4DXb3KIuSLIt54YXbfPToCT4EPvjwIbGO2N/bY3dnG+8MaZrgvUNpyWg4Av2zt8efuJHeHuUkUlMFTyQlQnhC6B4O77sHzjmPxNM2DU1j8EGSRBFKyg6X4ixSKbqUyYgokqigkSJCRXGXTOhByYikl9HbH9P2JZUrEMKTykATalb1ChGij7+2LtKyc3/GujPvKNEinCaWMNqV5F/Yp9Ipok26Q+IbCAahHNY4qqpFq66Rt67g7OwEY5sLbI0D4TsUHl2KmQyBYBpG23u8+/49WtuxIqvWo4Qlif+Iu91NtaWUF1zMTnbR6/VJ4gQrwsUD76nrBkRGwGH8GhMEg3zA1s4YMRNsipYo0oTgUSow6Wd419CUDikSnBEQNL18QFN1qD/vu6+jYzxKXDBI6Yi0A9Fy79lP+fLhL9GXA6ybIycCmY44O22wJmZ3fJU0zan8ir7uE4QgjnMiJakrh1YJwRiiuIfYzFFICivZm/SYbmYYI8l72zijOyJC6AyF3eXCsFjP2NrOaEzTxaerC66krVFJgkwE11+6yTPzhHZdgVWkaY+zdcF8s2HWbHDTc6zO2BqOUL2UfDtichgwtkC6DBFlNK2lrFuETuAitjUET6DToiMlgS450VpHXS8/6ZH5tH6GWs6O6Y3HVM2GOMsRDXz044fIpSMOCiLYPdihdjWbM8vu1csdItJ3oU2oiGlR0FRNF1yUeHYPLiFMF8/rSVgsLVcujUkTQaw1jW0Z5L2uuS4ckUpwTiI7EBFb4yFVsUILg4wijk6OaZ2lnySozHO6KDDGMZkMcL7uzr5wSG2JhGOsE5rZisU8JcQBtjS+NCADvg87Vwc44Xm+PGF/swPjDLxECY0zHZHDo0EmHerS2Y8lbVUh2N25wuliyqrcoOIYGyybaoOnS2psBVS1ABnoJZJEaaxpmaaCrRf2kccrnn73HrqBdRKxCS07Nw6IshUn6ox1WdI+e0x17EhHQ2QkmZ+XZMMh/fGIXErWHgiKal6TjvsM0zHpwSHNco47P4HK0oqa/taQVb2kaFv2r+xw8vyc66M9TClZqQGV8dzc2ef5ozNO1zNAUhcWk0Rceu1l6lWDejTn8qtX2fRT/M6nGuk/7mrrGp1GF+g2T6SjLkQtCAZxxpW9A5L9GOEVQYGXMFvNKOo18+WUrKc5vLyDtWUXwoXg0rVrfFnmfO8n93nw4WP+q//qn/CLv/Tz3Lp1gzTtEccpIVwg5poK4yzBS7I8I05j4jTlnXvvEytPUTfUxpD3e1T1ugvWkuCtJ+vlrM/XCB2xM97mw/cfkY37bO1s0Z9ucTqdc3Bwjdc++zpFVXI2PWEymZDGOZPBDu++eQ8uJC06jhlPhgwnfbxvuymrD6w3hucnK86nFWfHa5azkkf3j0hQvCs+Yjvr8x/9xq9xPF/zm9/6A0JwKCmQXiBDQEvB9tYWRVlhBRcT6s6DpoLnxqVDdgYZd29d57W7dzg+nvLhoyOWgLOO8XgEF4F2AYjjGK27zTeh29K3bYMSgdGgh2kkJ/MFw8EA620nQVuvuXzlMu+///5FEqVmMh5y97W7DAcT/sl//S+J+ttEUYqPJIcHu2gUm8WCBkvVNkRRgrGW/Z0dfu5rX+OnP32To9NjIHDjYJdBnhOMpS43RJHmYHeXoqzROscZw92XXiDLcp4+fsx6vWF7e4vFfEESx2idECcZUSwYDPtkaUykJcFbPB2HPwSwtkWpiKIs2BQFsdrhtdde5s7LtzHOcfczr7KcL5hOZ0gBhwe7NE3NarUijmOsdwTzJ9hIW2sIwSFlhDMWZw1KdC8eGXwXthF894/v9CoOcMHTWts5XL24iP+NQLYorQnWI0VE8Oriz/AfT4fKaYVsE7RSFMsZzq8QVUDJCCUiAqGLrZQSLSVpmpOnKcEHZJJibYsvakzaUh2kLMuKtrLkSYKUMd6Cs4IQJINhjlIdk7oNmrppiCKNdQ3OtVhnu+QFJFmWECHZGSY8e/aEsjEXSL4IfOeYtdZ3lwdEF68eAj542rZFqY69rVUOISF4R/Ca3mCMswKdahq/pvGBTCgGo4TZvMH5CiktWZ7hm5TlbE68n9GUFu8CUZTQNkt6WUTeF1hjEKpb23jvkMGTaIGSFkJDHCuquuGdd37EFz/7ZTbVkkylnJwUnJ1s2NsbMtrqkfUVIcQMsoxUZ/TTHkVt2N3d48Hzp0SxxPkWXEuexbQyR0tHRIyVfYRPCNLSH0qqstN8C6FREQitKcolcWRAN4SoJBVdmlNZr6mKc8rG0mrHpq1ovGdelR1/d7bGPXrIwVbF6nTG/vaEkQoszgu06nHt8ojVtKGuFUpDY0qEUN1Ums4wm6YpVd3gPQi6dVicpJwv5p/0yHxaP0M9/ugZ2zcdl7Z7aKk4P5sRUk88UfjCgPecPTrBTzxXP3+TuNdD6gDElJVhUxUUpgSpGW9tsz3OwUPVCrLk4oWoEqpVjVAJcS9BSk2v16MxnaFHB0iTDESDtxZTlYyzjGGeEFzFrCyorSNDEcc5SpQ0oqX2FatiQ0SMiB3bw4RF7ljngTKswGr6421ufvVlnszfw84dXhtu3DhArhVHpiGZjGmlxODRWtGaFnexJYtk5xlxQV6gRiUuCFwDu719FktP3YqLz7Cog91IhQ8Cj0MJSWMFrTNoKWjaDquXe0FdVPTGPQaTMUMXUNs5+e4W8/ljTKRZxi2Ta0P2BmMWU4sTkoqCyjYMh1vEKkU4iyBnMw1MtgJ4y9b2mC01oGxrpvMzcvqsNhtu3TjElC07W5qimDMcjHnpxh3efXiPs5M5vazHSDU0VY1OctLtMXuXr1HvB1Y/fUz9oxlmEHN+uvjTfmT/zFdwFi07z453Dqs0cZCM8z5fuPtZxvmQ5WLN02fHLDddcFLAYV3NaNRjZ3dML485m05ZVytErNBpxo07E77ytS/xne/8kOfPnvFf/9f/iF/5lV/ha2+8gZaa+XzN6dmcJI+7fAgBeS9DR4qz82mnwXWO1jqeHZ8wHEzI+z0267qLEheQ9TMQMBgOeH5+jhGeK4e7HJ8t+OjDZ6AyLh0IkiRiubbs7Oyyt7fDet3wude/zHiww+lZJyN0oWQ+XbCzt831m1e4eesSo1HOu++8xw9/+ID5vOD+e49QIcLWAi/hbF3yt/76r3H//ff5rd/5JrN1hZJdCnSQAuE9sVRkacaDjz6kMeYCXyfIU80kG/DV1+5yOO6zWSz46P0HpL0eNy/tcjZdE0JguVjQzhccXL5OY92FDywgZRd25vGYtkWLQJTGtK3l4ZNjomhK6zq9dlmWZFlGv5ezXq3xwfHSnZt42/L3/rP/G2+99ZCXXvscV1+5iwyBuigvwp8apBRsbW+xNZmw2WxYrCsGeY+/8I2v8eH9dxn3Ml56+Q771y/z/jv3eHD/EX/4hz/k4cMPeeH2Tf7CN76KDJ7lasnO3jbT6Yz79z/CucDB/j7z2RyEoCw7Qs8bX/o8wTsGeYYUgv6gj5aC5WyBtxZnXDdITRNC8GRaoNF8eO8+vX6Pne0tkkizXq9ZLlcMRwN2dnfxBFprqJryZz4bn7yR9gKEpKlaVqs1SOgPcpwLlK5FoNBS4AR4ITrNX9LJOiKlutQhJVFS0V6YdT5enguJ1jFIaE2Lt55IRIgCIi8JUQRlQmhNB0mmYzJaY5Cyc+JqpbqbmHHIADrW6EjT1BY3ESw1VIVlNBh0L5jSoFVMLBPqZsN6s8L5Gh0llFXHiDTWAR3+R0pPmuZ4L6iKhto0DNMh0+mUAHjfPcRC6Itpffdi9L474VKKzsggRRfU0BqUdCgpCV4Q6wxJ1ElSJF38eOQIwZAkEUoa0kyRZimr1QpXJUQiJlYKbzwuSCSBEKBq1uztbrGcl4QAUimUVh2DshdRVxu8adBRgg8x5+0My5y97T6n88BmugArSXqS3kSjY0MiM0ZZn1SnHfrL1mRZhFQe3zY07YbBMOF8foppHAth0LJPcAlSJkhtcaFAJ55gdTcljzzGt9imZDLKacyGoFuwdJHKZcv69IQn757TzByJ1agQ0FKRJgOsBykUvixZLBacv/2QJGjqRUVbB7IogAlEyRCdaqTrWME6Uhekhg5wnyc53vkLl3qX2vlpRPifTPWHfbJeTt7PsWcbzn/4gJ6OyS4PwQc28xNaI7j7+qts3d5m4zrD7Wy5wjiP86DUEKEThBiwXjkOdia0zZxBr0fwUCzXCKHpT4ZEaYzUivPFKZHIyHWPLErQiUSoQAgxEkkaxcRB8GR6RnOhOZ7O1ogAWRrhJKzLGS7QhQ0FSKMImXiufuEWm80MUXtc65iLOZuhYae3i8wdx/dn2Lnn6hc/h4g0QySobghhXcB6ixKO1ni8bPFCIxGkOsUDs9mS0XDCsLekWC4wJiBVggsepcFZg774rAWwweGdw1vPrFqzdXiZy2/cxqkViyenNM8tV25sM333CD2IYDRgeDPHt4blrGKyUvS84lxKNsEyaxfkgwGDXkztHA6LPX/OlkmxJwHRKJyUjAcT2rphuaxIdI8ozdAiIWlaBuOIZVsyzvo8+eghh9cP6fV6SO8hTqgRUFhSBGsDi+mKar2hLNo/3Qf2fwQVnCWJOnCA73LpkUHw8s3bpDpiNp2xWBW03rMqS+q24eqVAw639xiPe0gp+MMf/ohvf/cPObx6hS9/+TKtk3gc3/j5r/HGG1/h7Xfv8U/+6b/kn//zf8F7777Hf/Abv0ZVGh59dMTl64fkeYKOJINhnzzv5CNCSCLdSQQDgvlqiZYpSZZSVp0cqjfKEbLbUr/7wUMiqekPxjw/mlGWnuGkI22dnh3z5OgZKMlqs2YwyHnhhetcv36D8/NVN/hCgBecHS05fb7gnZ/c5/rtK2zWBdPzBVVlCD5CqLjbfgnB0XzJ//kf/BecH592EkEhUQJCuNCbC0iTmLPTc7yxIAVKSr78yssMUs3e9h5ttebO51/ho4eOg70D0jTmypVLPD5d8uxsRVmVVNaz4x06ipBafaxz9qHjSofgiHSKCIKmbREq4vj0vINCWM/R8Qm3X9hwsL/LZrWi3894440vkmvN1atXidMen3n9c8yqiqAlq2XFcrXCWUsWa/qDHsv1inJTsjUaUtY1mZT8hT//8zx//AgpAquTU67u7/HkwWPWq5LZquB3v/1DlosV/8Gv/mUO9vY5W2z48NFzjLHkecbWeMDO7g51XVNsCoy1ZGnC9PycDx8+RGrBK6+8hPeu84MZw87ufof8Mw4FTPoDpNI8e/yUoijQUhC8RUqFNZbz8ymHlw+xzrJ3uM8HHzz6mc/GJ26kg4gR0rNaL3DOc/ngkP6wz6MnRyih8QTSJEaqiMgJPIoo6xMpjYTuQ11olI6Q3tKuDW3boGXc3WZ9Q0CCUHgcUnXoF6xBWkfsZJdueKE1ttbhvL2YXneTJyEEbWuBQGlahAtYVWEOc9pNQcYA23TTHa06kb5UHomgKT3GRIQ6YIy5EPG3IDzjUWeEWC0rqi4Ike1RyvPplGXToJQnchopYkKwOAx1C1p6AtHH7n0XLFKFDiEoNNa2EHVRm0JY8rz7noejPt4LEtXFkypl8Lamn/dZbzYokREiR6Qlu0NJpFqMrztxf9BYE3F+tmJ73GO9rgkSbDAEaTDBk/QNwQhMJdiZjJjXC04XJ+zsXmc2PUX5iu0oJ1cWAijp6cVbJGqAjAzT1TmNKxGiQvoGEVqSyLJczwkio93MOfWOg91tNuWG1jWgGqLY4kxDL0swbU3lSpJUInEYUzDKY4JrcDqhqgUHyS7P//CM+liAUEilkS6QyJQ8ijhrliTpkO3BiPLslOnxBhMEQiiUkFSVQwCNW9ETOaaxqMgTRPeBBoGyrsjSnERpvHGUrqIyXYLWp/XHX/2tMeOdbbRSPPzgEcXzNRhBoVdEuSQ90Lz2ha8wvDRmWpyxWG+ofUMQkPV6RGlC3SoCCh11rvHKWIb9AeW66eQHmxqrFTfv7iJ6MaVpiLWnpzS5jhGhu+Q634VBubomyiVCGE4356hehJkVRKFLbw1RS5IoTHXxHElBGseIECA0tLWhOqkJbcokH1BHBdFQcGlni+LZiuWTmuH1S8jLQ9qmJleKOBYX3geFN5ZAIFIeIyyxzFFBkFwYu4ODzAcO9rZYlnOWbSdVUqqj3ngMkVIIAc53UcXOWGzo+OznrqZ/c5v67ISstyHfz3DNHDurUNGQneFVFs+m2NKCzjlvFvSF5NAOmGrLWjiKYoaUPeI4JsSClQ+0VcHZ4+fYlWfcGzI53Kf0Ndeu32C9MYx6PZ4+e8Rw2CNNJaGXcuXyIcePH9FULf3+AG8cIhL4YDh9dEyKo40axi/uE97y9NQIePdP+7H9M13l+ZKD7TGFM0RSEZwlUppRr8/p8QnrVcmmMVTGEaTizou3+dIXXufp08d8+/s/4P4HDzmfzjk6mdOIjC99JaGuW/rDLS5dGjCdTWnamuA9ddvw45++iY4FcQTL6ZoQPLdfvM5kMmC+nDPZnhC4AF8o2VFudKfbts6BhyhJaGpDHHeXzelsjck9vThhU9Ts7l5ia7ZGRSnrdcH+wQFHJycsNwXPn59w7foVHj99hve+Q7khEIgLXjYQPMW64ac/+oAoiTGNgSA7rK93F809WAFnZUkyGWLnMzSgpEALjb4AD8SRpio7WAACvHXEQvCLX/kSv/PN32c6W/CV116hKiuePn7KpSuXWW42JJHujMTOI6TEh05z7azFmG6bDx1G1HvfnfXpOf08YzIZ8ejpE4Tutq5NYzk5OWZna8T5MOfunVv8wTd/j0t7+/z4Rz8h6fU5Oz/DRzGD7W0WRUFsMkxj8CqwLkqctVhjKWvD9UsH3LiyzZWru/TyjGJ+zuHhHqZp+XNf/zzDrTHvPnzEk0dnvPXDH/H9N9/hhZtXsMbwhS9+jnfuf8jTs3NuvnALZR3OWpRSPHv2DGMM21tjdna22dnfpi5Ktrd2yPMey+WaLO/R7w8oiwJnO2mxkIZX775I4yzz6ZQk6iOFpCjAK8H52Tmz5RyhNfmo/zOfjU/cSNetQSeSwWiEQDAY9TDO0Bv0aExAB4n1ICxoL3Chu6EJJYlURHCOxtTo4AgE4jjG+06fGEQXD+4JH7OhheheDt57lFAomX78smjapovMlLJ7eXiLDxYZOpYqdLoj51vsVkU6HBDHCUnI0CKlaZqLEBSNDZbWFgTRZdRLofGUCKGJY43zgc2mILiEWI5xcsl4WzHoJ7z/4B2sdYTQBdME32mdA5K27VKZ2tbhwwWrloBtq04vJQVJpBBImrLGZjV5qglIdFDgc6Q0KFUh8GRZxNl0Thz3UZHG+zVStgyHmoNDxcnC4UrVHW4fYV3DumgYjifMFwtcsOi4C4hJkwxrHIKIRAiGCZT1DCMOsFVJlrZsuz1G6whXNYRtT5r2ydKUol7Qug06Up1uKZL4xmK8ZbOpsT4ghKJuWrYGQ85OVtRtCcpB8GR5inANceTRmUArSe27NMc4zbGmZdOAxjCx+5w9/YiYQOM1tW1ACYQNyNiRRpLp6Qm3RmPKusR7TxJ1q3vnAlZ003ghRJeKGTxt3aAijXH2grmrWS427I4m1G1LUN1za//IZf1p/bGWHuRMdrZZzKeEYYy8PMI9qUmN4mp/l70bO8yXDU+XDzk9e4axgq1be4y2xqhYkWQZVjRI79jf6VNXKYiIs9miI+94T5TH9IZjjIrYLJYkccS410M4kMJjrKNuOg09oWDcS5AErGtZ1DVL29Baw2Q4IPiE+eYcoQLKS7ztzrtvJXVoWcwW1GVDahJmx2ckwwFSWXSwLMwTNqsCH/fYv3sV13r88yWLMEe/comgIuIoQjmBkqB0IE8StI+JZERVGwrTkKUpq41nazJmf7hF8Ct8oLswO4ehSwNzziG8QxJwotNohhBY1SX93R36w0PaeYEtapYffoSzE+pnBXvbhv11wtP3n2D2RkQHW6xOStw7H9EONNG1IUQCU64p1w6VpGSDIbYfwfUx0anlyvZlZhhmtoFyxdWDm2RxAhKiNCbt9wiDAW/83C8gQsQ7H7xHmuT4YWBdrMF4VOkZvbiHMUuytI8dDfCrzZ/2I/tnvn71l/8SZ9MjjtcLol7OarFiZ2uArQusM6ioG2gE57h9+zq3rl/B2pZvffd7fPT8iNJ4RJIR93o8Oz6mbtsLQ2/AOhgOtimKboLsL+LAnz55ymiYg4PFdEmxLsmyCONsx3dWAikDkdYXxvHu93ovcMagtSbNUtqm5sblAxZnBSJIrHH0egNCkCg0Td2yWZ/QHwwY9PqkvR5RonHOEKkew37eSTiFAESXcYBAKY11rkP9OomWEdY6vAhIdRGEFECIQEg0N1+8yenpMRQdHndnPEHJiNPTM6q67S7dBLa3d5idnPLo6BiP4MqVS/z07XucT2fceeE2v//7/5anJ2ccHOyzWiy6xtl5dKy7gBfnsM52kd4X76yAINGCYSSIhz1e+9xrfPjoKUEEJuMRAI+fPOXo2TP2RgNuXDrg8t6EncmIXn/Ai+uKBx894eGjR7RS8cpohNKaJO1MnoKAjjrSStsaqqbh2ek5n3ntJRZlRVVVbNYF9z74kBDgd/71N7l15xa7Vy7RhJq/+7/+n/P3/49/DwnESnN0tuStdx5ggO+/9QGv373Flz/zMlvjIbdv36YoNpTFmvF4SFs3zBdLhFSkWcZ8vuTk5Jy9/X20VJRVycHBAavVkiTNmU3PKTYl6XZGnHVbu6YGpRW7yT4/+smbvPGNn/uZz4b8pIerrBtckAwGYyZb20RphlC6C0mJ4q4ZRhAlKTqKsR4aa2iMobFtpw+SAedbjGk+/rJCuGAOCvFxY6x1d+iM6SK6nQ2EIAGFUjFKRp3GVqku/Ud0+DvnDO4ipMQ7h/Et7sDjeorgIzZVTWUa0AEihxUVnpYQWtq2wLkGIR1xrPG+41O3rcEHTQgxeMXueMTu1oiTkzOUjAFNCIrwR2cPCV7hbfe9OFcRqJGy00ybxqKlRqGQQaKFJI4UeEMapwiviFSXuKZQZKkmjjR13aCkJlykqmmtEdIz6Ct2tzWxtjhvOo2lDxAUzsc0xpGlCRIBDiQJ3mi8E6RpRFNXbPczTChIBxkjk7Ltesgl2AeW1YdTkkx3HzZUrKo5OtEgAnkvI0ljpBJUdYNUaQelD1BVjvl0TpZI8kxCcCgZdz8rDISSWFoSbejlgd5AUrc1WX8MRrMrD3j0nWNUlXRc09BpzAC0C0R1y7ZMiNYtD378Hpt50cWXeo/oBm/digvwBKqmxl4E+VRVdXGZEsQXcfRnq3NOqxkLWVIMoJ1E/9+Owaf1/+ea7G5T1xVnJ6egob83QPUSGgRHsyU/+OZbvPud+0yfrPC1ZGv7gCTfQuoMHwRVbWhKTyKHNOvAatpwdl6wrj2LwuKVRqSSeDzh2fmcEBS5ThllfVrXYLB4DaUztM5jXXcJ1wJOpyds2pbGOQKQphohoG08VWHRIkGHCG8EVWFpG8mdOy/y1a9/jtd+4SU++yt3kFuGk5Pn5MMBT5un2CuByZ+7wow5Z7/3U5rvfYR5+4hoXhMrTRTprlkIgTzNSERMLDRaZ2waSxAKHzRFCW2puLF/k91Bn0GqGSQxgzRm1Mvp93rkWUKeJkRaobXoiAHGUBcFxdIw7F9lsPciTb1H/UGOmAfMkxUf/cFbnDw+Yndri+hkQ/WjjxBnG5Z1xbN3H7J+csTuICdVEDmL2xRszmesTEV1qU+7lXC6WdDieXp+yv1HD0nziNVmyXpTEGSESDLefPceIsr45b/6a3zhy1+n3x+Q5zn9vAc2sLz/jEfPnpANUuzxlHKzIdqJ/7Qf2T/z9d6b91idLfj83c8Sqoae1vTSlMVy2cnfkoT+sMfly/vcfuEaaar5zve/ywfPHtPiIJaoGHZ2x5RVybNnR520IXTJoaB57bXPEyUxzhuCd5ydnPLgwQNEEAQDz54cs9mUF9rnLoRsOOiTxDGRjggCmtZeNNSC1jlUrCFY/tP/3f+Gvd0tvLd85Y3Pc3i4yx986w/44P2HfPjgI549PeLJ46cdizl4tne22NoakmaKV+7e7rxfmi5CXFgQHbGrC9wNXdOtNYguTh0guI697QioLKYwBS+/cofrl/Z57eZ1vvHF18mUQPiAFgIlBMF57ty6xTBPOTk64kc/eYfJZEyeZ6S9HqPRkC9+6fPcffUltnfGfOPPfYE8jfDGkEYxvSxFR92MNITwR4HAKBHY6iX8nV//S2z3U+7cuMrzZ88QAubTKaZp6ecpO+Ntggt4Z7lz+zpvvfM2Hx0954vf+Cpf//mvU2zWLBdzZudTtFL0+z3yXo5SMetVydOnz3ny5BlPnj7n/fsf8gf/9g/ZunKF2XJFbSyxTtA6YndrGwUsZ1P+l//b/xVOGBazBeezJbPVitbUNG1F0dSsm5anZ3NMkDRty/HxMWVZcvPWLaI44cc/+ikITZAKITV7e3vcefEOo+GInZ0dNpsNT5486dKyLzaT165cJcsyqrIj/mjdSWQDgulswds/fednPhufeCJtrO/WJ8ayXG1YFzEuODZFi1I9IuFpqxrnPM4L6rbtQOThj6gVHVPSWQMo0jjHtBcJgkmC8+B9+BgVB3w8mfbeXnAtAyF0aB0hJN4bhAi0pgECQtBJPpxFEUGsSa4OKAVkLsPLlooKvMI0NW1bEpMTgqc/GOCdxjSBumqRQoPy+GCwNsZ5T1Oe0RaOukh58P4xveEAa+bkvZzgoa7NhWmt42yGEEBaEAIXFHmag7VEMkMQoWWKEDVSOaSIunQzEdG2SwQVcSzQIme5acnSMdaVgKS1LfZiZSu8oljUaDFAXJghBYr2gqPdmJZe1jXsSkYEL7C2wYcWGxqk0t3GQBoiGTNc99mctZStIXERD751jztf+hLN7prq4v/pQ9KZSukOoXeWoigxDqz3CKmI4pyiKdGJwDUVu+MRy9WcRgmGSUQcQd0UjAYZUaywwdHWirIIjPyY9b0EvfK4qAF6RBcfes45Yi+IjMYXYJDEgW5qlyd4F3Cu22qkukMj/tHaS0lFfzimrAqqpkFrjcSTJIJWOarU4nOQWxmBGN7/pKfm0/p3VT/PePbRh9QnG5RPKI82+JXFW1htWryThHaDGkmufu1FihhMUCSZopd5yqVhsL2LaRXPjtddYmjUGZKSECEaRX97l+D7RFE3NfJBUrYlUoK7kPc467rGMJZs5RrXrjlpZmjVErsELyVn8xXWlPjgMKa71KlIE4wDleF0TONnZE6Q9ntEeY/RQcTOzhUe/977FKFCXResxHMW79aMjmFYRpRtIJpN2bp2SN00YARtK1kGxzDyDHNNWW666ZiHxllwsFINg4MeqU44Xc4wIcO6BhE8SdQxeoN3WCVpvKCRlsI03WdVW9NkfdLtbSZXHIsnVcfPjQwuKlC7GYNbOf69FrnMOD89Z6Nq+oMekW2ZPv8ImUnsrCTuD8m2M2pMFzx1Oebs2HA5znCnBRbJ+eyEXtrj5vUbuCzhvcePuPfue1y+9RL929u88fVv8G9+65/RFGvyOOnIQ7MKMXP0XpxQhBm6BRF94lfZp/XvqO//4E36mebsfE1/e8Bo1CeYwOlsRpz2SHLFeGvC/uEecSR59PQJ79x/nw6j0wWaCBXI4pQ4ivjBD37I3TuvcHO0gxCa4ASv3H2VV155hR/++MeE4LtG1TmE7zxExaqkrg1xppFCIAUslwtSrXBbWxc0G4c1XQMZCPggaIPg//T3/u+cnE7JVcSrL7/IpatXuPfRE8rU4YXgpZdeZFMV9EdbnM6n3Hv/Pa5e26dpNVpBoiSf/cLLLKsV89WG9bJmvawQTqHCBSM5WHq9BCE1RdFcDG8EUkmSOMaZzvPwhS9+hjsH+0gbWM7OGWQxw9E+89WG8+mMt3/8E16/+yKjNObo2XN2Jn3KpuYf/7Pf5H/xP/3rHOzvcXp+yuGVy4y2d/n+j+6x2MzxzjHsDynalrbp+p9AQCno5zmvvHSTvfGQuy/c4PnTp1R1jdJRh/Ar1nzhs3dJkoSnHz1iMu5z48WXefWrX0OnGU/v3+cnRz9kezJk8fQYZyxJmtPWlvl82Q0XrQMEQkYgAkVVce+9+0j5qwy3trDCs7814f3773Npb4vX3/gi6f6EKJMcTvr8J//Jf8jJ8xNevv0CSmkKY3n7/ofkScKDB4/4beF54/OvMB72iaKE73zne+zs7KKjjMlklzSNaNuW/mBAURS0dYuzlps3bnJ+fk7wgWKzpm4bsiQly/u0TUthW8b9XocMdY7JZIvT0/Of+Wx84k+fOElpLZydTbFtS7/Xx3pBUQbyfkzjLV6m3Zq0bfEhIGVAKdlNl12XBIaKiKIcZIQXvuMEuwghIsB1GD1ruvWF1t3k1UPAYmyN95o4ztBaIkTS6ZmFAinxhA4t6QVaCcQA4lGftVfUZaedFrHH2oqmqbv40FhjrWe1ujgMaHScYKzDNC2mlTivaeoFzqzY2b3EvfcfUdaeOPMoqamKBik6YkfwjiC626sSEpzosupVjAjghUVpdxGPbYgiQRxFpHmKw+KChdDi/BKlB1SlJogM4wM+0KUi0uFy8JpnJwbrdjDW4KUkSIkA0jjChUBwBmMEaZLgA5R1SZpYIlWTxJ4mBFqTEKuIct2SuBzjeyjtEXjKZ5ZHP3ibwS/mtCYGIXFNgfcZy3XDqiiojcERCDKA8xAExgmen224e3fMrC5ZFZDGsClr6qhFRwmTLEHbil4/oRSS5cqy53co7ylW91uwASQ44wnedDo5IRFKggfZBqLQcTmFEnjjiOMYVLfS91LgXECKwKYsEBfhHL1siKBARYpYapQMrAYGs6fRiaLCYsynmK0/iVrOV7QnFZv3Z8RpQlWUxDbGE2FC6C46u2P2X38BNYiJXIu1sJx3BrYs2aZZeop6RpIEBBFtq0ldYDeV7B/us1IDfJBMRj3wkqr2nfFZ9ajqgDEehSRNFaNBQprA46OnbJqKJMkxpYMQqOuK4E33YpcSY1qs80giIh1TrGtinXF89pQxfUSWknrFTsh4fOaoaklIHEv7iHw0YLWtqbXl8v4lkkVBvDGILCMkMYaK2hi2ekNs8FRtg4x0RwIKHqk1rQ1sipbJZMSyWTJdBkzT4Ryd90S+m5J5JwkhIc0yAh2G0oQljZVolbJ78wrto1PW8w3RYc7eF26T9jXz8xlV1XDiakpd4LGsZIlvEvzxildev8ts2TDsDejlOUbArFihm4zKtTytl+xfP8AeTXn2/IivfunrnB5Ncc5zsLvLG298FS0FVbmhlw/4yle+wff/7e9xdnrMoD+isYbYJyTPDcXMkedjMvfppuiPu3yQvP76F5jNzlidTLl1eInWBE6na0bjmCiV7O3tEsWK7/3oBzw9OabxlixNsc6iUk2jBI8fH3HlylVOT8753g9+xM2bL6NVRFlVqEjx13/13+f09JRnz54iuGA2h9ANnpxnsyoZjnMIYNoWKTxSdGl57QVpSekYKRRt0+Ic6DTh6fQ5QgjGkzH3P3h44ZuRbG1NSPs9sjwj6aV4JbiUJ8TzLuTMLhqu7GyBMZSrFduXB+ze2EHHGZtlyfTZnNPHpwQg0jE3b9zixz98E9z/W+AKECcxHsnpfMHNS1cxcY9Ll3b4j/5n/zE/+f6PuHH7Fo+fH3F+esLt69foS8Gl7QlPRn12J2N2t7a488JNZss1m7JECcW3vvUD3nvwCIQC0WH4ulTg+ILdHNCRJFGK29cu8/orL9LL+rzxc1/lH/yjf0WiIg739yg2K776l7/Bz339a/xf/rP/K/+Tv/bv8cu/8pfZ2tlC6oij9+/x7L17xM7y8u2bvP/Bo4/9ZN0wShLFESJKCd7jlENrRZxEhGD44J377Ozssi43lJuC0WDE7GzGd3/39/mFv/Nr1GVNPV9w6dIOly5f5sF7D3n84CGfu3OD64c7HE0X/OAnC0JwHB7uMR6N+OlP3ybv9VmuCt6/d5/pfMVXv/5F4kgTjCVJUoIL3L9/nytXrnBwcMByuSTPczblBhEEZVkwmUxQZclmvSaJNU3dcOXyFRar1c98Nj5xI32+2DBbFKxXG5I4xqvApqhAJQjnaVzAeUFZt13aHqFbX4RwkTzoCEIQRQlCJFgfuvE8AedB4EDYC8F8h9UDjxABpWOCB+dajO2kC1pFpGmKUpKYBKG7pLFIR6hYIJTH7Tla4bEmIIPvkvMaS7Ce2MdIGdM2jqpuqGqDx5KlGVJ07lcpJCDxztA2FYmULNdL5qsFzns2xRqlFG1jkIhuqh4CKhZYZ/BWIINCXGgpkzgmKI2QgBdIJTC2QmlBfzDg5PyESGuyvkC7IfNZS54N8bgL/F5ARaoz5NBN187mLWdTz3BrQGsX1M6CyPBeoaUEITHGEkLTMTm9wBuD1BHOG6KoW2FZBOV6SV84cDWICCM1vtZ8/1/+iMF4h507NyhMTV2UDPs5z4+PaGzLcrPCXMhqgnd4Z3FtiwsCLR29vuXR0ZJLoy1ujDIaP+2MlsNA0pd457EmYm94DfH+gOOfPEcFfcEHlygpMOGCQOA94JBeoqVCK4kJLSgIzuNM93sIgbZukUqRZ2lnEgvdtsB512nxhejcvsph+zF+q0cwHtV2F7lP64+//NMCc2KIZI9kf4ywFWpq8KsWbw1iq8+lL76A2OuhckXeQIti0B+xWRVslmuU1hSuYJjHxCjMtODqYMirL9xiTcTG9ugPY4aDiLPTAhF6lHVnTHZW0Mv7ECwBRyLBC8PzzZxVa5AqohcnrFbrDqcZDEpFSCm7Jjp0tqQ87jBcPorZv3KT5eYM31bMn59TfDCj3TGkvsdksE2vn1K5ht7dMUmZYJctxx+8j9secPj6F2gdSNFJtYQQFG1DGxzaS7To+NBSS2prWawMe4c5e5MtNusljZIEGTC2JnQKVNra0ViHUp1ZK05jBI7FZgnZFkEJDl+/Sf2dN1ksTmmi63jh8etOSy3cjIGc0K4LDl+4xDgecT5bk8VbzJ58xNGP75PuJFRUqCTh9S9/lbd+723WHy3ZtAXDYZ+dS1dprCfKh/z9f/D3+Tt/+9dJsxQ/PWe5LLhx6w694ZhXXvks31stQUp2d/bYrBeoo4asUmyMozwp/rQf2T/z9eGzY9a//bt85pWXaGpLpDPKpiKIGOcFo/EEoSTf/sPvcjyfEmc566pAS00vSRB4ZBxz/PyE/YMIHxQ/+OGP+dxrX+aF2y+AhPPzc/I84zd+/df517/923xw/x51XWKtIYo7r1CxriAIlBQoAiL4jtgUJSSRRtiOrKG06gLBvCX47h2kIjibnvH9HzX0J9tcu32L6XLNfLagLEtaZ9k62GOxmtMfply7dshLdy7hNguuX9rj0QePeHXvM11WBi2T3T67uxO++OXPMD9b8pMfvst7776LEgITPrYmXkyFFaZ1FGXLN7/9ff779e+TKsnn7r7ErcND3nn7Hf7aX/+rXL60Rz9LeO8HP+bdH7/J3Vdf4cnjx/zHf/c3+If/8J/x3R/8lL/457/Bpe0xHz15ilCaol4gJaRpAohOlnh23gXnaMG4n9MUBd/81vd4794j0uGAv/LrfxP3D/8JqfL8xb/yi/z5X/0VvvOvf4f/9P/wv+fWnRdRQtCWBc/vP6A4eU6iJaZasz6HCI/CE/AkaUzTWrQLOCdomy5VUClFmkREOuHeO+8jr+9Sbta899bbXDm8xAt3XuD9e++xfH7CerXgzd//HuPJmP3dQ55/+AG/8Oe/Dlrhj86JBim/8PXPk+suGXG1XHahKQiaxvL5L3yet956h48+fMzBwS4SSJOEJE0YjYY8fvwY4CKwBQaDAbPzGQioypLQtmRJwvHJCb3+gOePH3Mym/7MZ+MTN9LTdUm1aQBNL2hIFOvakaSOUG9QKiYEMMYAXYa70gqhujjdLlYXlIoBCcFeAMS7G6bzDVp3An8pdQdVoEsXEhdrGylihOpE+j50KXVKKdI4xthO/6qUJpKKwpVs4gV1WUPYQiuLlQYlJInsEWcpVdnQWodWGQiLwJBmPZI44fmzE6zpsHbOGoJvGG1tce/+A7oMpe57jeOYENoOCt9R+S50ut0lIssyWmsv/p1EihRBTKQzrKuJEsdkMiGJU2zjqOsSmSjmU0saj3CpxLoKpSXSdcmNiIAGsjRGKY91ktVizcHWkNPzGY6AsQLvHMF2CacheEKxYdCPkXQxpFamaO9obU0TGVbVlNev3cCGEi9yPjrfsGjBHAm++Q9+my//rc+RXZ3QiISzp+9x7+FbtHaDdzVCeLy3KAlFUYJ3OB+Yna/Z2k05X5TMZiuu3rjKzcE2p/PHbNwSJxXCKDI3YT+7wzsPjjCN65Bd3ncMbikISoLvSAreNSjZ8cJ9cMRpwmg4pC7qj5tvIQTeOpI4Jk0SlBBY5zpSTKQudPmQD3NmskLtj9BxTBAC79fYYD7pkfm0foaqnpZEG8ko68I5kihlXs3JJjlb1w7YfukK9BMMlmJjOdjeoqk9q2VJUa0IPiaJLAKFryTKFrwyyvjSnZc4jSLOK4fIIsajjEg5BBIfYlorsE4hhSI42ZEtXCBGU1Yr5s7SWknsPJPJiLYsLtB0gWAtINGqw05JIYllhGsDRghOFjXSpKweP6V6PkU4xcFXruNDja0a8l6PZq0oqxbZSqQ0RNsJqCVR1ICL0EF1CYVC0HqLE6GLCQ7ddsYawCpkENRlYGeyw2xmqV1JYxuEtUQKkjjCt5ZGdFtBbPdSjKOUYAKLMKdJMuKtbfKre0xOAlmSUUeeQgQePL7H/vUDQgT9dJ/h9ojlTxfM7xcUqsWdC+q5ZbwzIhklxFsZK3OKzmGyu4WdddP7P/zhd9k/vML+lUt4rXh2dsRXv/Al1suKQT5kuVqgtrYQKrC9PeSDB/cZb2+jXR9TGfpJlzraNJ/SdP64ywHn64rf/vYPgEDaH/GZV+92n43AcNhjtVrw+PlzqmDpCdExift9Eilp6pKnT55jW8vx8RlpmrNYrPj7//k/4NVXXuXFF1/k2tWrZP2MF15+kZt3bvPOu+/y7W/9Dt/5/W+hQieN3Gw2WOPI8gyNZ9gfsDeeIIFRf0BjAst1gTctEkEkNZumBe/J0pjeMMc0Dccnxwy2tmiNI4oikjQjjyMiHXHjxnUGwwxrl5ydnnNpp8ftFy6zqgqKsyXbw30cXQS4TCRCCp48esb5yTkiSNI4pzUlXa/SARLiWFMs1p1UNXQ44EVR8MOfvEVPJTx47z7/qv5HXWCJCLz60i2iSPPDH/6Qy9euUzQtz86nyDjjg8dPef2V2/yNX/tLvHPvQ4hi1u8/JkljnLMcHZ90OOILc7Q1kp2tA46eHbHYGI7Opvx3/+bbvHr3Jb72577EL/zVX8Y0Lf/+3/rbWBsQHjbLJd/6V/+SUawwxYpxL+Ebb3yRrd1D3nnwCBE6rFzQkihWGNOdQSG6QBhrHd4avIYPPnzCC/sjXvvi6/SGOffffBecZWt3Qp6l1A62L1/i7quv0GxKXv/6l3n7/gOu377JzcNtyhRCNWfetNy8+QJn0znDQZ+qbjk/n3Lt6lWuX7vC2z99l8GgTz/PkVLhrEXHEbfuvsSbP/ghL995qdvAmUAcJxRVRcASRCDPc3Z2tiAIXnrxNnvlIfyXv/UznY1PbDacrzZUbUtjWlblhmVZEGUpeS8nUh2fzzlHmqbEcUyv30dFcZd2qCNQusO8Bf3/kfAHHiEtPhi6NlTgnMU5i/eu+28E3e8l6qJEBUSRxDlD21Y4ZzoHqI6QgBSSKIsQBwmNtATrCK4EWYMM1K2lLLvgAyklzjmyLAUhWK5WnJ1OsdbjXKBpWppqST+PKIo1VV2C6m6d1toLU9tFcmMIH5skrbVUVfWxdiqJY+I4Joo0WkVIJYniQL+fMZlssVyuqJuSNI9ZrVoCChccRbnG2JZeL0dK6F0YiXpZyu7OBKUkrZEYk7BcGPr5CFxAeQFekcQDpExw1tDYgvPFlEgpIqFxDqyDYAPeOT5aHLEZR3xwMmNpAnF/iE4TIq+ozub863/x3/C97/wWR0fv8t7DH7NpZ1TtEhdqCAapxEWojiXgMVJyelbTiyOuXYI8W7NsnnO8OOLKtSEHA03iFa6MubX9KsUzy/qkQAn18c/Se4+MA3E/IOPQXayEp9ZrXFYTYo91nrpqP/47+KNLjNaKWGmC88Q64nD/gKtXLzEeD9jenrC9PSGKFXUSqJKAsy3OdxIZlWSf9Mh8Wj9DbaZrdPP/Yu+/YnVL0/w+7PeGlb64895n75NT5dBdNdU5zgxnOOSQMzRp0gyCTAsGZN0Ygi98IetCBgwBli9sgYAJUbQsmqRIkAQncVJPh+nu6equ7q7qyqfOqZPPzulLK73JF+9XNTIgiG01ewYY1VOoq73rnH3qrPWtZz3v//n9POZ0QnV4jErh4qeu8cRffIGNT14mP9Ml6yYM8oLVxWUQkqOTA3xo6HW7CBUwdQ2NY6PRfHHpHC+ePc/EBfYbmIqEWTNDSoPzFi8Cxhu8U0iRzfnqBh0ECzojSxV7J4fUraWuLEJakiQw6OWkWs5Zzy1tW8dMpFD0OwWhddRVQ91GK5wm5eTOhPYkRiv8iYUgsLLmlFPCQmSa79/d5c67d8nXFllY6zCtTgjWkYeEbhr5+NZGXrYLUWkffMDbaDBzQdKUkFOwvrBIoTNEkCgJ3Uyx0MuRwuFdmFNM4nCgrgxBSbwOzGzDWCmWnnmcweXzBB93Orpnt+iuLpB2AiatWNhaQs4E9W6JOjK8//J7NG1FM6jxieDcygab17Yo/ZT1T12mvdolW+nSUTlawVe+8psEV3LtymV2dnbIOwXDhT5gyBIYnR4yno7J8hSlAtVkTFHkTJuKWV3R6/XpDvp/ylfsn/2K94jFErABbty5Szt/1jWmoW7qKCVLY055VpYMBgNWlpdpbEtZV6yur0Tb4BxP56zj4cOHfPWrX+cf/sN/xP/z7/8D/uiPvsfuzgFlWXPt2jWe/9jzMT6gFVII2tYwm9UkOmEw6EOA6WSCbVomowneOvIkhQ9Y7s7jrSVLJJurKww6GdiW+7dvIQPkRcHK6ipV2fDw/iOODo8QCB49eogUgjzPaIzhc1/8JAu9nDtv3WJ6VEaQgALbOr7/8uu8987duNOUJHFSm6Vz0EBAa81wOJgbkWPkozfsIxPFtK64/eAOX/z8p/j8Z14iVZYvfPolzm1t8IVPf4LrFy/QSRJuvPkmzz37FJcunefew23+wT/9V+wdj7ly9TyrKwP6/S7WeqaTGd4FsjxGLpVM6HUyfvkvfIGf/ezHSTPNtKppmpYrVy7y4mc/RZ7mrK9uQACc4+DhQ77xb36PH3zrZZrphDzVjI+PaauKphzzl3/py6TBoEWY4z0Dbh4vS5KEoshJ0gSpFM4FZlWNMS2+qrl05SpLG6uobsLG1hqdXpfJ4QmPHu0wM5aGgGtr1hf67N+4ydG9u5xdXSdYSd16ikE/9nJJirNRvPfWW2+zuXWGa1evsLO9y/b2Dicnx5RVFMxU05Kr165zdHzCo0fbnJyc8Mabb1F0uggpEVLRtIbhwgJ5njLo91hfWfmx742ffNmwsWSpRghHmoGQljTNET5gjEXqlCRN8T4uhIHAhQBzeLq1FhkUMon5pxBC5EC7BqUFaZqQ6mJO8TA47+bkDINQCSJEfbcPjoCjbW1Uas9n10pENXhQGuE8cqAYyRZd9KHydPoKqwwHRwdIiohaChbbGHSS0DYGYxzBgzUeJVO887S1Ic8k58+e4ZVXfoTUClx8kAkpqKoKJSOKJgDG2nj0Os/pSqUI1s1zXy1ZrtCJQglP3skYDgtGpxOCC8hcsLc/QqcLtGaMpyQVCWmaAZ48T4FoF+qkKaenB3S7Ao/EmYwwnzx3tKaxATfHBiZJoKxPEKJBJJrDk32W+n18W+OEpyMM2gWObMveQspJb5WyEahEYebeZCW7nO4e8uAbPyLv36K7tg6JxotAIE6BtRA0ZSSyBAKt8BycNNhmwMZK4Op6zoUlzY1Hp5zmh/RXBH5Hsdq/zOjRDE0Gfm6RDIEkSeZTY8XyhSE798aYMTjvUBspC8NF9m+fYMaGsoxYQQFzTBFkc6mKc440SairEuUtrTEMF4ZkeUZrGtLMUmeKzAdUqrC+Qyt/4nfPj+rHKGsaqmEHfWadK1fXKFY6JANFWc9IlWTYiUIf03qqaoz1FqmgKiexEUaTmMDZXocvbJ5lqDPuATdri+12qeqSQa/ABUlZOcyci65ClC3pBLJE0ZEZq5kCGg4mx7jWgBfknQJjW9I0pZN1Mc5T1lX8/HLxlGyxt8iwV3CUy8hpFWCE48pzT/LaV15GHM1wBRSXFijyPrnuY3PNSBwwslNWz/SZLrSc2hFpOUUmKyiR0skTpHCIoBDzz1MlJcFFAgJzvKNzkvGJYbG/yPLAUFmHlw7TttQ6Ug2USCIOTwBElrqTjrToMpvWHFdTgtYsXLoAvqHjHUYH+gsdtPasLq6yf2cHOwqc+Cm9Mz1G28ekQ83mxTV6foHtHz1gpXuRtgaVeDbWVnjztXv0i2XOra9y48YN3n/vHV54+hm+/+r3aFtD1skYjca01RhjA03TINOU9TNnONg7wlhLr99nPC0xE/8h3vSj+imWigMtfCAAe4dHjKdTCI62qTg+PWZp5RxZmiJm4G0cenWKgqOTU9q2JssyNrbWONg9heBw3uMCBAPGOO7erbn/4CFZlnLhwlle+sQL7GzvzAVikiQVVI1lf2+fxx+7RNPMqCcjiuVFCA6JwDRRNJImGa2JFrw8y1lbXuLC6jo79x+ysbxEbVxc8i86HB0cMZlziLMiZXRyzKya8KCdsLfzkK2NJa5cusjf+ff/Kt/89g/4wTvvcan7GNNJxY133uZo95QkUVy9fpF+t8Orr7yJEDGn7PCkImU6nnF6Ms/dSsg6GXqaMJvNGM1K7t/fZqmT8/Nf+hzOWabjCbQtvV5BfzhkebFP0zr2jkecX13m9v2HPNg74vJjF3nuxad54/YO45knTQqWl+IzrK5LVhcyPvXik6ytDHEXzvLPfvMbeAQvvvhx/trf+F+wsrFKVTVMT04hwMnBEXfeusGNN1/nS5//NGvLfUYn+9R1zRNPPIG1DSuDlOefuMbr9/cROqHIM0DhbSBokNITgopJgdYhjeN4d8xX3rvF4089xgsvvoBty/hZkyYsryzxsU9/ApFqRNsyWFvGnZ6wtbFEkmqmwvLWjfdZWeiz/WCbclqzt3/E4uISiwsLnDt7ll6/Q7e3xdHRKeWs5O69B1y6eIHZ9Ijh4jJpp4PIZpi6pm4aer0eR4eHDBcXohxQK+7fe8j585skSUJlqx/71vjJzYYB+lkHKSRZXqCVpm3jxaOVIp0LVCaTKQHQaYYLAS0k1WyKtx6dZCgdced1XVJVJVpKAilpkoHQUSQQ4puesTVSCYJwKOmRIk6rva2iARGJkikKjxSBRAuckChvOB2MGWPRoxbtIp7GhngzS9HQyIBWCkQUpIQQUAhmVUnTOhSWLNEMeopht8ve9g5SpjHbG+JU1AO1aVkoUkxtIyg9CLSIdrSY+Y7NnZIqvg2Z2ExL5SiyAZiADAEvAsenM3wA5ar4wiADNrSoRJLNGdN1U5Hmgr2TQ1JiBMPaCklGUCl15cmyQNq11HWLdQIpIU0TvG4JiaWyLbNWUaQJRkGFJTgN3nNYbZP3lnBVpKh4G5ACghO4UjOb1pweH3NZW1bPb/FoNCZI8E6jgiTMH9axmbURY3biWJGC84+lPHs9Je2W/GDP4Jsey+4Cb//uHtN2xqUXzpPlKWXisG1NpgWNqwlKs/JYn3YxcPzmPtlGj/RMSrU3I0hJQOGli/EioG5j5EcL8NagdYIj0NYVbnZK3umyszPFe4FKJHYjo18soROFMJamrmKU5KP6qdfysxdRl1doC0uTKmrX0mk0nbxAiRDxlE4wm9VI5XGmRgWNcwLhLKlpeazb5WeWVlgKnjsI3nSKWqcEb6MqWwpGI09tIbgUCWQqnoSpJAUpCIlEZJKD0yOqpsXPTWpV5bDljERoEClp2qFu2qgqdpFbXqQDvG+4cH6FBzu7nOxXiNSzsJmzcn2T6TtHXHzqSURX8f67t1hf6mJmY5KJpJt0uPbUVcqlGdOmZDlzWOXjKZRTWOPmU+Q43QsStNJxouQdiVI4LxjNKkQSWFrscTKbUDUdjBM04xZrVbSszk/gvA8E4sCjbR0hQN1UTCkAgZ2M6XQCiIaQtIyaikHZxR62LG+ts/X4VdJQ8OZv/RGmmmFC4HB0QjOdstUkbPgNfvj117ETB6VgbCY8/vh1RNBUZcv5rVXObp0D4rAhyxImkxOU1EgZG+WFpVWU7uB9YDKd0bYRheo/aqR/6hUNvTLeA0DTGh5ub7O2tkxjDTuHeyyu9Oh2O6jjw2iXNS11OaOqKlpncUJw9uJZTkcTJAEp4wmv9/F5EhvrgHENb731FjduvI3zLd5DWVVc3jrP3t4OIgROjk7A13QzxdLiAFO3aAkEOR/KxViHtTb+/BKWBx1Wr1+kbTx7xyPackKSpFRlRZ7lWOuw4wmD/goLw018aDk9PeDGjTt084LxbMbZs2f4+tdf5mbzHnVwjKqKvJPw5FOPs3FmhcloinUB6S060VGtriR7O3tUTQ0CtBLkvZx8llONFEcnI96T9zl/ZpUszcjTHsIHFoZDOt0OO9vbXL58hQc725xZ7rG6MODw8IDvvfoWT734MZ576UVq0eW//W9/I55Gt4Ysy5Ba89jVKzz/7BMI7/n2y6/R6/b42Mevce78FqauGR8cIYXEecuDW7fZvXOf7fsP+cIXPsvx7jbHJ44bb79Ht5tjg6M76JJ2+4zv7RGcYzDsUltLklisBWscWkvSRJJIaCdjBIblTpe7D1omFsbOQ9Ug00AuAktFgTk45t57t1hZWkIVKXhPogRpv49Smi9++dN4Iblx4zYpGqkSnA+0xsRTkbphuLDIvTsPyDoFwzznzr377O/u8MSTT9N30W69vLQY/7zW0dQVebpKawxVa3n9ndt0FhZY0ZIk/fGRmj9xIy2FQikdpShSfpgxzeYKcO8to8mE49MxRacHbYvQGi0V+AhSTxKNMZH3bIxBSkmik/g1rbG2QScpSZrE4xQSlFZYFx+gxhmUtJGGEWL2RakkMoZtHeMfuaK2FXVR0fqaYFO06OB9GhtCEWMZ3gXKpkUh45JcCHFJ0hPzyq1jNDpFK4sWHd6/cw+d9WNzOZ+o2+ARc8JfXDSALIt/KTFakETOowgx0qGTOK0WAe8M3U6XcjohyTJG4zGtaQlEmY0QHilzAlCW0/lWskFpNed5OpzwWOsJ3qN0xARqranqil5fx5eRtorH1wG8FagkWhbLuiZPc3DxRaaxDSEommpE4vvx1w0SN//1IZDphExrrAzUpmJBRzPdo0nLzqTBy4BIJViPcBLpFVJ2uHd3RqK6/PDVfXpJTXchZ3ni2ZSX+KM/DNz54YTVK0O0LuiecRzvzQgSTm1F6CjSIqVFs7A+RFcG17ccTEdIkTBcXeN4MkHJP6ZsKK1xzhGsjZB6AU3bYuz89KF2+MrEbGuRI3sFaZEzqabMJmOaqqStPlIR/0lUuLjARDsSD8IFhFK0lWVrbRnjppi2wdSB05Mp/UGKxCF8oEgSmE7pjaY8s7XJWjHgKM95P0CVdDDOInw0/JkGajxBSnSSoIVAyGjA9F7RVA0idbR5ytH4hLqN0SyF4HTUkKuEpcFi3PFAIFTAewtBkxQpSkBbNgg8g14PocArhxGSwflNhMlBaNxhQ0/2kEaw/9ptOm2XQODWH73N9S9dpfSe8fEBwycuU0pD8BLnJMFHxXD4YJlZSUSAVEtSLWmMwRmBmDr6w4xEeqoAtRHUjcHZKMSINNIwj6QAITCdlCipkALGTUVSDBksbtBLDePqgO4wQagF6pMJu+/s0Jae8y8t4HsWt2xJQ0a+mrJ2aZ3yYMje6T7mxKNrELWiMp5WOzY3t1hfOcvB7jH7e3tcv/44R4cnDIc9pAoIYRmfHtHp9llaXmY8mbG0ukm/2+fRw/u88/Zb2DYOVj6qn24FPvA6xOvO+8CNW++zdX4N2ximswkHJyecO3uW09NjysmMXpYznc1IswxTe1zw9Ps9nn7+CYRVvP7aDbAh3hvBgoc/XioC30S0rSDQVhVFkbFxZpWjoyMe3N/m0vl1iiIhzTSmrmMDp3Im0xopQBEHKrYxFCphdHLK5z72NP3egJNpzRu3HtAZLqHF3AioNb1eD6ygmxesbZxF6ctsb9+jbh1ZNiTRFU8/9jh3HuzibMXK8oDzj19h0O1z+9Z9dh8dRhGSt6RJPC3udXqRfR08QgkWV5ZBSpIsJcsyzi0ucHZliT/89h/xxIWzFKmk1+3w/s2buCB49bXXccaztr4eo2je8Ytf/Az/8F/+Fv+n/+Q/53/3H/xNLl06T5YQMb9S0+33EPvwozff48Vnr2Bqw6is+d//x/8RS4t9VlZWYW5Nbcqa73/jm+zdvc/q+hrP/szHmMwqfvvf/D6PXzlHEIanXnyGlc11qvGY1994h4o0CnisiWIaX8XPlXkaV6rIrl7oZFy/co7T430++5lP8ebbb/L8x55iZzxmsLRMsTjga3/wbygCnLuwFSNBvYJeZ4HJ6YjhYMB495DZ+IS9kwktcHJ4yHAwJATY3d3l1s33OX/uHIkuMMZz40dv8KnPfYZLVy4yOjri3p37nBwd0+kUdIsC4w1rK8vcvX+PpqkRWc7RtOKdu9tYlfCpF59gbW3px743fuLxmtYx11wUBXket2aLLCVPE4osZWmhx7DfIc9T0jzDeE/VNJTzzc4g4hF7jH3EXy9LMzpZQZHlpFqQJYIkgVRHfF2eZ2RpigwgfEtbnlJPx3jrSXSMZ2iVAIHgW6rZJE6sM4/v+3mzLwlBYA1YG6fPddXQ1AZrHMZE7vR4cjJ/o436zLY1hODo9jo82Dlg1hqqporkjcCHYpSAxLTxTVjIQMDFqbvw/z95aec8ic6QQZIowaDfjaxJNKPxFOsdaZ4iE9BJIM105CbbGHEpihQpJePRhOAFSZLGyRQRCi+VJOCQMn5tNqvmy1AG5wxpWhCcpi09wSukSqjalkQU2CZ+COEDwRiqakbdVLRtRVXPaE2DbS2pSRiqHl2V4JoaPx2RVDOW8pxhnpOogEwlUmuyJCVPOwSfUleK2azg0a7krfuWo7rl0nCVgx/Awx9M6esF6knN9r1t9JpELRf4YYZc69O/uokddCnLuMhoMsPp5JCmnJH1u6xcPIvu5HO4/h+bMZVSpGn6odzHWktd16gkQ0pJ0c/xheeECTb3jE73mZzsU9VjjKnxtvkfuAs+qn/XVboKYSGEDKUKuknGcm8xThFMxWxWUZYtrYG29fQ6Hdp6wsn+DtOHD9j0loH0nKiMN2TBjtQIawjW0E1TOlkHKQpSmZBrjVYisqONZdYKjEsQXqMJSOGY1jNa08712gaHQapAb9DFuBbrajodRX9QoFPF4tIAKVumk5rxSUOnyFlb7dLRCeP9BpsWpNdXOJhNeOfmbdTiALHWoXu+j1s29K70SZcLQisxh5bTW/soa8n7EpV42tYSDWuAkAQh5/ZQQZGleN/SupaytZR1wFvJ0qBPliksHifiiyXwofksWmMDQgrc3MZqbEvrLSdlQyMLKp/h6eBChkg64DS6ljx6exs1NijbsHxpkcVry2w+tkrnbMqZnznP4PwCC1s92lAzm42p2xqDY3FpmY2NLba2znFweAhIJpMpk0n8zFYKikIzGh2BCCwtr2BdwIXA6uoqy4sLFJmmLD+idvy0K4RIhUq1IpEeRWBv54CDvaO5xc9x78EDZtMJTz3+GGc3N1lYGFJVM5IkUqkixi6wtDTg5//cl8hy/aF+W4jwxxa+EAjzuKZzZi48afHesLAwxBrH/u4hznoSJSPTOElZWlgk07F9Ds5HHKqQlNMZs1nFrDa8+vZNfv8b3+Lh7j5ZkeO9Jc8SgveYtmVnb58Hj3aYTCoO9o6oZjWD/iIb65s0taNbDDi3uUkKLPd7PH79KosLA/b3Drl54w6j4zHdboe8SBHEn286OuH05BAlBRsba5zZXGcyHWGF58z5df723/xV/td/+6/y1PVrvP32u9y4eROdaBYWF/E+cO7sFhcvXQAR94PG4zFrS0P++i99iRz45te/SyEDlzeXGB0foHUgVQolBFVr+f2vv8Kb723z7MdfpK6m4AOPHj4iiIRXXn2Df/hf/Te8+aM3CHjKtqI36PP9l79LohXDhS5/8S//At1Oxte/8jUaG1gcLvLWm+/Q1i1t00asbIgR1sbWlNWUsiypmpaiyDi3ucza6gKHj+7zxNoGD7/9Qx68fZdXvv096rqirsc8+fHHWVxdYGVxAdUa7Kyi1+8xPTjg7bfe4P7DfaTUVKMJr715k93DU85dOMfTTz/Oz/zMx1lbX0bpwMWLW5w7e4bT40PauqIsS86e3WIw6DIY9qmrkrqu8CLQH/TpdLq4NOPXf/cPGLeO777+Lt/67qscHPwJUjvkPDOqtf4wZ5dqjZYxUrUw6OK8pWwtTqUkQpIIkPGJhPUOKWJzGILHe0eWJmilUVJGNJMQiGAgiDmEXREcyBDIE0E+LJiOx7jWkPWW8DLm/px3kQsrE5rGkmiHzDXCZ9Hw5xzWTGODq6Bp4rTR+4D0KTpxJImkqVuEUMReX5DlGd4bTicVQWqMN3Tygro0OBFIE4VzHu9jdCI4O3+Lj0uUAREzX1KSpmk8MpOK4FuG/RVsDa2J3+cJIDxJqhBz06Oax2eElPjgmJUztE5xbfx9ZJBIKWMOO9i5RlVgHYCiqiuKTmRtexdIZIENAhlik99YQ9paJBLrJATIZMbpdIKrQasU70FqiW8dmU8Rskeatch6xnQ8pVWCWsBKdxlfzjBaUfo59g8i+BzJyXhGp9fh7nZDsWjIp2f47q+PKZSGjsJJgR93SC+tkVzrUZ+OUAlkq0NCM2V8fEyqOowmNdZG42PS1VjrkDmI2uK9+jCj/4FO3rm4pCClROuEtqlp2hK1qLHrKWqpz0lSU48naOvwYn50HOxPest8VD9GVcGRi4Dwkk6WkqeB/f0RfZMiEhMNnMMEkUrUpOXRuw85GR8jnGcxF1y/cJ6qt8gDnfCgdTQuki2ETkmlRgSBTBK8kHjjwUIIEilFXDZuLcM8ZdCzHI4OqespufTU1tMGiZQW4y1N2+JMHaNWQJpmlMZS5H2CqcmLNpo1DXjb5fR4DEhs8AStsRUMz58lJCmtE2Tn11h6WiL6gnwMR7f2qMtAqxXWHpPpRWoTmLUB44DgCMJGcoLz6KSD0gmtM0idEXxD2wimU8nKcAUfHJWp6OQD6rLE2iYeNes07qb4aFStbBwoBAQIhxEVR2NHsriMzhYJ5hTTTglSsnphE9FOuXf/DueTdezUMK5rSmtJg6Ovu7RjjxIJIdGUzRipYDwueeXVH/HpF16kKCQrG2u8/e47PPvMU4wnpyAFS0sLFP0MaxxHO3dZWN5Ai4Tx8T5tXSKoyXNHr/2I2vHTrkRopPMoJZGJphUO5+D7r77Bpz77M+TdFO8dDx89YmlxSNbJmVUVxrZILRCSD5XVUklm5Qxj3FxURowlCY9E4lyYW/k8zhvyXsbG0socgReX4L3z0RchO2ilOTk6ZjouSbMu3aLgdFLjbMBZhzEG7RV7R6ccHB4jgufW9j6ohAtXH+Pa088y3TtiNm0puj2WV5doGsd0WlOVJZPJMQuDHp2sj+722dyYcfXCed69c5OESOx5eO8RzkCiEz728WcZnRzz7hvvobXGmrh0v3Zmla2tTabTGcYY8kSxtrLA1777R6z98l/iS1/+FLSW92/djKfDRUFeVLzw4gsorcjzlMmspD9YInjP2kKPX/zyZ/nqH36H0eEBm6tDXn7tR3T6XZIkI1GSygVu39/jYO+YKxfP86X/+D+i3yn4/qtv8o/+u/+SN9+5webSIr/w2U+wvjikdIbJaMT46Ig0VVy5fJ7tuw+QSU6vM+Rk/5hHjx5ydLDHUOakC0OkiBP0um4IQiNlhBokWpKkmqWVIf21Jcbbh5zs7LPQX2By+5DOhQG2nXD9+av0Nhe59dYtcqPodgp29vY53j/i8ScfZ3Ftg3vbx+gk4XNf+iyvvPoON27fZjDscvXCeYaDAd7bD/vR8+fOMitLlhcWEAhM05AkyywsLnB6fDKPhk3pdXscjUf017cYZAXvl7tgDfcf7nL/wc6PfW/8xI20E/H6tybKCXywpM7ivUHlOa2xWOcRMk5p87yHnAuabdsiZSQtxmmIxLQeEaL9RyJIlAI5F4gqEXXYIS4m9jsa01SIALLbw/iYbXbWIJXCSkHQKR4Fraf1hrqpSYo0bgz7eWPrZQzJQ3ywAElaUNXNPA+W0LQNIUhS5Vlc7HPn3h18kPggcMbgkvhrESS2jXbBxlk6nQLh43qv9S6i/wIQLEkSWchxGVKR6BSdZLhWo5RHBw/S4XxccIKAVuBcQ55lOGOZ1fVcsR1QUuHNvJlGE3zA+BohorjG2Sgm0TKjqZqo93aeeDCtoqbdGrIsp64b0ixFWIuXkurEYRuHbQJOebq9Pi7E4/RUZuRhGdNm1H6f8fEU01N0FrbYWD5LuT9DVi15AbO0xBlL2iqs0ZxMJnQWO1S152A/4YxbxlUG4VqSLCdLe1BnVCNNutRjbaWgqRo6/Q5rC33C8R2CtaRJhlQNodMya0+ZjlPK2ZgBAmS8XoSQIATGzOMZ4oOXmUhLsVhmSUOynlNnARMh5aAcIsQXF+M/aqT/JGq532MwGKCUAizeWvpDaNoxtAG8R84mtCc1hwcnGGcxIjDw8MzSJsXWBo+KPvdqz9QHtAiRL57FU4pOp6CqHK0VSKVQQkV2uPcEL1CA1gGU5d7uDqUTZFmB8yUEG7Xywc8bhbhI3LQtjbGIkKHqliZM6S/mzMqG48Mxw4VVBsMF9o926A/iIpSUXU6PpnFJeh4pK40gNRI/azm+d0BSKlQvpd0/RXd6WKFw3scTLwVCOEKIL7x5phEi7jAIKeIOhtCUpWdpkLI6HHAyOqYN4GoROa3eodTcukpCqjNq4Yln6wIvPG1oEdYxrSuG/Q7CKIQT5LpgXJ3QUwNOd09pmpazZ85z9+238KeK4bqi7pdkyx3GN2vGxzOE8Cwu9qjbwDe+/lVO93b4/Oe+yNbZTfZ3diknU1xjqCYzxlKhEkWn06ecjdndvcvyyjoiJJTTEVJ6skxRZB8pwn/a9Vf+wi/z/vs3ee/dG2RZRqI8ZdMyHo15+eXv8+zHnmJpZQHnYHf/kE63S93WlFWNF5BlCa2tQcQMbaeT0e12aKsKESReBJz3KBnV39aBlIHhUs7Va+dQaRwcmdYgsXF3Suuopp6WICI7um0anPWkiYonH01LWzfUU8PMAc7Qn/OEPXDj7TfZOn+BTppQGY8SkrYx1HWJtx163ZThYIlEwmwyIdCyvrFJmt3i2Wee4/6jHZblGZpp+eFLQd02BCVweIS3nNlao9vLWVhaRiUJjx6d0O/3Ac/B8QknreOHP3yN8c4R5dExm+ur3Lp7n+vXrnDjvducjmZcvnKJvYMj/um//E2KPOOv/5U/T6bgyesX+d73X+XmnR2uXb6Att/lcPsRG5ubJAIsgfOba/zCn/sCD+8/4uXv/pDdoyN+7bd+j6PjEzSelW6Xr/7htzh/Zp2//Nd/lbZpeObpx9na2sS7ln/1a79DWdU8df0KydPXufrYFa49+ST3Dybc3j9GEugNB8zKiqo1CJ2gpMCVE5o68Pa7t3j0ztu04xnNdMbzzz7Fs596lrVnzrO40WV9vU9S5Dy9/CJ/8C9+l62wxP1HDynLmrO2Qaca7Vre/N6rrHYH/NKv/Hle+8HrvPve+yz0+mgl6fd7SCnpdAqKTsG9u/d59PARS2srpFrz8NEjGtOyvLhIXbf42jMajRme3WTvwQOUgjPLAxZ6Ha5fOsv+3sGPfW/8xI20wOOdo6oq0jwHJTHEEX87m1I5QdmUlKYGTcw9EykbQqeAp20bJAKtBYnWZGmC1BKlZHwQhHjsk8i4DRqxJwGlE4zKMDVIqUl0wrRuYqPtw3zhLKEVMTt5ypiybiCTWNMSjI9THJmgdI530YKUJJrWWJTq4WyL0AKpov5Sa8t4fMRkWiFVEWMWIeaFhZgbmAIIpfBzgUvwAak0SPDCkykAg5QpWkqk8Djfsri4Qlm2BKfiM8y5OI0nRaAIwkBwJInA2ZbgE5QscLYmBIvWitAqEqEIVlLkHarG4MMcIygU1soogvHxZUYmgrZuEcRlDKliPrR2FnSBRlFKSyGH+KShNgbr43JIkedYFfFy2mpSFqhKQ7YqmVUTVAesz1lNz7J36y5yCeRqziid4TsCYRWhAl8pxsHx4F7gzJkJlz4+5MEPR3jp8RqGq6uIokNmavIUzBRG+xXN0RHPXl6jnBi6XWizilD0CW6duurQWbbUe4e4Om7fpir9EJ8opUTNJ/xSicj+znOmyQgvW7RMUc5B8LjgYrzFRlrMR/XTrzNLC8g00JoZs1lNp9OhKEREsLmE8WzCyfYR4wfH6H4OOi6tXFpc5vlLT7LXH3LTwcgBUpLrJFo956dc62vr3Lt/gPdyvsymKIqUaTkjUZpMCxIFs6biuKxobCDTkiLP0MZhSAFNWZU0to15QJXijKWnNeW9R+Spo/JdajwmBKwXyCRjaXmJyWSPTjfBqxSVJpRVQ6eTUZYt06pBjRycNpTeUzQg61NG2zusnN3EiA8Wv8Q8ahIgeJQSKOlwbRM58b6JYqtgsa1gOnEsL/VY6Q84GI/o5gVe5DRtNf+MIJoaq5pERk67DzHi4Ql4KRnNpuhUo7xielxxduEs96Z3mLRHXP7UZW4f3qFnZpRNhSo9lwaPIQyYA8/+O7vIJpB1NFmeMCsrHJbvvf4KIlN88bM/y4svvsjrr71GwFE3FWurq6yuryO7GWnRYbz/kIcPxiwtrJKmEhEs3jZkyUcZ6Z92He7t8+UvfZnb79yiUClegrUW4z3T0ZQ3X32b/qDHxsYaeZHz8P4h97YfknYy1jZW6PQz6rYiTRJQksFwwKc/+0m++rt/RF3WMadPRDEKYhZbSMmLLz7G9cfP8e6t95mVHm0FAkW/26fIOxwfT6izKH0J839mVUkQGalOqUyFd4GiU5AHeOLSE+hE8/Y7N3js8iXeff8ev/fbv8ev/PX/JcejGcjAbDwmz1OausHbhmuXL1HkmrY3oDUVWsJnPv0ZnDcs3XufOwe7+NahiHtaD+4/JAhPUAGC4KknL9M0U+q2YXQyZTqdsLSwSPCe4/GMAskb793k5156gY3FF/iD3/smBsGZrbOcv3SBV374Dr/xlW9y8cIFrlx/jG9957vc3TnmqUsb4CzLK4v8xu9+g7/1V/8S64s9jo5PYKHPL3/5ExQdzc/94pdYXlvm7Xfv8Z/+Z/8F97b3ImABz8Kg4Nlnr6O849zWButbWzx6+IDJeMKN6S1OJ2Me7OyzsrzI8y88T5YIFpcXybIOKu/z/t4h1tmI/QWEj6cANhi6WiNEi5SBa089RpFq7LSMcZfJmK1cY03LyekpQ7VEf7DIL/2dX8FOp1z73HMMFhaj3KZx7P6T36R/vMgrP3ydJz72MU5OTlkaDHEheiCMSUnTLrPZjKqp6fS63H7/NlVVMVxepNvpoLOMsmpJU007tTgCnTzj4fExvpry3NULbKwvo5Rnp57+2PfGT9xILxVZRCYJCzogZUJtPAKJ1oqmqpk1M7ywpErSGA90kVIQgsdag/UGrRRCJlE2oCLJIgg5P1qUSBwyeFKlKVJNK8EjQGiKboLxUFmP/2Dz10dpi2tqSFIknjYEkm6PUV1GA55Io9gjeFpTkiQpmexgjCXRGik0eZ5E/rG3uFCxvLTKW++8i/Wx8VQqWhiFkDHeItN5rCMqsaOWO8MjEVKDMAhp0FpGhSUBqQxpFhFWIiiCBKkcwjl88CiZxIm+jEucEf9XxyUjP9etOxnRV8RJ+2w6xlkYDAZMpyOsMygpIgUlBHCGqpmS5BrrW3B/HCHx3qGFpmktuQI3b7i11qSpIFMaqdQ85x2z3t77eXMqkCEuL87qKZPDIziYkZcK33q6ZYZaVUy6M8a+RqKYjg3FoMOsnvLW4S0uX3wc/04JyZCVx6+Sn92i8rBQ15TlAc2kxUxnTMf7vLa3z8LKJrUYUlpFr3MBr4akK5rN3iaPXnsVHh2h5kc+H/DBP2BKO+cI87+/1rQEDca0CFlHrXwIiCCxJjbR3n9EB/iTqOlkTH+5SxAg51p64Tr41hG85fTeIcc3d5Fjw7mzPfJccOXMeT799PO0vUXuOMlpa0mTnCzJkFLT+ADWkQ06WDdXaguNEHFZ2vl4/SdKkutAp8i4vTOlaeME2raWPAskaUpbVnNjqcd4gzCOIstJkoSu0LQPt7n3zh0uffIJOlfX6RUpxyeneAQLCwtRZdwaJtMpWadgOmuZlS2JylBSU9UTvFRkV87gS8jbiof79+mMrpD0siiikjKaQ4ONS9+pJtEhLsQGTaJBJZq6NTRtYDQTLCzkDPtD9k5GOCRZIgEXXyiEREmLaRuyNGcyKSHR2NJEzJ6ANjhOJlMuLC3gx1Nc6Ullgan3qO2YTl8zOzri+WuP00rDyfaU0ztjlu0K7sAirWVxvU9ZGprWUwtDLVv+8NXv4KTkL//CX+HCtSvUTcnXvv5VZk1JXig6vS102mFpYZlH27fZrUsWB8v0OhlNBQb3b72mPqqfrH7xz3+ZzY0NUiE5v7nF/skhJljGsymJTjGtZefRHvu7R2Rpzng6wwRPSASzWcvG2SWKfmx2Z3WN0hlf+MIXOLd1iV//9d/mwb2d+AibN9QIQZZKnrx2jk6hY0bamXksMOAFjMYT+v2EEDf5sNagRIJpm4jZFek8b+9pXMvCcAGVZNTVDInnxeeeYVrVfPeNG3ztq1/hc5/7EqNZiWkNwjuyVFO1NePxiEQP6fUHCDmgnI7pD4fYquEzz3+C8MPvcbw5YefwhFnTsDAYsLm1zivjGaZqSLTg3NmzvHvjHtV0QicvIp7We2rj6PY7hCznzs4+n/jYCwT+kMa0PHi0Sz0rGS4NsPcdSSrZPLPEF7/wWb736pusDgrWlodc3DzD/Xvb3Hz/LmvLS1RHU9zhAdfPf4onPvksOkn5w298l//73/uH3N45QOuEVAaW+j2euX6ZL3z+0+zv7PDM88+RdLskwbO9vcPh8SlaCr706Zd49rlnCK5l6hy3v/sq09oybgJjC520y2QyRUiF1knEGitJmiqevnqeSysDTk8PWSg6lP0OKpGMZiPqyZhm0qCU4Nf/6W8jSTh3foPzZzZYWFuhmU6ZHZ3gnOCll57j8qWLfO33v01RFAyGQ965cZON9RV821JVFZcuXWI0GlF0Cs5sbFA3zdzrIZmUM5YXhqSdAte2DJJVcIFgPaury1y/coHh8gJXr17i/v377O5s/9j3xk/eSPdzJrMZ/aVlWjfXfjuHDRCEpG5q6qZGyEBdGop0gNNunhOODadQIgaqZVxI80FgXAyvA2SJjrEL5jSM1mKdQ+kMFyTLCws0zlOPxiDAeBeD766FoPBYhEpxOjAqRzQ+kKocIQKpTvDORl2095RVBQGatkLJiNAJWLyvWBxm0SPvBFLr2Mi6uCjxwTJbXdu5yUghRPx6qiPvNU1SWmcj7SLo+X/j8FQM+h28EdhWopQg0RlIj3Ulzhqc96RpFLwYE+MYzrcIogCmbS1SxmW6RCU0IqL7mqah0+lEYcz8e4MIeOGxNLTNjE6nT1t6nFNYA1pLWudQMrK+vfWxmbSWEKCpa/KOQsr4MFcqZpCNaQl5TZIHUuGQ04bR/gOy/YSkleRWg5Ewqulu9llYLNjPTjguj1m1GaZ2PFIjkuoRPrQUgw2G5zeYphpbWyw1rajoDhWj4xNUPcYlmr2dPTrrz2H0JkcjQdHLSdMEpRJWz55nclrjnaNtW4QQ8zz//KVjzpYWMkACKIHzLc6kSCnwNsSXjHnTLcRH+Ls/iapNS300j4plMJnNkCYQ2sDd929x9M4x3brlQk/z/MoCW+fP8vjVp/BpwatKcFg7EpmQKoHEEwR4KdHSI5Ri/+AwNo8qQesEpYifA90OhJZeIfA0HJyeYqzBGoOQktpYRALOzxePhab1FmEd2BajBN2uppdkHOwb3v7GG3x8dQ3XAxsE3itmk0CeLHJ4+ACRQp4rBoOC8XgWc9JpQn+wyKwc0ZgWqxKCU2QJTGenbC1tMW0FRhiCCPMXdoGWEvC0zuGDpMg0IgHpPXmuMM4xmjSopAPkVFVJU9coGfDBx4yelHFJSjiSNJCmKbVpkUKQJJrgJdOq4mCkWBgsUT6c0Es7bPQ3kRNJt8g5vXuAndS0HcPKuTXqccvZa5fIUOzsP6TIU44OD2hMAz1PpjJwkpdffYWVpQ0+98nPcnhwwMXLV/jud/8IrT0q1awsLgIJK8sb7O0/4vBom4XBgCLPqdsff3r0Uf1Pq9df/iE88Rgvffx57j/aRrjAoOjGE74kwQI6iTZhU9W4OVEGC0f7R/QHBStrS3F4oRSTaQWuZWNznavXrvDg3g5KRhoIwSNCYGVhgXPrK5TNGE0A5+K0WkgmoykPH+5w/do50jyPNts0QckEJYEAZV0zGo3jECsIWuvY2dvGtQ3Ge7758vdw1tMtMm69e4teZ4GnP/YcXoQ5ScuTdwpG0zEOx5WLlwjWIIQiL/rUQuHwXL94mceuXuXg5JRX33mX97fvE86s0u/1OK5qTkdjrl7Z5NKFs9y9/Yh+d0De7fPo0S4IRd7rc1yWvPrebZb73+HqE49x/877dBcX+Je/8QdsbKzy7//dv83XvvYt/tmv/S6kEdkXvOFv/+ov8sS1C+Ra8fobNzm/dR7Wlyl0SiFzPAX/l//z/43xcUmn6BH8DoOiy5///Cc5t7bCN7/9bcajCWubG2xePM/JdMzk6IiqLFnodfjspz/B2toS7773HmjJ1tomQWpu3r3D7d1jtq5dZ5AmMQopARl7CK0UeaY4s7rEsJMwyDeovcOmCpUJnv/UE+xt3yNJJdW44fvffYdBMWBraYUbb96gnP6AIiuYzRpuvv+Aj734PItLS6wsLvCj736Hz3/qRTLhWV0aoIFOp8Pe3i5FUUTXhJRkUrDQ67K2sY7Kc5ROEEqjC83paMTS0hLj8RgTAstry4hUU5qW9Y01PvWZT8JXX/ux7o2fuJGuyymDImeQp0ymM0xwZFnGtGyoyyY2LC6Q6wIhM1LdQSXJh2i5EALWGAIeJRW0Fi01Lni09Eg0QjqC84TgkAYILQJBkSvSJOf4dERtDeNZyf7RCZNpjXWeNE9Ik5TKtoj+EJULSCH1BcEIrHdoEVAqp20jZkfKgJDQNjXgkTLBmopeR7Ew7LL96ACdpLQOpFRzgoalaWqyNJ//OfQcc5diTU2qEpSMm8VCgJIpzkKapgjVkqUeLRWmFmS6h/cBnQgCHh9KRBonZQFoa+IUTfoPTY8f/H8MPi47iTCbU0Tq+bQYsjSlri3eWYSWWG/xweExzMoxHb1A8AFrWhIt4suNkHgXlZ/1rKQqSwQJaZYDsbH0PjaoiY7b16Qp1nlU00MepvhTFxXuIi72+TagXQfuC+RDS39F4QYSHwxZmjJrDU0dG6bBwoDOQlR9Jt5zVEsmbUsC1LMKN3aMao/pjBFrJbLTxfgJQmtS1cdMGmbH5ZzWEU8MnHPUdYT0Z1mG1joiF4OPQhwdpwS4SHOJLEuJJFA7zwein4/qp1supLS1IityynJER2kOHz7i+NE+ZlqTBcG5hYRPP7bE+fU1rj32NF53uCPgQDPnI2s88YVPSR/NmGga6/FOEHyCkPF7pQw4LxBBUWRdsrRiNDti1k7xRKGRVpI0U9h2RpIkGNfinZ1bU6PBCyHoac2V9SXqswPe3X/E9hs32PzE80ylJ3gwrSctItlj1p7i/ISlpQ5tNcM0EtcInPH08wVk7iknFY0zNEFycnjI2U2DDBkBFx9cIW45JFJTVjWVBU/MWMskIVGaVIFEUZWGIk/YWDpD3T7kdNKQZUm0JFqP9pZOVxKERaYCj6ff7SBVXBSrK4sxlr2Zw3YHrA6G1GEb20gevbPPyrNDhuvLNFWJGlScml3qOuC9Ynllg7yT8d6tG6RJQZI2yG5GkDAdxZfd3/r936Hb6XDt/GUunL3Auzfe47W33mZx0KNQnk53iPeeMxvnODp8xNHRAZ2ih0qSP+Ur9s9+/da//n227+/zc7/857j7j/4RdVWTdQrWl9aYNCWVaVk/d5ad3X1mszJGNYJAIvHBs31/FyFh49wGaQecbSnSAasra1y9dJlvy28BYMN8guYlg06PbpqjqBhkKTffecDqygZ5kjGpK8anU0IQHB+d0M01bVVxYes8bi1weFJyMppQ1y3CS8bjCcIHzm2ss7W+gkAwGZ/y5BOP8YkXnuHlH77FO2+/Tt5J+fyXPo9KJIdH++R5jvGexjoebG+zurxI6z3OeU4nNdsPH7G9v4vzhqLIeO7Jpzmzuc6rb79Ft8iZJJr7D/ZYW10mOMPywpDecIlpbZhOxvOmT3M4muJnDf/gX/4m64Men3jiMRaXhlx9+jJvv/oOP3rtNZ57/mkebe/yYP8AIRQSwWxaUs1KynLKyckhn3jqGTitGBQ9Hr1+k/HhmAc37vKpn/tZljZWee+/fJ/gDKmCx69eQuKYTkasbS5D2zDb3ebh7TscHh/xv/3f/Hsc7u3wo1d/xPVnnmJ/f48f/eCHLKyvYdsG7wNnNtZYXBwyrSsa05Akgjwp6OUpS0WKRjGZNeS9nExrhBKkg4TOypCN/AL3795h59EeWqcYZxBScfHqVay12KrGNIb3bz9gejTi7q1HPPnix/n+t7+DLWd84mNPMVgYooViZWWZw8NDpFJMp1OSJKFTFExGY+xcBqh8jUwUTVPH0wAxoh6P8U1DJgTWOnpph7KpWd08+2PfGz9xI92EwMpgQFWWJErgTfSvp0l8iJmmJVMFadIBGdnJIR7MzCeoMWflGo/D43F4JUiTeEMF4/AkaAQySdkbjzFtwzBLmI2P0VrStBWT2ZSyMUxri3NxKk6wNLMK5wUzoUh0B2M13iUUqhvjCT4eCgovIwXDQbCOOCQXOGuwbYXPO9y4uUfwEilBt/HnR0UKhbNxYqWlRYo4TZdInJBIlSFEihAtXrY4ahIraX1NphyDtM+sDqRSIp3ASx1Vol4i0VgiKrCpPQINxKiBDHFLOvgGJQNZJiinJSpYnHHkmaY1kuA9VdWitMILGyf2SAR53PoPjsZWZFmKkim28YhcYpwlFxKhNM4HyqoiS0IkG5i4lGmsIfoKPVp5zmyu0c/6vHfrHrrJ0TKNmlYfhSxaS7ToYW1cNk2nmpXlFU7O7aFWNGFk8LWnMZr9oxMWTsfkgwG7Rzuc7G5jmipSFkhwQbO03uPCp57h0UQgZIVSHhdOEcFTHx1wfP8OmbFkWYa1ljRJEAjquon0lzk7NCDJVUAZybiqMMkMiwSZEpzEzCyKDNN+xJH+kyh1KsgTTTttmRyPuLu9i/ApidfkTnBh1fPxi+tsLS2xsXUZrfscO892DmMhQYJrRdzRFY4kiy9ybatoqmg8lTIaMoXw8WjYC2SQdNOUNPGcnE4ijjPPqG2LjKonvMoQHrqdjNPRCOOiDVFJRaYKhAn4xvDMtR6Xzm/x2t4t1OEancEKJk+oy4ZZaVlYGmBEi7UVZT2m05OcNBO0KiBoZjOPl4pud0C32yVYQzmZMZ0cE9JF8AFjDUp4kkSCkJR1g5AZSmiqqkZ5T9CeLM3IhIonKyaw1O9j7SJ13dA0NdZZPB7hDSpJMcbRNpbg40ma94G2ddEa6wEvOS3HZNkSi09f4uG33mF6UJJsKx57/AlO1T5l15AmfWbZjFdefZlPPPcSdQOTaYtOc7Kky+TkiLybQy3RTjFupvzzX/tX/M1f/WusDZd58tp1vvHtbV5/622WlxYRKo14PiNYWFrn6GCPk9GI2UeRq596Tcua4+MTzl99jCzvMXu4x2e++GV2dh/y8M0foTsxFvnBqV3wHikFG2eWODg5pK5bTo/HbF3colMU0bAgBTpJuHDuAt0ix7ZmbvwFEDx6+BDTNnjbcrh9wnRUsr6q5uxzaGvL8fGYlZUeHsmsqjk5PUUpTZGnHO4fY2wgV5o8Lyjblu++8Q7pmxEPqxPJzvGIC+fOsnHuHPcPT3n7rTfREj7/5c/S73UIUnOwf8j5hSWOTkfxZxOBalZzOplxWrWobEA1GVOdNoym97l8+TxfeOnT/O7Xv44Wkum4ZP/glHZ6ytNPXGNSNpzc3cZay/LaKq01GO/JuylN03A4Lbm5vUf5B3/If/gf/nt87Svf5u3vv8Zf/PkvUMgv8fWXf8itWw/4xZ/9LJubq9i2pbfU4/wzj7EYMmYP9tGNx45rwkJLqhRZkXC8t8v55UW++NmXeOFjz7K8vsoVKTiajBikCT/82tcoJ2O0DPzyr/wFHj2IEYetzbOsr60igqebpqxtbNHpLfDod77KKy9/l/NXD3nupRc4HZ+gtKKbZyz0uvS1ZFKWKNeiqpJgaja2Vsj7HVSi6C0OuN5/gjwt4Le+TZJ0+P6rb/KZzs9w570bXLq0xZmtdX7hlz7LwwcH7L69y+w736MzGPLm++9zefMMg+GQuw/uMR6P0EnC+vo6o9FofoIe1eV4R2sDpwfH9Id9sn6X8xfO0R6dMOxvYWzL/sEB7928ww9++CMQsLK+/mPfG/8OzIaS2nik1FjnSLKY/dFakwSHt/HI0PloGfS4uAk+z9RKGbPCbdtQ1w1ZKnHCUbcW7xyJ0ljnyVREms2qBu9atG+RvqKclRwen+I8CJ3S7fVJkticN03D8fGIPO9jsXTKgHHhwzywkDJynTGRK01AyDgZlyGZ86QrkgyQnlnZoGVG3slo6rjAIGTM2gbm9B4h4uRcapxt0QkEGWMWUjoIDrwmGQiULlkPPcyDUzi3gtMOayssCmEltjV4KcmKHrNqNN/AjxIVS/hjIUqWoXXB6HQUt56FoGlKaiOBYk7xEBjboLOI4hE+xkekA6F8RF3Nlzz0XG0O4IlIPHygyAsI0SKZpilSKto25psiizPj8vmLtHUgVA9RIiIMGxsjFYQQFyKVxgWDCIJB0sdXDlnWeGbMNLiZhlZxeGub4+3fYGlrjd7VM6hUoI2gqisGZ9dRZ5f4wuef5blPvsD337jH919/HYQiBIU0jvXugDrJqOsWrCNYh5cyxoJU5J9/kJXGe0QDnTLDVZ4qMQTV0uoGqwPGtXRkn4SPMFt/EvXWb79MXhQgYDI+xYdAp9OnyCyX1zOeO7fE+dU1FgcbdPprTD0cKMlugNbHOJeTcZkm8ici9SZGev44Fy2FR/j4UiyEQjhQxuKUZzSZIeRc1qQFnVTRGwzYPznGVS1JmkSmsbU4LHmSk6mck6OKve+/wc89t8gSCtKC++NtQpFR9DLa2qLThKqFRA85Pjyh309YHHZIOoKqaXEnFbYMKJHT2BAjF2lG3lNUdkqRdMFLgvGgPZlSmNbROoHwASXdHO1nyCRkOgdvETqlsS2pg5XhgMPRiMOTGU46pAr4AG3jMW3AWbDWEXyFQCPQ9Hoa2xic9Rjn2JudcHZzi62PP0b5nZJw2HLr+++xdmZIbzBgkG6w9cwiN39wE+sFd+89onUOZxp8CEgy2tqhhEIKiRKB8WTEr/32b/Krv/gXuXTxEu/fu8uDh7e4de8uH3vqWaqqjuZF7+n143RwPP0o2vHTLh8CN96/wz/7f/9jXvzYi5Szil/9X/1V/h//1/+CpeEKh+MT9nZ2sQFAIqRHa8nW2VUuP7nFD199g7KakhdFPIl2jnI2Y/vhI3pFj6eeuMbDe/c4OhqhtI4Ke+UYjxzfe+VH/OjVmyyurkGIQqEQBG3rODmZsLDQJc0yuv0BUmuODk45OqkpywaQBClIs5RPf+xFTo6OuHv3LqPJlKYs2T99lx++eztGooRgcdDnnfduIJTj53/h59jePwIPTWNojWP34IitzQ0cNUIlLK2u0+sPuXnzPcpyRnCWe3d3OH9hk5/9zJf4rd/5LaZ1xf27Dzh7ZpEzG8uMb95hZ3sXJRMGwyE7j7YJIlAMB1x//DHeeuU13nz/Lm/dCNx9sMt/8Hf/Bi+89Azv3brDY09co9vJkT+f8PDefbLr52iCZeHSWZ55/Cp3/uhVFpYXqLZn2MZwOh7RSxI6zlMkmmvnz3BmZYX/13/zT+l2e2xtbfDFn/s83aLAtTWurjna3+PyyjLlzHH9sasM+32MrXBtTaeTk/e7FJ2Mz336E/zhd3/I22+8wdbFLQb9DlXbcjo+YXRySF8nJGfP8My1C0jbcu/2bW7fuse15et4bxDBYsuSrbMbXH3sPMeHMw6PTpHdDktnVugMcpKu4szKGXqby8xE4Acvv8Hf+NW/w9bFs3z1n/06rWlRiWYwHNK2LWVVcWbzDKenpwQRWy5rWpaXV3nlO9/l2tWrDJaXGO3sU5cTtja3UCrj0oULXL58hcPDY6aTMbP6xx+a/cSNdNV6xrOWQa+Hw+GDxgXigmDkvNE0Lb6Jx4xKJ2gZm5FoSYrb51FLa5EiQUiF/SCzRzQGOhyNsTjnIoamHFPXU8qqpnEgdY4SsTlSSs0D5mIOivfUTYMrSwJ5ZDrjkUqgEDhvMM7GZT8Zl468VVjX0poZy8M+uzu7CIr5C4CCObLPez9vksWHDEPnHEmiSFJBoEVIMG1FqhNSpXFW45OarocrYhWbWW7UYyo3QihPLnO0j0uHIc9o2pJuPkAlkrpuaFtL8AGPQemobZ2MS0LQcaIvoinKuGiEDFJgXUvjapzVdDsp03GNEhnORXFNokVEBmkdl0eNRWgPKubIZR0jDR+8AAFMJxPqpiZNNUrFDLWwElM2yBBpGB8g5j5oXJWSVLalamq8tUipkZUk2c5J1lpC3kWWOcZZnIdk2tIentB75iKDrRXu37obxTmZYnFlgTPXr7G8sMZSfoivxri2IO30UUrxcPcupWtwBDIEhUqwc9oICNq2RUqJNYZECGglYixYUH0KZ2hocZmlSRtarbFFRJ59VD/9crMa11hCa0mtxyMIzZizF3u8eH6Ri2fPM+itkqQDLAmnrmVbJ5y2AVB4LQnK4QnYIKjbKO6ZbytEVXwiSZCkiY67Bt4jPfi25XByTFnWlGZK7R3CtSwMVzkZT5jOGmTrcD6Q6ARjW4KLdB6VZ+zvH3P48JjNJcezZzX9LvQGMFUN3jX40BBQnI5qep0Og/4qzo0YjccxGiK71MfHjN+eT+FXC+rgaRVc/vg1pGlJBoANJCoBXyOAWVljgFQrcC3IKGMCELSQxBPENoA2gcV+wfJiFxOmjCoTKUM2ZTp2eB/iLoiQZLnGGUFTG/IiIc9SmtBCcNRtzUk7Ye2JNa7UzxH2Dhnt7ZJ2Ndn6AsmsQ+4KPv2JT3Lr/UcY1xJwtM7giSzvSGdpYh5eCLJhn9PpiN/6g9/lL/25v8gTTzzD4Wif1958k8evXIs7H40hUTl1PaI7XKTT7f8pXq3/86gmWGwree0Hr/Izf/dv8X/4T/+PvH87mvy6nR4HR0cgHFLH6KGU8ZoZj6Y8/+yTTMyUTmdIkqcEH2hMy8LCMqtLqxzt7PBLf+6zVNNneOP1t7ly7Un+yb/4NSYnI/7Bf/1rHB4f0FjJ2X4fF/wcPykRSE6OxpzdXKGpDdNxyUJ/kWlluHXrEXXj4oArUeA9axur/LW/9suUTcXf+3t/nzwvuHj5Iu/fvcede/fjMLCI4rjd7V1ODw5JPLi2ZXwyotPvYWzLZFYzWFgiKwx7+4cY70EnqKyDNQbrDPce7HPh7Bk++4nP8nvf/APSJGfr/DlkIkmzlFnZ0Ov2aZuG6WxGnuV0uj32Dw9YXV/F9xdwVUVveZX/6u//U375L32JK48/xlu3HzDMC/b2dhkMl7h9f4dzl87TW1vlzW//gIFMGGytMt4Zk7rAu6+8yjPXr9PJFLOyZXlpld/+vW9yeDTi2tUl6rJFiDjQ7HZ62Kqi28nxbc3ZC+eiRrubY+uGfq9L00aC2aSsqKqK9ZVV6t0d7t++w5MffxaRCExbk8iMycmI3/ztr3J8+DwXttb52jdfYXmpw2NfeBpvLM60JDp+Hv/q3/oVahL+6//87/PNr3yT4XKHl778Ipk2aJFysLPL9Wub/MznXmJ1fZ3y6ISnnnkMNzMMFhfiGXunoGoaVJbiQiDPMvJOgVKSRGueeP5pzly4iLSO2+/cYGVjKRJefKDf7yMJDPodnG2Y1T++fO3fSSN9MippzZwowdzmN+f1NnVDQNAaQ5FmOBdFH/HrESXmvcX7qMv23sVjRi0JIjbTxlpwHmMdznnq6ZjpeJ8kK1B5n+BqGu/QBMqyJM9zsiyLP4dUpHlGS0NrWzwZeaaRFoxpsMIQhEOruHhUVS0xTWgRwtLrR6ayD1HkYY1HzIHjzkdDYXxY+SgBkTEu4IMheIdULmqDRQAShNAgKzCCM34Ft23pLHfpuBkUCXiHMi3DbgflBSe2iqhAYsOrlKLbTZn4GZqI6iunBikiUqgxNY1rMd7Q2BLjodfr09Y1DgPe0dSSIutSlfbDDJtSCUJGOoJOBEoIWhEIomXQH6AqSZoktCFO+tu2/ZB+Ya1DKUFd1xzvHROcJtVZFN7MpTgfvDSFAKFtaKdT8jwlSTN88KTNgO6pY2k9YfvEAg0+GNoA9mTM/s2HnH32Gq01+ERSeMha2Nk55N0b73P/9iOunztDZ7jBw9MJJIpzn3ycycYiD169iZkaVBsXQWWSxMm9UvFURMRFraAiWSW0ntSnKK/RDqQXzELD/mREL8v48emSH9X/1JJeYoyI91oCXW25dr7LC09d5Oqlyyz2l6hI0LpH6x37ueSesTgiazaYOUZLxBMwR4LSmkQrEqXRUqGkRlEACmRCmgp6nUAQYx483GVcN6RpijcT0iJBJJKT0QhvBMY5nAmRbR8k0kmEhETBaDrCJZo7D6Y8sdkjtZ61RuDElGnepdOVSNsydnHJdWV9gdvvn4BPSZWnrA2mlXBcY1KDLhWlGdFZXqKsAt0QzXJaKoSXLHYWsEJQtjOsACEFcSNSkghNrrMoIkoExkaBy6wWaFGw0Ftg2syoXY33DoRm1hi8i/xuqaOVFSXxGKYzM79fFCKkKG2YmhEJOYNzQ073jlhbu0iWpCy2C5jWsF/uweoqx/KAyk9IpAYtMTKgZUAV8VkhEBhX09YtSir29vf4N1/5bX72C1/k8WtXef/mO9y+f5dnn32atJCYpsWFwHRUIRcHf9qX7J/5EgESKfDOgVY88fyz/Ov/5D+jLSs6nQ5t3WAaKIZDZNAELEor6ralNoai32NpeZlJOUNJzcnpCavDdY4P9+gWCQtLy0xOoPvJF/jXv/kN7t7fRhKYTCYEHwVrSZaRZFnkRbeOEAJ1Y6kbi1CKWW3Y3T9me/eEso79gpKRICaV4Cvf+UNu79zi0597kSc+9hivfv8t7u8/5Mt//ot861sv8+j+DsFDWdXoZIXJyYj1M5tMZjXSe+pZiUoSmrKBIOj2enQ6BcenY7ROIKjowzCAd2zvHPDE49e5ff82k2ZCt9fj8HTM3tEI6yyLC0NGpyPwgjzvUtUtp0fHZEgKodk6d5Zf+NIXKcuSf/ZP/gVF9xskQvLSSx9n88wSs7pmd3vE9v6YN2/cYH15iU++8ByDjVVa/T49HzizvMYzzz+HH6Qcn0y4fec+k8kpLzz/BD/7pc/z//nH/x3eWo5PRnz963/IpXObXLl8ibzXw7SGWVmzuLhMqhQhyfBhyvRkxNe/8R1GjaXoDUik4vaNWyxtLHH1qceYTEdkieLTP/85vuk977x3i7Ju2Dseo1NPf5gjRWA6nlCNRjR1QzoYsHH+Ilefvs7DG7dJS8VsUtJbG2BmDVqkWCv4xq/9AcE4Ot0ORbfPsD9kYTjEG0On2yPvd2kJnLt+lbYqaaqa46NjiuGQx555ino8g+C5ePkCBE9VVQTvo5wuSaPBuarRUv3Y98ZPnpFuHTIYhGxobECplDTRSAEgP4wCCAJSCIzxBBnmDFQRp5hSkqTxLbVtbTyK9ZEh7V1E5IUQJ72+rZiMT6KpKB/ggyIIgVCgkwQldYx5OM9sVtIaA2n874My4D2mdcRURMCGlizLCPPcLPON4CTx+ODoD/rcu7sDIYt5ZALWeWK40iMVeC8A+eG02vvIhg4i5sTyNGM2q7CtRWUKlTQsuiHmnkfagiYNZAONSxW6ziiyPkEYGlPHOIYSCBG1wM7Gg+o0UQgJ49EEZxVKFcig4oKci7GYD3LJbduitcK2DcEJjLGoLKPbKZiV05hp81GIExnLIuK1QoBUgvO0sxpQCClxztOaFikk1rYUnYw0VYBj9/4OWmWkSlFaQxCRQuDd/PgcQSfNSRaioEZKDcKT0sXvVnT1ED87JlNx2c8FSJzm8J0HjKsZcmORNC9QxzV7d27wRl2yNz3h6OCAyz//Ga6fu8RheYN9M6Hbzdj8mcfoLy9x65uvEI4M0sa/9yRJ5icJEtO2BBXVydYaUiURSZQDdPMu3U6HpKmZHVa0o4+ELH8iJUE7gQzQyTwXzw158flrPPn4E3Q7q7R1S6osiIoTIdnxCaVIaZyL96cNpAq0hk5RIFBkSU6qC7TMIo/aq3k+fs6hl5IkbSiriuPxKVVTk4uEVCf0uhmHxydY6/AuUjtM5dBKkGqFcR6UIpWCdjLGOcvhKHBwbFgtJN2qYlhbVKfHrJcyMTVa9ki1R+BYWV7m8GBM2TQ0ePobQw56kCxkJGeGLBcLZJ0lussbWGcpqzFpuozxkKUFZTWLFlQEzruYaw6RzhOUZFw35CGldYGyskivENayuJjRzXvUtkarhLI0tE0FGKyLjch0avjATWSMJ3hLnmfzz6KA947peMTq+iLD6wVH39+mfr8l3+6TLSWsP3WGdujJugkIcDYabY1wBBHopDlYgdYJRpn5HoKj3+9zcLzPy9//Fi88/3HWV5Y5PjzivffusLG2ipKOuq4w1tA2P/706KP6/6/CfPlvZXHAeDKldZbuyir3b9/mZ3/+C7zynZd5/Npltne3OSxnTCdTkixFSiAE2tbQWtAq43Q8pqnjSeAom1BXJZ3OANuWnLaWH736Jr/xlZe5v32MdyLuVGmJRmPaGm/mUSwh5+pwQdN46tYjZErdOk4f7LK7fxqpOl4i42UXT48TwZUnr3P20nmMh5df+SFIyY/eeItHO7tY55lOZlTTmu+cnPKjd29y6fx5nnn2aa5cu8Z4UuGqJu4smZY8L+gt9skyTafIcTlUB1MIEU1be8P9+/d58smn+e2v/DZ7eyOqpuadd+8wHAzJ0pTJeIp3gapuGc93gLz3WG9pnOeNt9+lnEypPNSTGgj8zte+yWc+8QJ5KhmPZ9StY1TVFE3D7Qe70ApMmjBqGnResL1zyO6dKd/83ncpq4pBr8Olc5vcu3eHqq7xDl794ev0FpaxSFokJ0en2LLEOs9oOsOahsFwgdF4ysHRlFndcnA8Qs8qQgg8/dxTfPalj2ElvGlaJHDu3Bn+wi//HP/8H/1z3nzzTRwCrxVl3VLVLd/56jcZ5DkLSwtQWXpr5/iZz77E1voyo+NTvv/dN3jmmcfxs5rZqEXrLonKKJuShcVV9nb3aKY179+8Bd5z+eJlrLcMFiM8oa0aDo+PcN7TIpgcnSBDoKlqpIjDvxj3C6g0p5xOMdbgQoyk/vev//+xEuHH+a7/gRqPxwyHQ37x6lXS+WQvSzvzNzLI8yzmYYOnrKdY58iKHs4JdBoX9PwcKfYBts07z2w2QycJSVqgdWzUmrYm2IB3hunsiMn0hESndDp9tE4joi5ACCJmIb1D4mmqimlZIzoZC50Fyk+MEBcWEWGAhLkMJURduHc43xC8iDe2OSHvpEymDSfHLUoWtE2Exud5XFxrGzfnV8bfXymNChrniJxsGpyr44KblAgVUXp97Rjs5qwdDdnqbtBfL3i4ssvuSktPXyC4FCsmeFoCBqniQmAIItIGggdpKMsKayXOCrTKsS5Q1hNMs4dtJhwdT8nzVYSX5IVmVk4IXqKEnquxI7GCAELExSsf5hQQKdHWU6oRF4frXLwzYLrvqaqa6XSG955OkQOOVEuWl/pIPIqUbqdLYyyTJuCUJk0VSumIkpuzr733NE0TP9yEQOYJTVMxKyeU5SxqvG2cIIcQ11PD6oDFq+cQWtHe32f6YBulgUQwciN+7le+zJlLH+dHDx5wFCrSRLI2HDLoZRy9+i5737+BP7H4oGJ+dL6gpJSiMe387zafK8SjHa7b7QACnWhOZifs7e1xp5kxGo0YDD6agv27rg8+V1bODVBlS+Ys188PeemFx3jm6RcYDldp2ihc6IQxEz/l/c4CN0KH41ZQ2RZCIBWSXgZ5piiKDlp18C7Du5Reb4DWGd75iHTDkOqCXAXybMSjw/vcuHOL1jUkUlIUEqTjZDSKoilraFqDAJSEIkvwUpPKlDPpgB/9xtdwOxNSn/L8OclL1wvyRKM6K5wurnNrqWBPGMQkodfP0XmDbRWTcUPZzii9JUwNzcMTZnXDYGOVPM9YGp5n2FuisTtkfegOLtK2CVmSUbYVU9MgEkWqEjKlcQLyLJ4kNTNDJy1ojcN4QSJzMiEZDDzFILBz8JBZ45hMa8qyom2rqAwPbk7nmRtgPXjfICU4K5BS0OlEzNbSiuJct8/eV+9y8PoJPte4NVh76gxGOvybLXIsONg75OBkHyMsnV6PpqoZn4zi/U580Q/zl91uJ2d9ZciFcxe4fP4qWZKxt73Le+++xdUr5xn2C3YOdigX+vzjf/47H92XP4V6+PAh586d+9P+MT6qj+pPpR48eMDZs//jBI+feCKdpQVibogrqxJnPYPBEKTEutijWxuPBnWSolKNkLGBbuoa5xxaQxCCQEClCXFsETd3ZQDXmmgYCobxeISQAikTfADrPVolUQCTZLjgcaZFy4hrEkJSdHI6nRSbKowIOD9DqgShMoKLKmBnIiZOioSqbJHSg1ecHE+j4dBEfErMcwNBEsJcOz1XnocQJ91JEnPYdeNI0wKUoPElCk8vyVk8GTC9c0jWXyHLFV2lSI8daqCYqFMKUeBFhfUNQoYPedvOxqiKnOuIrQuE8AEXGWzTEGiAFqWiMMb7SKcw1lHkfUwbEV9KQdvMUEmc9H8op0DPIxsBg8W1jl7ISUNKEmbUpqaXKpRKGQx6zKYTEpWQ08FZR1CepinRSUon11TWg4VEZ1SuwRiPUpI0jbmo6XSK947RyZS2rTGmJS8KpBSM6po0TT9cdkxPa8bv3KMNDjuaoVqHSBO88eT9HmXjOTg9YjwbYTNQOmNUzlhaGrJ15hzj9AGh8EzKev5njpxc66Lp0HuPnmP8PvialDFvf3p6Smsa8jyHZvaT3jYf1b+lhGvpZJYLqx1efP4STz/xBN3uCsFrhDsFP2I8O+Wgn7OjU8YlsQFzjkQJuoki7yRkmUaolCBS6sojg8Naj9YxijbHyyKRaGURouFwdEjrDTpJEe4DsVKCFCk6EZF8Y+OitPxgGTcIelmX9nhCW1dY0eKc5u5+y2OXC5ybsZgvs+QV/UlgvJhgE4kIBomBYFkYdDCnIzreUqua/oUl9NgjVcZgsEy/s8R0PEVmDVXTkJn5izSWxsblu+AFXjg8gjQT5JmKJ3oiAZHhQ4PSCW0TT56sUaQokqCZTSqMEUgZP0+ivEgQfMxMh2DnL58e5wJCJIQQX4hFKhhXCYeiZenpyzzYfRWhAwvXljk2Y8qjGevtEllSsHX2HEEHptUYj6CdGqSLRCEXQOokYipbQ1XXLC0s4Lzk5u33Obu5xcrmOuNqwle+9UecWVvlwsWzmKb6075k/8zW5uYmDx48oN/vf8jf/6g+qj/rFUKMFW1ubv5bv/cnbqTb1pCnaZxsioDFYPHRShiIBAud0jpD6wJpqrHeEBAIpfHOU9Y1QkQGcszRBoz3tI3BuYhrM87gbDzW8I65MlthXTye10kaj1dFXET4IJ+bZTlJInG+xjmDFGouU4nb9lqmJImOmskm4ELAmJLl5YK9vWMIOQQdJ7U+2paCj0fBwfu5TNDjgyVL09iEyhD5zviY60oURZAMQ0F3nNHcrBi6PqkQDAY5bV1y/+37eLGKvRIQyqIVWG8iTlBFtJXQCmMjJaM2Bi0zhIwPnaapolRExIU4a+IEG8DaGkhIiy5ojZsfHQmhsdbEhTs7//4Q0DrBhxKfCnSj6bscO/OkKqFbdEmSBK2j0TGRKQv9RfKkh8XRhAoRAnmSU+gMXRuqqiZYR6I1QoK3kZqRZdn8CMthRKAspySJRilFWc7QWn94QRMCoWzwVbwG5Hxa7V1AJ5o00zgpmVRj6nJC3QTy5WVMYzm6t4++f0goHWVp8EF8iL2DGL8JxCl527akaQowx6W1dLtdptMpWmq6eQ9GRz/pbfNR/Vvqaifjytl1NlYSBmng+PiU1nbJEkVoj6ibYyqRc5QOOZhnlkWwFKmmk2VkSiGUovUCRYyJISOVxtgGbTVZlhKERWmJ9AGtLE09ZTSJJtAPPosa48h1RppkGGdBK1oZl27TJMG3LQFPP+mwfece3aQHqxnTk5a92rI/MajCwnTMQrFGtX+KLtYwQiBUtLEVRZfZdMbq8gLj02NWN9cYVwFMoF8ssdBdxJSW4wc7tPYBC+d7dPKKhgRCtHI2tgULTuson1EpwgucDQSvMc7E/LgLcRlcSWRQ1LOWTt5DyRnOtXw4anfzBJtUEVft4yJzfOmMS+A+2Eg38h7rCtykpOkoVl+4hCmnzFTJ8fEJ3SrndPeYhBwvA92ig3OGaVXRVi2CyNW3Hqq6mZthwdnAzdv3uHvvIUWecOniFmm/Q6c/4OwTV3nntTfZPTrk3DPn/5Sv2D+7JaX8t07kPqqP6s9iDYfDH+v7fuJGOk0zOp0ubdPQ2BrbWqqmpCh6JGmOaRuM80idgJAY6+fZOxfzhj4uIhrTkjtHkqTzgbRFKoHQAucFKAjGkxcFVVljrUcFEdXZQuJ8oDUm4qoIUbaSpXS7HepQ4kJLXiS0QuNsTnAOnSgCnvF4jPOC4BUIR5pHI2Hb+Jh3lgJCFLA450AJqqrGeRGRdDI2esbUSJHSNjXdXgdXVQhlkN6wLLvkDz3JrkMaTS/PGAwKpPQ8ODxkehSoXt1juLpKuxDJAlJ9gLuLk+fgA2mWYmyN0gmKLD4UEfNcc4i5rKqlX3Q5PXUIUrI0if9PbMyUIeI0VgiFDDJu5qdxgm9dO1ei1xilyVVCGLXYKiUIjdRR9sD8REAlgSTrkOQ5jZnifMLCoE8ni+KLbqpJhMIyR835eeMaQtSISkmRpag8Q0lB3ZRU9R9Plz5YaGyMQeUFCaCdx2uBCR5JQIso0fHKY9uKxFmsF7hZgxCK/Uc7zN6+Q98kWAcy0bGhCOHD6bNO9IeZ/SzLIMSmOjb15fzFY75o81H91OuTjy3RHaRknYRESdrqhON6RJIkKBli1GJxmX2RM6sjgSfPEpTKkCLDIRHB41qPTmP864Ol17g4N3/Ztg0ZKYqYtx5PR1hr0CpKglrXIoPEeItWnlQIaEGFqPCyNiCcIEkUHVKmd08o96Yky5rOckFbFuwfW7bOZrRtjbcVzewEO+mTLi6S5gEhO3jXUnQUkgTTJDS2oa5K+v0tBr1VRpMaZi13Xn2Dav8R5549S39wGT/oIrzHhWgnDG6ukpOSrk8oK0tjXORCG4OSAokiVSlJKjDWUo8M3YUuq8sdQqgZlw1CSZSS+DrG3QQKP2f/SylwweKFI4h4mhWsZ9qWOG3xzrO6vIDuK/YfHVCkHXohwYiWBw/u4oRnbW0NESRFktPpxWwiRkTWvBQY74meRqjahqkITIWASWDQW6LA0VkfcP656+zfvsPB7t6f7gX7UX1UH9X/bOsnbqSlTmhaG5vkecNsnKexBhcEs/EIGxx50onoMN+Ai/ijum1IhEQJgcwLLOFD+5/zEc8mhcYnELyI/7YhwstDgyw6KB+QPmp7g58/TLQlKTTSKySSVGryrZZJWtM4i3IQgqWqSpRKovlOaKxTeFfR62m2t0+AFO9tXOALEu/EfIEvmUdSNEoJlMow1qNVwJu4jHg6GZMUDp2WbBUrcNNjHrZInxEIdHs5xjt2D455tH9ErQLtsWf6xgmLn0uwwaN8iggSoSIXN4QWiQIfCN5hg0EEFbXXMk7VvYMgUxoPadaJ26gIEp3MlzQcQQJCUrctzI1smYoZaa0iTzv4gPVjVoo1isMhQc4wDoRQcRPbRLxgEBITHLUpsaGm042g9cYFWuvI8wKpFJOqJsxpLTJJMXhs05JoRZZoMi9xeRcfBK2JRqwgLEIEsiylkydUjcX6GA0JPpAlGcE69BwNboRAK+iR0Dw6YeXyKmVZcvTuNnbcYvI0RmV8/NmVUn+88Do/shQfLCB4gZYJmU4o6wqEwP73tPUf1U+3skKQZBKv5jQV0ZAogQwtIUjqdEDZ6zBLJdJ6ujrDxfUIPJY0ySIb3nuMcSgVUEqitJojN2VcfjUpoZVkhSf4mtH0GKUDWoBxHywXO4xpWBgUKBlxd0orKmPwztNLOhRpj9PxIaPmIcZXzPY0WbegaQO3G8Nj59ZJXEtdTrmwusQ3791jpdOncg6pDK0rGQ6HNFVDp9Pl/vYjlBIUuaeeOGzTsHv4HoPLmtpJJicTzMRSDHMsMppRo1gxEjVENJI2TYv1Au8lLjgSnZGolEQltMYyMzZG1KrA5vIamAopDQZBCAIrA5W0GGexJkownHcUaTIXLUlaE4kKwot4sucNJ+WMxaLLysIW9f4Ys3vK6emYxlXM2gpfOtIipW5q/r/s/WmQZdld3/1+17CnM+ZclTX2UNVzqwe15gEhYRn8IK5RQNtSGGEQOPzCVziMQwrZRuKFRRDYDApkQ1gXB5av5AsPvgLkB5CFEJIaIanV89xdVV1jVs6ZZ9zTGu6LnV1+dJFkqG6pUPf6dHR09jn7ZO/M3pn1P2v/1/9nI0eFASPw0kOzboHB4GKPq0G0BO2DGX4+wqSeAoNxJdFMxuyh/fjNwZW+ZIMgeIl63oX0aDymlaTNTF7d3PIDz2g8JNIxxtYorRHO4+qqKXbrZhxcHO897kHpJkigmeNsydJWE9whPF4KSGNUV5BUCTKLGY/Kpn3CelAG6zU+EsiWRmczTVhCXuAMpD1B9+qaYTzBU+J9hHM1CEFdg7N7c5DdmCzRTEclziRNEuNecSr2NjQ2RX7TciL20pe8a/oty2pCbWriFLSomem1SVsdxMgRlRFKSGoMqdL0ux3yyZjSOIZ5Se09rhaMTw7oXdvBHYrwukZ4jbeaSGp0ElOWNcI3n0ugwUukElgsdWH2erkV1goEArn3RkHSbPDUIkKoJmhFKU1larRq/lCMk5i6rqhNRR0LMim4JlmiV3cYUaIUTYuJkjjbjCT0zlJWxd78b1BSUFYVSZLS7fbI84IojsgyQWEdVVEitMI7mlF0ShBHGuVjRkWOVJpIx1jfTEZJ0xipQNZgndiL+gSBp6oNsdZEUXMLOy4kmZfUOzXm5AYXzo+ohUNNa+IoxXjX9I3D3q5qtxcfri6tPj83GzzRCX7v7onzHqkUDoG4vL25wd9QLSD1Bm8EVtRIYVAOrE6oox5b2TzjtEeUdVDllLJsNq3u7c+HGIxxNGnvDilAarX3s9DcwYm0RnhBIgyJrCnsCBFb4sRTjIpmY521TX6TaNq+mjewFuM9tauRaHozs/TSlPVnn4C+I41S8s0aZ6Yk7Zi8lbLrUxakYzodkcYKu7PF9vkVlg4cJs4i4kyRFznTSUGs+7SyPs7VzR0mm1P7ITPLMHvzYfYf7fDMV89TlCVtDxLbhC4J0bw58M3HQiiMqfbm7aq9ee6SKNKYymCMo7bghWQ0ccy2Ba04IZI0d26QRHEGvqIlM+o6xtqaqqqJIokXzSbEwW7zu9TiqJ1hUhVUziHRdJMZzp9/luVKcGCxRSxrtieWpKfxaTOxI1YpMo3Y2tjBVBXaxwgvIBHITCKcp72g0XOSXJf4UhA7iVIeXXmkrbh6+RBfPR1WpYMg+M57/smGdQ1J2uTFKwl1hXOO4XBAFMV0Ox0iKVASKltj8eCbW4+YvYkNWoI3ZJmmpMJIg+4nFK7Ax6CzCC1TUiLSqibfHLO+dQqJIlUx1luMB53FiFmF182KaI1FqJr2Ukmut4gSTTcVGOGJdY/pxOBlBMRYmyNUTrszx/kzU5yLcQakjLDmuVFyDkeNdRXWGZSXeG8RSiJVEzWsIkualczNpPi6xOUSnyfUU0OExgtJL0noJimj4YCpcUwrS1EYvPG0VMT4oQFLS/uhB0YaRKWJXYTBNa0nOkbTFMWudqAlO7u7lJVBq5REleAsrjakWYp1FhklzVxEL8DWJElKXY+QotlEZL1gWhQoDU4UVKJivkrobCoyHxP1lyh9xWA8wjlPEsc4axnnE7I0JtIJXkRonTCd5s1ElSiBvFlBlFLjTYGUHh01MahRlOytgAus8CRZRmtv02QkUrSC2lSYullVjOMYYcyljYJKCqwQ1A7cxLD60LPMLS6x8ewaqhT4MidONU40bTEeiHREZc2lREO7t9EwktGl9g0pZTNRxjtMWew1ioKxlsqG8XffCYWL6DiPkmDKCixUHsZCcbGeUs51aMkelIKqBuMhcQIBRLHaa9lxTVqhUM24O+uIUE17iFJ4II492uUkumKYD4lbEXEu0UUTI17bJunUe0deFQjfJBomGHwUIXxEf6aHKHYxdkKhBUkvotuJSeOIspwyJeLisOTQvg7VZEKnTGhZy6MPP4Z3LfYdmkHh8Qq6vTa7mzkz/Xk2NlapRY1QE0hG9GYkXjv6hxfobY4Z2ymzvilqXe2RCLy11KYZb+lssynQeoeSe6vJ1lH7JplQS4VzhgpNYSSDsafVmoHdYbNSbAFjsbUljgVKRugoQosaIUpa7QxjLMWobKbcONtsBPYGJ2FUjGmlsyws7aNcP8NNV+9jIdM8uwKFkuhOG91OMThUN0HNxmye2cAOLF5I2jMd9t24jx07IC+2QJRQKKalxSaCRIMZlqjxlB0VX9kLNgi+Tf7xP/7H7O7u8vu///vf8rgf+7Ef48Ybb+Rf/at/9df6vJubm9x0003cf//9oQf+eZLP9xN47/eKogjnPFnWId4LXjGmpCynKC0x3lAlglHqmWaCEkNta6qqoCymzM32uPG26zh82xH0kYTRbE69aBCLEvoa3cqQQmFrz87WLuNRwe5kRCUslXKU2uGyGBdLaI0g3cGQ45Mcn03IS4sZa1RZ4euaRGfsWzhAt93B+xzjJszPLzAe1VSFv1Q8G1M3Y6BwWGdwzhDHGik9yBJPjiPH2DFaVywvZNxwzTHaSRdbG3QtYOyoJzXGgVOStBXjhaMoCiaTKWVRYV1N1FK04zasSzbvWaM/brHQ69LpR6RtRbuX0montFoZ3VaHdtSinbSbW6JO4r3EW0GT16ZQIsLZpg94PB5d6gduZx2UUPQ6XSIlmp5T7alcgZMllilZWXPYLmK3BaU1TTqlc3uzwGuKosDYiiSN9mZ5Vgipqevmtrp3Aq1i2u0eUmryPGcyGWNMs5Eo0jFJnDVjyBzNSLG6GV2W6pgsyfC+GbflPSRJkyrp9jaSStncztZCg9BIo5mc3+XMo88yHZYU1lMLQV5Xl4J/5F6CppL/67J/LqnxuSmQxuxNJhAgpGxuaXuLE2CcbWLlg287I1TTplQaKmtZ2a348sNr/P6fPsZTuaBozTF2EYNh0bxJcqbp28XjgNpYnJd4FAjZjE/0AuU1mZJEWOoqx5gJkc6xfsDOaJuiNPSyhFYC0KTvOeOpq5JJmTMpc7JWysJMjzSO6LRaJDpiuD1gd3uddjdhe3vCeOAoSocnJu1krA5GiKiHs83Pj0Sj2zNcHA05dWGTza0aM5FQQZbAbCI51J4hizRRlpO09n4XGUMtDPuva+bglpMRWjWJrF5YrK/RTpGJVrMfxYFHgrN4a7DGMC2nlK7CSovHkSiB8p7J1BDJDgv9ZZToUNWCcV5S1IJp6SlrQV5ZpmVNWXvqOsIZRbvVvpRuinc4a7CmpLBTNosdZg4v4RZ7nDy3Tb8bc/1VGbOZJ5Ex2Wyf3oF9RN2MtCXp9NuQekRqyScTdlZ30TrCG0+919rlvKWajMm3trGjAmrBxfWwGh28dD300EP80R/9Ee95z3suPfbzP//z3HDDDbTbbWZnZ/m+7/s+vvKVr1x6fmFhgXe961188IMfvBKn/KLy/FekjUEkMWWZU1sLUuNcE7cthWcyHrM0v0idSFQ/QWmPqA1mOIGdKdoLcNDqdchVzWq5w64uSUSLRGgy0SL2LaT12HzI1oUNtla3MbVjKkpavm42NWqIoxghDZ2ZgkRBNayJWhaHxRYdhGmzO9ohme1R5DX5ZEBdl9RmgBA1wzXFeOyRMqKuapodhs8N5G6GdjtnmUwmTY+lciSZRjtBFkUsH1ri6P45pmNHMfIIURNVYDZzvFHUsgmf0WmCl5K6NtjK4OoaHQmSVnPL1U2hfrLmfHSO4287huyClQ6kQHhNK2rjC0nkYuoaVJwyyifUVqN8RlFWWOvwFrzyRLFCCc+0GKJl1PRLC4EQzYpf0wsKTtTUzqG95yq9QGsjZjKuGbJGP2pRFk3ssFKKqqwxxhBHGr/XPxz75tZyK2sTRQkgUFJTe0sUJUS2AiXQSlNXpunVpimWi7pqRvrVNVprTF016XHW77XQ+GbeNc2qo7ceUxu0BNIE6yyJTIhImFYlWsWoVDHJRyAkTVCFx1R1s5nVu2bKimvaN4yxe33SAqWaqS5CKpSOKKqyWYmLor3PFXy7lcBIJmwPBpxfH/HsuRG72554YYnlg8dxMmFS1OS1Ae+QzSidvY3KTduS9xrnJF41m2J1ZNGqGbJfVTXGa9otULFmazhkfTCiwrPQiel0OuysbVGWAvb6rptZyo7JMKefZSgL/U6H2AqKaY1sd4g0dDYLxqdHVHWXsqpgDka2YjevEXGbDRNR9/bRVhGVhNG0xhqJr9tUsSdrd4hFSq/f4cJoB9vOMa6mqg1KJk0blwPvJbu7u7Rn+gh0M9ITiXSKWGUUtsI5hZAK75vRnVIIrNubtuF1c40LmhRZIalqQ6fVpp1OGI4LPE1SmwOmRUmcSCrrqGrfTDbxzRtnrQUtGVGWJXVdU5dNjHApanSqmLv5WvLHz7BhSw4dWCDf2WW7roGasm42rWdxSpXl2DmFFQ6dpKhUUE8dymYUU4PXAl84ykmFLAucjChtczcwCF6qfv3Xf50f/dEfpdPpXHrsuuuu4yMf+QjXXHMNeZ7zq7/6q7z1rW/lxIkTLC4uAvATP/ETvPzlL+ff/bt/x9zc3JU6/e96l10VXFrBE4ZRPmA43qasp+TltAkPcYBVOKE5e+ECF0c75DEY5RkllsG8ZJg2/XTWOrbrnKeHm5wfDqkKgc8FdqBwQ0k1GlDk64yG6+xubpJPCmrf3Grf3N5iNB1jvCA3hoKCqZiQywGV3saokrJsUQ1TRlsFrsjApOxsDxkMd9gdbbO5tkm1MoLzFWZHUxQOOxW4QmBzi6skpnTgLKa0TbqSB2qJwNIeafQzDr2rqHOPqg35OMeNE/y6puc6ZPsSOOBII0FtYFJYxpWhlo5amCaRMTfkZYVxFkTE6MmSxz7xJOqiopWkJM4TK4EUkOpWM96rlngXU5clpqwoS0OVV1SFwZSWunDk4xJT19RVQVEVDKY7TIsJxXQAvsYajy3yZkpBnTOXt5ld7eOHEWVpKKY52+NtiqrEC02ctImjmMo48soxyiumxjGsKyZVTeFhlFfsDgdM8zF5VVF7iYo7SFK8qSnzCVVZUFeWojbkdTMS0XowQlBJsAIq73BCYSxNLW09tga3F0JjkUzrohm9Zy25NRQ0q3ZVVeGNgOdGJXqBFYrKOrxrZlNXxlDYGic11jdzc50BZzymtnt9sVAXFVoo1N6mxMvMMQr+mh559iKffvAEf3ryAg9ujVlDUs23aB/ZT7owi7GeqjRNT7CQzSZYpZBKXnrj+9z4RyE9UQRx4ohSi1WGyhk8Fu8rKm+4sDVgY1SyvjNhfXtKUTfpntAUz6a2FJMSW8Jge8JkMCWN02aKx3DM8JkVorFGqS7tfbO0lhJM2cTSV5OC3MAzW7usRi0etRkXRIpINHGkiKKUbncfte2xO4xZW4fNDYNzkk4vwosRSpu98YwGWztMBbWF0WRCPhmjEGiRoFWrma6jNHiF97IJyaLZUK3QRCpCywhv/aXEWO+bdq2ibmY59zudZgOy13jvMKa5a+a93YtAFkxzQ1468qqZM611RBTFZFmLJE6bDdzOcXG4xSA26OsWOS0tT+0WRO0+3UgxXltn6/wq1ajEFJ5yVOI9xLMd1EIH2UvptPvM9w7ANKHcrKEQJEQkUqK1IO7GiPbzXhMKgr8R5xy/9Eu/xLFjx0iShCNHjvChD30IgNOnTyOE4Hd/93d5wxveQJZlvOIVr+Dpp5/m3nvv5a677qLT6fADP/ADbGxsXPqc1lr+xb/4F8zMzDA/P8973/ve/+2fNdZafu/3fo+3ve1tX/f4O9/5Tr7v+76Pa665hptvvplf+ZVfYTgc8vDDD1865uabb+bAgQN88pOffAG/My89l/3bZzQaAfCViyt/vRecA+5/9Js/f+KZv/lJGMA4mO4AO9/koPwbPHfxmxy7+jc/h/+7P31+L/+GTsH//OJlfG+eh1W2uI8wK/lbGY1Gf+0Zk8Hf3Jn1CZX1uLYmmWlz8PpFOt0+s/MH0G1JURuM2Yuzd82dCr+3GbC5y+GIombii9zrD8Y3c8dr4ak8pMqS6pq6qhlNJk1xXhm2KkfLNuPtvDd4W+NMgXMW75twozrzRHub9ybb2+w8eQYpNZ0jizilifd1kanHjcaoXkwdRzwrBLG1jKIYoxSRc2RJxEx/HlM352asxtWWyDpMxyKjumnLcArhY7wHYw2ujnFIKmuZjEdkWRctBZXxeOGpfYWxFc7bZpVaKWKtUaLZJ+FxzQZq57BYYt30lecVeCloZxnddkpeFniee+PoqOoSa8HhEc1qCXlR42j2iVjbbDb3yL27AobaVayPNpntzJBedxWTzTE7ZzbYPbvG6sYO25WlN9OjlyZMt0rqTJLJDFAo16z1uArM0CGNoH+4g3KOuICqqMFJnFRX6EoNXqre//7389GPfpRf/dVf5fWvfz0XL17kySef/LpjPvjBD/Jrv/ZrHDlyhJ/8yZ/kne98J91ulw9/+MO0Wi3uvvtuPvCBD/Abv/EbAPzyL/8yv/3bv81//s//mRtvvJFf/uVf5pOf/CRvfvObv+l5PPzwwwwGA+66665vekxVVfyn//Sf6Pf73HbbbV/33Ctf+Uq++MUv8u53v/t5fDde2i67kA5pR8FL0d8k7Si4fNOxb2YWZ5qDRw/TWuwDmmRmFi9SrGnGTArr8XiiqGlVct6jlSRJNHEiEcJR1034kLWKcW2oaWaZR9KgREWRT6jqijSOqaqK2kA+rRG6madnXQFUCLEXb4+ish5TGXxHsLO9TtbP2D69w3Q9R8xo9MGEWhpUC+rE0do/S572GSFAVEinyTp9OlmLstyLHJeqGVdZ1wwmQwZphtQVdeUpqxK8Rqjn5kWDdZ440QwHQ+ZmZsiSFsY5vHbULqescgyAcM30Ix/jnMfuhZ2gJQiP8KC1wnuorcSMDd22Zm6mzySfUNQGrTV5UVEbg3WAFOAtQoE1thkRirkUJ25ts5lROEesNHjP1iRnYaZHP15k69SAvGhTViNsbikpkTMRaRQzrUaIXJJGKTjJcDIlX5+inUdphfMVcRSTuRg3gcE4R3TDinTwnTMajfjwhz/MRz7yEX78x38cgGuvvZbXv/71X3fcv/yX/5K/+3f/LgA/8zM/wzve8Q4++9nP8rrXvQ6Ad7/73fz2b//2peN/7dd+jfe///28/e1vB+A3f/M3+fSnP/0tz+XMmTMopVhaWvorz/2P//E/+If/8B8ynU5ZXl7mM5/5DAsLC193zIEDB3jggQf+Zt+A4Otc9m+fkHYUvFSFlehvP+HBYjl4w1GifSmR9GAENklwtaeumxGUCHdppFukDN4L4lgRRwInHGVhESRIEeOIqXB72x0ktRlSecHGcMxwUjUbEo3DuAqbW7I0IpY0SaG4JtDFSpxR1HubiKuWxWSGOi2xwiJq0DXUY4OQAqcFOk5RaQeiiFRIBJJW1iZNW1RF07NsnUN4T4wn31zh1NMPIW85wD59hN3REJVZVNRBEIMUOFcjhW16/F1MORkxm6WU0pE7g9lrfat8Mzde4al8DNbirG/6qR3NvgNpkdLhrMAagUUSlZqZzixFb8BWnpNEFltA5XXz3/YOIdxeeq3CWU9la5rZOM2YSev3Wj5U1LTf2JrheEqc9nEtyUQMOXT1flbOrjfFuFIILYh8TDvrotOE6WBCvjKgHudoL0iilKSAuK2pK890UFJ4T9IOexeC75wnnniCsix5y1ve8i2Pe9nLXnbp43379gFw6623ft1j6+vrAAwGAy5evMirXvWqS89rrbnrrru+ZXtHnuckSfINFzS/93u/lwcffJDNzU0++tGPcvfdd/OVr3zl64ruLMuYTqf/m684+FbCb58gCP7W6RydZ+6WA0RzEc5XmLIGKfAKinKKqwsi6YilJxK2SfezAiE03kmq2uGMQ8uIVHeIZAvhJLGMiKUkEo5EO2pTsbm9S17WjCY5VWUw9rmVVcPMTIdur4MQ4H0zMUJKCU7ivaO2FaWtWDi8n8Xb92OPCZgT1FsGph6sIkpaOBwIj0STpW2iKGUyKSitxWLA50QyJ42HdPo7HL46YjReZbS9RVVVONeMt3OVxVbN9I0mWKbZXFlMC0ajEUkS4yxYA3vbAHAO8HsphmVJVdeXNk7iLVo1z+VFRVFaTC0pixrvHUuLs3SzrDlWCmIVkcaSJPXEicBag7VuLzHVNxvNldpb4W7+8G+Saw1GeApbM6oLZo8eIN0/y7jOmVucp9VuwqO8dkS9lGSmhcoktSnBQytK6Gdt5js9MpViSsP29k4TliQhSsP4u+A7J8uyv9ZxURRd+vi5Qvf//zHnnt9G2YWFBabTKVVV/ZXn2u02x44d49WvfjW/9Vu/hdaa3/qt3/q6Y7a3ty9tPgwuTyikgyD4WyeKoJtl6MIgRhWmMEgdNZtKqxzhHUrKZnHZOcqyIi8dtVXklacoHQJNqtvEOkPiibWh35ZkkaEVeXotjbElRZXjhKGspxR1DgjiOCJNYzqdlCTVTQS9N7BXEDsHkdBEVmF2HbtrI8gE/eNdov0RMmtiruNOl6TTRwiNEppWq4sgoq483kmkEDhXonVJt1ORzBSkV2nmb5lF7ddcGF3AyimIkjKfUo4rxjuTS2ManfN74ydrBru7zVK+VzgboWSEFE3LhnNNW4p3zeQhay1SCPTe5J5pXpBXhqr21JWlqix5XpDEKZ20KRqSNKWVJLRbGWkWkyQRWiukeG6OflNINz3p7tK4Sre34t4U3JLSWny/RffoMoXyrO1s4miSaaWHLE1IsqRpC3HQi1KW+nMszczRSTNq56l9s1FSeVA4Qot08J10/Phxsizjs5/97Av2Ofv9PsvLy183os4Yw3333fctX3f77bcD8Pjjj/9v/xvOOcqy/LrHHn30Ue64446/+QkHl4TGsiAI/tZRGtTQIESKs5IoU8RJQonDuBqlEvK6WTVOkmhvw6GiNqIp7KKYSKVomSAApXPm5iIiVVIbj3IxrcixNijwssBRYlyO9w5rBDJVeGEZjnZwzqJkk7zajMA0WOeIRUS5UbL60CbF5hbt/RliOSKeiYlvhsmmpb08B1mXNE5IkwxT7xWAUqKlRgNeQncmIcpKrLQgMnTkSKocxjVpJ8fLCeOdKSbvsLuzw/LhWUrjUHsrv97D2toq2ewcSmUIH6O1p673ps44S6SaEXd4sTepwxFHTeKptRbr1aUiGCTWSMrc0Wt1GeZblBV465q52jTHxnFKpJtRnsZ4akMz4cM2RftzazXeOaQX+KrGKEkhDbNHDrBzfpWtlR1sPqIVR/TTNuXYIEtPUkky3aXdj0l1hBeCrdGAQnic1kSRRsuaylg0YYpO8J2Tpinve9/7eO9730scx7zuda9jY2ODxx577Hlt2vuZn/kZfvEXf5Hjx49zww038Cu/8ivs7u5+y9csLi5y5513cs8991wqqieTCR/60If4oR/6IZaXl9nc3OQ//If/wIULF/jRH/3RS6+dTqfcd999/MIv/MJln3MQCukgCP4WykWFyKfEWQLOUmMptWJa12iV7M3+9kgliBB7cyJ0M+5NCnQkkJGiriqEr+nNRejYY8qKbjvDG8N4MmJnNMS4GuumOGoQCosnryeU44ooEvSyHkmcUBnTbDY0DpSBWHPxyTPkF3dQDtzE4rYcpSvJ5iPmjiwi4qQp6nVCWVagFM5BR0e0pSbNR6SyIo4TxlqgVYtMtRB1ROl2iDMDMsf4DN3W9GZazC62sE5grAcL6IjaeSpTsrO5xuz8UUAgVYwytgm+8gZlcrTSSKERKLy1iDiiMhahI0QtiKRCOBBOUJUGZw39XoaWfap6SFnWVHWFFR7nK5SEJIqJhUJHGikiTFVfWl12ziBcM5/dALV1aOURIiJrdzl+y7UUOxvUTjA+t0tcWbK0B1sFnTgi1RG6eedB7gw5BhMrQCKlpNVJkXWJm9ZX9HoNXnp+7ud+Dq01H/jAB1hZWWF5eZl/+k//6fP6nD/7sz/LxYsX+fEf/3GklPzkT/4kP/zDP8xgMPiWr/upn/opPvaxj/HP/tk/A0ApxZNPPsl/+S//hc3NTebn53nFK17BF7/4RW6++eZLr/uDP/gDjhw5whve8Ibndd4vdcKHgbjflUJsaPBiNBwO6ff73PrDx/FDMJMSW0O0NM/iK29hjCITHcq91D4pZRNfrSWCBKVitJZkrYh2O8UUniRKmJ9PsXaKRtNvKzwlz54/w9ZgC+MqBpMhu4Mxzim0UkhdgaiRUjHb6WHris3NDapSIFxMmrRZPrDMxS89xPpjTzN7cIHWfAsXWXbLbZyGzsJhkmQOKdtUtUEKjxCOyME8EfNW0ipHqGpCtdxiPN/GRgq0Q5mC6WgFnRaUrqQ7c4zKKWxdIGzEeKAY7mZESQdrFL22ZDC8iNKaq666Bal6oBV5OaWqK2pXo7UnjRNilRGrFIWk09KMyhqHQjhFKhOEbd6YCFmjI8P+hZjdfMpTZ84yHhdUdYGXBmcqBBYlPBERRA6vLMLQRLpXFVXVzKl3HqwQe8EwEXGU0e92OZzEDE6fZmdacvbzTxJXhtmleeZn54mdbCLKI6ikZ1DljOqCQnooPPHY4AYjvK1wccyz2wWDwYBer3elL+Mg+I7K85zrr7+e3/md3+E1r3nNX/t1r371q3nPe97DO9/5zm/j2b34hR7pF7EQGxp8t5LCMa5HbE3GTJxh6fByM/3BQVnmGNuEgzhnMaYCaqQs8b5C4LG1oSpzEBWekvFkRFnWmNozmVQMhhUX10cMBhUQ00pbZHGExoKvcMZjS0Ux9kzGU6zdW422FodAxQkzShBnNQs3L9E+1sMtKqpM4lRGmsyjVYaowOxOkOMC8imRK5mNLHPFgNmti3TGA3oeuDhk7eHTuGmFMDAZTplMLElrP8W0A1Wftpqnk82Rpm1aWQcpFKau9oJlPNZYqqqgrKZoBRKJFhocSBQ4hTVgjMPjUUrsbaK0VHWBdTW1bYpu5xzOeiIREXlNL83otzsgIhwx3slm9R/wOEpbMSlrJrmlMB6kaiapRBqtJUoJJBZ8jXcVps4Z52N2MWT7lmjHKVcfPcTh5QX2zXZReHbGY7brkqodsVFNWJsMmGLx1qNsE/euozYQ4cu/utEqCF4qsizjYx/7GJubm3/t12xubvL2t7+dd7zjHd/GM3tpCIX0i9i3ig195JFHuOeee7jqqqt461vf+nXpSj/xEz/Bxz/+cba3t6/EaQcBla5w7YpaG0Q3o728wKS2VMZR1AXGVnsTI2qct2jtaWWQxtBKE7I4QwjVRIY7gzWeuoQ4ilAqYnNnwCivKWtFXQqkV2RRhBIGQRNv7S0IHHk+ZTKZAM0ue6kUrTSjJQXEnsJX+MIjC4UoJf32LN1OHz/M2X3mNBe+8gDnvnIf6888SRoZOm2JpkKbCpcXOOs51JlDDYasnT/DhWdPs7G2CjpCxj2MSdjdmGKnYEuJIEXKqEkldBapuLTzfzIds729gRcW4QSRTtAqQkuFEjHeK6xpNhw57xASolgBDmtrKlNivGlCWCx4IyhK8Abmu13SWCOlAiIECikVcRQRRR6cbfqni4q6agpzaNpv4lgTxxIlPVJY8AZbFYzyHJemCKlJ51rMzc2QSo3FUmSeVTtiVBXoNMHLprfb5RWydigiZuf2cf1Nd9CfCVMHgpe2N73pTX8l3fBbWVhY4L3vfW/IAXkBhEL6BRZiQ4Pg+fMdQbaQIDPB0tUH2fUVo6qk8g4fCaw3WFfjfDMlIoolSSrJshitNEpplIwRNDOOy9LjrERIsN6wtbtF7SzOS6Z5iakNvXaLLNZYWyPwKO1RqkJIizHNWLcojom0ZiZrs729RTrbo6Xa7Dy6weYD68hdjzawtbHOzu4mu1ubuHJKRMXCbEarrSiFYaw8IzxDUzGxlkgobrhqGUWJKSdYU5BmKQ5NFEecO/0s5549R5U7qtJR5FXTF743As85h1IKITy7g02m4yF4jxaKNEqJZISUTQ+zELIZNef3VqZ1M4cb4althcMihEAJhRCacSGYTms6acpiv0sWxSgZoSNNFCm0liSxRwmLryuwhrouqeqKsiowphknKHBESqClQAmHchYzLTFeoJIE140Zz2YMUwWxZLaVsNjOyIdDytEYVTtkYUicJHISiWQyLdkeTYi7c1f6kg2C4CUqFNIvsPe///384i/+Ij/3cz/H448/zic+8YlLg9if88EPfpB/82/+Dffffz9aa975znfy3ve+lw9/+MN88Ytf5MSJE3zgAx+4dPz/PTb0nnvuYXt7+39b5L5QsaFBcCWYUuOLhNb8LHppht3xBFsXZFETuOJdhcAQaUgShZSeqjaUFRSloTIVZWWorcXgmJQFRe0YjnN2xmNG0ymuqrEupzJTKmMQkSZKErASJSTCW5RwxAkYKjwCLWMioUljTaUc3U6HIq8Y7RSsndxmZ2WbjZWL1MUE6Qwq9uiuRs2kLBzahxee0htyLTgzHTLxhsF4inGS2fYsHSHQOKg0FDGiFFBrslbE2voK+aCAoUOMLcYbtIwwtcV6h44UUSSoqwmDnXWELdDO04nbtKIM7TXeOQw1xplmtrQFa1wTtY7DS4FHNBHgSiK1Ylw7xkZhRcZsv0+3FZEkHqUKpChxtqbcC2SxNPOiS9O8eTFWUltPWRsqC/VexLl3Bi9qinpMnk+YnVsgpcVOVTIUNZWpSD0czDoc7fc40GpzuNXnQNxjQXfoqZhEC6wo2Z3ssrW5dqUv2SAIXqLC1I4XUIgNDYIXRjnIEUoxf+QqcgxVbZE6QkpPbWqEAB0pkiRCCI8xlqI2CArSKEZYQVVVtDsZ4KlNifQV1jmGk8FeyInBuAopTLN6qxxCNO0KpjY4V6MihysdrvbgPUpJYq2JI0EZaYSPqK2BBLyCSTklrhXKKpw04C1eejpLXZJegvUOi0C3Y7aVQTuPLh3j3SHLs4v0XZuJKRgNK4ZbJSLNMdYRJzGxYtEOAAEAAElEQVSzXc1odZNzawOi9ixq3zKmtqAV3ku8V1SVQWvF7mCVfneeXlcT6ZSImLyqqU1N7QsS2YRCGGMpTQ5CNO0cvgmIML5CRxEWT1FahPQIWZCmkm5PUlJjJk0vdV3WlK5ZIWcvIKbZXegv3Tb2NBNGnLN445pi3Rscjp2xYLHfoRO12NqyjMqCqXBY5VhIJJ1YM9PK8JmgKmtKY5vpIWUNpcdlEWqhA5uhFS0Igu+8UEi/gEJsaBC8MPozc0QzXUwSM6lKhAWpNXVdgpDoWCEklKak9g5UhBcK4SusrKnyJnTA1DFV1aT0ydgjpGU8HjYR467G2AqJQwrJZFySJBolBWVhMMYgjUUUHrxsYq6FJNEREkukNflkjIgg6ilSK7CypjYe7TTCeaRt5jbP7Z/HSkszollQKUgOzDEdjNAY1ne3OGiXEXVMu9VmONxG62a1OYpjhFA4Ydk4scJka8Jcd6H5mjBoPN5KkqSFkjHWlkzyHXZ2L9BudzE2oa4tVWWoncFiMU7gXBO17qmRSuG9AiGoXY2QDqE0xjrK2uJxGFsitaPXTyisxpkU58GLEls5rG3CXrx3OOuQe7+enuvfNr55wyL9/4pF98IysrCttmnVJX2TYErDVBkqrxnXhvZ8D+UhUoJuWzK1NVPpqISllbXRMx02dflNrqQgCIJvr9Da8QIKsaFB8MKI5mdI5mYoKoOzFq0lUu6taOIoqpzxdMy0mFKaktIU1HaK8WNG003G+S5CVhhbgLAo7YgSR1WPGI0HTSFta5xrijvvBdYKvJNorfFe4L3EOYW3GkGMcArhBe1WRpZo+t0u07zA+JqoI2ktxGS9mFYrbYrFsSFfq7ETQRJnGO+a6R/GYmuDjCN2pGMQO1bLIUPrmDt8lPa+ReJeRpzGCG8RHkSkEFmCzGL2H1mmt9TFiQpXjagGGwifU9d5MyNaRJi6ZnvnIpPpLnVdNoWtkCip0DoCAc466rpGRwIVATicAy+aOdleWoqqoLI5xlrqWpAXjkilRCJF+BjnFTLSpGlKlmUkSYLWem8aiL/UH91MAXF74THNP4UFWQsqUzOodrBJiVcVHSVJC08xqBgWAqO7lC7CqxiUItKKTpbQTVNaSrEQtzje3ve/u6SCIAi+LUIh/QIKsaFB8MIoUAwmBdY5WllCnEosFZUpmU4LiqqiMhXG1VRV1URcl1OmxYBpsYPxBSiD0tDKYtLEk8SWST6mrnMQpimwpUApCd7hPFS1RQhJpAVS+qaIlRKlNFJGgCSKI6q6ZGN9jZ3NDVxZUpZF02usFFGqMbmh2qwxQ0/sE4SH2tQ477HG4GpHnddMKoPppExbgg1yykxSa4FPYmQicd6gpAfh0VoyN9tjbWON4WCbJDKoOEfpMUlSEkWuKVqtQMiISTFiZ2cVU0+blWAVobTe+1o0zguck+Al1li8c+A9zjqMNdTWMM6n1JeKYU9dS0wh0UQUpWWcF0yLnKKscM4RaU0ry+h1O2RphNaiSYXE460D6/HPpR665jFrKybVCN+GaE6TxoLMNelxUafFxnjC9rTgqWfPMcgdiJg0Tpjtd1mYnYGypjUNcQhBEFwZobXjBRRiQ4PghZGPSlQWo5QmjnXTVgAgBMZKBM3INmdtk6InInQMcSyQWqGkpDY1WpRoBJGqiJWmqi06UrREjHWauqqpqwKDQaAxtSSJBFkrxrmSqrJY10RrKyK0aDblbe5sMtndId/axY0t9bQGI5GxxmlPPq5xA0sWCbyocbbGGgMiwlqBcpLh9phMZehWSn9mlmlXMFUV9aiiVadklaIQCiMcKEWnUiz1lxjLFdx0Su/QLK6rUS5GUID1SGkxtcNiEQp2h+vMzi4SpRqpIrwRGOtIVYx3ispYvBQorZoeZmuaNxUCKmuorMUZiZAWJz2mklgt6La6JNkuw+EIayyuqhBUaKnQUhNriUo1caSoa0uelygEWBA0b1AcDicM3lmqWjBSJYvzXTIBsM3AlbRbCcPRkDKfsrGxxuZkzPXXHGKxm6KFpxWlpF4zmRZX9HoNguClKxTSL7AQGxoEz581DldbNJK6akbP6Vg3c5Br38xJBgQg0SihyOKIdqeNEjGmVgivmlVPXxJHgqLImU5zBJJ22gLvGdoxU7MXxQcIL1BCkKQapSW+asJZhFco6VFCIPGUxYSLp1awIw8F6EggYkjbqinujcAIT6cfIxNPMc3xQuBVsynQlhX5pGB+vkeKprdviUmsmArLdFCy++gqUTdhlxKVtRE6Zro9oL08w9GrDjPoRkSxxKKwRiCo90JZcoSQSDzGeZyoMX5MpFLwLbxtZj2DBOexRkKpsMZjDYBHSIeHJnzG+WajIGIvhEVhrCRLWsz15pnmORMz3ZvEYfGimSZSS49WkkjHzcZQHSGFbFbjrcWbppcaKRBeUteOPLJMqpL5zgxXxcusjbYR1iIjzY4RtBbaTGzByZ0VprbPkdkFMA4lDK1WeoWu1CAIXupCRPiLWIgNDb7bPBcRfvAf3YWPNVJJoigiSTRSS2oDVeURAqRUSBGRxC1arRbtTkqWpc1KaynQSpOliiz2ZLFlfXONC+tbYD29VhstJMNiyu54B2NKnBNIFFp6Wm2FsROm0ynWeqRPiFWbTtZm39Iso60zbJ/Y4uwjZ/HeEs04dCRJOjEmdrhNiRmVxFoiYoVvxyxdM49KFXjFYGPE9sUtjh7dzzWHjxLNdckji8Oy88yI8b0byOGIWkoiqyiNwPiKueu7zN2xRJ1YPAKhJLY2eFvhnWJjc0JR1k2BqhRXHTrI/Nw+dNKjrDOmBZQ1ZDqh3+4yqSzOG/ze7GgdeZS2gEeImGLqsE7urTQL4igiiSVJUiNVwcrGCqub20zzHNxzyYU13hqUBCk11jaFuJQOKcBUNaasMNY2by5cszFxptXhzsXrOFR38RPPuCwY7+ywuz1gtxwx8mMmLmdhcR47KjnQmmO+3QFXY53nP/5f94SI8CAIvuPCivSLWIgNDb5bWQvC0YSmWHB1DcrjkECE1opIa+KoRTvrEccZ0mtsrXBWgdN4AViHwAKOyXhMWdZoJOW0xIomzEQgcNZiLCghEM5jaofUqtkM7B3OGJCQRDFVWeFkQpJ1EVqSZOBTEFJhvMXamijRVFOPkZYoFjhbMx7skhLhkYzHA6QCHSs6cYZKMyo/IbbQ77SID+9n7bExsdFY53EWpNNMxxUta6htAU6gTISUMUI4TO3ASXASZy2dSKNrT7k5hnaKjxUITaRSsqRFEsVM6wnGGBC+SR2UgiiSWOv2RgAKwOOcw3pFk3nYbCTsdyNm2n0Gw4Kq8lhfNZtBnWimeRiHdyXWAgiUNsRaI4RHRwovaPq0rcd7z7iqGNoa1ZkhUgmydMy2DtHprlKfe4YEzVLUJ2llpN2UWd0lxpPnA0wVpnYEQXBlhEL6Re5Nb3rT3+j452JDg+CKcoB34B1eeKxTCCRiL12wnXaJ44wk7hBHLZwTWCPAa5xtJt8YBMbUKGHwvsb6ikg6BJDXOc41m/i8sUivkc4ABoujyCHLmikdrjZYI0gSgdICKSuUthRum/7+GAdYWSP3inJlPFI72rMZIhHEnRidCHTbo1sVwjsOXt/Bk9LJ5thlyO2LM6gdy66I6cxKNsdrCKtwrmm1SKUmt46tzTH94QJ2TiCcA+EQSJyX1GXdbCKkpiUlSQKrJ88RnbX05g7Ru/Mgvt9BqZSWitBK4rzFOIPUTeKgqwVOagRNaw17w4O88DhcMz7POIQAW0EryehmKWU+YVo3rSB4ifcS62wznQN/qZf9uekhQgiEkCgHUmmstRhrWRtvs6AWOKIP0kGxPVlHqYiFuX1YW1BWU/y0onYTNv0ErQTOVdjaXLlrNQiCl7RQSAdB8LeOFAKBAAFaSeI4RkUxCIVUEVonRCpBK41WGkPTb2utxRiL1qBEhJACKQR5XjR91gqqqqYqK+zeODYhQEmJ8eC8RQpHXVt01Mxvbpa2wTqH0hKwmKrCO0cUa4z3eG+byRhC4Z0jTjTx4gy6GyPb4HWNxOPrikiKZuOfinGxoKgKRhdXSIjQccK4GjMa7aIQCCmxWLQEj0NV4AY1ohfh8Hixt+IuBWVVgkyIhGYuSvGmoupo/FzJZLpOayMlSRJk6pF4nG+qZC/YWx32VMZgvSNJIqwHj/hf8+olOO/wxuOkoKgccSzotDLGE01lBMbtdXg4j/NNiI3gue5BgbNgfdOP7p1HIZFSoHSEMYZJVVD6mrIqiWVGp9NiZ2dEJCVKRsRRh7oumE5GTIspUgnqsqSYhhXpIAiujFBIB0Hwt8ZzRZsrLUp6Ii3RUpIohbNN8WeNpbY1XoHIJL5y5FWNl74ZQSc0Uim0Soi9Y2RzRuNtyrzC15Y6z6nLGmsdQoimOPZgqwrwSAXWVlTeI6TAV82GO1PUOOMoipzd1R0mOznaKoSyeA/SqabQB+qiZjqckM0LegfaaBTG1lRTS1VZOu2IrJtQmYoF3aLrWkyMpyqmTCYjkA6hJdNJDrHEeou1lsgo1k+sMTe7jNcOhwUVITWkScZoVBObiHrLMNkcoZbazM4vQT2hPL2F8AnRvpTcaLTLqIsSU5dI1RTJzjTphCZLMLXHWdkUw0JglQJAIbBeM64rlKqQQKIihHPN6n1t8NY2q/3W4ZzDu2bLot9rExFCYK2jau4zECkFDkaTKRtym75qU9YTjClwzqK0wlQlZTFlOh1jqnovEr7EO0c+Kb7u+gmCIPhOCZsNgyD4W+P8+fMcPnz4Sp9G8F3q3LlzHDp06EqfRhAELyGhkA6C4G8N5xwrKyt0u91vGG8fBN+I957RaMSBAweQMuSMBUHwnRMK6SAIgiAIgiC4DOGtexAEQRAEQRBchlBIB0EQBEEQBMFlCIV0EARBEARBEFyGUEgHQRAEQRAEwWUIhXQQBMGLzI/92I/xC7/wC3/t4zc3N1laWuL8+fPfxrMKgiB48QmFdBAEwYvIQw89xB/90R/xnve8B4C6rnnf+97HrbfeSrvd5sCBA7zrXe9iZWXl0msWFhZ417vexQc/+MErddpBEATflcL4uyAIgheRn/qpn0JrzW/+5m8CMBgM+JEf+RF++qd/mttuu42dnR1+5md+BmstX/va1y697rHHHuPlL385KysrzM3NXanTD4Ig+K4SVqSDIAieJ+ccv/RLv8SxY8dIkoQjR47woQ996NLzX/rSl7j99ttJ05S77rqL3//930cIwYMPPgjAn//5nyOE4NOf/jR33HEHWZbx5je/mfX1df74j/+YG2+8kV6vxzvf+U6m0+k3PQ9rLb/3e7/H2972tkuP9ft9PvOZz3D33Xdz/fXX8+pXv5qPfOQj3HfffZw9e/bScTfffDMHDhzgk5/85Av/DQqCIHiR0lf6BIIgCL7bvf/97+ejH/0ov/qrv8rrX/96Ll68yJNPPgnAcDjkbW97G3/v7/09PvGJT3DmzBn++T//59/w8/z8z/88H/nIR2i1Wtx9993cfffdJEnCJz7xCcbjMT/8wz/Mr//6r/O+973vG77+4YcfZjAYcNddd33L8x0MBgghmJmZ+brHX/nKV/LFL36Rd7/73X/j70EQBMFLUSikgyAInofRaMSHP/xhPvKRj/DjP/7jAFx77bW8/vWvB+ATn/gEQgg++tGPkqYpN910ExcuXOCnf/qn/8rn+rf/9t/yute9DoB3v/vdvP/97+fkyZNcc801APzIj/wIn/vc575pIX3mzBmUUiwtLX3T8y2Kgve973284x3voNfrfd1zBw4c4IEHHvibfxOCIAheokJrRxAEwfPwxBNPUJYlb3nLW77h80899RQve9nLSNP00mOvfOUrv+GxL3vZyy59vG/fPlqt1qUi+rnH1tfXv+m55HlOkiQIIb7h83Vdc/fdd+O95zd+4zf+yvNZln3L1pEgCILg64VCOgiC4HnIsuwF+1xRFF36WAjxdf/+3GPOuW/6+oWFBabTKVVV/ZXnniuiz5w5w2c+85m/shoNsL29zeLi4vP4CoIgCF5aQiEdBEHwPBw/fpwsy/jsZz/7DZ+//vrreeSRRyjL8tJj995777flXG6//XYAHn/88a97/Lki+plnnuFP//RPmZ+f/4avf/TRR7njjju+LecWBEHwYhQK6SAIguchTVPe97738d73vpePfexjnDx5ki9/+cv81m/9FgDvfOc7cc7xT/7JP+GJJ57g05/+NP/+3/97gG/agnG5FhcXufPOO7nnnnsuPVbXNT/yIz/C1772NT7+8Y9jrWV1dZXV1dWvW7meTqfcd999vPWtb31BzykIguDFLBTSQRAEz9PP/dzP8bM/+7N84AMf4MYbb+Qf/IN/cKmXudfr8alPfYoHH3yQ22+/nX/9r/81H/jABwC+rm/6hfJTP/VTfPzjH7/07xcuXOAP//APOX/+PLfffjvLy8uX/v7Sl7506bg/+IM/4MiRI7zhDW94wc8pCILgxSoEsgRBEHyHffzjH+cnfuInGAwGL2iPNTQbDq+//np+53d+h9e85jV/7de9+tWv5j3veQ/vfOc7X9DzCYIgeDEL4++CIAi+zT72sY9xzTXXcPDgQR566CHe9773cffdd7/gRTQ0mx8/9rGPsbm5+dd+zebmJm9/+9t5xzve8YKfTxAEwYtZWJEOgiD4NvulX/ol/uN//I+srq6yvLzM3//7f58PfehDtFqtK31qQRAEwfMQCukgCIIgCIIguAxhs2EQBEEQBEEQXIZQSAdBEARBEATBZQiFdBAEQRAEQRBchlBIB0EQBEEQBMFlCIV0EARBEARBEFyGUEgHQRAEQRAEwWUIhXQQBEEQBEEQXIZQSAdBEARBEATBZQiFdBAEQRAEQRBchlBIB0EQBEEQBMFlCIV0EARBEARBEFyGUEgHQRAEQRAEwWUIhXQQBEEQBEEQXIZQSAdBEARBEATBZQiFdBAEQRAEQRBchlBIB0EQBEEQBMFlCIV0EARBEARBEFyGUEgHQRAEQRAEwWUIhXQQBEEQBEEQXIZQSAdBEARBEATBZQiFdBAEQRAEQRBchlBIB0EQBEEQBMFlCIV0EARBEARBEFyGUEgHQRAEQRAEwWUIhXQQBEEQBEEQXIZQSAdBEARBEATBZQiFdBAEQRAEQRBchlBIB0EQBEEQBMFlCIV0EARBEARBEFyGUEgHQRAEQRAEwWUIhXQQBEEQBEEQXIZQSAdBEARBEATBZQiFdBAEQRAEQRBchlBIB0EQBEEQBMFlCIV0EARBEARBEFyGUEgHQRAEQRAEwWUIhXQQBEEQBEEQXIZQSAdBEARBEATBZQiFdBAEQRAEQRBchlBIB0EQBEEQBMFl0Ff6BIIgCIIgCJ4P5xwrKyt0u12EEFf6dIJvwnvPaDTiwIEDSPniWMsNhXQQBEEQBN/VVlZWOHz48JU+jeCv6dy5cxw6dOhKn8YLIhTSQRAEQRB8V+t2uwDc+qb9WGlJepJXvOEGDu7rk5qY3bUhqvTEqscrbnk15558lmdPnaG2HiwMd3fpd7qoOGF7Z5u03aIyjmeePoXsxMT7Em7/3pfRESn7fZfB+g6vf+Pr+N3/9nucO7NOd2YG5xXHjx/j4SeeYqvc5Q3f+3IWOynjjZITJ1dRSc2jJ08y8ZYkTomUI5WapV6L6a7j5InzzM50eNMbXs2jT5+g21/g85//Cw7sP0KkExA1/ZmU1fMrqLbmjte+HCs09z/1BOV0wo+87ntZO7uOVxnSa+648zgPPfQkX/vagywszDOYDkm7mh/6wR/imadO82ef+zLeeqqqYGG2xxte+zKOHtqP96CzhKuOXgV1xeL+mPvvP8HTT26yNbjAq77/FlbXVrj1+usZlhOGkyEdP8eXvng/shWTCMHBw0uUkWDnxAZLS/tYPrqfXNScPXOWn//X/+XS/68XgxfHunoQBEEQBC9Zz7VzCAFKSmwhOHtqBZ+An3PMXd1BzyqSbsTm4AKt2YTSFAyGA86cXaHXm2dhcZGslXD06sPEkaCupvRnunR7bUSkUFFMO03pJB2++LmvsrG6wT961920+h1OnDzHU089w8OPPE4na/H2H/p7LO1foBxPePWr7uLld91JpDMO7Fsm0yn5OGd7a4cygt7VV3NmbQ3nocprZudbFJOSZ586x/Ej1+Dzkje+6g6+59UvZzIa89pXvZLIxoxWpiy1lulFCwijePSJJ9BJwvbOkLK2PPPMOU6cPEOWZVxcvUAkLMVgzKf++6f4wuf+AlcZlBB459nc2uULX/wK0nqyJKLfafH4w4/w8CMPs7h/GZ0kLO7fx87uhHy3pO0SLp66QBJpvPWMdna4avkwXZXQ72d05xLGWzvccN11HLtmGZ9UjP2AA4e7X/f/68UgFNJBEARBELxIxEiZoVSHna2KYuwBhUhTonab86sXqOspvfmMozccRnU0lfYsHVxmef8S++ZmGO0M2dmZcPb0GqPRlGuvO0ptC7Y2h5STmkQnaJXw1a/ex87ODjfceB2vvPPlfN+b3kyaxPy9H3gL1xxeps5LNle2OHToEJtbaxSTgrnZLpWZUroKoSMGuxPu+cLXKLykdpLbb7ueC2fOMd9eoJXELOxPufN1N7I+OIduCeJum/ufeYZRVYNQjEYTFnr7sVPJk0+d4+y5dSaTiqdPnuLzf/FlVjfWqJ1l+eAhxuOCwaDkwsUNJkWJl568yjHOMCknDKdTpqaktAWektFwi3Y3pbIWKSG3Y2bmW4y2hlS1oBKKta0tPJaj1y4yv5yxeXGLyXSXrK2pqoKLg3UG9YSdrQ2O9BKOLR+80hfICy4U0kEQBEEQvCgsL+1jodtnsdVnubOEHmny0wXbD+4wX8xzXfdaZtQsB5cPoNsRdFts+4qHT5/g3O4mWb/H7Xe+nIX5/dx84638wFvfQrsbUdQFF0+vMNkt6XQ7tNstnjl5jj/59GfZPz/LgeUlHnvsCY4ePUyvk7Gxusbm2hbjQc7u9oj5mTluvvEGuq2Uxdke8/2M648e5VBvAVU5rBB0Z9rMLPa45y8f4cmzZ2gf6HLXD76C3XTCYxdO8MAzjzH1hgEW34vZnu6wsrZKlvXQcoZi6pFSkaUpq6urrK2v44FJPkUozSQv8QjGeYkXHovFeIOKNfsPH+SmV9zMA08/TjSbcWHrPElHcc2xozz26ON4B2fOnSBONNffcAzRkbQOtPHKsbG2jo4Fw/GA0lv6yzOcPHGSI1ftJ5vVfPELn+fIwgyHZ+Y489SFK32JvOBCj3QQBEEQBC8KP/R930tV5KRKkaWC3c2LJPEsT6+scHL1IlJE7Gzm7D98iIvr2zz01Elyq3jswkWeWjnHseWD3H7djRw8fIDx7ohWR3Pvw0/iRcxkMGU73aUoSnr9Hjt5Tm9mjtUL52l1l3jDG18H2jDYHfDg1x5hO59ityb88ac+Q3dukYvn1zDW0NMtshnFQj9iNDXU7TZnd7Zp9TLuf+wUO16h3JTB9iarJ89T79Z4J3BYajsCbXHecnr9LNce7hJVhgPLV3NuMuLCykV6/XnyIqfdTjHOUZcFzzzzNMY4TGFwHnpzfRyOfDplMBhSDUrkWsE1Bw+wMx3T6c2QdhKkjvjLe/6C/fuOkrUzzp8+h5KSzkJKoSfsjgdsrk95+OFz/OVfPMb8/hnSbotHv/wUr3jVItvDVW4+fhhvCj712a8x3aqv9CXyggsr0kEQBEEQvCg89NV7GaxvcvrpU5x5/Awt1aMoLVmnxb7lJa69+RpEWzOZ5lSVY5hPKcuC0laM6pInzz+LiwW9hSV81uaRk6fYHA5w3mEqw8aFNYa7u9x4y3HyqmBSTHjk4aeYnevx8rtu4NjVh+m0M646fJiNM+c4ftNxrr32CHfeeRMoy7QaM9was7ox4dhrbma7LGnFXZSI6PTn2BpOQAick6xe2OUrn32COTHDdQuHmEl6RGi0kzgjEcBtNx1jrp8RZQmTomQ4Kakl1N5RFBV5XeO0JK9KCmsxDnr9FmlXUkZjsqWYpaPz3PLam2jPdtkZDJHCc+rpc3z5Sw8ytQM6+1PSpYg6qqhVxdbWkLVTa1B4Tj97ju2tXU6dOkN3rsP8gf2cP7nD1sWch+55mNffcRNbozG/8bE/4UtfeJyNtdGVvkRecKGQDoIgCILgRWFuscPOYI2nHn2SJ06eY5SkPHT6NOu728wvzBEhWJzvsptv8cTpZyitxVmLcx5rLVOb8/mv/QVr25ucPn2OwSTHKo1WClnXzHbaDHa2kMrRShSxA+0lwhliLTl+7Go2NzYQUnLnK+/gq/d9hccee4x8skvWgiSFN37vXUyqnKlz1FogJLTjhMp5trd2iWqgkkwnhp1BwdcefJwnnzmHqSP66TyvvPGVZC5FGMG+pQXuuP1mhIpp9fZhvMA4T7vbw3ioaktRGVys6c12kKlg/uAClZywdKTDgWMLkCpWzq2zuzLkwPwibdXB1GCVR6Ue2Y353L1f5uSZk6iO54/+9H/y5AOnePALT7F6eo3rjy3yD+5+Ne/68ddz9rEnOPvIRbqtFm/83ldhqNmZTJldmuX7v+/72L+070pfIi+40NoRBEEQBMGLwvmVFQ4fPMTR49fg2i0qYZmLM3Y3tih3RuyMhuxubnDilGNtbR2coDY1UgACvFNcWF3lni9+hsOLy/iOJ4syKqOJjODEqbPMtDvccO1Rbjh0iNW1C8zsWyCdbbOyvcr6cIvdynH/o09z/bVHuPO2OyinBU8+dZIo6vHUU49w+MBRFrIeF58+S+wc/SzDLy5yfmOHLM6IZUJd5vT6XWSiWN1eJ20njJ56gkPLB9haH0AlcaOKYmeEsV1kFNOenWV38xxFZZmdXyRd8rzpja/msace597HH0S0FVmnx8Vym/5MxuzCHBvntlg7uQ4OUqWJ7mjx5a8+yKEDR0mjiPHqNo9+9SnObO6Az/EqQfqEnfUNblycp93pcMvtR1k6kDIZOJbbM8wsz3Pj7cd44P4neOrMiCPXXYU7dZEHvnYvtnzxTOt4TiikgyAIgiB4Uah2SpJrWox6mvXNDfLBFtlEcGTuIBfX1yiUxyOY6y7SSloMyiEOiRcaLz1KCKRwLC7McO1181QzYFc8o4Hg73zv9zC8uMLS7AzL8zM88OX7eeTEKQ7edA3/9Y8/xWA4JE1amFqjRYw5dYbZRHLXrTfxpa89Aq0ZJnnEvfc+xnBti0fvKQDBZHvEa171Sk49e5Zbjl/HcDjk1GSCkILKlbQWWnghINWsldusbW0z2prQjWPmZnoUSjEd7tLv99hoJyRZRKQjhjtr/Nk9n6UUjqzfppQeq8B7wXjX8NT6CtP1EW5oEbHCKkuV14xHBcIKlhfnefLRZ1g5vU4lwGNxec6RA/Mcu+Fq4naL03/5JForzNQw3Sp41Wtu5pZb7uQLX7iHRx85ycted4zIedaeWWGpsw+fhkI6CIIgCILgb6VX3XwbF7fHXNzZ4dbrj2G3tihdzfzyPjbKHbr9Pl/6yl/QOb/JtUcPMT73FMMdj048196wTJSBLGtS30Z1Y/oLGb3JGFuXFNNVDh9oc2hpnicePsnR66/h6fEaa/WQCxtbOAdykqOI8V6xMdhkLtXUiaG33Obc+TFCRZS1p9vtsTWaQiQ5cugAjz/9NK1Icc2h/Uynbba2BmSdDrvlECdqjAKUw2pLnMZMypKWbhPHCVk3ZWtwlv7CPFHfUYgBNRLf8WyVU5wU2FSDUFhriWpPiiBVbbpzLabJFCEEi3OzLLVm+J477qLX6XH+4hnue+QUxkkSIZidW+L8syv0D2csz86Qq5pXvPJVrK9MOdxNKccTrjp+FacuXuD02i7dxYSDy10unNlhPlui157lxhuP8xv/n89c6cvkBRUK6SAIgiAIXhTKIqfV7ZGMpqi84KoDB1mPhhy55gj9ep6nT52j25vl2NUHUXM1J7dOMx5NEbLmhlv3ofueeKqYnBTc/+gT+LOKzuw803HBV778GG44IZUJ586t8ff/8Vt5+d99GX/6hYewCITSGAcOB1JTCsdIOHaM5ZlHH6GdHqY/12M63mFuaZGNEydotfpo3eLpZ8/gK4ezFqk81x2/hsefPIEVHlIJEQilcEJQKcfcVfNU+ZQ//srn8YmkiLcoxjuoGceUAdY6nACfCqRSaCExtUDUkA9GzWp8NaI2DoTE1TXlaERkCoZrKzjhSFpdvGsRuZp2Cr12isCRKInPC9LZhHu+8jUGBxc5Mnc1f/GVpynsM6xuDNgeDFmab7G9ts3Rfccw44ucO3OSl9957EpfIi+4UEgHQRAEQfCi0FqcY22wxfzcDIcXl0mc4eDyMoPtHWaW5njVrbdx27FjdLOEjekWD5x+ilU/pqwqRoMRc50W5bRmWjoubu1Q7HrauzWZbLMznLCYddneHLFdFDx45hF6h1uMhmOwmjiJqV2NcxYlDe12i36rRRrPsHL+aWZmtjl09DCD7Q2WWx3aSUaqUzbXd5AypfKGP//SV4hTyWhcUxWW7fGY1v4uUZqghUBKsLGBTEBf8uDmk0SJhK7DVQ4vPXgFGpQHIVXzjTGORGlqJVk8fIDrjx7lC3/2RYqiRkcKKSR15Thz7jwvv+NGDh/ex+NPPkMqY5Ik48LaGV7xhpehM7jrNbcxnU4oI83i7CKvvPO1fPneh/nSwycwzlONHVU5Id9pc3B2mfVqlwvnTvHDb38LZTm9shfIt0EopIMgCIIgeFGIOjHlVoWdVDxx4gy333wT2jmE8Ux3xszO9hmMhzz7zAYbkwGjjQneCoz3PP7gWTonBYPtCZNdRxKnqDQiHxd475hJOuxs7lAZy+GbF7jqtv1cWNvA1xHOSqzzCClQUpEmmpl+TCvVDEZD3vDGN3P27HlAYp1AIOn1evSXlnnkySfJizGmLMj6s0ymsLM9xBQGYoWpc3qtlNkDPWzkqHG0uik6lbTbEe0sIokzppOcfFRRFZ6yzNES8rJGRW1mW7Ocfew8k0lNK1aMt7eIUZS2QsYeiUMoSZy1EMqxdvE8t9x8HdffHHH61Arbu+usnjjLHa+4lsrk9DtzbAy2efc7386j9z/OZ+75KjOHlrnlzlu5908fwm0YDi3uZ7AxZttu8UM/+GYuXDhLf3bhSl8iL7hQSAdBEARB8KKwtnOK0e4m7XSeU+sXubC5yQ1HDnN4cT+D8QjihIVDV3Py9AYrpzdY7C6xPpggrGft3JQtYfA4tI6aec7GY6oKKTWTakLpa6rEMX9Vn51yTJFLnBN4JNY4hBTEWtKfiXnF62+kLku+8Kn7aR3IuPGGYwzHI9rdDqMiZ//hZVa2tiAz7Nu/QKsXUeUlF88OiHsdKjtBxJ6sH3Pwmi7JfMrQFfRbbdrdDC8NUQTdLCaJI2aXOsRCozRI6ZmMJ0wnoEyfp+49xeqTK8z2+uyuDBiYHbRPuObgfhaX+gwnI7bWd1lYnOfc6hr/jx/8Hm6+6Ra2dnIefOghbr7lRo4dmef6hYPsjnMW+vs4evgwf/a5P+Mzf/ZlXJSxvrXDFz73JYpByb7ZLre/7BhX7V+k3UlZWbvI2lrO/qvmrvQl8oILhXQQBEEQBC8KE7XJ+vBZytWzFGWMJuHAUgfPEldfe5xXvuF70Jlm9eIWTzz+JHPzsyjOgi/wVmEECA9pEhMJTV5U2MoyqmrqyqHbmjoVPP70ec5ciIhkRm0teI1zkEQRUFFPK565/zTPPH6S8XrJ9Ox9vPX730I5nVIbw6SyJLHE9w2dTkrW1URZTLldsO/4HJ2kTaIjNnZXOXDdIjJTFDZHakgThRQWIR2xVnTSGIFAS2glgixV7O5OEEaRyTbbFyzjMx4zhrGb0O70yeI2ra7DGM90POHA4hIRCbuDHZ4pBkRpC+8hjbucP7uB947X3HKMtsyYObAfn3b4kz//n2yOxtDJGG6PyCeOTCXUk5K1ac25i+d4xW3XEcmUBx56nO5smz+7554rfYm84EIhHQRBEATBi4JPJMduP8KpExeZrk7p9xPS5ZLH1x7lXW98HWmW8IV7vsiXv/pVCuu5+PgZoiiCuqB2njgReKsxeJJI4CtPFMd4IXFJhckEBSW+drg6obAO5xTCC5SWoAzaa2QVcfKBc2yv7lLXnqkt+e///Q+59c7b8PGU3qEu23adKqtJUMgYnDSk/RZ6FubmI/YdmGFfHrE7LqisRShBohStTox1BqUjsjhm//wczhimpaHdihgNB5S5RdYt1k8WrD1rmF84yObsKnU+oRyNuP22a3ny5FmG+ZTrrznG8uI8F85fZGt7l9mFNl++/3EefeIMihaT0Yj/5z/9R+xf6jOdVnij+dpX76UyFdtbu+TTEoFCY8FYyvGUltYsLS5z9vwqtvTIuMWXn3iU7emLL9kwFNJBEARBELwoXFgfcvzmgyxfvcQDXznJ6acvcmarx8GlA/zxF/6Q+XSZr/7lI5xfWWd1bY3aGnqHU0Ye4iyh103Y2RpS1jX1wBAnCZ1+j821TdCCyhY46ZDCI0Qzk1pJhdIKLT3CWpRUTMdjIh1x68tuZ3t3zOrqGoUZs806N7x6lmE1xA09kY+RSiKEIIoTROJYWEiYm28zmo4Y5zkeudd7LYkijXMGKQWR0rSzThOmEmlUFLE7HlFOLapu89hXznPh6QGtZJ6Z3iyHjxzlqcceRUqJN02vtK0lSZLy1fse4uzKKgaJKaGcgnae9fUVRpOc7Z0djlx9kPZcm+3xLllPcHTmICeeOo00kghFkqUUk5x2p013fo5zg21asynTzTG7wymr2wNs9uIL1A6FdBAEQRAELworZwbcfOuNnDn5LDtbY2oreOCRZ3gifZZDcwf4nlveyB2334iUgrWNTaaTKXN0aLUy0n7GLbcd5cTTJ9hYGQEZpak4t34eBOAFSkics0ilwIMQAqEEKvJ4W5Nqhc0ryknOMK9RUczykUMcuuEga7un8W3JxmSK9RIVx0g8SZLgnCXNInrdlP6MQEYl1tZEUUrtKpI4AqDVzlBCkKUpQkrSKEF6hfA1+XRKmRd01DxrZwpO3LdCnpdsywGd7p20ezPIKKaqKu575Alm+jMcOHyEh586xcrqOs4L0iRmZmGW5SMHkV7wwCNP0Z1dIGp1WdsaIOSQk2eepjIFee4YbU8YbY3JK08rbWNqh9SC2151PVfftMzuxg6nz5xlWltEnDAeD67o9fHtEArpIAiCIAheFMqh43N/9DV2tgc4q8ArnIBxbXlmdJbh1p/w4297B1krQiuNForh5pRkX4oXAhU5XvuGm/jinz3GzobBWN9Eh+/9pYRA4PAOjK3BS1pt1RTXHg4t7qcdx9x33/04Lzi/coGpz5k/2kbMGrJOgpcRzhpUAhJNu5ViMWRtjfE124OSXj9CKQkWlFJIJVBK0c5SvAOtI2KlaKuIXqfF1vZFyumEzKWsPLnFuUcm7K4NkRnINCFqpbjK0OnNsLO6gotTplXF1smTxGkbpyJwDh2l6KTHEydWmI6nPHt2FedqfvcP/oRjx48y3dlhe3uTG2+4jo2NLapRwcF9y2wNp9SlwVaWxeUZFCWj0RpRohlXUwqn6PXaRNpd6UvkBRcK6SAIgiAIXhTqomL9Qo7zDhXvxVF7sZfq59gcD/nNT/6/YRxx4MA8BxYyzq5tQWEpRcHGhSH7FvrYWmIdeGcRQoL3CAl4j5QCKZuUwCSxHL16EesMzz6+yplT53j5y46jpKNAIFJNa1FDx5L22yihUJFGaIVSCi0EcWTRWcQon2KtxbqaylYoKamNQOkYqTRJnJDomNp6kjihG0n6mSLPd5gWE2KR8fh9F3nki6vMtA7iBcQ6ozKWrc11Fuf2MzMzy2B9FQFYSrpzMWVd0ptrU05L4jSm3WoxzSuGk5JpUZIkEWlvP/c+cILh1jplXTMpPNffcIQ3fM9rOXliBSmHOG8opxnf+8ZXoBJPVylm53qs79/HX/zlo4i2RkWhkA6CIAiCIPhbKcu6UJXk+ZR6aoiTGCEkQoBDUDlwdcF8R/Gud/4fjNZ3+c1PfBKhNcPhiKceX+HcmVVGw2aEXBxrnHNNUS1oIraVRErwDqRyLOyL6XTmeOzeU9ip4JnzpyHT9OdS9l01QzYfQRxBopBeoKQgFYo0zpCyotNXbIx2cU6jlMI5A2hUnCCFRWlNpGOyKKaVNoVxJ1Lsn+/g6oKdnS1ilXLu6REnHp5Q5wk2c9TeMJskiLpisLHFXGeGNE3IK4OWFd1M84Nvewtnz5/HWcl0nLO+ss7B5Tm8l2yu5SStjGuvOspoOGZ9Y0Cr06WTeFSvzaCo2No5w1xvkdWVTVTkOHpgibluF49jX3+Br33lPs6dWKPTmcUlHhWJK32JvOBCIR0EQRAEwYtCFCWoKEFYwbSYYipLHEskAueb4BUhLDvVgP/4f/4X2qpD0m+xdNUBdk/kWOsZDS0CjfMlEo3HISUY5/eKcoFUFhAIESGl5JGHTiC8ZvFgH5c40pmMhYMZh66JQWuGE4iiCKEE3jj6WZtOFlPbEq0t02mJkCBls7HQWhAywuNQWpNGCWkcE+sIJRSz7YRuqlkZjJAqYbJdc+GZMXOdA9jWJl56Ot0OdVVR5jm2BHmVJU0TpI6pnEF4zcWnzyFMSW+2TbudcNOr7uCN3/N66sLxX3/nk6TXHCCO4cTJcySJJkoUB47MU44nPPnoNqICc1izszsgVpLFmVmeffpZ0m6X0xfWGQ48qxtD0sUOcSzYWVu/0pfIC+6yC2nnHCsrK3S7XYR48b3DCIJvxHvPaDTiwIEDSPni2338rYSf+eCl6qX8c//dprKOfZ15klwiapjUU6q6RkuJjiO8dwgDXipWhiO0L2jLlMcffBKvPbrlqK1BSHBWUFkDCJSSSOEQQuCcQ8kI7yHLEvKJ4eyJLSqrGRZT2olg8apZDh1IWJ5PGNeevHKkEXTTmCzqMR3mnD/9LAevWWRtaxvrIdUgELTaKVp5Iu2xtUSh0Tqi3cpoJS1i6VmYjbi4doGdokB4zcmHLrL+bMHRw4e5aNZpCYmyliIfI6VCiAqsIYo1aRxRFlMGwykPPPgYd7zsBlKhOXbTMTrtjFtuOc7q6jp33XE1N1x/E//fP/xTnHdkrYSiLHj2mQuU4ylz7RmOH78GRc1VB/fT6nYxtuCqq5fZHY7YN3+APz/1ZWpr8MMBCJidmQPOXunL5AV12YX0ysoKhw8ffiHPJQi+a5w7d45Dhw5d6dP4jgo/88FL3Uvx5/67jawsynmOLi7BxQqkZ2yaOcxRDa0kAuVASmoB1kp28wmjwYR9B7rMHOhxcXULX3uUiKltvVc8C4SWWGubFWPniKOIJG5x4qk1qmmzqTHttZg9mLB4oEu/6+i1NdXYkEhJW/XIt0tWLp5hOh1z+MZ9bI2biRcekFphLXgJ3V6HJE4p612iWKF1TKwSOklMK/Ksbayxkxd4JLpQPHH/aaqtPoPuEO9904ISReTjMcJUtDuaYjSiv7hEr99i1+SMx1NMWaCfSKjKkvGk4tWvug1qi6+nvPlNr+Xxx09z/sJ59i/NIoVgfctQVRVp1iGZz+gdSphJuhzdfwfr61M+8/kv8P/6xB/yijtuwp9fo8xLOq0OQnkGgwETM73Sl8gL7rIL6W63C0D/eo1OE6TWCCFIHVSTkmi+w6vufCW7q9vc+9kHWIo7fP9rbyOOaz79lw/Sn1lk5cImRVWSZJJWNyVOU2SccPW1V3P8+EHOnXmGna1NDu8/SFJKFrMWZy+u83/9+X3cdPQor33Vjay6irLfJZ3vc259jbf9nbcTXdzgs5/6BM/unMPLjIW0x1tf/ybe+ANv5bc+9jE+/bk/5+a33MoNt9zGufueID95jsXleZ4cnme3NCz1DjAfa+IqYmN9k22/gZiBfn8/5zbHTEXOvM/oRn2qCHysacUZ22tbOOFZ7GomQ8Mot7SE5c7DR3nV8ZsocPzZY/fxljteRTeVHO63OHb91azFlp/60M9RZYqrZg+RbXmUnmEiI/TcDEkn4eLF08wvZfRbmqXeDKOdMa05z2fu+RLnVsYszHe4666j7F+sub5zDDud54//5EGeOfUsBw73ELUCFFO7g/KOs2fHVFi8d+ASnBD05wQLBxS6Y/BiFqU8w90xr37lK7jn8w9w/CaJjBZ4zRu+n9tvuZ0qh3Obq9i4j/TzSOtQVDz86Nf47J9/ina3xBeOi49MmOu0eNsP/xA5fb701We59ZaX87Jbb+bUqSe5sHKKJx59gMW5WXa3thhsbTPaGlAMRigtsN2K7hFFN+sxfDjnjv1X8YN/9zUgFV969FHOji5w2w1XYe2UZx65QFm1WMtzXvbWGxjIFXZPDBk9kfO6t/0d6mLKQiq55Y4b+D//x+/z0KlTDEvLbdcc4v/4/tdgzYh2r8XK5i6r5wfcevUN3Hbra2j3buaDP/NznH/6Ph5fzy9d/y8lz33N//AX/g5KOFRlacmItmpxcP8hzpy5yL33PoITEmc9VWWoaoPznjiWWOswRYEWljuOH+SGG6+iEp7dieHEybNU1Yg0Bp9FHLvrVVQqJU0zxoMhN159DQ9/5UucP/M03tXceONhbrz+Kh588AmefuY81krSJCNrtRkNJwgs7XaLKFJMplOyVofNzQHF1ICTWFOhtQThKcsKEOzr9njDrS/juquP85u//wdc2BnikOCh1W4RJ4pICw7um2E6naCkxNmSup4Qa8cPvu0OJqOCe+87y7Mnh0zGjqIqcLWn12tx5NolDl+1yMxMxvxcl2KyTYRl6+yYfANS0eLG48dYmJ1luD3EWwfeY3DsTEZEaUI+muArOH12lc3tHa49fpyt9Yt8/5vfwNWH94EUfP5Lf8kzp8+zunae665Z5vZbrmdaV5y6sMYzz56mqBzGexygdEyv1yVWiplen9tuuYWZrEUmFHEUMdPts707QEcJcZLy1JOPkbUtx25Zoj0X4SU8cv8ZHn9glauOHKOddhhOpshWxn/+vU9SqIgoUUSRZGZxlsV9M7TbMUrszd6VGg+UpsZ4T7Pyp9CRIo41kdZY5zlz9iJPPnWKJI05dPQI40nBEw89Cc5w3cuOMS7HzMz0WF5eZmc4oigKYiXwdcEP3PZKji8cQRSWOi+ZTieM8h1mlxOuumGWsiy4/55TdPUcSibIJGZzZ8gzTz/L0uIiS4v7+PQX/5L/9ocPviR/7r/bxJFkdf0iU9UiFoL5rMdSax+DyTaVK1CRo9eL6M3OMsodeQnltCBuxxy8oc/iVTPIU7B6ZoCvwOGQSuKsRcpmBJ2UgBfoSJNPDYPtGiVj9h+Zpbsvo9WWTMaOs7tTtlYmjKeG4chSjbcYrhdISl751pvZFdsYI6mdQmqB9Q6HwAHGeBKtUTJprksVkeiUfithd3iRnckIREQmI86fX6csHUaUSCVotVpEWtLv99lcW2Ou06LfimhFBi0lSsXUVYWOIgxwbm2LbrvLl7/2GJvbQxZn+lxz/DD/9b99ikcePs2hg4c4fPUBfOX587+4j4vr66A0k0nJU0+cZq7XpphKitxjjOO6a46jZYSxHik1dTVhbrbF9dfezjSf8PmvPn0lL5EX3GUX0s/d2lWxAGmbP3DQTAZTXGkQc5J7P/8AuyfW6OmIG65aItUSR8TC7Cw1YGNL1MkoXYV1Nb5wJNLiOxGTSNDqL/DIUyfYXtnktcdvpzXfpbQXyVopi7N9di5scYoxbS147W03cdMtN1JsXuSWxTkuLh1le2sb0enQamfsv3qRxYU2O6srUFrG6zt88mO/y5yLKdfGrG+PufYVh9g2A6ZmhzMjx4HoIMUE8oFjvttGxDUuFoCmrTKW548w8IZtO6K7vECZwsbGGqWs2ZYldRoRScWjm2fBFLzuzlcxLSo+9+ij9NqaI5GnHRuuvu1m3vyyV/BHTz6A1woOZMSdfVy9/xBaOx5+6mtM/Vn2ZUssLR9gc/08hReUZURuLWm3BV4w3VZc//9j77+CNcuy/D7st/fx5/PmepN5M7PSVmW5LN9l2vfM9Hi4gSU1oCQKAhUBPYiS+EKKQUoBBINCiAgxBAoAgQHAQQ9mpmfaVpvqruqymVWV3l9vvns/b4/fWw9fDSQFXwbRw2h2o/8R+Zpxb9y99ll7rb959i/yo6/8Dr77gC//6gvsbh3n4w+vEgzGBIkktjJWThQZZBmHh31IBTpOUUnGOHEZNWPKdZPHX6jx/Gde4u7WLt1ejPIq3H4IX/z1z1JdPUssBasnlsjNVri7e0SWSBYWlhCx4NFzLoeNFu9/+G1efOoZtt/9gPsP2/xu73f583/j1/mP/jd/ndn5E7z51g94uHWD2Xqe40tVbl+9STTssVifYTjuTR9lkcYsgTQlOjYQUnP+qWUoam7eusok3GXWyzE8CuljcPzMo/zil77MRzc+Zpge8CufepXxaxFyXCPrhVQKRfb7Lb76w2+x3m0yzqYnFxWz/nCXnJdjf7vJk8+/yNJShJG16A6vMVv0+NynTvCV3etA8O8kteFPfmepJjimYKZWpWTnMLWNKTLqtTxRHDIcp9iej9IgXQvbFDg2CKFJJiFSSI6CDp1rHZRhsHPQAqWp1fOYpsDyLLAzPE8idMKxxRk+fucNDtYfUMgZnLtwhscfP8n1Ww+4fW8XrSW1eh2tFd1OmzTLmJuZYTgYULAKZCg63TbV2gxbw33CIMN1PRJAqQQlp43/brvD7/7wB8zeukYiNLZtkAkTmN5xwhBgCFq9PrZlMh4PcYypcGjteI35+Rzmos/ySp7797p8dLlBo9FncWWJU2cWWTpWIGNCsVgkCEKCRJMrlcgSl/d/+D7H5lZYmO+TK1hEasyg0yNnOziOxbH5Gosrq7i2z8H2PqdWllE6o5DzydJjzNdzzJYckiSjICXPnbvAQbVKrZyj6lZ4+ZkzWLbNxvo6YZShLJ8Pb9/k7tY6jW6bRKcc9Y7YOdqhki+yUKtx8fQ5LNvA9SxKxTyu55C7dBppBxRqYHiSo6MRJCaLtRlklkIWY+kU4hhPuhw1R2Q6JSNlZ6/B3GKJYt7kteefpZIvkqUZlm0ziiYkSqORJAoSpQnChIdbm+zvH5JkCYsLs5x99CSlWpnNzX0e3rOQGCwuz9KbuAhD4hcLRJnGkJIgGZMr5bi1v8lieRYryTCFxrY0dTfH3LyLlzPZOwpojiMaaYfJJCFIE4ajkOFoQiOOsFstHrSO/v9q4Of4ny9OnTjGzRu3SeyEgmUxny/TG0w4e/ZxmsMGkRdRmnFYWplhYfEE44ngsNmlP+hjFYekImb+eIV8qcDhVot+M0ZrQUaGZurfrLIEgcCQFpNhhEgtHAeUVLRafdLdiDTKMAQ4UmNoBZFJMkiYm6mx/GiF1J8QhiFZ5pAJA8uwcL3cJ37S9nQw4OZwXY0wXWxpUXItonBAb9DHsEwswyMZKm7cesjShRpRHxI1wvFstEqpVqvsOQ5ZmvDLX/w09bk6P7q6j2nYKA2GmPKxkzRjHE7IlM3ufpv3rl7n+v0Nfv8P3+C5p5/h86+9RHm2RGu/zUdXbjJyPLrDISq0GcaS4dERtdwsSZhw4ZGTzM9WuXX3JnEM4+GYhZkiZ88cp1avsrG1/5M+In/m+LHFhtLWCKlQSqFjhRqmkGXE44hBY4SRGZQqeZ564hEW52pYvs/+oMv67gG/9Kuf46jf44133kf4Fl4+x/ETa5Rm62xfX+fW1btsd9rU6g77b77DsdlZJlGI77gsLSxQrRYYpBPu94+4v7HBs08+gzIihFQUK1V6rRBjovmVv/FF9va3+PbX+qzffIBIBTsPtjhqT4iLFeoLddr9Q5Z1zPxKnY3GHq1eh3AUkQiIsozH1h7lWus6yAwLg9Xjj2B5s9zbXGecxESbewTDNoWKyfLMAr3xNlEcor0Cx86cY/3mBiv9CaZd4HA0wSnUuLm7S+36TXqDDp9//Blu7LUJYolTzDg/t8CDW/cYZB0Cq4Hhp1y/eoeg18eyPQ57A/JDlyxN8RyXasHDNSe8e+1f8Ojzz/D7/93r3L/9TeZPL/L0Z15j8+YD9nebrK0+QiQ6jMZNLOkglCAJY3QiiNOI2dMGr35hhjOP1ajMVThVPMV333wTUXZ48tGnOf/Uo0grR29sUOyFeHbEsXlFMA5wdIRluxxbzmGoAu3DHEk2T7FepNvosLsx5o3vfYfnXv0UH197yIONeySTIQ+u3qe1vcWo1SUJY1SxgGdaxJnCMUEYKbYpsTXMLPhcu3eDRv8I2/K4cOZ5fCGwHUUwU6SUN7h993tkkw6Pnz3L9756DVEt8dj5k/TuPGBUsfidH/0xQ2NEP4hJtabseVQLJT7z6hdoN1Pe++E1GrdjHr10iVu7NwnDLW5/8N9Qqp/gmV98lvf/wet/FrX3U4twMMArFDi2sEzFL0/FL0j2D9ssr8yzvd8mjBOSLMUyTCSCOMsoFjzyOR/TEKRJMH1MpwmFgksUhdiOBNskzFKCcIJvu/iYDDY26dx7yAuPnuGR80vEBOxu7fPR5XtkmWR+fp7BoEcYTjAMA8+yMaRAKU2mNIZhkqQB7XabSrXK/l6bwTBEa4XjWHiejzA1w2iANE0mcYwSCsORJFECGrS2AP2JWEmiM02YZhimxHMETz51DNOUDAcBBd/n5Zfm+fSrL9IdQKgyWt0Gw1Ef1zPxciZhFCPNjO5wSLGaozxX4N76OpajKdd8Zo/NMr+6gJpEiCzD9TyiICAaBJCmSJ1R8B0qRZe5mQVyeRc/5/PgwSaVUpFabY4TqwtkWYSfcymW67QPD3ExmZ+fI1Ca5y8+xtrSIs1+F2nbrB/ssLm3y+5Rg52DAz6+e49iPsdcfYaFmRqeJXn+0iPUKh6mqxlPIrbXj8i5JWonfHw/x6A3pFTIoYRkoVZmrExa7SZKAxqyVJNzchSsHHoUYSnF2ZXjpDolUxAmKYedLtfu3KPbH0Gacm5tiVylgOlYGGiC0ZjZepVPvfwsrdYRcwtzpEd6Ov0SBgrQhkSlYLsewyQlcUxUnKIQhELQDxOuX2lw819v8GD7iMEonjbySiCk8W+CN7QCgUYJ/ZMtup/jTw2ZavK+izAtHM+nWq1CatLZOiIWMXEm6JgRlt9B2oIzp59gbnGOZqfF9sEddKqRMqZQdcnllug1hmw8PARlg1BkWYhrGyCnjXSSJcRaoWVGt92DTCKlxjRsdKbIpMa1LCzTobiY59VfOMfQbbPd38UxTSaJnga6GNMtDfwJ/1pgWzY510MIm6Jrk/MEzV6XTGrSOCWNxrz7xjUO9jssHIs5c+kk2dDi4Y0OMvCIIg2Ghc4S+p0+lmkgpUTKqQtImiaITybrQkqkISmU8ty+v8vNG/dIlaJYdCAJydl1Ptre5MKFEwTRiCSOAXBsG0OY2LZJ3nXwvDw/evd9iuUioHAcg9defYZaqcLO4RH7Rz8PZPkfQThgmikqhnCcoFUGGmSY4nkmZiyolX36wxaGm+JQ5sLF0+w0D/jmN79Fgk1tpkamMtLehHtvfcTD9EOef/QiVmxgTjThKMb1bdbbbVwlsVLoRgmnHzvFRx98hLYtRKnERNvUqnW6vQGlUgnLcdlr9vnG62+wdKzM/Qc/oJtlSN+kUPUIhhHJcMLEFZSOFXjQ2SZPEdPKoXWfwIwJqwbzy6sEGZDY+GZIFsPh9gEvfO4i9w62SSkSpxnaVEgjw/BLPPnkE1y5cYcoU7iOTWVpnh/duUm5MsOsa6OiIapc53ari+PBnOFzob7CN26+h72YY1zdZrN1nfxKiW53zNbWEelEkIz2MKVAmpIjBL1hjGOZBFnGta2HFOdsSi/O88gzp2l2Yu60O9x7+21ydo4jPeT2vX2KvseTr7yEoR1kpHER/PC7b1GoWcyeDSguORz2BzSCQ6qLp3nxhV/m0lMjrLzG9wtEo5SD9gH/8p//Pq+8+Dhu0WN+YY7rD97CSIts3e+wtXGbX/21X6VSMhgN+pgYuJZm3B7x//yv/z611TMMxrB17xpFHfLkmbO80fyAzNL0gyHluk+3OyRXcfHqLrIgECn0mzGNjmJ5NYdKR+w0HrBYqWMouHPrgOpsjlxYpGYsIdMKj178DKlrslybpXo25Z9//fcZyoBJGpNECUYiSCYZjc0+33/9ezz95Kf40uc+hY4j6p7Pwa09eukB20cdBmGbwTD+Myi7n25M+gG1QpW9RhOxYDNTq3DQaPON19+g2R1SKPoErQ6WZYBQJKkmTlOSJMZzIJ83CYMQrTIq5RK5XI5JMOXoZUIjTIGU4BmwkM+TDANWXnyeWtUjCmMavQ4fXL/LYJJQq9XodrrEYYBpgUTheR5BMME0DbJ0KhRCGIRRQqYiiqUSzWafLBHEUcx4GON6Nradx/MspClQKsZ1DdIsQWVgGCaGBJUmJCi0cDAsi1RHLCxWWFtbIFWKnF/FsaypUj6egGnTbQ9oDwKSLCNFkZtMmK3nIesz6E8AweOXTvK93RFJEjNTLTMZdvFzJeZXFpgMhljSQKWCwXjIaDjEtW2SJOKoOWY86uI6FseOr3F87QSW5XF01CLn5z4JpFDsPtzk6LBJwXcol0sEzRbEGTPFKpVimd3mEScXVig6Po7pUC3X2NjeYrfZYH1nh/ubGyzO5bn03ALSNciwefjwEIGHyjSTdIJhSBYWZjAMi35/wKmVWdxShbf6HVKdUatXyPkWecenVqxRtCwKtk0ek/5ghEozSoUchZlZqpZDbXaORvuQrcM9MlsQpCmKmFF/yPXbD8lSg8cuniOXd6mrGqmSYJp4OQ9hgeEZ2J6LheRmaxc9ith5sMf2ToN2f0AKpFqh+eShJBRK6mlSnRCkU6YJpjRIk+QnWnM/x58ejd0Gjmlh+T5RltEdT8/Wy88/zx989ztst8bUjpVBRCjVJEsu89ijl7AtTa8bUiq6hDohRSE9OHZ+Dr/ssH5nj2iip7t3w0ZIEFJj+Yq1Y1WEVsSjMcEwIwwz0kijYphEIV7F5aDTIKgWaCQFhumQOE3J53JEwxDDnNKfhJwGtEjhIHCxDJe8DcVCgblanv3GOp1RD43A1jYffXCfzfU2aJc4ysjcGCsHC9qmtRmgYw+RM/CEA5jcu7dJ4lbxfRfg3/Co0zTDcSTlcoFKtUCj0WYcZEipeffyFcoFn0RLvvW9N1ECgnFE3nOIopBeu8Xq8ePsHzUxlaLbG2FYLmAyHLV44bknyRUqfPN7b7OzfwSW9RM8Hf/T4MdupJXKplMfMyFXNckci24jwY0TyoU8cThinI7oj0cEacLg/haLtXlOz5+i3bhBEism2z10lqEzje94CKWwbINKyafVM7GUgSkN7LyBnGRoy2ZS9hlbkokKOD5XmxLm5+qkRBRNi8N7W0RBjBYGUWrQGWakpos/U2Q46lOoOAyOLBSCdreLLFdIVIyWIWdPP0Kn12c4CUmSlL1gj2Jsk2gTW5kszc9gR4LdzY+o5gVxrJF2DoRHFEXsHXZ49NE1Pv3Fz3P1ynUebN9h0j+kYJfZ3u8jxyCJGamIci7l9HKVXrPLjJuS9Jvsqj6vfv4JZoIZrl5vMBxDljhYbkw4STAjA0NoqmurDMMGWZYyaGd01jM0RT68sUezNWaQJpx9+lH6jSF3N3ZQTMjMiE44oWrHrK4uQZpgYPB05RVuX7+MijRXftgkctt8+ku/AInLqZVjdDpHKH9MKZdnOO7w4OoH3Ln1Md3OEeXqCf7cX1zC8MYcNDbpTAqgJJOjLeLxLk9/apX3/vghlXzMeJBx7cpDKo0Rrl9g2GqhZcrc87NUZ8p0B12knVGv5ykVBUbeZXt4hG4orMTByAyiIOLWtbs8+shxcoaPkeSIdcLLn/ssm7sHiKNDAhkwtgxWl05TyflsfvQR73/8Iw5Fm9iMSMMEmYGZGDx9/hL91pgHNzpErcu8+tIz3L39PmMd0jLHXF7fwFAG0vIwCgo4+DMovZ9ePPH4Uxi2RW8Q0NvYYLY/5Ec/eJ+D/Q5Kacq2hWULNJ8kgmlFmmmCIMYQJkma4bouWZKAUohMYSKRlkMmNb7vYRuCgmvTbuxTNAS1xSrdfosHe3vcWd9gFGty+TKHjRaGgmK+gDAShNSY0mQSjAFJmiRkWhJMEpQSJGmI4xSwPml2lTZRSjMZZwQiYzyOMC2wHEl9zqdsTc+bQCF1iuMZSMtGIUA5FDyfp5+9iOVWyMIQhMU4iBDCQGMSp5rDVptEa4RhYVoG+XwB25xw/uQcnpVjPNY0S4q9rQYnluso2cEkZdiOyaKYuZl5HMNif2uf7fUt5mdmyfk2hbxHfaZKuVxiMhmRpAndToc4CqhXikxGASiFUhmTdIgUBobloLSmWi7RG4yJo4SjTpt+r0d3OJ0UPfbYWSxhcvalE2Sm4J2PLrOzv8nLL59mdrEIJmxuNvjGtz5AK4NSvoRj2OQdD992yLseldosJ1cXsDtj3rkqkJg4jkMSTDhz6gQYGmwDbUi6gyH97gDXc6bev0KTioT+uE2UjMgVbQ56baycj7QklrAolovsbO6xt72B6aZox0FJA8WUGmR4BsjpFFkr2B92CUcB99tHNHt9hJ66I2hAao0ApJAordBqKvwSQiIApTTS+LlTx08LMqFZWpknyOLpWUghGEzATdGOwXgI4f6AXGGWYAzNRotr2VtoO8doNEKlIX7BJYkCFAaxDjjz2Cxra0VG/Qmtww7DTkCvmyCNHMsnCswuOJScHEVnle3dHtt3hzT3h7SGPfy8Q67u09cjknzGVqtLZiUYlsRxJEprTCkwDQPTNEhSkNLG84oUchUsNaBWyDHoHNIb9ckARzts3Drg7q0mmS4g0MShIsPC8S3ySwKn6jM8zPBaBnqo2G8eUiuXSYUmiAaYtoFp5QmCKVUxX8ixsDBLFA4RhiDTgLYYhor3rt7j8vV7HHQCdAqkCa4Z8torz7O5tU+QJty5t8VsuUYun0NaBqNhn8cunqdcqfL1b/6A7jBiaek4Kyt1vvWDKz/hU/Jnix/fRzrRGAIkGqkTtGtQWjSJOgnahEKtgClNLMNnrjaLZ48puCVyOYOnziXc29xk66iFFhLP93HyeWzT5ofvvU+aKHK+Q6FcoDPuUDleZzwI8Apllk+vsHnnIVEWsrO+y2L4CDnLJxyPGAhNIxozSmMsV6J0hk4MLGVhasXS2izSUZQKPkiTQSMiasbYZQNhap658ASFksH7N+8ghwnj0YC7hxscn10k7Q+xHY1izFGrR6W+SjLJGCcBsS3Jsphw1GVrPaIyf4wnnjzH7ZuXCccRUXCASwGRQTgaoh2X4lyNem2GR2ZWmYsGXD6+Slw0uHrnJu+/00MHJyiWLQS3MWWPbALxMMGzDbo729iuAsegVClhmUWOv3Aelc/oH1zFtQwMAQvHj9NqDhDCxvYdwklCFiSMhgFBMKacK7Nw9gLSs7jxtR+Co6icLzMzO4spXHrdJjpTuJGkv9Oke3BEc2OXSq6KNHMcO/kIQixS9Gv089eYOXHIzr0ib77xfc49YfLlX/4yrQdjHCW5fn2LsY4ZxPs8c+kxmK0y6XS5decWr33mFX707jtk6Zgo1Zw/cYZWHPJg1KWEQU2VSXWG4WqeOnOGEyurjEMNIiMUByROm8r8HJP2EfX5ed6+foNPVxfoH+zwYP02t48e0spaCFOSxhojkxStPP29BifPH6dx0OT0uUt8791rhKLH26//IQdJQmxLclYJ180jpQHc+vEr76cYvmvg5UskqUO3O+Jb336fQXuA1iaImEyl5HIu2SfKcdOwCMIxUmlc18A0BFpl2KaFChVJFuKaNpW5GpknsEs5Co5POomYTCbMzM4SmrDR6nL55n2QFq6f5+iwiW96GMLkaLfLylqNcTxEGCYCjSGmDRHSJEsVUloY0qDTapHzq0TB/7dp0kKA1qhMEmQJYRpTzqBQyGFbBlkSYxkSDIEUCUIo5heqvPzS0xxbrTOeTKdU0nAwZYRtSsIoBakIogQv71AqepRzPrZpE0UTsA1c00D4NsaSw6/8pZdwjBTCAD0QlOIck3FE82CfhbkF0jRmdrbG7EwNxzLJ++4nYsohSZLguS6O45FzXMJxQDIK0cIkiBJ64yFOPk+mJXfubdAfj9nY3sNyXOZnZ8jnS6xOR7MYwqTROOTwoImwBWG/x7NPrPHExRVs26DTm3Dj2iZJbHLU7rK+e4RpGPiuRymXZ3l+njjnYTgG3UkfZSu0EAyiEWdOLFNfmqEZ9DgadTG0oNlosb/fwHJMZhdqVOolRuEQM5CYrknmCYT0iIRGi5QkVQRRRJIkHB4d4RZsFtaWibIErTOENDBMSaanNmZTNwSJWcphF1ykCSoGIQVaQYZA6Gn0sxSSTCmEnIpMYfoQ/Dk1+qcHl778JIWyTSJSMqUwMoN0lBC4MYU1jxIR2JK5Y3WScYdhC5SeoOwxSqUEicbVFo40pvdDkhJNYkqlPNWqy4mTFZJJxndfv4lpS44vFVms5bGxpjTJkSYbpxhWxpOvPkJ+1iJMQrwln92tA25c32bhWInaXJ4wVoCFYZi4lo9rOyQqQWuB0Aau9KjPuAzDBgedBlGiMYXD1v0DPv5wkyx2MLUFMsMQEg8PzzCwbQMsg2IOivkzbH98yFtXr7FSn+XE2ScQ0sD0LeIwBUPiuQbLyzN0m0fMz5ZIkhGIaSS60rBzcISUEkNaZDpBK8WzzzzB6bVZji/VeLjbZjAa0h2NGIYBjm0xPz9LkqZcu36dM4+cIJ/3OXfukX/zwP1Zwo/dSNsazGR66RiZQpsKbUgqRRuzIAl2Q2JhsbJwihPHFxhHAUibLAsp1RzKFUHnR31agwA1TDEUGPkCtYUVMhWj0ohatYSTs+iOJhRW6nh+jqtX3oNhQnjcpzHoEW4+5Pa1W1x45jSX717lvcEOzpklKp6gOxmiY4dBGCEtm4NWi3NLq9SO1RnsjihYZWbmKyT+iO6kzeadmwzCQ86cPMnG9V1818ZZKFOqzZPzKuy12wzHPR45fgo1kcznq7h+gQe794jVPp4A3Us4Gt9kMtdlYWmR3qjLOD7EMvqceewMHivM1lcpaSg5LovzNc7mT5PUPP7J93+P6+9v4wkfv9xGmwZCWIz7CjszcV2PYtFC65hGJyG/Osvs8VX2zH0GUY/64izFmToiyhiPJjxx8XmqdoV7d65Sn7O4deMuKhDUS8vosmSuVqXbOyQKBYe7Y5af9EjFmHZzj1Mnlrh9/w6dXpcLFxbo9Y9odA7oiS7aN/ByNQqFFTa3mxxbrVMuP4ZpzfKZPxegsgEb61do9hooc8jeQ4nKBF6hiOVKtnZ2+NQzz9JtHNFp77B2co1vfedNxqMAd6HA4uI8D65/hPAkeRxWa2tsbW3j+Salcm3KFTMd7t1dJ8vFlF6wUITUyh6mnWcYpVz+8E0WylXuHG2wE3cxTEE0itEpzBQr/Pu/8luoYchmc5N/72/+Dd68fIf39m9gzAi0ladQKGFYCssp4tp5LPmzt5b6t8Uzjx5nHBuobMi1j+9z1GijMoVpGNiOidaaMJqQJCmmYWLYFjnHQdsS37WwJLiOSzJMcJXDyaVjxOGY/miENCwq+SKr8/PsbG1j2xa271Kfn+PqH3ydMBbkiz6Dfg8T0DEcNZp4vkscpWRaE0UhBddBAv1RhOXaCDQSzdqxY9y9u8GwP6BUKNPrDVHoqcYDQINiyrOWhoOXK+C4NsNeC2kobCthecHj1U9dYO34Clr7DMch2nBJM3vqgiMMtDCRhkEub1MqlXF9ycpskbzjkipJezThqNWnWpxFpBKtMyxHkCQhGBFe0aYiPdbsWbLIRGnJ8bXjCK1RSUI4GRMmAjt2aLaOiOOY1eVVknhC67BFv9tj0B/R749pd3pI2+L0uTMQJTS6Q15/6z3uPtxiaXGepx+7gO+7lMolHNMkihNK9Trd5hEig6cff4TjZ4t4OZsgTtm8d8TazBlWXz5HECj2mkc82N9ir31Iq9Ngc9Sm2t1nfn4JYybPs198BsP30GhkmnD54T2QIJEMe2Pu3V1nPApZPLZAWM+x1xqhxXQzQKDR0iDJIMsAadNvjtneOMBxHFbW1gjTkERlmJYkzjIyDTpNsSwTx7JIU0UWJ6AllmkghESTTQ+znjbRWk9T6wxpkCmN1n8yzVYIND+nSP/0ILJgMhqidEbe92k0D5idmYO6w8u/dolnJim9wQhhZPT3FR/fvMOKOY9VSvnEy4YkiZiplRmOJ2Q6ZTAe4edcHNtB6JiZeZ9K3ScLFUvlHDkhccQEZVvYZJx/6QSJnWLmNNIRREGe5k6PySAkThUHmx3yvoVTd5FSYhomlmXhWh5xIjAxsTAxZIq0Exp7e0RKYRoOzY0+h1sjCnaZ2eUS9WqVNMxIswmiJZl0YtLUxHJMEILmeoej3TZRnHJ/r4FTb6ENgeu6iCxGJzEn1lYIgoBWu80jJ5cJt45Qasqd1hoMwyBJEhzHpl7OcfLYPF/4wqeIBm0qxSpaG6wsLfG9N9+h1ekxiRJG4xGz9TJnzp7GkHDYbrH9nQa9/vgnfUT+zPFjN9JpJFFCoBKFARiGwDQNwkSRtoYUhMOJ0xdZPv0YD7ZucNRuce3aHU4s14njgHs7B3SHEZkCNPRGY3rjMbbr8rlffJVr731A86BHP0pJfIWvE+Ikwho71JceoT5v0tu4RyGJkDv7JBdOYZUKzK3O02nvIBOTYW+ClGPMgo8wDE7MLrEwZ3LppQuELcWo20cVI3Z624zvply9+T7CdFheNLBzHkZlhk+/8hz3Hm4TxILJwQGjo4TttMvqIycZBRNO5YuccyucPHWCzfX7RDJhIFzGu2Mef+48++46UQ7sGI46BxBqPvXiJb74ypfZvXeXVnOPGa/CS08+x9fe+QHpeBvDjun3+4RNje+4+MJg0anyq3/5L3L23Cp/9z//L+lEgoI3x95+lyhJybKQxdocwWrI1t09xu0YnSnOPXGGtdMrdI4aHHUEzaMeNz64zuPPXCSXt/AMRetug+LsPEkWMdoacfmtdzm+ssLaMYvhZI/v/PAHHB40CYOYTKd4lkWztcNXfv8fcf7xJxD+JYruMrXyGqgBv/bX/hJ/9LsG3/jX74FQXHjlU1y7+pBRMCYzA8yCwV5rk9/+y7/N3/vP/wEb9+7y9MVX+Oq3/5Bw/wjn1jV2Jk0c16K7F/Kj25eJgoRCzqfdfYtEJaQSHGmizJTz/TFnjp3FKJWJrYAn3bM0G32+/v7rjIcDHC8hjBVJBBUjx9n5Y1y9e43Ul/zmn/8t7u1scW+yjpixMPMebi6P79jkcnkMM4/SknD8s3cJ/NticaaAMH2ufLzJ0WED2zJRhiZJYgzDIdMZSiksU+JYEilShBI4loWhJQYGx5dX+eCNqyT9HmJkkXNdGu1D6qfLzNZrqDglm4QszM3x+MXzvH/lCkmaUSyV6A8H5CwLnWT02l2EznB8i3EYIm1JGqcszMxSyBd47/Y9dJpiSgshNHEw5vjSAjdvbRBMxniewyQIQAmknNJRpBTkC3ly+QJKmGSkZJgk8YTajMtrry1TK0QM+1sIUcKx6uQKZdJEYloWUZIwGk3w8kVKfpFivgAywjIdlJJkCXTbY9ZW5ogyG2EajMaHDEdtZqoFsBzqpRrmRLK/vc2kpVhcOE4+lyPNEmKhsbRLuViiWqmigDgMCcYhG+ubtLt9llaWKc3OMVZtZGbQHAy5+/aHtAYjupOQZn9IhkVvv8295jvYlmBhaRbPsSgX8zx+9iy1hVnyrub4sTx+ISPRCfceHrK+MWC1VsazPaoVm1K9xPLpVTY7De40tpGeC1IwQGBYKdK0SEWGRiNsA8PJkWWKzlGX9bsbjEcB9fkZFk4eR3gWliewnQwhEuI0JklTTNOg6OaJIsnRZEAYJhQrRcpzVUzHoFKv0Bv0kRqEIacNshCoNMOQknwxx6QfEQYxKpt2zUoDCP6E5JFlGYYwEMIEps20MAxQGWmW/kRr7uf40+Ot1z9Eo9BKUSzmSNKIw9qQi0+eZ2GxilcSROMRtm/grpSZWS5zdNRiNlf4JJrbJs1SNCme79AfJ+gso9PrUFqawcBESkl9psi4k5BmkusPOyzNF6jUXZYfn6GXDrCUwrE8up0J7cM+D25voNIMkWnioWZvo42fLyLkNOzFNExcyyV1DQpukZxnYtsx65t3CaIYU5iMOxOOFdb4/K/9Kr//e18nCBJefPQFrn14lR+9dY1tZ0pHsr0Kdj7P/OIcGx82CSegUgekxpAW0WhCr93FwGBtdQnLFGxu71JwXHzfZzIJMYSJyiBJMixTUSgUGA2H5GfqPHbhLDpNyZRBo9lhPJmQpJrF+VlGk5DeOCKONeNxwu1bDxiNRgzDqfsJ+mePJvVjN9Jhd/rBFFqQJBqVKIRM0UIgDUHsZ/zwg7c52NsimrQxpYltSkp5nxt399k77KIUOApMAaYpiZUimUwYRAFPfe5lPvj221RxEDkDVxuMul2qlROsnl1jr3uXX3jlFdq3mzx+Zo1rH17h5u4DssGAl5//HF//p/8KNYyozy+QkGA4gpyl6Pd7/N73v0aShkitqNYqtHY7xK2ML/zK55kpz9DvtPDLERvdPqVinhMrx+i1exw9vEtOSpz2mI3BdaqPrDCUMcq2uLXdx87lGYYBVvEYnRs36d0+JNsNsAo+9dVlaESMtpp87x99lfUbt+maEUumybHVk3i6yF/61d/gvWvXmKgYL+cgu4pK7PPi+UcoVPP80i/9In/vv/xPibXB6SeepEHEOAwRWmOZBgtzcwSDhMZmhyTUXPv4Fs88/wwz1TInV1eYWzrBN7/+HVqHTT66/DEF/0lee+EkL5x7lNFvHuNbb32Tq3e/zX5nnX/11X/IKGgzCroYhiaJBUqbCAQCSbVSoVguUi4u0jxM8Od8ik6BTBVwvYjf+ht/m3fe/Ne0W5sszcxx/d4ttBqR6IxcdZW9ToPN5g3+/f/lX+Erv/vP+M2/8Fd46/0iozji1sYm5oykaPl0+0NkKtAmBDqFJMOxHGQW88ixNWYW5xi2Iu6EWwxGDZbOWGh/wubRfQ57A9x6yLknYOeWQg88PnvpJVarS7x7/Sr9Xsq7169zMGiTeSaV+QVsy8YwDUCjMXEdD8NyiYOfPTP5f1scttscNO7y5hs/QCgL17VRWYrWU8s6A43lWdNJnhIY0iROUvr9ITO1MouLc/iehyFydMd9HmwcYaiMxZUSLzzzJKtLi3zr+29SLBU49+hpuoMeb797BcOy6fV704+RNNCxIktSHM8nVdNIXykEUkuqpSq2bZPFKUqmpFmGSmF3+5DlhQXqlSJHrSGmLbEtk0RMHR1A4foOxXIeISVaGAjTpjwzTxKPwY6Itc0wSCmX8vhOEctyQCfYhknO8ynmPGzTJIgVURjhuz6ZkihlIi0H1zUpl2qYdp4oNWkeNUiygFq9TCHnkaaaUZRS9H3qx4u4i3l0IEArhNaUikXiKEYLyWA0JIxCirk8+3sHTIKQmZkFkA6dwYB+ENAeT9hu9dhqHDKJFZNMkWgxNcNViihO0YlmstfgqUtPcPzcWZxykVa7QbmWwysrMpmye9jnj16/BrFPqaLB0rSjPnv9Fo1Bl7FKyVwLbZsoIIpTiMOpeA8BQiKFQZSkjPoTtjf3SNKMxWPLrJ5Yxsv7GKZNkoa4nk2hUCSKJkRRhNZgSZNcOce2nEY053IuOd/EMCU6jnFNmyhLUAqkMEiTFK0VOtOMOxN27u/QPexhCIkSGejp6noKjVIaMoU0DLJsOrHWOps2Zfx8JP3Tgv7RANOacnGCfoKUgmAQkEUBrWN1XMcmSyMKtQK7O01azTajSUhlyUUrMAzIMk1vMKFcLmMKA9u2cR0boohyqUASaarlIsOjLrdu9ZhdXsabmSUSMbYPxcghCiWtvR4P7m8zCRJGgzGpkmhSBAb9dsz+Zp+FkxWEClEq94mIWFAvFlmu52k01xmEQ0xp4kqbrbsN9va7PPNXnuczz7/C17/xBh+/fZsnn34SW5lcee9DauUctbk5JnHGicUl7jp3GA36VMo5hDDxfB+hBKaGai1HPu+yvb3PaJCysFZCmBZJqtECEBlpqgmjFGmkBFFCo9nk97/6OufOnMK2HHZ29hCGoNfvIw0DhaJcziFNA9M0OX7yBPm8g+XbTCYRH398/Sd7QP4nwI9vfxebWMIhGEckoQI19YuVQiNthagYJCJgb+ch9WKeJ55+gtmZAhubW2ztN0i1RmpByXE5fXwZw7G5dv8BGQZ3bt7hf/Ef/y3effM9gmablz/3C1ROVnj9W99g6eIJzj/+LNZNRSUZcRh2GAwmbN24jlPOobyQQiniM7/0PHvrWxgyZpyNCbKQ3m5ArTpDLb8G2YRRvM9nXniZh++v04sHFMc2zz7zGM1en3K3SbZ5j6PmIXdvbmIok/nZWRr9IXZm0IkmdHtt0l6PZ09dZHu4gyiMcT2Xg84m0h5z8/pVmgdHzD6zxqNPvMzOtYd0b40p1RY4inrcPNzlwQi++NgW56XB0ysnePHJx/nhx5eZmy2Sr5Q4uNyj2enxa3/j19m4+hGtu1t86gufYxvYvX8bYQhc0ybvFQjHAcsryzT3BxzsHNJp9nnrjbe4cO4Uzz71BIszM3zmtVf5/vd/QBRP+OYff5P+wQk+/corNI6u4VVjMqdPKlrs9w5wHPCLAgODUMBkHGFZBoapse2U5y89R5T6JErgGAaO5WLncwyHPTI14Pyz53jj9W2+9u3vEkUaaZm4Von6/Bk+3mnwz37vX/N/+0/+Ex5/9AXCyUOeufgMb175NooE0zRASAxDgCnxCx6GaZCFKW7eYWFhkT/3m7/AzPIqd7OA73zvdZ58/CxheMB7l69w/26LRAWcODE9Z16c4+lTZ/FMhyBJsEyfomtx/cEd7GqBUGVYro/nuliGOY2CNQyEyMj5DsZM5c+g7H668daVh9y784DxOGISDLFsh1zOI58rYBoCVAICLMOh35lgOC6ea+B6BpeefRzHEdjYZEoyCTWxTLEF5PMFTh1bobFzwMrsEnPHFhiMhuzuHTAKE8bRGMuxUEpScosIqZiMEkKVkcQZmZlRdHNICdsHBziOi5AmaZKgMk0Ua4I4ZJifTD+Cg4BRMKZQLiNTQRDFSAPyRR/DNsEUUz4gGQqBdD2iVHDjzoBzp+o4voMhBVEcUfB8LEMiNdjSIO+6ZFnMUafH3MwcSqXE0YRIC0xjKmQzTZ/uYESiJfliAUFMnKSgpyEMmWExyQKOjrqUjCJFt0yapFg5k0b7kDCMmJubxXU97t5/QM7Pc+zEKeJEMY5CypUytXqdU0nKY/0+3UlIf5Jwd3uPqw+36EchWk4bjlRDGKeMJxGFUon6fAWrKliaU0g7Zhil/PDdDTYbAX7eoG0q9vsN9poNhmlAahogDaSwkWq6Cs7lXdJPRORZkkybUS3pdwY8vLNOGEasri1y7rHT2K4kDBNMw0AKl2F/gFAm5VIOQwtUphEY5G2XnO2RcxxOH1/hyU/WxpZto4TJ+7duE05zbDCljVaK0XjCxt09WntdiEEhEHL66NJao7LsE2rPJ9kIgk9+VgCBEAb8nCP9U4O8cjCUJhIxxZKPZ1m4nsFMuYypDcgEMstx91qDzY09sonEtmws0yZKpxHaIKYNZBhjiGmaoef7uL5HkqQoBeVSnmEl4rHzT2K4EiEywlAyHAbsbTbZ3zvENBxWF9e4v7mJVtOfTwuB+kSL0G71mFvNUfDzSKmwHI9CalK0JMNek8Goj+O62Nqksd5i406To4d9/n73v+U/+tt/m9/+9/46//e////CNBx+/dd+k2ajRfuwRa1S41PnT/Lpz7/G0cEB6/c2OLu2xDgzUK6H61gs13KsnVjivY9uMQwUhjBxXYfROCAKI7QWWLZNlmlc1yMIQrQWDKKMGMn9nSaddoc4ToiiAJWl0wGbqVhcncfKWVy7d4vLHw04uXaM06dO4fs5kuRnb7vzYzfSpmHT7wZkiUIi+CSzAFOASBMsJDPFPC+ePk2tkufa7Ydcvj6k3R8QZGq61hAGS4sLvPbSszzY2eJhwyMKFWGjy876Fp/7lc/z9le+zblLjzNUfequj2MqwqDF84+eQO3cZelzF7i6/Q5Cjki0jednHOxtcPzCE9zd2WTYaDMJRth5h/EgYq7iUBFVnnrkRT6+9j3e+MNv8aUvfYlb3Qc8vHqfJ596kmMnLxDcu8ysLzl14Sw3b66TZgrL0MQ6ohX2UJ6LYEpjeXj0AaIucOdd/GqJfnqbk09U2L8zwREezeYhGx/f4/ylc9i+w+3713GbGi+qMBgO+eqb7zL3pQLj5g6vPHaR9z++hjYinnjhJLs3LzMuSD68e4XnTj3Lr/7Fvwrnj3Pte9/FMEx826JeLdBtjhgPI5aPz/H0c49xRWe0jrqMR2M+unKN3mGbEyfOMLe8zGe/8DJbG7e5c6vD3c11Ng/vMRx1CeIueAmFqsAyFY5l4lo5Wo0J0STFtQ0cV5KEAesPHrK21qE6W8KWGttKyNIJzeGI9y6/Sd6XbD34kI31HSZhCIaBZ7lYOZ9i2UOaNgqPb//gm/zVv/4f8vv/4p/y2dee5qPr7xIbHVzDwjct/GodkVpkbsLxUzNYiebE4jHCYELOSmk11vHWVpCe5u0f/YjV1Srb99skgUneM6mPfNLtPMt6kWAckc5KnJk8L5z8FB/dusN6fxMpRgjbxZAWpgHS1EhtTK3YcgLDCNDZzyfSH364TvOoh2EYVIoenudhGJIsySAWZJnAMC0s08X1FEkS8+TFc4yCLjPzeXSaogODNJumeCEFQkiyVNPZH9Dsdnj+s69w0D1ESpvrN+7R6w9wbJckUqRJSjFfottsow0wHYkwJaZlkiYpvmOSSegHY4QEnWbYlk0cp0hT0Gr3mauXeeT0CnfubRCGA8qVMtJIsVyLXF6iRUiWKUzLBAGGaUx51obH9n7MJOzw2BmP02serukjDfeT38cgjNIpv1Ca1EplUiUQtoMhTCaTAI3CMh3iVCNNh1y+hGlEkGYIZeB6eaJQY7seWSLoZkfEacI4ijFxMYOQSRgTBBFb2/v0ut0pbcZMyXSMadsQa7TKSJMEISS1SpnlJQ8hJM8/fpbX3/uQb777IaMkwzQNUpWBSmns7HC0t8FqNWFh1sT1UoIs40eXN7h6/winliM/U2Q36BElEwLHIBImSkgEElvK6d8yUygVY9sOnu+ChvE45GC3yeaDHbIk48SpYxw7uYyUKb7jknM9gmA6QbRsjyyM8Gs58sU8juNi2Tam8FDJXVaX53n2qYss1mpoleF7HlqYhMfX2Dg4YBhEaK0ZDyds312nc9BDJwKVTZtnrTOkIaYCKmO6YVNaMdUYZoBCCMnUOhF+3kn/9CBpjykt1NGZ4uLSGmePrbKxd8A773xMZmQIyyYMM7RhYRg+Oo7I0mSqD5hGFuK6DlpnRFFEIe8zngwZjcYMDIOVmTJpHGEEAcePV8jbGb3uiO3dIza2W3R6MVJYoH2GwxGbW/cZRUNg6tOMNhBCoLWBSgStRpel5SpCmhTcAoWcSTEn2G7sIkxBNInQseTeR4c09icMJil3N3f5yu/+K/4P/8f/mF//jV/gn//O76GSkFdffZU//Oof8/57V3jhmbMkoxa1vI95fJWnHn2Ew26Pq+stPMdgZWmV7e0GYQjZJw/8QsFjOJgwGY1xXJu8XySIEmzbJooiLNsGYZDLF+n2B4zCAKHAd1xUmjBJY7SATr/PJEmJspQgVty6u8n99QNMU2KYP3u19GM30t3uBDKQYqqCzphOpU0TpAEiVpw9cYonHz1LGAwZjIfstvooYCqfToGM/qjPm++8Q38yIkkibMOnIC3e/fp3+MKvfJaF43Wq5QJBq0PVBd3d543v/mO+8NIZavkJ63cfsnHQYK+RIRfOEYd9Gtc2+fJfWOOFl3+R17/yR5SsItVijXvbd1moV3jtU09TTCxSfY5vX93jzevvs3p8jZ23mvzwjTf48yeOs3ZikY8fXKGxvg2ZxPYc7MwBoSHLEJma5toLRZiOkYHB/VsTnn7tAokZcvuowVhC9fwcD6+3uHv1GiPRZq/fJj9jY+8JGpePMI8Xef3mLVbLeTwhyeoFjs8s8bC/gcgLnnztMXSScfPjDymoHPYjj5Pk8mihsE2Yrc5OfXhTTWOvxerqMSqVHK++9gyX3/+Inb0GKOh0+uztvcXsYoFLz11gdk6wvTOkM2rSH4QYOqZQgOKcQa4oMITFqAeN3TFpILBNC9cxCeIQ16pT8H3KfpFWo8le85ClV9ewTIMkSrGsHFII6sUlNrKHVGYsavU8amwyChJKJcHcfAkRKe7c73Dj2Lu89sqvYpVCFuePsdPuQZwhRcy4M8RIfPIzFrWCx0ytyPmlM7z/3Y/40dfeJdIpx3/tczQODukfHfJw4yqTcIQhHF5+8vOc8ec5//gJrq1vcPdgG2lK7m7fJ0Rz5doNrIpJXlYwdYqBIpIKEQtUpnB9k0xBo9kga4c/bsn81KPf6uK7Jk7RxxSSyWSCiiVxmDHoTwijFMsysOwJCytVFhdreD7U5+okyQDfyRFNIEkUpmVgSolj2kSR4uHGPp/6xWeQVsLqyiyXP7zFzs4BpmETBRmD7pil2jwqg1avhzY0tmsiDIk0PmmGhCBLUibjMTpLyTIwTR9hpGTZNKQFKSgWHZ5+6gy7B0cgJGfOnsZyJZNogJIKP+/g+R6u52DbDqZlEIYhQsPO9h55d0gxP6Dop8zVPCzLIc2g2+uTzxWwbYtwFGAIGylNcAxMy2Ey7lKqVEjTZEo5SSKkA7bhIA0DgYVWMTrLkJbGn/XJQs1wOMHTJvuHh9PJNZJyucbc3BKj4YBoEmKaFkKDbTkopUBIPM/Fc72ptVYS47seL1+6SHsw5J2b98h0Rs6S5L0c9bKLDpqUvRkKPmQi4dbmPj+4ss7cyePkZ6qEaQhIbCUxMo2dpYRRNL1/tEYlKYb5J1O9lCAMkdpk0g/Y2dhGJSnHji2yfGwR1zMxZYpnCvI5n8BKURiUy2Uc28axLCbBhO5gwGjYYn/3iIfr6xxbmUXrGLSiVCxOJ8ppSj3vMMy5NHcPGE1CVKqRYUjekkRIQpVNJ4NiajuWZYpMgxBgWSZSQqYytJy6dWg0hmGg9M/ex/9nFctz82Ab5GdmeLB3yFGrz+5Bm+ZRiuk4RGmGNDVezqBUyaEQRLFGq+l9lGmF7bpEYcCf2LWUSxWiYEKYKKRpMeq2kSJjOAp46+rHbDxs0+xFDCOIlYU0p0E+Wic4niBKUpBM6URKIOT04Sm1RasxpteKWF1eoCBt5mtFbj64QnPYxjSh4ld5+wc3WL/RIwpAGZJRGvHulSv8V3/v7/K3/87f4c6dm1x5/wbDcZ+nX7jEt776da5cvs4kCHG9PN94/wfcvnOLF1+4BFlCuZhnY/eAvUYPx8uRs00MMuZnixy1x3iuS71eZWlpicNWh+FkQpolFAsFbNsmHI8Z9Dp4vg9ZSsFzmZtbZZCMGE2G7B8cQqJZXJilj6CUr7C922AcRDjuj28W9z83/Ni/kaMkhjSmkg35iY2UUtP4TCEhTlg+XqM+U+JwZ8Ly0gKHrWDKadSCTAsMRzJKMx4cjcj7DstzOc5fWCEIxsQSNm9dxa4bHDS3WN+/x6Q+YLt3n87BhN8PGuRKBQZ9zemFZxjs3eZo74jKwjLF5AB7p83JZ56m/ZkXufLG9zns7HFmoYaMxhzd32GYQnt8xLAt2Lr/kLUvrbAyP8uxWp73f/i7nH7mUYqOyeDBHidy8zz9pRd5540/Ip+rcdTvYBoKqTK0IYksTX9vQDKSvL7/Peaf9Wl3WmBpTDNk4fgKhaLNYNSnEBpcvPgU3vEc3c3v02/2GFkjPnywx+Orj7BMjefPPcbDt3f54++9T8mqs2JUmDMrJHFKsZwjFim2rcjnbQzLIBgotM443NujsVXm1LkF8kXFsS+fZ3unwq0bd8nSIbafMlPvsnnrMhsbDSSakq2RlsFsPUexLkFapJFBYy/gcD8mGFlMOhmlsiQ/a2Eqm5df/A3u33rAm2/+EXOr59GGzY0HV6jmq3SaA3wnT7niYGqP1bUVavUquZzP7Q/Xabbb7Gw0MaVDdd5nrjzDf//ffYX/+u/9Z9QWnuOll+/yz/7gBmqcsOq7HD9Vp+znefHSS0xyJh8d3OF+u0V1ZZGP37tCruTx/v/wT9kOmqgsJc1i7Mygatmce+QExcDi6p0bdNWYQtFgf3eH+4e77A7aOJU8hrSmgqI0JjEktrbxPY9S0SFTCcPhkCwJqaQ/e5fAvy2yJMGxLYSSDCdjTNMkTDSd7oQ0BSUcUmWiU0V1ZpZi1eP4yUVcV2FKiIYx7V6XTMUYlsLExPUtZlcrvPbrzyHcEMOSXLt5jx+9+wFJqomCjHaji4oVKxeWgYxYTKe2qYpQWuFZHmEUMVLwmcef4fbDO4RZkyiLMS1wHAuJRsUZURyzfm+dmdkC588u0Gh2QY+5cPYMUeJhWJI406zvHBBEFqVygaJTJAgGzMzUKORyXLlyi0Le4LHTJwiDiMRMsa2IVAVs7baYmZ1HGgbj8RASB8f10CqbNpkSkjQjDFMqpRyerSFLkZZFKiwwBGEckSVjDGv68bZsl852k6iVYWPhmDYCgWVZeG4OQ0wbQQBTGQjTnDqp2BamaZLEEWmWknMs5qtFPvPUo5AmbO7t89TZU1w8u4rlptQWcsyUNYiI/faQG1ttLr50iX6cEsQxYZQghEAKQRwlaAG+55PP58nSjCSOydS0Cc2yjCzWdA7arD9YR0rNU5cuUK4V0GhcU+DaNrVqiXKphFKSKNY02z32hoeMgoAoVWghkRl0B2NAs7o4x9JsHVsK4nBEt9shCsakacaDm7e5d+shtu0igecvPsrH1+/QGyt0qklSPR3iZBmZ1tO0WsvAsgykYWCi0BhoFLZjkcvnGXZ/LjL+acFYRfQ7If2jA9JMTye/GnAkUmv8nDO161WKUaNJFk+QOQPLlCSmBAlpmuDncsRRQJalVEolSDJUmpEmMVmWYEiT/f0mB42UJy89y9zyCrE2CRKBQjAajtjZXefq9fdQn1i+STHdvv2bf0jiQHC4P+H8iTzFosnDnRscDVqkgCds9u50+PCNHVTk0B8NMT0Hx7VRjsPb73/E5D//v5IrFTFtm0SZrG/u4ZerfPX1d7h7MKI3GpKbmWNrd4ejb7/J6rFVTNNiOEmZhBE6CMnlfBYXZ/nMK8/ye1/9HpZtkcsXODxqYpgmKplQcC3KuSl/ehKOOHFiBcuw6bV7DMcD2psPyOVcPMfk5PIqZ4+v8Nylx+h2unS6Y+Zna7x/7SZS/lxs+D/CQslHyOmrXsppuIFAYRkS05CUikUa+22+c/AjFqpVSmWPEyeraCmxfQ/DsnByYNoadIZpMlWIzo3orDfotCMGEaR+nub3f8g4OGDhuEmjF5KNTOozNXqDmMEwYM/cp7zgEg0kVpLx1MXHuXTyNL2tHZ669Dj3b32EMxzz0pmLXH7wLu8evcNiZZ7d1h5xR/DU4tMMNgecPLPGwUGDqBNzf3sPpTSnlx6jnpY5vXKca7kcuUqB5UKOyWiIrTPsXI5+J6TbTSjGJhfOrHDv7ialUxUGWQhukUCEmDohjyafOFz9yjs8+xuf5wv/2y/zxu/8Me0WbMQpL81WWChUCFTMheJpbu53CXMWqqKoLZ3j2GMvEFdzJEmD2nyRJFX0uh1cN8VQCs+dsHvwIUvHzvLEyTNULYenjpd48Uydqzdu0Qv79LuHDPcikkaOU6fP8vD+NkqmTLKYrZsRamzjSp+PL3dJkgykolQt0+1MqMoCJT/HUn4N/+IMe915tFdkkIR04yMe3LjB7Y9uE44S8r5HtZpnYX6RWuUEBweH3L63ThjGRLdTjh8/RhgntJp7aFL+yT/8x/yf/rO/yy9/4bN8/Vtfwar0KVQKnJpdA9qU65qv/9F3WXn1RbbCFnPVjL4zJn92idaVDVwjJZSKgrI4XTrGUnmOy29+gFsq0mgcIHVGeXaJDx5u0I0GKB+EkWHL6ZrXdSwsx8BxBX7BwnAk2UThaAM1GjLq/1x0lMUG3XFMt9ekMlvh1PlVDvZaxHoyXUNphZCKWq1AvVrCsRRRNMK1DerVGtqBnXtNvJwijTWWljzx3Bl+9a89Ryh66EhzuNfgBz/6gOEkBiRxECG1Ju85jPo9tvcP6A8nWJGFNMC0TDJLoBJwTJfxICSYhNjSmMaFa4VpTt0cxmHMJAyIgxDRUhQrRWrVIoPxgAcPHnJ8bY7hsI2SAqUTtDaI04x2t02SZoxGE4bDgH4/4p0f3eL8qVMgEtDTaPMkCSgVXbJ0gtI2cZwQjsfMeUtIIQCTIEqJUsjU1HJNqYRJEGJZPpaRI84GZMEESyTYhkAJE9u2sUtTb9mwE5FpxWg0YjIaYZomWis838O2bEwzI8um/sdKw2g8JAojlNaMwgn5YplSzuWLLzzNcHSaWsEjCNvUKgXm53NII+JoEHHl3haJ6dDr9wkyRZQqkiRFK4Vj20hDkGaKMAgxzennxDQt3E8ih8e9CVsPt9nfbuD7Do+cOc7cQol6vYxtO/j5HEpndDotHu7sMZ5EaG1gWi75Qh7Xz+MLmzRT2KZB/6hJwYVjC0VMInq9Pjt72yRxxEypTJJI9ncbGKZLpzWgYlvMWi6XHnmEd2/dJ04FWmQYto2WNsKUFEo5ZmdrlKslhIAoDknTGM83qZQLTEYRl9/+6Cdacz/Hnx574y6psNGWhe87mJ80r6M0maYSWgYGmlG7gxgH+LZJcaECZAiZfSIezvAcG5VFaJ0xHPSYn5sjGgwRarqlME2X2fkqLzz/BHOzK5hmkSQ1MM381DlGGnzlD45I1ZQTPKURTSfe05huiTRMiG1G3YCi59AfH3DQ3kErKDp5Bo2Yb/7Bx6g0zyQaAZBGMZlhkJDiuz4fX71JrpBnYWmVVruF5/jk8xVa7QEHzQ5ziwu000Oqs/NE0YBc2eVgv0mr3Z461RgGYRgTJwHr65s0DjqcOrGG1opCzsOzLdZmypw9fYpup402DBzfoT5f5+aNu4QjSYjksWce5doHt+ketFiszzJXLVIv5pmvVthrNNhrNbFMC6V/9r6hP3Yj/V/9P/7P5HLGJzG6BoZU2LaJbRpYhkBYIR/cvsri7ByLlQrf/MH3UbN5JkFMGIeE4ZBwFBMHEX7epVwpUynM8vBGB5HUOLe4wHtXPmQ0GJNZOVYfqVGuJ2zfP2C8pymVNIGt6HQGOKZkNGhTLawxDkdM3Dx/eO1thjLlcyu/xqd/6QvsvvU+87M19D0L0zOIydjf6+OaRR577CJxeMjKwiqPPv4sX3vj+3znWz/g4rk1vnjpJBPTQ2hNLVeleX+HiUoRZka1VMYvlTh/6nGu9N9nLu9i+Qb0oWTNcfrCST64+iEJEyYDH5XahMMJjTsNvvkP/4AX/8rLfPav/hpvf+sdosmY3Qe7ZIUumJIX58+QC9qceu5Zcqs+F888i1UssRcfslybZT1ns5+MyeckxVKBnJtg+w4Syf3L2xxePcQBwkHIj96+yWG3z+NPvsylZz7HkbzH/a2PePZTj9G4K7j6/ke4JzS2rnOyepx3376CCiSWrZGOIgiGCEfSPgpZWKng5UuMXQlxju5ohBbJ1JFgtsji2ix797cYjQ7pDnd5sHGXdy+/jRQmpicp5HOcPHOCNFTs7rQZHjS5dHyZOMv42h//E9ZOn8H3LGaP+VT9PHEWYUVz3Lp2jS998TxNQ3N/45Bm2uS5X36JG+sb+Dgslhe53tqknC8ya8/w8XtTV5TFJ04QmgnJaMKHV99noEOMsotfsPHyHrbpTO2upKZY8qe8uPEAmbrkU4cFv84Ht++zvdf+Myi7n27sbbWZhBHFmQorp0+gLAm2NdWiy6nfvmFknH5kkXJBsHpsnpNr84g0Iuc4ZDJjf2+H4yfm6bbHzMzU+JW/9gL9tEXczbhz+wHrG0f0hwlCG4g0wZGSpbVlco7LZBJw1GyTakjSGMOEqpcnDDImo4iKU2Bjd5fOcEhmQyYUaDX1E1YSLcErFihVyoy7HbrtCZgDavNl+v0eo2EF1ykzjAbMzc4zmCRIw2A0DImChMlQcf/ODkmQEY0HfPzxQz79yhmSdMqnjCJNrVomlysTJRLTDkkyBUpTLlbp9ocMJ0MybWLZHrZjEwfRJ1HVmjCKyYTE9fKkky625RIrC2UICrMFdnv7uOUCRa+MlZkk44hMTXmMru+RJVPxXBzHn8Rdp0RJhGlZGECcRGRJOl3RBuFUhGUq/HKFueUylpMxiBJ+cPkmdw5bFKoLGE4BhEapDLRCKUUUhVimiW1PEynVJyI/pQSTMGYymnC406DbbDMzU+DiY+dYO7FEuVZgkiZs7e7RfviQME6mEdwChDSwLAdbxDhpzMLsPI50ieMES0q2VEStXOCo0eT9aIhhC8aTlEk/Zpib4Oc91tZO8Pa7V3FNm5W5eU4tLjOchFy7+4CuTlg7scjMfB3DcxC2B6YxbWpMiVIZjphO+pMoZn19n8bOIcEw+0mX3c/xp4RTthCJQbVcJmfZqDBgdmaGZjCmUsrTOuywtbmLzqbboVGakbXbXCwskeoIKaZJg3EUMFOr0uu1p+nB/R6nFpYxxbSuIMNyUrYb9zjsNsm7ZZYW1rBNSOOMVnfI1auXUTpFiE9YIv8/PaTWCsMQWLaJ1Ck5R9FtH5H3Cvhmha37Tb73zevsrPeoF2dJtcLzXKIwYjIYY/gaFWZY0qS1tQOGRAiHw96A5WOrVObqTMYjLpw5iT65yuvf+haLM3Vmq0U27j7EFBK7kKeQzzMYTMjnPRzbo9UccPZ0lV//tV/B9Vw+uvwBxZxPtVTAESHzC/OYXo5GZ8DhYZskA8OwiOMRvmPg+DmWqyXOnz9Dmgk2tjYxbYud7QbqkyHLzxp+7EZ6Z3KZvMoQsSCLM6I4IA6DTzxkLe7eOWCjPyJOQI9jWu0+cWqSxZBNFDmngM4Elp0nw2PrMOLUFx7l1d8+Sfewxfe/+QZBohHSxDA0ZlWjmOANUuJEMBoGPPrqJba37hEnI0LLY6KBnEvfE+ze3uJYbY7L33mb1379C+jHzrI8v4x8z+OJpx7n5gd3cIWHcAVN84DjJ6q8/eZlnv/Sy9x+uMP2bheRwN2n1jn1qecwbIsT9XleW3uUq5sb9Iwxo2SM0TtCVFfIHauyS4d0Oc+jT7/EI+cvcnvnPkk6wLcykj2PzftHXHzlGGmpR9yY8ObvfIfnf/kzPP/Z57n+rR+yP0nwvQwrHrFw8hhrn38Rb+00wvAoFcpIJE+554myHgez9zDOBcRkhHFCFEwIggQjkdx7aweZJOR9g/7+iI3NNplt8vbRW2zceY+lk3Wef/U0Sa6BvzCgVHeI/SFrC2XcnoHWCY898wiHkxYH7SM8xyGTFo1xymxpjtg3OWo0CUWKaRlYEgxhMbM8T7U8w6A9YDQckWmNEJBkwfTQZAaW6zCORlRLswzGI2ICdrsNdtebvHflY/72//4/5Atf/FVi/2N2b4S8e+UWf+HP/zm+8i+/Qn73iC/9yqssyIydVPKNt97i8Poh1kCwfGEW3ymSasH3336XGBNZtJiEIVbNYyIzcrkSduZiOjbSMrBsG9/O4bgW1ZkSbs5GKIUnHcyxZsWrMzvO44cFDtrbP27J/NQjCjIsz+WJ5x+jNJsHobE7BkJmSJmyMFfg9Ml5nnpihZXlClrHGGnMyvwKtfIsaZTy6Lnr7B4e8tTTS1x48hw77fsctUbce7BLpz0iCqf2aUILHNNkplZBZBmj8Zi9vTYKjeta2M5UDCilJAxjUqUxHBMsSSLVVACo+cSeD5JMkQGxVpw9c4JJr0gaBdRmqhw/NYthLnLn9iaZMqnNVkkjhWtb9AYj4kijlM3uVpNeO8SQEjNn8/03PuLu3XVm63U+/cpjHFutIdAM+h1GgSITDkKYROGEOE4xnRyW5SENi2AyJE5NgijD+GSjZ1gGaaBBeCSZQb5YwjJypElCLpejFE5QqcFRs0Uh9XCEjdTTlL5gEpImKePRhMkkwLZt8vk8aInWAs918Tx/6hpimDj1aTgWRkBlLoflauIs4d3rD3nrw3usnF2jUsthWj6jAPzc9P9Jk5QoDIijEJWmKA0CAyEMlIJwFLN9b5NwPOTpJx/l0nMXcT2HvcMD7ny0zigMSZRGGga25eB7BQxzuoLXWqPSmDgYY4uIxXqZYARSGxRtAzlbpFTPo0RKGCbcvrWJSE3Eao1Y2Ny4tU6WCYJJyOZug++/e4X6zBzjIGbSnzDw2rzy0hMMowntICKVGoVEZ1MRmFKQxRmHex027x8w6g3R8U+66n6OPy3KZYskMTEIeeHxJ2jt7fPRnZtoaXE8X2QwztBBhhKgEUjLoL48M9V3aYnne2Rp+m98xcu5CkEYIqRFHIZYvkbYEpFm5It5ukFGd9RCN7usb61jui6z1Rk2Nvfpj9pTsTJ6OmBgaq4gpETaJoYtsVOBZ1jcWV/Hy1sUclV2t8bcvrvHKJyQq7oYlsAIIUlD4kThCgsTgyiKsXM2GAY7O3sUCkVQUK6UGQYpvV6TXqdNr90jixWnTqyQswyWK3XOnLAoFaeWeJc/3GK2Wqbf6zAcjvj4+m32GgcsLc+xvLTE5t4BR/sHrM6WSTPNYafPwsoaS/Or3L73AAxFFsYUXYfZaon/9d/8Cwz6PQbBmEArNm8/IEwTFlbmp/fNjY2f9DH5M8WP3Uj/X/6Lr2EOY4xMkCpFmk59GMulInNzM2xt7pPYgvLKLP1miB87mLYByoQETMPn1MlZRqMO+40jkDa9zgHf/sZtFs6cJFnM0d+U2K5PdaGIWz2g+XDIZ84+y31jn60gYv3hfRYfmefWzVtIJ89IZ/hSIQwIeyGqOmH/7k3uv7vMI08+wrUHt3jyhSdpHhzS7rQRvuTLf/1LtNr3SYIhz3/+Za5fu8qND69iSYPDzoB/+E+/wt86fpzza8vMz8xTNvP8xmd/kf/hna/TNyeMCTlKjhDLEMWCm+1t7FqFVZXRPmpQsV3MDFpRymQUYpgVVp/yuPf+ffQg5p2vvcn4UwOe+MwlTp4+idVuQJJRPnea7bRPNrlG3aqyMnOBilPFMwqMkwm2kdAddQky0Mpi3I8QUuGaBuW1eXzTptfqsPDkMk9/eZm9xhGtg33a/SPG45TWzjoVTLQdMn+hSiuUCNegnQ0QJROjnOGbDrmJj2PnyFKL1DIpLC3SjUe02m2UyMi59jQVThvESUyqQkrVPI1didQOUmq0Tqc2dkKgVMrmw/sM8i2iURvXhm5rhJ+WGI0U/+i//5f8F3/3H3DYXOWP/pv/lE5ryP/7X/wOTz/5DNf2d2lPLHSqufjoce59bxvTM5m0Iq7f3MJ9ooJbzTMyO+R8j5yfozuaUFsu4hYsZDxBiBymaWHbLo7jki94FIoemU6nK/3MIGwO2bp8n9qaZP7kGfYPmwjx8y+qgWT5xBK5ag4tFFIoqlWPhSWftbU55mYdSjmPlD5aOyzPzDNbmcN3iziWj+8IfvM3f5H1zdsIR3Nva4+Prz5ka6fNONBYlksYJlPv5VQx6PSIPJc0jkgTxWAUgADHNfB9mzhNUDJDS43jWFOuo0wRhpzaoFkGUaSQhsDEIElTUp2h7IxnP/U4OUshzQTDTJFSU61e4KOPHnKwd8TqyVWkKWgf9QknKVGkMbCR0kZrCCNFV6e0O0eEkx2uXN7kf/UffJ7Tpyo4Tp7+oIcwPZSCNBN4XhHHLVAtlegOemQZjIOULBEkaIo5yWg8Jk01GkGuWKHdHTOJx8zPzyNs8Ioe3cGITtrFNKaBRDowCMNoKuJGUCiXsD0flaaAJkun6+VAhximgWkZIAXS0mCkuHkDO2eQqISbWw1+/7sfYVUrSMcnQyP0NLZ4OI6n4k3DwPN8PNtBZYo4TkAYoORU/7C1Tb7o8rnPv0C5WuDB7gaD0QgtDTAsCkUPw5omr3m2i2O5pIlCa4GUIFVM3lYslH08HXF4cMgPf/gBB4cHlGoufsHFMHJ8+MFtlubr+CWXfpBxa/M+3UHIZBITTyKEgh9cvoJSArdcJs0EvdaYAh6dTpswivBmCij9CV9aG5jCAKHJ4ox4koA2ydTPJ9I/LTCsDKVAaM2N2x8zHnSQVoShFZvr91Ghy3NnnqbRabJ9tM/aqUWeffEEodkh7Mc49jQASAjBeDJhfmaWqNFAaI1tmwiZEkYJBeGS82wmIiJ1YK874P7VBtVCgWNrI3YbO5hOitAatIXARCDJ0gxTGkhtYiiJZ5sMBkO29hocOzZPp9ng3o0DHmzsEYkMpwaaCbY0GHdjdJCR9zwcIRhnMUqkFIvFT5IHHY4vz3O4/5AstnEsh53dPWaqFWZmK/zCF17h21/7BnnLxtIJi7MeZx45w6jd59TaMqbjgQH5QoHBIKB/c4uNzSaW42BKkxvrR3x0f498Ps/t9T1yXo7nnn6CUdRjbqlIVOljasXr332dfD5PoOCdy9epl2fROkUnMTqNftJH5M8cP3Yj7RUr9JuHWBkgjGkznUGzPabVmWAaFipNCCYT/IKL7EbEkUJLhW1JclWfUjnHqy9d4o033mZ9p8Gb3/0BaTrhkd02R6MhM7U6pdVFHnt+jvX+XTp9TSgsLpw5g9Xps90/5MaHW0zijJWTZ+m1hnSPjsCymS3labVa9JtjJr3vsHJ6CVUvc+ftD9h6/z6GKPGX/tZvYVojtt875CAxcN0l7t/dxsBAaEUSphwcDPj4w9s88epz5AoFusMx8uEBL526wHc2L2PN5bneus8wGmOXCqhMs7OzDjqj1dvD9XJkocatZsydq3J/5yHCsli8uDj1tfQs1tt9hg/usS8GPPfkIyzU57ByBY4nip2Dm8T+fbTO4ZprSJFDpUMMFVDL54gShYmB9C0sz6HdH2OYDoNRjO3OkBiCoAxf/PwvkjNdhs19BvvrXHvnYx47N0vPKBDoGd67ss5efwA5wcJzJ1g6t8ClmSLt/SO277fJeUWG8Rhb7rDxMOP+/QOWlueZjEe0Wkd4uRxe3qWQy1ObmUVaDyCLgAzDZKquF9MLBWDQ71GfqZBNMgb7XXxfk/Nz3Lu/w7/+xn/Ll1/9q8jIxdBj+o0Bb775Jr/023+ZwuwCX/vqNuLux1hhSlQ20XFKvz2mXihw/tFlsgOBTAX3tx7yyMUL2EWfJI2wzDxKZ9iOieNYeL6FImEUZeT9AnKs6e702f1ok9H9Fu/uf8ite+s0B+Opt+O/4/ALFsdPLyONFEMIXMfAn81TKq6RpQGDIMIQguWFKnP1OhJBtz/AMvJMggmeY1OvVpgEVe5uPuTKlZvce9hkONF4fpko0gSxgkwz7A1JophRP6BcLE6bTASZmraMmcrQWpClKb7vEk0mJDplHGZEScY4TklTjZQW8hP+NigsxybMIsIsoF72EYbCMDRCaFypuPTsaT7+aJ397W1OnDpFvVJmNGqilcTz8/j5gPFgTBIr0ij5RI1vctQa80d//AF/8z94ES9NKBZ9Ei1I02kohKNzoFMce1ojKquRJGOy7JOKECaTyQDL9nBskywOcV0LaZk0m21WVhYwDJvRZERv3GR1uYIMM7Jw6gZgSIMgCkmnedpTikeWIqUArT8RAko0JplIyUREsShwfIMki9g+6vCvvv4ew0hyvDJDECnS7phCySJMIM0UaEGSpMRRhGUIcq5LrVxg2B/R6XWJJl0uPXMBJ2ez3d7h/kFEqhQCE9O0MaSJ75kIpad/D1PhOg7lWoUsiTEE+CYULQiO+nzvh9/Hz+V46olzfOcHbdA2KnF5582P6HcGhKOAQrlEEKckmSRKMiaTANe0CaIYy5AIKTGERCCIY8VX/vDbDAYDOoM+x06vMrO4QLFWxM35SCEIg4hhbwAKDAz0zzXGPzUoFGy66dQtp9FrkMUpKEmmNLFOGHXG9FpjKnNVHBeGwz5vvH6F05cWsHyDIJgwMzNDmqYoNMPJmHq1RjgaI4RiMOiDlty73yfDZeFkjTDusHQ8j7SOcf2dLc4+usj5x5cozNnsH46YjDOyRCEymIw1BvKTlFeNSjMGw4BRkAImO1v7bG7sEo7jaRSQTkmIEJ5B0XWoPFIg6MaYIxsfk0KxTPPwiCCYEAYTVmZ85usVbt45xNAZM6Ucn3r2IsYLF7l8+Rp3721y7uRpev0x164d0DwIeO7xx/FrHm9+eAdpSgzDYuXEKqPRkCSOKOUcTCHx5xfIl3IIaXBweMRoOODDa9fwcy7NdoO5+TrVUonzZ89SK3h86wdvUCmVmJ2ZIdOwvbtLyXN+0kfkzxw/9vVQmCsyaPbRwwSdKBxnyjWN4wStp+4dQitIMorVAtEoJg4U0k6pL8wwnPTZ2ApIw5CCX8LUHeLJENu0WDVLRN0OvYpNbbFM4rQZDBM8a5ni2nHuvH+FD29vkBVT3Po0uGMw6qOVwlKKw80tbAdcN48yfJQDN69e4+lPv0QveZ9BFvK/+zu/TX7VxRla7GwMcUoFvvXHr3P71iZpqlBZNvWuzSCKFUKDsCULF1b41te/z6VfuIQf5tgPmsQ6RRuaNA0wLZujToOD1h4YKSrLCEcKFUsMHNJxhjQsil6GNBwgoejbKNqcOLbE0kIOM4sI+yH1Qo7lU5+hkD9B3i0jdI4g3aQXbdGd9JjEE7TKcCwTyzQJogRpGeRsDzPnkaQxphQgQra373HmxEWeePRJTr36GczfEmAJ9nojdrsGrd43+ejWm2gjAQ2NdpssGkMQY9gCbUaEvQ6nZs9QWl5gY+uIOByzsfmQXM5DmhnaiCmVCpiui7TsqcWhMBAI0iQi1RmmIfCsHCuLK5QLNY4trHH5m2+gOgOOrczRfdDmO29+m6cuPMsvfem3+Mrv/WMyHRBJxTgd8tGdjygsLHPBucBk/4CbWYP2fEZx3mL1mOTEiRo3zB1uX7/P/BPLLD2ySCvq4Do2lmGiRYbjTENClM6IwgyBTXwUsPXBBmkzQvVi0khylIzY63fxyxZ2XgL/bk+nTq3OUi17TNIxSaqJw5Q4CTGlgW0a+I7N4twMKwvzSEyk4TBbnyOJIyb9PoEjicIRrU6Lazfuc9DoE0YK08qRqelmq1ar0esO0dIgw0AISX8cMR5PsCwD27URQhAGCUhJnCSkZkIcRoyDiCgS9PopkzBDAK6r8fMWoJkECQqFk/do9jucWC3jWBbolDhJydIUU2gWZitMhiFbD9dZWF0m73tESYC0JfWZMpPRiCxSGGI6+dZakQIfX9vm698o8MUvXEDKBMt2sQwH35UEky7BeMTKsZM4lsRz86SpJDM0tkwwLYtisYgWgl6vTaVgkcmphgTpE4QKYfokacrCYg3TTxEqwXI90mwab+67DlpNm179iZ2SkNMgbNTUttMyLZAZtqvxiyZKprQHAd96+zY3t1ocP3cSv1Ag0QkqVuhhTJZO6RuWZaLSFK00QmWQRhiOjZSKUq1AcTZPs3NE0AxJtUKaJoZhY5smUhoYpolhWUimMd5pmtHtdYjHAcfm68wUC4xbHT589wpZqnnt0y9Squf4xus/QpoOK0vHuH9rnVF3iOd6uH6JTi8kyjSpEqAyVCYQlkGcxti2PU3Z1BpDSJIMNndbaJWShgm7d3fYvrtHrBR+Mcfq2jLLS/OszpUJ232GSUKi/92u+Z8mFIo+ne4YYWjcnEd3HBAFikwpVJZiORaTNCHnhHzuF17m4f119re6RC0onXYItSJTCYacPm6TOMbxCxQrLq5tEkYCB4vDVo+Pr2/xafEkaydmmAjFsVMRK0tPUc5ZbOweUKy54JpoYVPM5al4BcKJxpV5HBxa7SPeee8KqUrJwhRLGOzvNBmPYoT6k8e1NXVEkxlax4hCyGd+8SJ7N1t8+PpDrJFBoVDAsiT93pCd3QZ/5a/9Bpb5Lrvb+1hMed/vvvsBtx9sk6Um++0WT/x/2PvTGNuyND0Pe9awxzOfmOc7DzmPlVmdlTV3F3tgN7vJpi3SoiRakiXCBgwIEAgYsg34l3/phwRDlpo2yGZTnIs9VTVrrsqqrMp5uHnvzTvfiBvjiTjzsMe1l3/sqJYB2YCIKqFYrXp/Bg4CgRNr7f2t9b3f8z79BMfHx6wszaECyxd//Ut8/KjHwtwCSWrYOzhiMh5wZn2JrYUWT1w8y+HJgNvbO0yygklekBhDkhf0j3uEVcnZJze5e/8eW0sN7n10wBOXLyPZ5sNrN7ny5JPcvP4xa+3qz3iF/PT1k0eEy5T21hKdazv4Uvx5tHKlIsmylCxLadUbpFlBGLi8/OlPcPv9exROgXIL0lyQW82b793k3OY5VjfW2T46JE0N7717jfpck43zZ3EqDoPpDmYI/jQk1wmf+d3PMPzjgocHj07bGgEqSsjjgiieokMH6xk812NuzaXS1hSDiOO7e3zys6+w3NaM0rvc++GY2+92mF9c5Pa1WyxJj8XWPNPOAVYWqFCiHI8kS8lMwlhN2A9GTB9z+aOH38epalq1NiYrmIwjwkoN3/c52D8iy1IwBqUEbuhgHIkrwPNKtmwYSCphhSCQzNUN59db/MrTL3J5+dNI2khRQ4gq8s/TtVJy28GROZ3jPnd3H3E0y1COJpUCJ8+ZDHPiqSCeDpiMx8SzCUVqKLKUWxJurX2Hc1fqbGy6rC+5LM+FzPKUaSz4xEsRZy9OSLOcKJeAgyxyMIJppkgzw0Y6T9DI2Hn4EQtNmE1PWGo4ZHlEMpriey2yZIjj5GxtLbG/s4fvhyjpUBSWNI/JoxSRWC6fucxBp8/ZS1epF5bjj2/wzGNX6SWHTE3Cl//o9/k//PX/O9fvvcdInfD0r77AlScvYVIX91OfZz6B6ME2L0+7/P53/xBTK1jfOsN2Z4S/Oc9qPsXOabaPtnFCjef6WFXgOJog8MlNmeBUxODFGc1E8+goxk4MRWyR2sVRgsubm7huxpHTZ5ujn3Tb/Fzryrktth894mh8wsLyItrRuL6HUhopLQuNGpvraxirOToZcfX8At1eh2k0ZDzuImWZUnfci/jg5h5RJrE4SFVC/1fXlrh48Ty+E3Dj+i3u3nlInlmmkynWFiAEYSXEFqXvWUmF6/Dn3OQCRX8UMRwZTA6OEiQ2x/cteW4wxpBnhiwzDGcJmTV4QjCLpkwmEXkmaVbbkAvatQpGgEliFueaTKcpFkG4UCGL63T2TihhV4LcGIQoKIDvvXabZrvCJ15cx0NispzA8wh8l6KAyXCfNHdABYBE6wAlJNr1yWcpeZYSuiX3GWFZXFzguJcwmsb0Bn3C2hytqiKfjMmSCRXrIrUmTcsBQCkkji7tF9N4huNolJQYkxPHU7JsSrXtoAJJLnImac6PPn7Eu7cPcSshZ85toIIAYwusKDDGYMmBAmFzPGVxHE2zVsPzfXJrUSalc9xhGkUlmUA7ONYilUarEtfnKhchJXmW47o+SmscwFXQrmpCYdi9c5ciSXn1My+hfYdJOuP2zgMOu31MUXB0uMfiXIv+SZ+wXt5EJ5klyYsSxVoIfDcgTbKS1as0wpoSbylAaY0UkOcFudZkpvTBJ1HC8GjMB0c3uBvc4pc//RJ/+7e+yGs/ep8P7u/+bDfdL/Q/We12jZ3dE4ww1KoVhicphdBITYm2Q6J8yyyZEQ8jzs5vMrw7ZXo0pXWpQkHGLJqw0J4nixKQiiiKaTXmqYYund4ejvSRNqMoCr75zXf5rdpLBE0DyrK4OMfD7dtMkpxKrYp2wEqN42rmW03c+RrNsEkrcLnzKGGQrvPxtfvUw4Cj3QHHB2OEDUAasAZb/HjOAxCWQW/Mnbv3ufrcGWqtKm9+9T4N1SBPE1qNKrn0+JM/+jN+93d+m3/0j/4ljufyL/7oX9NeWGESp4gcHu0d8eyzl2nUArI44dkvfIr6YovL589w9OAYpOTm7YdIHHYOepx0uogiY7FV49c++wyvvfsRNx/1iJLSEmWdgvpildSmTGYRt+484vD+DkF9kUePDplMYkRRUPV9nnnqcf7gz975WS+Tn6p+4kJ6lIxYXd4g2qsgRinWGmbTCFPYMsRAS6bjGcKHeDplPO3zW3/pM7x/8112jzuIAvb2uqSZ5ca9+0gpUJ6mMBrdbLDyxGUuf+HTpM2Ujx79gPgko/P+Dn5myON1Ht29RV7ktNtt5sN5CpOyOxphjMGtBDRCTdYZUW+5NHTA5O4B17v7fOZv/ja5V+Wf/sHXiPYj1i48zsJWkwaKPC947NJlpC/YnR2hq1Xu3z/h6OSQH73/On/8nS9z6+5dhCvBEYyHk3KRFxLPCSimU4yxeH6FPLbYXJGnBiRIYVleFrQbEkdKjIlRakK97rHUdvjEk69wfuFLCLlY3uIKieDHU64SS8Lx8DVkMWO+7nFxbYtku8skjemfjPGVpO0t8Z2v/JDeww5pVDBJchwLNc+l7rscqYhH2y0a5xr0d/b4xKU2C4sFqjKhvSbYqHoc92NMbpgUlhhDWmTkqeBkWDDowJtvXsPkCisExlgE5a2cUAHdk13ua4EWGoWiPS/R2iCFLAMxMo8EGI3GXP/oA9A+t25/xLlWSOPSGodH24QVj95kwGSU85Xv/AP+k//sf88PHn2D6vkG1XkfRgGFDdDnmvhzDvoDyRdf/TX+8Y++zPffus2nv/Q7VDaOqHFC6jkoXyMVSGnxA40VEKcZRQpkkB0n5IOUJy5fZD94RCdPmM6mRMkMqRQhgnbYIkbA/8IL6Y/u3GasM5Y2VwBFbkAZQaNWwdWWlfUt7u4cMRoOuby1yiwa0esdsnv4kMIWLC+tgtB86/vX2D2MkI5HEDbo9We02w3+6l/5K2BzqoHP1so877WbvPvuRyTTAh24KG3Jsvi08HRJ87yMewaU4yCkw3jcI88KpNBIKRBlSUWexSilmI5n5FlBJgtGkxnJNGcynjAcRQz7Mb4Ys9BuEwYZ0pU82N3DDxqsLjWZxRGr602eearNB+/c4eDRkMJYlNJopYmTmGmU8uV/9QZ3bh7yxc89xeVLq8TJDCtzXNdDypQgCJgmBq00aZrjBw1MocmNwhSG4WiIbpQHlKOjDjg18rxAOBUEHgfHRyxXQ4SMyfIMxyqMycizFM/1KSxEcYpfKS1NWVbaV5CGSqOCdjMKkTNOLe/c2ebG7gkH/QEbGytkWUEqo9PobPAcTbMSYLKMwPeo1Sv4vstoNObe7g7jWUSSZWitqQQVpFIgBLVaFT8IwAhc5aKVZjKdlimnxuD7LlUt2ZhvMVcL8ZXL2dV1ptGUw84eJJaTwYBHuwPu3NnF9xQXzi7RPehTrTaI04IshzwXWCOoBj55FIFUpHkM0iIBJSWzaIZBluE4AAi0cMjzjMKxp0mG5c11PMn4zrfepOW4/Oqrz7OyuMi1bz382Wy4X+jfSBsbbe7ff8R4agmqmtXNJvfvTU/zUARYiVOAnRje/c4HmGlCrdYiqAZgNVhOWceWSrVKFJXPDCHAmAJEgcklRw9PWGs32DsZ8L1vf8iv/Npz1BqK/uiE41EXKyxSShzHISsUSvpoVcWVARWtieITZmmHJx5fJxlPqHhVfvSDj7GFA1aS56VtTVBeokkhEFJAXvDw+jGuljz1zFnmmo/x4TcPSWJYmmvxaO+EH7xxjcCvMokimtIjMZbBNGZxaZ2d+w/ZWFnmB6+/w3/47/+7vPnad7l97RqXnrnK9t1bvPDEeWq1CtJk3N3tMM1zeoM+33n7Gi89dYFXP/MEV0ab3Nk5wVGSNJ6hPEsQSmoNl8eevsxg95jGwjxvvnWd2/d3GY7HnJz08Csed27d+1kvkZ+6fuJCOopS+l6f5XPLRA+PUQUMbUJuLMIKfKGw0jLn1WmHDdKqQ3/SLX3TxmJFSKPiYoQlqFZxpObSmfMsry6z1J7jtVvvcX93m+XQw0uqFN0hMq7Q/aDLg0nGmYUlDrIBzVrAhUaTWRpTRBH397qAxyCJ8AMHx6nh500+vncHVYGlN6/x+NMv8MM//BFz4SKLtSYb7RXcz7zM7fc+ZO/oAb50qLYcqmerpDXFiXrEf/PP/msmZoKs+UTTlDzO0Y5GiALX91hZXCGs+sxmMfnhiPnmIv3+AIzBFhbHAUfMmK9rKh64uobnLtKsu1zcXOXVZ79I6KyArCCwZYJi2Z+l5A1oFpuvMos/4MaDbyDtiKtnF+kNx4zGOaPZjP3+PotnV8iHOcO4i2cFTT/g7HyNX//ss3z7ww+50e/S3U7RSYWvv54y2R3jyJgzL3i8eOUCqkiIE0Oaxhwmx1CXZFnBKM8QsaUqLZFXkBWgHAW2JPsIO0WYAozC/PhnRU6eKqDk+Arh4tcFXk2RFYco6fLR9T0O/BpnllbZ6R1yYGZIV3PS7fCH97/CYTIlOFNQTy/juprqUps00uRE2JZL7YXHGf7Tfab9nESMcP0hzz93ma/39whci9SSMHCp1gKwOUhNGlvizgzZS/jUk8/zVv9t/uyN1zk+6THLJMZaXK1wtUT6LsMItndGP+mW+blXZzZD13yyvFzPWpW3nUWR05pb4qNb94njGY2Kw/JKk6Pjh2zvblOpNzGZILUVhsOUvU4PNwjJckWagRaCzY0N3n3/HVZXVzi3vsniwjyNesBkMkBpgVaqZDaLMp1QnCbQpabA5GWk+2wSkRuQSuL7Gtcp428hRyuNTQ1CwGyWY23O3skAncUMeyOmQ0NhXKSJONy/TxSPmMz6hDXBufV5uqOc9dUlFpcDuicdVtd8jg8PyK1GqQKpLNKx1B2fLMm5cWufDz/a5bmnz/Ef/W+/SJSMSGJDJawibELgBowmMY50EcLDWMVwNMPRhloQ4nouQlqQCVmRkWQFrlelPxhw0ovwclgNatiZRRaS3JZJqwUWIRXagUro0zkeUqmGKG2pt6rgZKQkpBbuHg04mGQc9Se4nsfi2goZGTYrX9xKCDApjWqFatgmN4ZpEnHv0UO6g9FpSmDZETAZFAU4CBztnvK2Zzi6nIsIXJ96rcrS4iJpNKXiabaWFygmAyqOJjaG48N9ptMJSguiaIbvNXn/nTeZzsogoFmUgtRMoymxKUiNQFiFLyx/45e/wGKjwT/6yje4OxmhlMD3NK6jmSU5AklhCmxRnKbxQpoWWFPgBx7FNMUU5Xc3Sw3/+I+/SeUb3ycIgp/1tvuF/ieqEkrObC1z7cYx/dGAqxcvcXj0kHRqEbGhpgNkpjnunLC+vsTSlTq5Y5nJAY6qoUyMEJIkSWnNN8nT/LTj7RPHE7RW2EIzO07I8wFbm/P0xyO+9ZV3+c3f/RR7R/cwsnxvm6LAURrh+AR+jdBv0PJ9GoHD/d0u2lPE0ZTV5RU6ewm28NAyJckiClt6lS1gCwvkFKYcxrUZ3Hr/mIor+Myntmj5C3zvj1LERLJYr9GPY27e32NjfZX9zjFhvcn+0Qkri0tI7ZGkBUWS0T3p8uxTj5GbGVF/goNHGPocdjsUsmBhocaLZzdptZfoD0Z0du/zD//Fd7AIdGFoeD4Vr8lJv8voYMYDccjRUZf5sMLZlVWOjido16W9tMTNu9sIGfP08hM/6yXyU9dPXEgLWZCMU0S7hmkobC+m1azR646QouD8+hmWF5eYDo751Kdf5Lt3fsh3Hj7AnVU4OUhRNqZaqdAfDJkM+mwurlAlp+Wm5HGPxcUWr39wjQsbn6X3bk5lWqdSr/Ly81c56R0zmRwiwoCdSY9ep8fq3DKFAEdYGtpF+BKhYWYMO7ce4LkBFDk//PoP2Dx3nvPnL/AbL32C2dEJ/c4RnWGfv/Ef/4dUBn3+4f/rnzKa5YQtha7kzPwuODkyMiTTCdaRCGHRrqJRn2NjfZ16JUQ6Hp2DIb1sRlRYqvUmk1kXREo11Gwttllt1WnUa1hRw3druEXE5uI56uEagsr/1zcsEYJTv3lWfue08NwzqKKOzR4xmT5CywqLc6sov8skyRm6MypPb7Hw2BpNHXBxa5O4u8d2usfIT8ijBLoJXq1B0fRwMp/ZOKdz4vHP/8UN1nyP/+Pf+U/JjOYf/at/wouff4z7R48YjfcJHYt1UmwaofIMIc2fn9YLKVFaUGCRpyOFQipsUWKtAAoiEAVCWKT0AEPqFRwVU44OD8AXuBsF7UBzZmmOJJbsdT+g0V0kuiF44913eOnlT1GrLCASxerCGRynRu5VWaitM0ge8oMfvI1bewieQWoIfI3nKtI4QSNJZlP2Huwz3R9StT4/cq/RMwlH24+IDzO8oEYQeKjA49zGGnfu3mcwTZmq/CfdMj/3Gk5jFpo1grCCH2gcT+G4DgWWu/cf4GtF4MPyQsju3h1MOqZA0h8mCFkjOZoyHA6RUiNFgVYOWVKgrWLSmeBIl49ObnPzvY9ZnGvzvddepzACa2zpr/ck2lFlMqrJ8VyXaJaQJzlKK6IoOb1JikofvKdwNSAEFlt2ToRCSE1uCx7udVFxAjNQqSKOZsxmMzzPJTcpRZzxzCfO85u/+hyHB2P+q//2m4QLdeotycb6MiYTfPTBQ5RQ2CKDAvqDPtVqhVa7xuFBj9d/dIuwovlbf+PTFBZSI9DSUJiIWqWO0pXS9pSktOcWCH0JRUpWpChyPFdj84TZKQrU9zxazRauKm/NZv0y8U/JEk9nbXmQqFerzOIZjqdJ8hnWJMjAI8sSYpux0x9xtzumM4nZ2z9mdXOF1mIdrUroraCgWW9Qq4akWcxRt8P+4QGjKCKxFovEPb3hVUqhlEYpB8f18LygtNEUBUq7CGMxuWE8HCLzhMsXzzKbjHlw7x4Nz0EITafXI85ytNbo3CXNPL713dc5OOwijEWjGE9S+oOIUZSR5gWO6yIwbM23uTi/gJUwnYyxQuA5Lu16BWME2AnCijLlDsHLTz3OXNXjX3z9NeIkpVIJENKglPzzG8kCifUVozj+me23X+jfTHEas7G5yM07+0S5IWhKtlZr3PzBLk6m6ScxRkq8uoued9meHJHZBOEXrJoFbGGxBSjHJUlz1pfXGBz3SZOUwDMoqcg9zfzmMrff3CaZZqxe3CJWI04GRyRpiudKsqLsclT8Cqnw8DyfQGgWKnXuHn7I3vi47OamLkcPhnz4wT7TKMF3AxpBOXOQFjlxlpHZAgoJ9jQVUFkwgpsfdtACPvnSFV76lS3e/tM9RKRoNprMpjkPHzxi89wZ9o56TGcTMjNHpVGn3ztiuVXjzTfe4Zc/9zKLC206e0esb6yTZxGHnWPube9xdmOJjabLm++8zn5vymg0JHQEv/urr7LeqnB9+4BONKG5GFL3Atbqi1QIiQZTjjtjth8dMIpy4jyjEnpcvbLBuUsXfrYL5H8G/cSF9KUnz3L04IRePmDryS323ryNJx2euXoVkxlCAWc25rn6hRe4v3eLk4MOvTjDbo9QNmTr3ArdfhcTx7QrVT71zFOsLS1QqUlipfj4o5u4jsv0OGJyCDau8OqrL7O51ubR13bBahxdISchtoZHnRNW1+apVTTzdQflaBIh2D8eo0IXKTz6nWOWnAYfvfEuL3/6GR7evks4tkzilN54SLgwz3uvfYfqsstCMM9ROkCGOUVscY3LnKpSVBWJNcwvzDHXbNGqN3GUxHFdcuNy/+MjFGXbudCWpYU6rs6Zazfxah5RJFnwliAuUEGOrEuWls4jCClEjrUpUrgIXH5McRdWYCm9ioW1xMaQCYOVKdPJDFn4tCpV5HzAqH/ISGeME8Ph6ISb1w/xZYFMIuI8o+bXmHNrDAcj3HmBs2axY0k2keSJYjixfPD2hzz+3Cb/t//zf85Xvv4eN64/Ig22ePaVF2m1HR7sv0+n8zFx2i9byqZ8iRcI0qw4jRGWCCmQWlEUAmMKpHVLv5rNKU4n9zUFhc6xOkf7lkrF4gaCE2LCVpXVlSpaDnB0jZ2TEzqjIyZ5TsNvk+WScZbxwhc/gfBH/NlrPXYP+1TSjDCs42qXwqYkU0M8tRz3++RJiowMUZYxmE149O4RYbWOYwU1PyAzhrDiY50SmP/Ek1f53ps3sMUv8HcFEt/3y/95XhBUqiilOe4cYYuMaZZy/sw8rsw4OjpmY22ZemOOvKjSOZ4wN9/i7r0HGCOwtuQ/1xsLPHn5Kb7xz78K2T2cqiZseNwsbtMfTEkSQ5ykOJ6k4nrloc2cBho4CqVBO+Xfleelp1cISZJm+F4Z/VxYS5bnaOUwG09JohTlaLKsQBQes/4IO5zRrjVYW1llv3tMHGesL63SDhtUHcknntnkN37lMr//h2+y1/HZfnjCxtpa6RNODQJNmkZ4gYtQkJoYv+KQJgmd/QH9wy4P9o8pvJCNjTU8x6ESKJR0cJ0Az9dMo9PAkzTDFgKtBJkBR0Gz7pIZQyWsMFdfI+0fM41m5DZHFQKMpLAlOk9qjR94pCZhdXGZJB8zS4fERUJS5ByMJtw/HjC1mgc7B+QmZ219EUmOFprFhXmyLMUWljhJuPPgHr3JqLwhQ1BYgTxleJeHE4kUGiUd8swgSJFKIRFYk+M7HqHj0GrUWFhocnx8yPHxMc16g/5shgp8jrrHBJUKQjrs7x9z6/YDHu0dkeUZ0hb4XkCaKY77U4R0sZSD7a6wPHH+AmmaczDo05tOyIUgyQyZKZhNE0BQWIuQElsUzMYjNuoLCCEpZI5Xd6kuhmQWlHLJTU5RGOZadULX5+M3/2L5Ov+iKrMG7fu4jiRKcmbJiLVNn53XQDguVASFB4kW3BvsIzCQZui0IJ7GyEAgLJgsI3MyCitYml/FkYo8N6cpgJbBNGKSxZhCsnt/h0//ztMYNcUS4eoAWZTWxlpYJyscWm6VZjVgGJe5DNZAqGsc7834+N0djnZGrGwu4c5VGOyfUNEevgrYWl1jEA2I85TxdEqWnw4LA2lseO/tDlb6PP3UGbwtwb3dE5ITcBwHJQ1zy/P0e4ekMeV6nmuz1ztibXWZjc0lNs5e5KMPr/HutTtMegOeuLLFQrvFeDIiMW36/R6Xzy7TH37MwBqcapWb9+6wUK1y8cwSRbdL5nrsPzyk4gecP3OWY9uh1x1w5dJ5eoMR0nEYTwa4yuWf/bM/+xmvkJ++fuJCurXZxJ/TPLp9yNDMmL+0yuijAy6srvPYpQu8+PJV3vjgHf74K39IFCdERtBcbjKHhy8qdPp9Jv0xa+05PvPii/gSPFfiK49xkTLMIvAdFs6sktaqxFHCh3du0mq/yH/8n/4d/vVrX+NfX38d002p+00SkZLlOc1WlaCiqKuA/d6YNDZoVzOeDmgvz3P8qMPJ997AnXe4ce0a+b0RjucxrXv8yZ9+hTmbk67k7McnJJnGOYlwtcssScjziJQCx/NZbMLa3Bz1ioujFUZWOTickEYpUlgCF4JAsTpfR1tJPCjYvRdjxgXF+UXGowHtM4KNZhuvMo8VloIuUmgE+tTWYYEIK46waCwVpKoxsw3uHVgq4TyeMqRJnyieAVOeeqJFpxdy0p9w4veZTGMK65DLEKNClKPZWr/A3bevEY1SxKKg1gyo5/PcGzxk7tIyl164zP2ju3zlv/k2f+s/+I84sccE7Q3OtLcYHB/hD+ZwhkuYTNKsOkRZTOaPSEyKciVlmFsBCKwxJelKSiyQFwnIHOVaHF0WC25dUm0patVysGI6y0mSnHg2RMZjqm6bJy5skEQV+p0eO7NjGt4iFbnCxXNb9EcnnLva5MzeWR6OdhFYpNEkSYZwJItzqxwMBjCV6NgyX2tThJbYQjqbEU2GzLkB1rfkqcBxNGHo4Qce7XYLx/Pwk1/cTCmlaDSrpWXKV+UA2O4e0hZoayiyGXk6od+P2Fibx/N8Bt0BQho8pfBEQZ4aosRgcVGO5uyli/gLDS69+AT337qJiTLywGEaJUynGVlmAUWRg8lsOVQGZZSeNQhRDr8JKYGCorBkSUEmCmw+w/UEYTWksOKUrSwYD8d4lTpKQhqlmOmUVx57ikYQcvdwh2g2RheaQAd8+O4D6qHmycfWefxsk7NLVR71cobDDFv0iRJLnhiksPyY6qJdSZYnKEfiBNDvTTjY63P4sIN0AyZHA1Y2lwjrY7Jsh0q1wdLKClmaYGxZqE4mCbVaiCkyqoFGKEGvF1FYhe9J0iInyovTgUd1OmTonP6nCkbjAX7gMZz0iZIBVhmiPONwOOJBr0/seUxmCcdHJ2xuLLM83yQMfYQUjEdDkNCfjBhOyhe464UElbB8JBUWrUueduk7FiipsQaSNCWexQSBj9KS0NW061VazQZ5nnD7zsdEsymeH5Aj6A8GOL5LXuTYQrCzfcT9B3vsH58gpCqHtR0fhMOjnQ5pZnF9CCoeUlnOzM/z61/8IhjLreNjrKdJ0wm60BgEszjGSoExp64gKeh0+zx7foVKoDGOotr0OHNpg+5wgrESUxjyvGTfp/YXnaifFxkhsDbD9xXjiSZJLGfPzPH0r12gd2yZ2YJhFDOdRiRJQp6Vcwq2yBFGoJBUg4AsyTBeTpwa5hoN5qoe+50TtHL56KN9Huz2GSeGIBAstZv4XkFqEyphiO8qZqnFkQ4Vv4K0Aav1BTxlefv++8QmIdQhUc/w+tduUIxd7CwjORpzrjXHNLKE8w18K3EmHvc+fMTcYoPllWW6kx7TaIrSLtIIpHL54N1dGgs1Xvr180wjw/Uf7ZCnloX5NrYoOLe1wvWPtsmynHq7wWOPPcbJyQGf/szzfOcH3wQKGvNV6nM1RCPh6P4O5z+5wigZcGPQ5clzW7zyhbMEzSW+/fqb7CRduvmAiu8znk7pdWbYXPDx9n2Uo/nkK5/gn/7jL+M6DqvrK1gjeO6p84yjmFZ7ia//6N2f9TL5qeonLqQrLZ9wTqOEYvejfdrzG0yrfeJ+l4Z/gXfe/QHvffgRThCy/ajP5ScvkjUzLlze4t4PP4Yo5bkrl3jmymUunT/L3Tv3ee21N1hYXOQwKBgWEXUCRrMZjdV51hY8PvrGj7j+5rs8d+UK3nINJ7M0c5/p4ZRZEVGr+zhBAHlBlhsO97osL6/yaG+fZqvCMO5hPJhvtBj2T1g7v8lr7/4QzAAnqXDj5jUuPh7yaHYA1ZRinCGsYJqliAKkhGazzuriBoEXMhyUg3+tusvByZR7Nz5G5xmN0NBoO8y7cyyKFtc/vMHNOz2YWta2Frh5/w5LF9qYUPPys6/SrC6TFidgI0wyRxAIBA6IgoJdouwBiDaFrOMJTW4ke8cejiqoJLuYowhnoYmZyzB+n9BrcmFtgUAbZg3LLDL0jz2MhklheePhA5rLTS5srHFj+yatRpWnn76EP8753/x7v8W7t+/xrdffJKwU/IN/8t/QqvoEakq/d8z3X/8IVJWTfsbxJKLZkhSZxgkaLG4KFs8n7JyMODmxZRSpB0JKhJKoSk59DmptFyFybFaQF+CEFi8sILdEY4EOQPsCE2uUs8Snn/vbPH72ZdLpN7h79DFPPPUkMq5hTU63f0icZny0fZv5zQV2rx/DJGd8dMhzzz/FwtkVNtcu8vrBG3S6OxibkuQJKhGEoUbbkKmZkro5tfY8/bsDHFEyg3snPYJQ0W77TIyFk+insfd+bqVdRbUe0myFmCLn4OCALM3J4xhpUi5fXGB9tUG9pqmGFRzlEbQajEcpZ7c2qYQl/aJc24K5xRa1Rp3ReIRbC1FVF5FYxpMp/fGENLUgFVJSBmVklkLa08xdSOMUpVyyoiDPDWlmyDMwBjg1RAkJRVFyhJXSTKczkijDdVySdEwj8IgRvHvrOq7WJCIlms1IphnjbheNZXw04fDjDpfOr3N5bpU8HnI0i5lMZgwHEdYW+L5GqjJIJk9TisIglYvUgoPOkL/3e9/jl5+9QhQNeOPhPWQ1ZOvSFp/7Sy9SqxeMhvsYBNYqEA71eq20fGSSKBa4rgQkk8mEMJin2ZjDDRJOjveRQuP7FZQsA0RMkRMnhqyIScyMrEiwtqA7i7izd8hUQy4FD+5tU/VdXnzuCULfYzadUUiLUZaTbo/+dEJmDNiyUB4NRiXGTpZDxL4XIk8Ho5VyqNQqYCFPM6qhj8kTaoHD2toqBweH7B/tk5scYSH0K4xHE6azlM5xF2kdHtw94KQ7ZPfgCK9SRStD6jpoodk/OiHNyodwo1VhY2sNVSS8fOEy6WxEUG2gax5zKy2m6RiMZTCeEGcpWSEpCoGUkrwoiAuoLNRoNjVjK1CeZG1zEbtvmSWGJI0RWWmTyXP7/39D/EL/VklLjR/4OJ5GSkOWCggkC0/UGV8f4YwEodU4BBBUGPRHKA1JbsmNwJqCwhqUKK1IhbCgPKRySJIEqTwe3HtAlkqCsIKDw+OXzhKEmuPJAOUIAukQOIZmtUrgNWj6dVabVY572zieJlAgpiHf+OPXmI5yRCHRQiJTy0vnH+PRrX16B11WF5d4660PKArJ8c6AzsGAxnzjdIA4x8qyQ2iSGm9+f5/P/0qLX/2bL9Kem+Pue0dsrqwxHPWohiFz7QrpZMLchQ3Ob23w6EFBczPkCPAaIXujQwpytqNj1HnJCiGm8Eurmpvja8nI7HLhlVXGoxnJLCdJM+ZWaiy5LYS1GGMoRI+bsze48Lkm2gp6h8fc+uCAh/t1fuvXv0Tg/AJ/9z/SXL2FUSmB8hgcjRgnkva5s1y6/BRrl8/wve/eYzrI6A4jLl06z96jHaajlMNHR5wN53j+6iUef/IS1YpiMN1jZavOysYLPDjoMZicIDxLr3dE92jM2up53vzq16nicfHxLZzAJfZKRioYltaXqLoOTr3gYBYxdQSjbMLFZ6/SH8Q8++Lz1Ocb3Hn0MZ6RLLVX+fjWB1y+chbVDDDdGBPlRHbCIznCNFyaRQURzchjg0Tgew6rKwucO7OJdjyECkrPVKYZDxLufnQDWewzNwda+aQTyZ33dnnypUvsFh7aSr7w175ErnoQjHDrlnNn59lYaTOMr0Mhee3bN3nv9Uf853/371Kv1xBkGHtCagpyk7Mb3Sb0XBrtOlpZxtMhc5UGD3b3OLn7kE986TlEkEJyDF6P1dUqg1GNY4aYeUs+tBRGkWQZR1nEyYM7LM2v8Fu/+Rs8uXGWV15+gaOTLq9/cIeTqEBEMUedEQ3p8cITFlvcY/XMOjvbPfY6D/i1v/lXeOFTn2auvoSZTdnducb9gy/z4tM5vSgl0xrtaoYDRZIKXNdinRzrZEgktapLms1AWLRVoDRBmGNTg5k65OOAzasv8vwTv04+MawtXeCtG9fYebhPzW3hOJrkpMtwOEP4bcaDE3xZ5czSHH4SsThxmd7q8o1v3mJZttloL3K7u83BcR9fBQS+JndTwsJFO4qFs8s888wzHG+fcLjXp/PxPaQsECan1mrwv3RqBxryJEUUAb3OMaowLMxV6XbGXLiywvJSlcsXNsizFFdXUMpHSY/5eYfQr5EmBbNZTmIsUsOrn/sk9x/scf/2Hju3timimGrgMzyZkCQGhEbYcp9LwekEvUSI0tqRpjlKWAo45b4WmBxAlkEkoijb98aeMu4NEk2/0+Op5y8DGVJpOqM+gS1YXJojT1IeWzlLK6iy0GiCyVlcaNNq+kz7XTbDBdKaZjjaIy4kruMhHYmrBVIUZFmK1pqikMxmKViFUCWa79LSJgrDzkGfG9t99vduc/fOMb/yl5/jzIU62nWQ0sVxXeI4olaZo7m0ymTcI88LwqBGmk3JM0u7vUwy7mBqiu++9jY+DSp+SC0MmW81y0CYyQyDIS1yJtOI/dGYW9u7rF06QzKOiU6GvPD0E7hKEs1mFBhyYP+owzialcmGsvQ/26JASoWUZfJbluXk+RTXydHKxdiE8XiCqzUKiytyLl84B7ag0+mw3zkkt2AsuMoh8H0m/QmBH9LvJHQ7PQooU0QdiSlS4ihCKUVhoJASvxES1gNWzyyztj6Pl6X4Gr75va8TzLc5zCe4LcGKt0QRJbRbTfK8gZXl7XSlGmKylLqv2S8mnH3uHMMkB12Q2ISMlLzIENoQOPo0yv0XN9I/L8pMgchTjAUlBcZkWJFTqWgmsz77j1KyrLRKYqDIbAkCcAOEVVgEk+mY9eUVptMUkyc4jlPaFDFYo+kej0+bYTmxiVm9sMQBOygtqVd8AschDDxa1TZ1r85qa4FZfMz9w3vEWYaWId/+kw95+PGA1eU21jEorYhNxh98+Y+YJDlxAc16g6TITvG3Ei0VvaMBhQA38KjUKyhPkRWS4UnBWz96wGd/pcaLXzxDY04ik5DO24dMjiasLrXpTrvQiIlbU4LQ56u3v8PEpNgYNDkIgaDsphVWlBx/Y4htCoklT1KSUcJxp8doGGFyS1FYlBJ4nkO1HlBt+kgGLJ53qVU0i1cXWHysxXQw5r1H3yPIGj/rJfJT109cSDeDJpmOMHnGxRdWMJOUreoiIhhyR/yQ8fkxM5XioEnrU8RRgYwFzYZHtRqwWG1RqTroXHDro23GA8OVK09QO7OEvdvHS0P6nWMG4zGXnr7AjR99D6cfMd/wEI0qJyqjMIbpeMrGJmxtNQi0oHtvj76QGCmpVeusr13gpU9+ktF0wK3OPQIvwK8HTKKEkeixeKnN0Rs9isLgtSWHoxmj6QRyiyd9Kn6dtfUlzmytUq97FCZmNosZdY8ZDXvcTSbk6RRpM5TyGfZduscCcpdGWOV+1CdfbHN2cY6uf4IUYxZbkrmm4uz5CiNzl0rS5vXXrvPlP/yA9eZ5PK8CFFi65NmIO+/scO3G93ji1z5BL4s4GaZsboQ83Ik5HGjmntpic61GWnRwcsloUiEULjKLEUaxNFeBoo/JXWazAh06JFE5sHXYO+IH771NlCc0woDtbIpo11F5DIXD2a01/MJy7dEun/+lp4nGHSr1Ds+/usbVJ5s8//Qau/eOeLj3EbPpLsutKlcfW+LjnQe8f6tDtW5p6CbK10RFn3GWQWqwwmB0TCWAIgOTQW4kFblCTS9y736Pe9d7vPTsJQLRphfvMd/2uHChiRtalpstvIoAMcPmI5reIh/vbbO+uI7vFPiF5MZ799jZ26NRbTJKDtg1A5KWJTeQniQ0hCZccVmd2+LGtVvcfXSPjSfWeO6ll/ngqx/Su7/HZJKTVUGYX3ikqxUPQ0a/30eYnM+8+ARKT5id9WnNzeNqgTESrZoUokqWKdrNeVylyHNBtzdhPEmRQtNqtYhnESaOeHTnPuksxtWazBbM0hSEKq0Dwp4WUlAWyBJTlDHieQEmM7iuhy1KbFSeCThNz7TWYEWGH3oIobC2wFpIopTjox61hkeSR7z0ykWurja4/fFDgmyezz/+MukkwfVc4jzFSIPrBSRTn7ZyeWa1yW5/xHA0wiLKlD4hsDbH80p7RZYZCmOJZjHkDoGjcZ2AxdDj01efotN/g+Mo4tHDPr/3//gGm2fneO7FM1y4sMjS0hxBqPB0gbIFc815tOswHkcIEZDEGUp4KCdgcX2RtXM9Htw85uCkS+j51JtNhuMJeRaRGkN3NGHn+ITbe48I5irMNxe4df0WV7bOsLW6yiSd0Rt3sZ7kZDRmliQYaxCyfIFLcUrMPn3ZAghRpikKIZFS4bsuWklqlQrNWkgtDOh0joiihKywpMaWHu6iIKwExLMYaS2HexM6e8eElQr7nQOMsjiuxnU1oVdnMozJsoJ2u8r86hLVdkgYCISMWV6Zx5MBy1c2iXSOjiK2FtZAKbSUp92IHKkd8sJQYEtbihX0iwRvtc48gqzIGKYR1bkWTpogJWRpTmEs2nH+f22FX+jfQhW5ocglohBgCkLfwXUswrGcOdfm8OEh1joUGKzNSxKHNPiyhqsCtF/gheWAfyUMyNOYPI0ptAZRMJvm5cHqdO1bWXCQ7jHzpjhalAd9FMIEyCKgXW2gRcbto3vMihTX9UlnkuvXHjIbZngrDq3lNrM4o9cbMxjFhJUa1uYURUEYhKRZDrq0OK22Fsmygsl0SjEpEJmm3q4y6A14MOpR4R6PPbnE2QuLJLMpcVLh4bWUQqR84leuMFRDPjreR8sMpSSFsiVQy/kxrk+TmRxTlHMmwiltdBqBtQUnvQ69wYQ0sWDL2ScyyTTKGYz6eD1JvR0QJ23a7Rrai1Ftl7mlFu1AkXRn8Hs/61Xy09VPXEhrXFr1FhSSNIk56u+xe2ebm7UKTZPT3+nheD6TNCbqQRC6NNY8EtXjFh0Opne4n9QJ/TryckiWhhwu5wTVkDmWmB5HhPWAjJSVtU3OPvkMN3beYOJViJMutlnB8VxWNpZRNQ9qkjzOkUKzMLfK2fMXSVLL2uYmJ8Mu3/v+N+ns73L+2SdZXG6SYpjmA+obPsmwRa1dIXWOGA1n5SANFqFSgnpBoy4ZD/fZedAhjkYkSY6kQEmDdh20WyWdrnC0I5mMBbmNMHrCp37ji1T8CveuzRinHarejHargtIZVuZodwJJxFvf2uO//i//kLPPnePTn/0UntNACENa7DCe7fDNP/0WP/jeOyxdXiZp+dy6d5/5hRbd/oiHnR61xYD+3n3uXX/EwXaKkAHPvPIMXjtAuWO8MGFlaQ3BiOl4Hz8IcH2NMRqBX7YyfY+hLQjWG3x6+VPcuH6d6x9e40HvAbW64fLzz3HusVc5vPY9Xv3t56htrmJ9zWDvBu9864f88b/8HvEs4YlnzrOxssbLTytefNpw56bhK/84w5o5KpcCijCm4oaMh0ccHUbUdIW11iq7D8fkosGnPv/rfPT2LU6uv0FTLdCur2BzqPqa5twCRfVpjgZ9ugdjdh5us3/7BmHss7s3YZomKJMRuQXL8y2SuuXK3GNMjsd0TZ/8dOBMBAUr/hzCTqhX2iwvbfBou0Oczjju9FhcOkNRWGqtJt1kgrNRJd4d/BS23c+32vMVfNeyPhfw8gvPk5kJB8djrK4wyxRBUMMSEobzTGea8SSlWglYnFtgOh7ycO8Bw9GE8SxmMJqwv3NIM6yhc0NiMvxqyPHJgKKQKKFO6S4CqUAIi7VFObyaC5I0JYpzglDjuIo0BopyWAhOSTGiZNpLpSArsIVFopDCIUshSnIKk7F5ZY5Xnz2DF2WsVC5Q8X2k7zI1GeMMhtMxcZaBm+IBntVcWF/l3s0hmclL/4hQKKnJsgTX0fi+C7bEVqaRYJok3Ov2WGpvcX5lkV99+Wm++u51eklOYeFwd8ifHbxPJdAstkN+87c/xwu/tMwsGRFnCiKHRrXF/NwycZRSpClh0MImES+99BznloeQ+ZjUEs0iprMxSZwQRTG98YQ7j44YxQnPv/wsdppio5yzj19ke/shDw53WNxaIs5zlOfhUg4neb5PUZgyPEW7UAiqlRpSKbI0RaAo8boWbXLqlSrtRgXfc9nb22U2i5ifX2LY7wMSLSWOcvBdDxMbjnYn3L+zy9raIg93thGuxPMUlYrHwuIc8SznYP8+C0sLLG2sEDRCvFCytFDFV4JU5OxFJwziKZFNSJQFHISQpKI4jW8vkMaUlASlEFKSWUuBwNgMIS05ZXcDW2CtKVN5XYU1Fi3Vz2q7/UL/hqo6LlJIigwoctaX24SeJM1z1rfqzC102d3NyYsMqXKW16u89NwF+sOc+7cecPnlJbIsIzOWhVaLOEpIoinWD1FaMB7HJGlJlrFI6gsBui5wlUOUZsQZ1GtNmpUl5uqreI7D9uENBrMBWoa05xc4PO7w6i8/w/e+/AHKKkajCePJmKIok5gFCiEMo9Go7PwYUwZO6ZJWVPNdqp7LcDKj7oUkvSmzXh9jC64NJnRu9XjsmS2G4yOOj6Ysbs5z5kKbiRqSCBAKpOedfgcGpSFw9WmXKSpxvrpM8dVKoZQiTzKybEqclhcYSilsXoAtB7+lKG/48yn04ojh8SGNuTErGy3ai1Vcx6M/i4izv3hzRj85RzrJqWUuNWcObylAjTVv33qf4SimMk54Ql7Ez2v86I13WV5o8fSLz3Kxvs6DyTbf2H6Pjx72uDJfZ23LZ7+3w8logAjfR87XiPMU1y2oNSoI/w5vXztk4arPF5aeoupoDvuWg1HEhfUnCaTP/kmH1ccukg+n+McZT527wvnHLxKZlK9/88+4v32TwaBLVbistKv84Adfo72kmYz6YB22Xnmc1kKD9z96QKNSsDhfY2nFR1ctg/6Yo6Mb5EmOLQyuhnpVUA9CpK3S6Tqc9GvgNMidPsaZIoxLrdLgww9vksUZ1aDg/LmUqu9AVvIVC2FRNCh6bT74+vfRQ5c5b4nPvvp5IMDaCbN8h4PRfWYhPPnS49y9d4fNTzzDLI8wE0GrXaUQKYPhmDyt8cSnf40nFCg5Ym7R4fBoxu42tGiS5hH1ukultsrB0S4GRTyTJDOX48NDesddFpZWcCt18tmIJ59+mquPPcG9e/d56703+f6H7xCdjGmdWEwn5E73HdytOi/96qssvPw4i0fX6e91yAPDtWsPyBhy8XG4eG4dVwz5+ON7ZH3D+uPnqIXr7N0/oogM/SjlwksXeOnCOhvnn6XhKdpP1anEgruH+7heiHYmhK7HJArZvlXw1vWPuXrlAmaUEpxoXli5wt7Rt0mZ0tdT/tJv/TqzeMRh5x7KpBx1dsHRbK2vs58eM0zGBHNz1IoQ2dHcOLpOWA1oqRbRo4RH+Q6Hd/eZZQn+gsenn30OlqfcuvbVn8LW+/nVp166xGMXlphrVrlx6xbdScwkgTSVRLN9zm+twZLL5voCSkuyPGI0jBlXY7K84IfvvIM99cuPR2MGUY6/KKk4CqdWYTweE02TUzuEQCqJ1gLPddC+QAhDUZhTnJ1AOw5SKRytSUx6enNa2jiEEPiehzEZhSlwtEbJDGslQpSUGWPB9X2OBxO6vQmNoIYXBsSeYq834Mb+NpEo8EMPG3q02z4nh8d48RgnLJhOxqW9KE7QWiAdge/5CFmSa6y1OK5DP43IHMk3P/iAxy6s4DQlj7fPQNPh629c52SS0GzPkWUZtarm8pNnqS+0eHRwwHgyoVptEIR19vZ28b0aK0urVNo1IMWVgorUeGrI3v0jZtOIOE05Punjuy4ba5vIXp/pzdssLC5iYsFb73yIlj7f/OqbjNMhV37pPJk0ZNZg06QsOkUZkVzYgjzLSUWGlg4mL0OipFA4jku92mSh2YAsodmokpmc7YcPSLMCzw9ASGazCMdx8JRThlHFlmvvbnO4e8L6xgIPH+0gHIUXappNn8WFJmfOnOW1778PUtFcaLByZoHu4JisEPiVFuPxkOFoQiEsRgm065CbHCUtQp3yjixot6QfaVeTZaVNo7C2DLrQGoTAU5pcGKQsOyp5XpT0EyXIkuxns9l+oX9jeUoxmER0Bwmtps/mSgPtF/QmE3INFy/NMzw5YBYLjBBsnlvjqRfOUq00+OHrN4jNmDQ3ZFZjrMfK4ip+YUHkCATTaYpyYXm5zc5gl7OPLZHaiMBzyFG4IkTYkHp1nqrSROMjOr19kA7ztSXa4RLTxoyXXqkwZ1z27nUZTFJyoYlNCllEWKuiPR8pZfn881xEUeBqxXQ8JWy2kVqTxF1ku4nnSF546gILGw1a7SqO7xBUPeK4zkULyitQHsSRwc0yhFbEeYzW4DoQhh4FijhJELocWlYIXFGGrk3jGFdppKMpCoMjNVIq4ixFIFFKUBQWi3OKKgWTCU7SCeksJY8LnK156pUquuL9rJfIT10/cSE96HapNAKwkoozz6VLc/S7Mbdu3uA4ibjt7zG+n1Cr+fzqZ15ma3WJdJSSPcrJBoZ8CHs7PQ5ujcnTBJErnPUWm+fOs9u7RaUDNaO5dfI+Z55/hqWLTR5uv0M6HJEqyTibEjWqLK2ssfXEMklD0FzZ4rcvXyanINYT9nf2cTyBo3x8r45rAm7fPGb7boeVCy1EHKJ0SjS7RVPU+cTL8ziVCKkMxnZBWWp1ibfmIwxYmbHgKdb0GpP9Ft/98IQJLoNE0FIenlvFVspEo7zIOR500Y7FdwyzKMMmhnZ1GU3MQstjvnGWP/zv3qV/MmTx7DJf+qu/hePNIXCZZodsDx9yMFFceeEVVCr46KPvsRGnjCPJ9vY2Vy8v0RtIJjOX7sgQrLpcvrTO0pzgylYbkVj+wd//DnudFKftIu2EwJcsLa2z+2ifNE4Q0iVOU3b3D5lf2jhl8voox2CylI0r51g+v8G96+9x7/Y9FvIaH3zju8ymM9K3YWHzaSpnF5lbfZzHX3iFwox5793vc7c/5pmkztLSWZrLOfn73yE3huEwoj5IiKaKhlwinPmsLJ4jywR7tz7g4qc/yQe3Y9789kfcPrmFu66o+QVnth7jZJTghSFLi1VkdsiFsMr3r/dIKjGvPPUcX7n+Pain1OZDluU6r7/9dVzP5cxTG/SOhmyeW+HhBx2MtQzSE2qqxfVrj6istrB5gZgPuHfvIQ/eu4UzFeQSrjxzGYNkKH9h7Tjpj3nzwwGuq+kNBkgdIHWFOLJUgkVmESSJpdPtEfoLeJ5HNaiSxDl/9q1vc3hyzBOPPcbD/UcsrqzQfXTELIpwLFR9j8NOeXMpTwNXXK3JTUacxISOh3J+nDBWpn7lWU6eJVSDahmSlBVlIpgofbhZmmGFIUsyKpUKIzGlsAXK8ZCuxkpLYTOOB5K/99+/y8sXLzIWQ+J4yn48IJ9vIJTGOoqTwqCV5Nwz60y7XUYHYy4/vUauqjg6ZH9vjywak6cRmPLA/dxz53nhE49x49o+D+8d4+uAYydhca6CciwXlteZf2KJezsnaM9jYXGBxcU6hU0wNgcZMD+3SBxnOLjML7ap+FUmkwmBdqjXatR9H5PEJI2CuQ3IZI/tvZukaczFrS1cL+Ddj14nNwZH+tz4aIf+ScZsMgM35+orF7BVQZwlGH7sRS8JKAigEEjloLVTJkrK0rOptIOWDmk0JdPw1MXzdE667B0fkxeQm4Km5zMdj/GEpBGGaDTaKt7+4Q0O9nucubDK7TsfE9ZDgkqA1AUFBRub65z0xhx0BqCh2g7QoUCnGqkFtx/tIKVAex4WWwbDKInraLIsQ8kf5/aUg5FgTz/vkGc5RpSDWuWBqry5dh1BYQyFtWityE0ZrGH/3MzyC/3brlkSM5xMSbMZC6ubRHnKvNPAF4ZCx6xtBYy6IczmOTyKuPdxh394PEBISxTFPPnS5qmtIkcIC4WkUW9SmD6FgdEwptFooB0HURFsPrmAkQOmSYEQAY3KPHONZRpOSN0V3O/soh2LNYpbt7Z59ZPrbMydJ3P3eeavP88Pvnaf73z/Y4TWNBcDBp0uucxLig0GIS2ec2qvsgVKWOIooTHn4zc8Ljy7xIVn5pjpCd1oxLEZIK1FRhB6LhXfZzibUcwsRZHjhh5RMkO7Cq0VnuMghCJJc1AWKTwcYXEdBafEG8d1cZQmDC2tdp1uMiOapnCKvVRKkWWlEwDKR4bSGqUkybTg4OEIayRnLyyfhsv8xdJPXEi/8dXv8sQrz7B54QI2VHhuhcee+CV2t3t4asCDvR65yQlaTa7v3GM0yugdHDKdjClIqa3UiOOIfDQjz0F5Lo+dO8NypUYlXuGp+XMcf7zP5GSAc9jg1//dv8l1d5Hh4S6eDvnKV77Lrd0jdltj5jZ2GakZNb/GSlijsVDHD1eoBW1e/cRzfOGzn0e5VbSSDDtd5tZDau0RNhiQqzHaL8hEj0IYtHTRSiClh7E5RVYgkojAl4TBPMXhKheXv8jt4xPy3lssXq1RXYDoxMFzGxgTMxwdYiloNEOCiqHddNFAozZPrAOG0z5Pt59g/1qf11/7kOryHL/y7/11wq0G1odcpByN97i7f8ToRPFnf/+fcOnCRd6/9iErTz5OZhNGccYs0gSOTzOcMFYut27eYW6uysvP/xIFBdIxvPzZZ/jDP/kB8aSEHdiiTGFbWtwimu0xHA0JwhqPdne4fPUJwrCKwWWWjMBqXMfFcTRPPfccZy9eYvSwy97DIybDBJm5VL0ml88+RefokGs3b3PQ2WY6jFlqVRgPHufq4nMM7n2bWWSQFtIkJo4TigJqiwt86Td/l0ubq3ztn/wRB9t3ePO1b/Pgzgknuyfg5fiRYHN+iywt6Aw6HPb3+ODGR2SDAb/9+Jf45HMvcuv6dSJHgi2HIkScs3P7AdGDnIP5CXEco4xhfPs6CvCVIvQ8okGGU+ScPDxk5hY0zwypNXyGJxlBoVG+oLU4x72H23j1v3iDEv+miuOMKM1ZXKoxvxxiC0U0hY0zm7TqcxTFDCES4ijD5iO2Ni4QRSlf++bXeP3tt1jbWKdSCSmKHAu05xsEwqF/2GU8TsgygLKIVkoRJTFCgBYlx1VIiSojDclSQ5qUaX62UJjTgUJrLY7jUhTmlCkNeZaXKLaKz3Qa4/maSjUgthEFilFsuXZtn49vHPHqr75MOFclcmCa5iSpoSJDTJSz1KqTSUtzpUbsGM6JBU5GiixVPLv2NI6URNMxg5MOq8stLl1aR8iElz91ic994QV6x1Ok9ujPYibjPmfOrrEkLCvn1lDKO03/NChVpVatoqUi9EIqQRWFhyM9BIJ2rY5SGlcrAsfFOBprDIVUCM8jyyPiXh/lW67fu8lh54hm2GbvwTFZUrKpCwcWztehIRnPZqVXEihIUUIiEXheGVxT4gZBKIXj+WilQUDV99lcWGCxVsOkGb3hiOFkAlJT8UN812cw6NGoV1motTna7pAmOTUlmbu6yYcff4wTVMishSxBWcPG2S2sdjkeHBPlGX7VpbZYJy5SlKcxp55noQRWSaSQSCGQQmAKg+uWnmZhy0EoR2sKCybPAIvnumR5jikokaPWlq1pUX5WqfImziYJJjfIX9TRPzdSjiRKUjxfM7/aYhhN0RYCV5HkBZW64FOvXOFf/d4HDI5z/FWXs+fOcP/uAaNBRGHKAjLNYpJkhqq7OCokS7tYK+meTJjNZiALfudvfQnVOGE8yWg06ihZp1VdZLG5RjPw2Du6xsFkH6189h4e893XPyasNXj6yUtU6226x2Nubt8nMgXa0wgHavNVUmPIZA65Ic9TkiRldWEBrQokBV4V6msFTz31LKouOIyPiIqUXDgoFxxX4zsaKWCSRRRO2YEJnCpJmoLSOJ7EdRQVP2Q6mdEMPbzAYzLKcbWHchSj2RR1OmjpKY2vXc6d8xl175DMCqwwSCnRWiOERKuAPD/NhyhsSbuxDsMZRNM+SSJYXmn9rJfIT10/cSEdPxjx9vgH3Dt3n8vPPMbW1llWV7Z4/oXnePOt71BdWCAOEmqLLd7/4AFdP2NtsY3vplTGDqalGPopppsjVcCVF57iN/+dv8T9m9+hmTksmIJGq8n6Cy/zvZ0dmKacWdrgm2+9Tbu1zuAwQc4qnL90Di0sk6Mhueth6lXmVs7xz/7ff0p3b0wlVOD66IrL53/zCrW1EbWrxyTESFEgSMiFRWmQ1qJsCtagEKhC47gutaDN+MThzR/F6MGEJ56KYaYoUmhU65xdXeODN++x82ibJB3huuXgQaMumZsDTyW0mnNEseR4mqAdHxPN8c1/+jV+6YU1Nn/5ZdIFl3p1EceGCDshS+9QrfYY7TuEheWdH76HFzTo7p5gzJRJnHD/YYcnLiwgzIDBwBAPLG+/+SHzrSr3Hr7P3YfvcWFrg+c/8Rw/eO0BOmiQ5SnC5ERxwcrqOSq1PkedQ3r9fR4+vMMnP/lpEAJ36pLmKYmJmSYZWIGshbQuBTz766/w9td+yKg/4cHDBzz/+Vd58YVnCaqSpbkaylwlSDTBQ4/b737IC5U5wseucrgwQ7ZrdLtdxrMpk9mIWiUn1NA9mfLGtX3mFqoM+n08XzHXmuPXXv01thbP8d9/9Y/YGT3iw9tvcXzcR0QphYWN1VX2Hm1TqVcxD7cJ/ZC1pVUevfYuaqdgMBxCU1D1FY1WlUlnjE4UFb/BYNQnTi3R1GA8gZ+7PHnpLIPGhP7OCV7bsrbZpNcdUZ1f+mnsu59r1aoOBkmaxwgjqAZtFtdX2Vy5iM2hPzomTlJcr0Y1qECR8NY7r/P1732dsFYnrFROmb45eZ7jOz4rK4tcvXyGL//zb5Ws31NfXpaVaw5Zjt3muaXEJFuwFpMX2EIgRDn0kuX5/xAOIgV5XrZjhSjTNZMkBgzVmk+jGSJkjs0MeWHQshyG2x9NyUOHxMlwHB9VJIjckmc5vicYzRKGFY/MAb9aY229QvygTyoEaTRC+x7nz63TfuYqUqRonTGeREQzQ6NaoVKDQmiG04hGe4mw0gKTkWQGVzgoKXE0aAUmTugMh4ReSKvRgqJsoTrKQ1hFrd5AVkOM0GAL/NChqQXVWoV6zSGeDOmf9Mj3Y1745CUePjzm5CghTQQ5An8BFs81meZTkLZMJHRdRFGmJPqeW3qaHQ/QeF6I1h62sOS5wXU1K/NzpOMJJ3nB7t4BKQXGQqAdlhcWGQzHVKoB1dDju998l+tv3eHq5VVeeuVp/vCr3yDBolWBdjTaV2xsrHH1ySfYPTwikpb6UpPNc6uk0iCMQboKhTodOM1Le4aSZQEsBGlaHqRcz8FkOYLSI12uizIkqigKAs8jSmKMKRDWUtj/oYguioIkzwgDjzxNSU6tLL/Qv/2K8pgsMVy9ss7SXAVRpCWHvVYlSmZkwmGWTJAm5cK5dS59bpPNsxu4WnN4cIgQLhRjhJWkaUyWp0gtyE2J2Zz1ZphpTnuljZVD+uMRyg1wdYCnfEK3TtMPibJjdrs75MKhGi7RbDcJwwe8+dZbLK5U2Vhco722Qm3lAaM7d4jyBFcqlFdQV1VSIxGywBUK6WgGyZhqQ3D1yU3Wry6Ra8M4HyOMIpdQKIHjWTxVMvUNBZNpgtQa7UDN9UiScoDQ9xykENTCgDhNEK6PUOXB2VFQCRuMJmMcp4KUZVK0toJmrUqkIq5eXWdvZ8hkOCNLLXkhSfOEZFLawASCQgAIhLVIK5hFsLczYdb9i2eT+snxd7JBlqXsf/yAfucA73MvYKM9ZlkHtypwHJdPf+6zzGnFxLuL2i046Rxh8hk6c6nmArNcpX88oBFW+Y3f+VXee+d73L/+ERdmC9RfqDJrWnSa4FdzjroHZOMh0Thmb3rI/HyDq1cWcD1F9+SIJpZ+t4duhBibMYsTkshCCq0Fy8KCwp/vMRK7yDw+zYy3uNqglUBTtjt8DyQCZRQiDcHO86MfDDnYzilUm7rMOIoPmFvfJH9o2d/r8uG1bXr9DlCgTv15eaGI0wxHg+/7TCLJZAaZEVy5dIHu3hjHrUPg4DdDMuEQynkcUSU3x8ySfRAJVoYYHdKcbzDtxnz0gw8589mr3C1yRrM+qWkghSCsRPixZTxL+JM/+SbrW1UCX7K11eL8xhK3bx2yfxRhRRmWYi1MRhGNRoMLF0PuP7zHRzff4OrViywtrWNtlfFsDLrAqJAilkyTMTgW2/ZQqzVaTY/3Pn4L9ys+586usRw0mEwOee8779O9d4COLZ97/mWunF1npbnCS198gq/84NscHB6QmgQpBecWV3mwu0djbZ3f/J3zfOfrf8pkMiPwFV/67C/zS698gfuHh3z/je9zODtid+8+JpsxVwnY3FjhTLzGQeeQjx4+ZDyZUcSCtz78gOPJlCjLGB7NqLouYwrc3MGr+hRCUmsucGd6zMQx2LqgyA0n+0OSXkRraY6dYZ/1JxephCFhs0V0OPhJt8zPvZbmqyX5QCi08tlYu0A1XCBwPLrdHlIW1OsV8iwjVwmDfofXfvRt/KrD4uI81hb0RyMKU3Jbc2UZz6aEvsdwMsMiUEKSZzlgS0YxlIHzRWnZKIocz/NwPZc0y7FWkCY5RW6xtjzA5rnB2rKdL2xRdmGEIM9StOeyuNTGFgnClrHQ1pZ73nEdqpWQWk2gXA8Ki6Ms0WxCe2GZwHfodGeEAdRrPmnUJ3AyrpxZpxIECCuRQhH6HnFiEBJCv4WjHPI0w+Q52tPMtZtU/AomKsimKYqSt+4oi+9qrMyxjmZrbYtqtY6yoowvPo0519pFANNoSBpLAt9FnhIzhHDwfIdjlSIyzdWXL3J83KW92aS2UOPRox4nvQGrlxYRbk4gFIUsg5OKNEbaMrnEFAIpBUXmYQpJMtG4XpVGvcXK8jyB57OzvUMaZ9QbTbrxDKUEWmuajQYCiJIpi0ttOkcDdo5PqKy1aZxb5tsfvIepuLhK44Yu0pU05+psXbnAw8ND0JrGcpurS/XS8+xQ3jrLkhyiRBkIY2yOtYY8B5SDVOWhwpoCz3XJ05zixxYVyqIbAUmWnhbOlizLyxa1LNMPAbRSFMZQrYSQT342m+0X+jdXYVEq5uKFVbRK8QMfz/GBgGatxSgZIBqaZ1+5zMleRqA07771Hm/84Ab5xJCNDGpeoZVLliakcYTJMqwpwTzTwZRkGHOwvcvaFYlsKgIvpFVv4Ns6Tb+KYxMe7F6nEAnKVLj50RELC5tsrp1h+8Et7t6+jxSatQWfx595hrffeIQSHnEaEfqWWsUhi8FxfEyekeQFj798lsWteTKd0DF9AIJaQG4MUki045d7D4PWDoPxFKUdHMfBdSSu6zFJZjieh+s45UyK0hTSAalLuo+V1Cp10jQn0D5aSMLAoRJqqkGIFpJRmOB5DYriER8PHzCNMtLsx+QeWX5PtuzyCMqukCksooBiBsr7i0fA+YkL6QDNxlyb/u4IOczovHsbJvtUlgPObTjMThTNzDK+e4KY5Mwvz/PMi8+Sm4j33rvNSX4CNcskGOFVJNudQ9JEsty+wv79XXaOR8wv1xh0xjQrVf7FH/xjFjcWIQ/QQcj/6b/4u3z5n/4Tdu7v0d0b4DgeCo3j1nn7vY9xGg55J8GkCl1kfO7zIf3KXRzXw1c1AhWX7RKtEBK0ElhjyxheNIE4z/zic1jm+frgXzPNZviexjgOD6OY9/Y+IA4cHjzcJZklFE6MUAqswLcuwpWgLHEKSmnGM8NglHBhc4vn1x/jzT/+PtdvHvDXPv83GKsahQqphnUKYemnA+6d9DgcOUzHDjudPoPOhElnxifaG/gYbB6TKslep8P6/BzNaRcrAmTfYzwe8+DOPu1mi737PXbv/TE6rRH3M7xmncSUL04HyaA3Zm4x5OrlSxwc7nH/zvusL7XxKjUCv0ZiLf1pTC4dCh2QmYxRzWMiY0wREU8S/uwbf4qMNHF3jO3NqMQSmcNYFrz24A5zz1+mtrDGnYe7jMczirzAUmClRjc2WXNa7N/r8o/+27/P8KRHu1Ghvujy23/zL5E7isNJl+c++Rwf3v6ARzu3cVzJXLWGSGaYqsv9/T3efOstIi/Gj0I+vH6bqFswkQVxYnDy040dhLha8vILvwRji9W3aSxUWV2qo/2U82cv8Vu/9rv8yXe/wSc/2+TZTz7J9s0haZLwS08+zZf545/C1vv5lbKCjdU16rV5otgw11yg6peWlzSUNBpVvECXBU9ecOvuDcKapja/Qp5bhOSUP1wAuozuNnDn7i55ZpFSwemwoBQ/TvYsPbueq1DSkhemLKaUQumCLCstHxaBoESxGVMW4kVhS6/jqUdWSEkUR2RZxGp7nqNuD6FKvJvUUK1UqIYBgWvIbUGt5pNlI2qhZq7p4GiXvd6AKHER0sPzGpzbqjPXCPG0Jo4SwqCCRTKZFfhaM9cICYMArVwqoUeWGRJt0UVBMY4JMoWvNPl4Sm88BmlRVZcrzz2JV6sxnUZ4foBSGseRGJvSG5wwnU6RQtJqzWHiAi0hCFy00mjtU28ukgsHWamSSIXTGPPsks+l2RKD8ZBcKU5GA6IoIU0zHF2wttIm9ASugjBwCT0XKTTTWcZwYshygxQTNBX2dvcZjSbU622m8QyEwQpF4Hr0j4/pii66EnA4nDCTgme/9CzGGqBgbf08a6UBGylKfq9SgqPxACsFAovwJI7UZXdQAqf4vRI1CFDgOWWqYp6XPmclFVD6ngtToB1FfnoAkUJgKRCWkoKAJQwrFHZ2ekgpiwBLiQITCHJj/hxn+Av92y9HKi5fXCMMQUkXYxwMPnFe2sNcpYmSiLNPzBMEU3buH3Dj9g6+DRBuRtpPqS9VMAVUfJ8yTtXiSA+HBuk4R+cGT2Z4oSBTiopfJ9Q1Wm6bhgPd3gPG6QmOdTm+OWHnZpfvH9xgqVHl/Pw5tj/cRwqH2Sxlbn6T5aUGymoeHDxESTh3ZZPpIGEaj7jwzCpBWxIVGUPbwzoS5avy1rkwFBS4nouW5eGyGtQYzyIc7aG1puJ6NKt1hpMxnlfD1y6e1Cw2a4xHM5pBQJZHCAOVoEq7WSNKEhztIBFkeUyUThmOjvF9n/5oSp4r/EaFxlKDcXSCTS3WCOxpqqsQAi0Ewp56xZCQQjKaUV1c/pmuj/859BMX0p9/+RPc72+j0BRpiJdv0duNiKIpV88v43iKzo33kEeK6d6U7eku3/r+W7z43FO0W4t84ROf54fdt5ivVQhli353wO/8tb/NG9/5Fn/yxgd878b7XJwtMdeo8YnLj5Peu0N7ZZGTTo+jkwN+/+//fR7efMDRwQlxbKg26px/6gLVlQbsdpjfWCDPFLNezsrjLsz1aDUU2BgtEwxldLU0EgcHK8oHu40DiskKNx/UWFpfYjwdcnjQxxhBEFoyYCebcqNzh850VEZhmwwrQSgfqRTSgUq1wPckrjvHcS8mtaCUz0J7nj/75z/gTG2TX/trT1A/t8aBTVgNWtS9KqowTKITBnHCaBKCiejt7pIME0wqwGYc7xyhC8BK+pOU1cWAuXqIlSm9QYrvOsSpZjKGWayh6DK7m9G92Wf96Qs4oSIlR8kCKTR5pJgkEWfXN/BUD60eYkUba6qYPEPaHOVYfBTaCBYWmywsNRmiKFJDFGdoC141xKaWPJ+hhaRWbfDv/53/Hc996pfYPzzizpv3cL0ArR3yNMKSc3h8nx/+86/x8J1biCjHdzVKpjzzwiXaaw47vT3uHN+jtdbk8fAxhpNj4vEYtT3jwZt3ufC7r7LdOSGyEpEKHl9/gtiRTJJHxKMZeW4pUARGcHTnkKASsrm2wWB3wl/7nf81f/AH/4pr20eceWqeVz7zy2jT4OjOQ+oXPLKxg1ebY7T9GkM59xNvup93nd88w+ryJkHYorAKLTRJNAMMm2tNwopPlEzo9fvsHu5x78EtLp7bYDQzdLoThLVE4wlCylNrBoDi/v1H2NO2oDFFGYAgylvIHx9yHbd8WRgrGA+npxgmiSlOP0/5ELeF+XHwIUIKhCwLKKXkn88IgKFeDxiMBJNoRs2RvPTsBarVChc2VonSCSfDITYzaKBWD3GlwFOCZr3OLCpIUgdHgu8qKCSTSYrvVRE4ZHmO42gKY9BSkqcFx/0OB0fHbO92ODwZUrGaX3vqReaDaomRSnK0FdTm5lg8u0GSQTqJcbWP61TI0oTOyTGup0jSFCkF9VoVIQoOjzq0mm0MMQKDEJrROCEIG8zSjGq1TZwnCHKEVfi6RpIZzrbOoLAUeUqr7tGuuUxGPbSyWJuhpSkjugXMN6sIoYlTOOruMx3N0NLFDxwm0fT0tlgy12hi/IRcuNx+eEjYqiHc0vNuKZDKoSiK09v1kmyiHY0xObZsP2BFSdXQsmSJIyxKgJSSogCUOD0glYcsJRWFKUDY0+FAeVq0nwZz2PIwVS4AgdIl7iuKInzfKcNorMLa8ta7XDsaISxJ9otAlp8bCVDKIc8Mjl8hzgoyE5OkI0KpaNbbZHEHI4fkfs7HNx9xdDBkLqyi8oLe/pD2YyslZ1oqPN9DIjC5wFNNisSh4YVcuLCMckB7Hp6u4IiAqhOg7JTj4UOkVHTuxoy3E+YLn+4EXAtxkrB+eYOje0dIB/SSR7VecGHpMpfPbPD69deZFiO2XlhA+XVmzBiQYaWL1j5S2jIoSCsmSYx0NEppAs/BlQKtHayJqPgVHNel7lcJ3ICpzakGNQLHIZCC+bCBzhSVRg0halQcjzTJQeRMs5y9zjGFEuS2oACSLMGOptTDClJLXF+wsNJgOo04TqZkUdkpK2lJEqkUSgiUVcyGEck4wtcOH75z42e9Qn7q+okL6bGv+OHOLu78Eo7fYBA0uLjxNItbbebmQ7rvvYMTDDjz+RXUcc7JjS6d/TFpd8D719/j/r3reI9p4kZG0etxMbP0uwc8+dmXCFsNXv+Tr3Jre5/nr1xgNJtgbMbTT1whuHKJ/+fv/T4/ev866cTg1ptcePYMESnB1iJDkSJqPmHF4+xcjQsXWhT+HWTtCGsMWpYnV9cpmaJSSWwuKBKLNDVme3N848szUkeT+F9FCxeTufhVj8KBfjpm59pbxFlGRoEjFE45yI4STvkCqBg8xzBXX6LXTRjOLFIL5usepnBprp/hE1/8HD2/x4Nph6bnc67ZADMjlZZ+tEdsMorCkI8hGiXIwjC/0OZLv/JX6edTdo9/yLjI6HbH3LWHnF1fwA32aLYNe48ycuuTZTk7O2MWW2127neoZZLo4SHzV9cZSokR5YspyQqElBweTqlUAjqDB6BOyOw5JrGPRZMXKWlekOYxBkulVqW7PwBAuYrMJhhpCZYCRM1jdXGDv/yXf4dXf/lXOBkNcZoBlWqFalpBasFc2KaK4hv/+Pd58OYu/d0eGVPqqwGf+eVX+J2/8RuIYI6P3v+YUXxMGFQoipil+hz3rnfZMFVUWqHf3+Xlv/Rpbhzdo0gsi0vzPDrssHfrEbkpUFqhhUDGkHZi/M06//Jf/UsqooaOJH/53/kk0/4Rf+V/9Rvc+PA+/+Xv/Vccdg8JHta4uT1F+ZKqEvQ7w590y/zcq1EJ8R2HPE4pjGB+cQGnWSFNI1ITMx52mUUTet0Tbt+5zcHBIRvrqwz7JwSOgsIyGY9J4xQhHXzX5+jwhO7JiMKI8lAqwAqBQJxaLiiTDHXpjbWZJElSTFHgeB5SlIURSIQqf4dFIKQCa6EwGFOQ5TlScFpYQxLNaDdCXGlYbjd59pXztBtVtK9p1eeYb81xb3sP6xbMN1pUfJ/QC6hXl+gOIlzPo8hiICVKUhwZkBlLlg3LRLAko9frcj/OuHNnl0f7fQrroYMQrKQzG9LfGDOnKxRk1NoV1lfP4DQbRLYgSVMqp0Ei/dGAKBoThh5hGGJtges6uK5ib3+bNEsQsk2aZYzHIxYWVxlOJthJzvLyImEl4KDziKPjfZzQRUgfgcakmrDiY1VCs7GAsCmOkyNJSbOC3BTkaYIUkEYJnusROppWmGMaYNAEniHLLBQp3mmqYbXa5p0PbnP9/Xv0ewMuPnmGzSsrONUKaZqVhAAFUmq8UzxdGbCTU5gCS17WvYVAK/nnw6mlXQdKnzwgBIUpUy5dV5GkWRkkIcskySzPqAQBNs/KCGNjAIlSGk5vptMkxfddTF5QFBJTWExRQGEpsAjxC470z4uyfIaS1XKPGIUigyKnWq2gjUYah+XmAvu9fVorGltk+MbhzPwWd+/eo9fv46p1MpGSFAohHILAZzzI2N8/IJ0VNOttzj+2yVgPcKVPo9JksbnIfCXkpHMPYVOYhXzrT99ms7kFacKzj11keXGer3/n+2RKMhJTvHAEyT2kztm+d5f/5D/7D/C+F2HrhriYARbhCBQapXXZaUJQqwSMp1Nc5aFdH0c7eFrSqFQYTSaEbgvfq1DxAxphDUeC13So1ZuEriR0JUgwRcZkNiLPC2Y6pzs4IUpnhGGAE/rEWcpsGpfkGluQ5zn9dICQEs91WVioQw7ZdJ+TZHaaSaWwVpaXHEjGx1Mmx1M8RxLJFMf7Bf7uf6TvHt6nenYTaw3SJpjsgKMbE15c/QLaKK7fHHB/+4CDkw5rW20ufXaLZ+MrDB522Vp/ifpahYdml/3BCc3WKlka8bWvfZVLly/x5FMvEHgh/+y/+3v88OP7LCwuchzHPNw+4OHefSYNj9WXnuHChcs0FusIJyebTun3e/T6XfwwIDro0Dk45uI5h1Y7x61ppHLLKewiRwoLVmNNgqshm8zxzrcL8smQLK8ww2BDkFKwuLBCJmY8OnzANJ3heUEZHiA0rtb4joNyCmoVjRAxlbqmGoY42iXNKafxTcH5s5ssrzRorM/T83vcGt3CdwXnNy4wX0sxdDBiicPJI4RXoShOELbGlRdf4qVnX2Bpuc4Ln3yV/+t/8X/B+AmmUZBZS6c7YW1tjmmUlb5PLbEZgGQ8tTjSYXF9k4c/vEar6fP/Ye/PgjW70vQ87Flr7Xn/85lPTicnZCaAxIwqADV3dXW3SFYPFtkkbZGyRMuSJVkOWxG+ctgRvtKFwgozLDMoSx2igxLZ3Ry62eyu7uoaUVWoAUBhRs6ZZ57PP/97Xmv5Yp8qXvhGHSi7Ah313WQgEZGISKx19re+732f98bqCm9sPyKpNI4QVKZOLCtSuHPXcvFyj6WlJv3+ISru4amQvATXdfC0R+nmnD1/nt1HB5RpUbvgbYGSilSUuC2PSy8/yaVPPMFMVAySIUZlXHnsEt1pg1SkuCVEiUSMPbKsIg8NL37xJV787DM4gWTh/FXeX99j43CXUTnmsL/H1of3iAaC6DDlxrPXuXp1jXfe+R4rl69w86Vljk8GPNq9w86jEWSadqtBqaAZh7RsAM0mc4155i+u0l1a4NG9B2xtfZdfeullXv3qd/iD33sVlWvc0MMKi00h7Q8ZNwxGfuQr87EvR0LoK4ypJRRWJBwc9im1RhtLlieMJ2M+vL3O3TtbREFAKD2UsQhrcJQkn+bYUuOGPlVZMZnMKAtd/3nm1NhlLVIJsBWOI2k0AhxXkmU5SnpYU2uj65APhalqKYc91bjyk2YLixQW13VxVN3Ig8Uazfj4kKcev0KreR5HCcKgDkIIA4FyJW0VsPD005wMpwzHEwI3IvQD9g+OMaWuP2zCoUhneKFDkk7J8xPOnenhug6PNg9xPdg/HCIdF+UGOE6AdQTSSKzvsD064MYTF2j1FlGRR2o1uc1QXkDgBaTZFCUkoR9gqZAqYjrLCLwY3/c47u9QVRlCGlxPUVaaLB8xHnssLcyze7DF1tZDGu0m165eJogqBuNjrDX0mvNU2qEoCjQet+5tEvmCdqxQosIaUTetxhD5Ekc4SKuRWOIAVM/H4FGaEhErqBp4bgNpA/74j75PmkExKQmlYj4Mefd7r9Oan2Pt2iXc2KOqSrQQZMbUUgop8F0f62jqN5CtzYLWUJlTuoatBTw/2T7AKe+6LJGeQSlbyzaERBhQUlEUBYHvUQjq7dTpEVNKIQX1StpAIwxIs5qNW2PvLEop9C8CWT42FTinel18lPIIWwGeG9GMYySSZNbHcRSNsAliwAsvn+F7/+oR+0eH9OZ7rD69wMLcHDuDPYy2FIXGGoEVObPkhMl4RmIyZnYZ5boEXkSkmjS9mCQ9YfPwAVY7bNwdoGxAUVQcHR7QHyRs7e6wN5ry4GBMliWsr59w/mYXIRKWLi7z53f+FXlnTIEh8B183yctcnwvqNGTiDo2PM/w3ADPSuKojXICYs+lEfgoHYAfEoUNeo2YXhyCrEjzCZaSNBkxyio2Dw9JK0tlwAgB0iClxYiKk/EQpeoHru865HlOVZo6EtxR6EqTZCnSaBqNkLn5LtnUMpvU/HklBAqJyCs6QUTYdEnzhFmWouRfPpnUR+4KqocDCq0JVlt4LRgcHBJUJd/4H/+YL//v/iZPffopeo6DSDN++PV32Lx0wAvPXeLaCxcZ7CRMwmOS4wk9JyLJS+JnLvDCQo/k9jrJ4gnnr1zlN//ev8/DW3dpzS/w9OIynW4Df3mJ9Z0jZsMJ5bTPOztvUrkJnucjtCR0Gggh6YQumd/hg/f3WfMzvDKn0ai1lpIa6eSpElGGHO50ePi25L0f9VlZa7FyLeT2VkIcLbM477N9tMFgtI+lxHcUVBrHkRhdURhNaSoiaYmCGZfPt3FUg1EKg2mKxkNhOLPQ5nB/m63Nt/jS57/I/uQEpQwX587gS4eizHB8mOUpuye7HE8SHCQ3rj+ON+vyrX/9bSb9DZZ7gp27t4kuzCHaAVZCUWk2d0+Yn1shn40JgpKszMGUWCnZH0zpoTCOpdduEQmJKCuE46BtSV6V+H5AoaHKDN/81lv8u3/rr7HYTNgfr+M1zhI4LlL5pLnAkYoLaxf48K3bTPQYjESkBmMMWlk0OX/8zT/m0f42f/s3/udk6ZRZeULsS7StKKocnRjCosGsmJEGBS/+0i+xdvMpbDsibJRs9WfcfnDA1sEu6xvrDI52aEwLPnXxJSbnO3z1m6/zzR++Rm4M117ps/swJa00tpFSVDkLCy3Gk4S5+TZh4NKlSV5UPLq3SVLOOBwf8cSnPkHyYJm790+482jIymNX2H/4EMeHJ56+xv7GmNGDEauX5hnY/Gdw7T7eFfoRWZYgkIRhjO+GxLGPtrC1s0te5Hx4/xHff/19mmGL1YVlqqKqeaV5xWyWEboxxlSEgUeSZqRJXiOTTkMyatKGBGGIYodmy0cpqKqKLK2550o6P5WASAWe69ZyDitA2NotLgVKCnzPByqKPEcpy1KvzY3HznPuwgJh6KGUwpEex9OETsMh7U9wXBfXKbEkVLo2EOZZhdAZkRfSVoJiOGF4cEzkQl9PubV5Bz/WBJxnfqlH3PAQjuHsuWXy7IheW5JkGqEkvV7Ic4/f5JmrF+k22mghyaWl0KomCBzv4zsOc602jhBYk9c0iazC8wKCsEO/f1BPpn2/RgQ6krLIkDKn39/m/IXHCIOAaZqyvbtO3PBZXVpFVynTJEHnQxzlE4QeJ+MxyewQB4WII1xHYLTFGI2UVW3IxGC1Qhsfx/XxpYPFx9EOQRQgrCJJK7796nfZ3D4iTesNwPOfuM6Dh7eZTGcUWU6ajbl47SLdxTkKUxMzjBUILcmqEiH+jTTHdRWOUsTtCEGdVKmrEm0MWutTKUetva9Mhed6VFX972pNNKeoxJwg8ElNWTftpzw/qSTWgNYVWtehF9pooG7iBSCF/Plctl/UX7iyscHKGXmpCMI2oXQReCS5QUhDYioCU9FtzVOZhLVrPlvPtLl1+xi3CqBvOJvM4UqwlChVc5YdF5Iko6oMi2tdRMPgBxGBGxH7EcrkrO8+JDOaW28c8OCDAc2oTVVOaDZCNndPKI9q2VpaFFRGk84SosYKF59eAEdyVI6oXIEjHTrtBll2GmLkB/iej+d4+I5HnlkaYRsXl26zh+/4hI6iHYdk7gzfD0FqsnLMxuE202xGaSqMzimrqk41brhMToYUlcAg0bJCGo3rKKxSZFVBlqY4SuIoiRtE5JmmKitsZcGAVC5lZXFVQBQ2KRONxmK0oKoy5jtN8pOMVjvGT70aN/mXkIDzkRvp/TubYCTnGk1WH7vCndF7pFkO2jLaOKB99Ry2nzH6jPHEgQABAABJREFU8V0e81bIJpK3/nyD7at91m6u0FkMaYslHu2U0G7jLM9RGofejceJu4soPD796c+ytjLPj77xDX786g85OOjjX11h5/YDJvsDDt68S+EbLj53kfhCiBu6nDmzSpqm/PCNDYq5Au35bO/H9MhAG8rIx/UqHFvhVA0e/cDn+1855OrNa3TOSIppglzV3HhqlaNxzt3N+2RFghACU9VrQyk5NTK5tYGFGtGV5SnjiYMfNdk7yslKH6wh9i1ONeN47wH/zt/5m+TtmOFgwFK3i+N5lLqenjgEHE62OZlOSTKBX1i+9fXv8eqffoPDzZQLzXnu3XobyDnaOGHhzBpTNI6WHJ4MWFlaQzp9hMzxHY9Kg7YVSpZMZMbFT1zg8rnz9NcP6G8cEV4+V79KiwLpgUSj84z+ieXVH77PX/mVl4lDy63NDaLuAr5qEvoeUgQEQnHx0hluvTuGXIDrnOoe68AMrUve//AN/m/bG/y1X/syZ8+dYzw8YdQfk+QzVK5I1/dpe5KLz9zgk7/2JRy/w+HeXaoK3vzxn/H23fscp0eQJsghHD4YsGWPOD455riYoLREa81kf8Kz1z/FN976Jk5hWFyepzFvyPOCsSlZPHuGGJ+jwwErrVXaImJ2LHnzx2/z+c99ht6Bpirv8djLT/HBG++ws/GQ0EQc31vHzy3BuCJs/uV7Tf9FS0mPMIwpioLSFCRpQmU0x8M+s2TAJK34wY/eI68kDaEIPJe5dousMhxMM6rSoITCdz0cp54Sm6o2DxpbSzksBs+XNBoenU4AsqIoS4rCUhYGbUqkrDFlZZUTuG6ddigNVtfNuMVihSWMAhpNn0tXL3LmYocoVigH/EBRFCnGGnb3p6RpQRjFPCyPUBiajYjA9+h0evh+SJ4V+K6Lpz0YF5zs9BnuHKE0BK0mtsq5FJxhlIz58HtbrF5MWLx4ltGgz1F/jB84tCOXtZV5bly/wJkzPZSo0BSMdYbFw41iiirn5GCfPBsxd/YCw6MBr33zdT75mWdZPLOCICCOWhz3+5S6Yjqb4qq6gbRYtKnwfEllU076+8zPLTDeGuC6klk6psgzFuYXcUd9ZpMZceCT5COqrE+nKZGkSCR5qikqi+c5SIc6NluA8FwKDWlpMNZBCJdKQ54lpwlslk/+0pM8/nxO/3hAVZZsrG/SH45xPIdGu0Xo+RSTKcHiHFIpCisxtkYWWmq53U8aaSlrU9V4nKAUYA2uqwgC/5T9XEeZW1tRVTmB6zCrUpQUQM0Wr/NYasydEgL9k1AIYYHTf7aSNKtoNgNEWZwaU2s+LvxCI/1xqfffSHj8FYtGoUX9QMryCb5yENJiTIFVBbgOC91VTHXAM58+x+4g4WS3YOPBIWEr5uozPTylcB0Xz/PI0gI0BLFk6WIDozKa4RxL7Tat0DAZ7TKYDelvVXznDz9EW7h+7THSUrG+dcBsVhIELo6xdBou3as9nvjsKl5bMMNQVRrHd1FS0Q4c2s2Q46rEcT3iuIWSDo2gibIKvyVxpEukAhbbPUJXohxDnk/wVcZkesLJpE+mC4aTGbmV4DgEjsVoQzotcIQgjAPcoiRLUkxeUFpBWXlIxyCMRVdABbmuMFojUFhrcKzAZBJlJVWhUTm4GpxS4lhBlhaUpeF4NqKhXJQs8VyP0I/wFMDJz/mU/GzrIzfSeWFxrWHv/iZVw+WZT36OCyrE3NlkNJzgdi7i3zzHvBJcz27g40OryWEwYkvvY0SHtWtXOXtFEcwp0iRl/9EOb7/9gPW761Rlxf/yP/x3ufrYOe7eucX2B1ucWVkjjtroQqMqILcUo4R3/vxDFte6xHMtNhrrOLEgHU1xfIUjNXmaMhxW2NKloXPiUNPyz/LhtzQ7r2eEqct454i/9tu/RrvR5dbWO9zd22F7/4C8TNC6TrsSsk7y+YnRRZ4amJAWYSVl4VPpOaYDh9G4QjiCwCtZXGxxtPOAm089xfL5S7y2fhfjqrqJNRLPbeHIJoKI/dEOOQVGupSVIEkL8kKxuNxgOZ7nUy//Bv/DP/4a2uaIXGBUrVsWVrJ3MKTXazGcJFRFnaiENjhKUGhDX6Qc6SkbDx4yPj7CnW8j2nG9Ei5y6rwvhdaCD2+tc/XyGs88cRGEw73dbbStiBpdlBPjCp+za2e5e+fB6Tq1/rCVRQFCoCSUVc7J8Ijf/+f/lE9/6nM8+fh1sJK5Vo8knTFLRjjdRa488RjD6Qn3332T7Y2HzIqc4SxFWvDLkuw443j9iKh0ePXNtzFaU5WaUkqsKll/9JArTzdoLofIULA/OKSYpqQiJ3fh4aMjIqeW9pxZ7vKJ5z7BP/udf04vk+wvLeKevcF3vvcaO3fv88nPv8gLzz/Gv/oXX0EBUlg61mXr/t5HvTIf+3IDjziKcaSHtppJkpCXGcPhAVpovvndN5nlCuHUWKUwDCiLjEYrxDmUCFFhbc0hrqYJVVWvCu1pmEo9lT4N0vAUQlm0NfXEWoLB/BRR5oUOUUMihWaajurmJxAsrS7Q6oVETZf5hZjQK1laDphfiBAGqqLE8xRpnuI6CqVsbSZ0XZrzbTxlabUaVJUGNI4qScsp+czgaY+jB/uc751jfvECs/GUcprhC5/V9hLBgs+4GHM0PuLD125D02VldZ7lpSXiqEGlC0ajISdDUWvEgwYtz8X1mmzsnXB0fMiZpQZLc00evHeP3/mv/xAsvPCZJzGmIgp8BqMBSTFBOZY0z/CaIQgPKX2MSfCCiFmRsbm7zsUgQimXNM0RrsVxHBSC0HVRzaiOV7cejWbMwf427WZApWGWGPaPh8zPd2i3HGxZ1jp1Y0kLTaHrZMuymuD7DWazhE67xyzJqXSC4yt6KyHNxhznLy+QVz/EGK/2UpQpgdfDVYosK4jCBhWWsirrMyBqAgsWyvKU0GElxtRSniw35Hla/7gR9ebB8x3iRhfXEQRBhNEaXdU6da1rU6vVGlfWZlRt6sEHiFM5UM3oTrICz/PRaZ0l8FOp0C/qY1E//MY2T7/wPDIYUmY5SlQ4ThNt6tCeLEsxEhzp4DoOi/OrZHqTVz51jq/83n1MEbDx/h5XbnSRXYtFk+cpoJklCdMiYX6lieP69BotLs/NEQiHu7sHyAq++ye3cbRPp+0RKIkIAiwSx5FEsUd7JeTaS8uE5xSTPMWJOpR53Wi6jsRTDnPtDtM0oxHP4wiPTmsOUTrMxW1cLfAcgasU0hP0J7sc9vtMyxmTbFI3/cmMRhyiraaoUspKYPI6+VNJicVSYLFmiqccHEcgpE9ZWMoKqsKAhSrXCGHR1p7y+sGxAlf7TLeGjA8ytjcP0SU4rs9oNML8hOtvDbMiR0tBd3WVaTLh+SeusrCwwLv3tn7ex+RnWh+5kXY8n8gKIgPnu/M8+fRNFjzLg/4WS5cXmGRDBmZM40KH0VBzeXkVeSbCc8/SMdeorGE6PeCDD17l4bfvYTLF8VZJcj9H5AplXf7Rf/Xf8X/4P/3v+dJf/XX+qzf+S7LdTW7evILVgK1TrULhosqSwa0TdsQh0bKL11W4QmJ8D9PJ6K5VdOYUQVTQCCwL8TyvXP97XPG6/P7+P+H8FcXf/V/9Pa49/wz7x9v84HdeZ31nm7ysELI6nUzUmjkwP3V2S1X/qhxDGBg6c3NoGTCeFhghUdbgO4LRYJ9Wp8Ern/8S723vUJziYawb4dgGtoxBNACPk8keFRkWH4zCVoaG7zHXtVw908FxA6K4TSAkTSdmaEuEUx/43f0BK2fO0etO8KRk6kKWgUk1ynGZUfLu0TrCK4kjh+xwlyBaQShBUZUoBKUuwCgmo5IHj/Y5f+EcZxaWcXzFne0Nksxgw3q901vo4Ed+TfYQnCbJ1avQoqqNQxjLtJjw51/7Cuub93nl5ec4u3iOreEmaTClCFz+/NVvEHYatDtthsmEwSyltBXtSjBfutz7YJ+mUESRT2E1ORU6EOAKom6Dsgkj/xgTGnb3txFKoqWL22gQBQpjK/wgQCmX7fyYP7n3HT7773yBtZbH3fUj3j9ZJ1qIeWL1HCc7W+R+wfXHbrB//wDpOFS6YnGuA+x+1Gvzsa6y0rieh+eGDEcThuMDSlMQhTHf/toPebh+AirAd6DdatBoBJRac9A/odOMEXlG38xqJutpoqkwcGr5xlqN60k8X2GsBunhSB8hLeQlccPBD1zOXFyiu9TC8WE0TNjbGdM7G7K2NsfymQbNpgO2oswTLpzr0u3GnPRTEJL5+SYAxgREQZfzC6vguozHIzxH0Y5CsmmKY2zNFp4mOGlGNcyYTQ1RIWiqgKAbk8xy+uNjlhbmcIRPVWg8J6TX6tJdadBcaVCqWpd8cLBDFHcotSWtUtqNmLn5JVwvZJJMOe7vI4Qm8uHeOw/53d/5NnvbI375N17AehqNIC0LjgYndHsNptMhRVUhlItyQ6oKJkmOFSX9wYSsqljfecTZ1fPM8oT+6JA49snSFN+tMXJFWeE6Dr7foNtZxnMtpbYoL8DzNEUBSaqZmby+P9JiUXieS16MOepnxHEJBmazGdbUj6A4ChhPJxwenbC4uMjjT1/m1q1NLBWLi3OsrK6QpAW6MlSqwAlcpKfIiqLe9MlTGL+tudSBH1FUOdbYmsXtniIWT89llhUkyRgwSAVK1Cxo13VpNptYa2vCS1XiFgVVVdX4MAtagK13cVRFQdiMyYRFa4uoRdS/qI9JyUKydyfn5qebDNKMNJlirKQbzdNp9bANgacUvusQuh7CahaLFIHgs5+/wKt/8oj80GN6WBLNGywabSocVyCkxWm4tOdcwqiDsooqnXCSp+RVyoO3TyiPoRlFfObF51lcmkcGEcPJgBlTrjy7wuK1BjORMNYecTyHthoviBDKIXAcelFEoBq48RxK1Pi6yPXpdFs04pDpdERlplAodCV4sHMbTY6WoK0lTyuMrjDTCQhLFLnIVJNlJUUB2FOWOjXtSEuNpKYK2UpSptXp5t1Q5VW9LVSCMIjxXJ90POW9tzfYvn1C5LcYT1PiOGBWTZBSUeQFnucSeTFpKamqir2jATevrVFmU773vQc/7yPyM6+P7pxSgpbn8oVPPkO/0lBpypblzHNr5I0KYQxrFy7SiBuoQnMy7rP34Ae88+N7lKmLKSD1QqKox7WFT/PGG69y8+lLzFYyHvx4k+wk52jngL//X/x9/s//xf+FK49dZTROKK1FZxVlWVFUJQiDteLUXAIuAapUNU/Rs3gqoWs0RWKJnYBuY44nLz3PeDJG9eZ54csvc+uDD3lz8yH30kP+xR/+Yx7t3kafopjUKUILDEKe8muVxPNCfC9EKXA9TbsliOI2w0lBoTVYTSuMCG1FlRq+/OW/SaGgbxIcKWl5TUKngy+7hF6XqjKUXopljKRAVhAQkPdTqmHGKBd0nmrSnAv43K98ie9+41X2H+3jrkXM9BijJUXpMJ2VNMOIdDTFGIPv12D2oig5mRzTL2e0uz7SKKrZFAYneL0euRC4rgPKgAFrLOtbmxxPn0AID9fxuHZulVuPHlLoCscJiCPJfC9mZ3yEVWBsheNCnudYq4GaoiBtPXH68MMP2N/dZOH8EsOTEZcvnWOQTpmWNaGgPxwxnszwrMDPCjo6ZLh1jCdcVs4scjwbUrmSXDkkMgcJVWSJQsnOaMhk6qBEhBMZLl19gfPnzhDHEQtz89iqoswNR+M9MlOSBA1uFWO6l87hSkH2/DWmhcvtu3c4F7j84KtvsNAOyZKUcKGNasUf+cp83Ov2vQ3anQ5KKfaOd0iyCWHo8+r3bvH6GxtY5dBqBMSNkNl4wmAwQMw1OBxMaHXmCHyHIJKMpiWzcYIx1GtDAVLVxrFW20e5lqoqmSYKz3cJAocghEvPtnn6ubOkRnL70QGFkcQ9xQvn5rlxZZH5jk+eT5ACXOkx35snDFwms4yhTfC8Bu1GQJpWlDLi3voBJ8OMsihYWJojUopmz6OrQ4q0qEkPlaacaIp+jkuARDEZz7CxIE+mGF3gepZKzsjKBDf2WTjTJZFThlmftKqw0iFqN4kbLYQNCf02nVaPwAtq9rHReK6m1XD4/jfe5s/++ZvkM8najSVe+uVruH6MciMebD4gCBxmE8NkmCCVT1YIpFJkpSYtSuqHfkiW99FixmA0RrkxBycJrdLyw2+/zrnVNk89u4znl0xmJUoECBlgkPUk1hjOn19jNDzB6gJEAMbDWkurHTDLSzy33gbUs11LVRV4rlf/PBQV+WwMSJJpRpYWeK4giiNuPvk4e3uHOEGM44YUeYmxFtdzaMUx01mKriqQCqMrrBSURYUx5tRgKNBao7X46e/VZI0alahNnVZZVBZZVAxGJz/lkweeInAV3XYXz/fQumKWzMirCl1KdJUjjCbyHdKsrCVCWv88r9wv6i9QL3/icWaHhg/fGJEFfVpzc8wvetgIlPTxvAhbScKgzSyZUpVT5nqXMKXhEy8pdh/1+fF3jnlw+4DlG0sYJI708ZRCuYqzl+cIWx6e66Csi3Bgc2ebo+0pb7+6Tq81x97JIW+88R6/9m99ke2dhzQXFZdurhGf9ZhUGuW2aLkujTAkLQ3KDWtDsfLphk0kitjrECqXRuyR64ST0TofPjwkNzmGEt96zPV6OJ4lnWZUWlK3dHUjaypNXhZYUeFKj16zSVpAkVeUeYlFghboCqIwIggahLJNb6XNw3vb3L3zkP2DY/I0Z64dEXgJVlt2dkbkmUEIRaU0ma0QZY6rJEEcoKWgSAtG4wQpHVwJWWk47I+4sXaWjb3Dn/cR+ZnXR26klXJotlosL8yTTMfIyqXb66HCAB25TIWg0Ja7d+/x/jvv4gp48tI1Vq/MUxa2ZoQWGXt3N/nWN37MpZs3effdO8zNw3NfusruvREPP9hmd3+TP/ynf8Bzzz/P999+i6LMKJKCNK1fYpw2akpJHM+h15ujcAyVdchyha8K4lDQCi3daJ7nrv8vmJzAj354h/3t98nyIcaBt269xp0/eZPxbEYlq9rVbWsphxf4KKlQyqnpArZOKZsWM4QwhIFkrr3I/l6KdCK0Lmn4gscvXaTX6BGFTVqds7y/+yNsZGnIJvNBi4bTpOHHuEqD0fSnOwxmR7SiFsmgwDE+J9vHJIOCxfkbXLn2MkWV88d/9GeU4yl64jB/7gLaVggpCcMWx8djzs3H5HkfYyBLU7QGx3GJw5CZMIyLjM5cjLUlcjLDDWKKZohwFaKo2azGaI6O99g52Mb3L2LKnOX5mM88+zQP9/dJjKgjka+sMelP61AEEWC0ZjoVlGVFWZo6GcposJYiLzk6PuFoOqTRavPweJsgilhcWSbPCibjEarUtI1PsjtlfXsD14kYeRXjZJ/K1eSOoFIOWB9hJZNh/RKf+DkN/yLnzp/jqZcu48fnabZjOq0mgRfiuzG95jxlNmM2mlEawzg/ohQZ5yvB0sJZRqMRz6y1SfoVk7Qgm4y4sLJCJTTlZPIzuHYf7yq1YJokpPmUw/4OrTjg3p0jvvatt0kLzcrZBRzXYTZL8OKIsNlhXBSklcSroLKa4WhIUVTkWYk1BsGpVEoY4qZHp+cjpaU/rM8PUuMHDt1ewJd+9SaTSZ+ycFleXWZ774S1M10+/+IV2oEhTUb0ByWV0fS68yglOTwYgPRwVQNsk7c/GLC+fYTGJ8kNSVYipMPG8QQnm7Hy/KdoqSZyZuu0U+VjkpJ8qmj32hhPkqYprufgeJK5xQYqrnDnPILePCM94/bJOlZZSqtx/BCjfSKvidEhcdSl253DVXUktee5WAPJNOf1V9/le1/5gHIG86sNvvibzxF12sx1z7C1t89oNiLPIn73n32V/smQ/+Q//ztUZYWIA7JS43ge49GQ/Z0RrV6bSTLk9p1bXH7sSbyozXA2I+ot8PVX32Walzxxcx7fczB5juvVD3FHeLQ7EdNkih82GI2OCX2PVqOBpEAJTTKZMR4naGOZJSlYieuECApCzyHyDJ2GxPVDhHLIU42jXB6//hhZlhHGMdNU4wgDKGwJQkE5Ldl+sMXc4iJhS9bmJXt6DuBUO12nDhpbbwat/YmpsDaqSiGxov59Y0EqH6EcHCUREvKyYu9wiDF1hLiUgiB0icMIJUI8z0MKQZolFIVmkP3lizX+y1rr9/aQUjJ5r8+LX54jjBx0mXNwtEFZpsx1Foj8eTRQIqhkCLLJ4oJi4N/lM79ygc2HY7YeHUEq8H2FpOaU95Y6vPCZefzYIXR8mn7IcHxAkVf88OsbFIlg6I0YJWNGkwFf/8G3eeKTl3j+6cuciCmZAC8M8ZRLt9lCVxCHtWExQNDyQxZacY3PExVlNmHnoM9Of49CW8pTprMxkqnISfozPMcSxyHTmSbNDdoa8jLHkYpK1wa/XGsmZorWFjRIKwlVQNtpcWlljXKqefO9DULfcvmpVR6+9Tq3b21T2ZqKkxyP6TWbdJsNPOtiXEMlJdZVxK2IKslRjk9hLDL00YVGSIV0Be2FFp1Wi52NbVxb0u785RtGfeRG+vKVc3zq089w9ulzNKYJaTpi0nd48PAO33rzNTrdeT7/mS8gRUwjXCLwXXYHCUf7Y+zwmEc/eofJwZTpSYbf6fKFX/11fvD6q7z+Z9/geOE+i2sdXvqtZzneGvOVb/8JVx57jNQzeJMBOqvjpbWpkBZEBUHsIhsBn/zUS6wf7XDn/Qc4ShA1FHFD04tWePbqv0c1fYpvfPV/JB3usxjEVL7DraMt7m6f1E0n9XQk8kO8po+1mlJXlJUmzSqMtjhObVBR0kMqS7PdIslzkllKqxkibMmF8xdYXrpKlTlkpGxO7lA4fVqqRcvzmGt3WGmfoaqmVPqQMFxm/fiQ/dGYOOoixRhjBZ7f4j/5z/+PFKXhtdff4rOfv8ljZ+d4/80TwsBHTDRuw8VKiedJDg+HzDfbCOkhqXCkj6Q2DFXGEAQhWirGaUpzsUu5OSDYG+L4Llo6KCMpdIHjKCg1x5vbXDyzzLQSPDqastg0VDphvz8FmuRSMUqyGmtmbR2KYTlNnLMEkUd5iidzXIcyr3F5s/4JJkxYjVep0AwGJzS05jMXbyAHAd/84AdkriFtSmzTIxcaK2tzp0LUccBYXNehrAp0kdHrVPzqX/00T968wslxyDgbMjjZIm408P0uSmm6cY+55iLGCkpzjlkyodPuoq1hZ2+drfAWG+Yev/W//hJb79xh6+1D1GMtFH/5HMd/0WpGIUhLko44uzJHlmi+8qdfI8sFrV4XpKIoa1JMaStyDeO0xAiXLKuwuWU6TDDWpcgKpFScO7dcP6BcRbvrETct165f4N13tjg6TpGinoS2uy0e3Dvk8pUzLHS6nLxzm27T46kb5zFFxnGSYynI8oIoith4mPDBezvcu39CVtRa64vXzpDjkFU1mziMGzTbgjRPsdpgXZ/ZNCGXHslgSituYQRUU4OyDmEYMZklZFlCJVNUS3PmwjzxXMSoTLl7uMmsLDBS4EoPKQOsiFAqxPU6tLo9dFlRViWzSU27WZhbYjpJefeNW7zxrVvo0tI7E/Jbf/cVLj1+gV5nmeF0yjSb0Iqb/Ovf+x7ff/UW126s4XoRVpQ40qUsszomWEn+4J98i+c++QTPffYiGzu7HJwc0u500f2Mx26cZ3N9k/vrJyhfceFszOryHJaENPfQlYN0YpCG2WxCFM/TDCWYCt+PSYuSJJekuaAsPYy1WFPQbmiszlEEOELQa0UEUZudvQm6Kriwdp7+cExelPQWFjFUZFmO5/t4flDLLUq4/e4jnGCLZ1+6TnuuA1bXkcOiNjcKIbFC4fwkhEcKHNfB2prWUVUlvltHphdliR/4ZFlOWWhKXScaWkBS//wwZT29G5oUSS0LcV1JGPg0Wy18t/HzvHK/qL9AlVbR8hvkWcXkwCNdniKFixcYprM+Vmf0eobMpOSFJI7mUX6P0WxGu32Zs2dzfuNvPsXv/7Mfsn37kGtXb+C5NVt8Opsi/RatKKbndYh8w/7eEfffO+L++ycIrTBOSbPd5cmXLrF6w6e1DKULYuYTq5DQdwkcl6YfUAKx16HphjQbHqEnORkfs3+4zbTIyHSB6woi38OmJWWuKTVU2tSbl9IgjUZYSV5oygpE7eqh1JoqN2AVBlnLLYQk9BrMRiV7Dw+5s36fzitt7t5fZ7ufMHdGMRtNiP0QXVRMZykoRacTM5llrK6ssBqG7J+cUOQZFTUGz1YG37NQWrQLcTemcCY889J1rt98jB9+601KJBsHfTq9zs/5hPzs6yM30mvPrHJyuM83fu8+ydGI+SeuoZqfJtch2Qisp9AzWLt0gQuL58jLlMl0yhMXY7befIO99F3GmcZxHM5dXCNuNXnxxRd59MZtsqJi537OxsMPac2FeCuCw2SXhTPnaAIv3bzA2z9+wFS7WKEx0jIpDb0gIisrXM9DKInVMxpNy/xim7PdX2fzjkFn7/Kpp6/xz/+HN0l8l7GYsjU4opLgeh6OqLXQRltmswTl1ISAn6T2KCWQwsFiQGgazYAwCjk6HoOyWJEy1wpoxfM8vL9FNe3z7OfWyMQhsSuIlM/i/BlK7fDh9n2UU/HYyhLKjRhMh/huTJULEIKo5fPv/Yd/l3/5T77Kj77xLZ5+5ix/8Ee/z/y8Zb7nsns8IjzpETd9UlmS5xlFWbJ7cMji/Dzpzj6+71EWFmMlyrpUZYHjuOAbJnnG8koPdZTQSCtmOsPxXSpby2WqUvPw4To3P/EURgi0cRimlnZrnjXlsLM/od2IccMmeVIifsKEFeKnbnopFUYXtSFRg+N6eH6A1poiK9jZ3Cbozmgpn1euPcXZxgLfeP918q5ABG0mVhN6LqaqNYuudBBSUmlwHB/XDSh1RtiEoGV4tP4eN663acYLvHVrnbyYMJs8wBpF4AY89cRjvPD0M2SpwhUNlhsBvVaPigCPDp6cw3F6PHjwKjd/+Sqv/MrneHR7n/Gw/zO4dh/v6sy1GUwGpEVKFER87Rs/Zn2zT7PdwnFc0iyrDS3WkpCTG8tRfwLSxVoFxmNxfom9/WOwNV6t0iWuL4njANeD1TNtzpxtgFzm299cZzLOKcqCbNbi+o3HWFrp8XBzj24Y8Mz18yw0mxzs7XJ0POb4ZIKpKh7de8i92yPGQ1OHDSnJ2pV5olZMMk5BKEpj0LMZZ84skZdTKq3Jq4pRVbLolTWL3dSPwjzLCeOg5qGmY3KR0F5qM7fWYVgNubv3iGFagRMyv7SE7/sEfsh4lNBsLRBETRzlMh73caQkyyRZkrE4t8pwlPInX/lTes2IX/rlp9jd3+dTX3yOcxeXacZzCBnxwa33met2ePWrb/Ptr7yNI1xWzizgeopKa7DguZIoihifHHJ8MOTNH9zhhc9cxtiCo8M91i5fJ09DMAlPP3uJ73//A8ZjSzJxSBuG0HNxHUWauxSlQ6VDXN/D9wzIkmk2RaiQ/njK3mFJXoR4XojrOAQ+tFsBjUASejVVw/PB4JEXCd3ePGHc4GQwQFtBVlQo1yVPM3Res58Fgv7xlCwvWexGTMZjyjIjm+Ysn5/HiWr2tLUOiDp1kNqbSFFUdYAPIIRDmtczR2NN/bCzNX3akf8miMWcYvMMAiUEQtUR9Y5T+2Bmeclg94hkkv2cb90v6n9qHSbHpNWMUX/M/teOCecvUiwOcT2PbqdHHClG02NQYwJ/Hj/0yU3KOKsIvXkurH4aa17j88fXeOMH9/jMZ38Jd9nHUQ6zfgZtl8DGdF1DlQ+YTeH1721SWUFeZvjKcvaJkMWnFVM/Jc99Ot4CDd/iO5LIFUSOR9ML8DxFK4gAy/Fok3uDfYZVRWlqkoyWClEY0jTHkRYpPVzh4MgKU1SUM0ukGjSCJifTMaQZkVR4yiMKAsoqp9NuoUV9xh1c3vrhfX78o3uUWcn1cxcYDhLub2wSNueZ5QX7hwMmoynNKKLZbLF/ckJeapIs48GjDS6cWabh+3TabXaHfXSzgS00utSQVDiNerC4sLCA40Z892tvcPRwgLGSEpfJJPl5H5GfeX3kRnp6b4Mb16+TF5qzFy+SzrVI8hJrfT753Kd5+aUXcJTkvffe47333uXpZ29y9swKS40W7+xukwynZLOSqNPihU+9jBP4xCZEhBmhaZOOAqaVw9FsQuh5WK8kCis6bo7pRVy7eZXX331QR8i6gqATQaTYOdgjtwXCM8y3ljm3POHwrmVndpdmp4krBKOZB50Ojw62SMwIXIU1mqKqk7FqCIUDVqIri3JcrDWnGCiJPGXdOq5lYXGO4XCCMQrP17RihTNOuP/1b3L+/Hk+81c+xYF/wm6acr7VIQg6bO+fADOCKEJZS1W5WDxOZodUWIosr81XuuIb3/ojxpN7fOlXnkHKhPff+5D+7iH/wf/mb/P3/5//nPSgz+q1ixRmRGUqrFKcjCesrC4iJKcxzBJHKQIhyK2g1BmFrrCBYrdIWFiMKKoMG0Q4ykIFAonWgsFgyvFJn7DRQCiHrHKw45LVhTlGgyFjUuaW2swGAwTyp420c5o2p7VBSgcw6EpjNOiq1jZ6bkBZ5pycHNJaXOF4NOTdO/c59EYcOCeY0sOR4HghyJrpKqyt46lxcYRH5LU4s3SJZz75PPMLbdB9trZnNBse3dil8ptcOXcOIRzKwjCbjjjYf4gSbdbOLdOJJGkxZDK2OG7E+fOrLC+d4/zyU/z4/T9E9wo++8uf5l/+3r/8qFfmY19FlbGxtYUjQecuP3rjHl5YP1qzvAIJwliMNYhQYKylKCuk62I1lFmJ70XMZhlxI8ZxBVHs4gd+nUZnDGEY0mxGvPjJLtOZ5DvfekAYBXzmCzeYW2rRH01Aw2defJ7DnQO+/gcf8s57u+wfT+gPhjjKwVqoSg1GIIWi1YpYWuhwZqmDloLjQUIYBWhtODk55syZVTY3txBIdkeHXDsXo7QlTSekSUmzGxO16o9ub7lJY3mJSTXknZ33mVUJftTGDWP6k4QwTWjGMWhBs9Fhfm6BNM8YDQ9x3VoTLqXPysoKo2HB//3v/7846R/zv/2Pvszli0sMZmMa7TnKQuC6TTa2N+i0G2zdO+arf/A6trQIX7K41MPa2ijluA5ZNkGbhLyYoCvN/mafweGEVjNgNCsY9o8IfR/fEfhrC2w+aiAqw3z7DP2TEUk6YHl1jsAxJFmC40ZYLRnPZkih8VWMSTyORynKnWeh2UJISZaldDoxrdjFURrhKAojSdKKLDNUJkAqQ1kJWp1FKqOptCaMQiZJgjWCvCqxlWRv5wBrLZ12B0cKsnHKnffvsnz2OZqRgy4VeW4pywor6/ANrDyN3qmlHcbUUeBSOghRs3EdxwNETWzxXRxVxxgXZU5ZljiOROuKqqof99boGuOJRP8M7ES/qP//lA4EJ8ms5oKfwA//aJsv/vUrVK2CydGAUVpwZqlLuxEiTMHR0SO0dXBwqMQ8brjA1bUSp2xwvP0mhw/2UNev0PA8YscjagVEFlSZc3iyzzuv99lZTzEGeqsOn//Na7QuRCQYAiciEAGtoEHHVcSuoOFJGoGHJ2EwmvDe+iYTndD0PSrH4Bgoi4qq0CBqelZpLGiNRKGsxcVHph4nj05wYh8zF/LV3/sOfmX4zS+8yPrmAY4r6XV6hOcD9g92EH5Au9Mj3y957uqTbGxtEDRjdDGm1WjiNZskecZRf0ia5lxaXmWUTUnKBIskLRR5abn/aJvKlPixTykgGY/pNBsYAX4QIl2HUmtGwwlv/+AD0mlO7ASn8eWyTq79S1Yf+afDmU/4NLopy4stLqydZdeX/PD9N9k7GBG3Y7713RO2NjcpreDlVz7D2UsX8CiYTY9YOTPH2YtnOR7fJS9LZnmK47uMBiWDmcWaEQQesd9gcW6Zi0vzzI72ONnvc9AfME1Snn/lWT591eeNH9yhLC1nry2xevY8SZrTiBcI4hauSOg/KNnfHHLm7JDPfeaTzIqC1956hzv9R+ROiq3AlmVN4JACJWot9E8IFPVEtU7CEkoAGiUFSlnmF3pkaYEuBQpLp+ETS5Ap6H7OpHFCGmQcT/vMdbrkeOycTHClxPPAtQ5N1canQZpk9PN9pnaKIKIoCoaTPm988wcIU9FrzNFbCGh7Id3VNv3RmGc/scbx0ZhUl0hlMZUG4VBUhpPBgGYz5vhwhlIR1kqkNfhuCMJQmJSqzJFKsqcTfOmi0pTIlfh+UEc2l5oi1+xt7fL4kzdwfZekKBDSoz8pOHdhmVm5SaNj8TxVGxi0/unfnT113VsrkNIidPVTF7y1lkJX4Dq4VcXWzjb9/hhXKlo9SS9sMj5yEKbCVhpXKhQCz6l16sJxiOOIm09d5wuf/zwLzR5KFih1FqUqtEk412njx22OhjOmRYXvtTm7tIInDPv7h7z2o2/hNSqM8VhauojnpVgNTX+ZM3PLtF7+FR7svEciNZ//8q/wr/7f3/mo1+ZjXYPJkIOTCcvzPd778AHDSYrrxmS6xMPBkQqswZEOq0tzLMx1OBkOycsSJQzCdZhMZsySDCMkly9f5mBvjywtyFKoKkkyE4xGguP+GCUlUQyvfO4SUVfygx/dYjqBucYi/+0ffZ2tu/tUhWJ/NGZWZCAklaTmnSoHz3VoNCLOXZjj2mPnWF7sYRyXvDxkmoIQkqIoSKc5ZW6pEstWfox37RKuU+KGglTMCLshxi8xqmLqZ+z3DxCepbXYQ6UhrhthZERSSUDhuiFKBYRBk9l0RJaPaMQKIQVZogn9gNkk53d+5/d5+90HtFoOSZ5yMh3jBB20ifF9l+OTY3SVkw4Kfvd3/oRiZrEItM1ptiWBr8mLOnnv6OSERhOsFESxx3Sg2Lx/zPknPcpiRH8gWFk+Q6Frgs/LLz7Bg3t7pEnGUT8hLy15ecTVS2cIm5KTaYIXdLG2QZKA67n0xwlWNbGkOCrAC0KMVbhehLYVnhsipcMsyUhTjdaKuNGmrKC0FoTCcWpjlKMcsLYOQBGSPM0Y9Ad4nsIPJbYq2d3Y5ennrrKwEFFVOcoI9tcP6rCNRgPHVQjloI09pQWJWkcqLEgHgawlHUVWU/SsrfGc1p7qqOtAF04DfE6F1qdM8xoVVv3Ca/ixKalA+Ioqr1FtZuLy/T/e4plfu4zXmTLLZgynilkypdno0W0vIEqL9BpM0iGe6jAf3eDSBZff/usB799aJ0su0YpDzp3t4jYN3cAjKfvs7+X84BsPcYTLlRda/NpvP4FsCfaGMwLlEzoesXRZFJIwCIh9RW5mPNy8x0TnZFYyySsqq8kKjXIsnvJpeR6zPK2lTI4kDAMc6XKyP2Nvc8B4r+BoY4jKJa0n2xgqxvszzi50uHzuMvfvHtXM/SzhylrEy889w7Wbj/HuO3d41G1y5co1AgrGScpcu0WerdNPj2gtLnEyHnM0GjAoS+aXeihHU2iD67sU2jBLUxAGH0vg+6jSomcFURhwdHREEMcYYXGjEKTAi12oNK1Gg7lejw8+/PDnfUR+5vWRG2kz8Pmw3KO9Os9Ovstbb26SiJAnblyjKV0uXVlg8vhV/LkOcbODKA1urllfv4MIXPrpFKsEyneZW13ASkGVG6SIuPL4ZS5cu0B/OsKNXBxTcrYT8+DHH/JoYx83dnjrux9ifWj2FCuXVli+tMrltetsPtynfzTAjsdsbuww2k2ZDacc3XqTv/HSy1y4doZ/eOsNUj1BY1BQG1aMQEp5Cuo/DRY5jR2WQmJMnTFvKJEONNsunu8wPLFIIfCdkthrkaaGxaWztMKzXHnlEjvTHdotiTA1TioIXaQtwRo8ERN5IVEYkaRHDGYjtJEYYdAYZOWSpoYqN7z67fd57OYiq3FI1I8Yn9ziSI4Iz80TeQH9fIqwpy5zqzjuT7h2+TyjwRRTpRitkKfudmvAVT6YCkNVhzkISasR4jhuveYuKqytELpke2uTi4+dJ7cpugI/bjGc5cQVPHP9Sbbv73CXKVYEVEYglVuny502zUqerlOlqcMzOA3NwFKVBrRASMUwn9JtRKyurgEOkxAwDl6oQFk8t+LsYgshKgZJgRv0WLu2xtFgl2w6ZG3lDJdW1miFDkf9dYpGwjA/5OHGfY6nEdlUEnpv8NJzN1lbvUagYsb5kB++eYvv/+gDHrt5hfPnz6GxlOOSxfke4dorHE322J7e+ahX5mNfB8cDkIK4GfG1929RaYN0RE1FsGBNHZjR67QJw5AkSVica1KUBflsykk648GjDSptqbTm1q07CAzWGpQjMAaKwnB8kvHg0SaLSys8fvMsN64vYCrDa9+5y/ajGeWswsdFlQ6ddgTW1M2UdFC2lpaYU0a78jyWV5dRruLkZMJJf0ToxwxHI0ptEFIynRQ4ImLj0QP6tuT45jGRmxHGIfGKQrUNMwrGeUpuK3JbEaoYVIRyAozwqIxzKq/o4PltlPQYj6colRN5FZBhS5dQRbT8Fut7x9y9+wgl4PnnL9OaCzFSMRjMWFyYJ60q0mxCK2jzD/7BP+Jorzb3aVMikLS6EtC1B0I6FMaSG0teFri+j1CSe3f2uPGJx2kWU8rKkmcpcRRgrCaMXJaX22zvb1FaDyE8ZOWyfavP2sV5Op5lasYEXoPAn8NYy1jnNOJm/TNJw2wwBSqyPKPMc5px/WAPvAjPCevgHq3ROmRj54BK1A15EPh1ZLyokX5VWTHqT5gMB/S6Mb4S5LOCViPkxhNrOMolGVek05zJYcKJSVCeIIx8lpZWMEbTaDZoddqUBtKi/KkvwwpwhKzPpwBB3bxbasO8NQYkpwxr6kTM01RwpRTSFD+3+/aL+otVux3w2LU1fvzaHSYHCd35OXb2d/n2v/yQX/nyc4SrmsFgTBSFGDEBqVjsLtKKWsRuj16zRxR0ceOQ2A+5cnUJ1x2jyHjl02cYDLaRlWU6znjr+1uUecnzv7TKc7+8SubNaLLAYhwRC8liFCNF/d3rT4+4t39MZuvB0SQvyXKNsAqpBVbUHqdSCrSySBniuS7j8QDPkbUvZZIT+3NUcsjsZBsqy8JSD4tiobfApz75FMsLHa5cuUQpBe+/9SHvvfceL73yb9Nd6TF7bcy5sys045CrVy5wf30LpMCNIgZ7Q+ZXztVZE7MpQVVyobGCMzIUJZS5xVaWuNUlT2aYQtPotHCkgyPAVYrF+QXSPEec4vWUqmWwK3PzdNpdNta3CIII+Mtl2v/IjXTH7TKRgtvvHOOqjLgLC0tTrq6VNNIe99+9zcKVs1CUmHSKKxyE63EwHDJc3+Xg6Pg0xEPw4OED1p67RoXmmU89y/ziAu1Og+WzS+xu7/Ddb32PJy9cwjUejaDLyc4+qbZMrKZxJqK37DA+sjxKN1GmYufBe2RjzfB4QomFSKOF5c9f/x6PvrXHSTrEWoMExCn2zdrTaOJ6pvFTVrS1VW0zMwpdWaSj8ZTDfHeek6MCrSWOM2O+FXH48Ji2v4BY9fnsb7zCuDniONvDWIXFIfBbxEGIJwMafpeG26TXWKIZNRjO7hMozTSvV5NlqbEaqtJgy4qQgJbncuPCWZ785PNMxmP+1VuvcfMTn+db3/0ubhhSVQUGi8EwTQsGoyFhpBgPpxjhI6yHUhLf87FFhVY+ZWWQGDQVRuUsrpxhc30XKetpvLYV/cGQw+NjegtdpJXkZc4sSTFaMtd1eeHZp3n77QcM+gkGtzY3YlFS1cYeWX+8hLSn2thacy6lQGowsmY9SwGjUcr77+9wZuU80kaYysMmUKEpQodRqnAxLDQvsLByjWzkU00gixVpMWV77wFNX5KMdnlw51tM1RF39/s0ei/Sbq2hPIeT8YxOc0bc8mh6y/yN80/y9oc/5kdvf5/trUc8fv0Gj1+4yPycoN+X5HIB73D9o16Zj32djOqP0OHhPieDMcp1sYIaEUeB8FyidpOyqhgMxgyGDfJiyM2nrlAkPrffe0hRlNRZ4HXjghCEvsvj1xe4eDHg0sUVTiZTzq3GdOdDnnnmMbJ0xjtv3ePoYERV1gYz1w1xlKQoLUr5CFH+m8hoFMZYsiLj8HDGe+9l7OyFXHrsCvuDPk4QMDfX42QwoNKCySwlUAHJcIbnKyaTCTRLwmaIF/scTI/ILORIstLQ6S2RpiVFJmk2lylLS+hGBF5Fp9shDNpIYUmTAZ5fIqjj5U0mWWx32Lp9n+2dAULn/PZvP80nXjmHHxik4xFEAUWl2dveZmVunn/0D/+QrYcnVPaURmEMYSOmu9ChsrJG1klBXuQkxyOQJdKxpEXK/Xs7TEZXwXoYrUmmU0JvgaoUdDtzxGFEMnuInhqmw4r33r4Ps4r5pYBnP7XG0uUeRidIrwuqyfLS0mkSoCDNCoLQJU1GWFPR7kQIW1IWOVL6TCZjyjInjDx63ZC06DAYzxCOg5QSa+oBhURSVobRYIzA0m3FNByXyd6Ape4KH35ri/3tAcNJxuNPP4bJfazQaFsSNAMO9w7QVYlaWmRlfoFxVuG7AVU1YzwYIQHf82u0pwB52iVro6ls/agXp9NrawzG1lEt1kJRaoriF8mGH5dSZUn/+BAvcOqzMT2hEhYGmnde3WDteovla01yXVCUI8ZZzjjNmI8zLi428XrgORJXLCKiksikOGpCkWUIf4IfR4xmBbYoONge8MX/2Q0uv9gjNykNFdETp5HejqWsUtYPDznJcyokBRq0JTSargiZpoZ0XDHfWeS923fQoSbNyzotNIfxaIQVJQsLbZYW2wwOKoabx/ilQ6vZ5eRkQG5dDvePMHnOh++9zxdfuMTO9ha31ze4fOESr3z6GeZXWxwdHaO1x48/eIsvfn6O4SxjlCTc3zvk3sMtvEabysyoytok3uq2qTyBE0iwFVpolOshjEEJwcULF3ADn4OjkixLGY7GLHTaPHnjEnvHMxy3xXDc58zZJSajPoe7+ziOZWG+y72Ng5/3MfmZ1kdupO/0M3Sry1NPfZ7LZ+YZVofsDG5xcHiH1mqKiTb55ms/5NrTL3D1sacprYsmIcfQH07w/IAsSSjKks1HG7z79jtInXPp0hkefnCXH3/tDpuPtslSQ5FqDt7apppl9OIGgR8ynaYY6dIIFmmqFc42zuIIMFVKeSTZ3z6uG2AXvLZDZ6nJd/Y+ZGZKSjSOFAirTvFJdZSsPE0uVErh+37NKJV1VC5WoIRGORUri/McH2VkiUCqGfMdDzXTeBMfZvDe1rusXm+RyZzSA1Uqms0ugdvGVwENt0nTnaPl9+i5i4T43O7vMt+O6E/HJLkiT0uKTFOWBomo3fm+YZwMmOmE49mI0GlyvDvk8U+/wo/efQ0qjdEZyq0b2KP+MTcur5FmCaXWmELXHxMhcBwPoWodeGlSrCoZzk5ojJo4rgDrUBQZhhrNdXTUp9Vt4koXKwxu6CNdwTjLsX7AtetX+N6rbyBFeCp9UUgBVVUilEFhTg2HdasvZc2BlcqesoRF3VhbGE+n6L0DzqxcxHUlUjpYXZEWms1BxeNXL/HSJz5Dp72CkgFFnlPmmu39Q7Z2j/EcC0nC5r2CopEyy0quXV/i4tpVtCmQToe725uEjYTDwwFNf5mV5Xl+/YtfYu94xMnJEUfNu7RbZzgawlS7hI3WR70yH/uqjGZursXu5iZZXqGNi7EaqSTKqYN4RqMJjlKEgQQpqYxhND6m1wron6QYK+uEUFljFn3fYXE54Nd/8wZXLgSYSnMyFlzM5tk7nDGbWl799hs8/uQ1fP+YmShxPI+8zBEyIkszhFCnZrOazoGpt0pCGuLIJa9KdnYTtvZGzC0v0130abYNcRSSJiVaW7YfbiB1RSPy6KzGrJwJGOuUrcMNSuvgN+YwwicIA/JKYqXHNCvRFMwmKRcvzNFqRninUibHBW1ShKzI85RJP+HS4nWOH2wzODhkdLTNf/afvsL5KzFCxlSmySTVxFGTw8Nd5nttvvJH3+TtN++QVaCti0UjrGHl3ByO71IU9WO30hrXlXjSpcotzVZAlg7IDxL6RxU21AgFvutQaWi15rBMcFzL6mqbr/7B+9x5q081tbgIRsdTth4c8blffYKnXrrEOBtTyBzfb1JJnyisjYgWgSAnCEGJEqNnONKtz0aVImWJNQV+0GTt/CLtcc4sK2vygBAEQUiaF5S5ZjgY4khLJ3S52FtktjHm7pv3iUKfKG7SWW2TzCZUukAoRac9R1VVpHmBKwS9ZpsqKZlNEnIpKKoCXVg21vc43DlAFxXNOKI316Y71yLuNPHjsN6ouPVD3xiNFRLDv2FW2/IX2o6PS7XCkL2NI6YzixP4jKczdGlwhcP9e7tgKrbuDTh3dZ7LT80jqVBeRe4Nub//LpM85+r5p5mL5jHCx/fncKyhMgMC66DLlCA0zJ9x+Tv/8QvIEJTTxKsaRJEHWjLKBuwOBmRVRR0SWKFMiJgq5tw2Zb9gaW6V2fYeD95fZ3bB0B9kDPWEorSkSQFGIoXF9QR5csLRzoDl9kWGhwcsNRfoNVv0T/q898EdTK556sZVzi/GrKys4PqKqpLs7u3i+s/RaEZ8+N57HA+mbGzvYauCXiPiT+9tcX+3jw6hdUGSBIdMkoS5Sx5lkbAx3kO1IgK/lrgVqaayFdFcjOjWcqr2XJfpqMaBFkXJ5z/9CbIi5x/+91/BjWNKafA6AdLRrC2ssPMLjvT/d8WXr/HMy89wthcRSUWcn6fRvczt97/BH/7gX9OZb3JuocNssMXhUYP23ByuFCBSZkmCFS5Oq0G73SPyA84trlDOhvyL3/09tj+8zzNXrjGnG9zd2cFS0x5i38WVhrDbYuXMPO2VZW5cu8a//ZtfZmf7AW/88E0++PE9Nm+fUFUW61qi5ZjWSot+PmKqMoypI7OFrSNmlbIEkSIKm1hd49WM0aRp+lMNnXJclAXPMawut3FEQDLLQObMtQVeqpisQ7afIhpDls41iRYcpmqG1g5KNZEywHV9AickVDEtt8NSe5nloINjZ6z3D5mQ4XuK4STHlpbrVx9j+7ldSltycLCH1w5QUcCD7QNu7W5ze3uLyeF9GjcX0cbUwRayRuAIWUfw/uTRoguNK10cx6XUDsp4FFWOqUqsKSl0HYywd7DLYm+F2ayoJ0e2nsQP+uP60WENZZ5jrEYLF20EpYalxQXWLpxjNq2wRmC0QUj3dLItEYg6tjfLKE7TxezpNNw5ReZpbesNgLSM00Pc/Yznrl5jJewynWkGheGxmzc5f/0ihUwZnWzQ8hrEbkTc7HF28SlmuqIRBAwP93j7Rz/kwmMv8Nqf/mtuvfWPmZtf5MzaMitnLtHodJgW+wyGEyb9jCtrS3zxc59heXmFbneOyegut+48on8c8cH9u1y6svSRL93HvYw1aJ2zvb2F1oJKW6TQuIFL1GhgbEUcR3iuTxQ6+IFPUfmMRzm9VosslxjAdR2U6+C4gC147FqM643p9xOiuEEYtZimKWEkeO0Hb5OXKQtLLa49fo63f7QDxmOSjXGEi7aW2pde75JO0Q11pLUj8H0HrYs6Fc8UrD9Yx/OvopSlN9cidC2HB8f4pPyN33qWX/rs43jukOPxPsNZghUOYRiijcVRkjLPCHwP0DSiACHlKaWiRtDVsddBzXAtU6phSj6b0HS7jA4OyKYnrJx3OH/zDKUqKSuNchVJZvCdBjpNWO20+MH33mFrfYu5pQajWZ8q1zhS4gjDk0+eq81EfkxeSJI0QSmL4yocGVBWZc1aLg0fvrPOp3/tMqNpPfFNsxTXlRTpjE5TsbjQ5fKFJabrOXMXejSjLnHoU+YZx/fH3JPrrN1YJW5aJukQ4Ub1lgyJsRCGIY6jQRiU1Ag0Smp63YDReIqQEkvGcDhDqiaeqyi1/qkJWpeGIs0ps4JG4HJhaZGluMVxe46+O+HZa9e4sHaOh4eH3D7YRguL70qEFEymKVaC6zl0um2mSY7WljwvKHWJVA7NToOT/RNmkxnVsGCwNQQhcD2HLC8IIp9GO2R+eY7OQpNGp4H0JGEc13pp+Qtpx8elTFnR8AKKrKZFidLgaEvUCJj1p4z3UtZWl3jwnT3ufnef7lLEteeXufpMC29OkMz2ePQIzOpj9KIYgYcj5vFtSpUblJrgexUNG7G6mKNERJVH5OWMk+MDJllJLix5qRj0S8bDkvGoIMsHnDwc8+Uvfo5339ngR/2HdDtNylRz5sxl3njwkH6aYm39/ZbC4jr1IznLc8oMtk42OXdxjnI8ZaG9guNcAumijWEwHjLs7/Pic4+Dgv4wpSinVGhm04QiqXjz7Q8Zpil3dzbIsgLvvE98zuXa+Rad+RaVFlS2RRC45EnO8f6Ew4MReX+CNS5S+ThCYhUczQa42sGpJI6Ap65dZzZJ+G/+29/llU/exJGGLE+58/Ah0oe5Rpcb83O8f+fuz/uI/MzrIzfSN29eREz7vHHnPQ73j3AQ7G49oBzNyI5j5i8so/dy7hy9xd2VW1x+/DzXHruOSSYsLi1QnpTEwmXcnzEbz7hy9gI//uEGl69c4dG799jdO+HKlas82t5BCkkUBCgBrW6TzqWzLF46T4Xh9t13+G/+6y3u3V0nz6YcHQ6QriHu+bTONtAtwc70kFJafFvzhx1XoRyBUALPh7n5JoP+jHRW8BNZR1XVcZlIhTESVypCz6Hd7DIc5gjl0oxTWsqw8XqC7MecWVkilYfc+ORVUpuhS4sXxPh+E6FcfM/Hdzx6jS6RDaEoMHJC6eQcZwnjqqIZBihq09s7b33A2z9+izzN8H3JEzd62MTjO6+/w6znsifGBJFmY+uQdmuJbrfmI2srqCqNki5HR0N6vS57h5u4IsdzPKTnEYQRrivrSVJSUlFP5kpdMJoO8ZwYU9VR5lVZMRqOa4a25+AqF6MltqrRN3muUcrDc32OkwlpkmNt7Za39tRPf6pPdBwH1/VOua8lxpRU2pLMMoypU5fs6W41mQw4XL/Lp6++wCzRfO21N3njg4eIL/8ST33mJQ7vP+SNN2/haEU/SamCiKDTQeqKzfX7uKsxNmjQbPc47D9kd2PEzu5dwvZbtOaWcUKHuBkzGoxJy10OBw9pRed47PKTXLs8z3TcpygrPvnidY4Hex/50n3cq9fpsbm5TppmpEmOqQKUJ4iiECEFURAhlURIe/r/VlMWlr3dMedWz+B6CuVaXF9Q6BRXCq5c6fHZT5+j3XAxWnFwUlEZTZZLDg8mlKWm1eqSZyXLK21anWOSqUVbKHRJsxFTVhVZ6ZBWVU1sOE0lbTYDpLJUVQVa4jgeyibsbG4g5XkUBZcutrh6ps2V31qDqmBj/32syIhCSbsTE5sAFTQYjAtmsxGeFxIFIVLUE2GhXOY68+R5SpZNcVxLZTRH/Rlaa6yp6EY9ZK7Y31mnO+9imj6JdJlmgPRoyhaOEyG0peW5PHp/h1s/uoMtLIsLHaaTnJOjFGmgGbs8/dRluu15RpMMg8t0OmY0GRE3QRc5RVEiqJFb63c3+Y2//TSVTkmLgjQvMQa6zTZx7FKmYz7/pee4sXoWv2hBroiCECEleZFR2hQ5tgRKEbcjDpMZncgjKUqS3BJGrXprp2qjqbUaYxNacZsksVihmUxGCBFTljlS+QSuQ5bX8eRSWGaTMVVZMr+0QKAczq6c5f2311mcn+P8yjKdKMBxLNapg18azYgkTRBCEjiKVhjSbrWomGFmI6SllpUJCPwQRzk4joMx1SmHXiLKCj1LmE4TpocD+puHIGv+vRt6eKFP1IgIguDnfOt+Uf9T6/BwzMXzK8wGfSgtPScCYTi7uMxQDLBlSf/osN4aCYvIDdu3DimmQ1bWOgStgFc3vofrd/jrf+XXeObqKtlBhshCijIknu+RmzFlIcDxSCvNONtmP61Ics3RUcWjD6bc/3CfyShD+R43nr/M4kqbjt8gDQpGoWZ9fEwjOcFRile/9z2SpMTYWhCJFD89p8ZYtNYo4bAw1+DTn30CWUje/c5tVpeXeLR7wtbmNrNsRhQE3Hm0wdM3H2OWt5ll2zz/wnO8/8679AcJ61u75A5878F7PPnyWZ55cZlcajxcQs8wmRaEvkenJXFkyOq5NuPREgf7Q/Y2Ek72czzj4FhJllSYMmNubp7nPvES0hjac0u88ea7/NmrPyaOfHwJAgelXBwvYHfvCM//y8dk/8iN9O/+zv8DNbM4CrQxuEHIc595gdVz59l8sM3WD9/jc489hiPgtUe3sSdb9N+dkRrF2UsXePIL5xnuHnHn9TFpdqqRxXDx0nkq67KzP+DK5ZLlM03wJa7qErY7XH7qMsfDYw4O96Gw7K3vcevgFrqo+JUv/zLrOxucHG9TSksVlOyNxxTG4jsKx1PIU8ZxkdUru6KoJR26OpUcCHkqM6hNS0JaEAWO49Od63I0miFKh2ZYMdcwpA9z/uqzX2I6nLA/GOMGMe1rLQ7EDKXC+r8ZKELlEWhwgUAKFtsRnnAwpmCQ7qJNQsNrEHkOUTCjEIbDgzF5URGFMVJqIqfBrfvbPJr0kQ0B3YSxMijpQVGgDEgkuc6xwlAUFf1cc35tDaUkRZHVMhajKYuSsixQjiEOY4QUJNmMyuaMsz7NUOOKBo70UVKSz3ImkxmBF+IKiSscjCyoREmmLTJuk5SGbq/BZDpBEqP1T3A39tTIKdFGIXDQuiTPS6yt0LpCSoHrKoTrnAYwQFnm3B31+fqDD4h1A+1E6FHJd//pn7J7bwP3zCL3dzZINg6ZHE6YJSmWeuJpqoL5KysUVnO8cUBVWApr8BxFkaVMJkcEooHnK5TjMhhUjAZHZMkRr7/7Lr/1Vx7nxsoS+zsbzOjx4N7wo16Zj301fZf3NrbwnBpnhxUEvg8adKXJ0xrZqBxYWp5j0B8QBiHjwYQ3fnCLKHTxIgdEQRwJLl1a5Nf/2tMsLrlMxwkno5L9w4Kj4wFR4HD9xjWWz69ghSBuNlm/vw/Kgqp9AIXOaLV6NPwWpU5IpwXWSiptcBxL1PCx5FQFp3fa4jkSW+Q8unufp58+y41Lq8RBRpoc4zoxla3TFhvNJlrXRjolXfIiYzbLcR0H33Xx3IBG3AAZoZQgmQ2IAoMQhv7gCCy4VnNm+Sx5f8r7H7yPVgnNi2fZm8zISol020jh1Rpe4dByXIYbA771Jz/g4YNDtGs4u9bjl75wnTsfbvLw7oAnnrrI1WtrtdzJWBxPkWUJfugxnJyALgkCl8B1kY5kOkwpJzmCjOmsxPXmKbVlPCuQwmC0oO179M7Ok25nZLMcOzXEjZg4ihA2ojA5yckUJSyN2KNQJcZU9d9LOUaqBqlWBG6E4xiSdMDcnGJursd4NqkTLB2PUaLpD45oNdt0WwFFITFlzM6DDE+CqwLeee8eAS2E65Omx9x+sMHFK+fYPNjHCEsYB2RFToXBcRWeq+h1WgxHI6ZpycJCj8N+H1MaSq1RjsJxTz93lnpTpixXLlzk0YNHzLIcQ82kltS80DKpqGaaYpyT579INvy4lB2D3is4Sxvh+OR+TllVHKzvklU51hXkjsNcxyEtE4azhLYXEE0biCJg79ERDx8OabUG7O+8jz2/wnQ9w/dCmisXGQ0SZtMjwgakbskoMWzspXxwa4eD3T7jI4edRyl5YhGxw4UrC/T7fV548Wn67SHBfMDVZ8+ji5Kqn+CqmMTmaFEP7Yy19bBKKqSsvUSmEihHcrQ347/8v/4+51ZXWGhFvPKJm2zvHjCajbFSoFzDwXjA2nIPvzjk137rV/BcycnBCX6jTRVooiigLzJ+/OgB81mLubkGzV7tNQlCheMqIt8DYRmOc6I45OzyAnY04fDeI4oM5hotRAXnl89y8eIahwfHtFotZvtb9Id9Gu0eVZGdxp5brq5d4vhon+FwwJmlhZ/3EfmZ10dupLP2mNZ8xMtXP4FXNWjOzaNCycHOPr1Oj0/9R3+P2GjOmWfpPbzH7Q9vs7/fZ+ncGlHY4/nnrjG7sc6VGy1SLRjot4jnUxpKszLfZLAz4c7efS6/co3ptOLmlWd48bkXkUrzO//9f8doOGLYnzAbJ+BZWr2Aa09fZpgec7ivkXMe++kQ60gi34FKU5blacxsncAnhAIrmU2q05VKzTu2tg5lqQ1xEiEN7Y5HUc4ockXgF3S6U6pJxfG24Rt3v4k1Pqrp8dJvXGNoxsywRMqj4/t4piKwFR0nYHlxjmS2x72de7SiHnPeIv3JLp60BG5IlRdEXkCiSkb5BD/wSVPDpYUeS90uP7h1h2I+R0vB0tJFxumwxlEFhlKkSBUitaTSFbqqCEOf45MTlpeXWH+4gZIOSjkURU5R5tiirF3s0hAGIVa4jMdDRuMhnaaHEvI03tvQPxqwvLREZSocP0QKCULjui5hJGk0WiSjY3q9FifHWc3ipl5XCVFrYoWQGF2TGqSS6ApA1OxPrWs5zakR0Qs8iqLkjWLAZ1+4wZnHznK8s091dMz8yZA5L+ahzimXIpzAwTsQqKRAIsmEZH/zkM6Fs8x5PU76Ka4fQF7RcCVeVXFhYYmwt8A4L8jLElFVOAsxORl3d7a5+fg5PvmFm/zxV99kf/sXH9S93S2qPCOKY0DgKoWrPMqyqsN2lCTwXRCG8WSK70o6rTZVpRFhk7DRAHWEF4BShk7PYTzpI2RInpZs7JxQVhHJLKMZdlDSpzKK0XTKOLUY6dJsxywt9DjYeY9SOpSi4MknlvGigu++vUlZGawwOJ4gyxOsLXCUwgqN77osLfa4fHWOcxc6nD3bY77rMRvPKPOSZiNiYSEmzVMq4ZAUCcNpzuhgB0d5NOIO3U4Haxx8v4N0I4ajCWEgaDYcsjwlL0uKMsF3XFbm59h/uMtrr/2QVE956QvPMy41QoaEzQZSdRC2ASKi4TqoWcWPv/ch2ztHTKYVpS1oNWd89m9d47e+/BL/8B/8AZ//0nN4QUxZaUDW03dKlKzAFkghCAMf31VIx1LkCesPd1m5HNBtOmg8KisI4w5+4JEmE0rjEHUCktE+997ZJFYR586epUGEEpK81JRa8PDuDl978w1+/bc+Q9Q2YARV4WCkATwsLhQlbrjAcGbQpSYMmjRiwWiakcwmHB32aUUBy70Ok1nFeGx57oXr2KwiGY9JxoL1k22Ojkbs7B+xd9CnChXTPMfrhFipKasKoU4fNJ5gcXGuZnVPZrhVSRQHTE9mWFtvBwxgTn+WG1EHsFxYWSEbjtnYO0CbekptzE+ITbUZ1pwao39RH4+61lzBqxS51QxmI8ZVDr5LGZ22O8pSCJhUOY89scDZNZ+Ll0KW5iWthuWb38mJmj7trs/axTYkOdWuJTgTU4wTovZZosUJo/wBIQ2OHia8/tptptOSqqxQjmZp1aUVXuUkHXHx6gLLZxqcnOwx7ud0m8v4QvHJl6+z8eEWb7++SbTUwFqLoxRaWwSneQnS1rkVSKSGtaVFpvsJlVEcD2a8+OwzUJRsbm2TI1haXmZ754R/61MvcP1Sj2evLZGN+yg35N27t9GterCWZiXplmG4l7AdCs6tLbGwcirvqEpGsxmudJClSzYGph6DuwOy/QRPCRrzSwxnQ4Ry+LOvf5NG3Obg4IDLV1axBnrNBq3WKo7ncvvuHbJpwYWza3z/e6/xH//7X+D3/uW3fn4H5P8H9ZEb6VbY4zAd8oP1df7mr/42vTjGVfDqN77FbFZw5fp15MoCQZ6ynOXMJoZf+9JTOGHA1vY6OpEMd0Jie4HZ+D5f+d1/zPUz52mtnuc/+E8/z/B4xv4UFtaustjqsvHBXd74zle5f/8Be4cnTJMM1xGsXlhE55oqK1k9u8zFx1c5GD/i0WiAdsBiyPMMR9T4ozowpDZG1SlWdYohtm6YhTCI06m0EAJHSubnO4ShR/+4T6fRphGXeFXB7NAnkhGTYkR/OGOxM0/7xhx74ghHRSgpkaWmETqcnZ9HSJe3Hr5LZVOsKOmkQ1qrDYbTIwpdkI9GzLKKtEhRVlOOJ4g0wZWKJ6+fo9FVJHGO9i0vvPAyo8GM2c4Q5YIUFlFVNa/5dDKNgDiKODw84NLaBYLAP00c1BhTUzK0rdFPWutaP+k4hH5EmiUMJ0f0ekvYSqIzS/+wDwJKUWIrQWUSWr7C911CP2ZxcYmHgyMazYDJOKOqdD3Z5yfIO7BGoHUdWS4lWCnr9dVP3PTaIET9AUuTDMdRVGnOg911Xvr0y7RuLCGzgkWvxeJY8rd7Pf7ow7fYiEvaZ3sk+31EYfFVSJXmrL95ixc+/SJv7oyYbo+JHcsnX7zKhSvnuLO9z8W1LrIXo0IPVUE5Ldkb9xnnYz64pen3d7l85ZPc+tHXP+qV+djX7TsfsNBpM99eAb2J8mujm0CiBAS+S6/XQYuKMApOQ3ccFubmGI0Ljvp9PEey0Ivxfcvj1y/QjBSYkkYzYK4X4Xkd2qHHXKfHdJKwszNglmukq1mcW6C70KO/P0VrQBgG0zHPv3SBtetN3r2/S3+UA5YgCoAKKcH3HK49fp5f/eWXuHSxjRIJRZmSFzlh4OCpLn4QkmQGN+iQzyAdGaQ7R0mCNnUi6Mpyj0ajR+C3sTgMhiPC0MP3JEaX5IVmnGRYU7DU7TIaHPP1V1+lPxryy3/1ZRqdiCQrcBwPKVwCJyD0m3hCkI4LvvrH32dr64RMOjihhy01x0dTth8d8YXPfYr/5D/zCZpzWASTaUZRVkTNBo4LUihiE4CxKGHoNAIWFlo82n3A9uYhy5cuUNmS8WRAUbl02j1cJ6S92EZXBabICJfanGRT7m7t059VXD6/Siv2KExBv8z56mtvs3k04p/+/rf5W3/rk3ghRB5k1ZRS+xRFEyEUrtNkPJvhuTENx6E/2GM4npClFaYqacc+vaaDNRKjC4oy5+b1K7RbPpPZjMFwzGK/jRYlR7sjxnoKgcLzXaZFglQOAkNVZGghUI5gcDImKzWZrvB1RRQGTMZTMIaqLNG2Ioh9HF9g8oLhcEArbhK7Y8qqwA8CkqogrzT2dNgCnJoOf1Efh9rpH1IJWFhdoRCCZFYCBsdK4sADDNM8YTouCV2HUM042Zry4N2M0UBy3Nc0m106E5eDbx8Qr2wQ+z2k8TASquE+KreEfpdcF1y53CH8G89xMEwYTVOmWUmeavo7E/R+zubDB/jqDPOrHQYPjv8/7P1ZrGZXep4JPmutPe9/PvMQczAYZHAecp6lTEkpWYPtsuyyy+4qGChXdQMNNNzoQgNloPu6Gih3X7garrIt2SXLsizJUkrKVE5iJjOTTM7BYDBIxnzmc/7zz/+e11p9sQ/pBvrGAOXOpjq/uCAIRDDAiLX2/vb3ve/zcv/r32Oh1yUKHTzHo9ltcjQbI0XdnJwQGAGLkhJtKt43vD5wapM77xzgSosrA77z7edYW+ywstjh1vY+u3t7JJ7DtKjorS4RhR7Pfe+HvLnV55uvv8pUC7SpUEIhrMRoS5ZIblzrc/PdAWunezzw0AahG6EqRWzaeG6Tnb0tmqWH0JYoCPAdl9FoyO0COlED34enn7jMtbff4eL5Uyx12zSaHXb29okCn+37uxz2J7QXNrh39/5P8nj8J6kP3UjffGMPt+EzbB3z7luv8ZkHH0XmOV+6+DB7+0dEgwk740PeePHHOIOMpeVN3nnlNfqzAdfee4ssm4GRXFw/RRjE6GKDF1875MLHu6xfXKR9ZpkvPv45AgK+9Ye/x3z3Dnk6xZcJoUjpdH2aoWSxE/D4lcdZXF7FmCk74yNuT8fgKcg1EosRUAFKAJzwouGDptmcwPeVtB/IOqCeoHquIA5Cjo9zrHGJo5xQZdijiHbRZHXV561JQncx4vTFZWZqRmklPoLQgY2FBZZbywxGYw6nt/C8EMdp46gIV/lYHO7u7XIwG1BVAVUZMOwfcTFa4sLSAhc+tsBbd+5wPJ7wa5/5azyZJ2zNxty4+TZC5/ixpjKWIPNphS1KxydlgrEGx6mDZaqqYjgc0u12ODw8qiczpg5OMfaEpnGSHGgKS1lVuK4iL3MGkyMW22sYbZkMZ0xnU9xIUVU5UCKkQp5wt9vtbj3ZV5pOL6Z/ODs5LRJtSiwKAWhTYwWlql9UStUx7PVLq8KYmqJSh7pYXKW4e/8O54eXOLV5lsZCg4kuGcY5gch48tJ5mtt7vH2whzrdQ0xK7MGMUEmK0YSt7S0uP/IIV7/3MkuBz6WF07RNl7e3d3j5d35A+8Iy3Y1lju4f0hCW8089xOmzl7HaR0qfd2/e5vKlB3mBH37Ya/ORriSdc+HK4+g0pL4hhsrUa0nXc+gutAhCF6tcjKlNX1k6p9vtcPvuewzHQ6QoiMKYX/wrn6HZlDgyZzbNODrYpdXqks5nuKKg0wooTT31DgKPcZozGM9YWl3j+PAWqJrTMUsr/vjP3mI+GdOOYqbTFFxBo+mjtWVhockv//LHiVoS1IDJOMPzVM1ttS6ycvF9HytLClvQH0wpjQInpkig2VliYSnA2hKJ4fBoztJyzHw+qHW7NiDLFfv7e5Q6R7mS0BMUWcLv/sHXGE9mfOrTT3DqzDJ5VSFzhzBoU+QK34nI5nOk0+Af/4+/yWyY16xoFF5cf9hlWcEf/8nLPPb0o2ye22SaGmZJTloUgKTQFePJDC8y+EGMLlJcZeg1Ah48fYpmpFnrLTCfVRSlIclKZknJ4dGIdhjRbXkkRY4bBOSp5IGnT3Ht7R+xdzXhYHjMg5c2yETFc6+/zu5oijaag70x3/jGG/zcVx/G9S2BAM9xQWgMEscJMLZBWeaMpiXzVOAGbeR8Rret8BxBltfGTG2gqixpVkfFT4uM1OR4HcOnf+lBjvZS7t49RnleHVPuKoS0+EoRuS6ri22iKCLL92qGPYIiz2k2WyTM0UVJkWcoT7Kw3qPZCNi+s8M7d+/iVS6B8llbWKS92OG9rTskRQaID7aR9Qf+T7dRH4VyPUk7aiDSlLC0dK2Lsg6issTaw3McUqkokgpvR/Irv/xzpJNjXj3a4XBecLEVQ2qJU5fxC3NeD9/imV/5CkpVNIMAr9kjne6QHJdYqYmFYNHzEF1JEDv0HIVRkvNXoMigTC2udJinOc9+8SFe+s4b+K6lE3V4/PKT3Nv6OlUpKKuiTvB16ubZIk56EhCywpQOP/7xNY7GQxbdBabThEwXvHXjHZJkhlIglSQ3hus37/PZp66wt33Eizfe4bl37zKr7Albv36vGgNSOkjHpcxzykqydesYz/VYeuIRzi6e5fjWkBtX32VjocPnvvA4W4MjfCcgMyXKGtqtmNWFDlJJ+pM53dYirbhDsxlBnnBxdRFbZhQyZHt/gFKWF9/4y5fF8KEb6YcvXeLOnduYWcFrL7+GN0x46vRZnjlzntniCj/+4ffZ6R/zyOmLtE8F3DvYZzbLuDPYYzCdsRgGVFry2hv3UaWDLirWlxc5fe4xPv65L2JNSXKww/U3n2f77Zu8ef0qyhN4kU/D1aTzMUmmGKUJr8+HqHaTe0XJ1Z19cqmQZVkHgdSBWghZ/4ug/vqraRICYzXKOUHgKfC9ANcVYDVKQq/XYTrNqApoty2+n5IdCHbenLPgOFy52OSZh07x2o0tPv/lK9w3fRwlaDiC8+ubSBWyfXSMEg6LzSV82aAZLNMIV9DpnMh1wJkjPQ21/JO5NRgKJvtTllSPy5fPYza65OEi5y8+wst/9LsgJnhBgWsDnKyJPqwoqzmqJ3CkIDd1+lCS5VRGcDyccvHiGsPRAVJokAbluEgjsZUFKbFWn9A/6gm147pkRc40GdGKWiTJjDxJaXQWEChcGeApxaScIIQgbgdUxmIrgTGCIHJIswyJqieIhUYIcxIbDhaJlC7CCoStAxQQAqlqjqs5mZanQmOF5Z23b/DIhcdwRIPFVoPZbMBur6R0Ms6tPczeqwVb/T5BW7G6cIr+rT3Kfs7+7Xs88guX8D/5MZLDQ67d3qLTmbO938cKQeUe8siFJ+gf7qEWPO7e2eYzVx6jvdAj1wvgnsFNAv7F//Wff/ib9xEuz/VYaS+zO50glYMVAm01CkGr08bxJGmRkqYpZVHgSUlwfpP9/UOuX38bBCws9jj3wAPg+ty8t8NsNsJ3YHV5kbt3d9hYWScMJI40xK2Yhy5tsj/MGd/eYzzN6LZ9gihCqjpxtCwr3ry+B1mJNhbfcSisRqJ56JHT/NzPX8ELDPe3+3RbTZJSME4ld+4fIRyfTqfFYidiMDgiyVL2D4/wwg6O36asFHsHE7Kknliury6zutQjSac4TorvGbCGnd0hRVnSarh4HnSaLX7/97/B/mDMxvoiFy5tgLBI5YF0qKyH4zSwWtBstviX/+xPuLszxPd9pBVICUhBYaCwhoNRwf/0P/87/rf/h/8CIWOyDBaX6gCEeZIySxI8LFBiy5RGM8Rta7phwOOf/wL9qk+RWvqTEff2UhANgmjOSpLhjKDXbgEVbuBy5vIC5x5Z4ZUf3aM6qsiaFe/dv8c0K8gLjZAOjWZIWhhu3j7g8kNrCFICzyFJByBiykxjkSjpUGrLwtIZ5skc1wNXVSilSPOK4+GMqqwnv14UcHg8oD8ZM57OWF7pEsUxbhv8dsxkmqONwZYWX7pYU9FodMjznNFoSqPRIZSKylRUuqLMc6Io4uhgDBi6Sx2aiw3i2GNDrHHv1T3EpKIdRHTaXTzPx5oTuZ/RCAtWv49S/Gl9FOrvf/5XidygRqx+ELqjcITAkQpx8ndpyhRbpOz96yl5ZlkoOiyKknJi0LbeWid2RhHMYKFP+8wmZXHMfHiToJNSeQWzWcVkXJGnHh2vQbvZphKWYZIxN5rSt+DWQ6w4cvDdkk/90iWqtMIjYJzd5rGnl9n5/nZNEFMlynGgAo0A5VCVOULAeJ6yvrqC4x8ilGQ0OmJ7f4diVtJtLeAHEZ/63Mc53Ouz0vDwY8k//6N/zyt375PaeuBg7IlkCXlCMDJYU4IAx3dR0qHjLXK+8SD9G0e89co73N3b5jhpcM6usLTQ5v72ABxBZ6HHYq/J5csP8Ad/8m2OpwmhIzE64/DA5/TmMpcfeoxxMmX7cMpiKyIrMuQJIvUvU33oRvpX/sov8cff/CNuvbfDeJrz9q17vP3Gm1w4t0EuKja6S3zhE88ijUNawsNnz7E+Oca5pnh68ywbvUXm1vD2zftUKSyuLPMLf/UXKAOH1194kR99+wdcffFlsnxCc9GnKEo6foeqVIyPctKZQArBILCseR6iYXl7b59MaIwu6sWcrJFYddaORTknASF1Gjie66Jcheu6wImswFqsKYgjlzgK60Yuy/G9koWOxsXj8kM/S8s/Zn97i6HjsdgM+PzPPU6wrLAzQ8N3Weo2OTw+xhASBTHNwKURLhOYDj1/jcCLqIxlNtujt+iy4jUoshZl4jDwm6w027irEceTlM//ys+x+NB5RkcTvvHvf5cwnoMyBKrB+J6hUcW0Q8uFC5u8199BCVWviQRUJ7HhpRGk+ZzV1ZhknlCOQVsJwuA4LlJBnqdIVTfBwiqMrlm7STbEcaDXWCRLC4RRuK6DLjVFVk+Vy7LA9QQoRZULjLY02zHaFuRZgcBDOg5KKk4G/h9IbACkI2vdtBUf6BKFEHV8r9UIK0iO+1zaaBD7LaxZI2lt4vkx2+ouB4MBpx++wEq6wf0798hKQ3CuxzCdo5KCG69f5b//R/+I7/zxCzz/nW+xN7mFcQ1hO+TKpx7hwcevkM9TXr31OsPtPuM//fecfeAcWkgcIQly78NemY98xX5I5MTADCFrKY6glkhpXXF8fIw2Gokg9H2iwOfevW2KssR1Ja1Oi7gVErSa3N3us7s7qNnhlLQ7Hlr7VKWi2+2QFTk2LYlCH703QRgoK8s8LYjikLgRMB1nWCspckskA3q9iM0Lm9zf2eGv//VnWdt0qaox6cQhLwqk45LmlsFwRGUVVWnRk5TRZIYwOVkxRjoVnmepqhTXiel2lyhzw8rKJp1WgzI9phlblKxIszHGdoijEF9LArei2fT47ndfYGunjx8qnnzyYeI4RmtJUXlUFmwuWWgGeELw3W//mO+/cJVLF64wOj6mmCcYXWEQVKXGGkuuNbtHY2aZxXVLwrBVU1G0pixzup0mVmkODw9o+BGXH7pIGiZQaObznHGS0ei1GY3mVFVFVSYMjiekm5a8khSVqUkBwqHZbvLFX7jC/d19cEKu3b9DllZUxoJSuL5Ls9dEupbJtGBr+5jN9SWULBFU5JnGC5r4rg/SpdSKqnIZT8YY6xJFAbOsYDybk2QGpEvUiLDCI2ouUI5SZqmlmYGfQomLUT4oMKXBaoPneASex9HxEesrS1Smfpa4roswEmMNRVXhewF5keGHLisbPZxIktmMuB3g+B7StTi+z2g6Jx/2SfP8A48G1LrqOqntp/VRqLDdIA5ilFSIOtoUa050x4AwYMocoypQEteRxKsuxlry3LI3S+g+2mLjsR7f/sZV7h8Nedi8gV8c45mSKE45Hh1RxJCLBoeznNFkhLUTXKnotDssNBq0hWRalczLHBsK0iJnmiVoIZA+KMeg4pTTXZ+vLj3Icb+g359xfDQjzyRJmuLIOpUT6zBJpiTJlIunNui0W3zp6Sc5e3aJ53/4Fnfu7dHqhMwnc9LZjHD1LK/2X+edZIspOeCevEfrnAZr7EkO3vvSVRerNU899DixifhX//ffoRVFpFXB8plNxrNjDoYpnhuSz1Jsw2N1sceVhx/ksD8iKTWeo8jLhCBe5sz5c/zgRz/g4OiYL3/xC7zz7p/iBw2kLvjL6Nv90I10tL7Ir/6d/4xv/OEfc/v1W1x88GNk6YS37r9LRo4TwZMPPcLVG+9x5/ohXA2xQcnO/h7L7SXevbEDFp549mm++mu/ylu3b/DiW69Q5ZZPPPIUb2AxpuDCQ+eYzoYEuBTDkv3hkCStcIXH2koPryOJTi3w+sF7pBJ0VQsIpLAIKXBODozrOvi+QinnA1ObMZoiLUnTFKi/RLEW1zG1dtIN6fcneI5mZcngWks+cAlWunQ6BukZomaTSrl89quXefHeDzGeZGNpldH0GCN9pONSzRMcG+A0I5YaZ1gI16j0lKwy7I8O2RuNWF9cZq9fUGgfkcLSA2v84v/plxiUBcc7e9x57RoXLpzF9XIQE9pOh3wvJnnrkDAa8tSvfIyzl9e59vVrqObCSdyt+uDCgODwcMyDF1tIOUdXLvPEo6osCIkSoo7wtlX9lYFEoKnKCsexJMmYKIroHw3YPHemTiaTJ5IYVbOrg9DH9z3y2QyrLToXrC4tMx5PMNqtTWcCYi/CcRyqqk4OM6YObjHGYkytmT7poUEIrLJIq3BNxYMrirVll+Gsy+5hi6JK8N2YaXfEcHzEcb/PuSBgNptxfDRkkYrZ/WO2tvb47o/+mMc/9WW+/iffxvMSvDBi6k65fXzM0fe+w2QwYD+fUYmS/fEhdl8xG8/pJR5t0/mwV+YjX71mF2EVQji8rxytzW0haZYjFSglCMIA3/OZJymu65DnBULVHoWLly8zSQqE1UgRgKnwAkWa5nQ6XWbTOYvdHvM0JzMVC1HI5toi24cFSA9rBV4YsLa5wnx6pzaJYYk7LT79pWdZOt1kMN7CmCOOh5Jms+YLe35EXsJ0lmKsottrIRyP6TRBSheJoOU3KCvAloRegLaCyHNZPX0a1/FBlygXQl9TVQVCCLIiQcqApq9YWWzyvR+8yStv3MT1a5rE6TOncLyY6VyTlS6uHxK7ITpPubM75A/+4DkqI1lYXCQZT0gLjSktQkiUdGsmttZ0ez2iOCZwAyI/xAhBWWmqrKhlUI4EoVCeS9gI2J4ck880d/aGRAsep546g7sn2FjrcHxUUGbJCWfeMBj0abcatOMIRMXGuS5f+uqD/Ps/eoOs0rhhSOR7OK6D6wq8ULCw2KLZajKZZmztDHno8gWassTqAlMkGFOBo5FuhBSSVquHcn2E0IxmE5SUOGGThttESYd5rvCDkGZzmem8AgJQLUozo7BzHF9QVhWeI/G9gNl8iqOg3emQVyV+EKCxFJVGWygNlGmOkBA1fJxAgWNxkLjWIQw8hF/TZg4Pj0DZD56VtaQM3sd2/rQ+GvU//NFv4jguq0uL6FyTZxlx2GSazGsze14QBg4XNs6wsdxi7XyPn/nbnyduH/LK66+ix4Klx5dQbsXN+ZDwdMiN3RsEfsFSJNERCOFRTisODuZ877l7rKzHuB1FkiU0qxRv4LDQ6bHUXmA1aDArc/YTi5GSygVrSrQtKKSm0fJZ8wNaqw5XggWSxJLMBWWumQ5Tdu8PGB4kpC70mg7dIOYLX/oMm8vLaFHy+3/0HUazKZPJBF1aOkshrw3fg4WEJz79APLHt9m5P6covA8yJrTWKGqMbV6WeEiW4gXG9465dusarbhNfzLjYNInSsakkzmDbko3bLG5scHjVy6iHMPu3h4vXX2XNMvxpObBB87Rihu8/sZ1JnO4/u4WS52r/PVf/hle/PFLpLrJ3f2jn/QR+QuvD91Ij+c5nV6Lz//Ml+jv9vn+1Rdwioqm8rmwssmkTLh2/21Wz/W4eGqZ5arH5P6MfzEtWHzgMTabU6qq5KnPfYHf+8Z3WN5cJZnD1e+/yvNf/ybtjuDX/tYn+eF3XkH2c1ZbPTYvnuJHr72GOr1AJ26y2z+ksbHIrjhgbOoXr7D1BEGq2gTneR5a13zTstRkaVGParFIpSh1vWqUUlJVFY6qA0QCP2I8TnCUpN3W+CpjduBxdDvl+p/9L1htMaqit7HI8sVVFo8lqaeJ212OxxOMtbiewlGCyGvi2oDZtGRqB8TCwREVviPYHQ3oTwtagaXIMo6zgnmaoRpt9tKE/e1trv/7b3HmzCbhlUt8/gufJt/dwh/43Boe8/GPf4HVlR4iUrzx3I9oaIMVFkdK5Mn/C9Ra4zSxzKYGR3hEvgAtyAipdIkjJMIR5FWGkIrSFOiqQtsaNeYI6B8fcHCwRzK/RKMRggVdGRzXIc1SlFLEcch0MEUKBwcHaTVFmlDkLkKpOn1OW1y3noS7roeUPnmeorVESovv+1RVQV5kNRpPgJGGsNMgCDu4VuHJAyo7IQy6VJXCdSIaUY9mY4nxdMhoMiRqdyk21jj15RXefO5l/vyHL/GZz36Vz375Uzz/3J8h/JxzTz/AI5/+Ob7xJ19nMjmgcjOUq4l7iygheOLCFZo7BbfevPthr8xHvqT1uHb9Nrv9Cb7nUVIzm43R1OpYgeMofM+vp9BegLGCWTJHeg6dxR6zLAOhmY+GhI6gESu6LR9XlUhjUY7A9T3SsabfH1OKkMXeAgsLLXYOciwSzw/pLbVo7HoUSUYpMrobbS49/SA371/l9tZ92g2XC8vr+FETt5xSphnHwyme59Lr9phOZ3jCQVhLkWdIKrrtBu1mjBSSIOqSZR5h3EEXdePZiDwcH8bTMfP0mFIr8kyzuhjTbblcf+s2zz336geGtfPnL1Fpj/EUEM0TI2+Ino7xpOAP/t3XyfKcyA0JpEWaEl1VFEmFtCcyA2FRnuX8uVN1pLYQOEqSlzWnO89yyqqkLKraECUzClnx3AtvYUqJqxRrmw2u5A+w0G5RCIu/2iGZWtAZYbCIkD6VKdg/GiKZsboU8NjjZ7h994D3bs9A+RTa1B9KUtNoOKyudmm0Ipqt0wwGQ27fO+aBC5t4wYT5PIdKUOSaioxWu0foOQR+i3maoTV1aAyCJMsYjSe4zgyjS7rdJg9eukz/+IiDowmFcVBuCLbA8TxazZDJcIAQtkaZYphMpgiV4/o+SHBcBw2MBhOU6xC1GmhZoxkFAiUh8l20Z9BlRbfXwot9to72sJWtaULagLTYn0o7PjI1thaKnI1GSG5zopZHpSX90ZzCaBwlOM41bjanG/X44fXrvPmPr/M3/96j7Ax3OPXgEr2OYvdgi9YZj9ZyTNjrcfNgQLUYsBhoMi1JckkQwMMPrbO3s01Z5sS9NrN5QiUdhlqzNx6z3O6hpMdGbxVjS+ZFyixPCBsBaZUymc+ZF5KsUghtyIVBhwK/Ieistjl9aRFbQnaQs9locvPqNikJz/3gh0RhQOj4/PLPfo6dnW06G22m4ZQ0yAh9RRy5PPT0aVJ9j527BULWkknlOLhSUOqSph9xemmD915/F9HoMpsmDIZTtDXErSZFYjHWYXg8ob3ZYZ5X/Ok3n+fxpx7mzu4OxvXoLS2TjUdsrK7x2MOXOBp/DzWeAS63723jmYTHLp/lhdeuYvP0J31E/sLrQzfS03d3uD084O6t9zCjOQ1pkULhlYrh7QEPXzrF6tECYlagVg3uZkAYKn5x6csg22w85dCOI/78By8QOS5f+81/zWBnD9/zyVsFs0Qyf+EdZoclP/fJT3Ln7XcIAsna6UUOJyl3b9/n1GOn8c557EyPyMtaq+m6LkpKhLBkWUmWFdS4O3AdD3CQJ5MHJWuyhTYGEDiOg6Ms7Vabsqyn1b2FCN+fohO4dz0lMku4pJjSYioHk875/JcfZyvbxW34TNIUx1V0WzGeG+DKgI7XpO0uIURIXh6T5RmduIMfhgxmM2aJZdLPaDaa+PMxvjEsNnpc/e6L3HzpGhzN+dQTF+nfS7n/51uc9hvYqeV0e4kzGz3euXuH5HbJZ3/mE8xf+w7aSjxxEkRRp5ucGGcihseGc5un0Nk2IqwwJkbJGvunTYVAYtBYK2oag6pXP9aWuJ7hvZs3uHTlAcLwbB0QrPN6amzrX9NsxRwocF0XBxddzWg2G/TTFCHdk5AKg5ICI+rJd1FWFLlBG0tR5FirUUoQBgHzZI6wAu0YWuvr3Bu76DKkMHfRnoMoH6XV6iCBLC9pxQscR0e0Gj1Go2OOZkfkvuLn/vO/yjd++2v81m//C/7er/89Xr36Jibe5enPfpJhYsjSBEflNLsBjYWQdqvJg+sPMr8/49qdO7z97tsf9sp85Gt/Z8Rrt7ewjofb8BHqJOmyLOoniq03EzXOUGMtFJVh4/QqvY1VpmnONJkjTIUrLWvLbSK/QqkSaQx5krO8tI7nS6J2g8nhkMHNHU5tFCwsdbmzvU2Z5pSOixWa1Y0V7t26gybn7s5tvvXcd2h2HNbXTyFsxmxqydIZnucTRe7JRNWlLEoEDp1Wlyhs0Go00UYznRyDNQil0DogjJqUZY41Ja1GiC5HSKegKivSrEa+ZckUP+jx5rV7/MEf/oDSVriO5PKli3z+s58iSTN8r4VS9cp5NjgkqAzDoyH5tABTEUUu/f1tGp4kXOoyd1OEllSVrjW/5Cx2WwSej6dclFIEQiFcj8G0j8SlyiuyrERYQxxKhFuL2rzI5/Bgzve+9Tpnn1xkPDxiaTGmvdzAkRWBkrieoNFwKTJI5wXj0ZiVXoO//Tc+zW/+6x9w8/4cx5X4nkOz4XPh3DoWTZZX5MMJQvlk2vLu7V16nQZe4JNnkCQ5s6zAdT0816XZ6BCHi+zu90mzCukppvMUbQW6tOhKExcFw+GIfn9MWoDGAevgeA5VWTIcDBHW4Crodto0mjFJXlAayMsCK8CIWuohlaXViclLRSXK2oMiwHEFRhbIUCBDRdCuz5MIDa6qz6+yEsd5f5uX/QRv3U/rP7ZKYzm1vEAUhUynKT//C19if2eXjc0lfvTKNTzXw4t93tm/x6jq02t7VEOfq6/v09oI6bVbDOZDbu4d0N3wcRsNUhEync5oxgI7kkzmBl3mRF6DtVMzlk9f5L1rNzi6s09u24SrHWZlwsRJyF1BUQii8ZTNVpNuo0m3066lHrOcsvIRCBzH1sZqhxOMpUZIsDLHOhpvQ3CsZ6x+Yp1Szri4tsH8cIJ8Lef1N18lNSV3ix2GTsKDrVUuLW6Q6IKg6/Lwk2cZ9N+lmFInmhYlpRU03Jjzy+fQqcU1Lr4fsr62ws5BH53PqLKUTqsHymE6nmCKCs8PMIHPuzsHdZ+gNZ5w8IXi9nt32dvdx/ddAldSZhVZboibS4StJj/zs0/y0ku3+NHbuz/pY/IXWh+6kT64cZPrW2+hgjaf+6VfZnW9wdZLb7NaRTx19iGUcrhx+yYLZ0+T5Q4vvrnPxStrrHcjlnurvPPmTe7ceJd8/4jvP/cie3vHaKt55itPsnJujX/3tW+hQ0kYO4zTEWXo8N72HkcHY/pJScdXnH96jfe8WywayTR0KJHYEsqsDiQRsl41vw+VqV2r4gO8HcbgnuDwDAIroNVwiKOYwdGYXkvQCWaYUnLrtYp0WyN7BW7cROdTSt/SDEMGjQRtKxzt1dQk6YIMMJVDGHTxbRPXeHSaXULH0AwiArfEiCGezFhpL4BSLMZN9gc5SlpWMp9rr73O2WaMWWnTPrPCtZdew9svScOcvb1jms02N77zPaRrabZazHXAV77yd3hr/z6jm6+TVAVKn2D/LFS6Ylhp1o0iikPS2bTG7hBSVjmWEmT989En3FVb4SpFZQx5WWGo+P5z32Ohu0QcByB0rYu2BqUcussd7Hs1SF5g0ZWHxeCFOXmRg5AgxIl8Q57QOeq1U83TdNCVxugSFSiajYgkqxAi5/TmWQqa7EwNgbNG0ytYa2TkM4eDSUWr2aLUDSwucdTBcWL8sMtRf5cbe+9y+ZlHeOlr3+LaxVf42/+br/Ivv/HvGMwdXn39exh/RrvXodlssrG5yvmV07z8tVfZuXfI6eWzDAfzD3tlPvJ1cDAlmVuUV9FbbHM47RM1IpA15UBXGikUeZ7X0deOwLPwyMMP8uqNd1EVmCql2fTohgHtJvRaEUkyYz4tsNbFdXykUnQ6TYIgJCtgmhlKmdNp+xwezqmQSM8lbgX4oUeZZiAVG+tdTm0usb66xHg85ngwotAllQFjKnxf4bk+vhcjRUKSpkhhT5L3XIKgU4cwCUkUN5nME6S0BJEL5FQ6JQw9pJR0Gh1MZVlstXn15Zt8+9s/JslK4obLyvIyX/mZT9MIHCK/TVEq0jTFlBWLyieb5bR0A0+5+ELSC1zsbEiv2WJ9c4WFqIvvOGRpzrzIOZ4dcvnBc3jKwzkxLL5P21HKAeuRZGMMFaPRgCBu4kWWZFShPMVsXnH96j0e++xldgZ9kiSludRGn9x5R/k4GMJI0AoazKclWZbTafr8ys8/xW/8zo9ItUsQKC5d3GRhocV4lpIVhrKq0JQEYYipLIeDKUu9NlmRwUmymdZljfMzJZ4Tsby8hB64jKaz2pSoBHlWo/E8TyGEBepgHW0tZZ7X2z3Pp8wdXCGIPMWpjQ2mkxmNuMk0zSl1cbK+rqi0QSmDcCVeWKMNpVJ4jsRzfFYeWCBUAUEQIpQBR7AqVqgwGKtPpHGCbJ5x84cv/YRv3k/rP6a8joO3WPul4jTgYH8Xz5GUxYwgCBmMh0T4SN8gQ0NFjuet89KPRuTuiMcnmhkJYdhlcaFJ3FnleDQliLtoK/n+t7eJl3wayznLoomrQCiXRmeZdORw650jxO6MjQfWKN2S42JI5XiMvJLCFIRphicDOlGb1d5plikZzsakZUEuQFDQ6tRSqLzUjGYz8qJEo0DBnCmQclQd4y8Invibj3C4dczRzpDBZIgaQzFJsVpgrIPvw+ZGwIMPLHPzxpiiKHEdSSdsshwuUIxzbr53l8CLuLW9jRM4dJohZx46RTtuc+PGXaZpyieefoaqqhjlCQ3bpEoyLm6sc+rUKW7fuUfv9DJnN1d459YW/eGEJy49wKlTpyjTGTs793j33l3S+YgHL539SR+Rv/D60I3023fvkieWpcDhvZfeJNlY48LyAxzf3OL27iFnL14kePgyzuVzOBoeml3E3tmhkDOu33yRw+mE7ftbxFP45Y8/y/ffus69YoySku987UVEHhL12rQ7Aa/cuINjLKdWl1hoN1DxnPMPn2IW1RD+2NYhH1lWIa1EKnGCjvkPovpa//y+5u0/6OEQ4LoCA/iBT7PRoqxKopal0S6oTEo2j+gfFQSVIJ/MWX/gDHujKVpXXHjyIloZXNEgLyvCOMR1HTwnoOstsuSdYSXcoBN0AUGn46GkZTK5TeVO0RaMFaS6JC1SiqzCFwFSxJy//Ahf+/Z3WD5/ik53id2dQ4hi/vzNN3n4/BmuXFzjk888yg9eu0b3zAbPfvpLqCzjx9/9EWtRk5vlMVoJJAp0jZfTxtAfDTi9GtNqQKNhGMwLBhPIMstJoDfvi5SVVJgTy6YxddjF0eEhzz//PF/96s+dIFEEfhCi8FlaXiQIXSbzHCscHEdSloZGq0U5GGMtaF2hpAIcjKlZ057nUZYCaypQCs/38VyHSmv82CKNZHXpHCiPyp0wNy6qlPhOyfJqwPJqj71hn/54TrvZpdQtHNenlc2JQo/d/TtoR/Ezv/5r7O/vs9aJWVo/xVvXbqDNlE7Pp9ta4tLmw9y+dY1yv48tE37mC19k751DWjKgT/Fhr81HutJZgbI+nnBZ7vlMy/qjy9paZ2/RICVpUeC6DkIpHNcnCBpIYZGiYH2jwXI3IhsPmYyOmY0B4+LKgMXeEv3DKUle0Fvpsb6yxM27fSaTCitKGs2Y48GMssgIXEWGIWq0GCQFn/vcEzzxyFkCz0EJqEpDt7vMcDzmYH8PqQSO4zKfj2szY5aw0OviKkGW5VhjiMIIUKAckizBderN1mA4xHMdlIRqkiGspBk2mc00v/mb3+R42KcsKoLAoRF5fOGzT9NqeOS5wSLJsgKlDZGG47tHuKWDqlxMrlmIWvyNz3yOnft32Trcp8zmFK7P0eGEstAEDY/HP/Ewa6dO4wUNsIrZLGOazHHCgOEkI3mfie1LGp5HM6g9IsYa8ryg0hXppGTQn2ErixKSwHOQQlGVOZUr0EbiK9BVQei5eF6E7wnOn5X88s9f4evffYvOQpcgChjP5+QGSgzCUXWjaypKXYPi3rm1RbvZQklBFPk04oDQcxBYjo4OSbUkDFqURtLKS6azGY6qm2h0Qdho1WhOXRscleegjcF3XFzHwxMVUeThBz5bu3tY5dJd7JDMUqy2CKmIGhHKqw3kUkmMMoChzAuG+RzV9EmMIWGGKTSmsHXCoTxJPxQCAVR59RO9cz+t//jyI8XepM8onbDeXObGnXtMkwELiyucObtC/+qIo2FG3ChpNlw2Fzf45Z/7We7s3WS3vM3WYAxBgBfGNJqrFDoGa4ldTVkMmecJ0zsVy02Bayas9TpMqoSg2WbnaIzCZbw/493BHTYurOAsS6YkqAgcC7mRVKJkVGkOp0OW220W4i6dVotpmmLMjFExYzRNmFeQVhLXDXGUQimBqQrQgAuZtRiZs/xgg+UHGmi9wWyUg9LEgaIoDL4VxEHAynKL994+REmPJ84+yH/5V36NbJpy++42lzbXufnOLRY6MZnVuFJyuD/GWQvoLXbZcHs8cmGV7798lRKQVjGfpbz8ypss97o89uAmk1nOeJ5RGYNyHY6OjjBFwuWLp3nkC5/khVfe5FC6bG/t/aSPyF94fehG+t79I5rCxXgpo90+t378Hi8t93j6M5/gzLNXGJ5eQR6N2Xv5Hb75O39Ixw/5b//uX8MWFtUfkw8qbvZT3jm+zyOPnuazf+0c/g9fYXv3kDBokhYp+zuHpAsdBpMZS67H0lKHRx4+y7vHu/QePsfvX/0uiU0QiabSoByB0LVXTkiFOEHcwfsNdU2GsNTTCSnqiFnPr8kDrUaX8XjMwnKAUhohEkzuMjo2BIGHlPUL0fM8jCNpRjFXvvQEB84BxVyAXyPBIi+m7XY503uAZXWWze45GlGMJmdWDpnMRyg/5Hg6Z38w4Gg2AVsxbUYMjlMWwi4/euF1/s1v/DZ5krF12Ofv/4OYO7u7XH3jDfzK0nQ89o/2eO3uXT7za3+T8w9e5Jt/8me0sopNG7K6tsHdu8dkjsCr4AMWIBKkYjiZsdZR9NpTEp3jZR2E00A5kiRNMEYD7ycNnkzxUScYnYobN65z7txpHrh0DqesAe81W1rTakWM+kOsqJPEpOtirKHdaXHcH2AMlFXd1AtkLalxTlIQlUBIhZIO1tTJkwIXT1UU5W3y8iKO08VaD4+QRMPBdIqyhzhuRhDM0dYg8i5LrQXKqM1CY4Gl5im2h3tMjw5YPHuOP/vet3joqUfZPjzGjxqcOvUAXX8Nf6RI3t7lzDNr/Ff/9d/n6BD2OxMm+4fcfu4HH/bafKQrnxlUamh4ml/9hYf4jd/rczCvp3fCKoRU9aTUGhzqgIHKGJI0R1iNLlJMFTAbJ7x77R7WwMLiEpKSbhzWfGWjODweEbQaNBsRAkteWsAliAOU51BWBaUpsErT6vg8fOlhPv3xM1AMGE8tYbyA64SkuWZ9dZ3lXpfxZECSzXEclzTLCKOoJtoYiatCHCdAIlGuIskzfM9lliYYIbm7d0wzDFlZWWQ0OKYZSJQV/LN/9kfsHw2JWx7Iervy5BPn2dzokOcllcmJoga6zGk5Hjs33sOMDMudZXaGQ+ZJwlee+gyXFpZY8z0Wm01u3t/l5tGQw2lCfzClu9TkE3/ryzhRE20ks+mcLM8pjEYIQdRoMx9O8D2JsBX5bIjf6tFouAyPU/K8AiGpgMFwQpKlxOEMrSc4bshomOMHm5SVS0kdUex7LnlRoI1B2imXzkYUnznPYK5IKk1pHQxgRe0vyYviZOknkEIxzwsaLU3gGXSVIoxHlWuCqEWlc7K0whaaqNGBbherS2SoWO5F+K6k0AJBrQ8XJylvQjgnU2IHY0vCRsQ0naMCF6MUSVlrT2fTOUVeMp0nVEZTaoP5f5O3mZNnjjV1CJQUgHLrTaWtU22FA9YYsBYrf6qR/qhUJ2iR2imNTsT+4ADXWKSyeMMZkdeh02hSTcYsLvVo97rMypznXnke3ZgiepqpNTQdh0ajgxBtlAoJAkNIihI5Dz26wHtvpOSFy04xw/VCwiDGRAMWL/TY3RtjXSiKkvvvbNE5arNycZWknJEYH6oMhKWycFwJ5tZwnExZms/AOix2WyyHDVQ5RuqEMJJoacBqJAbXdZCBwPVrz4IxkrIyZGmGMIZGIPBdB09BqxESBiGTwRRjKkIvwEwVl5cvMD2ec/PObVbW1/GjgM9/9mNsbe9z48ZNijxlniR4QYiuNGHgcuPd9xgOjmn0FvDcmr5lXMU7d+/wt574Msk84dVrd1Cez3xQy7JGkymRL1hoBTRjF+V28J0OcPsnfUz+QuvDa6S3pyxtrLK9O2T1zAY///Of4NKTj9BsxaTHA7a/+X2u/fmLTPYOiRZ6nHr4FFfffp0VPyIdTjm/vMHCpSaj4CzHjRHHzHn0qx/n679/jXevb2FSiwkEIhAsbnZZlJLczJhUgqTj8uobP2Y8mCO8GlFUa28BW08WFPJEMiA/wBlJCZ7n4zgOnudjtMTaEqVKWo2AbDah5QtaYUmSzPFExPatijx1iUKXOTmB4zCdz2l2m5zeWMAuupBqhJQ4gYPj+jg2pOevsRissxKs0gh9psUhh9MD+rMjjLEsxZAVGbnISaqCNEkZD8ZI6bPevsC3fv/PmSUZK07ApfUzNLoN/KUOUlnO9haZZzmp3+Zv/O/+G27d3+G/+z/+Q3yjudjo8Ou/+ou8eXCLZRkyJwFt0Kr+83CkQ6UddvdTFpvLxN6QMDJM781JUwFuPVWP4wilGuR5SpImVGUd642VWKExtuTFF3/M6TMbBGGE1gVVaQijgNX1JbbvD+rocWNQjoPRBt+X+L5LkuTkeYpAnfBmawSh53k0Gg2qKsOaGsNnTYUjLapYZufmK+xsVJxe+yWkWEC5BlyX/rTCFRJhXYRoUqRDynzE6uJZfD9GlzFi8Qwbgw3elu+wf3SX9lKP8+2Ypx++wk5/xGNXnuHozj7f+JP/laV2hHAjtodTVk5dIEk1zz79CL///+eNdNMLidwm62uCJy+3eeFsyODtGdrWyDFHqvoDTIj6g0trjFXMkilUFZ7wuPvePsPBiDwpCTyPuGlpRC6tbguv4RO7lkzklGXOaq/Nww9scm/3iCKdkOUpzUZUJwqYnHNnFzmz1uDh86fotWOEbTKeFljpErshyqmIgoBGt8HGSpvReIRBo41mMp2htSEKGzWaUbg0mjFZkVOUOXu7+0zSvOa5apdmZxHPDZgbied2+be/98cUOscLJGlaYgycPbPGMx97GoRDUbpoo5jPCtpuRLo75OCdPhtLmzjCY+fggPNLK3z6kSuYLEcYwfriOq7X5uXr17HG0Oj5PPOFJ1nZXEZIwXgyRiLp9rrMs6wOmXIVURgwnmhcZWktdPED6Cx63Lo1R5MDhqDnUKqCtKzXx82GwHc0s3lFms3ARsxNQTMMsFqjTcV0MiUODJiS9dWA4e0RrtMlKyxKOShHkZUFFkFelEgB1tZs8dHwmN7mBnmRIbSPUAGlruUxjgRLijQ+DrCxuoouEjbXemR5ymA8x5j3sXMKKepJcVmWIBWj8Qw5NJSuxriQlRmjQVIbGLXAWgXvy/dkLR15H6VZf/Co92NWayTYyQ8hJYIal+YEHo5ySOVfPoPUX9YaT8aoQDEaTmgGTYpJRlUZxibjMNlmOp8jhMVaxY2bu0SRS7hmceKCeVoRxw2WWl1ajUXSwsU4Gq3nKKekEjmtBdjYaHNcGKYUHKQFZ8Mmoetz+kGHQX+Jo9uC6WiM1A7HOwnNQKK9gFJnjGaGXjtgOp+wfTBi+ewq5WKMTTRV4XKYlLTDkKXeMosLEq0r5nlJZVNQliRLmGUJk2RKZaCyllLXAWY10k6jy4qksAhS1GyKpyLOPHiauLlIsl/yma88yZ/94TeZjDL+8OvfZjJN8FzB2uISUhecXV2m2Y7pLq+zde8+kpg8zzlzapNcwzxPafe6TCYjDg+OOezPWVjqcnA0JMlyBsMxmgrp+cjQ48fX3sT3Y8rScueg/5M+In/h9aEb6QfWVnn8U0/R2ljm8U8+yaycs797hxf/+Dpbr7/LLz3zNF986nG2j48Qoc/W1jZf+it/FZNMuHmww4+v3oLI8uxTD5Ed+Hzz229ypCtsQ7N8IWY6zGnFIY3YZ2V1haZ2WFzsMIsyXn3nXVKhUa6l0fVIKw2FxUpRc5D1yZTsROcWhiFCSHRV69+yLGc+TxDCRaBpxILSy5DCcPpUl9FkF19aiqFi++0ZC6shYeQxwTIvC2Q2Z22xh5aGtMwwVuJ5ID2B6/psdM6y0TpH2+3gBpIbe69zb/AO/ekhyo9ZbC5zKmoz3O+jfEkUhzjCY//+Nr5bQmSQWtN0HT525SGuPPkUg/GQRsvn1PIq2lrOPvsxvvjVv8K//e3f5vUfv8j4uE/DkVx64jGUzugpn832IlvjLaSoV7BYjZQOulRkmcPhccmZ9YBeUxL7El1ItLAUeQFojAXHcQn8CMd1MVSk2ZxSW3RlODo64LVXX+ULX/wMWHBdByMKllcWcBxBkZ9Mf06A8HmW01vogBggpY/AoapKiqKkKLM6pMU6WFNPM40xYAWeELiu4b3vG9bDbcpH/xXr61/C8U5R0kT5AZHbQ1QueTqnGQxxGgmee8Q8uUPorxCq01xcW8VIwaRKaS+scPXHb/Lf/sOv8vEnlnG0x/StHfJqRHutQdFa5ub8kKMth0urK7TyBz78rfuIV+R6tDyHRx9Zpdv2+Gu/8hR3jl7kYAC5LhFSUlUlypEnEfAKz5Mc9ffQVcGwPyJLS9K5pdIOvifotAMaoUdvqUVJjhYlS8ttGpHAkyUXTvVYXmyxdzjg4HiC1AYVVpw+tcz6coNiPmZ4fITvSVaX1tE2RxMwz8GiSZMMk2vaDZdOHKB1hrGCKgPjuLQaDUojKXNDo9EmGQwZTHKmuQK3QZLMiH2PIIgoi4x2s8Ubr1/n7v0t4tjDcSRpXhGEEZevXCHJFUJ4SBkh8RFlhZnPufPyTRpum0bUQEoHH8Hf+OKXiT2X0WTO9t4hu/t99gZTdo8HzKqcM0+c4pNffJbJZITjpLTjBp12C20ljnTIi4zpeIx0BIEf4ghNVoyotGJ5PSavDpEGhAdPP3uZST4gjGOgDmNwHQfPtYzHQ2Q3xHMDJkmOowy+71NoB184WJMhlaXZ8OhPcrSuaMYLuF5AMRqeUC5qyUhZ5thKk+Waa6/dYH21i+9Aoy0pSk3gSTAZvu+gdYopLI6KWVxYQRtOkt0cmq021bSgKDVSCUpdYKiJHO3FBcKWwzRLyKsCa2s+LlLVTTIC1/HrxNQTLXmd6GZQJwEVNd2uNstCneoqhDiJazZYXVEZ8wHT/qf1//tV5gZcn9hzELlkPMywwjKXBfM0RQsH3/cYDFIKk9FdaRAtK/pZQUVAQ3mUc8VwMGPjzCajyRHSTBGqfje5zoxKz5kMG2TtkuMsIRorNpcWcZwBz3x6k9dKRT6bUeYOReVx+50xu7tDls90ufTMGpMyRbiKuNHAaMt0loJf4TmQZyUTm3I4P6YhBBtLSzQbTTw3YjA8hkogVYTrBUgDVAXK0WhbfTDk0ga0qGUgjtBk1QysJF4QdLoRr+w/T+cRh2biU/g9RnsdHBMwPD7icx97nHYcsr13zI2b75DbFM8oiqrECxoM+32MrfBcxYUzp9FpwXM/eJV2t1MbKOczFpYWmU+mLCy0aK72cI3L9HjO4e4xlr98TPYP3UjHDyxwbbRFV444/to9kuMBkd8gGadMi5w/+fErXFjfwNgS21BsTQf8uz/7Fr/+V3+Z28MZ79zd59d+/fP88KV3GN2fICcSO0lZO7+ObQ3prrhsrCzxsQcu8dwLV0ltiPB6/Oj2DYZJTmFK4q6DDD0YpejS1MF4ShGEIa6rTnTRkGV5zSjWnDxU7cna0OJ5bk3pyMdcfvAM08kWytG4NuDNa1PyMSStnNaiD66kETZwDTjGwQbQc0PmJkQ4GcpzWYwXOdU8y+nGWbrtDncHd7k9uEUm5nihR55Pmc1mFNUGVpT0Og2UyEgdyzCMqGY5aVJx9+4OKqkYzebsHo9Y2Ovz1suv8N/8g79Pd2mN4XTO/+W//+847h8ipCSrKqSGqS45ms0oNQz3jwkbitKttYJWWAIvwGoB1mHnYMLaUkzsaaKGpZAheSqpTEFlS4RQFKVBVxmWqjZeuXXzUE+iDK++8iory13On3+gpjhIaHfr2N48zdCUJ+Yhh6LQ+IHE8yXJLEPJEGRBsxWcTLzlSQNdT5B830Gg8L0GfhDSi2KWo7N46pirt/4166vPcuHUl1BiCUeC6wuwIfN5Xv+3ywrfr7AMaIQtqiRjo+3C5VOM113awS8yVQ7Z4Iitt27SXWiim4Z4bZWskGztvMXyAz2+/t0/5sr6g38B1+6jXf3+hMxPOX3uHF6g6cQui7HP4X5Sx0Nr5wT6X/N5vUDgu5I0nWAN7G0dopRPlhuC0OPSxbOsLC3iKY3vS9JizjxN6EUtPM/HdV329/eorMNSr0HkauJA4jktoqgOWSmEh+N6HB/3KXJDFLc5Hk0YTiuCqMMoTWmFkihwsLrA9xVJmtPtdDDCIys00/kMJRVlmTFLUvaORuRG0F3sUhYJceiAzkjTGcvtFrdu3qiNtEbjeA4RgieevMLi+jrDicGRgl47Zjbuc25pjRe//gPsoKTVbDObJTTimGceeqz+PbMKKRTNZpNWUmAdn0Yrxm17fOXv/CxBN2I6LYgCi9ZzdOWAirFAZTR5kRK7FdaWHB4P6HVdsrKg1fEQwlCZkjAKiXqStJA0Gj5ZmXA8LCjKAM/roQ2U2iFuRoROxGh4QJLlBH4DLSAvp5SlptlwGIwSQuWw1mtghOToOMfaoqb2aInILOPtlMFunzgMCKVPEMZEbUsYKlrNFtm8prsI5eJ6ir2jIUWe0e30GIxmjGcT4maMlh5lKal0hZ6NsaJ+boeBR6lLKgwIheDEFyMEQgrUCUXInMR81+8CcWJmVjXW8ySsgxMOubW2lnnYOuG2RthbnA/9pvxp/X+tjEJoSSBjjo9GTCYZQhrWl5aoTEWuLUJZ8rKiokJ4lqvX7jCaFWjhEioXuEt3YZGHrgxZW41Z6UiKYkanVRKqOSunO2xdr6jKknmecCwly3mblt8gt3Me+cQG2IR33zwkzTSTwTFlLtm/M6V/OOPxj52ht67QMjnxJHlQVjRDwTxLEaVD6PkUUlAM9yl379GM2qwvLnO6s0xaFEyTOVlVUFpNWhWkZYoVGmsqXFPhOBLwQAqyokIbQAsKU1AwRkQVYVPzxPom6ZHD819/j1kVcGt3yukNQeoYwvWQS6cuoJOKbFgwmkwYzxMOhyOWF9ucWu5QpjnK9SmLmmrj+T6D4ZAsTdg8s4oOoLOwgLI+S82Q/e3xT/J0/CepD/142FzY4Ft//j3ulpaGEHiBRxR5lGVKFAYsXnwAHcQMDvfYu72FVoJ89z3+5e/9Fn6gOP/gJqHf4fEnnmS2PuC4f8it7ftoXzKcOjiiRRAvcuXJK5x68AxvXH2dt956k53JCGslDnWctk0NtrD15NKr0VBlqSmLqk7ucVykdMBq3tfJ1Wl+ColgqdfEVDPOnV0imR1iqwrftRzeVIx3BI616LzCbYQsbqwhRiXznSOSqMknv/B54jjAZBWVMjRUxFq8xrmlCyxEKxS2ROCy0F0iNT6h7GGqCWW2gys1jipoRRZMvYp0gpC4lExHQx559nHee/sOQym40l1gd3+Ptc1VuqtNXn7hBf7tb/8B2pZ4jos1lrjdxBY53339Dd7Z36ecz+g8sEFsNUeiRJ+wpWsTjUQgKArDwVHO2Y0m0p9hSwOZwBEOVVWAY2rzHwIlHSpdUFUVVhrcEyNZlud888/+nK9+1efs+UsgHKIoot3qMh4eoE0dZ1RV9T+LvEJJj6qaItwKhUtZGGazOWWpCQKPhW6PIGicaKQdXK9HHPt0VjusXfk412/9gJI2d+ffYTqcceWhX8NXIcYRzMoxuSkRNqIZ9Ujmljw7IFC7rHVOc/ulV9g8HTNL7rOdj8nKElU0WbzyFOOjLbzFJivRKUZ3DhmPZ7yx87skW5K7if6wV+YjX44v+Plfe4DP/ew5Dg6H/Kt//io//s4uXqeB0/RPNPgCawwWcJSL60HgewwPp7RabSbDgnSWstBpUeUlxwfHXDy/ibCCKPTpLrRwVG2Wi6IWYQi5liRZSbsZ8tD5JfoHWwS+g2pGHPWHzNIZSEVVTSnKmtDhui55kdDuLRI6BuVKXD9CmwpUgBUOszRnNJkRBh5WWNI8IUkzDGA0HO0dcmo95sJmh8j3OTzKSbKCvNSUpcXKCt8PWF1p8czTl/DjAEc2icMeVTpnoRlz++UbZIc5eZ4xn2XkSUq33a7NmFZgKkNVaZpxg+7FFsp3SW3C2pU1qpZle+c+ftDCdQVpXlJRIlVBZUJKrSmLKZlIKfMJaZ4wniooSxqdCD+UpLlk9dQCfuwStiKU1PihxPEcsqKgNDlCtcjKkvF0imy4tNoBVtcStv1+gjUCJRwEBb1YMqk0g917SDdCVBlKV9hC0t+dcu+tA2aHtWGxc67BYFCyuGHJsoS8nNNrhQQeZHkCVuLIgGYjIC80+4eHtNqdml0vBPe3D3H8mOaJcXE87uO7EkcZVBBQaInFoKsaX2qpN5AnVvNa44w+OZN1eJCpDI5S+J5T/x1IQVGWFHmBMbpuyqX4YF1u1U8TWT4qZSxMhnNmwwSrJVhJtxFz+fwawlvnnVv3OByPuXTlAY7nfQbJjGJWYXFx3ZA0twjpcNTPGf3oNVZ6Hh9/4jRrCyVeExAK05CodoFJNbqqSIWmn8xYdXs4MsdtFDz0iXNs7U2ZTx3myRCtJUpXRCLk9efe5dRDC5x5YpViklIkOVXkIyuDERZja5loJYHCUumKyWjMKM2JlMfZlUU2FnqURpPkOceTGbETY2WK0Sl+4FLqgtF0RFVBURQIqdBw4kmq+x7X8djPJkQLMY9+8Sx//L++xtV3p9y8C8GST9TzWGx1OOof4+iYd27fotnqYsuMUwsb/NWvfJqdnT1y4/Lqm+9grSHLMqw1+KHL/a0tCn/KZ84+xXu77/Gzn3uCvPrLpY+Gv4BGuuv5fO7TnyAzlqPdfZaXujzx+CUWuxGBJ7h78zbvvPUOH3v6KTqdp5jM5uzs7nPv1m200WSm4t7WeyhXUUmXuVGkuAghefzpT/Hww0/T9iU/fv51dnfv0FprsJ3lzC1YqfE8geNKBOA5HjK05FktExDCIqWDEjUKSUr3JJikNp0oR+E4ksh3aEYOUdhE6BRfOnQ7SxzcPebuGzP0XOEIi00rmk5MEQnu7R7xsS88zQOfeJLX77xJeOEKwzynKGd0WOD0+VN0gy4GS5KneL6HWypyrWlEiuXGs8zHp0G8S2HGYCpcx+I5kiqrONeLeHRhmc//Vz/P17/1HG+//AaPf+FR/N4q671f59/8T/8Lt28eISrDvCiYC0MUeCA1SlgW2l36xyPm0xmLZzfpNAL6ZGA0utTg2xOzpaQygt2DOcu9kMAzBLJOoCuNxREuRut6SiMEYE7MmnUjXpUV1pQ4UlLlGc9993t0u0u02j6O67HYXebe3f0TnNhJAI6sZRtFnuG6HkWR43shylEEQYhSBVjNdDYl8Fs0oh5GO7g2IK4a5HnFKy9f5ZUfvsWFB9fZ3bvN4x9/mZeHfT727H9N4C/iuAojcgo7ZKxgOxkwHo84yBW3pmPWLvdY6oZU7oytw5LdnXextk3ZyziY3WVpZYn9q+9wfG2LpW6XLEg5H29wfm3zw16Zj3z9zf/8Uf7u33uM4/4+/+bfXOc73+qji4DZQBOg8aWDVRbrCoQCL1CARkqf4XBMmpSkWYFSLpNRSrGkaWxECKEYDse0FhofmIJ3d3ZZ7K4SxU0OtnbJigyn4zMZp7QaXcIwQGtYXQ7ZOzokzVN0NUfnBqoKXboMJn0O+7v4yrKx3MR3XYKwgecHZGXJPE3QtiQvK5SsMW1WZ8SBrQOcKk3oWhp+nbK6s3eIcnzi9iLFVh+UQirNM88+QrPlYqzEUR66ylG2JD9O2Xpzm05rkaqqGA/7lLpgNpvSbbcwop5+Oo7AFW79vBIV8UJEvBZzd7DNQq9NWWn2D/cZjiacOn0GKQ1hpEiLOVEgCAOBFQ5RHFOaEqNivFATxA5pWSJdyIqcuOEjqH0LUkqkcMnzAjfQ5HmCtYrArWh0JVU+x3NS8lKTlJKqNDho2p2YspwxGVjSUcngoOToMOH+rUOmxzkOHsLUE7WDoznrjQ5Gg+co2u0Qq1M816EoDWk25fBwn87iBmVZkmUZSkp6SwvsHx6hpCVLx/hezYVuNRqsLEXM50dMsjHKrYO3jFOfmTo5VdQkIMQJ2rP2QSopcFT92rPWorWuhwLWoJSk0QhRSlGVmrIsKQpDTXf6qdnwo1JlqVE4WGFAWeLI56EHNnjqyXWuv3uHM5trhO0G83yMijSZrXlUriOxpsAKhZCWShfYHPoHJW++cQd9wUdqQdzr8NqdhFEpcX0PXRRYYTnM5vh49d3QkrJZ8tSnHuMPbrx0shUxeJFLXiUEOBztFfTTu5y7tEJvvUGRTUmqEuV5FFgqY/A9B6UrfMdlls/JTE7i+VSDip3RIa0gpBU12ewu4agAw4z+ZI+DyYhMSIyMUdbgOw5IgRIVuLWR3+gcoQzWESRk+CsOv/b3nuL5r9/gcHtCO17E05Keu8DO9Ih37t5BNZqsLHT5/LOP8diFVRydsbbQ4fW37rDYWeB4ktRm3kpjq5KigMnBBFkanv7YI/jNBcLFg5/0EfkLrw/dSFdmzGNXznAwmJCMDhGyJHQKnnr4QbrtkNNLbfbu3uHaWzc42JtycHiMVYreQofKcTBBi8ZCi/FsSJGnoAWucbjcOct5L+TP/uVvsdhd49GL55DzNtNjybTShB2BF4YIoWm3YnRlmU3HlFlVe0mUQAoJ1Bxpa+uvOtf1cdVJ7ryoHbDNRkC74eE4OaYwnN68wJ2bN7nxUkkxMviOQQmPQHqoqWXU73PqmbOc+vRZXrj2AuwfMzuzQnymyUKvy6PnHmOltcxwcoyUIdKXaJOBqJCyYpLt4YgSRxZMkwH7wzlzo3EcF1OU6CTn7IOXWI6bLPYCPvHJK7z7yvN42SF7Nwf84//hH7O/N6C71Ea0LX4cIAIHJQQqh0bhEkUxd3d2ieOIa1ffYvVTD+B5DrLUaCEQUmK1xXEcshKmuWZ4PGFjrUEsLANZMZxmgEtRKSx1bLgx77+SBBKJRGMrg7YVypFMRkO+8aff4Fd+9RfAkzTi5gmH+iT8Rjk4KKwxGKMIAkVRTqk01E22QjkKKQRB4JMkOUpUtFpdpAP5RDBXGXtvv8Jyr0s3XmXr4BTXv7XPU1+8yXf//P/GJz7xd1hbeBphPMoyQVUBeT7haHKfWRnQtE3GeUE/bbHc7PHso+vkSc6dox0GyV1m1R2e+eKThFVKNXiSg+0JN967w0EyY/f5H37YK/ORr7/+1x9iNDpkPErZvltSll6NlKwk2bDAURLf80EZMBopoawqjo6GTKYp01lWy3aMotsJePzxdSSaJJ3ixS55mVNNKhqNJl4Q4fkB/a27BKEiCn0WFxvMizl+0CEtnPruz1LiuItFkqYzVFRLgu7s7jFJDUWpWVnoUmiHIPRJ8hLrOHi+g50UYDOKwhCFbXxX0owMZ4Ime0dTRuMCz7U4SjAtSkZJgXQlzd4i2goqrQmlQ7vbQesTygyW4fCQsPL4w3/xTaqB4eJph9OrS2xsnGK51yaOI4rKIKypjW1K4noORhhKWbF+fpWtwy1QFbYao9wG3YUulXEQKiYrDC3PJRtPcJTGVQZTVUynCVYaGlGbw2GfRickK2wdQGJdyqpEKUPgeSgBcRzgug4WTUVFURhG44xWGOFj6DYEWudIIZkUTs2a1yWOB9/5s7e4c2OGtR7KccGC1C5WyjoUpRJMhjnD4X3CWHLqdAPfsZR5gnFdjC5pxBHrq01KW+C7Fs+BLJlQZjGNOKbbbjBP56wsNTk8GjKdjmlGtc7yfYypriqMNUipTjwx1GxoC0oIirJAa408wTNaaz/gb8uTwYDRmvl8jpIS1/VptztgNHmeM67+8q2j/7JWYCyla3jsmctceOwsu/fe41y7w2F/zHRquXt/h3k2x7QF/pJDZTQCh7IC7Mk7SrpYC0JbjBIMJxNu3aq4e9/SOLPGBIc48Gg0XMbjPkWeMzcFVJorrVO0pYNxDYtnAj77C5f59r+9jikDsqqCShM1Q5RQJAlcv7bL6ijkkcfX6fY8hsdjlFCkOocGoCtkSP1Rn9XbkqFIyYQmSWccTEZE7iFnFjdY7SxShGDdHmlRkpcJeT6l1YqwjiXNMuZJQp5nNcGrynCEBKHJZIW/IPn5v/sUw3spo/0ZxztH3Lz5LmmR015oU1mFH9Vb6N/43W/RbHn8o//z/56b93boD46Zj48pjUKbCiklYeDgZIKbz9/iiSceBGO58MBl4E9/wqfkL7Y+dCO9fW/E/Zt7nD+/wWLgcHiwx+vPjxjf2UNXktff3mJ794DpLKWoDN3VRR777BM8/ORlltZXSJKct37wEqeky4Lrkk4LfvzKdbYPEszGCveu3uJGfoOXv/tDlrsthl5G9HQDGQo0DkEUAAaTFEgJqJNMNQEWi5IgpTnZ8BksOVaUGBSOdGhHHpGqaIUhlfZYuxCxdfMut69mDPdyPCNxXYkjFCvLG0QrGzx+YZOdoy2+/63vUc5ynlhc5ZEzF3jV2acTtji7fIpCp+SpJXQV2qbcOXqbu8fvMtez2uXvaD65cYbU5OxlgvFkRllqzNziVCUPnXmK6y98j4Otr9HtrLHYWeR4e8g//Ve/x/ZwiLPsk2+UFI7BKIW2BUiLiCVzW9G3CSL0SdKC3mKImRSsnFtiPzms/1yUpNQlha4QQlFpyc50xua5Rc5daKB1xb3+mO3jkv6kZDSdY0xRT2aEBV07861VNQJL1tN21xHsHWzx8kuv8OUvfYXuUhvHDTAGBAZpBVIGGDRKOpRlilSCrJwTCh9pAtwgQEmN6wToSlNWCUk2pFIurdBhns+obI7T9rGx4ZOf+QTpWzeId1KCi7v86KX/B08+81+y1HgSR7qgoNNocW8nJ3UK0lFKHGYk1YzDsUe/Y9lsL7LZ6bHearDWXmKsNf3hMcfTOZxZ5eNPPcZ7L75Ge13Cn7zwYa/NR7ru3N0Ck9PtrnHcT+tAHWTdkFSS5ChDWGgs+LhOPfmsSkOe5VTaEEYxwgo2lgOeenSJViMjKxykL4mbPu1eG4ukKHTdnArJYb9PbyFmdaVNns/ZPzhmlmqa0Rq6UDju0omZ1sFIyWRWEMURRZFjdL3O96MQYxVFBa7vMZtPCX0HKQ2Vzmk1WzhKUVUJm+stJtMR42FC5lX4rmIynpNZefKAUUjPpdlrYfIJ3W4Tz20gRQuhPJL5FNco/vh3n+f6W4dIIzkaZRwNxzz6wBnWXI+8qMizDM9zcJXEVYAwGFGgIkNqJoynA8JWiEXhyPpFuLCwjHLjDwJHLBLPC0nLgoNBQn+c4AeKVqGZJyWeknS6ARZLWWhaDY/15Sbd2CUOPPwgYj6rKSdZqZknGuEHKCdGUqJsRqRK0CAij/5oTloUtOKYhx9dpr+jSWamlqdYjZIejqy58kVZUJUWqVyuvriFIwyXryyztBbTWqinho3QodFwKLSPrhKmqiLPNcPhkEa7y9ryMrP5EEWOtAXWGPaPjuh03DrASdraOKjrTaNQNaEpz3Oktbiug+MqgsjHGnMyhX5/wKKpUaB1X2GNxBhLXuSUwxywNBox3V77J3rnflr/8fXZRx7kB+/cpCpgcLzDp790kf07B9gwIrkzYDbJafWaqK5kVE7rry5RNw/yxKhqLXieVz83ZIEpc3ItaK0u0880IvTxwgZhHNAfHJOkJY4fkBvL8XTGqYUVqnQKzZwrn14kmZ/j+a9tUcwLHGXpdrps9ffwl1tUxjLoZ9y5fcjZi49S5XDQP6aUILGIwGNmShxHkWQp2kJlSnAMThBSlJpZkVFpGM7noCLidpNew6UqEpI8YDgfcDQdk2ZVnQbhRwhr8ZShEUmEMMznlqoqOCoPiTd8Tm82WX8kZjJKGA3mHO3OmA5ytvbv0GxFrJ46xRtvvsVv/c7XuLDeIYwcDoYDdgYJhQXfDVleXCIOLArD+HDMG1fvcPfwpxzp/4862Duk2fb50UtvMp2XDEdzlIEfudukuaYRehgHFi5s8smf+SxPffIpoqbP9t3bvPrdH3Dt+ddp5JavfPwZ0AUvbW0xygr2RzPu7fcpC03o+zQaTUTgsbARYbsOBRmRF1FZjTEGz/NPJp4SpdQHqDtXKayp9XFQs5CREiUFrdClFUhOr/aIGiFeILnz3rsc3jVsvTMDC6WojYnnL67wia88yxd/7av8k//p/8nu1TsIafEdl74zo5TQcQWPrPcoZnsUcchceOj5ffqTXfYne+yN+yRZRqBy2g2XhnsOW9bMx2a7zWwy53inz6MXrrCwsMi0SPnR89/l4QefYfHUJs7lTaZLimh5AcISI0oiEWJVHe0tbEWGIZSwGEq8eQNHxwyPM/b3xzz5hSfYGe9i85qj+r6T3VqD7wdM55bdvTmttYo8HxGEIUEkYKppNZuUOiDPU/I8rZ3whhOdtYGTsBttDULD1TffZGNtjTOnz9NshQz6RQ2TFzWX1ViD1hVlWaGEIvIly70AU8YgG0hH4SrFeDwlz0ukyhCeIDMTKp3jKMVkOuJMx8VxffygxZ235+y9NeXJrzZ44+o/5eL5/4zN5Z/FJIZWvEKvtcrRfAvrlLUjv4wR3gJJpjC9Np12CNWE43xINq7IjiXLrU0slirPWDy9zg9+/L0Pe2U+8vVbv/Ea/8Xf+xx37/YZjissQY0ZqyN8kNonHxrK+YDLjyywueAxSFKMK+l22kjrs9L1+MwnF/GkYe9wjoo7WGEpTUGaTam0pShASp83rl1HSctyt0EzkPSTjDQv6E8y3nz7Xc6ffZRWsw1UJAXgekCCcBQbG6cZTKYI5YHywAnRwkVaizaGJEs+2F7pChpRTKUNRVGhpOb8mWX8/RG+J+kPR0jXIw4VaVUwz6YsLDXIpjlRHKArD125KAytwOF7332DN1/aQhuFNoL+JCV57z4IxWgyx5Q5ceCx2G3SjHyWFjroqiRjTnephxN7rIXrJEVSa7+1paoMgVtLo4RQGA15VqGtw/bBlHsHU4IwpNuNCYOQZFIwG8+I2y0wJY4QuMphcaGLh0E5AUfHc5RyiePanJc7UJQl01lBM1BQVLhKErn1YCIKXCwO1mo+9tnTzCaWV344pEg1ynpIoU4wXKIOcrIWqSTZDF78zjY3XjliZaPJ0184x6XHlkBayjKhLHLarZhpUjIcJwinZHbQxw+Cmt5RpriyTjMMo4AsneIECk5oBVIIpFJ1IuvJWcT+B81plVUn9KEAr+GSZVnN3hX1oMVYg8HUDPuTH8ZoptNRnTDz0/pIlCorfAT7N+8y6UvOLLXYOLNOq9fl7OkzvHd6lf50yrv92yfxvS7W1v4fqP1UQRDU0p8iI4oNvXZIazFgoCtUHOEoSxzFBGFMELWYJRMC5VG4MCkK0iLHtR4UJXiCZ750nmRU8fJzW+hKMJlMTj7wTtgxVpHMDUf9Cdev3mHz1CZVNSWdpFSFxfEqwlAhhaQoCoys8KRA4zKZJgihEFrgegFZWTBIExbaXSJX0Wmu4LsR4DFVBaXR9XtaVHiOQaHxPI88T09MtSXGGlJboAOJtwrLqz5rDzfI5gWzYYfiuM+FpR7Niz2Mexe5cQ49mnP66QbpOzmLZY+t+0fc3JrSCj2OwoAXXnkHT4W02v5P9Hz8p6gP3UgvdNt8/NPP8pu/+fsMRinaWqQnSbRmYaPHw49d4OJDF1k7tUaVZ7z6599i59Zdbt3cZno8h7nh9NIyP3rxdZY7DcgtooK40yKZJniewwMXzzKcTrnw+AXypZzt8IhIxdQhVRYlvTrwQwpc10Xr2hBWM0MFSnl1spWscWpFaWj4ll4jYHOljRQS6VTcvv02etrgzhtTZAWVBOlLzp07w8WHTjPI+vzTf/JPGN7bw5lUhF0fUViOjwa8cvVVFi/5XGhcZpQMud5/m6NEMx5kjCZD0mKMG1jCyOPSxhkun9qkFQcc7x6x1mlwNBnjRj4zo3jmoY9htOHhRy/TDFe4cX2PuVLcff67tM6toERBJQooS3zXw/EUroBIuSRpymxyxFTNKC9aUpPhnPJZiRfYXOqxvrrC9v0DQGNMCegPHOm2arK3n9FrarJ8zCSbMsli0rRAl7U73nFdGg0PKWE2m2N1hlQOlTUIY3kfEqUrzY9f+hHnz6+ztt5hMpqgqwqsoNR5bQB13foFVxUsdhUXLkTs3k8ZDsFx23hxQK8bMptPqcoSaSWFLDCixFaadJ4ym00YHOfcuf4WF89dIru5z4u/XXL+8znX5r/BYK3k2Ud/Bd+JWVs8y/F0F10WtbbbukgZMDqccjO7x133Pq2WIWqeRc0NK2d6KOkxGAwxMmX9TMTyZvBhr8xHvu7dK1hZW+bll++TZjUrWrxv6jIghIOowEHzq19+krMPLPCP/+k3kX6DZuTgKMFnPn2Wha7htVffYzx3sf6E1c0F9HRGEEo8z0drTf/4ECkVj146Tzd2KNIJgaoj40dJwv5wyvHsBqsrp0Bajo/38fySpZ7PmmwSNzsY5SOkj+cG+K6DEZa8KpllBY4yWJ2jlIvnNSiNx8FhHyEKECm+71JVJa6CpaU2eZnTzhz0XDCdJxSVRkjFdJphtYuDpBt73L5+j+f+9BpFXmOLBWCNYJxpXnvnLjdu3ccTluVWwIWNJR44t4nvOpQ6I3WmrHfPYl1BYDWVcUA4OF5MpX2q0tLuNBiOJzWdwvXZ3j/kYJRTWUkUR7UGuqwY9ROm4wTlejQaHqKyZGlOvz8hVIIim3I0mLO8skQYltgqQxqHvLRo62KVS6EHKOqQpbKqkELguh5ZnpLrgqc+eYb3bswYHkiE/g9aYmMMSkrKvKhpQdZQGkNVpIyOU7Z3h/yCeYJHn1wh8hVe5DEv+CANc5YkaOOxfzTk3Nk14tCn24w4s7FCpStu3Z3iSAeUwFIzzOskW1UHrpxQtiz1xFqIOrEx1xVZBmEQ0uk0mM+nWKtxpMWgcR3nJFdGAKrGc/40kOUjU/cPhnzsicsELcW4mLJwdoGXX3ibrWtDAuFwZn2Bg6MDMl1RCU7M0QYpJL7v47iCojJIWbG2GvDZZ89QlANevrFNGTdpSRdPCtpxh9D36XUX6B/3UX6MNRbp+OwNRyy3l/FlRY7BeIZP/sJlxsOC7RsjtDGMpzN6LQ83VlS2IpkXHO2nHB2NScYla2dXaMVhvc33HaqiJG41qMqMSoC0EmES8jJFUyeUJsWIopSYMkB4Lv2pJho5XN48y9L6BlOTMpz2GUyOsUKT6DnzvCIvCjzpEAURmcyxxmKoKE2FtQ6KgNJYPM9jednBMRJfzXjwUsA81QycPZy1kPUzLp2nVqjGFU+Nz3H9lRH9rRmONPTaMec2N/AbMd967S+X4fDDT6T3x/zWb/whySTFtQYhBW4Q0Ftq02x67OzdY3+0hfnzgri0uPOC/Z0Jo8xQ2Hrluj8csNo+xbNPP4nyfcZf+zN2p1N8z6XVitFSs35ugbk+JDMFfkMSOw3mkxGW4oQDWgOjP4j85qSRFhYpaxd3Te6QOI5kueWzttCi0QxBSG7dvUrkuGzfzDFTwBW0FiLOXTzDZ575BN/4o6+ze3SIcCUPXbqI8CzSs/zi45/lznvvks0GtFsrhN4Re4M5d3eusz2YMjgQWAKWF5pcWFvk1EaPZFays3UPVha4sXWbU+fOYvI5k7JCacHm2kUiZegfHDKbzljfXECEc4azEc3Ywal8JAGVb7CywmZTnDSnv3tEb2EFHa1y4clLlFXCtH/Mvff2uPbSW8i55eM//yxHB9/GYqh0AdQJj1VpsKVlOtfMdJfMJOyPhkxmGiWbGGpmdFVVH9BOQj+g3WiQ5DPmWUWlRR0nSc2KTfMJ195+hbPnL3HrvW10JU5Mh7ae+lTUFBBKRuM5O7ua+1sT5nOJ4zXwvIhG3MB1PYRQ6MxgHIv2LHqew+EchiXzZMg/+Id/n2tv3cV3m+zcvs6Lv3Obs5+MOVz7N7i24pnHv8xCc4levME4PSIOOri2AaXAcQ3H05sM0rs0pxHrix3a3WX6wz6RG7G4ulGbsLIBT3/yEv/0f/ywt+ajXWsbyzRij/t3xrWBTLogFJWuqGzdjEitOXO2xcefPcX3n7/O7TcGZHrImUunOPfoGo1uj9feeoNvPnef0+cv4oQVuBPOnW2TJDPajiBLxqwttzizeRpXGHRV4rgxgQwISklocsLQcn/vLoejARqwtqTTdnCDJmpo6LbbtDtLTKdzqqqi3QiojGaWGwaTDKkMC62AdqOFclscjUoOphBHLZLEkGYTfGVpdyBQGUEgiQOf7cMZxqj/F3v/FWttlh5mYs9a68s7n7NPPufPuXLsqg7sbrLZbCaxRWokjTTCjMfG2JbhCxuw7wzM3MydfSEYhhyURoHWkBRFMYnN0N2qDlXVldOf83/yOTt/+0sr+OL72YOBAGMwTYNTcr1AoQp/AYWDXWud/a43PA/ZPMNzgmeuPMXSQp9QWEh9fuOffJ8i97Ci+nG13hmLkgqHoDQWhCOvLLPScXdvyHs37zGbj/n8LzxPY6GPCywiH6GdwxGibYSvEpKoRRKGqIUOaZ7h0ORlwbw0CKHwpSJQECqPg50hZW4ZHk6Rvs/kOAWp8P0Gq0stPOkRReNape1ykBWdJGaShRjnURjBXAcI66OEZDTNSecZ7UadeDirGIxytKk7XPWjoa6y/fkIhdEGpSRhWD9CJY449NBpwXd+/yonTnbpnVwiz3N0mSOcIZ1NsSIkTmK0hUe7R1y5cIr1jYQktEwmYxa6DWZFTiNpY50mL+eUusRZjRKiHkNzFkHNoJYIjDYICUpJnCtRImRjdZmyzAkCSeD7tclReoBCKg8hJPPpZyXpT0scZilnWw1KKh7tjnjSGXYORrz7wT0Cpbi3c0DQEZSxrXXwrt6VUp5EmwqqgDCBM6c6fP7FM/Qa8MnNAya5IAgFOGjGPXqddRyGbrvC2Ru1Rr4h0A6088isoNduUU4z5p5AtDQ/+9ee5vf/2bsMtnMiP0FUAmklFktVSPZ3ZujKJ9eOu59ss7nS5+S5LR5O95hnBlPNkIHEVAalPZRxSOWRzkt8PI5HxzSTNtNZhsYiPYeKO8yLCuVHVE4SB5KLJ9dI0yPm1Yy8Sql0xjifMMsyyseG0iRW+AiqwoBUFFWFdYJKe2hCLBJPgR8BwmGlRkWOdqLwFkMiASee7FAd+BzdGOBmITptcG977y/7iPyFx0+cSD/cHhBKn5/5qVe49/A+1+/uQ+UY7B5STT02N5fpJB1GZsTa8gIN6ZMWd5jsDvCMAGvZ6vR48dIVbt+5xcePdngwOCYOGnULL/TYmxzwzJWzfPNv/Aw/fPg27x/vUmUVSkGg6nkmpQRgMBqkqikeUgrCwMPzfYx1aF1hjaXXaJIEgk6rgZCS2/evEgce5SwkCptcvNIi6nlkNmVzfYXJ0YjRowGR89EOrOehmwGV1Nz86H2unD5P1VHcfHCT13t7tBZP0ulW+EnIE6dX8FSfU+tPEHkRt29/wiibsbUQc5TOGBtNtH/Iaiuhmtdc06TRYvvmHSbHE1rdBINH6SpWez79POTmnSFRo4W1gvF0RHE8ZznscPOjqzwKBqxeOYe3EbEpWvzBr7/Bo70BC+0eex/e4wt/52c4dXaLnQd7Nd7p8WgMDpQyNNsd7t6f0eu3sJQI6bC6TgACP8BYjbGaqizRRYl+XOFrJk0MhrwqKMoKISAvKu7cu8Xq6ilOn93i9s17IF3N+ZYS68AJgedF5Lnm3t2CdCoptIFqjMwm5EVMEjeJoyaR38JQ63vRhnRvTr4/YVIcEPUCNi8scXywz8HgGDv0efffjjj35S4fxr/L2kaDrbVXObvxBPf3rxGHLeKgg7AwGmxzVFzFazSoaFFqD+FC+skWupAsdFYJug0Op7skovETX7pPe1y8vEpeZBwfaAIVEQURQigqXTHLcrSt24W/9MtPI4Xl29+6SZX6COdz+GDML37zK+webfPR9UMybdnZ3+PU6U2GwyEnNhOilkIXMxY7EVEA5fQQGSYgYoQXMM9yjgdzgjhia2OFw8F9BtMhwgsIAoU2tYij2V7ACwImsxlpkeJJGIxLGs0OpQaDT17mRLmm1/TxVMLxcBdtPQqrMCSMZzOc0zgx5Oxmg0AG6KqizOsKqy4zlpZWeeXlLxCgaPkJf++//hccH5ZYIbBSEXo+zlhMZQg8yfrSImsLLTxhKYqKB4cj3r/ziPFsxvJGl2e+9AUKIE9ztFVoG+IIqWxEo9Eh8BOEAKsrivkEn5JWI+LWbokUMBxOaa82sMZSlRbjJOW0wu1NCJpNVBRzcHDMRl+ShA3WVpvkRU4UgvQVpbZo55HnJdNZQT4vUdIRhh5WNWg0BZARSI/ptOLerRHjYYnWCkm9Q2GtBVsrtmvbpUer1caWFdJUbKwskWYz9vaP2Hkw4NLFE0jhaqJBUH+Jz0tNt9dknBbM5ik7+wMun9sgjsBUGZtryzw6OCSdpQShR39hgaxImaZjPE+glMCTHlJ6RHFcF1KEwlFXy0M/II4icPV3QxwlFEVBpS1KiccPgapeYE31X/Kt+yz+h8Ygm/PG+1c5Hg3QxvDso5pHjq/QTpBrTRS10JQIKVFCIcRjvrjn0WoHPPXsac6fbrLWjxlPptzZGYLv4ynwBPRay7SiVSpbUFU5nVafvMwx2jGd5/hBk1FeEQUxS40eR8WMjJJwGb76q5f4N//4R8iJYDqY0ok7SE9RZpqD/THGSEqj8aUiH0k+eec+rRNNmknMaDgkTEKcAm0ls7IiSSIwkBfl40egIC8spasIk4BWHLE73CWNMo6mBdZ46GLGzVvv89LzT7O1cY7B7BjpNSmKGb7IqUyBwqGEwErIq+Kxc0PirME6j0xLPA+aSYAzBUIYkkghhWKSZmQqRgVTumc0J89E7N7SXHt/yKlLffjuX/Yp+YuNnziRDjyJL+GTj6/R6zdoNhxxw2dhaZmo5eFFEUHYgMGI+/d3sHlFOa8IpY/WBi0gxzJ2mvfuPWT/+Jh+q8OJ5TWGOw/Z2ox46le+xEjNuXN8jcqN8H2FseB5AdIapAhJszkOixISTwr8wEcIWx/sokAjUNKS+JJmEtBsKybphMneLklUYscL2NkqX/mFlyjGhne+8wYH93f5xee+ym/91u9ghSPqtgiW20xEzos/+xL5YBevEjzzK19jR074N+/dZKwqVla36S8mtALBWqfJ6c0r3LqX8jA7RDQaPL1xibZ/zLXt6xyOcnYeHPLFZ0/iKh+NoNJz7j28x3g4YjbZZmX9FD3ZZXt0xEbY47mtLteP9ugtJIyqCVmguTveRZ5po44Ljm7c4d++c40Xzl6hISOMcTSaPYYHDzi6t8flJy5wsH+Ey0S9hInFPq7oSxUwOJrQanWRVuHLknmVoWjiSfnYqOsQjse/fKDSBm0BCWEY0V/qM5mOSNMpB0dzvvPaa7z8/Jd58GAXo6ua0ypAegonAeWwhSGblwiliJWiKDS6tGRmXreGmyU6LDFRSGA04dRgc8sHb7/J0uUV/tE//i3ajRAtPVjsgrasLLfJMxjtZHxy/3dxYp9Tq9/E37hAmhUYoSiKMaUcIyNJu7mIJ3uMJnMiT7PcXsOSY3WJVQ36jQ3uHw9/0ivzqY+LF/rcu3vA4Dgj9hNC38cPfPJCUpUV0sGZM4t87RvP8OHbH3L3xhjhIiSKbFDxydv3KYIjjg5GtJoBUWA5f7ZPEBSsL7VZX1lACIukwpQZeZZSIJlmKVGjR0XIXPtUmaPdbHD53CbvX3uIk4reQofFXpPe4jKNpE2ep+R5idEaL/SZZjmlU6SlQ1tT/w6RNQ7Pao/xJCerSprNEJUEBH7AZKqRXgenYsbTmrfcbVtuzkYoJJ974QsoJ1hodfh//7/+kBvXd1DKx/N9hFLgHFVV4Zyj0hWeEmysrWJ1yfXbd9k9HjMtckpb8Tf/yk8Rd0Km8ynzSnM8GhNGDcI4Rkmf4WhIp+OIgpgo8hFTTRi6mqksAuZFRlWkrPfbPNwZ1PbDIEJXFeOjHC8cErWaHOxPyM50OLG6jPBK8qLCOo1Eo0vIc8XcWJrNNv3+FkZPOR7sI5Uk8T0aUUyRV+ztHrO/OwftI51BCPe4Ggz6z82BCMrKkBcFHuArydpKn0w3OCpHHOxlTKcznE3xpCQKHL2Wj5ha0umQxcUmxV7Ko519TJXzzJUtPCFpNwLObi4znE6ZpCmT4YCFXot+dxXPr1Xf6TxHqJoHXdVYBpyDotJ1FW+ao5TEWIfMDVmucQh8J7BWUtPvFOVnZsNPTehKs7d7RJwk6KLke7/3AQv9NsoZOs02fgjm8emUUiGpR4G8wLF1cpUXX7rEQj+kKSsaUZMPrt7leJYTJiFK6lpnv3yKRtRnOh+iZMzKygo3btxgNFHoChoJJGGDtBKsLSwxywusUmhh6G5IfuobT/Hdf3WNw6OCydGUznILpwTC1ndHKlBSorVlkhfsfHLMUr/D1skt8mKEsRpbOarKUpUz/DCgKCo838cJRxBIpvMpzsUc2wFzNWeghty4/pBbdw4pbclTz1/EBW3Gc5ikktBbYGFxBeFysmzMdD5gMpsQxCGhUignMFbgTPWYclKz7yfTimYSIFxBHPjoqv45lHJ4LkJjmPuG4GTGZkNiR//hMdl/4kT6zPoCUVSS5zmtZsiTT6xwdJzSCgVVWmHSjGsfXaPV7NJptdgZHFAaxziv0NYilODReMJvfutPCTCc2VplbWWZIh3y83/1RS5+eZP7TnDrg32W+4bmUhs7fkhlSlwGlQbftwgn8ZWHVQLnJEXuUNKnnp5z+FLgS0uv2WCx22ZebFN4Gi+pWOmfYWHpCkcPCu6/+wnFzoTVAlrtJXZuPWA0GxP0W5x9/hIXXjrHUf6A4WyHfHGCsYp/+uZvsldMOPPSRfyog/brPz+1eon17guYPKaoPmA0OUBjaRPT2/Q5nkwptaO0Hg92S/K5IMsN86zgcP8281HBsMpYiedsLK3z4f4eb+6/y8ubT+GqCETCUjsh9HN2q2OsK1F9y9kTJwnmCjHTnDp1ihuHOyR5Sb+3xfXv3uD5/9mX2TizxfjD6yjjgbUgxWNigUYbw2QwZWGhw97hHs4ICmdrqoCj5kC7x8IC5+qZ2McLPcr3OHfhHM5p7t67y2Q04Gj3kGsff8Tq0gK7+QElsh6x8T3QtThDyjqp19oQKI8k8cnzAhwYo8nmU5R0CK+iyFM8HeCEZp5rFjp9yh2Pt954k80XzvN3/6v/gm//yR9z+5PbTIcztp78EqE+5P7d76JNyekTv8Ysd6TFmFm+QymHNKNFwCfPM5SAWTqhE/XodxdIZwV5NWcyNwxnnwlZTp7s8NYbt9CVopU0CaOI7HGyWnN+Jb/yV18iCSXvvn4Xz0lCIcmtAyt494cfsH6xjSkVKhDoqiCbH/Dq555EqZB2ewlPOITJqYo5nkixUmHmBfvDI/aPcxrtRaQnCZOYMyebNBpt9o5nLK9vEvgeeZ4ipMd0llNWDit8pmmOpxRNP0CUOQKHUh5KRTSSPpORRjiF1QYpCpqJxzwRTMYV6bzk0U6OdJZ2o8fOvRsU6ZDzp85zcn2DRhBw4+MH/Ltvv4/WrlboBjUOrixq0oQUAuMc2/tHKCmxRrO9d8i8MhgpiRsJL7x6ntzMKXTB8WjOcGqJrUfH85A2oypz8lw9Nu89Rv35Bl055vMCpEcQtzg4Knj/+zfZ3xujM4E1HlZrjnbG9PpN+ovw4MEhSRxirMVaQ5HlaGEwzlEUU5xUZPOUTqNLK+ngYTka7iOljxf47B/OQMSkszHyzx/G1qEA6Qm0szhj8Px6nCWdTwkChVGOG9u3sUpQypxvv/Y+uZvxC9+4RJpOCfweC+2QeTFjmo/wY8nCQpvB8ZTjwYBZukInqauDjUASJT7NeYy2lqLMsVVBZeruSKFryy3Ui9FKKYwTODwQdWIgRM2vn2VzLLUUy2qHw9Xjs64ef/ssPh3hLDQaTV558XN8cu0aeqS5f/CI5e4CuqyYzuZ4Cw280MdIgbWWpOlz4fIWFy6eZaEX0Y5DelGHsqz4+OY2Bo+NxRhNRah8VnqbNKI2xlakpSSK6wX+w+MpYkHgeQFznRPqkPGspJ0scDzYp3IWP4o490KEzi7w/T+6iScTsmmGaAqqeUXY9FHGkAQhVy6f4Z33P6SqPI63UyY793nxpTOU8Zz9dIAVFl9JhPTr8aZMcGxnhF4EhWWeF+zeHXKwM6ZIDbp0yNDjhVefZPPkCrN8QqsdMc0yducpS2aJxUZMsxGRJAssLVaMZ0MOR0e1+MkaPM/SSAJkaXCloyoFo4muv5+FxCDIKwG5oZMItK0Ylw5tBWUimJf/4RWjfuJE+is/s0S7rTg+zLh1K6WZ9Di5dYL+apvbdx4wzySTvGL/aMQwr0h1SVk6RKSI/ZiiLDHSsdRf4IWL51hsNfj46k3KRKIue/w3r73D+/em+E3NN8+/gKemZKOUeV5SzT2UF+K0RRiJqSy64nGyJ2tvn6yxa8JZWpFPN/GweowjQypNy1vk6J7kxv3r3Ln2gCfOb/Kzz71Mi4Rrd+/z7Tfe5NwzT6KWY04+u0mWjLh2+320njOvLEf7OfCQ80+dZ7m3TseXLHcXObd+lsXwDMcjzdwd01loEXWvYExIW46wLgPpaCYJOZK7jyZkwxELzT7K+hze26OaKVoLbdwsZzYcsBQt8qE64kefvMtLT73E2ZVL/OjNPVq9FrPVBdx4xMqFiKQ5pxjPySZgTMa5L27wROscLz/5Cv/gd34TM55y9swJ7t65z7ys8IMIbSHwfKqqoiorxhPD+mqX02vL3Li3Q64LPC9GV7WQRUgfIUVNAqAWb0hPcPb8SaIkpixL1je26LTaHO7scvv2TZ5/+kU63YTBaP7fm2cXQiClwvc8pLNURYkWiijw0NrUWndrmM0mhLYg8RxPXblCuSB47/77lKUhnWgaQZPp/IB3rn+faEGxuXWC7fkuZ7bWaAh473v30U99B6cNWye+wvHOqJbBRE2U7JGlBVVVoqQmChJG0wHNsIsTkvsPb9FsdOh3mj/5rfuURxyF3Lk5oCgMUaAJgnrcQlcVEsPyUsLnv3Cahzd2CXTMlbOn+eT2IUVWEHqKYpIhijYLC10mk5Sf+/rzXH66wQc3PmQ8MVw69xzL3R6tyENXgjSv6gojluFwiO83GU+GdXveW6Hb6rCxuUF70ZIWhjzPMZVlnpX1M1p4NUe40oStAG2rej9ACOKoSbu1gLMBnueRhAFZZSnzCVE7ZrXvM08Vvg/TNKPfa/LhB29w99bHtBodXn35BWLP4WnHv/zHf4g1EiHr0QGtK4qywlYGz9UPRaEUmTbcfLBTzxHb2rknJZy7uE5/uY1xGs8LiGJHz2vjR03KIiMJHJ12QpzESM9nnqUor9ZLlZXBWUcSh7SbsHt/n7s39tGZw2mF0QZrweWa4+0BP/O1iySxIS8zgscjMTifeVo8FlMaPKnRVc50OkM6wdpyh2biSGfjekwl7NBol3hqgCBHINDWoEUtPQmUwHmi3q8QpsaPegYTwf78CCMElXBY63jj9bv4yvDcC0uU0wLlJ+BKpPKYTI9Y3ziBLguMrhNhK3zmRUmlc2ZpSqPVRAjHZDIijj163SZZcYSSDoN6XBsXWFNXpK1wKCkIgwDf88jmBdY83rORCiklwjmssFhnaETqL/fSfRb/g+NMe5V2knD00T0ubvUhKnHpKtfu3sMTHkGniVBghQYFS8ttLl45yelTG7STNt12iyj0qIqcg8MxD3eOsJ5i2JB0+jGtRodG0qaZtCnsmOnBmLQqWF3pc//uLllaINUM50mE1QSmYK23wHp/he3RUS1L8jRnP7fE/Z09Jg8lHdocTffQCnypUFhk6Pjw+odoXSGcRGjBcJxy4/oxC2ciFhcWGIwPKSsD8wLP85gbi597pLokn1U8uH+feQoYha8cjbbiwpObdBc88nyEcDnRVOD7hsLMmBYN4jjiYHdEI2kAAc71WVlcwNiMPJ+gmZPOJ0RRQBLHjCYFZaXItCMblTinkdLS8BVKeASex3A6Y24UWggI/sN7lP7EifRwMCEK1vFUi4VuyvrmKuef3uTbr/+AG4/2ETpB+iHnn7zM1qktPvzoE4yG1dU+Cwtdbt28ixSKbhQwpmT3aELj4ml0dcybdx/w1vUD8jTg5ctn6HXajI/HDB+kpIUjjAO0Z3GBwRUlRluMlgipwRpKVxD4Ct9TxLFPO1Z0moI8PyBsWFpBzP03Cg63d9jYOsmZi+cYFgO+884bHG4fk5aGztY6C6c3aJwImYhd7t66w9FwSpkaitRgjKC37PHyUyd5cm2DlVaXMGxQFY7tdJdZMSEtp8TNBBU0UNISMkO6gnYjJIhD0sTnztGA4f4+v/ZLv8TsYMbgfgVO4DVTUmm5ce0B4eUGa4lgdzYisSmn4wa9F7/Mb77227iu4YuvPsGpE2cZ6QNKNWN3Z4/tnSOyrZIdr8Hrx+8ym+xjjo/pn9zg9MkTfDK6+pil+ucYHocfBAg/4OBowItPrhIFljuPRowzjVQSnMJTIUWZ1TNmquawbmyuc+LkSeZ5WkPt/ZBGq0t8JuLwYJ8b965x5eKzpIWhyPVjXmfd8vZ9j6qo21oIgTWW+QzA4fv1o8hTNSC/v9Dmo/c/pqsWeOWLTzMsKjrLKwyOHxLEFX5Rcu/jbb7x07/G7KJm98GbfG39Mm9/fItcd9kPXkdXGRsnf4aj4waV1mgn0dURWmsqaxiJYyLZoqxsbUaTBTcfvVNr6P//PLJJRVkEgEdRVYynM8qqwpoKT8GLnzvBYtfnrW89YrHZp3Ha5/g4I/B9et0mRs5Z7vool/DFnzuPFBOuP0gh6KC9gjc+vkUcdNhYWWF1oUmoWmhbIDxFEAbMq5KiNAR+g8oqtIjZ3hsxmRVo41AYTmysMZ/P0cYgpSTyPTLjaDQiKp3X40wWtJZIQkxlSQLBpTOrfHx7SCQ1ymasLXWYpQXDyZzAl7zx/dcYHu2ivICXXnoFJSuiQPIv/uHvsvtwiLHUD0xXJ8d11H0xY+tqL8pD28djD0IipaXV8fnrf+fz5GZCVUksEe1Wi44M6iU8a2g1EpwTaF3bS7OsTnorY0jTOZ6ydFshMi9477Vr6NTinMKJup5qUQgEx/tzPnl7my//wgmkzQlUPTtqbMDd+0c0W22CsElRjBGqyzzXxEFNsug1AyLVwOJI84wwMpw82yM9yihSh32s6taVwQ88FrZ6dDc7VLZi5/42RVaAEhhn0a6qaSkqwNqCH7x+h6Tps7oeIkwFwpLnBUWpyPMZRs9pxE3yck5WNREi5sHuEdNZSpKULCx2mKWWvYMj5lmTZjuhMjnG1QIp5xxOWIQA3/MIfQ+nKwqtqV85NWFFPq5CW2tQniCOQ9Lx/C/jqn0W/yPi5Rde4nNPP0cS++xzncH8GLnXpyEa3N+9z9iNKWRF2ITVE8ucPrXB8nKXfq/DYmuVxcU1xtNDPCyD6TG5qSjTihvTgt5Rk/VXn8QaSVmUTGZDsmpO5SxxFNIKYqyBUhvyKiOrJLoZcjQd0V9YpOvHpFpQYSG2fOmXn+AHv3+NnatjFCFx7BMqg5IWzynmZQaBI44T8rElFLA3OWBwzfAf/bWfZrrQ5eM7dyiLiqpwCDxm4ymTwQxd1F1isHR7ISdOtumvLNBdjijtDFEFpC7ncFCy1u/jiYo0PWIkc/K8JEgijHaUuv5ZfBkThgHNUNNt98nyCZPJGAwYa5A+GGeQJgCtSXXF4GDE3s4EJzzWTy4TxQJPfJZI/3sx3m+RGMHlixuUx1dZbDd4/Y33ePfd2wwPK9qipNFu8sGtD3n3Rx+gpKIqLXeu30NJQez5BM2YPV2x0etRGEswLVlfa3HjzUOkdZxe6/DKlWc5+vgWw+MR0/0SwgDCWvnqnKXSDqMf0z+FxQ8VfuAhpcGXik4S0W5YtBkTxIZmM8aN+3TDBr0zAZUSTLMp3X4LXcLRTsaZZ57mi7/4s9wafIjrTrm//ZDtwZA0d9gcMD5KaZaXOlw6v0lVTjkaQxIc44TmOC0pjSMrCuZH20BFEjieXe8ymQiE8zCFQekW09kd+p0eT1x5hXt//DZynDNo5ohpyqnmGqefWGfkHrLW9plZn+3dOwx2z3DqiWf5ypkX+LB6j/5Ggwtnn2eQ7nNz+yMaLcPShiJspRzsDdkbz7j4S08xzSqawuf8hbPcvHq7VqFSgVR4nsIPFRbHeCY4OE45s9VipR3wYFQwGGnyqsF4KvA8iZAZRpU0O03OXjiLkB6+r/E8jyAI0FqTZjNWAp/dR7vsHe6ytbnB/Tt7ODyMNBhR1BvFnkbYCixU6Bo/pUWte/YFlVREPowPx3TbXXq9HnfuPeKnvvazrHS3sPEdXvjKM7z7nWt8+L1rDB6W/Op//DdZP9nj0f0Rl06eoBd3ufrGW1DtYLx/x8bWVxntx3hKIloLjCdDhCeQSjA3c0bpkNAL8cII2fS4dePmT37rPuVxcJSRZYIgTNAGsskEYQ2NJOD0qT6//Guf48Htba6++4DN1dOsLC5w5fQGVoVkxYRCSYKOwrUabI9GGCfxPY8o9MhLyWCakWVjHuxVoC2LvZAr5/v0u03aLR+Tlkg/oNtdxliPmw+OGM9ylPQJlUcjiWk12xweHiKlZXW5Rxw12d3NMFXBdD6ncn4tIMk1ZW4JFyStWCGc4vnLJ5nNDmk0JLnWZHlFkeds39tl59E2vid49ZUvsNJfwifn3o1tXn/tNraqRxgEoJQCUVv1nHhsAnX1P1tXa6eNMwhbZ2/PvLhJf9NyOHxEWUZ4QQtTWZpJTLsZYVSFcHOkaiB8n8IYRtMZ4EiznP3DQ3rtEJFVfPvfvM7sqMBoB8LibM3mcQ6ck1QVvPbta1gx4xvfPE+n7ZOnksNBhlQBzUYXY+v/J/O8wJEwGBf02iELDZ9G7DEaH9FJJIGK8F9aQ88Mtz84QklBjn48c+qx2O/R6TbJTYVdg4f3HlGVJdaBUB41WMPirKCsJN9/7S4//bOnWViCMJB4SlDlGVWe0mrGlEVBntUsez+IkV4T4yrGkxJDyjzXpHPNzt6INdEFBdaaWhrlLFEYorx6QT3LChR/rgsHIVTNo5YQBD5KBvU8dVFQms8e0J+W+Kd/9G/47e/+MSvrbX7qb55C+pL0uOKLX/oST+yf4+rsKp/kt2hsxiytNWm3FIvthGYUkc7GOCGQGAJf4sgJA0meCdAwPMoIaCCEIi3m9bkWgkAE7N8bEpYxR8UIIp9EU3//VfNaQz6esbm4zv5wn8njvCBIJF/8hfP89s77iCOHN6/otZsUpaAqa4Oq5wmy+ZzCgOdJlHI8ffkMZ06e5cNPPqEbLTDNUw4OhmRzTZFpnHX4gWFlNWLjZJONjR5l7sjzqjYkVhWm0ojAw4mKaOLodSIOB0Oy0FBZzWjqaDUXKfKcyklcGCKlokw1UgUY06HV6dGwGuEMxhZMiiFVYalKicNDdjpsRG0mozlX33vAbKAppp/NSP970V3qc+P2bfxA8smtRxwZwaicU80si37C5TMnuLuzX79aNBinkRYSITlzcoPhLGV/b0DkSSq/wcHRMZU44OiWYlwVrJ49wQuvPMvv/9M/Yfv6LRbXm+jAx2soirJEigohBOVcI5VHEERYUWKdpagcykkazQbCVbTaAlxBu9Fi56rk/gcHhET4QYQX+YSNEGElvbUFvnr6DM984VWypMIXljsPbqKzkrOnT5J0W1RlweHdfQZHR/TXFnn9vWtMpwWLrWU2+j5R6LF7rEmNxClL3FB0GpZm02ep3+HqnV2OBgPS0oFbpChLXjj9FC3Z5mSjy6987Yv806vf4qAs2JmkvPjKFke3tzF5weDgmCrL0H/6Gv/JmRd47sqXeHq6zsc7H1OdTlnqrSAJmKYp43LAg8NbmKUSnSuOdlMe3vmA/qVVFpdanDqzyu2rd3HGIYUgiAKKwkNri3UB97eHrC506HdCOk1FsZawc2DY9y2jaUFWRLSiPs8/+Tyr/T6VykGWOEqyLCPNc/ChzAO2ToXsPtoGpUkaIVnqfjzSoU2J5wuEq/96XBTCAFhqPnmhwSiuXHyO+SRlNitYXVlgeaHHF7/0JGfOG65f3aWcQq+1xMn+Jr/9j/4J3/xbF0lHLe7cv8fTay+wefIXeeGLV7gz/CN2d7/N1sYvkk3XGNsd2i1DWTkKrXFYZvmY0ouYFzlhELCytPwTX7pPe3zw8X3uPzomr7zaWifgzOYKF04v88Irm2xuLPG7f/YjfBGwvLRCq9nliYuKm/fuIz3J6sYaOxwyKivy0sM4j9ALCAuPLCuZZ4r53DDRM6yTzArDbH6fl54+Ta/XpRcnTGeGNFUcj2aUxlFWkkYU0e8tEkhHnpVIKTDlHJ+ISEK/E5NaS14WpHlO3FgkSRr4gU+7HVPOD5AypSqGJI0A7SyjqeZwmOG0ZfvBNgLFhfNXePKJ55lPdllb2uQf/fofYSpXj04IB8aifK8+wDics1jr8JT6cUInEPhS4aFpdRVPvbDCZD5kMtVYG7Lc97G2ot1IiLwC4WuEFMzLCem8ZF4F5Lqe1z8ejmjHIZiAP/rNf8dwb4znS5yRj3GTNZDuMS4XJ6AsHK+/ts3ZCz2Wl2I8ApJQ0ju1TqUVDx+NEF4TKUPyrCKbl4w7CYmvSIIQYS2R0oSJRK0KXnhljb17Q/J9Q+gFj3XGBTc+uEX1bv052MfEH4dAeQor689LeQrPj0BY5pOCt3+4zc/94gWS0NBuSYz16LQi4qTDo+1D5llBEHqk82PipEG322R7Z4dqWFE+JifMM83B8ZjuYuuxoMXV+D0hyPMKIRQ4D+McdRNMIIVASEEURkgpHif8Duck9rPViE9NiNBBUxJvxvirMePxmH/52uu8e+seGysNkvOWxEVEDY/Ik7STRj0Tby3NVpO8GCOdIfYgDCXy8TkVj6kea6ubKOlTmurHFCtrDa1oAaxifzJmNstoxCFKeeR5he/FaOdRFJbFqE05nVFJR6ks8aLjV//2k/zgN++gpx7VcYnB4UdhLVwqS0Qp8axCO4MMQC36/M6f/ikfvXMX5wTthSZlCUoqFlYSFhd9rlxeZHk95PA45cbVA8IwJgpDzHBKq9NiNstQBBhbcVRVrK+tYIxhMp7iEFQGSm2J4wbz+QxjQoIgwFkLlSSOGzgL0lqcKxFW0go8jFdionqvqNQaITU936O7sMLwwHD13YO/7CPyFx4/cSJtihSryxrq7Ydce7SDUuAKw0Krxe7+gJ39AdbVlWPrHJ4SdKXH2X6fO6IiTX1aSQMnBaUzlAZspSmd4OGNHX7j7m+SeD6+CxjezwlWBCbSlM4ReAHNVpNQQjEbMtdzcA5PPEazRAmthmJ1XdNIpkRCMHjgs/8WtMqYoyIFam2nCH1cBKcvwuVnNvEWLdfuvsmNBzdJZwXCd3Q7PuubTaRIeO7SEndu75FXIaMMCAMeHhywf1jS7rRQQYe5tgjfklc5sZTEiz2OxyPwFCsbyxyOxuzuHlPMSq5cfJlqd4Qbz7l57wYiFBwfz7mr9/ln3/p9RDAjCB2xihlhmRVz7t+9zUtf/jLyrQG9os/Bw322Tp+lIZtgSg4PSyLbhOCYwfSIg/0DDg4mjMeHLDVbXLlyhf2dI8ajad3atPV4hxC1sXA0rbi3ndG50MRUY46PDzEmYnV9iXa+wHyc8NOv/govvPACc33IQfaIaX5EoafkXobvpfhhSObPqcKcslpgOB2xsNLnwd19ojAgtxXWlURRQOlqrqcUgkpbhPfnzEzLshfxn//1/zUvXHmFb//ZHzBKjwkXBM8/fZFinnHr/T0+/9KX+akXf4Xv/tmb7N/Z4cHdWzx6uMM3vvg3ELbDiS89R+/iWdQEHnwr5ti8R/SNio2Tfw1okRUtRmYfz5vVghmbM5vnTNIR2s3w5Wezktf3DpirglyUSOHTSBI211c5fXKJ5z5/icPtYyYHmhMntmg2GgRhLRqZzo956uUnOLTHTIclc+uRFjWBJ6WmWSRJC983aD2iKspaouFZoriNDNrkNubRoyHzzNHp9Bmnut5UN4pm1CIOEnAVeV6gpGF9o0vs5TTDmKL0mMxLrHlMnDEO6SyR7yiLCWHgOB5O2D/Yp7e8RqY9rt7ZJysgG88Yj8Ysdjt88dWvIl1Bt9Vg7/6Y6x/s41ztmLbW4azB4VBCUXu14c+1IDXb2OErQeR7rCy2uPz8IltnW0zSDGMlK/02a0stTOWQaAJP1UtyCALnMyssQiq8IGQ2SfFdwGxnzp/+4feYDqcoWVegMfXCnFTUxB1p62QasFZSZI7v/tEDnntuk7hlEMIjiAKOR5q81EyGA5TKaTaXQDiG45zlhT6jaUqWaeJYIqWm34kILsR8/ZuX+e4ffkIctCkLy2iSMZrOsU4jXK3utsLDmFq6ZYyl0hrjOYSsiywqkDxKU/74d2/z6k9foJVAtJLgezCbzihKw3w+pb/YQaA5PnzA1tYpvM0lZrMpYRgCjuFoiAOMlQivfkjoymJMveMhpQQEzlo8pZCyFsEEQUhZVuhC1zxsJzDGYT+rSH9qIkxCCluxdKZL0FYkAlzs8+HDu5x+5oskyxneWNPrtGg2I9Iio9teAAHGlkjhiDwfSUWzEaO8Gq0rhOPEiTWW+it4XojQJUU5BywqkGyeOck7v/cxi+s9DoshWVaSZxW6KAlCha8ijrTm3NoqlW5gsxzhNALHiYsB+081+eiPjylxqIbAOF2TsPwArSQ2t0gjWV9dJRtrPv7gPrb08SOFpyIuPX2Zlz/3PP2lEKsGlPaIW7dv887b90niPvPMgpA4HNkkw/MUWZahfInyAx7cf0TUaDGZpTgEQeCY5xnalXjSI52PKCof5UmsleRVyUJjgYXuIvvHO3XehofWFcaCE0Hd4fZ8yrLuvi/25zz7wiqv/fqjv+xj8hcaPzn+rnI8f+USQbfJneNj7t17iOcMygmGaUppYJZXmMeaKU8Ilnp9njx5gvFsTDGZsrGywqPdPeZFiu959aKQMyAEvTigG3q0hKTZ6bJyap25GnGHBwx8S5zEBEHAeDLFOg3OoRCEyhF4mtW+Y3G5ortU4FJNNWhz64c5S+0tdh9u19vm0tJtdjkeTzGFRs9zTj25ytW9D7hzfAcbCqKwhd+0+KGm60sWWksMszEbW2sYm1AYQ6kzdGKoqpIgDBEKVnyfKFREXkw/EWz2Vtk5mrI/ymktJXRaDW5dfchWd5W1lQt8+Cfv8P3f+m221RF2NaIv2+RjzUfpI5o9STcG6wlUIplXKQ92P+F5+QJ7jRxBzK1PHtFZPI2KApY2lumvrXCcjjkc3aKa3WQ4uEZnocVkMmJlzaPTXuL0mfO8987btQ3sMU/TVgZjK4z22B9IHhxN8OSUh+MR+0NHb1mQRCtcuHCSX/zal+k1lzmadFBDRSxCcjuliDJiP2WUjslFykxM8Zd99t0BC0td8qxicDDB9yIMFVKBdD7CZRjqVhHCEouQyArOJCv0ypDbb33AZPeAhfUGk0LzvTfexJUtbr37gOODP+C551/i5OklXnn1BS48e5pMfUj70nm+/swXmNkp80PD1e99h4utLj/6uM+DH+wRea+xvvoLFME6uiwZZ3Os1j+mF8zLGZaKvMh/4kv3aY/GiT5XlpbYuXPI4f2aPHN3+zanLgZ0FiP+9DtXibwm/f4y8yxjMBoxGA85dW6LWTVj4gqO04Lci5EiQHgSnERbGI9T4ihheXmFw719+r0FTmwtcenCCkGg+eT6XcZTx/lzV5ilc0pTooJaFtLtdMizgihW5EVGGHpEgWCx00QKhTUlk2lB9VhigBPk8xmh38WZKXuDA9K8oiLg3qMhd7cHDKYVUeBxdHRIs9XgC5//Ip4Cq1OaSZN/8c//gHRaoJ2H9C1SKYyVVNo8NuP9+TKtAClxGJQUNBsBy70unZbH8lqEthk4S+h7+MpRFDM6rUV0aTBWkFcOQ8A0FxwPc3orSzQqTTYUvP7HH/LhWzfI5nOkrNE6ztZjbkpZosQnCHxmk4x8rnFO/ZgJe7Rf8md/eJdv/NULTGcz3LxiNLVkZYZUEQKL71myvGSe5QzGGZGnCJJFJrN94tjHQ+H7jrNXEhZ6V5gNKvb3M27fczTLkMo4lFNUWcn0OGU6yigLgxQKT4i6qiUEwihMZikywd2PcqaDm/z0Ny/QXg05HIw4GFRUNiDPSqzJ6XQ8fB/yfEyv26PXCQlUBVJgbYbzQpAeWv+5QlyipIeQsp5NF7Lm50v1eOTDI03n9b+nTrStraUd4rMH9KcmqspROU2jH5I0fHzt04glpQi5dvM2X7pykkAJ4iCgLCv8UGIef/f50idJ2nTjkFm6S17px+dFk7RD1k+s0WwvoISPReMwWGcxQqJjeLT9iPP9VSSOIisosopKWZBz5rmk6fW4vf2QsydWkb5jlI/RVjLJ5px9eYujhyU796Zo5RC+wQsUlTQ4aZDCcXZjA89TVBPL8088y8mzpzl5bouFpT7OQqsRkMQlt/ePuX1vwNtv7FDkAUGgCf2AdF6gtaSqKvzAxymB1RWlFTgspbGEccxsNscajfJ9jo6PaDda+J6imE+RAYCiMgJXFlTljHmV4xQYaymNYV5oYl+iqKlMLtNUs4rZseXhJ59RO/69cHFCd2uVH378DrcePCAfFSSJj3EwSsc1hkU+5nRKgXQwGc34UXadUBg+99QVPrnzoK7mOEszTmjHiuPpECUlLen46nNXOH15i22bM5pMaYU9RCMk3bmPEIJKV1RViXCOyFOEnkczgrOn+/R7kllxxGQ0Jyk7fPjdkvJQ8Mi/TaUCAukhpWY0GVEVFusqlrtNpmaHWzu3MV5IKwloxz5JpFlsN5jMC8b5GN8LaMR+zbU2oHVMaTOE9B5XOgQrjYClXpdG0iTC0W+1eevm20xyw+DhlPWFLuVoyk8//VWmM82//je/y3hyiLnQRJYlHMzRlU8pJVUuqSLwIoXOKoZS89pbb7HeWWVgp5xJGpSzjMm44sTqE4AhECWLqkMj7nL9k13arQ4XntrCMkaIFKUiLl45y2BwyN72LtZajDFUZYWhotFYQluPR/vHrC1KlEoYHI3ZOXjA8prm88+9irY7BH6TpYU+yld00haj+X79GYkmTa/DvJgyi8bkOsNaR2EKvvIzX+Lmx/e59vENbGowxtJMmkgXUIoMi6mTi0wgx4ZH9/f5B9f/b/zdv/tfcHJtmVwZXn7lEqXf5dbVR2SF5v61W3S046krT3PnxrtUvqXfXSNs9Lh/4wE33vouF86c5uUnLjPeOyDu9SgaARutFWyW026MWe2uoFCk5RGVLhinM8bplLLKmU9nfwHX7tMdKpTEXcX5pTWWTrUZ3BuQTY948pVzDA4GHO3MiP0287RiNJ7SaCWUWhOFMX475nBnlwJFaQRSSHwvqCu6TiNkLcdcXV7h8oVL+EqgyAhCwdHhLjBncaFHHCtu3H6EcaBo0Gx3cRbKSuNHHsPJjCSq8FWHJG4CilJPyYqSMArJC0MUhDR9n27bZzDc53uvv8/23oSdwZQSHxU0iWLF4GhKMwn4lW/8GgvdFrqY04o8fu83vsfV93awViBkTZcRgPK8em+jqpd4hVA/1lULIQj9gCSKMVpzeDwFL8LzJbGSNOIY37e4x9Uo6ftY61EawTR17A+mCC9EChDG8Ob33uLt1z+iyixOPF4Y/vHfDXHDZ2m1RxiHiJ1jinyCMxaBqhP0QvPat+9z9vIJOmsho3FJqT06vUWqSqILQTOJwdWmwqPBmM31HkZbKprkaUHkuxqJKSzrJ5uYNcfK6RYrFzpMK8k0Myx0F2knIbc/usOf/f57pHsGbN2hFE4gpYevfDxRV/QlHuPDkjtXD3hqMcbzHFWZ4UcxhXQoX2CsoawK/LwkzY7pdVokrZjxbEw6L/BiH5zGCoMUEiHV4yS5Xv8UOKI4wlc+1ljKsq7Ku8dGXK011lm0MT8mYn8W/9OPvCjoLCScvniCJLFYN+PMlUX2HjgKlzJID2g0Y7I8p9VqESqFw1JVFUHSpNPu47IhpS65ce8BpXZ4gWBprUeUJPhehBNQVClZMa1n/IVH4VJOXjnFZFzSXu+SZhPSNCcIFWFsgRItDdNZSWdaEXgt8myElgUWSeHnPPXzW0x//zpZLkiNpppldPsLXHniMmcunGdtY5EojGmEbaT06nl/6ygrRxAKhJfx3u0P2Tve4+7HuyQ2ImiFzKuS0Jf4SpLNc2wYobWh0YgwtiSzFUKBcQVSQRx4zLPisa/DZzKZ0Gk28BQUWYYTEicUo7Jglo/xogDpSbAOW1rspER4HsXc0hAJW50NZuWce7u7fHH9LL/DZ4rw/1786+++ztrtPricdFJSVpZ2GGItFJOSaT5DCoESgkB6+FKCNWgNQRzw8d37ZHlO8/FiWuB5xFFIkSusVkyzgqwH01MGIwT2UcZLX3yRnfGUm4NHlE5jtCFOPFwhwAikcKys9qnMmL2DHERJUzX56Aclxw9ylJN4TqKcpd9bZJKmjPQYLSStVsKZFxZ49+FHZGVAHDTwyWkkAlNo7j0coIKIILIsN3uEQuErCcpDxiFCNZGuJPY9GkGTdgSTYs7d/QdEtqTpPcEo00zKClNVyHLMRmed02ef4YM33+PwaIe1585iui2YHSKrgIfbA8oiRxc+i8vr7A+HHB+ntBuKZ598kSdffInl1UWoBBfyA67fvE4uA7zFFcRCCxH63Ll3wJ3tGafPP8mJM2s82n7IdH5AEm7RiBu8+IWneeuHBePDCViLCCRJ2MH3BOPpkLzQ9NptxuMx0gWYUrN7+Ijbu1eZmJfomBZlFZAkXZrROokM6UYVaTFnlg0Zy2OsdpS5ZqHVZzg7YpDu8+RLF+j1u7z95psMBjN869NOGsy8vF7YmnoUewV6oCmspiDnD37/9/jlb/48t463ee21tzl15ikmh3ucPXOSW7ducuPGPi9dbHCut8qdySNcGfB//y//z7zznbfotCz/p//y/4CdpowfHPDGjY8YtSO+tvCLPLr2Guee36S9+SzSLXPveEbuCkbDAZN8wiyb4cq/iGv36Q7fVwhP4vmGpVM+q5sLJFLQWtO8+97blK5gf/cBSdChv7hMXmqu373Lly9/mSM3Y+IMKkloyoRKK3RVEnqaOHGc3trCi1tUVcjewRFSCDotaIxSppMjeu2Ifn+Rh7sPKXWB9AJazSahDCnznKSZkGYznFRYozk6HLHe74CQPNo/pKhK4qhBiEK4gqVuh6oY86fffZPvfu8T5rnjzJWL9HodSqNpJYrLL1+k0wjoRg0Odh+x2Eq4+vYBb792m8DzcEikqrXfpdYoJZFKoW1Zs6OtQxuLJ+oxC20F03nGXBkqXTKaV8zSOcZU9DsxkW9REoqyoqp8itIgvZAghKWlLsYFOFsyGR0zODpGPv7vWuDHsxvC4oewsNxg41QfK2A0miAltfTBgrRgS8F85vjBd+/yM7/2BIfDCXnlYZ1P4NW//3RVks+mCFsh0OwfSYpijLUl2ArbCIgiD6kcuclRvsWoHBmkBFLQoDbPxs0O557ssL+7xpvf3kWX/10irYTE8+oFTetq8ZOpFPduDQl6kt7KAq3YI69SwlDgREWlBZVWDIZzPBWSzkqC0+tURpFmBk/PaXQadWdAiHpWWji8x2MdNd5LUFUG4STK88CTVNbUOxpCoB8n+2X1mdnw0xKmsjQXEvzERwrwI48LF1fYv3ufzmpCXuYoAVEjpttq4iuBL6nxcXlFEGikNewMJty4c0A2r+j2WjRbMUu9Zax1TOcTRtMhUoLyBHlRMq9SbmzfZXpU8OTSBlY7ilJjlCOoCoLKMp0Pmcwd0aTDufV1GknG0WyPyjhKIxiXR6w83eXOzSP6vQ5rqz1efvlLlCJhri2ZkUgjkKbCsx6tICTwwfdyBvkO129+wCg/RghHVWT4SrC43GWqM6aTKd2kTRS0mKcFlYXUZSSNkHmaonwP33hYUxAHAZEfMMuKeq/COcbjMQu9NlHgMS8KLHW3rCwLZPa482Z89LGj58Vsdlb51rd+xHB/zLNXTvHVL3+O57/xPMfD//CKUT/5jHQgkUpz6cRJvNyyP5jTCBOMcARhisvqYfRG6PHEhXMcHBwxnM7YXGyQxAG74ww8H1tVeJ6HdY6j8ZiBNqzh8aWfeZXeS6scNjVnltcJ1gXPPd3kqXKFtz9qsjMao8KESTFjVjkkkl53iXRSMKpSAk+z1I+5+5Fg9zqEBrTnMLZW7N5+tFOzTLWH9Byv/OqTPJBD0rxAiBJh5/SaPcrckOUOL2jihKCsHKP0mGb7cbsQi+8rOmELTzbpNJp4+IxnI44HFbM8pb8SEwSGxWYbUczQlaGaZZzYusTuXsE7H1yls96nt7pMsrDM9kczHuzcYlIVgKIoQm7dPIagxFaOZtTg2Rdf5rd+79/SnA451VpldWMFMRhwdPWIP379bTqnF/m5//TrLPcb+K0GWSE43pd02qeYpSVJQ2O0pJG0eemVp7h19RbTSY4ztSQlnc0oihxPeVib0FtYZ3v/IbLhU+mSb3//+7QWmvzcF36RfrCJM0e0wi5LC6toG5LrgtH0kNhvEXptZPUIke1hY8t4OmV5xbFxZoOg+So3P77B+HhAI2xxfJiT71uWGyvcze+RIxG2oNXt8dGjh/Tvvs+5c+e4+/0b3Lj7I/Yf3uXrP/05grNLBFGD9x9c5cqZJ7n7wS1e/KUnUY13+cZf+ykWugv82Xe+y/MXn8AEM96/+gHP/vKvsXs45Pf/8bf45eGLnHq1orlxlnZL8vbNu2TzlNxU9XKS/uwLVSmJeGzEDENJox3SjAU//Og76JnDtAJ0apmWc06udhhPUlSvwaHNGKuKDEtpDUpZkthnod/ixGqLrWUPJz2+/cYtwsY6lXG0mi2UVyKlptnyMaZkXqRs7+0gZERVVjSSFq2gwXQyJPAT8tLieZJWI6HdFszmGaWVTHNNWmmcVxDHEYEo2Vxr8/DeHa5eu88szbj49LMsrK/iByHTdEISSVqxTyPwuXPzFj4WR5Pf//W3Kab1SEK708LzFMPpjGpei2mk8FHKqzn21mDNY2ERHkJAZSocdfV192HKpee6dWXXFXgqRgUB03lJkVf4KqSRBFgHYegxywxGG4ypcEYSBiG2LOtFbhwI8HzBYr/D5tYK3YUmaZbj+RLpKYyuK65KgAKEUTy8PaYZLCAYsb13jNEBSRiyvCDoJAlx5OEpyzzPCOY+vhQsL/bwPUNeZGidoXWJ0TlgKfKcVtOn6WA6zTBujNMezhoWVxKaPY88FZiipnbU68X2MT2jHoURVjE6yBnta4ajO3QWl4gaTUxZMhuX9Bb7GMAaQWUMwhkm0zmddptW0kZ5dYIklKiXQIWp8YHWIVH1+ItQdUfE1sk8GLQt6iUybajKspbffDba8akJT3qsbC3iRaqWsrmYIh2x0G6wvNHAihlREBJ4HkpAEgZI4ZhMpvS6PbJyCmbOt197h8MjjbGC/lKXMPBYWliikTQZzSb4oYLcUlUF1moqDaXKqDzN3u4hi2sNsrwg8iMqbSgqS+F7zK3lKBvRHjVY6S2TzifsPzrknXdvUriKlRNLnPnCeVCSVjPksBozzzKSOMRTdeKvAkXo1ct+XlCyc3iNmwdXOUoHxAqiCJ74/Ao8JplJr8VkEJKllvEwQ4pa4gSKdJYjPZ8sLWvSTxzgqqzey6gMVanr5WkJk/GEZssn8j2kF5DPc3QF6bCknEC6P+X2u7d55alLPP3KaZajDv3zPb76Sz/N6ZMnqSYZBcFf9hH5C4+ffLRDGsBw58YdZqM56ytrhFHA0lqfQAr27h3QbDS5eP4ceZYyGQ159umnOLfW4vrNm8zSjCBOEJ6irCrysqTUFZ6D3nObBC/1uTvfxve63Nw5JDSP6D+C08tP8Lkrl/jue+8zxyPwI3yZoWTImVOnOdi7g9OOhX7IYC9h92GO9AuclTgnKIqKoqpRR9arlbCXnjtJ97kGdyYHtMKYIJAoKcDVM3bNnofnmcdjGx6mgOFwTjNpEHiChhR0OwmdVo8iK5mMp3QWNml1zpHPd/HEITfvPuTs2gnk4Q3K0iP0FlldOMXtm3d5//33yEYj7o5Knn1RMno4I80Nrc0OV1bP8eD2DtqkNGNLt93ki5+7xPJWm+bq19i//oBf/wf/imY255ULZ/n6F7/Aw9Z97CTid/8vv83KV9foRTnjWcmdqzOCOGRlcw3XD+svEalodxt84SuvMJ0K7ty6TVlk5IVGCcXS8jp37x9y6fwaZ8/lDC0c7qeMphN+449+n8E05SvPfp1zW5execY836HX64LnSOIYP1hjub/KUmeN+3s3uHV4lcoZyjxloZPQXezx4gtPMJc5kSfxDi7y1u+8w/ab+4hcEYSKM2dPMpMVG1s9krVFprOc1e4aV6/e5GD7EN8oTrplov4i/+13fpfXrr/F8voSV29d5YkXz6Jzw+7eHh/f3OYPf++7/N3/1d9BNpq8//H3CRvP4VeCm6/fpzCOLLnO5heeIwoVnmoj8gKMY1pNf/Jb9ykPZyswDuU7mnFEoDSgKYSDpocLfPzYZ3bsuFcdQuzRu7TFATmlMsxdBYC0ORtLbS5u9Ui8jE5o2BuOmc7GqKhPEMY4o4k9QzP22d+bsLa+xnuf3GCcQpL4OFvP4HlxQhJJ8nxMOp/hBx5xwydO6qT99vYhzosfi1oKBIblfos4cuzs7XF0PCNsNFjeWsHg8BQsdJsstEMWul2y8QhfCq6cOMdv/z//hGqoKcuamex7c1rtJkrWqKpCGyptUIEiiD2CyKeyoJyometAqHzWl3sIVzDenSI1BA0Ah+clzAtFVtSJXqMRkMQKnCQtAKuZTKZIaanKql5mFNSdJOEeGxslnW6LZruBNgXzWUqe5XVSSM1KDpVkod3AIUkHc4qhYX15keNpxeFRTpaVICSzdIapCtKsQqiYZgsiPyQMQoSdEHkaI0q0q7AIKitwfm119DxFs9lAayjzkumsoL/e4/ILhqvv7VCMBBhVa5FFLXQBgVCyXn42AUcPZ2xeSsjTCXESIlztCYiikMqVaK0IggjpDEp5zLOUrfU+0/GYD9++gShiOr02vcUEFTrCdkh7sYMfhXgywhMhzoK2GusMshJUumBaZghnMVZT5J+1oj4tEUc+Z544SRK18T2DKUKO98bMJhlbjSapNrhSkyAw2iClYDyf020tY01JUZTcunuf2/cPKQpQvoe1hjiI6CSLCEKsKdE6J68ycp2jnSOJBZeeOckn72+zdzRm63SfcXpMLhSNOKBUljK0OAxpMeFg7NP0VlhorvGdR1dZOnOKuB9hJeRS4kmFDVvk1qPZbNJJOrRbPSJP4UuFrVK0qnj35vtsD+6QmZRAGDb7iwhZs+ELXVAUcypd0uzHdJd91jY6TI9GDAZTslmONgIhAnwr0FlFZms6CbZ6bByW9fKgdESBR5ELMBozN+zcGaDKkJbske3NWGsv8tf/tz9HOZ0zOhxy+eIZRBwy2B3SCTpUheaNN9/6yz4if+Hxk+PvkpCj4xHV1OEqRzk4JvR8Lp07zcrTV9hrd+kvrTCe53xy8wZOSabDI17fe8TxZIY2lmI6wfc9jDF1W9RXnLy0Cqclbx5+QiMOEUdjHpQ57SBjc6HB5kLFpdOX+JPX38PGCnwfLwhYaHVZXGgynzniRFBMQu5cc0CbZCnFTQRuktcHUVqsAM/5tFqCV//KU9wTA8JI0W1FpFNHXgmSUNFqyZpJrQy1f8RRCR/lHhNK2l1OrC4TEDAdz2kkHdrdkMnsGE/5JD4U1vFocMTl7iliYQnDmBPLz5FwgkTdZT6dkds5+WHJ/qM2090RcS/i0ounOdE8xcWNCzx8eJ/e6j4vvnSZux8f8Af//Pd55Su/xMlzZ/nCr32d7/7Gb9NcWUAIw8//7Jc4mqbc+Vf/lvQdQ+e0x4tfXSb0l7h774hrt+/RTBKWVjfrz8KFeEGDZ16+QqPp88E7H+N7kMQN0rRiNIPdRwc899IKXq/Hjftz3njjPYphwetvvEFW5rxaDri89Sy9aInt0UOSJEQKRVYWtQkvibh46gkKWaCPc8QsI5IZW8kK6azivp5gy4oz0TJf/c//d/xXt/+vHE/uIaOSh+MBvbNNti4tcvVH1zCHJb/yjW+yvn6af/xP/iF//5/+S/B9rIS4HfPFn36FFz/3PMfzbd584w2Ub1jcaLD5kocJtvh7/+Q3+NW/9Qvc3N6l3B1TGcG7t++zLzJG6YgXo4jV56/glPdj/fA0afwFXLtPedgKZy2h8jG6oDAaaz2sSKisQAuFbdRSnwEVSkpMHFAqzXg6wvckjSTk/KlNFts+eXZIblKsSXi4P6GwBZPxIZ4X0Q4jNpc6+GrG0XDEtLCUGsoyAyHptpfZ2b2Py6dsbS5R6JzxzjFJkpDnMa4doZ1klBaUThLGTYxJ0VWBKQX3HtwgqzKM1aysLNFuSZpRQhzFBKFPqCTKKR7eucdz5y5y+MkuW80lshOO+wdDprMM6wxFMafR9FnZXOTazQeUWT1T7Gx95qUAZyzGOTwl6bTbPHPxPKaccW//Abt3Us4918ILe5SuQZ5LpAhQwiGcqUHHeAgkZZVjqfDDCj+oLYpKSjxkLWBwDqsNutLoUqOkoCo0RVYiHXjC0Y4DnrxwlrOnTrF/eMi1Ow/48Ed3+NJfucB806KLA8ajOvGezWZYo9EGgsCQzTVx0GA4nNNpQJHN8GRF7AvwJZW2FDjsY8lToTXYWmcuRVyLWtYS1oYL3B3vIYVCytosaUtLZQx/7rKRTjE5KgjUOtN8myJPUcLDzivywZykGZNqjXQaKWAyGdNqRIRhjNdqsdRZ5uPv3WIsjhk2Yg6PDgniiKW1Pu1+l85yn/Zyh0a3gefXn21ZZpRVza4udVlX5eafdaI+LdFebLN5aguBj/J8nO/hhRAEirqxUO9mSKUorSErK8KgTaACAt8jjhI+uXaHeV7hkAgpMFrj+wGd5gKTdMK8mjMvUtJsUu8raCiLkssXzrK1us57b33CbDij0UyYFSV5FuBJqEKNMAbPWvKi4GieI32fMy88xSBPKW2OEwJPeEReTDPpEPsxoawRocJayiLHDwIKM+HjW28xKwb1YmCRcXFri37cZJpXzIyg2VpmLMdUOqXSGVYLrJnSTKATN4llyPAgZzARpNogVZ3oF3mFcQKNpDQGKQPwA/aHKUd7Y0aPZuiBpddYocwmXDnf5Suvfp7Qh9d/9AE6c/zqL3yJtz+4zu7NHZQynFg/QVZmJJ3kL/uI/IXHT5xIYwXztG57V9bhWUcxS8nykrNn1pnNCq49uM+Nuw+RwIVTmzQCxd44ZZQ71hd7DNMZZaVpNkJKz7J8eoWslbK/v48YKZqtDp045tknNllZEjz/5GUuntgiVFMsAQhJI/Fx7SZSOB49uk5ZHRB6Ha5dtVgdo1SI83ye+eIp3v+zd8gnBc7Ws3u+Eyye7iLWHdXc0EmaZGWGJsCLIpwsCUNJKMGTYb39LSRB6NFOeiy0l2k1GnX1Qgqm2ZzRbEoce1RuSj49gkQyqiqGWcrxcI/ZcIDRDRY3T7EQn2cnnCKtI4pgsefRaXo8mIx5+rnT9HtdEhGysL5ONjdcv3eTi5cMX/viN/iv/4//D975vfe48uIzPPH8JVafXMc7s8CsIQnGGZSCPM25vLRK/0SD0f4u7UsjnnjKY6V7he9+9wYrX1tE+6re5s0cfig5ffkUuSm59uEd1GMjWqe7wMFon1JrPv/EOXrdGcPjIz56/y7DwYSbD65jZcnReJdnz7/EYnOdfJYDGmHrucd8NkWImM2Ns8ThjJ7J4Fjw0vpZ/P45vv3O9/mzP/pT3nz/T/jb//P/DV//pZ/n9t/7+8x1TrMfsvHkFtkk5+5bt1mI2uRHO3z5m3+Do+GIP/vDf0O8EuMLeObJp1heWOfezdtcev4EB93z3Nu+zTETnnzuGS6eEhzey/Fkm9OrGee759k58ZBr966zfzxmuD/m9X/1A35KtVg9s07USTARLCz6P/GV+bSHEhbPlwSeqmdyVYylQVYo8spikQgRIsMAgUJID+tq3uo4HRGFHpsbK3gKcIbZvGT/4BjBlFFmmGcZ+XyXTreDVY71pQY7e3tImXNwVFLZmDDxKfIUqeqqiRNz4tCRF06NVcMAAQAASURBVBlKVczSIUdyxmJnnaLKqazFIZBKkmclgV+yuNhjPB5g0YSh48nLK7z05AaK+i4UpSMOEor5nJVeDzkxMHRcPn2a0mhUA3b2HNpAf2mRzlILEfjcfbRbL+saR1VoPFVRS0MtUnh4ykdrg0Tgx03Gw4JrHw05/+JJjGgznZRIEeIpSCdj5hNDu9Oj3VoBGWIdRJGkFIatU4vc+PAhFksQ+DgrqaoSawzj4Yyl9UUiz8OUFvsY97fcbvGzX3iZpy9dROJz2F/CGMntq9v84l9/Ft8d40uJlIKyqAkZSgikjGjGbTzhk+cGLASBoNXqEMgc4UryoqQsUpRUBMqj0hVx4BBSIoB0nuFsBK6k10uwJ1eYj0smk5yqqtD6sWW1pgRirKVKC+7eeMTG+YCFXpN5Zni0f8D00ZyNsydoLnUAsBjKoqRSmsZiiA0D+qstrjx3lmpY4RufaqqJ/AiGknt3HjLLbmOlQPmKXBfEjYgwDLC6REhDZUrKUpN9lkh/amJuM5rtFlKGCCnwgoDuYshBOMPYsv4zVac+02xO3IhpeYJm3GKhtYYRgr39IfoxF95aRxCE9bK0F2OFoXQVaZUifYdXCZxTPLy1x4Axn//8U2wsv8jbP3wHpMekzMjmea2iz0oqIekGLRZXTnM0n3A02MbJCs/XQABWEqqA0GuShC1iFRLg0Ywb2KrCiZyj+R637n/ENJ9QFbrmunse927fo+j16Cys4lU+XhFTDGY82h5xeLhfWw+HM9JJjtGapidpqi57O7WleXmpyROXT9P14dHeITuHQ7LSMZmUlFmFLi1lplFG0o0CVk62QDeJwzZ/+idv8PWvvcp0ZvjhD37E4nKTg8M5C70+7cRy7949FlYXWD3xH56L4SdOpKezFGcFngQjHUWW0wh8Hjx8wPU7V5mOUlb7S2x0Glw4c4J2r81bH1wnn6dcOLWJEo7j0RglobXYID7d5FG5j/IFq8vLOCuYTkv6mxsE8SKFmbJ7NGUh2aO0lla3TSkkjYaHyBXZdE6WjugvLHPtQ01VeCjPQ+IwomRhtUdnucNkNsNXPr6q2xQnnjnFkR7RiRxSOLCKZstHCUfg+yhcPSeIAqtoRG2W28us9DYoSyjygnmektkJ1sJ0OmJ+MATlaPspnU6P2bhACij0BCy0/BUC2QULH3/yIWVVYnSF60cUs4K0yFhcXKQpE2zpmJeHrG+1OQ7X+c6P3qXYhyfPnOSBGfD9P/wuH33/R/zar/0UrfUlzMY6D777PqO7hyRRRLE/Yun0EnYsmPWOccuWeT5HFSWD7W3ap0/XW/+VpRE3cL7l6ZefIGzE3L/6EJdappOUWaGZ6JDAi1htGl5+5jLbDw84nEx4eH8fXdU4q3k+YbN/jpXeFv32ErEXstJbIxARe5MBB+kjvnDxWe59520++uF1/J2Cz//Mz7Gst9h7c8T29oDf+sPf4n/5v/jf8+pzL/LuzjusnO+w0Frk3/7GH+JlmjzI2X14j/5Sk7/5t/8W9z/+kKP5Men4kNf/9E/odBYJVyJe+cIFXj73Cge3JuTZlD0zZWNzgZ9++Ut0mmsMju+gpym/+mtf47f+24yPbj6gzGH3xh5v/PM/4pmnL/LSi89w9d6Ia/f/w9o2/h8TylMEXj1baozGGR/ptx5XFi0gkdLD2poggXQYo6mqnLKccerESaQrmUwzQq/NvLBUNiJudIlVhTpOyfMJ+zuHnH9+lWx+j1YTLp5b4sb9OXe3Z7SiHjjD7t4D1vqrrK6s4KojyvmARqAplaHRTMiqiuFkjKHCDyTWWnxpWGhGRNKyP0t58GjAyVM9nn5yDVcMkEGD8ajAEWMKjavmbCyt8fpvvcWphROM3BTrlayeaLG42eTBo0NOn92kt9xl5/CIMPEoco1vfUpdUeUFgR+CAF8pms2YsizZ2TtE+ZLxtKRlYvxggSKXSOERBR7OaeI4RFeaooJZbvAjh+cFOG2xxrDQj2m2fOazFIlCBT4oH13BPM2YpzmNVg9Q+EKwvNjlV770RV586kkQkp3dAYfHA7JszvHhgMP9AZPxiNl0jnA+ygvwpCaJPYRVSFHPts/neb3R71tiXxJGAWVWUhQGz/MxWlPo7McYQE8YPKFpRAqkQGz0aEhNP1rkwa0Bk/EjirLEGMt/l0jXKmHpCXrdBN83RLHHfKapRobYRtx/8x5WQdRp0Fps0mrFyHaJXO7QaIaAJer6uMpRDTReED5m5AZEYYzRknlVIazEZA4jBEWmMZVBlwVOGKQnCdxnD+hPTUg4OBrQXN7CGovnNVjZ6nHn43Ft+JSSII6oKkO7FbLQieglDRpJByFjsvmQrJjjnEMiUCikEjSTNo2kwzCdMc+n4CzKCayQGOex/3CCqCrOne0zSQ+pdE45KwkDgSlynGlQaUPYWUREHe4d7jMrpyByekmIwmOuI6z1iGRIM2rT8JuEKiLyfDzp0J5hND3g9vYHzKucfF5hUo2ZW969dYdeO+YT9piM3sWUPpWWpPOMosgxpqbSCGUwwiJNyGjiczTTDA8zlPWx04Lhw+usLy0xyUru7ozxkrBWkKeaIAjxHnd/GostOittymmFxeD5BceDI4Qf4HzJKJvzR9/7AZGf8PNffoHFxTazyYjBePSXfUL+wuMnTqSj0CfXDuEUnnC0Yp8Xn7zCwf4+ThsuX7rAz7z0OZbiiBuPbvFbf/oaR0PN5ZObLPa7fP+dDxESVk8s0LqwyK4bsrC5yemTa/i+QheWdnOZhYUFqrKkKDrsHXks9jNM4QhCSaha9BptshRMVrDYXePM6su89Z0/xZP2x8gj5Ydop8iyOUo+RrVYh4olJy6vMGSfwJdUVU4j8YhDUW/lG4MvfTx8orCkFTVYaGziTMz+0QSjHUJWaHIGkyMmsymlLtC2wvegGVicUiAMq0sNkkSxvLjOWu85ijmosOSjqzfQKJAhjVYfU1KzV4uKLMvpt0/SFR1+dO37JKuG0nhcu71HtT/nl7/xdV587hm+860/ZtO0OZ0lTG/vcev4EetnNsg/+IDj0YDFhS28keC1H36X3ssdVnptFv1DBld36KydQEYBxoGvfFpxgsXy/PNPERjB2997l8mkwm8JnJ9wa/uAfrPNmZVlnr1wmtfefZ/Cava39ymzDG0Ms0Jz/+A+m4trLLU2KOYV/eYauJJW45jp0RSh+yz2Jnzyw7fpJT3uPtjn0lPPopKQjRMXeO/qR2yd63IctHnl1Ut851+9RyNVtJc6xK2ApY113nrtzzj//FfQ1tAxgi+9/CJZPuTeoxH7R3Mm04x/+Pf/GXlhSLo+650lbr//kHzoyHTOz/7sF7h3f5uL5y/zq7/6V3j25jbDbMbW2RM0Vcje7bu08oDzzQXOPbfOP//1b/3EF+/THEIKAt/HWVvPjgqF5wUoEdFMPDylqMqKNE9xzuCcxZiKPJ+y2Inod0P2dgaESZfBZIZ2AQvLm8zzgkYj4uSJTY4OH7LYbbOwGPPOhzugFMtrK8AMKR2z6QyrJYWuODreIRJrnFxeod+OGMwmDGYzvDAiiAKqsUMogdQaXeb0OwEXTrc42hnye//6I+ba8Df+o5+i00mYjCeEUZvxeEqn12Q2m9AM4Op7D3jv/W2mW4rKpBR+hpIefhyRe4ZMViwmASJQrGz0KOY75GlJHEZgLb7v4WyFNQVV4SOMZpaX2LRABJYv/9wLhGFM4AeEfkRRaiQeUbON1nA8mpMVM1q9kLws8DxJI2kQxILnXj3Pn/zem1RljWtTSqGEpCwrJsMJzU4TrWtax8Vz5zi5cYrD4ym7hwP2DgdMspJxVjEel1y/tkv/dJuFMTzaG2Otpt3wWewENKKEvKzHtCpT4QqHQNMIAqQQFLkBoVBKICS4yoEuUVLRSkLiwMNYwTRNWep2acUtPh4dcHB8SJ7XSbR19QImPB79FhLpC7ygXnbyI58inZIOcpIgYTHsMC9L9m8O2b0xREiB9CDdmfH1b77IifVFdhhzvD/l4aMdVOVRFiWemmC1w5palSOFotNuovyA+SxFSYFxtp7zxkPJ/69X4rP4n1C0Qo/v/9n3GE2f5KXPPUHYillYapDOS6zroHxHoSuajTaNJCaJEyrtGE9mhAs9inz2+OxRQwSCgCDwWVpYR6gQ3AyFQ5qK0JfkuUaJmNkkJ1QVR/u79WjVZIH9/SNOPdFhUk1JU01zsU1WWXaPD0EJlC/xVIDvhQQyRFuFkR5J0KKT9AhVg8iP8aVB2xm7R/fZObqBNmm91GwU033Lhz+4T7vXY+dgxLwqqCqL0bKWQj1+kDonkJ7D90S99FzG3Lt5DJVfd9kpSZIVxqMh+25Yy/HKkuZqky+88gL/7g9/wGQwJ4x8Yl/RjD20zvnokxusdlf5/AtPoMuMspijPIWQik6nSeJ3ODwYEUrYOrnCU5cu/+UekP8fxE+cSJdZgScUgpp5GoYhHpattTU+ebDNpBS88fFNVFHy0c2P2R9OaSQ9humc3BqE8lhYbnLqpdPshVPObF1ieWmNJPYpsoJ23KWTLJPnJV6QkaUHKNGm0n3m2RSlPPq9ZXwEm1sdVrotvvbqL/Gt33kLVymkFCwsdFFAOh5y4/1rDAfjGruExGjD4voC/oLBCYOzHr4XohwoLIoC6UGgJLYq0MKRK/joxk2yzCCVRxgGBJGsW4HW4VQFNiP2Jf1ul7NrC+wdHTEYaWLP0ouh21wn8ZaJvJg7t69z585NlFR4QcRCd4mH7zzAlY4iK/G8FllREjtFPpF878P3qQSE831+7srn+f7b3+HUxgn+s//kr3HxwgVWzmxRmAKOZ7zx7ofcHRzTX1/jD771Z4TSsXt/zGjH0OtXBHcLmgtd4nGFVSFWQax8jMkfV4ckJ8+c5O6Ne8zTQ9ZOLrN24iKHsxm+mJMdj3nyzAYHR3t8sr2HLkuODwbclDcpipJGK2ZWHrI72ePm3h0WmysstEKarWN27uyx5F/i1JOX+He/9wc891LKO6+/zue/+ov80q/8GtfHh1y9/S5+sM9/+p/9DAf3jviPv/rz/PPtP+BwcoCZe7z51rsEvmPrwlN8/ee/Tq8acLh3m4WTZ9larzhQOanJORoeoQvL7t6Mq+/eIG60ibpXaW/AqSd7PPfs53lw/z7t1RXMnSNCWRFox71HOxxOJ/SpuP/gIR9+9OFPfOk+9eEcvqfI8hycJPATBB5GW5ypqCiJwoBuq0VepMyLObgKp+copRkPBxRlrb3WxhEEEZWtqRYA7VaMkou0morMwNjEOKu49959cv14IU2IOnl3BaG0LC/4LPUT/GFKaSTSbzHLNdPZEEeJoEa1JUFFrx0wHhb8zr/+mL2DlOdeusz6xhZxHLC7O6SsJsRJCyEFzmmUDfjBdz5iMNHMrt/HeSX9kwvkw5xH1+5TlJpJKeitruOFEXEzYGV9iZtXH2GtJA4jkkZIM2ky2D+mmM8JfR9tSrIi5Zkvnebk+R6dVt3pKUtRj8qZeu4yaXRptSK09SnKkulsQhhkxIEjaTVo9FNe/upl3n/jJvm4Tkjriq6jyDTT4Zx0nOK04MHegN/77o+YTWYMJxMsEisk03lKUTmuf7jNiYtX8HyHcRVOOiwlTjiCsJ43T8dzSm3ptGqF8Sy3SClRXgOjU7TWCCSOWv3dbjWJ/Ppnn8/nhB6k2RDfl2ye6nD9quDwyGF1LU0RSv2Yh62UwOC4e2eXU8kSB9sztm8f4VnFudObnNrY4HA45IfvfsxobnBWIkrHez/Y4fpHf8jXv/k8p86uMBmV7Nw9xs0UOjMUWiNdfZadc1QlRHGM7ykqUyGUQgiJtfWsufnMEf6piZ/6/Od469HH/OhH7zGdTfjKVy7Sbse0OhGep3BS4oSgsprKOI4GOXHYYKntY13JeDwgyyqkUAilafcS4ihgubeJ1gZd5bgypRlaBlmGE/D/Ye+/Yi3N0jNN7Fnmd9uffbwNbzIjfWVmVZYvFotk0zXZM92t0bQ0AiRoMIKkm7nRpQAZQIB0IwHCDKY1PTPdnPZN00Wym02Wz6rMrHSRmeH98W77vX+/1tLFH8VbicpqlYqqDwjgXAQO4sRZa69vfet938cmlnyScmZrgRYNlPL5i48+wGv6FMYitaa1uMSkcFhV4omEyI8AiXGCOAEZBHhSE+iQyGvQrncRVqMo8fyS/aN7HPaeUNqMvDCYNKPs1XjnT+5zujej1izpzIfkgPTlX0qTqoupQWuJh6QmPDx8BsMcv/SROsRYgzWGo6MT5rsdDk9Pya2htDAbxQhdcvUzW9y9fkij1mZ6OkCVHk/uHRIGNeLZmOOjE1558Vk+ubeDM5b9nQPmoohzm5sc7j7h1RefJ4lj+v3Rz3iF/PTrUzfSwsmKJigtpdAkheXwuMfi4jInvSkZxwyHPc5vrqOU4Or6Cv1Zwsk0g0lBu9bg8osXkWsRrbZPu9MmEl5l1skEy+ubtMNFfB2RZ49RSzEXts4Rz9qUpWN+fhlfBmTTAVsXG6y2rrLUvsyDh/8NUhagQpLJhFlvgMxLBtM9TGGwBnCCbrvJxec2Kb0ET3u4QiNV1UgLU+IFDk86PF3gK81o4ni4u0duBM4ITCEpCovnC3xfUqt5zLUVG/NzzDfq1HRE02vwwd4THh5P8ITBLwKev/QKDW+BVq3NH33wYyhSfAmhr5EGTg56FGlJGqcorekuttEzy9LSKvlNj1wkyBbcjx9zZqXDo9NHDAfHjOMh0Z2PCWtNajqiiGGxs8SjRzuo3DBXr7GxsM5nX/sawiT8wXvf5PbD68R+wYXf+gqptCg00mpsUTJLY7Tn8cy1Zxj2h8wt1HGqxiwtmeUZVy+fx+aWIAqx33+LB3uHFHnJbDDhVB5i5xcIbY3D/hFC9NmWT2g365zbXKOlFKPihG73ebbHCf/3/8d/w+rCAm9951sc9LY5+5UvcLl2kTkbIUtJK7ZoG5CJnPm5Lq+cvcr13bsMTw6Za4e8/sZnOfnoTXqHNbYfjukutelEKfNBwK9/8QtEMiTNhuRFykk/5v27N7iydY2b7z/i9/6v/5atS2fR9QYvXvs8733zTwi1Jp2kHG0f8Ljp0Z5bYWn1r5++669awmqkeyp3imp4fgfl1TC2ytu1VKkSQjpqNZ+5ZpvR7JR6pJjOJpRG0mp1SQpwVPjrMk+RQhL4Pmma4gdNcmM46hmQXYwriZoB/b19fF9VoI2yYKEpeO78CodHu9y49YDJTNHoaAphUdrH4fBCn6bWuFAQqICDR2O+/xefMJ1O2Ty7xNlL59g/mbJsOzRaK6RpgR8GFGlCpCT9vT6neyOSTNCfzhBegRv79LMxSV7F2J2OBrz7wYcsdueQStJsN1GepiwMSZrgqZIXrj7DxlyT3uEpC/PzNFoh8/WQz379OVrNGhpJmVvimSEuJNNZRrvRRsqA5eUODo/9oyOajTpKQVmMWVvtcnh4QHelwa/+7qvc+fAhT+6eksxKcILpNEX1xjgDflDjyc4h209OED8h9zkHOHytaEQek6MJHa8OxSnaq/wnpQEhfVA+ylMoVZDPpshmACgGowzPa9IIfZx4CqJxDucEtahJENYrRLiU+KEEWSKKBGNnLCw1+MZvPMuf/9vbPLk7wGS2amBEpdFWUmCVpIxnHD+ZMj2Gg3tj5lQLX0G3FdFqRByfjvn47pOnmGKJxTLppfzbf/Ej/pP/1W8QRY751Q7HD6rn/cJYvKe6bYTAGIMxJdZ6lUlUSrSnSdMS6RzuF4jwn5v6+NY98qajKDPu3L5PkZ3wtS9c4vmX5hkpQ051eXICtBdSlJrA93FUmfaPt5+QZWX12eFLooaHtZZG2AIMuJjIz0nKjKyc4euQ3umMRb/FF65+js3VRU7TUzau3CeYr9NcbHB2ZYt+mpJai/IVlhJBNajSnodSPmHQRjqN8iNCGaGEwrgU5Zc82b3D6WiXwpSkCcQzQ00H3Lm+h1cEOBeTZ9A/TsmzGIMhbIc0OhFhQ2NsRpbGuFxijEK5gDPLa9TckCe7+zjh0CpECM3BwTFpmSO1IogiSD1+/O1PeO2rlwiDgOs/vE82K3j0YI/1zRX2dvY5u7bE8fEBf/4Xh3TmV/CEIpnGdGoRl86uY9IRh0f7PP/CC7z//ic/6yXyU69PbzYUIKVCCo0rLElpuLPf4+buCRaBN4spYgMrS3zuMy8QqoBvvfUBqISG8/jG51+m/bktjhslIhuSjVNOymPqYZN6s8Pp4JRYTzm7scr84ilzEWQjQ+j7lO6Uhh+SJBkbWx02lzTL7VWOt/dIkykhjmzUZ3A8IY4LrHDUPY0wqlrCyuPqixd5+WsX2XU7GGsQqkAphw4koaeQZYb2JbWgzmAUM0xSonZEW2lqQlGUmsJ4mCJGi4TQL+g0WhSlY+egx1xokQsb1JsNrrbqDHpjijykHpyhHXXJ4pydB0fUvAapjOl265xsD5lOc5SDNHUY5zgYPKIbbHCaj5DaR4mUqFYwiwaMhEYbSywt927e5Nf+xq8zt7JJUGvz7o2bfOH157h04Srb9+7T291lYXmDO299wPLmBjW/iUwPuPGjT1h9/Rpus40yNUJXI8EgRI4fSK48f5aT6T5pllPXPguLZ4gYc3h8SpH0UAriScHq3ALjyZgkzTjc67P9uEejvU2n0aERNXGFxUjD7Y8f0Z7zeHZxC509YlomDEcxW1tnOd7dZpgdcO7zz/L40XW8xTZzehPtlahaA2kti406gTLks4zD4wGIEXOrzzJ5sMja6oD1FUVCCQ1Fp9nla597mUlvSGf1dbYfbLO3ewvLBr/01Ws40+KVl1/nlVe/we/9o3/FJ5/8mDe++nnufviYfv+I46Nj3nj1OayV3N85/PS77ue8Aj2HMz6+10TrGqbUJElKmhsKa7GUWGuQEsZlRhhqNpYXeLJ9AmFEmRt0qHCuyv4Fi7NPtbG2YsgJ4VfNmLA4AWWZoTyPVqdDPJ3SqNdoN0Laterv3d89YTiBnZ2YC5c30YFFyrgyIo5zyiyndzDh4b2jar/VPF56+Tyf/+obPNg+5vAkplnvMNdYQIiY49MB0hoi6XBTy1K7w6PpkMIWKC3pz6YkNqsgHw6Ms+zs7rC/tw8IIlUjrPvE4wyFrCYxJyf8zje+yON7D1hd3yT3S8KVkPn5uadAEo+ikDg0jmoyWjqJFYI4zilcSpKlhIGPtSl5keOLjC++9gzf++HHDGdjXv7SBS4/s8k7P7jH7vaAPMmYMKPdalLzA6yXI9HMNdsIpegPhzhjWFnosrU+z8ZmEzFTNDwPYUtckRE2ahz3Zlg86tEceV5gDOS5JQygLAVx/PQZXPpoFWJtiXWOwmoGU4dUHloF+DVIzQjlGaQF3wPlZ1y6tsiwH9PfSzFYfO0RKonUEoNAugA78zg+GuPLBlJpOs029dCntI6LZ1Y4Ohly2J9SOoewEiUtJjH8+R+8zRd+62UGg5yT7SFCCLBVI+VwKCEI/ZAorBHHMRLInyKUtacJlcLKX2g7fl7qaNhDBzVcKClLwePHJ7zXlJxZbGHSmNRpfA21sI41Gi+KqIUNWvUugbI82TvAOouTlqgWUG8EaF2jXW9RFgmeX+K5kt2DHgZHw2vweH+X83Pn0RPNx4PH3Jjcw1sI8JsQtEPiPMXi0NrD0wqsrXwTaHwVUPOa1P0mrjQ0/DZREBIoyEXOrccfMZidVNnxSUmZGEwmufFwh7zIOHN5nuPRAKUUgZSsrK/T7w8hE0x2EkQ3YO3MPCMTUCQFudEMRlP6MubS1hkaoceTg0MmiaM/HuNEleXeajfRoYeQgslkwMnREeeuLDK38Bxv/vEtin5BFhfMtzr89q/9MkvzDcbZjEcPd9lcWWJrfQGTC+q+4JkLF9G+x3e+/X0e7ez/rJfIT70+/UTaaqT2yEqLVBolBEVRIITAGYO1JcLX7B/3uP/wEXlumCUGT1peuHyWudUG3nKNRqCQaYTJc6RxlSHFLzFyRoni6HiXtLHHwuY89x8+YHVLc3I8ohE0ObvVRXt9hEiRaHb3D3jt1df5zje/j8xz6q0I7UnqUtHyNfsnI0QYsHntWcKLK8RRdZhrqdHaI9CKwAdPZ4QKoqDFoB8zSeLKvRv6+NonkNUzSZk7fFmjFtTAl+yfDJhMp2hX0lmZYzpM8WVAo6HoBHU25q7RaizhyYC9kyfs7ez+5QSm025y9/1dAhS+V+mbCgoiP2KcJXx462MKW7ByrouMUnKVkJmSNCnwBXQXmyhf4RUlN997l+HJKWc2X+H48JiTw326zZDpMGFhcZGdR7vU6i221re4/uQ2d3/4Y575W18lVcVTl71AK4XWinoj5OpLl8ljg68V860ulCHvfXiPRm2C8Y/Z3FrjvQ/usrw6B5Mhg1FMaR3TcUY2TTk0J5S5RQSKhaUC0ZxnUCZs799j0huytrTERzfusdidQ+eW/PCQh2/9mF/9j/4eoWjTf26eOM5Zv3SG1y9scGFtnflOi8PxDvHRPs40SYUD7VOWhmZ3njIUZMmEo71dzq6f5+R0iLEWW9SYW2pw5uI1Tk9Tnnnxl7n//k30yT7X2m06fsRoY43vvfUDpE3YO+xz+8ENts5fgXf+/1vekWY+yBBjHYVJKY1DCPkUqWF4OuzEWocWEMczDg/G1MMG89ECWQGTrIrQQ4oKS18apKr2gHMWrRVFaXBYwrCGiQ3OldTqTbJphsg1k35KOcuon9lkko4wXo0XP/sSs9mEOJsxGY/ZfrLDbJLiS0FDB8y1Wpz9yjLPPnuWS5c2CKImk1kBSCK/QRRFnPSG9Hp9ZFHiZI3RUcLi/DyPj4ZgIWiGZDaroNFV149zUDr7VHMLtkzwGh6Rc7RUSE0KXBoz6p8yt9gknNNETc3ShSV8T+GMQKCp1Zo4qSkmGZ05j8CT5HlKXgrSoiQtSgqT4esMX4MSgvlOna998SW++8OPODmZEvk+F59dYTiYUcYWVVh0bplrNLm2tknk+XTn5shKw937DynzjOefucSZjSU6cyEqd7Q8j4WGZH7OJ4gijk8H4GZsvXCR09MZeS4YjzPKSOL7GqUijM1ZmGtjSwcYLIK8lExiy0lvwmia0mxGRIEkCho06h6e0IS1gnpLcfbKIqPjbZwVeKr67BPGIJxFKp8iUWhbwz1dF1p5tNsttKdpNUPq9YA/+851DvtTrBT4ymd1qU1oPB59/ITOXIPOQot8OoDcUJoSLQRKKxr1GnlRMJvNUEpSGot6aprttFqEfsCNh8c/sz33i/p/v3LpkNbiSnCeraimu8e8+LUVjnfG2AyCelgh4D2LEorID6nVQ0bDQ2bJBIRDCIfSglajTjtqEPghkyymNz5llg8pnMIUIaQ+RS9jeDLmdLKP6xrSsKTeCllan8OKnCy3+LVmBYgRGuVpakEdZzWBjmgGLUJdA68CAzU8RWF63Ln/If10RAm4RFEmOZH2OLy7z5N7R2ghKIKctbMR6UTilxHaSWrapygMLz57hfPnNnjzvesMhgUaiSlSIj9ACsH+0QlCCur1Bmk5pnQO5XlETR/tO6K6wCFwssZgP6Gc7NHpdvjl33yV628+omZC1hbX8XTArZv3WN3scuHsCsrC5eev8a//4N/x/LPn2Npa5PBgl6998QWe75/hD39042e9TH6q9akbaSmqpkVKgf80C9pT8im1y1EUOfV6hAxrjPpjBqMErRRnag0untmivdkm71hkWbLcWYYc4uGI1lybo/4+eZayvBihRczO3iErzS7Gwv7hAWc3X8VRgBphZVmR56zH8voWd2/cZNwfYcYxmVa0Q4/PXjvH17/xJd6+94B75QRZq9EKpyxGEf3MoaRGOYdyJdo5tCioRRHxLCcrHdrXKCnwcLiywGgPT+Q0A0W31SbPcnYHfcKoSavRQpOztrLEk3snZNYjigIC5bM8t4mnamS54e6tW8TTCZ4nQfv4KiAZz/AQhJ7H4LSHLTfJC8f3v/19Rqcjzp7bxHgDdFAlI4yHJfkgJfQDDuIeb77zI37rq7/FKy9c47tv/ZDf+1d/gJXw2gvP8NJXvkR8OOXtN39AWPPJlSDwPRb8iOH1e8gvvEi2ppGerg4ar1oiYRgy3+0QLNYJZRPpBNPUsbDxArdvfBeCPmfOPs9pL+bg6JhpXFb6WSVwuSV1GaWFdmeOpc0tGg0N0tKbjrnQLnn+masII+l0F/jWj95kebnO4eCEz772Bq36Mn/2r/6YYf+Ara+8wW/8Z/8xdacQwwnPS81G2saNMk5GNwiac+iiy/HhKa7MaHYifKVoNNpVhvDxAGcL8lwxMzG+P0+7UfD7/9U/4/jJLTaWOkipKLIZqysNXvzMi9z86EPu3r9PVmZcuvb5T73pft7rpDchrDuQskpWEIIgkEjFU20rFdjiKWJZIigKhUDi6xpznTrZ7j6lKVB+QJ6lT8mgmrLMEFiUftrMSMAZpADjBFJ55LnH9u0DIi8gqmuyuE9/Oubqy+fpjSaMhjOUFpT4nLlwAS0tS52QZ84uUws0trR02i3KImcyOqZVE7Q7HXxlGQ1nHB2eMOlP6e9M+O5He3RVm3q9ifQEYeRjlaF01fO/eyqNAIdwrjL7IbDSYDC0ujUuLK+x2mrRDDS9yYTT8THRbJfXvvQii6stlNakcUpR+sRZSWkrba7nWaQs0B4YV1Jag3UGTws8T5IXBcJlmCJlsd3ii6+/xslwBpTsPnhM7+Ep+UgSCMVnnnuBdrNBkWZVFB8VICWUkqjTYqnbplWrEWgfioxmoFlfiGjXFanJUa5kY2meVqRoNSMGo4TZLMX3GvhKUGQFOIOxFmyJpyyFsSSxBdFE+j7TwnF6lKBdSj2wXNhaJFQ5QgkWVzuEtRb7D3tMjqtcaIVjbWEOISV7vRFZLipcsXGkpuD2vUc0GwFXzm+wOj/PfLdLljn+9FvvMkkLpJDMtbq0mhGPbjzgmc9fZWGxxvF2DyEt9imltFaPKIqU0XhGURQo6+H7Ps5Vl8EkzXBO/Ow23C/qr1SSyiRqDRhZYg0kKUzTHOFbgqfkTKUqWmXgB9SDiOl0xPbBI4wt0VpiMTRbNShzLmyeBSuZzWImccooz8msw5aSgJCG59HzTwkXAmSUM78UMb86j3GW3JREjRrGWRQOJT20EgQ6AOtT03XatQ6BCNFaU6tLJtMdHh3eInYpwipc5ijihGaoWVvu0KkFbO8dMxlnTE0KDQ+BYHqSIVSTqNVAZSXbhyfcf7xPUpQ4SqzyaLbaYB1JPGOaZjgcK90FlufnOemdkpsC4wmkgEvrWzze3kXLkDCB+bCGOs04GDzihctrlCPDxTNn+M63vsvmxiZvv3OHIJScOXOOTiNgZalDrdvmaBjz8LDHo4PTKujhr1l96kY6tRkejoVWh253nt39AzJTPIVtOUpbkpclCEcYeoiRwfd9hsmEO0/uc+23f4Mn9hHal4RRFxlGhF6T2SChrdeotyOK9IDj+D6f3LrF1a1XaC8somptdOCRzI6xxQk6hMJoJpOMH719nfc+uE49iJjYGXlcIAvJyeGAf/LjN4nWFlkra9SAqFZwPN3FaYMtDL6n0K5AY/BEQDK2oEqkXyClouFFeMoDqVBCEQhLKwrxdUQc+zRDHysKJDPqvmMWjyAIONrpY4RDmxKxFqBVnf5owDtvvYUWDiMstSiiTEuKOEMYh+cUp0dTpj3DjR/fYLgz4TMXXuaF1y/z/uPvsnf8AN+LmPZysqnFrGpKm3Nzb58b/9Xf5+/+5m/iC4l1BU77jCcxw6MBx/0xV198hitnV7j74BFH4xlfeOU/IPRy9maG07wAXxMEAbnNyPMcUxoaukFeWKxfMClSpllGfa7Gpctf4AffPaDlb/PyS206jwwffjhDUUM5TZolSE/w3EsX6Sx2ULqOr2bUW21aepGNjU0ONpeICNm8eJl/8+b32BlO2R0NeXzzHi2xztd/+7f44R//Mw6//UMGf/EWz/3N32T1ykX6pKzJLsLVOdy9zdnLLQol2dpc58npQwIRIIxmbmGVRw/uM52N6I8yJvGQjz5+wo33PqYTLLDaUMyWm7z223+D+x9v8963v02r2+CXv/4FOnWfOW1RoSPwf5EnW9qUwnrgVOUEV4o0SxEKnLBILSpiqHX4nkYISWkN2SxnOusR1UYszHeZzqYUzlQHgZNoJUnyDOHsU6IoCOfAVOhrJyVKaZbXl9h7cMLhwQRrS/b3Rlx64SJlaZhMJ2jPx38ac9Zo1Gg3feaaEuXXAcPCXI3QF0yKEmsSBAWeNHhSsn94gM1Kbv14lyefnKCMJvamNNsWFWmUcsQmwUhbGeoESPGThroy+P0k4qF0JUmZ8fBgm4NDQbdRw48kQd1w/vw52os+xmbYQlNvLjGZpcRJyWTSJytmLC5ESGdxFqQMMGWKcyllkYNvmSUz6qHC2ipWb3G+iZQWJRxNtwovZMxHG9z84A4rnSaXL55HKoUxMBhNuHv/IY3Io91uUuQp/X4fL/ZQNYetgXQWT1oWFxY4f2aN+VaLJJkShR5WOAonSHJHGFQGrjg1nPRmtGoSgcWYknq9yST3kR4gNdqXYCWDyYDdkxE1v9JStlsdag3FlZc2eP+727g4oxZ4XNhYwAtCeqMpk+EM6xxSCCSWnb1jAq3xlSK4FFJvNHju8nnuPtjjk3s7GOc4POlxcgrDScIn797n4nNnqohGawk9ydmVJTY3Nrl55z5lUSClrIyTSj01GTpmacZ4NvvZbbhf1F+puu06M+OQT5O5itKSpJBkJVFNMU2hEIZICHzPp9loMk1mKJ2zd7BPXhTU6j6+c7TrNaQydKIWUodkZdUYl85isZSmJLeOickQHUmhStZW51g60yUuCpyRBF6NZqvJcFQl/SglCLyQmldDEBLpFg2/jRSOKHAcjO7waOc2eZGSxJZk4rCFYXGhyfxchBOW1kLEF7/wAt/6Nz/GGE3pMnStpLHa4vTJAFd6IDxMWRAqzdrqCjuHu5R5gadyRqMhCE0QhWgJg/EIoaBer8MsJs5KtC+J/AjrcpZaLb704gvEyZC5xRb1ZWjUInQSUhdNauo5jnsjNlaXkFpx5/Y9zp5ZYX2ly/079/n4zgNarUXqQY3lbudnvUR+6vXpNdISfKVZ7LSIfMHiXI2j44TSyerJE0GaZ+Rpyly7yWw8ptVqIITjzs4eP/z2e1z9zUUKN2E4fISxDdKh4Wz3KkuL58myKWlwwtsffEJceHznnes8d/kzLNU10/QJ2pviiRS0whrB0ckp3/7Wd3CzFGccrhS0hORrX/gC82eW+WC8z63v3iL0HStrHeaxtCaavCUJPA9lDaEnkNaSjAuazTlyNyXwLYKAZq2GQCCUwHOaQEmMccxmBYvzWyzJgDSbMJ08oqYNk9kEoZtMsgmD7RnpacEbzwhMCXuPd7jz0SdIUX2/VrtJOomr5xdpwFPE/YT3/uJj0PDCmWv8Z/+T/wWD+IiT3iPiQZ/h6QQ7KoknMfce7PLKM5uoRsDO8TH/7A//NZc311lqtZjmltHhgN0Hj/mVv/d3mPSOaZiczdUV/HrMytISajbg9v176JUOeVhWIBbhEWcjnCnx8EFWRKbhdEiZlazN11isXWa98Z9yePCPOYnvcvnSGmW5xP27I2ajEq08WgtNzl88R2uxhSsVqwsRvtckHWhUFHLppat8+L33iK9/yGqnTeyXzK+s8uRBj3/093+P/He+wRtf+y0e37nF6WDAo3/z75g9fMCFL79CNjZ89NYNWnqGGfQpSsPy2gozBiRmQk2HvPvRR+zsPGFjY5F6vcP+8XX+9u/8LVSeEYuEc5+9xEtrX+FP/vDP6d06ZHC4z8svf4mjo10+99nXKEY9ijTl4eP+T2Hb/XxXd75BXBSUZYGzCiF9pKcR0iGUpLQlzoK1psqStpVsA+twSPJxTp4ccu7MOnmRks5mSAXSGZwtUaqKnMTZKg1ICpQQuKdf+zXFlRcu8u53r1eTJydozzU46R9jrEfoBURRBICSGilr9AdJpXlWBb4yYEpCTyMBT2vy3GJFhnI+H//4Efv3htT8Np6nkcIRuxLrC9Ky8lo45xBP9dFCiooe8hNUtxIUpcEKR+ZycBoVhCSBQ9Ytq5tN1s/OUW9qRuMJSgdM00oiU5RgnSP0JMLmCCFQQmMcKOkIvUpAU+QlUoWUxmLRFLZAC8dcI6QsU1QjoFVXLHebnC51ycocJ6povFotxGJYWeqwtNik0WwShQGmKDgdDHlw9wmiaVm42iKqR/g+lHlMPHWkeU6j0UQqjUEznGQkaYLfiBiNYkobENXq+DJHSkXpPCZJwWhWkGQpszQlCjwKKzkdpkhXoCmp1UKwPq35Gs25kKI0bKzMs7W2Sr3Z5JO7u5ycjhFA5GuWF7q06zWOD3u88+5NxtOElZUVrHUsLcxR3z9mNE0Zz1KKrKC0jsnDPkvLy3TbbfJRj2bksbm+TL0W0G426Y1nGOfwPB9bGqyxCATWOOwvzIY/N7W6sMzt/Z2qkRRUn0nGcdqbsnKmSS+ZANVWDaOQWTyjEfnEyYzZLCZNC6wxtOcaVXjAXI3lhVUQkryMKW0MoiRNMnwdoEJJ0SqYDhPaUZO5jRWmRQYqxIlKpqqFR+hLpIoI/JCG36AZtPBlk259CS0KVC3n4f4tHh3fw1ooc0U6K1GF4/nLFxGRoSgTilKggcuXN7n9yUO2d/tIJRDOYWQVp1kaQ56WaClJ8pjHjx+Dr6g1ArLSEEY1Ql1d+Avr0EHILE1BOIy0zNIpWtaYTqeY0uEFdb79o/fpzaasnmlw8bllrl19lk8+eYjKFA/vPCEpDL4SNOsRK0sL7Dx6zMsvPUevP2C+2+Hj63e4du0iu3uPf1ZL499bffpGGk1ZVgkWn3vpeZJszPff+YAnx0OskxR5SZ7PiNsFS4sdgqiGUIrd/SMW5rvs78Z071qCCxLhH1JMW3SD51mdP4/UktnsmMODh6x1L/HyCxd56+3vceHCLp6eYFSMI6B0IWk2wxqfh493KNMSkStmWU6uBC+cP8PqpXW+/d673LvzmHNnVmitNxnJAoVHzYUYkyCCnLoWeFqTxoJ6rUFpDXlh8DyPKIzwlEZrAS7HUz6jScwsKfBEgTGSTmsNH59mWEOrgif7J9TqHp1uxN5JxsnpBIsmTVLe/fZ3Ge0f0lxawHgS5XuMezOaQUCcpAit0FOBPJxx/pVz/O3/8De5dG6L4aDF/XtXeO/4x7Rki6XFZfaSAXd3drgbnXDp/CYb610e3tkhsSWjaUyeWzYvLPHaF17BlGOilQ2O79xFexFv/ug7vPbGZzgz12Fe1ugPhuS1efywSZIalOeRmZRWGDIZJKS5weZQD5u0GhERCV985hka/C/5R//m/8bueMDrX3qB515dYDKQvPfu+yytLrGxdhnt+3giZKXbgVKD1uTSMfMEgzQlncZ844tf5Pt33uEf/Nf/Pf/p//o/5y+G3+S/+6e/z4PbH7GwvMBLn3ud1776JfwyxeaOaS1CNiV10WR+c4OTox5ZmqGVR38cI8odrj5zmedffo693Se8/b2PmSQZnbU55paWaF/aYqGzzOHNx0SnM+x0hPR95jsrGBvz4x/+gN/8m7/Fuz94l73Hp59+y/ycl1SCxU6L6TRhMkmrD/3M4aRFa0nFzJVopQl8Dc5Ume3SAA4lQ6JQ0R9MqUcemyvLxGlCfzqpQtOkJM/zqjcVFc5XiEp67WyFvGt36ywsL3G6d0QYhQQ1SZokCCGqKVFeIJAkaYEQBcIpxjE0lhaZ5YbI9wk8ixQ5eZ4S+B5JVvLuD29y9GRCvdYGo0lmM8oyI2j7FVwFg4WnmvCquaq+tuBcdaD9RNoiwfc0K8sLFbZbGmRN0F6qnl4Lp8hLQc0PyLOSer1G4BkakSBPqwx6KX6SrmHwNAihK1lGBr4/BzYjTiVaSGoBaFXiaYlJYG6hibEljcUmSZkxyEZ4mcKf+Qz6Q8JI015cIslTHA7tNNPJjMkkJ89SVvwl0JIwChBorJVkOJyQRPU6dpiTpAlIn9G0YDCMCYKArNQEgUAiGU0LhuOC4XBKaXK0FuRFDihmicXXkvZck1qtzmiQIp1kc30e0WixOT+PEoKyKAieQoBwhvWFJr/69c8x1+nw4MEON+484PtvfcLS0jFz3SZBFLGyuMg03iUvq4hFg8SVmse3j/E8TegpoiBklmTMkkp77qxFa40pC7I0ry5tfoA15hepHT9HdbJ7XMnKjEX7XuXXcnB0HHP2yirSjcFalFTkpkSXJXXnGI/HKKWYTmJKa+nMLeKcIUkK/CCiKGdYpmhdEo/GWGMJw4gbH33E8fAEP1RsXVwntgbnBKHyMe4pwVSEhNrh+U0CHdEK20SqSSADIs8SRIZPHr3Hk8MdcufASFzmWG4t8fKVF1icb/Fo7xYxOTE5ReHQIuPqc+d5vHcEZTWBFzKjvuBxupvg+yGmMDQbDcq8QAV+NZCQgkYAl7eW8aM6d54c0BvHmCLHeRa/5hF1Qjyh2H2yTSsIeOHsGuGldT64+5D7+3vkSvLm9/6E9ZU12kGDxHn0xwnSFfSHU2rNLscfPebO/X2+8rXPszI/j7hyjm47IE0Xf9ZL5Kden95saCRSewwnGb3emAtnlrh07hz7vQ+JyxLxdFgzGAyo1Wq0u3MMxwNqvqTR8OiVY77z5kMuZvOcf7FFpxnSEiV+mRF6DWb2iK3FNX75c7/M7/3L3+N4Zwf1+TPkpUF7AWleIlSAUBGi1Ow8egKlZtQbMBvOWKj7XLx4hnff/5AbH99FOkG/TPCCFn6jgzVV0x0KibAF2qsxmaUoLyA1BSZ31WHuFElhyfMZka9pNwOGkzHTzJAZy6wYMEuHDGanRErRrCcEoXiqRcyohzWwCUoopAh4/OAxP/jWd0hnKTrLsaGH1ppkFuNrDVIzSaYsdpq8uLbGG5eeYe/ODQ6by0gdYRKwU0mrO8e5zWd58uhH5Dk8fNBjeXme+bmIzkqX3f0+tVqddieiHvm06xX+Ns9TdCMi8uFkMOT9T+4wWV7Ed1OevbrEjTSmqEX4SKz1mRQ5kZ+QJjFaNVhfOkueWwoD3ZakF5/gwpJnn7nMw299i9HJIc+++Dy5abJ16RxkmtW5TVpRhzL3ibMRUkrCRgR2TCws+7u76AyefeNlOkfztCYl3/4X/5rf/J//x/z9/83/nu9//AmX+iucv3CWja1l1jYvQ2F4/50fYSanyM0L7Ax7uCxl9HCHzrkW9x/eZ+XlL0GZMRsOqUeCVz/7PHf+/JBHyYit5ecYnA4pHvV5cP0WuiyQriBPHX/xZz/iy1/9MnMNj9lgn43zZ/j+++/9FLbdz3flxuDbkna7RrvdYDxOSGZ5lbhh/erFRsqKyJelCBw/UcUJCWCZxhbhSjwK5ueaLCx0mI7HmLIgCCOSLAOpK5iSrGLaKgOsQktNbzIiTSZVNqoSNCLFaJKh/RDpIE8LrHUYYyjzGVppitxQWolJJ6x3Iy6f7eBHLfzUZ9Cf8PjuAbdv7HK8M0EYjS0hLzJ0AFppUpPhlAVsNY1+OiUHKuOkUk+n2wU4S6NRY3lxEWML4iQmCDx02KA116XEI84EtbBTsdNkickT8nyGEDmhL9EKjBXVz+EsxlT7VgiHVD7DYUzoe4TNNgIo8pyizKnVA5TnMb/aJRkKbOQQyucwHdMgpKOrFJTu4gIuEsRZStqfUHM+wjqiMOCkd8ze3gmyscTaWkivP+bj29uMEpAqoNVZrhDiRYnOFEr6BH5AEITEKTgEeVZy3J9wOkrIygph7JDkZY6VPlmak8c5vipRIiedWiglFzfWiJY90vGUPM+J6jW67TaBPqEW+nz1jZd59cUraN9nabFLvVnjzR9/zM7BEZM4YWGh+3ShCdI0wxiwTmKdZXfnEM9TNOoBxlkGwynOSSazBKlU9Xld5hhX4owgCpsoIZlMJv9f32e/qP/Parm7wHh4QOGeviQ4hbOCk16MEhFaVQZTIVxlcg6ri3qaJlhjKQuH9iuwkFIa7QJ8L2SW9xE6J82nOCoPSD4qOLx7Qj50LD07RxgFJNbgSfAkIAWh56OkT+hptIoIdJ1W1KHhhXjaEJeHXL/xCaPkFIlGlxBIn6WVOdr1LkVmsKXH2twax8Mc34dpZsnjlLPnl7h4eYWjgz5lagi9gERY5hYa2JmHyy22KFFagrWIUlLzfbaWFmnU6ty4+5Dd4x6ZlWitqux8BMKW1ANBzYvAav7s22/xN77xZc6srXHSH5OeONKBZT8/YO35a6wudDk5OmVtc4NHjx/z4Y17NGpNEFNmf/o9vv7F10iyhO7CMifDv36X0k/dSPtSkKQZJ9Zw+8ETGs0ax70xeW6wxlHkJUpJsiyj3++zubEOpuR3fuNXUIFj52CPk0HKg3f6BOIcL31mjvObjrlIk8wmnJYTNtYvQ655+ztv8erXnqU9F+CUoDSapBQoLTFlSRnnHOzukI5HxKc9OsLx2y8+z5WFZb735juIuYCtK2dpbtaI7IxWKji7uMR83ec4KHGBQSiFFR4IcCbHVwpXZliT43AIVQMZ0htlaB0ShBqnSoyaYvIZ4/QIIxytZshkKgnCOoEMKJ3j+OCIxc4G1ni896MfMDg+Qkmq51lnK2KZkhTWEQUah2NrZYGlVoco11xor/DDb/4x90773J30yYzkye4xtz/8Y0wh8T2fPM+5dXObr37lRdZXJMUsZzJNyWYxZnWe6XiMNDndCxsYfxk9mfCNr3yBJ4f7oBXtYI6FVHFOBNxNYrQXEbqQtEyrHFjfZ769RBQ0mOoeaRaj5UV64z57vRuszke8cHGLt9+9xWMEzcUNgvoq83MXWW138GUTAklWNxQWrNQUwqPwDb/y1S/wrW99jw9uf4DMHGc6K4huk5rSvP7lL/Hx93/AJ3e28dSfczw44hu/8evko5i6DLl64Vnefv86n+1+lnq9zk7/Bll9ytbGBrc/ukc4UKxfWGZiYpaevcTXWr/MrMj4sz/6t7zx+mu8+4PrmLRgc3OTzS1B6TTbOwe8/+F7PHn0gP/g7/wuP3j3I1585Rn+5O3rP42993Nb1jnyIsO56qLcaGi6nTZFWXByPKAoFVJ6CK1RUhEGPqYsUaoCJNmnxjmBh8JnEmeURz2Wl5eJkxnjLEFSwQAC38MaU0WWCcAaykJx45MHhC2P7nyHk/0j2oEmb2gyK6g32kgZobRPHCcURaW5LsqSwSTGGctsp8/KygJaBByfHGNyy0cfPWB3p0cZSzwBpjQI5fCbAYUoKPkJlMNRYawtOFERxoRAqepAdsYQhj7z811msxitNVIG+H5AvdEhiNpI3cD360Rh7SkaOEMJga+hLAoEirIEJzyKwpK7AusMgirvWHuSbqdL6CsCTxJ5HmlcmWgdBoRPKWIeHz3meFrQ3dhgMM356PrHPL95juWleVSkKHxQoaLZaTDn1VlZXmFtOqa9VyN1KdJ5lNZWshpf4wrHJM1ZDH1qNY9B35BmOdZYotBDKclwlFDYCGNDSkrm5uqVcVRUBslZIqqoRKlJCslg6oiTGDLHvG6zsXaGycGA48kxWirWahHznSaNQPLStbO8eO0s9dDDSs18t82lC1scHJ9y++4T+r1TBuMhuVUURVn9pqRAOIOylRk20IJmvUZRFBye9PD8kKzIcBIsFi+ovCZKSYQq0Z6Hn//Mttsv6q9YL129yOEHfYoyoxaG5GWJVpqyLJmOS5RUSC1xGJQUBFoTz8YI53DW4nD4oQYsc3MtajKsBmzTA4azEbkpwFapMAcP+2Rjh+83WL+4SSkc2lMIHEIqAu0ReAG+H6JFQBR2qYcNmjqgU4fT4QE3ntxilE4ococtSnzl0eg2SbIZYRRiEoceeqwsLhHGU6bTPYQzhGGAKw2//psvMxj1GJyM6R2N2N0Z0XeOo9MY30kCHaEDH4MlCCpa8oOdY26mGcurK5iTAUpVACaNRzJLiSKJ8gXXnr1CNjV8cvMBf/An3+WLr13m2bOb3Li9QzqdUeSKeJRR5iVpXnDv3l0W5tqsLC1QuBLfq+N5Pu98cJMvf+l1jocTjgd//eSRn7qRVsJQmBSbC24+fswoS5glVVxTkRo87T197hQVu15rLr70DPMvnaXVDnhZvMTwyRG9eILrRORJix/8YJ928CZf/uJrvPr8bzBJJf/q97/Jy69e5fIzLYwypNZDu4DCQlYabJGQJynD8QH1wEMFilc2Vnnhxct85+13ibY6PPfiZuWAPxrzS1eeYfZkwNvfuc5znSvUF0NyHVOWBQaJMA4pDCaLaTclYHGEBGFIbjVOBfhSUlMhgQe4kKJQpEVO6HLqtTqHJyOyXFJrSabTMaPhkOeufQZTwt3bd5lvtzlJM0bjKWGrwfb2NmFhMIXDiwJaSlGTPgma//Kf/RF/99d+ic9/8Yt88A//e1SZI4UgFgYXKkxZ0mqG9Cclg17K/sMhX/nsVdbaHX7w1k0yJzg+HZBZSduCmc042HlCWGRcWl9mpePzpD9GBA0O98acWevyMB5QLDWRpUaWClMKfB3iaw9fKUwhSLMS41K8WpPDoyaT42PaaxeI6rs8eniLTdPnl744z0q3DkIgpaQs+nih4WiYs3+SYLyCC1c2WBYdsnTC7cMnfPWVL/ODb73NZPcx9x894u/9T/9nuIMZN4rriLDBRz/+mFdfeIlmZ5F/8A/+kKX5Lq1WwPjxHkdYli6fAT3hyrkt+qokLk45GvUJNuZZeuUyv/mlVzn9ZJvv/f43GT04pHQeb3/wPg92D1hdXUX6GlUX+E2fpHDcu7fPLC0Yz/76UZn+qlURLysToVQCqSRCllUO8cochyd9jntDstxhLBS5plI7gzElnqdQsuqLnVZY5WEzw/HxgPX1RcQUsjwntSVKWEpjkbKahGshGQ57zC+2OHdhDVdaxoNjmkHJ/Pk2x6OAcVzge00a9Ra+CkFIwtCnKDJG0zGltQgd0B8bJv0TxtOYOzfvMxzOsDiUp3AGkOCUQwaS1KZPmcGVoEMKEE5gcUglUUJUl+AiR2tFpzNHnpcUhUFKjzD0WF2b5/nnr7C+vkg9DAg9ha8seTqjUQtwWLK0MlnmeYEXBgjhYdEMBkNMOaUWgDEFSkAtahFoiRQCraHT6TCaaobTMVJ4+K0WC5ur9IojhrOY4eGEvZ0jLi6tU59rMk1j0sKQpxk1JGE9JFJ1wppPremzmx4RqhBPe9RrPnMtn7TMKHLwlKbVanASjShmOTjDfLeFVjAcpZRW0Gg1qdclQljSNEF7inojYL7bwteag8Meh8dQGsgzRzLKWVxucnAy4cHN+4x7PbrdOaJaQLvh89K1i3zpcy8x12njhHqaqlHia83ls+usLi1yeNLn5r1HTE7HYCyB1gipnqag+ERBi3Yzot6oMxyNGQ6mpEWJChTGFSgtkNLRCDUCR86UPHOU/MJk/PNSLS9iLowYTFLSNAUlK6mXc9y7u8/yuQZxPkMJi1KCvEwZ9Wf0+2NGsylIi/IrNH2cJ5w5s0VRlkyTmCRJ//JiXySKjz+6x9rKHOdfOo/xq73vAE9LAh2gnEegAuq6DjIi8hvM1xu0a3BwfI+P7l1nWhZkRuNy0FZSa0WcDPdpRCFBqhCk2Imk1VhifflZ0iIjjU+qVC1ZAY7mFxp0u4orzzTI83Xuvpfwnf4RdqYwhWU6nZCVBU5IAu3RabUqyJsvWV5bqCRQRUppHcZJfDwkPtZ53Lpzl9FszNr6PJM85uzyOtlGxnA8oz9KuX9/m82leZ67eJatjSXCIKTf77OwssJkOuPWnQfkWc7CyjxXX7jEpZcv/ayXyE+9PnUjvThXY5rlgCQuLfuDIbIo8azh7Oo8Vkj6w+rwmkynxPmMztYCWU1SRiH7s5LG+QVeWnoBr+bz+PAJVi7x5ptvIoSlFrb51//ye5RRzuu/dpXcjFGlwkhDkc8wMkKWBWVm2NudcjKY0l3o8Jmrz/PFrYucqBmzzYA12WH78SlaO5YnFjMPn9zcZneU0Hw44blr6xg1QWMRSgAaY0t8DUmW4AcBQkomsylIg9QKWzoiv4qzUVJROA8pSrSQJLGhKB25zShdmyc7x+QFrK1dZHA8ZP/BQ/qDCUUJC60a1lhmzLj20vM8v/o8N27e5OHjR9ggYpKmnNna4g+//ybbvVNe+8zLvP/+x8Q0SYUlI0MqRycMuLi6QJ6CKATPX7tKmcUcHo348PY2/VnG4emEQLfx0pRslmPThMHRAZP+AYuryxweDhiOT1lcbhCtCKZ5QSA0iZBYY6hHAc6mJIVBeZqQiOPBNlsrZ/HlKtf3tvEYsXLlCrM7j3j/+j6t2lv85i/PMxkVDMaanjnElI5WtEpazhCeRdUN76WPGYQp3fkO9+7c4ZkrZ7i7/QhrDDff/Q6f/epnyEVOoCUPbh3yT/67f87f/Z3fYXmpjdSCzTNbbJzZwl9a5q3vfJuNlQjiEs/zeDzYpfvcFqvPXyU1lvf/9Fucrc/z6qsv095Y4MrnSi5fWCIpS/7wT77HyeGMcdxH+4rljU1+9O7H/Pi9j/CbPwVbwc95VZNliXWuMmU5Q1lYdvf32VpfodXUNOeWGIxn9HoTZrMYKaNKNxiEOCwOQ2mqP1KAlJCkKdN4yvr6InONBuM4RktHaQwOiXDVtGh+qUWz08BikF7B5ec36Mx5IFOmO6ecjka0WxKtQ/K8oChK4hjCwKPbaWKKkijwmMWWJ7v7FGVKVow5f6FL/3BIKRXCSFxhkKGikEVloBQS+ZQG6HjqNKTSbCulycvKXKlU5Xco8gLt+Xi+pBYp1lfbLM4FdBoB8TTGZILxqIeSiihsVSjxwCcK5kAISqBE4ZzCWEthcowTBL7EmAwhCrT2KMuc2WyKVIbCQJIaSidpN9uIYIrn+zy4t8/p42MWGg1WlpfQStM/2SO2OfOdDs16ncIUeJRgBbUwZDnsImuasqguMr4vEZQ4U2LKkjjNqt+htczimPm5Ns4JAq/GZJIgpE+t4WNd8tSwmGByS5rErC0v8sz5ZVa7LQbDhL39Aa2lNs4PeP/Hd9i/t00zUvhhJRdZW13g6pVzbKwtozyFsQ5jLbM0ZzSZEIURq6urLMzPY5zEmUecDsYYBKUtEdbhTIl1gqwocbOY0liieo3MZJRkCFVWACAJSrnKeFU6nLMY+dfvOfqvaw2HI+bmmrjJKfbphNkJKAvJk0fHrJy9Qp6NCTyYTic4A4WxnPZ7JFmKcRYv9FC+QmiJ1JrSGbI8x7nKsFskBf3DlCQxNJZCbD3GSYekSuTQWlRQId0ikDVqqoNQiijQSBXzyd1POB4dgeejjEKVDlemLC13OT49oBAFnrZk2RhDhhGS0+ERlAtsrV4h3iuIszHWVq9GRV4NNRGO+Zrg0kaD3XXHzY926Q0naN/DCIf0FYaCaTLgq7/6WQajU4afZFB6hC5E4pEmBUopRoMpH318i/F0RlbkbO8fMxrVebQ95OVLV1hdmmHlCEfJ6loHaRxH/REPHt9kMpthylsEnuG1V66y82iXJ/cfs7jeJpf2Z71Efur1qbsCY8un2kWJtCV2NqPuKf7G199ASsuHN+6hmiG9yYzSWbKsRCPR2icvS1TNZyZ8dqY9NmqraKlR/n1++++8yvWP7vHo9imDQUroNL3eGNXIaUpBM/IZzGJUoBB5higdTx6fUI+a/O3/0X/EmU6Xx29f58OP7vP4aMD23gnt+S5nN5Z54eIa3/7wOruzAZ/7+leZW64T98bIlZAg8smyrMqExVE6iaebpIWlsGl1fNoS6yyBFyJshbFVokCInEgKmlGT4XhKUhpKB8Nxwv7uCXPNeTYWz/DWn73J8OSUeJZgCkPLq7Fxbo339z7i5t1bvPfvPsCUDiscw5M+X7p2mb/9G7/K9996j7Iw/Ktv/ikTKzgtxqiaR+QFxOMxWRnza7/ydb782c9xenzI7Q/v01po02jU0QqyLOab3/xjvvKZ53m+OceZl1/i8Y9+RLvepIjHLLRazCZTrr34JYTJWJ6kTKJjyrk5lPHJ84JGs44pMoSqpouB52MNDIczGrU54pmH1j7Oq6Maa0xS+INv3mXvsM9Xv/jLLK0sMDzYRZVNAjSKkuNBTFH6cH6eND9CZZbBnTG9J3v8ytd/g8OjIRvnNzlz8SpCBiSTIRe25jHZkJ6J+fJv/gZFWfDBu28yMxMmH32MsnDthZcom4YkzHjj7/4OwcoSszjjn//X/4rksM+53/gthvGAJ5/c4sXPXWNnu097bp5zZ87iyz7jOwOGwxnNziLXr1/H88Fk5v/lnvjrXlKD8iRSUumErcUJiRCaLCtYXJxn93CXIITNrUXSxHB6MmI6iUlLhdI+CIHnBwhn8TyPIPQpipQ4mbC7f8rlc5t0Gg1OxwNiW+CcBlE900v1FDP9NCZjaT1inMyIIh8daJSCwfCEojQ0mm0MJeLp9NIVlsAPCcIayXgKCsbjIy5c6vBLrz2LjCe8/aMBuRO4QBC0AzKXYIStptBCIl1FxsPZSo6hNFIICmOwzuH5HqUzaF8TKEUYCDbWupxdn2dprgZliq9gPB4jpEV7GhNDFIZIrfB0iNQhQofMsoJ4NqO0hlkyRQA5VbToXLNFrRYwneQUZYktZhRGVPnSuoUloNFok0weMdw+xssM5y6coRXV0E4S4OFrxXJzDuUE8WyKDBWBjvBVQFM6CmE4OT4hsznTOEUqhdZghSUv82oa7ylmSYqQC6RxQpLkmAJMCdNJTLtVpRdksymR7+HXaowHfYo4ptPqUvNb1IIAR8h4WDIYTRDap91tYEzJZDwh8D0WF+awzpBmhjTNmMYZe/sn3Hu0Q5oZOnNz5FnBdJbS7rbxwoi0KBiOR0xnGWVeyTeyssI/SyWQoYTcYFyGEBXoxQkoq3j0p5Ahi/1FjPTPTd24+4Tly8s09TaJNVjlI1yVrjWd5dy7uc9wckqnO2N5bYnlpQBrHVmaYYoq974e+ShZ+aSDoE1RZFiXoXyDy1J8qzm8vUt3wWfl4gKlLAk9HyEkWoKnAkLdph11kQgaUYua0hg55KPbH9AfDils9RJjMlelhLQ9jI3BGXxp8LQBl2ELSyYUk+SUZn0OVXpsdNfZO0pIXUZhHVYEmMJQUwadRzz88BiXKXQQIPwYKyGq1bBKEGlFuy7odkLac4vcuveQzDwdCpSuagqN4/yZdVq1BsNag3EyYxLHzHUW2d3f59b2IfX2HFeac8hixOUz63x88z6Hp6cUQlI4QeDBK585yyuvnuH1155lb+eI2x/fpbPY+dkukH8P9akb6UmcorTGlQbhZCXp0Io7D7cpkinXLpwjMyXjouTWo31U6ejtnbL60kWSMiNQVQpAajVHg2OS7Annz8zz4w9u0124iN/WdDdm7D1+xPatgOblJqMsZ6FuiY1AlTlBZDFxycHBkGcuXaVea2HCOqa7yI/e/SNeeeZlel7Kr/7Kr6DGI+5+co+H4yGNrVVWL50jGQ3Yu3fMucUmcQ62sCCqzEfh+cxyQ5ZbkCVKpEgUWnjYwpC5Gb5nsaIg8ATz9Qb1RpPHu8dMUigKy/7hDlmc88brn2H/7iE/+ovvMTjpQWkJfQ8fSaQizp05z+njY7LIYuICiSXyJS9du8zKXI3/4Ne/zGyacuXcJn/8ne8ynpWUtkSFdepRhElyrt+8xZWtFeLphL2TEX/43XdYXu5y5fwG51fWODO/iEhmmNzQWl+hu7XBybsf0B/HhKdjJDn3797h8tnztCYTVkLL45YilN3KuNOwKL+SsJgSmmELK2A0nrEwv0Tk1TCiYJJOicsO3cUOP75xAuqU3aN/wdpqyLmlFtcuvsB0GPP+J3u49gJJYcFZemWfnb3HnFlc5o2r17jx/vusrb7IP/xHf8DK+nt8/cuf59rVMxw8yag1V3n+s29w491H/Ls/+RaPHn7IpXNbfOVv/od4VnJyOmQ2S7j2+pfYPxjx1vevc/t775JNYvb29/nfvv1/xA88vIamvVzj4/tPOHr0feZWPL729W9QqykOBwPiWcFcs0mj0+DJztFPY9/9XFeJJDMOW5ZI4RBYfK0prOHo9JSSFr7vU2QzrKhyhs9tLTCeJpycjomznLKEvMiRAjxTMksqnLcQHnFe8uDRDmc3V5hvtchOT3HOYl1l+qsaavk0Gi/A2JLdkwkSj+NeBrKDkDCeDMiLhDCKKMqcdn2e5cV5ZnHJ8eEJ8WyI8B31dvXadOejHT7/uXPsPZrycG+E8kIMOY6qiVYChLOIp1hpKSVKSJRwlE9za4UQBGEEQoGQCAXNps+F82uc21ylHfloT5OmGZ5soXyfyWxGmhZMZgleO8I4jRIBftBkls8YjU6IkxzPC/FDi8tjfK2I4yGmMAR+nbyokgmUp9AelFYzjQ2dziI16dMSPtJ3XNjaYqHTwg99zq+sEwQa7WuMtdR0gHECXd0YmMQFo3wKc5b+aEJhBUI4rCtIkgkIg/YFZQ6TaUKSGsIgwk1y0jxBJyllmdBsRDSbLWyR4KkKqDLLMjwdAhD4goW5CKFCymxE6TJKY/G0h7GGvEhp1CKctcxmGUmakmUFw+GM3d197tx5zEFvgvQ0IPADH6U1nvbxg4BWq0NW9EmLApTEOFdNKbEUeYoVFQQIUV2Sra1eG36SGuMQf5nQ8ov6//3afbCP1wxY6jQZmpRBUmJLgfYV1gmODwfM4oT93QE72wPOn485f2adPM+I4xitFVI4Go0aUkqatRpxOsaKjGnSJ5nOsP2QEI/Lrz5DIQ14HvWohjOgdYjv+YQ6oObV8IWkVRP4uuD2gxskcR9bOvJEkqcl2JJmu0Z/eMo4NmgtiGoeUkuMLZ9e7BJm2YhxfEqcKrpzLRbmNzjq3ae0M5z1ECIiTzx27xU8+mjCnQcD+vEE7XlYa5lOJoS1kDSX2FRy8+N9Ll/bYGVpiQcP9jDWQwNh4HNmY4kwsPROTmjWFtg7PiI3BUkyxleand1dLp2/yC996XV8N+X969fpLKwzPzXM0lNajYil+RpnLm0wnMZc3Njk1Zdf5vs/epe7j3Z+1kvkp16fupEuHTjh0F5FnSqE4jhNyfZ71KTi7CTjpZcucTTuM9/uMJ4Z+gf7lGWBagYUTpKMTjGZ4cCdcH4z5M3v36efdWgttZnfyrHsYXYVH75zl2f8SzSWA+LpDCU9oroEB8W0JIsdL7z+Mi8/+wqNoIYaQWd5kTPntli9tEWrFXLz7bcY5g78GkJ6PN7eQZmS7f09zr/2DFNXoEuJ9DysUMxSQ5KlaM9HS4mnBb5UKCcJlMTaDIGhFoVEno9zGdNYkRUCiU+Z5xweDFhbXGO9u863/uF32Lv3GGGq5408yXh4/xH1jQ7rL22ye2ubJE5RFsIoQijB/ukQr9Fk+9EdHt15xGuvfY71xTl+eOsuf/ajtzBZga99RKT56NETjv7pv6xiu1TA/umIJ/sH/NZXX+eXv/RZup1FoihgPEwxcYatR6TCsXPQYzKccOHKKmmqOToaUBcZ8/Mhg3pO1inIUcySmO5cm3gyweY+suEjhCU2E/qTHRp1yeP9AVr7pLHk5OCYdFays2cYxo4793Lur055sD0jzzXX7/WYWh8BeJ5HkuRkec5ADejUNJ/97Mtc//bHNOo+x9t3+fv/xbu88blX+Hv/8X/Evfv3+b2//w/RpeSF559heaHF1WuX8HSN070TssRx5+gTuktrPHj3Id/+p3/M5aU10v6A589fIMti2p029XbIdDTmS7/+FfK9Q3wvYXNrhXhcsJkJRoMxkdTkZcEzly7z5x/+9cKb/lVLB3Uqbp9ACVDSMsszpBM06wGnownz821knuE9lYFoUeL7lvXNOaZxzsFhj7IAT4d/GVmHlRhrK51tUnD74Q4bK/MsdeY47PXBOWpBRJxlVcScrWQW1gUcDXNcWVCaEOfA8zRRTWNNSpamREGAKQuckxwenGJMRhTxNGpKcXpi+Ld/9A6XNpdpNRvMdwyFJ4htinwanyVEJePQTz0fnlIoIUnzHONAyOpndaVgOJjiaUHQjeh2F+h2WuSFQOvGU0+FoBYFTJIUT9dRdUmt1sHzInCSLCuYZQNmeUFe5ES1GmmaUOQZvnQI5ShtwVwtohF1OM1L8iIFqUnSlCSNabba+EGNuUabi1tnKJKUxfm5anqeZdi8qOASmcLzA5Tzmc1mFMoxiTNuPH7Mw6NtvvK7L6BlQZwVGGNR0qKUwbmMvIgpHcSZIU4zwrBGVA8ZziYEUUBABdEpCkuj2UU4Q5EVtOeaRLUGUS2kLBKEdqRphh9Jls/Mc+/4ITvb+8zXPTo1r4LyCGjPdVhtr2AsRFEf6xzGCdzth+wd9UhLh0gLAIwxaO2hPEXpLH4Y4gBVhSJVcg6XIl1ZERNdBdZxyJ8oduAvJ9F//Z6j/7pWUHrMTmPClRomTqC0FcnSCrTSmFLQqHWYTY4Znabcy/bo1FuEoU+/3ycIfIR0GJOztLBKu9lgNBowmB2TFiWBqHHr411mSYzuSDJp8FBI5wijFp6qUQ+b1HSLZhARBTCeHXDn0W2KfEozaKIdpJMJ2ii6c10eHzxgMB3RWajRna9jhWY8yWmEHkJVr19xNiIuegjjkZuC9dUlimLCeHrAOMkprSUrND988xYHRxl+o0E7rIiycVwlkmgjaLUbJLOEu3cOGY6mNJstIjHCaUkjCFldWMKjZGtzDc/zODicsLjUorPQottssP3wFC08Os0ae/v7IBznr73OpDchme6iqAIgrlw5x87BIY1ayMV1x/27D1nsdjg6Gf6sl8hPvT51I52kGXnpQCt8JcBkeKqKT3n28mVefvkZlpcbLCy32T8asbh6ln/34duc7u9RNHw8rwZJzv7R+7z06lVGowazxCNoWsb5Nl5LsXFhi90nfU76Y+5/8JjzL53BWwhp+ZreQR9bhIxOJhSp4dqzz7OxvEY2mHH8+ACv5nF77zbGGoaDFlEQcevkCGslR/e2ma9HPPfiZe7cz7EpmIbFGpBOUqR59SysJcYZbGnwtK5C1gHrMsJQ0mw0KLKS2SyF0GKKglrYQOaC0/EIZwRnNy5y8PCYx3e2oajydJ21nFvfYHDS4+GjRxyJPuksQyNRUuKHIdPJlH/33R+y1V3k6tktDnp3+S//+TeZuhnD4QQtFKJCylUTPRTHY4OUEX5hWZrrMpmOuH/vAQ8v3aFcTzEOgtKnvB/QnGsiGzW+8Td+DZ2ljGa7BE7gpGPvZMwzZxa5UIbcno1RtSaTWUatnmJMQahbaDxKkSF1yXDWQ3sF9XpAWQriyZh43Ed7jjSTmKkjTSyxlTw5HhEogxdptCnJckdWJDjpqLVBasGN3h06UYdpGPPk+l3Ory/wa7/7Kzz74mf4P/1f/guePN6mWZNcPrfOwpl1LrzwMoP+CfXlkIeP94hHe1x8ZYOllS4Ln1vk0tZl9g+ecPBol0FvzNLKGmfPn+fo6IjeKOVotsNCASbRfPzhHboLS7zx6tf5/X/+LxG1Gs8+f5V/8Yd/+mm3zM99WSxRGJFlFV7WOoEXhhR5Rn+WoSjwwohmo0uezVBKYU2JdTnWFASRx5mzy0zHCb3TKWWWI5UGVdENozAgzxOsguP+hA1vjs2lJQ5PT/AlzMocQRWNF4YhSZLiRx36x30kT3OrXY7Whu5cSOhpPBXQ6Szx6MkB0zgl8iytts/20RAnHVluyJKCW7f3WVpboLPU4Hg0wpiyMrYJgVCyAsUASkk8rUjTDFt12VWqjwNryiqv1Rna7YiNjSWa7Q6jWYl1Ezp1TeB7tDotcuMhlcU5SeDXAIUfBGRZSZZm5GWBFJZGPcQYyWQypdP0SNKEcTql21rA2JxOZ444lWTpFE9rsqdkQYnEFZbpcMB8q0MtCKhHUZWxq32UrkiH1latonWak9OYH773CR/cusesSKkv+3zm66vMkgMkClMWpOkEY1KUsiitMaVjPJ7QiCpNclFmeL5gNk0YDi3tdhssdDrz+L4jLw3TvGSaJ4SBxJqCaZKQWcvC5hw79wJmJ5WHpNvtsrTQxeHI85zdwR6906qJ7nbnuHzlS7z6+su88+Et3v7gJqf9SaWrF5AWOcJK/ChAeRprChw5TuWsbbTRYYvjo1OmwwRbSoz9CfK9kg1ZC0qKCrrzi/q5qEatyfhkgrKKQoFVoHBVPKcTFLkjChSBVmQlmFKAVdSiAK0khArPqxJ4QKA9zTAZkxYp1lhUHrDWXuHKqxeYeqPKfC81SmpCXcOXTULVohXVaYaS/ZOH3H5ym9xInJFM+0Oy1JFMHI/uH2BsyZnLy2BHpLFj4pfEqSUIPCKn0KKaTGcuZRT3UCIktwUnPU2nvsh4fEoUQEoGgJprkqmEJJ3gBTWmoyn1qEazViPUCusK5hc7SKU4ORyzt91jMp2BdKxcO0dnqcGND26SuIzdkwOKourzMjdjZekim+e3uP7uLQ6Pjnn3wwQhA4QUdDsdFrsLvP7MMxiT0TveYX5znq2ttacpJh6hD525+s90ffz7qE/dSHc6XZJkRppZ4hyM1QS+wlqL0oKooXGUNGpNrj6zztzSMo8P77Fz4x7Z+iI7x6c0fY9v/NrXiRot7n78kF/6xq9y/9F1to92OR0MMYlk5oZ4TcngaMTNtx5w9oUztM9FpInl9KBg/0mPVqPF5tomSR7z44/e4ltvfZvpbMrUKzkXNNmgxXf2tymsIz7s4wnDlbOr5OWEk96M/n6JOONITQV+sNaiNQRKoJRDeVWMUlk6hLDUoxA/aJBkGltolLFEQchgANKVaByyKDl/5gzK1GmIdcb9CRZohB6Rdfz2F7/AOx98xPsHj2mMBWViUdZihSROCoKwBmVGnCbs7u9z/7THjZ09/Ehjn05cJArhBGj1FM1sMNaSOPClpB6EHI1GfHjvDouLc9hBwsw4pnsPuXTtWfqDIUpoyGasrGyxrB23nxxz0B9wcWIJeoZu3XDil8xUnVmc0W018UWn0mwW1b/POlHlYGofFSguPHeWWiNiVkwYnY6wM5AYhgclnieR2tFqlzz7XIf6kuX4ZFo1NDloBeiMd0Zv8dKL1/hbV77Ki+deZGlxiz//1lu8/8FHWCk5u/4sX/3l38XrLvLhD3+ANx3y7jsfoto1XnrhPOn0FKMshdS0F1osXfkqz7805s/+6E9pdBrsbj8hTUoeHj1mEEFzcYvpYcLx6S5XrlxGuJw8jRkPhvzL3//XLJ9fgB996n33c11CCJRShEFAWRZYayhyi+eFFZzFCo77Cb3BlFrkEQaOMFQ4FIHvM8syClsQ1iQrq22G/YTpZIYxVTJCnudorzIzloVh+6DH2kKHreVVTkc9pCmfalkVAr8yhumSa5e3CJXHZJJx1JuCKWgFNRYXOvheh5PTkuEwIfQlYa1kFo+wEqT0KNKYertGFpf0JiNCGZHZHCefEgvt06d+WaVkKKnI8gKkRAr3dF5ZNVz1eoAUjk4n4OXnL3J2c43JNKPRWGCSpaAC6iJEJBapfIQr0NIhRfFUQuIRhB6ZNVDECDd76sWoUlAcCiEtThTk+QQX1tCyQRQ2wBpWFjRJA1A18jQhCj2a9Rq2KOn3BhVZViqkExgrMI6qcS8tTw6GvP3BLW4+2GGWVjnxb37rDheebXJmpc3D3R6eqjSkWepIA5BCMUsTDo5OObMxj1eWBL7C2QxrU8KwhhCCnf0TssKhtcfu/hEWQRj5CFFSr/s4W+CswG9K1i+v8niW0htPmKUJSmu63S5eGDCNM7ywwWQ0YBbHnN66SZwZ6jWPc2dWcVIym1akSCsgrNfwfJ80i3HCYFyOHxq2Liwwt1Bnbifi5kePiCclwgJOPIXs8FTQ8RQ3/Yv6uaiTbMJcu0H/qI9c8JBhlWteQVYr2U6S5ZXBdjSrDMJSkqUp6qm5OQh8pNIIK4izmLiY4pxBC8eTuyeYOCEMDEppPBGglYevI+pBjUhGKFESBSW90T63Ht4ktw6bO8q8QJY+O0+O+eT6I3C6GjDIgrWzIbkzGCMwWPwI8jLF88PK0G0NcSZRKsa6gtHEo91YZWF+iyf79yoKJ5bNKx1+/P2HuBLCUNGda4MtkK5krd3B9332+j16gxPKwqB1hHCSVrOJcYZBPGCQpZw+2sFqKEuHLBW2EKyurvDeuw8Zjse0mw3ET+JMS8v20T69wZBk2uNrX/sa/4O/+7v0piPe/fHbMOkx3+lCAQsLSz/rJfJTr0/dSHtBgJGS+ZUu6+tbHPdOODjcYzYa8t7NO7z20jMsdKv84m7QJHCGZ1eWmO7tcPPohM+99gUWlxY5GR2RnRzw3Muvs7HapVavs3iyy+nwhI8+/ITcZAQ1j9WtBXq9Hr2DA+pNjfR9jo4GDHpTrp17hqgV8PGt63zvze/xeHsb4cu/dHdfv3OP4XjCeBITlLB1Zo3+0SnGV4g4YO/elLXFBlZajMgJax6erg44rRRaVujwyBN06hF5oRiPU4RQhLJqYrPCYKzD2RwpFFsbW8wGEVfOvcH3/uj75EWKc9BREb/71Tfwiil1X7DRnmdwMsEzCj/0cYUjDAIsDis079y5Q5Hm3Nk9ZFYWhI1G9SFfXZurJ0nrQFamCuegKAoEGt/zUM6nXYs42X3Cs5dfwBpBYR2eUjzzzGWyQY/JNOfxw21e/dyrnM01voqor58nWFggGezTG+8jOzBLLPOtZYwpSRkzLQbk5DihMCZAEmAo0IFgbWuByHuZd773PoOTCsLikJQYOnMhSZ7z3gcDrr4YUFiB5yvCmqJISwphKXXG3fw29TUPdd7jeO8JKwsR/4f/8/+OhdVN8sGIPM/5F//89znZ2+XZc2vsnZzQfzghHvV54/NXmY4H/OBP7tCuT3njV/8Oj+9t8+D+DoGOuHf3BmfPLXH5lUvsE/O5l5/n6NYe6Yd9DnYPWdm6wqULW4gzGzz+/b/g4suX4B9/69Num5/rUihMUaCUxNeKsnRPeX9Qq9XIsipuDKHoT1LkNKZRD4l8H4t8miJXmWlzk3O4OySwDVrLHomJsZTkuXq6tA1xbpjFMWuzOZaX2qR5gc1yCmGQWKR1hFoTknB2tYneanPa73J0PKQWhFjncXA4pTdw4MBTJY2m5qA/w0rJbBDz4M4OiSggUqAF0yLD8NRcKAXGWaRwlZRFKfKyxBj7tLFWqKcNdi0Kq1eqms/Viyuc31piaX6JWn2RaWpRvs94OuNwGFM4gSYFm4Mt8D1Fs97EmgKrauRlwWgyQGpbZbxqSdSYYzQbM9+tEUlNiSFOJ2ANYa1NFLXRKmGu5RhOMh7f2ceWJcvLi6TjhP5gyMbWBp6W5GXJeDbj6GTE0cmQ/iTj7uNtHu0dkfzEbYdiPDD8i//2Q/6z//wNLm2uoOUM63JqoccsccRlWiGJMaRFSRgGLMw1ESalXdO0apq8TFHScnJyzNaZczRazer/0Bom4ylp7rG02GQwGdDohJy5sko2nqFzD88LK6MU0BuMGI5jhqMJ1oJXa5IWCpOlpNmM2SzD2iqS0NeKwpYk8ZTp1IC0WDKELlA6IPA9mo06qyuS7YenJOMhEolQFbwFKgy8swLML6QdPy/VT8e8+trzhLua43yI5ytyVe1TEFhjSTPHfLtGkmZYZ5nFE4oyRUhIJpVEydchUVAjT8c4G+NrSRlLBqMRL37hErlIqssrisALCbw6kdZ0a4Iw9Hiwe5fto32UH6KTkjIrCIqQ995/yMNHOzgnAINSgtHpgPnuIrXFGo2aT1ak4Co5irUWpMNSUJQJ1paY0hL6NSazKUoGzHfXOT59jNSGjUtNNi812L/7E8KroR1Jnrl4hrYXMD8/z+uta3xw+xa3bj1mNk1o1BWRFkyGU/rjHlaBVB5SCGaTCSp11Dtt8llOJB1n1+ZYXlhia3OTb735Y8ZxhsoSAmVYWWhzvPeQD9/32Tx3iTPrl7h6+QKTYZ8fv/1DyvKvX5Tkpzcbjnv0pjlHx0Om04S1s1u8/vkvkM9ijrd3+c7bH6HUKyx2IpQW+B6IQHHh5WvYQNFYWsAPO0TSsNpuUa+3SNOETidkNmtw9+Y2D29PSZMO2AJT5JAG9O5NieSA+fVFZv0YZ2BpdZEPPnmX73znW+we7lHKp5mwuWHn6JCyn5IVJeFT1Ozu3j6xTFBhyPBowt6jYxrXFLKp8GrVpEnK6uD0tEJaixaSwPPo9U4oba0iKlIABWHdYzy15JkG56Ntk9HQcW7jFYSLuHPnOhJHaSDyQ1547jnarRqj0rLz7g1IHDVVp9WKSJO4SgBQGicsD49PyHNDbA3arw4IrMD3FFDpAUsqpLDvVSYeXPVUmZeWuu+T56B1xPF4xFJ3kbZf4+b9e7zy5S8yO24yy+7z4M49as0O5y5d4u7uIXJukTBYIH58n/PPtbgT9zCNBpNZShRKknxKaqaUrgQCrFEIPIoixdcaKx3NuRbrG+v0j0YIp9DaUEqL8A1SCpIx3LtRsLxeY5okOGGpRwq/phGhI/Zy3jl9n8ffvcu19nl+/et/l4X1Fzjsjfj40Xs8uHmbT25+wvBkwtHhDufOnuPCXAcPye0bj+k+N8+//uaf8p/8j7/BP/nHf8jtd65TFCWhl3H1hedRKuZHb/4AsdEieP1zvPDCZaQUOKfxAsuVa5d4++0PWLkkqS/MPu2W+bkvKarnbuksYRgQJyUVwaiigPqepiihtCU6CCjKjPEsYzqzSFHSbtUqI5mxKKlZmKvzZ//0Oleeu8DFFxeJ3YycElvBuAFB6hy7J6cYZ1ha7GKHp8xMQSAdUa2JKwxFkTCZTcnTHrXaAi9cu8LhSczdB6c4VyeOLVEoiCLHYHRM7hKskzy8fchkMAUnkUpW+6vMK8IXVRSacA5PSbRSZFn+1LAm/jIErxbWMabE932cyaiHHhfOrrG+tobSdaJanVKU9Ccx47jk6LiHMTVWFmqkWYK0JWXVuYMokb5gkqXMihnDaY/xdEyrOYcf1hjOxljlEMZSlgmrCy26nTlMqVAVchFcQh73GfUOKRPDyvwaQ6fJsgxjHFJY+qMpN+5v88ndbfaPBkzTjCQvKEoLrpLwOAFKKnqHjj/55w/5nf/hNWp6hAokRVZQ5hkYie8F1fcczGg1JI2aR5oMqTWDai+XkqWFNofHPaRwLMx3ODw9pT8coX2N9vyKQOcck1EPXwesX1jk7tv3ePPd97HO0W63GIymPNk74eDwhCwrKIwjTlKyvCQrCwrzk+mjI02mFLZAeVXDImWVES21pEgLbrz7gAehh7WCdFKgZIgSAuVp6o0QqarMbikkeVYA8c9qy/2i/grVbgacDo8oixzPKrRxZFpQlhYhVAVI0honoNtt0evPiGczglrlgyiKkuk0YWl9kblOBykMnmcYjWOSacrG+TkGTIioE/ghzgqioE7Nb1LzNZFnuPfwAY9PTshKh0liVKHI+oIbH9xjtz/AGoH2DPVGiClLPOGzfe+E55fPE3oSqRTGlBjhyAtBgUMLBa7E9zxKZ8lNVkXglZL5+S5ZPmI4PsFpydd+4wJ/Ee9wsDPGFDmL62eZjAq+df1DlucWWVle4MqLW6TZFGTB1776Gu//6B6nk5jS94AZeWbAWBabHp3FBlfOnkVYyYWtDd54+RX2tw9YXerQqIegfBrdBr50vPzCVawp8WTO4OAxg5MB1ycnCFkBXo6ODn7WS+SnXp+6kW5GkrTUmFxwcrDP4+0ddBCwtrLC5bMXWFtZRLcW2Li4RuBV+YwXn3mW2awPZsZ42sMllvWtZepRiCots9GY2lIXl3u8/9bHZIlFmADPeaTTmCD3GB5OuXt0n5WLE2RbIpRhMD7hz7/zbzk5PWU0HaIDSV4WmHFONskoC4uPQrj/J3v/FWxplp7pYc9a67fb7+Ntep+V5bqqq71Bww4wAGaGGMcZUOSMRsMJUaR0qSAVYih0ISmoCAY1FEOkIA4BcmAHDQy6gXbVprpMlzeZVenzeH+23/t3y+jiP92YCF0owGqqo1v93WRm5MmIk/v861/f+tb7Pq+j0a6zfGaZg8Exm+vbSCxOGsb5iKofl5ukVGhTkgWKNKMeVXAIusMUS4hzFk8UhAoir1wUO3s50lYIRAudN3ns0lVmpy7wzb/4IrVaQagiAqnRgcd/9Yd/xJVzZxilmkGelotLSookY5iMkDJAOg8lHQUGayHwJEIpCi2RQJZleJ6H7/sYY06m0bZMgkPiXBlokWnBq+/cZXFulYONDYIwYs4LWVldZVgYpq8/RTSzzLhwvP7uuxRRhSs3brB55zbOSKpKMjMM2ZeW48Jy3O1waqVOKGNyNabIcqyzZeS6FDgjEMIrMWd+jBAxvopPUuDKtLBhx6B8CHzFZOQ42k+ot0K6/YxeRxOFijByKB/8UDISA3a7t3h965/jM83hYZdBccDFuWVmF5q4THHu7HmyYZ9PfOJZHt35gFq1Tmocn/vFjzO38jj/53/+f8VNhgiluXHjApefvsSo12f10nn++Htf4/mvf5tLM6e49tTTSF9RiIz24iwbxwNMXOHd1x58+FX3Y16eX5rsBI4iz4ijgDQrsJRoyCgKsBODcwJnoRJWydIEcAjl0R1M8BTEUYx1jsF4RNyAu7fus7uzzxMfv0pl2pCaUl8d+AGyVC5xOBoihWN2ZopKoemlGfvHhzQqFZZnGzh8jrsDqs02GztDHjw6YpT6xJFCOk0kNLVY0u+OcAI8JHqiywhyIU6MaRonTkjRziIdJzdS8mQzlniCcmopHGEYYi2AhxOKMFJcuHae1sICiQ6ohCEPNzaIq3WOjrp0emPSZMzUhVOkWcJgbAkDD2UMVhqMTZHaY2IMh8OE/eMhWZ7hfM10JSA1Id3dsvlOW1UynXM06KELjyIb0qpZ6tGEQb/HsDdgyp+lWq1xsNNlPJrQHwwZjSe8d+cRb99eY78zojAlaxc4SWgsDZZIgcHgcLz39hH19kOe+niL5lTIaJKg8xyrFc5aomqMNo5ef8TUmRU8zyKEodsfobVgNDGkuWZzexspfZrtKYyB8WTMeJSWrGd8GvU6jWoV6QZcfPwS450+3SSnMGNu3n7A+3fXGE0ycmPI8gLrSrIGEgI/RClZGkuxBKFHGHuAw1qNdRLpwKaGXDiqKiJNMsa9nNwKpFAYZzCDEWEsqdVDTp9ZxPM8Xnnh4Ee04n5af5W6dOYUp88ssRscMtrahdwQxh5GWLAWYwXSKLLMUKuEVCuaNNHUmqCULYdP1uIsTNcbDMZHDCZDrDM4m1Gbq6OlTxz6xF4ELiBUIe0ooh4Jbq/fZWPviNxIbF7QUh79LcMrX3lIYhO8mocRMDvdZnVxls7hMYPRhCyXHK8PCWXA/Okmg/EIYzW5UWR5afBVhcG5MnV5NJYoYTG5R+E0reYcuU7o9DsEc46P/7VVXvzTu5hxEz8OefRoB6FiRrkhqMSsb27RT4557jNXmDkfc3rSxDzKWD13hm53xNsvr7HamOezH32a92/foz1X58HaBp/++LPUggabj9Yp8gRf5Py1zz/LbD3AkxW29va5dvkC1VoNISUz03WSNOWdd+7QOTzg8Sev/KgfkR96fehGul2vM0qGjNMUISyeBJ0m7O1s0jvY4369RT56lqtXnmD17BKDg0cEVhMZ8DIDwhLGkiyZkI3HRFYxPj7m9Tfu8d4br3G0f4ALKwhPQu5IjgZMDnsszc2ztbvH1js7TK22aJyL2Nh7QBzEKB1gC02qc3QGST9FFAbPcwhPYIGgXeEwG3CcTYibVeI4Z/GxiKipMORoPLSz+LIAHH4QkRpHkhuUF5YGJlmKFDxRGqhybUlygS8cU41TLJ+6QRg22b2/z9033+Jjz1xnnoS33rjJIMtZ29ll7aCD5/kUAEqS5TmZM+UVuCsjbdOsQEiHFBJQOCtOUFsSZKlXVapM8MqzgmwyphLHeELi+yFZnlFox95owh987ds8+9gF2q1j6vUGU+0WxzuHpGNYvnCaZ3/917nwzLM0A4HVBfs7O1x67En2H20gR445p+gzIms2GPaHNCs1jJWkuS7jm63GITBaUYhyou77MSIDz0mMtDjnIXTJ4rXaIpTDEzDuG9JxQr1RYTKZoFMwuUQpS2E0zgiiiuXeaAM3Xkc4QRh5mAievPYY6nyNhcVlvvEXX6LZaPLUU0/yYPMOwsInPvsce+sj/CKlMjPF3u42s/MLVOoNllZOsbZ+n6nKHH7QYJwrvvrll1hZmebaRy7jz1R44vPP8Ud//BbTmfqwS+bHvjwpCYIychcnEAjCoAwkMRacNlSikCQzZSqhEASBj9YFzoLyYvI8JytGeJ6gOdNm7twcD97dZW/niP0/eYnz185y/ZkVCnNMorMTNrNEeZKj8RAV+NSbsxxu9hmOoRYq6o02Sijml2fojhS37+2RpBBFVYxxVHzHQjsi8FJqUYhJHY/u7ZIOMwSilGcoQVqUh0EpQCAJVJnimOU51nEieSi/XghJrVJjPMlByBKDF9RwXpPbG12KtMOZ1VXGww7N5gRrHBfPLlKvXqBWiTnqCpKiT24N9WpMIQLiao1J4bj9cI1BlpLZkMwUjNOcunZ4QZ3h0QRf+mjRYPsop9/ZwGmfJBkSBymn5hWT7j6DXsrZ023iqFLiK225lo67XbZ3d8nSCbEP9WqZ2qpN6QHJjGWSZuSFxpqc3BjSzPGNP78N7hw/98st2nUPU6ToDGbabS5dOke31yUZG5xTHHYSxskIzyuNoVMzCxTHAyaJwTmDdV1WV1bY3d+jPxyQ5BpsQXOqjlKKeiOGxYBiUnB/YxvfeTzY2OOgM8AYEEqCkEgpKbTBGUeiJ9gTGU4U+fi+h3OQZgVFlpeBGUGAlA6rJVFUIy0cxkBeaJzTOFHuFciA5lSMFppc/zQj/Meltjc7mMJSFCnLs21SZRkHloNkghYnt0jOURQlnrYSxww7A86ebVHUFPuepF6p4rTBWsNg1McajScFtWaIF/h4ThL5IbWojrAelUBRCTQ3771PdzImz3NU6jPr1QnHHt/91uu0p6cYD3bRRqNkyHCQ8X53DYXECoFUMbsPE3Y3HnL5xikuPj7PMDsmT0viRp5JnAAjBNJIPM/hK8gTjyy19DqaIBQMx5YggqlzgqvPTPPBCwOKJCOqxCyGIU5ndEdHTDVreFVJpR5z78FdTl+fZfWxOsOR4dJTC8zMVPEPfc6sLrI7PGCg+1x68jw7k0M+eekcT+gr5MMx/+DXPs/q6iKbm7vcWTvm7oNNTp9aYf+ww8FRl7m5OaJKSHNmht3dQ7794rs/6kfkh14fntoxSWnWGhR5gXQS4UGWFUhK/mF/1OFb33mRm+/c5PrV0/zm3/9V0u4Bsh4SOA/t+YRxQOCH7G3v8ef/6k/pH3QonIEkwUMhfY9xPsbkGukyPFUwTDq0pmKO9kd0tnoUQYVouon1NXnfsXFnj7ASolSEk4Icx+LpRebPzrNzsM3IlOSMsFmjRkRroaC2oFABIOXJFU+K9Ay1OKYoLGluEF6ArxTYUnvkCUPkSepxk6ODMU74CKmYnl6hUZtmNEw5WN+js3VE9OQqf/tv/yI3b90mzXKiuEJiLAqN53llYIRwpcmhcFjjQJbXq1J6KPWXMg5rDE46lBciyjtI0Jo8SRCeR5KlxF6AdI7AU2VSWmDojMbcuv0ArKbVaOB7IdPNBtqX7D24DwICIbFYBIaVpUW2NtdoryxQFxBt9Xnq4hneznYZTLoIH9K8ONmkC6RQOGvAKpwReL6PBKpRBZwEZJlloTVeaHHOYQp3gp8S2MzRz8d4UpKkBpNDUOZ3YFLIJ7o8tFAQOkE08ljb2oOWz2NXrvP4kzdYf3SfveMuR/tb1Joh+USzuLLM3tZDTs1Ps3L1Ci+NRnzrGy9xbvUc1bDG0qkVPlupYoRG6Ig3X75Je26Kl777Cld/7rPYSNOsNPn4hUv81u+/8WGXzY91WWsJAh+sxTmB1oYw8nDuZOJjDFEQENjSSFPkGZVqTDIxOGdxDsIwotCylENU4YlPrnL24iK339xha+2ARx88Ynttn2c/fZH50z69SRekLJm+BhI9gMOCtPBBeAhVJbcVnPU47CbsHRwySBxKhkilCGWBj2HYmWDMhPub+7x/f4t0rBE5CCfxfIV25aFViTJoyRMSJRV5XpQBTTiUK41nxoAQpmRbk2O0RSBottr0hjm9vS6Xz13CWsHiwirGFMSRYmaqSRx5bG1tcW9tk0GSIKWlUomoRjGL8wH4EZ3BiEGWkxUZceRTqbSQIiDwBMlYMy5SdLLLZJJjcslokHJ83GEy7LIyHxJ5GcUwZToeMAo9DrojVhdnadTq+KseYRAxGE3IswKDQvgekyRlkml2D7usbe+hTUHFj7HOkuUZtjC88PwG80ttFi/O067FXD2/yux0G2tyqAXkE0eeF+wfdEmKjOnpJh4WozVhENLtDbHWEscSqyfMTbcIAkW318fzg3Li5izO5rRmauikzc0XbzM+zhiMkxOZhUO4coBQYq9LLWn5DuJk0FDKUtIsJ0sNTpfkFd8PUL6gM+hwNOhhrC2NheUlHgKHtYbhcMw4Szgc9GhNN3+EK+6n9VepXm9IOsm4dOUsZ88sY6Vls7NHZh3HNi19Os5hrSJNNM26x3y7TSAMsecjLNRrNWpxFT/wyU2OQ+OJAKN8pPSIgxqR8okCRS2IiHy49/ADDgc9bKEIbITuwSuvPYTUIVTAdm+HXFrEyfujyCwChfQ8LAaHAeHhCo9bb26xu97lzLlFqs0A35+Q65wcC04R+iG9bsLO2pC1BwcMBxm6yPCVRoWSxlSNC2dnac4GXL2+gig8jkZdlhfnuHi2hahruuMx3nEdN5Y469PZHHF0nCGkRz2YoV6tErkQP/Rpz9aRSM6dmWNtb4OBPmDp3Cm+/idf5xPPXSWIPfYHOW/cvMtkMiLJyxTWJNW88r23mZufo1KLWF/bIIz9H+0D8j9BfXiOtDGMszGNRqOMhTQFniw5q85ajGeZuBGJloTK8K//8I+4+f59fvnv/wZiPsJVc8bJCF8FvPrSaxzsdUA7hNSI3DLqJggvoxCOdDREpilB5KFdRqgCoorCAN3tESvnZhCBh50YZmtVLJAVBWHFo1Kv0j49w0e/8Ak2Nh7y9itvMT4c4VLHUdonbDRQkcBJi3QCpzO8wFGNY7LMonOHkCHSgM1SCpkTRwGVMMZmmkg2cYUmy5LSMBfUsRYOt465/dYtFqcX2ds94vGLIzxfkfQS4jj+gRu8KIqTyXLZLPu+T1EUaK0RQiCFwJygt76/aeDKRCQ8H1ekrEy3KZp11g6OcH5Q9q1OY3ON8HyUEOTakhaW1tQCe4c9Ws02XhRSjCbY4z46K9DViNaVc7hM0mr5RLOS9soi2zfvMEkbfGr5U+ze+hO2/C79FLJ8ghMWq6AVlw1VkSskHtZKPM/j7KXzvPfuB2SJRgpbbpTa4YUS4yxOOIwGKRW4Mu0pkh4m15ii5L5mgIdApY4FL+LK1DJLapadfMDwaEK336Fai/nM5z7N7/4Pv02zHvLpL/wqLz54iyee6hLWahQadvc2kLIkJtz94D6dg32mVxroeo1Uai6fvcAnfuULzM43OdwwvHvrFl9+8bs8efEs9Ubjwy6ZH/sSOExR4HkKbcogJq0tcRRh9AjjHEWRE4UB2hQYIdBpRr1SZTQZYbFIKfGVhwYQGoShsaD4+C+fZ9w9w9vffcTGnV1e/Op7nL+xyMWnZilISDNLrgXj1OIpQRRUaU81qDWnuPOwS5JoJpmh0GCdoBKEoHP80JInE159+WXyzNCb5KTO4ikPq/PyfSUszhlKOyz4J6EvWhdlcmMZEI6FMt0QEMIjzTXJJENrmJ5uMDPbRJsMhKXZjDl3eok4iiiygq3dXR48vE8YOoSQWHRJzfE8HB6+LzAWhDFUKhX6SUFRWJy1HBz06ewO8GTMuJ/S6/Qx+RFFbhmPU9JJTjLOsSbFFj7TbY98nPL1V96k5qq4rKDVajIaj2jUqqwsL5ClOWlakOSW/nhMUWikLk2WpZxF4fs+zpVoTW00WaZ5+90tTEVw8dwKDkmvt0+9XqPZqJDlJZPX83ykLhDC0KhWaNYDtI7oDwbookBJi5SaZJKzMDPNzNQ0WTpBuIxqJGhUgpODg8+ot8z7r93Dyy3WgjMlXrAoSja4kOW701M+SpZaV+GgSPLyxsSLsMJgbE4Qh+AJRBFidEkbAsCWch5c+R5SUUx9tklzrkG1EQNbP4LV9tP6q1atEmM13L61zv5hj+m5Bkk24url07yxdZdRURD4Hr70EaKUNHUHXWZNE5NLdOaRTjLarSaVKMTzBZ6T4CRC+ggZ0ogbJXjAczSqlvXNdTqDARQKmXscrPdZf3uH/TWDX/FpLdTQ/SHuJNQI51CyTGHVaBDfJ8MUCGNxOuBwzXDvtVs0ah6f/8J1Ll6usj8+4rib0E0m7GweMujl6FyUKatSkAuDmDiGw4L99SPOzUwzFyyiC0EtjkgHEy5cuc7StZi7j9a5fzMlzzWeFzE8mhA6j0drPW6/vUe9HnJ6YYX93be49tQlzs4YAj/k5u0O4SXJ+qMtDjp9iCvc3+rxYOOQ7miCdI4kK1haavOxTz5NUTi+8fXnabeaLEw9zfbhT16o2YendngeZpJj0pRGrUbg5YzHExrNBroomKRjnLBop4lCn4WZOk985Bm2Droc5T3C6iwjT+K05WBnG2csxjgifHbWttGdCZ4HQejhcot2jkKA8hTYjEolICscOjfoo4LhWLBxa4tnPnKO40GXvb0OU40WmXEc7O3w4tefx/Y1/Qcd9CjDs6JMIBPglCbXmoCIMNDUK1WKXGONBOGVUeAWQhUQxAG6KMhyh0fAcWdUTr9tiiQEF9DvjXn5Wy9y+613+Ju/9nPc3XodvJxKNUQcCfI8JwgCxEmTXE76ghN9osOd6DalPDEfaI21ZRNijAGrSx23NsTA5599CryA/+7P/oKJkOSmIPYEq8sLbOzu4wchKI9qo8Xte+scNqu0Wg1GkwGxDGl6Eb3BIaqI2H6wxuzSIkEl5GB3F5On5Lrg8mc+RaUyzeO1cwSj99keDEmUw/kCVQhmaw1sPmA8nqCNLnWWylKfq9Kea5BvZuAMVkgEGmcMSkqsFDgJ1oBwJ/G8zuB5JTXB8z2qkUfVhSzaGs8uneNT154h7xcEj9cYTDJeevVVxp0+U60W7Vadn/+Fz7O4tIq+/yavv/MiC82P0u/3iKcETz12ldsfrNNszrK5vUZzKuAoSRi4hKCIONg65CM3fp7OqM+bt15FuISoFbE3+qnhyFfli9vzw5MDnUA4iwQCT5URzNYgRUDo+2RFjjMlBSHwFIW2WGMIAgV5fqJxDUBZRskAqo6P/fJZLlyf5eZbW6yenWY4HBHVAgIvolJt4nsN4qABeCRJwgd3NwBBFFXK6bG1eCLAw+LLMszj7Zs3GU4ynC0Pr1JaolAyzjXK9xDClQc16SGlKpto47CU6xFKGZVzrhxfWhAoRoMJOtc4K2jUfGamPIJKwHHfMp7s83BjwtzUHI3GNMqXjJIJ4zTl6PCY2fnTLC1G+H7AdLtNHHlU4xikYHF2isPjHsJAMkkYHvQxiSVLLFZbjo56pSEIhTW2fFdZg0RirMIR4/ke3f6E7aMuoZO06jEfffo62ko29w7Z2e+wf9hllOSMkhHjJGWclKZDXZRkEmssSA9bRkoiEdTbdaJGzPb+Pv1Bwtz8PMpINtc2MEZTb1ap1Xy8IGJ5ocVUI8b3HdiAPKszSTX1Ro3j42OisEoU+uS5IbMwGie4wtJuxEg0c7MeU585w8ULTXbX9tlZP6Z7kDEY5IyTjDTX5Q2ddfheaf+sVmICz6dSrSCkx2AyJskmJJllMOwS1iucPnuKNJvghYpqrYZ10Ds+IsszFpbnmVudJ1MGrTTD8eBHtNp+Wn/VOnW2zfT0FDffecjRQYfhYMi1i2eJteJUe4YH3aMSEasLVKiwDoIwxBQS3QevCBgNC6wRJMmIJBnhhT66KA//UpRG63ZcpRIq7j64S388QjoHecC9W5uM9wacmV9lcrBPFmp2ukc47/tprLY8lLsSsyulRLly//ScZLYxzeZGl353hOf5NJotwqhFPtRMOoIHDw4ZJSk4BYVEalfy4oUtkzutQcryhreYGJavVJifW+DOf/cyOzsT3n93nlbrDDXboO03Odo6YpxMuHb5PHEccfnz1/m93/9jls9d4/TZRfr5mAfHm5ytVQn9aZ598mnu3X3EvTf3qdVn2dkbcrTfY3dznaZveez6KeabMVONNlmS0esNOHfmNIHvk04yluOVH/Uj8kOvD91II8DzfQqtGQ4HRGGMH3hMxmNmZ6cJfY/uYMwkzXm4vsmNa5/l2uOXeen/8Tu48wvUlcIPJMP+EYPBEeAIggCbWIpxQQgsT9W5dH6JrfU9nCfZOegxyTSpEzRaHqG0NGp1ulsdMgNKQ+j7FDYlkJZ8NKQ3Krhy7SLd7UN27vUw2pZYK1Wa9nShMc6gnSGSZWiBsD6eUBRYPN/H9yEWJRKnO+piCwcRtGoVhqMUIUKMBd+rUuSOo/1DXvr2d7CHA5544ml2ug856h4RBj5REFAYQ57nJXNbSoQUJMkEIeQPps7fb5qdK3F4P/h9FFHorPyzcpxZWSZSgrXtzbLBx6KEwQ98nr5xjd29A4bjhEp7iv54QjJO2dhYo17z+PwnPspscwbpeQRZgi002SglLSz+dJ2NF1/EHA+on13l+t9cod85pq2muGymkK5gGCdYHyIjCaTPqYVVDnt3yV1BkeeoSkxmLfVWhYPNcuKnRDnfk5SmJi1AKI9ClNpUqQy+L6nFFUIVYlLN9eZp8q4hO8yIWjNs3O9y5fo58HM++uTHyZ3jpRe+w5nzZ/jFX/gFer0DQj/AOcu46JCbCbNzbS6dXmWmtcCgk7F3cMR7H3zA44+dIhkMcZ6BccKsH7H7aJNX3nuH46zP5z/9CdJuUcpt/v+9nEMKMDonCnzSNCnTRfOCWq1GMehjjSVLU/zQx1iNlZI8z6jVagwHA7Qz4CDwgjI8A4sfRAgHuUkxjJk96/GF85cZDnoYHSBUDKLKJPWwhWPU76K1PTHUalqtNoNBH5zAGkez3QKr8TzN3s4Oe7u7hCIodc4IFCVuLlQeeVEmakrAV2Vkdn7SRNuTgGiBKw96QiIQSFX+WhQFzhZUqxHT0wFzsyHNZg3cGK0HFNajNzqiPyobuWGSUK+EnD13kUZjlnrTkucaJRyB7xMEiuF4QL0SUI0UR/sjJuOEzkGXUT8nTw2hH5YHBiMQUmL0iUTKgXWSJHOMJjmRKA2exghyC4829/ngwRamsLzw2rvsdfpkeY5z9ge3YeDwValrd0iSvMBJiTGWQmtAYyxs7x3QGRR4QZ3jQcKjnXuMRyWxJNcpvq8JfIVPTskStNQqIdPtGqY3YTAaoYQiy4bMzc2xs71Jsz1Dvd4i9gukNCiXEwUeiZswvWCZX5znxlOLfPDONu++tU+251DaYrRFFzm6sESewqvUaNVrtKdaaGdptGPSfML6ziaTfELSHdMfHOKUxUpQvo8f+VQrPrWpGFHJ2emsEbXqpfadnzxk109qnTo/S3umQqN5mbe+94jBccrevW2ans/Tj13guH/ESAqsdVgjKfIyMVUnUDcxcTFm3LP4sorJU6R0OCGxGuq1ktIRSUm7WeX2/VscdLroDMzE8P7bj0hGGbNRyJ1bDwkrFXLlygPpCe3I9z2MNmVIiQNpBLH0aMZ1hr2Ui6sX2dl8lbAiWDozS2uuzoP9HY7e3abbS3CilLiBQQhFIAKatQbH/WPwBb6vMIUGX9Adj9g+POILv/g5fvZA8bU/e53egebuawc0W20eX3mCI3+P7b09/Cygs3/IhVMXeerKk0w35zg86rHyxDLPf/fbNNvnMKmkUV+g1ys46Izo7GyT6hFHu0dcPLNIPQpRnmP94UPSTCOUx+HBEZ7yqFZjwrhKkhc/6kfkh14fPpCl3aKT9bFagIFxf0SOo9GqI6Sg2W5QqdcY94YkWc5jT32cr/3FVzBFikoGNKMKQVQhdpLmbJNuPsQrFGkyQkjLVLPCr3zqCWqh5KlT84S+4tFej5fee8Ta0YA8NVSrPlmuQUr8UKCF5M6DTVrTIU5lqDCGoEI2mbC/fgxGEmLxpaDRqjE93SSKDCJR2EqGijSpDlmZfg5jjznofQDWoJwBVaU/ynAmRkmP/AQXleaaE3EerWiZ0TBh/d5DKCyzc9N85ytfZXFuljffug86YW6qyXFvSG5MOQkTEivAC3zSPMeeTO2+v7lFYan1LEMqCqxzOCzaGKoSTs/PcjQ2fPX19+ilCRqIPJ/mdJ1T002evnGdt+6t0RkMka4oN2wleefW+9x47Cpho01VhoQqgMhj+epVqvPnefWl7zK1sMRrNx9wdmEZMUgQWQbpCG+oubF6nWG+QSa3MZFgYFNaqkq1UWfc72DSgmHXEhJT96vEOVQDxer0AueWqiwvzNMfQupy7qxvsFtMsAZazZjF6RrX50+RbGds3D5m0skZjDOqcY2l1dPowQG9o12iapONh9sUdsLFpy4RIcAUPHzwkGc/8VHm2lM4OSJQEmsHzDWnWVmeozCS7b0ulVCxsbWGCSpsd7ZpVJssthZ59GibR/fvMH2uwvLyGeTSNF/8vX/5YZfMj30JSsyitfb7jzzGOKx1CFxJnnH2xPQF8sTgo3FoXRCFPpNUY4yhWq0wHg9x1pGlCc1aTH+YUhhL4Qy+Auk5uoM+41EHQQOpmni+A2Q5iXGOWrWKLoqS/GZKHB3WEijBeDBgZ2sD31NlA2xBOIunHHEloFoJ2d/ZQziB75UTZyckKDC2RMGJk7C7v7wtKvX9Tp7k4AlLo+4jRI4uhtSqdRbmWhz0ErrDDv3hmChssL11SBBELM6tEoYVhhPDweERtWoNKw04nzzPGU0mGOeYblQZ1WMCB93iCFEYbFF+NoHnk1uD0QZrbJncZsFhyVLLcGzxqhGB75fvCyHpjQu++8ZtfC9g67BHWhRYZxHOYHVBJQqYbtU5tbxEvVajMxxz5+EWg6zEyFkEOMXBzjHV+WkqcQWjfDqDMUUBeD5RHOBLqEY+QRAglUCqkMwIlPKYZAOKwtAbDAn9gHa9xmQyAeEYjwd4nmKqMUWj4mGKAYEsjzOVyEcqSNOCU49Ns77XZX3rGF1eiiC98j0qpMPzHHHs4XknPH1VYP0xhClCaIIgZG51hunVNtVmvYyalxacplaLCCOfXr/HcDLGkxHt1k9eGttPahUaUpNSbQZcuLjE/XSbs9NzeEcTHr3wNh954gLvdrfpp/rE0yNJMzBGcWFxnsOjgoPDhGEvZaGtCEOfcWFRXkToeygnmWnV2dxZ46B7hNMBWc/x9hv3SUcpiwsxyzOz7N7dJGj5jAdD8MrQl0B6ZVqqczjjEBammi2alRqtapO9nTus7WzQXopZmZnDyoLe8JCjwyF5ohFW4cnSm4ITICztqQb1sM5IjsmKgsAP0CYHL2csLK/f2+Tq2xtMkoRcp9x9uEEQnMM9GnB+dYaptk+RJOgs5fyFU+zv9GnXp7h07iIPB/c57m5xfuUMe5sj/MUmq6urPHajwcajHp4H5y+v8OD2baSYwotDXnrlNk4U/OYTT/HOm7fKtd7rMzfTJmrUoFb/UT8iP/T60I20wOGKAmEdBoPxLbVqlVJ5kTHOJkSVKucunuWZx6/x6ttvsHj2PJNej9kzZ0j9gIkQVFsNnv74c3znSy8gtGV5tobs11muVPnIjaeJRIo2KZPcsD+GzJVSAKEgyw297oRas4ofS6I4YDJJUL4hCGKM9ZFGs/b+Jl7meOzUFM8+fZ0sz7l1f5Odwz6j/THyzDL1eo1MFhSMuLv2HnGYgZ8RBgGOgNEkReAhFQSy1IXmRZlzL6yjqpo04ykmk5Q0GxGHHsrA8d4B/YHH+uEBTnlMigTpBTiTglQI5ZdyBiHx/JDCpggh0FojpSyndu4kZ8s5tNal+akoWDzVZmm6ztFojPYkKIUrCrCWwkHeqHAYWqZXZqisbRMHEfPLK3T7A0aDPt99+Q3+zj95jm99+aucbjdpX5gna1fwdIafZaAzEmE4GHQ5PuxytLnOHDnD4z5XPvUFPjk8RXb4HR5m66QxeMpjtdnEHh3R3emyMn2azXvbZO/tUD+0nJ6f4W8+9VlsvsbO1i6/8Wv/LvPtWe6/8x5qts03XvgOS3OLNOOIuWaLh71dFq6e5muvvsLGxiY3rl6hWRUMxzCZGJwwfP0r3+Qzv/TzNKda2MGQ9958laLIOe50yrQ03yeKQvygSr83IUsecunKE4wHBUWa4gGdzoDp9izDyZjTq23ycUaj2aZiPO69/AF+tcap86c/7JL5sS9PlC8Og0U4XUbt2nKq6YzBV7I0jlqHM+Xf5zpHYcjThFqtSpZlJ89vThxFpGmCcDCZTGjUa/SHPQygdU6jXiHwPA7oMxglSBVTmDESH6RPtVpBa02SZCAUvucT+j4Kja/g9sO7WK3xlUDx/ThsgQw9wlAxGU1Kj4L0yvQzoHAWhyxpOJwQZk5MaXCScigE1hmMMeXhQjk836GUQ+sczyvDkASlZOvo4IAg9FlaWmGUaEbJmONehyQZ0OntU63ENJpVusMJa1sHFIXm8OCY7a09ep0eySQlz2wZaezMSdNfZnu7k/eDdaY8wCiJtQKtHe5EY22FT+7g4ebeyWYLOFBAHAQsz7W5cGaFVq1KHMccD4ZMkoRC5+giLwlBCJwQHGwOOHVxlngmoDfJMNqhVEigSrKKc5Zmvcpxb4AVVTSWg8NjKrUm2gi0BeM8hqMcJVJWpKRaq5EVmkIbDjoDoEWj2sLaFKdgNO5gHRz3uhQWrn3sDPvdAUebOSYTSOeIQkWjFrGytMBUq0SIHR7vM32qxvLiDI2LFbw4JqxVkJGiQGOFQTmH07ps1PWIbifBWQhDhRCCYWf4I1ptP62/avmBJKwoXv/OQ65ff5pgZ0B1psGqX2Wm32DtjV2uPb5IZ9pQnZ9hamqaSjXE0z0Ga/fxfHCp453XbxLIacJmhJYSogo+ksV2m8P9DfYO9whtwMF2xquv3kaIgGol4BOfvMbuB8cULudwdIT1LKHnY22ZAiyBqhcyVW8x6Y+Yac4wSCY8fHCXsZ/zwf4mlbpHOiiYTFLGo7z0aDlZIvhOTu8Ch3QOqwtCpYhUQBCENKI66+s7tJYa6DilCAv+6KvPU8tnGA4zUqV54ZV3qMcB3V6HleWI60/OY43hhTdfw/cilJxhbaPLZ371EludQ9RYwiimc1ywebyH9Auuf+w8dz+4i6lO+MzPP0lnc8StO1ukeMRxiJYe79x+xNLqPOtHh2QCumvrFOIn73bnw3Ok6xWUfwBRSZCIVIAfRuTjnO44ZTzKmJ2tshJPcfPWI6TT/G//d/8xwWSAjjy2jieEcROrUxZmmlw6s8Rb33yd5ZU5lpdm6O8c8voH93jm8Qtoabm9scWffedV9ocZtUaM1gZNqWHW1hIIRZKUBIko9rCkBJ6jGI+ZroacvbDEb/zqz/Do0Sbf+O4bbB6NcCJACcfd7+5zaWaR2qpDejm+d0xuNYGUWBxJqgFFEIDyIPQdgSfoDDIEEdZ6hLZBKKvouKA5V6Hwc3b6I/xDaE+3OewOCIIALUpUXDUMSLMMq01J7sgN0hokJ6M+oCg0AkEiE6y15Hle6qqUol2JefLKBeZaVbYOj8l0QRgEZaqxEOwlE37729+mJwVfePw6n/jYM5h0wtlLF9nvDPiTP/8GO1uHvPXqW6xcvsYLX/oSF8Vlrv/859m5uY5XJETVgIXVRbxmHb8+hUxvUq35uJk2VsbI3PCF6nXk/hGRmmU5b3Drz14g6fQwGwc89QvP8vSFM/wXz98mTwrGg4Lh4ZA8OeTS1Ss0l86QiAZabFCzdc7UTlHXMZUiYLyfc+rMRb7y/LeJfJ+LZ1ZZnG2xuX6fueYsaa5oztaJGg0WF1dYe/iIN7/7XS6dX2FpaQGBYH5uie3kJlLCtavXWHu0T7sRsrDQY3lhgS984efQukeWj5mKp3j8iad49qNfYJyN2Ojc5drqeb76u3/O4uk2zccufdgl82NfvhJ40uLhCCQo38OzBdo4lM5oBIqRzrDCIo0lDAPG2qKFBSQ+jtAT5Fqjc0Or1cCZnFwbtDalYVkJhAPtoDCGuBIyPz+FcX1Gkx6IGOnXUL4iyxPy3CKEj5I+YRhhdEa1UeH+7fcYj4fEkUdcC3CFpbAGXwqEcozHfdJJThgEaO0ojMMKQdljOtDmxOxb+hSEAGNsOWU9kSV5qiTVHB50kLcnzC5VORxM8MMmvl9hbnaGwFNU/IDAbzCa5BwfD+gNRmiT02jG1Cox7UYTz/fZP+qztnHE9sYO6ThlPB6TJSlOU8o5tEJi0EWpDbZaI0rcxAlDvvw5GW2YjFP8rIyOcQ4ckkJbfFXgK4vEUqvELM/Pcm51iXazwWg0Yv3RFo82dznq9DAOAt/HC3ysgzRLEInHaHtMGESlIVGC9UAqEB7Um3VMPsYIRXek6Q8HaGvIRcb89DSFEQyHOblTpIVjOM6QUjEY9vD9EGMV99d2ObWyiKQcORtCjM3Bi8mLMaLicf3ZM7zcv40dSuZb0wSBYnZhmuVTS6QmozPeorISc/rpZXKRI0VY/mydoThJ31So0gDmezTrDQaDAZm1pOOcwTBlOOjSPRz96BbcT+uvVItLLY6OOox6Gc9//bsMxgnNdpOjTo+fP3+DaEdx59U12tcW+NSvfIypxXmajSmM63H/gyqj/A36O8dEvuP2zbtc/cglpPJoBVVank+/f8zG9hau8Ok8GnLnvUN0pvAr8LFPfoRGo8ELj24SNGMKOSbySt+TzjSRVKhUMD8zQ+D5HJkON9cfUNiS1m49sM7ga0nWTSlygzEnabDCnJhhLd93xUoJaTpheNzn8vJZeukxVijm6tN4uYcNQhJvQj9L6Y/3mF2aobvfY6rdYmGmyfXHzjEYbTAqMsKax/mnWjRrDd56qUtnv8/992Pml5bIRgNq0ufR/U32BlvMrlQIopD2UoRsWx5/7AbP/8GbFCYnSVJq1Sp/9MU/QbU8ps7FPPczf439zSPef+c2j904xZefv/WjfUh+yPWhG+nlpQVmLy0TLkUUsqDTGXDYHVBkluO9Lp2bOaLqM8lH7N67xzM3bmC0pbk4R2pSvvkvvsj5556mNd9i8+Eabz7/Bn4m2F0/ZHphlr50/P53v81Xb71FpgvGo4xRkRHVQtJCk0wKpLQ4LLVGjBcIkklGnhmK3CGEAaN54spFht0J2lh+9w++RufomMwYqrWYcVpQURHZQcrhgyFyOqbW9HFeQhjHCFnqmZUUSOFjrMNkGl+neIEiTwVSeiQTQ7M5TbUxw6uvfYujzgaXP/04SzNzuHTI1sYGioBeoXFxBTE2FFmBMjHJJCfTOUoJjNYIU2o4lSonItaUDXSpnS6DMCqepFWt0ggE9VqVzmCEK8qNXylFLsHMTLGeWmqtNtYKLlw8RTYYkA67ZIMuj1+7xKuvv8t3v/wn/If/6X/K1NlT3H7rDg+++wZpd8j29kNOn13hEx99lo3+GKsFoStjdxv1KUadY6abTQ7fPOJTc8/S7+eYOwecmdT40ouvU4sb/PEffo3BeEir3mRh0dAbjHnt5ttcOxtw7fGniaJpupsdClcwEiNWr6xiJoZhf4QtMnTviBuXT4HW3NvcYW97nxvnzpNpycbuDmOb8tkvfI779+/yxvfeon/UpRb7RBVJq9WkJSwPdzKqtSpnzl/g/qMOG0cdTg96zC+dI/EWOHX5o/yNcx8hF4YHD+9w59ZDvvXSl5hZCLhz+yGdTp9rT5+hSH7yTtN/1ZqZalOvx0gpsFoTBsHJZLa8PYkCn0makuZZOS3xfTJdZzweobXGl4IwDhmMSomSXxTEwiGweFLgO4cfBEyytAz3cY4w8LHasLrc5vB4RG8wQQrI0gwlY6z18JSiEvk4M8FHM+kOGR0dEgDWZPjqJO5ZCaQD6Ut0niKc+MHB01I27/Zk4lOWQJuTkKN/41bIwl822Sdc7UG/4P6jDtVWlalpH2d62KzPmeV5phse49ExPoL5mRpKSpJMUIs8Yt+j3WpxeHjM+toOu9sdtjaOMYUmivySdxtE+H5OqkutvnPg+4rcUNJ7rEMJhxNlsJMEsOApH1BldLZwxKHPc09eIc8mHB73qFZr1KpVjvpD7q5ts3/UKQMiCo0zjlq9QrPZwFlHrnMkPo1AsVJbQGQh+8f72FqM3/Tx/HLT7wxGVCsBBYreMCE3UK3Wy4beFPgup1n1KIoUKyS9cUa9GpMVhiQbMTNdJdMp3XGKwhIFHpKQUTJiOEnIjSPwFa35NleePIvsCxabc+RJQT8bs9PZp706xZmPnMX6mrHKSHSGE94PDNxlCI/D4crUQ+sYDRM6e2Me3dti0B1h8pJ173667H9sqnugeXj7mKWlRY6OBwhXhhwdTnoM5j0qWZXHw8us3d3m2//5H/G5f/obNG608IIq5y9dZb4tePWNd7h85RJ3779HnqbUpio0fFAiY3d/E2kiDh5l3Htln9mpRSZ2l1MXV5ldWODF776D9NpMOEJFisApdJIyU23SiJusb3bY7/ZIdIIRJVITKfClIjMZHuASjROivHES/8bB/cSc6FzpMwq8kqPuhOD8qbPEc2ehGvD8n77Kg/fXePoTj3GUHTFUOTkZWS9FKY848JidavFoY5eoHjNKqvSzfeZPBbQqFT768RZf/9f3efvlR1SbfXSSs7W5xa/+xq/y1e9+BU/M0ZgVRDgoPPYHKavXV7j1/guMJn0ut6aZWq3yxOc+ycxCiwdvrNGsh/zdv//zVCoB8K9/1I/JD7U+dCMdKsmjR+voI4/Tl09z7sxpVi/kpGLCzp6iMufhBgXD4T5CaRq1iFpQ4+oTT/LVP/siM0j+7Lf+gAJZRt4Wpes8awfs9u9R4LBC0umNUH6ARRBUI/QkIxnqE31cgQoE4zTFN4o8y/GlpBZEtKpNbO64+e46aZJRi2s8c+Ux/vHf+4e8+eb3eO3dd9kbjhn1J2DBDhVxKPB8Ta1SJQ6rTLICZNmUS+nAWJRzBCpgnOTk2sMaWHu0z5Nf+AX6w4Q3b75Lb7TNwtwSZz96mTOL8zy8c5dXX3+TWxu75IlGGYmyII0jsqWZxxgDzuFlgmKSYfICkhSnLcI4hIHIUxSJ4MziLL/5t36Vs9MtZqcanDuzyzub24wnFk1KfX6KMT4qbuNsyVM2ShI3a3S3dllZWWFmwdI7PGA0TPjgzdf5+b/zt/jif/0veP/Vd2k2qvQnCX4U0T/YZXbxDCiDH3gko5R01CGaHjIuClorSzhnufX1LxNZwcrSHI3pNrlfJa1X2ewd86n58zx8tIbRZUKTScGTLbpr+/SSA15LXyM/mDAbLLLor9CcqaGyKqowVCMPd/EcV6/d4F99+c95uLPHk9cfZ/vt96jO1FlcXCTyQjZbbfbXN/jg/gNuPH6B/mBAUIkZDzWDbod/+Tu/w5UnP8q779wnswWZ1Dz56c9w4fEnCPwpsjThpZdfJPSGHBzsMEgcOx8c0s8H3N1cp5H+5Bkl/qp1cNAtjbJZhrOOKPRJ0gQoKT5BUHLMwREoiVcPkCha9RaeFISeQkgYTybkeQFY8twn8X2SLMUYTa1WQ2pNUuQY66DIqASSJMuYnYpotSocH4+ZjHOEcEgRoCQUuUbZnGrF4/DRBqpI8T0PizvRcwuEFGjn8DyJE5JJklNoi/7BJBqEK+kPTogTxvkJRce5cvoLJcLKk0gcRZYDAiUqJBNBpe6zs7XN/HRA7At0uodQPvVKnSAI6I+OWZxrEoZzpTnSemRJwqOHa9y5vc7u1hE6twS+j1SSOApKmZiKMXVIkxQ/LHXpWWKwtjQaYktrpJUCIwR+GNLw64zVmMJYrMlRwmNpbgrhWiSTgiTTHHR26A2HjEZZGREuLEo46s0arUadwA8YjsbkSUoUSM4uzzNbnWbnuM/hwx5FPKK+2GR6qU4qLMe9AdKbYpIUWBRxJWRmeprx4JhWq0qjKqmNCgorGCWW3b1jwtVFKtUqneMjRsM+ea6xzpAmCc76BL4AFSH9MhzDIRE+TC21idseDSrsTY7YP9zDFyGVIEZWBanOkUiECgFQJ9M8X5VX5cpTGGuwDh7e2+D+rU2kFYRRQKMdUqtVqcRV1l597//HK+2n9T+m3nt3jdOnFllenEHYkhyVZY7O/ICRyhn4KW7S5+rqaR7u7/Gt//IP+fQ/+uusPHsGZTwunDtDq1XQ7w55+onz3FrboOl5BBQ8WH9AZOrsries3TlmlEDLwvnFVS5eu8LLL7+DGzkqzRbhuIfne5AZPvP0UwyOe7z7YJtCSowwiNChTtJVPQVB5IEUVKshUeiVIXRKEEcRQpQABSEERZFTZAXJOEVrh80Fw90Je8NDLp5fxm8EfOwXH2PmfIXHn7zKKB8xsgn90YDhRp/VxhJNYjp7XXYPxzxY6+DEKU5fqOBZj7QvcWnGx544zWDo89qtNTA5Tz52jje/911UYLn21GXefu9d6l6AHYfcevQ+s60G9VaIp2ZYODPDU5+/Rpprnv/ii4hM8Dd//RcIapa333z/R/2I/NDrw2ukDUS5T3IQ8hcvvIwIBSsXZ7n2zFmee+w5pit32V/f5/CWxvNnqDdWGA6G/Na/+C8ZH+1z3DksUVnOojONCiQisgyKEdpalBcgfQVCYnWBVBLf8xgPyg1UKco0NacYdDOaDY92vcKplTlMbtlaP6TfG+H7ipmZGayGm/fXOL96j3/0b/9DPvqR9/ivfut/QNcaHAyG5Ecps9UGflMQyRirFcJZnNV4niyvnZ0kVpI4rDAcj8idZX/vgOOjPkma8vDWO2yubYBIMOM9/uKLX2OhMYWyMF9foWgG7I73yJIEKWQp3VDgBQGoUg9dRA7VjIikoi0VrjCYVFOMMnQ/RXeG9LKMb73yGrcadVYW5kitZjIZk+QBp2+cZ+BZrImQQYTVllgF5NrgBwGzi6coMo3N+3zi48/w9hsf8OCl1zhz+Qq/9Jt/jy/99m9z9PYeyjmiao35uTYH6+uce+4ZRKuJtQU6qNKenmJ41MEpSXJ0QLNWZXt7l2wwJM81j3bW+Lm//etcvX6Jb/3ZlyGMCALH408+QSXK8eMWX/rKl3l3+B67bPGF68/yKx/5NYoJ9He2OBx2SYZjGrUYPwyII8knnn2Mm3fucXx0xGAyYnl1hbvv3+aDN9+m2x/yYHONsxfO8e7797h842kqs22O91Ie3bvHuQtnmKp5/MznPk3qK8RUkyvPfILd9QP+9b/6PbZ3HjHhiF/7679E7d2Qvf19PCe5dP0CJlaEjZ88o8RfubyQcaKxVuD5AZ1RAk6gPA+Ex/FxH4dFSKjGEf29I7I8RThHvVbFV2UQixIC3/OoRjH1WpW6K9C2wFmDJ6EqPQbjPtpaCm2p1avsZylOWqJalWYYsnvQoT/qI1WAM2MQijiQTNfrDGVKO/TI8gLhKQpnkEKcTHpK1J11pVTDnKSIctIoO3GCxQTK9OkyBltJCc4inMUPFa1mk4PdAyghJIyHKYdbfQJPcu58ncvnavhugLIp0+1FtDEkkzFWW/J0Qi2OCf2IQvvsHfTZ29lnY32TYV8TRxFB6OEHEj+uECpBJSpRmboKUviMxwVDm4NVlNptx0l0G9ZYbGHITQZCYihlIMNJysbuIc4YHm3uMUxz0iI/wU8KrCgPQFONKjNT0zgHg+GI4XiCtTlnV+e5fH4Z3/cZ9cdM+gXpsODoqEuWzrFwuoGbqmBMKUFDlibTg6MjTDamPxiwONek0EM86fC8cprvrKZejfBoUBQ5xozJkoh2s0mWJFSiGkJYxhPNaFQiBI0pvSl+KNg82KJbDDj77Cn8uRDjazJjS0qLE0jhIaVAm+Jkqmex1uEBgeehbcHUTJUnPnoB3/ep1mOqtQhjNcko/REuuJ/WX6Xeu/eQ9zc2OX9qkeXZKbS2DAdjTq3OMhj1mbm4zI4IeePhLpfn5gk6Hb77f/9jnp18nisfPwtCMD9bo1V1JNkQ7Rp4vuZwb5e4iHnlazt0j0vKVBAKPGEIC8Xdt2/R7R6xtDBL73iP+aUAhyEZgWxJxqMBK4838GOFH3mEcUhci6jUIqQqaRsiACFPjITwAy+GkAKlxA9yJ6wTWEt5CNcWPbF4MiaYdiR6gFAZF5eWmdg+CkHdC6jSxr/Ypi5jKjagfuQxN5znpZde52jSQaxHLM+cZb49zdgdMs4P0SNFw4NH2/tMf+5xzp2bwdULTGWPx5+bxY49htuaK6uryNxx9cw5Hq3t0UuGbG4dcOvNR/x7f/+fEitFZ7xOMk54tP5TjvT/R40mE5RSrN17QJFmFGPHzu0O77/6iMtXL/Ab/+4X2D34Or2dLheWn6LabPPG6y+SjbscH+xQSJ8sLbmjY2GpTsWM8xR0qemzotwXhCg3BqU8hPBot9qMgj6jUYovIQqhEoVcODtPHEfsHxxxdNw/abgh8ANwEuMME5fxndde48kb17ly6Qb/87/3b3N0tMvvf/lrrB118YYVqrMxxijy3AE+SnpgJMIJlHSEvmKSWXLjoa1gd3cXnOLug3e5+b2H6GFC2h3jxRUePFzn3cO3UOaEj2xKx70zpqQBSIEVEuWpMkkpL7CeIjOmNFTK0rwVeh5CW2RRRpdud7rsHfUIhKRarVIYzWgyZv7sKvOXzrJ+9w5BpaQAxEazt7FO/8IciR+yubFPHMTMTLfIdUbqDMlgxMt/9mV+/X/5v+DiM8/w2n/zL/CFo/fNF/kH//DvsNCaZrS9zfDoADfOmb16ncHhMQ9efp44qlAQMZ4IHjxcZzAZceHUMsfDPi//6Rf5x//BP6P6T/4B//3/7b9lCsfZU6cJYkMWSjqVhEc766zGi9T2p7n3zVt4UiOUQ6QWXyo8P2BuaZkHj97l6SdOszgzzfMvvMm1x2/wzDPP8L3vfIc4jnjjg1v83f/Zb+KM5Ktf+hJ/+sffIIsVrgKHBwckpqA3HNJeWqRrNUtO8r2vvsj9t2/yve98k7fvv8nZx5f5xrcE/XGH5nSN9vIcsuoRzk4z+am0g6KwqMBDKI/RJAUhiKIYay3dwRiQeL5PEPoMk0kpVRI+QRgyNo5kOKa0+wkqUcgwM4zHwzJIA0vkCSJPMDvdJPTKV5RwgDME1SaF1YCjGSlqM3WymTrDJGWSZDQqAdcvn2V1oc34+iL339vi0QdbdDtjxg6sBOlJVOGhpEeSa+yJDlqJ0lxoRbnenOPkexflpNeW2kRPCqQUXDi7SpFr9o39QVS61ZbB8ZCpqZBWbYZqkDNVqxKoCrW4SZIqKoFjemqG3JaNbzJJOe4Oee/WGgcHXZwBYzR5XoZCKS+gsBqJoBp4OJ1Sr/oUmSWT4CuJLgyWcnIulUJJgTCaLB9zmAzBqNIsKSSTrODVd+4AME4StC0JKCWZpJR/hJ5iptWmEkXsHx7TGwzQDubadZ69cZWzy7PcXdth5+iYcZGTO8h0zoOb6/S7FWqViywttGi3Ymw/oyh02cB6ZZR8nmt836PRjLEji7UKrScEMkb4DusLKnFMrSbxlSG3BaYoiMOYWkWwttljmJmS1CRBixRdNaycX0X7hkxkSOHhKG8hcK6UcpwEt1hrcJQkBYwrf/ZhzPRcqQN3gHUOIyxe6CFT+SNYaT+t/zF18eIKaWE4OO4wHCVEUQ2BZW3rmCjqs9/p8vDRLse7x4zyMU8vniGehLz+33wF13uWxd94nGq1RbWqGZgDVtqS3aMefhGx+W7G3Tc6pFoTTHk0pn2ufGIGK0akvuNUbQnPd4TBKsqzSOkwRgKG1pVV/BAQHoVx6FIbhkDgeQGgmOgC68owBYWHFArP93E40kKf3JRRGrmdRSrwKz5EikRrsnRYGo5VibNUJ3Qli8E5Q2YleTFhIDK86ZxgTvKp1aukowyRFByku6hRTvdoxPSpaUSY4XzB/OIVMjvAVXxUJCk0CONwuiAZZYTSZ3QwQBQZRTZBiAaj8YjzF1e4eetVth9tU5upMrU4w2Bof4RPx/809aEb6XsPHjIaZ+gix9oC5wkKk6ONZTzKePfbG1xZeIqffWqFYT/jt3/n/8nK0gKBm7A0N0NXO5zYw/mCazdOs7O/i48l1xahFCXlpdzUwiii3WpRjMakowGhCtF+zsxsldVTs1jjGPUT9va79HojcOVVc6lxdCebo8MJQ2cy5l9+8Uv8R//+P+Xi5assrczx+1/+BsXAsXtrzLWz0xhcia3BIJ0BK5AoIj+kGodsHwzItCIvDEZrYs9je+0eg+4RkVDokWC832M4HiF0+fCcvXienc1NUj0m8oPSqGQsUDIX42qIG2nq1ZjheERqCgqjsc6ROUfgLFfPnmHp9Bm2Dg/Z7fQotOV4NER7iqBV5YmfeYJE+fi1GbQpCQKhhCevXqNZraGimHfe+yaPHm7wqY8/w/R0m7m5BbY2d9jf2OTFr/4Fn/prv86br73Dw1u3mJmZIxlNmJ+eZbCxwdbGQzoHQ07nFeoViac17776PR7tDdg/GrO63OTqldO89/49fv3nPsOd998nHHX4+DNP0v1bvwgb21xcWOYw6XJ3Z4O3Nu9wrnGaZ2av8uT5i6T9HeqVJrsHIyZjzcLCAnEcEbXapGaV8WRMGAZ89NOf5Fd/8x/Q3d3n8o2nmPR7/L1rV5heWOZLX/wL5mcXkEbynW98k49+4SxPPfU4Z85ep9ae5cXvfY/Dg0Pe/NY/p6Ea5WSgLVk6M8NUu85B94it4T5ZZ8yVszHDnqF//z6Tnyo7QJQx4YXWICAMAoo8J88znLOEYRkBOx6NMcbgeT5RGJOkCYUuQCi8ICQMApIsZZiNEbI0H+I0oRPU/JDu3h5FNi7lIMqnEnjMttsUaYaSAp3nNCrghx5itklaFLSnZqhUmtTDaeqLbVq1Jh9/7nEe3dzl9bducdQfUFhHakBYQaZLqogKfAySJNOYQv+lVKL87/6A8y6wOOPQ2nDvg0flRujEyVeBQDA336berPP+7Q2q0Sz1uEa70cL36gRRAytyCqcYDoYEYYVON+Gttx/x3vvrKOXh+wFhkGOdxhQK65cpiMlEI01JwNaFRQmJdAbf80hcdvLNnkytrKEehKxMz3K83yFLLc6lOF9gioLuaFJeO0txIo1xSOuIAo9KpYZwpS68NxxyNOiTOYNQAhWHHE1Sdt6/y7t3H7B53GdcFBgBiDIiftCZsLd1zPx8G+cJplt1RqMJnDD7q9UaR90+UehRr4Uc9w4x2hGGEZ4n0M6ytDhDf9AjGfVRsaMoMgodMclSfC/kzOoKd9Z2yI0DKUlNgop8xpRacYfEUAZaCUGZGyAERhs8T6G8E06/EAjrysOhJ8CVXi5jBeaEDOWcQaqfNtI/LvXE9YvUKiG9/ph3bz1g0O9TrVXojVJiLQk8xcXTC5y/eApf+9w/7nBldoELHY8P/vgNrj9+gWsfXcUZQ9U7oFAFTAR33j7i3Xc2Wb4cs3JlicZySKUNfpygrUQ5D40mDgMK53CiDKDyXfleCIIKRufkToBUKCdRwlKNIsaJZpJqnFD4nkApRxTEgGSSZFjn8FQ5aLBO4CmBJ32UJ8nyAodAKkcoSmNwrg2Z1mSFLmPInSuDZJRABmBtQYZH6mxJG2qF+FMBFTnD7uGY9ze2+MynP8r8YovB+w/xrGBq2UNnFhFYYi9icNRjeW6RrdEm33v/XVbnlqmEfilFyeH+3U12t48JbEzkh6S3UqbmpvBk80f9iPzQ60M30o1ag1ZT4HY6RIEjL2BqZopBZUQ98ul2DviNv/0PeeuNm/zW/+tfMhyNmOiCpbrPSr1CqAyVesjjz11m8XSda5xi/cEur73zgEI7pOeDkHjKJwwCmo0YWYE80thJwqnVOcJqnb3DLv1BCkjSYY5HgNMZSklA/iCtzFcOISHLLWu7B7z09ntcOLPMweEmIwOmCNj8oM+ln7W40IFXxgEHQlBkFuE88tTi1apYcvIiJc80gR8w155htJ4w7o6pNur0JjlilOMZi1ACF/lE7Rpu3eJRYqfQBiEpDVBSoHVOpRIiAwVJqZ8ChTjBdy01mvzKpz/GXL2KrwTH/SEHac5v/esvM/QEi1cXWby6RLV9idtrz5NM+hiXI5Vg2O2QjadYXFrkV371F/jeS68RVQIOdrbZPx4wFI6LywucWT3FO69+j3/2v/mP+K3/7D8j6ezz5quvsjA9hUtTFleWWN+4xWBrh53uLjOzTS5euc6lGwG/98df48KlMywtVLj+2CV6nYROvUJbaNK33+KXf/kzvH3vfQ6qiqOx5g/+4HdZmZvlN5/5OW6/+jayEtGunyYdTpheWWI6VwRSYWxOe6pOe+4TbG3u8Ef/6o/5Z//J/56Z1XO888ZNZpstzt84y/Nf+RO+9/JrvP7KG1w7f47jzj6VyHB6dZZu54CnPvZLPLy3iTke4A3HLJ+a4bVbt/AnHpV2hWHRo9ILaCufYbfDwlyba2fPUfgh6zffZ/7cVV74/Rc+7LL5sS5dGKQCpXwQjkmSnoQKKcIwJC9yiqJACkEQxDjnGA4nWGdBqh8w0SeTCdqU7GdryuuaKK7i0ByNh2idAxaMITSWug9H+xugNY0gYq7ZJPR9Agm+NbS9iLZfI/Sa1NUC7bklepVdRt1dfuazF7i0eJH9w2M+uPuQew/XmTiNDUKCyKMzSRiPErQWJ1EtZQOmpETgaNSq9LpdbGlhKBF6J5Ns50pbohJlox2GHhcun6Xb32eSBlhRRYgI5dVAVPB8QZFbjo4HpNmIjc1j3rn5kNFI43kF1hqCIERrQ5YVBH6EE5IsMYyGCdU4JArKTVh5ilo9IknzE323AKcRQnLp7EVW27McRE1GScbm9i5ZpkmcRZ8gS2WJ+iAMBNPtKhdPn6JWr3P7wRrH/R7jPGOkc3Q57+b27gZ3dzdwUpSMbQum5GogpUV5ktNnV7l46SqVqIFFYwuDJx2teoS1lr29XbTWnFqZx/MEnjQle9qXHHe72CLDO+xidYEtHN2kR2EcqFICEseGpfk2vr/K+3c3KGwZOpObjMAapFQ44TCm/Bx8KcsoeGtPUmRdOWARZRqikwLrHEVhCLwAKKPihQNrHEZrnBE/yiX30/or1Hu31/j0pz7OjIz45Z9d4bU33sbzA2Znp1jb2sTzfabaM2zs7nB83OMzH30OawX1KGShKxnuaWxexzGFUhWi8JhWK2B2tcrPXb2CqDlyCbmmpL5EYXm4RxCHFTxPkqcJUpT4S88ZarWoZOc7SUUGpYRMSKpxheFoDFaUQXRYqhUfXyqSJMe4MvjJak09UkTKYqzDSokjpjPMwAvKd4HVxHFAkUNeWIwMkb5DWoMvfaIwYJSlZDpDypLvj3Nlc12+0EmkRS2FXP+l6xzZUZkQe7VJUWiOzBApJP5EsdRuUo0aXLt6he88f59cBtzfW+dXPvNxur2EtY0tfv0ff55ON+X3f+dLOA02kVw4c5ZR8qN+Qn749aEb6ZlWjeW5JnPtJt96+QOkjPmVz3+WLBvz7Vde5he/8HnG/ZSvfeMlDnoDfF8xP13n2oVVpM2puYBnPnaJ2lzE+ZUVPKdYXD2Hmp5if++Ig90uWWJQKuTc0hy/8dc/gV8N+IN/+WdsryV0egMGBx2E8VDaQZ4QK4UvJaPClVMJZ/GcRWc5Rhuk0EipmORjvvLNr/EN32N7d5v+YIAzOb31gqRT4GZScqHIjEeGwZgAPbHMtxzDfo6zCmUsfp5z6dQ5hl24/94OaWeA9H1kKyJsBOg0ByeJ4wACR9CulmZFIbFpgRMWIyy+J1HWsDQ9yyDNGE7GCKXK6GUlWWjG/I3PfZqlhTa74z7+pGBpahrPOqZOzaKzDBHGnD3/KfzKDGH4PMP+kBCHyRxv3fyAOeWh4ohaHHLpwgqx79O+cZlRpvm9P/km3735gMWL15idbrF25x1ufPJJfvu/+K85Mz3P4c4e/d07XHr6aeaXV5ifniIOR1y6cpEk0+zsHVP1LZ7MuHT1OfLMoNQeH3vuaepRlUmW4x5u8sSVKzw4zvniu39OvVnjb/zMX2cqD0mdpjCaqdY8tZogCGqQefSODul0tnn9hZeYmlugNrfAc5/9PCvnL2G8iE98/mf5xh/8Ht/80z/k9JlFLpw5w4svvMJrN99m+XSD/+T/8O9z+vxFbr51hz//w98lqFSRgcX4sDfYpzoboFPJoNenEockSUpvbRvhKnSODN959T1Wzp9i8dJjXHzsmR/CsvvxLm0FkYrQRlMUJS/Z80sZRJLkIByeFyAkTNL0hLdsCQIfgSDPcrQxGFfgnEHJ0uvghGWS9MnyBKUcxhochigM8KOQQTYhNykSR6Yd/eMEH8NCu8V8tU7dqzI86lBIqLllvEadhamYwyQhTSYsLC+xOHWap698jHt373Lz0S12xsfc2T1gtzsGV8qtrDM4W17LWlc2+elkQrkSy9uxsq0qkw1PYkrKco7JKCFLLWFUZ5IlaBMShFM4WSPTisIGpFmB1j73HuywvnnMcFQghCLLDcl4jJTyB8ZIHAjpkeWuTCgsciqhJPSgGgUIYZHK4KzAls5IPBexvbXH7sMdJB4FjrTIMSUDDyHVyYRW4yvJxdUFPnL9AkvzCxz2R7z74CFHyZBUawprsMIhKfF2UHpjhBAITyLtyXUzjjgIqDcaOOORpxI/iPGkpR1XqEU+k3SEcBajc8aTEb4fkE4mVOoeAkeaJBRJih6PmWk1CazkYHefuNkgT1McBoVH7GeszkVkSYtHex2S3KCNJc80UeCVcBVRfnbGlreQUnkl81tIikzj+QpjyiumkjBuyPKCOI4xaXm7Uvo3FXn2U0nXj0utr20R++8wVYmpxIJLF1aYpGMOD3bZXNtGLC2SjUdcu36Z+rNPkKQpOY6gXqXe9jh9ZhkzdqBifBXi64LWlOLMFUHXaIrCB1fBSEscxQihyF2MUo64EpLnGVNxjOf5eAJ8H8LAo/DAiTLp1bkywTnLC7yqRzVwFAaC0McPJP3BmFD5ZYPrJEZoWpFkrh4icAw1bB2leCosKT3CUqnUyzVUaCK/gkOC1UShwvclo8kYaQNC5Ze3UM4QxyGFLvdd7TQIRRh4aGkptMGhwDny3CBkmXRqtWJn3CWuwPNvv0ARa4ZyzJlzczzc2eKJJy6zlM/jgjEL5yr80t/9BIMjw1d+7yWOD/tE8U+ez+hDN9IL7RpT9Qb7xymt6SZOBly5cpGpZpPzFy8zylN+93f+gMPtXUJP4YDBYIjKDONkzMVnbuDZMdR92jMzjAdj8D2uP/MkPzM9z3tvvM8L3/gusQr5wjNPcGl5iVvbm6xtH3E8TDC+xAoPz0E6KQiQyNDDIRBSIZwCKcixoFMCr2TNCikojOHB9jrOCYSShI0q2dCSpIajnT6tukchHRifNC8IlEe71qIW+uQjjSlypIHI1Ll3c4/jI41frxNUJNXZFkHVIVVA1fOQonx4XTVktnmhvJYVEmsMRZ7jtEbkGmkcHeVRpIap6lIZyKItoYMLZ0/jz9R5b3+dl+7eZL49xSevVPje7Tsc2ZQs8sicx1985XmuX7/BTDskOSjwUsukP2JjMuHdasxTH7tBPxsydglx5KMihWcMf/3nP8l729v8yR//Ib/yhZ/j5p/f5B/+r/8DPvmzP883v/R1Vm/d5ePPnMP4EY99+hnswSa+1+Td998mjFrcu7tFpRJz4/EbqDBm3D2iWm8wPb3AJM/xJhkNr8LBrUM6qqB6ZZVPnb7IhYUbiMNNQiGpFAKBxCqDdQleVCOaqkAeEldniNozJLbg1Jkmt1/7FqNBlWH3mGY1IK4KvvmdP+fTX/glzj59iXiuyfRMg9Ek4JVX7rCztc2410EXGs+XXLu0ynlzlu2DEd/46vOkZsjUhSWiKOD48Ihrz1xj9dw5FpYucu7CWQbHmltvvPlDWHY/3mWMY3Kijfb94IRtXjYkUiiEdORFgbUa5yyer8Bq0jQvucfGIP0ymdO5MsHTZBMKk6MkSGGRwgNpCAIfKSyTpIez+iT4xCfRFu05KoGgbxJEJkFVWVk9T82bxoxzDu/dKRMQpcGLY5q1RQbbEwJRYb46R/tGgJ2X/F/+2y/R7e5hTiRk8kQHjXPlxPL7xA4ATqY3cBJFbk+SDf9yYnmw2+WVF9/m/PUVZs5PUW0skNMgzyK2d/scHY/Z3e3yaH2b486A4TBFCkG1Wj3hRFviOCqJHFnGaJTgexbnJMaUE/DRKMcG5QHbFDmCUuqhnEA5hbKCbmeAQqJkAHCC8JOlTEGAxWJxBJ7HE9euce7cErcerfOtN95ma79Dpk0ZnuaVYSeeFKXUzrl/AwzIia5alM+D52EKw87mPg/uPmRqqsWp08tEUw1c7rP1cIuNzW2ENGSjlEo1LI8n2rG7uYPNU2IlWGjNIDLBg/tb1KeaNCsxYSg56hyj/QyTOqq1KufPNDjodhmM83IybgWm0HjeSTNty5ArjcEXDuFKpJjBQQGe5/+AHINQJ2mxZYBOmmWcBMOXSXI/rR+L+tVf+hkalQZHh9ucOr9CXK/yyosv8NxHnyWKK5w6NculS6fpdUc82FhHNWp4tZDvvPE6v/CRT9CqVVGJIjWWTFsMVQIRMhcKai4g8wOkH6CdwTqFICCThkKUa7Aah1gn8YOAJB3jhCQtBIiAKKqRZ+MyzVgFeHGdhgxRyiPwA4yzJHlCI17ACUngewQqwBeSOAR0Biqkah21qiU3AiElWAh8RZokTJoOKD0gnlB4SjKYDIiDBKsN1ukfBDplRc5QTwi8MkjKk6CsIBAOhy5vq8IAF1isK9/rmYTEakZZBg5WnpyjOh3z6N1D/LCBUAVZPiRPmmg3pD0TMb/UAvMZXvnaG5w7c/VH/IT88OvDR4S32oxyS09nfOIXP81jjz3GwUGXPDe8c/MDDjvHFLmm3WywuLDI2zdvoVT5krpy4ypZRRJ7dYgkfhwishwZhagcwmqN7rDPytlVnrlyhU8/9xRKao56YwrpYUKv1AQagUlNGf0rBNYYoihAe7LkNIc+xpeIuDT06VyX19BxhUiU3FPkiQ67WiHTGd3dhNpynVSkKBkQqIjI82lEEUqH5GSYfMDocMLWe11270+wLiacrzCxKVm3i28Cziy06R52GCcFSElluoUZjdFCIHyF9D2U5xFEEZ7yEK40vkROU8OSJyn5YEzFSpJJxjs371KdqTHKcw7XH+Fbn72DLpFfQUUVxrnlvbffYfPuHabqAfQHmLFBGEeBY2fQ597dh0zNtXjl9Vf57HPPUhEeznrU64qfefZxdu484Ghzk2evXufWS6/wd/+df8DND+5wb2OHn//lz9I8e56pxRmOhjvU/BmWgxjPr/P1b3wP4Sy9/pD2osIJRaPZAMomtz7rQ255sPUqr22+w8d/7md58rFnuf1wj+qkT6U1hfKrZITMLJ5CqQrGSOJC04hmGW3v8d6tfUbdI6Ts0+/vYrVkZ2+XC1fPsnR2hr/3C/8r8Ju8tnHI9179AKtzfD1hZq7FTKvCk9cuUSSWIJCcWlkiila4+S++zNn5M3SzPer1GkVhqQYNFufP8Nyzn6XbyWl4TWzUpR64/29L4ie+jLYEUQCUjd73gwGEAK3TE4xOGXpi0RRJQhCEKD9AeI7hcEg6TtEmR+AQhPhBDWVShv0eRaExtpz1JsmIuBIQhI5qtYJAEnghSvp4oaA9V6FdrzI1VacetIlbZ8FUaE9FmEmXfNThYGOHenWW2uIS9fYKRzfXyLoZrdOzfO/eI96+uYUTXkntoNTNgsPZMi1QCE50t65sJK1ByfLA8H0iBE6U//6EClKp1ZmZWySq1hhMQg6O+yTJmL2DCY8eHfDw/gaHh8fEcYSzhmSSgxsTBBFBEDEZZxir0br0ZmivbFSNtYR+9IPPWmuHFLI0F2qL0w5RlE23w8e5kpfMSZCMc+aETCLQ1iECHxsobm1u8vIH73JvY4eRsX9J/xCUhxtK6ZkTZWDNDz4Xvv+1AlV+i3SP++xs7jEajQkCj1F/wsVLF9Da8t4b62xubuKMQPnbzMzX8AIJwqCE5vRik5/5hc9zbnWV115+n95RyutvPUDFipWVeWbmmgwHE5w2LPkabTxmp6ocDcaY3JT6du1+YFJ3J9IV58AUpT5a25J57qTCOzGzGmNBloE2aZoQBiEIyqAfSoLLT+vHo472j8gbBQsrq6RpzptvvEijVmNne5+5xWnCVp3be7ts7GxxNBxwtNFjbAoifKaXWohCkgkNcU6lVmOcB4wnPbaHYw5HgmGaY4RkmGRYp7BIVBAxyQuENYR+acYLfFV6P4wk1xZPKALlU6345UDBCpzwCMMKaZoQRRHSV/QHKV7QQDmBrwRhEBL4krl2zGiQk4sIIziBLyg8KdB5QWEEwgvxg4AsHxN4AY1qBVNonAiIwxrWz/EkhH7pHSuMYX7G+0EqqrMF1hXoogxWieMYX5WS00GSINE0o5A8y8lkih+EWGuYOVclU47119aY6bZozDTYP+ig7QQvqJOIY848fo69nUXc5CdvD/3QjfRbt7eg6iOX2szdWKKIcqZW5vmj//5P+NYLL1KpVWm1mvR7A4ajdSSO4WDIdjJkta6Y2An1+iy508RRzECOMcZSixu8//5tZOjzy7/xayzNTTEoEkgLMiGwsjQLKSewmSMZ58Sez/Jsk+X5Fq1GDQNM1epoJXjrwUMmmSUbZti8ILcOnRd4nkdWZIgTp36WFoySCfWNgPpKhphyyDDHiJA0zyjyFGtiJlpQFIr+QcZoL0MMCib9IZXGCl4ksYMEUWhGyT69jT3SwuLHMfkE8qM+xhiCOATfZ5Rl+GGIOzFcGWfxPFde0wpBJBW5FUyKAaHwWcjn8FxMoCQzzSX210eMjns0z80zzjKkzpl0h+SmoBGEVGdjlBfiiozUae5s7lJNBmxNxmz0ewgCbNzk5Q/us9KYZXFhgXfefoeF5XlunD/Lwb13+Wf/4T/i//Qf/x956Y33+I0nn+X+m9+jGUWsbXaZajaQwuPJp54gDBXjJGOSZAipCOsNfL+GKSyEIQeTAa9232LldJXHqou0RIPisuCIghv/1t+gJisMj8Z88+uv8fDeAybjIb1Oh17viLNnppluRYQ+nL98nvcf7bN2sMf1Tz3Gcx/7HFGlxrdffoeXX/kz3n3jXQ52D6nGPqfOtDjYHVOVS2ze3WXp3BKZM7z6xgccHbzD1s4mg+ERzeWIwlqkjUj2R7z05Ze5dPoaOoWFCxfodvZYWpn7ISy7H/fK0VoDFilBSVUmz2UGneRMxgnpJGHQH5IWOf3hCJ2XU8tyIq0xmcYUBp05vMDHjzTSLyfQSiqEkGhrmIwMzimUKK/knS61yEViCANJveFz4dIZ/r1/8m+Bk1TqpwhUSCV0HOzuYMMxi2cX8PU0g86E0A2pBnXGro9fa/PKK1/GZQZlJUJZpKdwVuOsOWkUT1IBVTn1QZR6WucMCvmDwBicw0kJnmDp4hme+9yn8CPLxs4unY5mbmYZawU7ez3W1/c5OurhLCjpMUkykklKluWEQV7+34uCElQiMfrkYBIqfE8iKJCU7OjhYIKvJCKDhXqT80sLHO4fsXM4IkegnSjxftaW1I7vN5W6PNgL5xgZw3dv3SwJQUIi5EkUcXk5jDoJeHGu1Gd+v8H+/mdTOvTKfxsGAePBmG6njzWOTGXcff9OqYuXPseHXVxRYgVNZjnaGeL50G7HPPnkWW5cPkXDV5DnzM1OM+j3GY1ysqFgb3+tpKsEjqWlCv/w3/k0vUGP0dAhjWXY6ZONA1rNZZSvSiPoicHwJPYR5SmkLakGzlmMBqVCjCnKCGZT3qIUhUWpEGxWfh7mJ4808JNaZ84uMhr3GA2PyLTh3OXzdAc93tvZYGQTJvczjMtxWIwEKA3DlchjYXmRxDdEkaDX2aPSOsaGRxAa9rvQKVKGSU7uJIU2CFnSNwLhkWQF4JgUBiUkRVEQV2LGaY4GlLQkukAGIVmSIpUPQjEuEsAxGoyI4zqD8YTAfD80SOPGgDPsH0vqcYPuaEJi//ImTAL1WoXhMMGhsEIipUIpSSUM8ZUiK0D5IcZkZSCSktTiBkWmyyGH52GNQymJ73uEQYAfej8wK3oqpt2oUTWljM0EFlGHcZaQFRlOOBbPLbB6eoGGrkJumJ8+z9b6Bm+/ucHCuWm+efslLl25wuH98Y/s2fifqj50Ix0tzXH56St48xUSkXNcTHjt1Xd47d03yqZE5mzvbpLnlrmpBo0wQniWqfMLPBzuszA/y1yjTp5liFRjMsMkT7izvc7Uwhyf/7nP0Z6aojvusdU5ZLE6xYO1LcCirCtDTQz4cczK4jxPXb1ALVTEFY/cZiy0mrx56zaBJ+j2MpyGOIjKjUobHAJXlJuKsx5KKGpRhVbYRiWlw53A4gmLUj6ZtRRpQqIzJhNDfy8l62nqgfp/s/ffUbakd2H3+30q1867c/fpPt0nx0lnzowmKo4iyICMMMhXZF/72r7g19YShhchGZbXYpEMmHfZC66MkH39EgQIFAAFFGY0mhzPnJw7x50r1/PcP6rn+I5BEjoaGM3M81lLWtN71+5dp7tq96+e+gVMlWGubdGYrTCQFlkn4mq/jYVJpgS245FjopRBFARFFxAzx1JAFJOp4sNaSYkwFIaQJFlGXylMw8TyfWQcs3Y2wPQF1VqVL3/lcTbW2xijTaRh4Zo5ohcSb3aJ4piBkWO5Jqbl4Dk2vm3ywLOn2bl/ipYFf/XsE3zvG9/K01fP8WenTjGcu7xu125e8/a3sNltc+XCaeYO7CGxMv6v//nb+HkGuaTqVSlV6tRrikG/y+lLz7K8uMTszjmmxmeI2i2qzQZRFtMLJFZq0jV7fOKxv6ZRrnHL/tvYP32M1XOrDO/xMPbt5dLqKk8/8AXc9ZjO+Ys4pOwca3L7vt3IbA5yydhsiciM2bnvKLtfcy9X1y5z/uQZPveZz/PUI2dYX1hms9fGbVSYmmnSaXXotwdMzjTZu/cWHvirR5hNB+w7vJfzVzZ4/PHnaPW77N2/k1KtQr/XxoxS6o7DDfv3cPrhB/l//aufxMpDOgtL5JOj3+op87JXbziUKjZpFiOEIOiHPPPUGTZX2sgUFBLLoBgkUinTHKqSqxjLNHAcm6Gh0SJQUyGViofjmEgS0ixCyhTLEpiWIJcphnBwbRdFipKKsltFyQzTMPBdB8s2qFbKLKw8R7M2iWt7lO0mcTckHnQQaYLp1ak1R1EjI0RXBiRJQhzGdDZT5s+t4sUmwoTM3A6itlefnx+rDUXVfY7aHsFdpAdkSm7/wSqmj2ZSMjw1weyhfQzSnKjTJo4yyuUKCp8rl6+wcHWRxfkFkiijVq2SZ/n2RUkRliZJem2SqWEYRWArigmGrmvhOQ62qUjDkGAgyXMQiSTrJVSqDjfv3oMxN8epiws8c2GBzUgWRZ4oTNPEME2UhIHKUGQYSpHGGVgGjUYNUHQ6PVRO0dJve/JfsQJd5BxLKYv8F4pJkMWKLZTLJZAQBEV/fETRAiMOY7Y21pneOU2pZBP0i1V0IYq8aM8yOLh3hrtvP8rc5BhGrvCdMjccGeN9/8coH//EF/nCV5+mG2akUhKlivNnuzz84Hn2HZpiaWGZKLbpbQT0+mvkOYxPjyMsgRAGKIFlmpiWjcy3HxPF71KKos2e54prvwulimDBNE0ys7h1LnXXjpcN04TXvf61nL94mZXWJh0R8+zKBWKZIU2F5ZpUnSpl38e2bUzTpF7zefM9d3HDrYdQUU6wucToWJ3l5TO4lQq5TLl84QxXl1NGp4Zxa0WtSBLnJNs94U2zWHmWGFgio+Qa5JlCSIHIc6ShyJRkcyuiUq4SxTlpnqIE1871PB9g2xa9fgvLtkiT7Qs5qeghCMII27OJwog0y4sOPUKSqj6e7RD0A2JlAsV04ygy8D2ffpCihPm/0jcEDKIOhmGRDyRFh0+FadgYRtHiwHEcoiikqH7IMYWN75dJ0qLWTAhRDLqyTHIZF59RJRdh2dS9ElmW4jVcpBmSJT0O7d3Jyso6rVb8Eh8hL75vOZDed9ceys0KUZbT7cWcXr6C5fY5evMuti5u8h1vvJlWGPL5h56lVq5Sd2wO37yLQQ06xDi+j6WKLhadVpf1rQ6b3T6H9hxg6vBuDCTr60sM0phmbZTLlze4cmENQ9jEiYQox0wVjoD1hUWe6vfodfuMTg4ze3iCS/Pz1BoNgqV1+t2AZnWEsmcRBSFZkmIbZjHRTG6PD1ZgWoLjhw4ReVus5Zv4rk9ZmDiOTy/MGQQtkJLlxVVa8x18HA7um+LA7ePMb6zxROci62GMo0zARKYCJXMcxyKPYgaDHmlaXBGXy2Vsz2bQHyAlGIaJyGUxEEKBqZ7PPbSxhUU/i4sWTplFJ+yTBMWgACNNsLIIN07pbWzhJClKpmCYiEwQBQNiIegAlmHTsC3uvGU/m91Nli8uEqUZWRKyLDP+5MTTDPtldlR89h07immXOf3wU+yUGWXPZ7DS5sxjZ/Aci063TZ4Jdk5PMjs7h8oUg8jCrlVIvBperYaMLAy/zNnzj9PurLGnOcnnf+fzPGo8zNxMg3f8yLuQRp3xsWHueNuddB9/DrfmkAcDLAeMkoVVqXD23Cn27307tYlZgr7g8fuf4Oq5x/GsDaarJRq3TjI/ZPPcBcG55TWEZbFjbBjHV+w+PMHkvt1c+P9+Ej/yqLR6rKx26HYHJCSUmy5ZmFGSghtuOEjJLnNw7wwnL1zk4Ye/ws033gieiUQXHQ2CHpkykBSjaxOVMLtvgtk9O7AMizxXGJbCMBWZzDAtgyzPyGW+nXFa5KQqKZBmTGoU7c0ylSK2u0GoJMMwwPOgn/YR1267dzCMHNOAQFoYocEgdDGyPqrfw41SLG+AZ7nUzRr9XsLm1haR5+KIBNWTBGGX5twYZxfW6C73GHOH6MQ9YpGQiGKaXm7IotAPgSqixWKFeLuI7fmbk0Wmd45pmvi+zeyBnZRrLkvLC6AktUqZjY0WQSdhZXGD9eUN0jjZ/j4QBAFpmhQ95O3i8wIlUIYseh3LDNcxcJ2if71tgWMZ2MIjz3IGnYCaX0OKjIuXFnnU93njPbdx7x23YJZKfPmJ08WkQsMoRgwLtd2HG5QBKTkYYBoCv+JhGiatdmc7J7zoxpFJWVxWiCL5pbjAENsjAgUmCsezaDZqDAbFsBnbslFm0TpOCJMoTGhttv7XYjbbEyKlBKnwPLu4qPJsbGlj2x6lUomZCZPbbjzA0yfOk2cRyjQJk5gkS3ji8atU60OsLGzSHxh02gNkLpk/t0S1OoxXK6EoPu+STKKiIkAu6jcVplX0mQ762x1lVJG+4lgmnuOQpRLXrBSDstJXYKuBV6jlpRVavR4XV6+S+YrIypk4sIPx8RHGR0cYro9SGxqmUmng+2UsA2zZY9dECaE6SCmx3ZR+tEpj1Gd9pU1mSO64fQfDF0NOnd3i0qmYxkiTUt3DdUHKDJK06GKjJFJI0hQ22xHNWhMzl0RRSqJyEgVB0MX3KsRJXtx5NsztfvUhjuuigLAfIMjxfY8wzUilQRyGeL6D57qkUYI0LHKVE4V9Kr5LpeQRD2KiKKPoVibodFr4pSpJUvT1scyi+FAAvu+TpjFJFm/fbTKwLQchwU6couBbyu3PbsEg7mEgiLKMJE5Js5w4TYve+oBvO1RLZcZGfNIkJgpCbrp9DyYJRmoweeQgT29efEmPj78P33IgneTQCgM2gz5Lm+vUp5qUnSGuXlzh3hvnEEmKjDNGah61kRqOI2hOjZLkHcbKNcbrYzTHxtjstekkMaO7pjhQH6beGGMl6hEOBuRK0myO0Vrs8JnP308QpqSxJAokrmEDGVXP5u2vv527bjvIyVOnECWfd3zf23n2uQv86Sc+g1VyKNV8BkGXkcZUkUuXZsRJUuQSGkZxEAkTw4DOhiT2e1jlnMEghe2pWHlmkSSSbqvP2qVNWus9arVxDEzOzC/z+KVT5JMeYS5JpKBS9km6IRkKx3fJ++F2R4CiUXoYhiRpUvSTVnJ7dcsoqmoN49qKWHH7fLtlDUXBzyAurharpTJZnBIurKByhZfl5GmKsE3yPCfJn7+lq0iylNTOOH9pntfdeAM3HTpAL8s4de4UJb9ML8kJTcFlFbK82YNP/QX/jze+hSsXF+j1u9z9HW+iVLFwVIib20TdFl5jgvMLKxw4fADTzNl5x+soj+8kDAI2L5/jzNOP8ZlHvkg7XufY1DjjZp1/8s7vor20zNFb92C6Br3FLTrtNaYOzuIfPEC7/SRkOa0woFLzmT1ymNk73sTGUoenP/0wafsKo0M2N77+KGXP4fylC1xVi4xMuvzTG+7j1MkrfOL+r7K+1WF62md8dISrVy7hVCQ33HKMBx94grMXLhMlMSMTFUyRs7XV48bDB5idPcCzT56k5Cyxc2qc1aWLPJ71UZ7A9t1v9ZR52esNUsKsWIXMt/OITcNFmbIIAEWG5djFSGoMkqS402KYNrnKyZVEYCBMm1xIDAGOZ1CxygyCPtnzA062C4JdzytSqlRGrnJs08JMc1zTpF4u0yhVmChXKCkH1ekw6Alyt4G5HaxXaxWazWHMrMRmZ53IGlAZG+e//+Z/RkpFzShhWCaduI9lxBiGJN7Oh5aqGHRiCIWQxWPFNe52SgPF13meUKuXmdgxgltxsIw6GxtbRGGE75VZX19na6NFr9XDEgK75JAkMVFUFFg6Dni+TZoqZA5pluF5No5lbH82KNIsRkqXOJaYRbUg5NBvD5CpRGaKk+cv0+v3ueGGGzAtD0uAyjOEsMAwyLKMNMvIyVFCbk+6AZSi1+1jCGO7K8l2yopQ26kez6dxiO1iRQOpiraeRYBt0Gp3CYKw6MGN2p68pjAsmF/cYnFpgzyT5GlR6CRMAykzolBy9coiS8s7GKpWcDyHKExRMsaQglqpwt7ZaVZWTyANC9s0kcKitRXzzFPzrC92iRODJM2xTYO0n9BZaTFcGy5aAmYKw3CKC7RrvzWFlEbRSgzz+eieXCoGcU4wKKbompbACDOiQfIPdn5p35pe1CfwI3besoPGzBi10WFKno9hmnh2mao3ynB9hHp1iFzmpHGLshkgsg5ZNEAmCZaV0+mu4FT6iJpJ1hOUTJ89u3zGdzZ59tllTj29yfwFFwyoNhT1poNfKVEp+QRJSBBnhElK0FqkXPWIc0VuWAhRpBB1e13q1TJpGpIrSa4UBpJ+P8ZxHEzT2G4BClGkyKRR/N0PBtQrGaZlEUYxqSyKZ+O4Rz8IqNbqRGFKEiUIQyDzrEh9LVUIBxHLyy18z2dsrEFb9PH8oq96khUzJ0wzQWzfgTLNIkUqy/Lih6sCDBwsxybPMowkoZyBg0fQiVjdXGMDiyXHwK86pJmk3dpkcqQO0uDwjTuZOzzzEh4dfz++5UC6nUWsLSzg1MrM7J1B+hat1gaHbznEREdwYX2DZ0+fo2ya7J8YpjpaJXcUNi7VSoPRyhCmXUJVc/rtiBHXpF6y6asIYZsMl2uUsEiFyRMXL7K+tVXcUgkyXMMmjlIUiqCf0F1vE260ueXIEaYO7OPZZy/y8b/8a7qxxPRLDI/7dNfbDAYDlJRYdtGbOkwlSZbjOWYxz14ZbK12cEdzom6EcmyUZzMYZCSpQ7iVs36pjepbSNshteGhJ09glRv0fRvHsrFsQRQWnQsqFR8VxZiOTZi0r90mfb7S3zJNDMPAtos8bbF9q0dt95oshl/kkMlrI0KLwFgitm+fGnmOE5tkSYIlILFNku0/HLnMr73OEAamVMSGxRPn5/HCAefjFh0U9akZnI0e7c0NZJaSScWTV64SfPbT/D/f8x4amc3S1Q12H9yLMXKB82fPMLNrjnMLG7z13f+E3YcO8PgzT/LwpbM8/Pv/g4mSS7qyyFDTRrgb3HnXIXYqnxFriH4YUPMtHMtleXmLnnJYW5jHbtqU63XE3gmszRJHJw5SqU/x2GNPc/qBT+LbPW6+cZakYlAtlaj7FjKX7JrdyUZ3g2gYriyfZ//eOe4z7+FT938V3yvRKA1x4fImN912iGrJ58Kpi0RRjGnD5HiDaBBjChvXKeN6FR585DFWFysc2D/NrlsOEAddLl5ZYnTP/m/1lHnZy6WBbTgoQ+A6RZ5tkm5/+FKMYk6THIxi5cO1baTMi+M4jREqQxgGtmuSJjFS5WSpJE1iXNdjqFSn3doCcmSWk+Y5Vd8jjSS2sKhZPsP1Ki4mJc/HMk3ifoLlQq3RwC/voDk0hW1LNlbPFrnVVk6/v0HqdhjeU+Ljn/tzVjvrCMumN+hiGBZ1q8ogKVIpLGGTmxLLsEhUihRFPjgUU1bNYlI4RX6wgRIGpmsjhdpOD1A4TtFKMU26tDbbLC4uk+fFkCjP9+j3Q6SUeJ6NXyqK2wSCKE/J84woTDF8m1qlVnRBUYIklag8QWQ5jjBJJATdPoZUWAp2TE2Qy5xPfObLCNcn2i5W9H2LZLu1nyQDswiinw8shVQE/Wj7M0lcG2TyfA68eL5YUSrynKKFlwBDFW36crndyUWJa4XbxSKAQGaCrJdimqq4CDIMZJaSS4VpCbJMsTS/yRMPn2VqaJLyeI2KXyYOM8qlKrbtMNysYxomcZwhycEU5KngyoU10jxHbg+d8B2LUsmmIgzKOWCY9Ad9fL9Cc2QcLJNE5nT7PYI4RkpJluWI7U4sSoFhOMV0QyVIs2KiZRLrHOmXC2vU5fBrD1IeqdCOIgZpgGXb1Ep16tVxyl4dJRVJ3CVP2jhmF5uQKBjgmz3idBMThUFInKVkjsVWHKIyG9+2sZ0Otx4fZXJ6hGce32ThcofeZk5vySZLthCGotJ0Gd01hlcyMLyMQdwhThIyEor77wZ5Kgl7AeWSt90hp6hDAAgGIY5j4boWWxsD0kyAaW+3rhRsJAGe6+C5NnmckCJxHYM0SelutHCdMlLlDLrh9h0lg9bGKu31Dv1uBnRIo4TmSIUgyLAdE9t2izuH2zGHAvI8x3YccgWWEggpca2UklmmVCrjlRpsXW1xYMdBvvLEI0xXdnB1foG1Vpu9x/bh1Hwqls3O0Z089czTfPlzD2GX/Zfy8Ph78S0H0gNCjt52A6tbK1RqHqky6cY2W62E1nKHJ596lqZb5tabb6AxWSItQScNqIw2cU0HM4M8kmCaSKXwTYOaVIgwJyen6ldJ4pzVjRV27GgyPjnC/Nkl0ijHyiWW62AaJiXDZP++Q2RxxkMPPU745JNsSYutniTFJlMSIaFUqZB1Y4Qs1pTE9ohZxxV4tuIN99xJt9Xj4vo8jkpI3JRyMwEnI+lbRJ2UjQsb+KFNlDqUpybIBYRbJn2Z45ZcHMPGNk3wHMK4SyBT/JKLYZlkaXYtiDYM41p+pVSquLVoPl/YIranwllAMTjA9VySJNnO0VR4wtpOVVRUK2XiIMQwJabtkCVg5yZK5uRKkef5tQDezhR9V/HAydMYiyW8AzNkjosZm3h+k+aYS3dzhTgIiJXk7OJl/vP/5/9inz/Bu97+Jh785J9x+32v46bX3grS4S17DrPSafNffv+/8djJB+mFa5SrHp4/xGhlmNFUETYUG1WIlUVcckl7fabGR1mLUk5328SeyUgQUV3dIp10cUdnmZps8OQXH+aRL3yYbmuF/bM1RuuTPPfkFXYfOkgnECijilJdZJaxa/Yg/YWrBJ0BD51/lomx3TQ8l9fd8wbeet87eerZeZ668Cjz504zXi5xZaNHperjuA6+02DQatHudOn2uwyPN7n51oMc3jtFdccYS+ttak6JtNv9Vk+Zlz1ze1ooUpFRrCi7rldMG0xjtlNyUaYgVzlhHCG2J27V/CpZlpBnaZFnLAAMhGEhgCROII2YaA7R77bJUoVrWIx7NWqN8WupAXmWkgL97SEbwjDJTUWtYoMVUnEGbLXXiOI+zZEp1taWqFXqGNUYe8ji/PJZukYIZkLZlBipQCQWrumhMpNsMEBZMaZbFN8oUyFNSZqnIJ4v9Cl+HkIUK5qlahklBKvrWwhcpBSYpo1pGCRJhGkphFe0n1MCkiwhy1Ms2yfLc7I0oxjTtD2cIS9aBqZ5hmI7kFMSQ0o8QzFRqXB5ZYsoK6adGZZg58QIlbLP1dUt2r0A0zBwPYepyXHWNrcI0xAl8msr0UJslwsqhcyL7iu2Ufx+i3SHYoqj2P48gu0UF1G0ATQtazvAjYsgFFB50TbweUopLMMo+tHGCULkWDaYRtG9QEmIQsWzz15lZPhZ7DstZiY8oiTB9W1sTxCnA2zHQkYJ4tqFGiQKTMsmz1OUUvi+w9TUKBPjowy2WkWuuWWRyi7zvRZRnjIxM0214tAYKpPmim4/pDcIyDOF41jFivr2hUSWCxDm/2p5qH3bm33NfiIvJx50sewSNa9KszxEvTRGzWuCioCIJIqRySpYEab0sFwIZI9Y9rBNRWanRKEisXx6SUKr3aHilRitTVA1JY2hgJtf57Nj7winH1/nuYeWMTKbkcYw3UHK8sI8dsOgVBHsnBthotIgEQlJroijhEEWE0URYbePW66SK0G6naOPKmoTDENRqZQIgqS4ABaiuCttCLrtAb5jUal4eLai4liQS5JE0tlsYQgHU1h0ez3iKKHXG5BHxehxRM7m+iaWY2wv+sWYZoLrOsWEaooWmWmaEgdZ0XHEchmpNmnYZbzY4cLTV+inMZZps3LiYZJWhDFY5zXHj7CxtYmoOeRVnyjuUq+Vufuu2/nTP/hLGiNDL/Uh8qL7lgPp0dlxAhkiTIP6cIP5hVWiLGG52+H05x5iolblda+/nfGZYQI/I8wjIgklu4Q0XDbyCDNShGbOcGOIoYlxBkFKOTSoVaqsb/QYhBGeEkw2Gtx1+1H+em2TwaWc2BBEWY7IM3IL+lvLTJaHeM3xW/nvn/5rFgYZQZwh85QsL3J90ijGFy6eY2MaAikzDENQcWzuPnaE7337W/j0Z7/M5d46TUw6aVbkFmYZQTfn4peXWT23wY7ZMfJuSqnhEWQxqWngCYHreeRKkUkTgcB3yqg0Js4yVldWiwmHto0loQgdinHJcZpstxJLcWwXkwzL3m7gZBW3ZJPtoiSUwjZNbMtGqowkSchyGywDYdjkUpFneVGpv/3HL8+LgMOyTIQFwrJIk4x8q4e6vIYzPUquBJFhI02T0tAIbjkgGbQR2YBu1ENUR9jYjFhbS1m8PM9Nd93LX/7V/UzHCQ+fepJHTj1IX66xY1jwrre8jlBU+dRffgHHFtx14zFOXbzKieAkn00ewTItGtUG9eo4yiyzZ2KSOE8RQYy3MeDCI4/xlVNnmBppcvuNszzy5AYb6yE7xpvUGiUWrp7DL7s8nfaZGCkxOjFByZHctLfOeqdDy16jnHSYHR+jXhnmD//oEzTHRsiTgNUry/iGwez0GGOTYwyiDqmds9EewPmLHN67j7rnMD4+SZwZtC4tM7+yTm2kxo65nd/qKfOy57oOhkWxyryde5RnGZgCx3MxDUEcx6R5un37v1jlTfOcPEyxtwvboiBAqOJCTypQeY4lDOxcIvsBB6ZmQYLnuqi86LLQiwO6gwGGaxJkMZYsWkpVqh6Wp0isAUm6SffyGXzhMlGfYm11Ec8rgRuhZMJmuEU/bROLmMwySWWOZ9n4pk+/10PlJmCQxQKZSAxfgCMwHVn0VDaK6Xh5LovUAVHcQnVdB9MyMCwPMDEyRRynSJEjZY5lCyzXIZcmaZpsF7Rt33lSEAwGSGXiuaXtwrgidzIIY2xh4NoWZdeFMGeyVOW2/fsx2iHPdldBCCyjGPW9Y2yIsmuz2esh7GLkt+c7ZCot8tBFcVFtbHdHKXK+1fbdK1l83qni32dQBJTb/1fcCRPb3QK2i0fjOCHPc66V46miNVeWZcV0SAG5+b/65mPk11a7DUMUrfuUIo4zTp65wtyuCWr1Mo5tEaQdpBlRadgg8mKwjykwKcbL51LhOB5pVrQrzGXR6WhjcwPLtLAtl6gXEkQRYRKRm4K11jrVRhW/4uNXqli2S73mkkvIs7yYXKkUcRptF8UWI5W1l4fYDChZNcp+jWZ1jHp5qDhv0ow82QD6BP11+hsbTE9O0hzbTZ7m5Gyispwkz0gNRWZbBJEg6EhKToOeZ3Kps8ogNdk5NExVeIQEDE2VuW2oTGPc59xXN+itd0iThDhOKckKYZTTbi1Rq/okIsV1oDFUZWJkFGHmBMGAQZgRZzlGnpEkOUmWk2cgMOhubuE4TpEqp+S1c1Nt15zU6xWmpmpgZ4SDAGX55FIwCCOUNMnClDDo4boCw1GkeYiUDpZhEHcHSK/oGGaIlHAQ43hFD3bbBEdZlK0y49VhZF+xcWKDME84fPAI+ydLrAdrZJ7BWrbIgR2T7No1Q5BKarU9LG4sEycZixcWeTqU7Nw9zpvedCfIMn/0hydf6sPkRfUtB9K5jOm1Y0ZGJjAtl06vQ6JS3KEacaLYNTXJs1dP0x3Zi+OW6ccpoe/hKBiqlkikJI8GRdK/VwVniDBP2eq1yHptTM/F8RqUBgEq6THiWsyMDfPc4AR5KjFMu2hW7ph0Ol1Oh13WHz/FqecusZbIoqp8+w+17zm4jovpWpTLVfI0QuY5jmVTK/kcv+UY7U6XMxcvUW8McWDaZGl4kU3fIO7kPPP586w92aJslUmTnLJbYml+mZHZSfx6jd5Gh0rmkysQmcAQJpkBwrJRmUEvC3BdC9+2CNsDhG1hmWD6xe3vPE8hlUXhoAO2bSOBJM0xUKRZiqGKlT2B2L4lWRT+RFHCyOgIY+NTbG1tsri4gCGKzgJKci0nO4riYiRoriiXSvR6A7qLa5jBgJHds0jfQ1gWBiaG6eHVm5C5iDRidOcuqhO7sNYjHv/CEwzaAy5cvsgXTz/AldYahqG4eWIXE2NNMllm6eJlZmyP73rDO7jw7CXaX7nC6++6gZF9wyz2Nzi7scql80/TjTIefSTAjRKmRya4ffYGaqnLoX07IE1ZW1vnyvklvOEGE2GboUqJOk0cx8T3PJS0OHf6CiPjuyhVHA7P7md1fRPhO9Rnh/nMZz5DP+3ytnfehyNTTOmxsLjJxNQIYyPDPPPcEpJihHCv22eoWWdqYow4yanWfBp+ifmVJRzTJotfeT0wv1lJElNyvKKCO4mLnrwyByVIkgRDFEM+Sr5NkiYkWRFQG4aJUJBlOZ1un2a5TNlxCYIBhpK4XjH9rlrxKDkOpEWR3MrmBlGeYnsOYZrSlwlmbpBkGSXboezVqTrDTDQr9LtXUXEfV9q45QkWF88zPjGOkn06gw6doEsr2KA0qlCWIMuToqBOpWSqaEkZ94tinVQq8lhCLLFrFkONCqaXYdoS17Mpl8pEcUwmE1KlGBvysLenBVqWiTAt0lTR77RJkwzDMPA8lyBMybMY1zWLsdrFdF583yVJIUnSIqDLc2zHIM0UhiGp+C4lchwDJn2fUd9holHjvL1RVNqrjCgISdMY2yzutA03y+yanWSjs0GU9hDWdnCsirsAILbvWMlrq7AShczltZxoWXyIsp17UgTAloHrOuRZRhonRe9wigA0z4vWfEJtD2oxIM+z7YKqIh3NECaWKKYruqagWvYolzzWV1tcubrM2HidZrNBmGUEWURztI7nmRgKsijF91xSYRPHIallbueR5wy6A/qDGNdz6PU7tFodwiBCUOTcKxOckkuv16M6XKOchDieh2Fa26k6xQURBlg2VCtu8bMp6dqIl4tKuUazMk69PILnlHENhzwJULJLGnVZvHoOI8txnRH82l5yVSHN12l3u3iuTZiYlIRNmKS0en1cy6HT6uFZdZJ0k9U4ZGtxgd2jo0xXR1iP+nRFzP7j4+w/NMrSmYCTD87T2QhwHJsBKWEmUd2UkusyCDI21jbB3MDxTcZGG+yc2IHIElCSRKZIU9Hq9ukFYVETFgUoUUxSRamiIYECKSx6/YSVlQ5R4OG5ZtFJJCn+l8YJSRgy2awyOlQhzxO6wYB2P6HfTxgMclwpsRwL2zYwMTBiRcnzaPp1vMxmx/A0wVbMIw88ycz4HH7J4+Sz5zEtOH7HUa60LlE6NE3TKXPyzAUq5SFamyuMjVYx4pC9k8PsmhmnURthdm43y6utl/oQedF966kdgy7DQ+NUq002NlqkSVLkIzXrjE2OsGfnJCvNlAU7ppLbVOsNhio1bNMgCga4poltRMTBALfskmQxiWGQD9VwfBdTKqxBioHNZhKSypD25jq2Kno/GkphC6jUqpSHR9m/e4p9hsnlrS6tKyskeTHywbZMDFEEiMVgAgHKxDAEJdfl4L697Jzdzcf+/FMsd9rsnx6lUsnAjkE4dBZ6bJ1o4SSCTKWkuWKoXiVbXKJk+phDPrkAy8tACYbHR8AyUEaRymEZAlMUbWYMlVNNU/IwRqQ5sQIhXKK4V/xCsozxZhPbsmh1ulhCkQuJwioqbi17u2DRAhSmUTRUb7e7BGFCvV5jZGSEtbVVLNNEiqJllWEY27eQc2RS3DY2DAtLCoytgNBcxh5rYtXLZMJCGQJl2pimT54pzlxcYm6qw+lTZ7lp/xQf//NPMBgWtMiomi72WsSRuQlkZYSvnrjCyrkzfO8b3oRfanDLvfewFoRsrrUZFhbveMNrOZQFdGwDyj5rvVWmpY/dyxhcWaVZKtMNB8yHbbZ8wYHvfB22sInTGGnkdFo9cpkDkjx2cZwKjzz8BPtuOMRYaYQRo8LFzU3soSbrpy/QnCyzuDyPEeVUy00kBpVKmUG/y4E9+2j3I0YbMb5tU6lU6EddesGAITxmZmdoTNR58Kv3ky1/q2fMy58hig/zOIqwbBPf9cmzlDiOihVLwyTJcjKV43tesWoZRaCKVWUMAwtF3OsxNTbK9FAT2zBxbQfDhI3WJksbHbIswyuX2EhiMA1Kll10uVAGYRjjCBfRr3LyyU3iYIHv+J69BINL1GybenWUra0FGsM1etllsliwsTGgE0a00z65N6DUtIhXE5SZkwnBIAuJVIxVspAyJxlkRSefVKByiT1c4fjr9uDVFUk2wLNMRoeHcH2DVq9LL4PczbGNDMf2MYRJX2ZE3YA8VdiWhxAmUoVIUjzfx/Pda3nItmMRJ0nRzUIVEz7ztMjP9csuroCaaeAbNp4UGJnCsexrqV6WZTHSHGJsaJiRZp3NTsAb7r6DRMUoO6M+VuPq0jLtVo80VUWhnVLI7UEyzxcy83wNx3Z3DrXdJ7po0aVwXAvPd8nznDAIyZOsGFizPX6c7f7TRQu87eLM7eEttm3g2DaOaSJUMQfAMy1md8xy5eoV+nHAuXPzHDo6i3AsbKdEkKX4lRI7dgzTbcV02zGxSHAtmyzNyKKMWqOKyhVhP2Jzo02cJXR7ve3CRwPz+RQWII3T4i6eyotiSRNcy8O0TZI0KXr9UnQcSdMipSMNdbeel4tGdYThWpOS4+FYgjTZotdbYnHpIvkgYKI+RbnWZGjiIF55AqV6rGxcZGPjMnkaM1K3MZTN2mZIO4CxUQPTl6yvbxB1FQNi8hzS1Q47mgbjQyNUnYSByglLAbtrHuO7qlx4YpG8Y7HR7XNhY5VEgAy3B0ulGXGcEsWKQafF/NlNyo7DaKnB5PgoE0M1RLyMlVtMjY1glUykmZOmxXEoM0m7F7LR7hNnOVHsEQRm0f3HsUFk5DLFRrCjOo05MKh3G+Qyp+qk7Nxhc3V5GWGZOL6H4zgMleuM1Iap+zU+95mHWc1DPCti5iaLhZMXePO9r2f+8jxHjh7g8SdO4Hkujz3yDLuP7URUJJ5ysL0KSRSzsHyRyfGjzAyPcfjQIdxqiTSTrC1tYuWvvHPpWw6kVQ6+45LnCYOwT6VSoRsmGK6FVyujXIPa3ARrMkIKD6M6RNnzyZMQGUVEeUrdMylZDnXLIpMhuTDIlKLf6mAEEWpxg3KlTCtpg4zJggBHOFiuwrQNDCTL7RZ/9JkvMD0+wuTEGMvrLQQC0zAQQtBs1Gm12gilsA2LMIhwLAMUjDSbvPG1r+fMucs8cfI0ebWMaVpU/CHC1nncis3K/BJGKDCBXOT0ugGlskPZ87Bj6EZ9ymUPvyIw8FB5g4gEwyw6EGRZQpqpYhqaKXBLZTy/StWwQRaTuCzDI271SXoBhu2yuraOYdsYlo3K4ms5zrnMsQzzWjGiZTnbRQqCMAzp9bpFESLPF/xwbYKXQpFKVYwKxSBNMjJD4OSCbHUD2WpTHmsyPjdDbgiUVFix5MrJeVrpIosX15ibmORjn/tL0lrOIFccu/Em3nbsTq4++gzPXb5E68IpWkHAvj0HkEaNJ77yJM1Kmfteczu4Bhiwmdk41Qb95QWS9XX2Ht7HnDPCYKPD+c2Uk+0VUjcnqzl0zi1Tosxjzz7FvokhZo8eoNosk2Ejt6dZ2g5MTjX5ypcf5OYbjvAd972Dpxcu8blHH+bWNx8nIKQxPsNXPn4/CxfXkSLl4OE5ds/t5qYbbue//PZHGN5boeJWuXjxMqW6Talms+fAbpI84gtf+ms2WwtMlMvf6inzsuc45vbxJYoAOs/wXAfLKhNGUZHusL2qGQYBnm0z1qwz6LSLINqxaFSr1D0fz7GJsox+GLPe7uL5HivtLqnM8HyffhiRbF+IRnFIIAcYCsZKE1x5ZsAjjz/HoaMTHLtjhItXn2bHUB3X8tjqtvFLJr20Tx5lyLTMpcUt1voDjIpPJBVTczV6nYgkTBEUedCZocjMoge2YxvEvQxSC5UYLJ7dpLvWozbqkjspuZWByPFLNn7Nwx3yOfqaHczs8CAHx7Kw0xKEDS5eXKDkV5CqGEtdKZvkMifPc4Qy6fVCBCYohec5RDIuJg8iEAoMJfCkYEd9lDxrk8Y5S8vrCMC1DLqDmDwT9IIIYdhFHnGWcmVhnlQlxGQMjQ0jVIZtm0Uu5nbwawijCJbl84Hw/1qA5tpo9CKVRxhFq68kyUEayDRHbedQQ3GRVcTS28G4KTBNA8MUCENdm5KoMlnUizgO5VKVpeU1Nts9hCXY2gxZXmqTITDshJXVdTpbfSZ3jLC1GdDprjEIQhrVCmXXpR8NCAchSihs16W11SlS+Z7//Me49vkoUMhUEnYDQBUXeq6F69qYdrFKnhdL8FiWg2kU4be0dLHhy4UtSni2g2fl9PvLXLhykpWVJSpOmXF3nKY/y/DsbuzKGJ7r0GuvsrE1j1up0+52kFaZbj9ifS0hdSFMFJWKTyfeQmzliKS44FpPHfrxKu1OnyO75vBJWYpSAjLMYcWh182RtiW7Q0H8QMziSkQqMzqdDqWyDzIjzYvUoRRFL01J+h0W1nu0l7sYObg2jE41qY7YSDsgMTOULNI/640hpvbP0Bn0CeOQUtnD9yy8koVTcvCEYtyZIFrJWFpZJ+8XLUR7SU59yOFwZY7cMJjcsYOpiXEuXLjKlDNFyaxw446b+ZNPfIYDh/dx6cIKO6amqVTLTOwYw3VtbNvAECbdTsjVC8tUh1zqXpXp6RnWlxd54xvuZs/e/YyNj7O2tcKzZ59FSnjm/rMc3r/7pT5EXnTfciDt+3VK5RJLW+sooahVG2x2F7GEjXBMtpIE33YYcWvU7DqqXKGfx5iOQZ7lOAgun9vi9FOnue11d3LgzpvBVCQyxnIUDgaDpE8zcTkyt5/OoMMfbXx6exVXbRctFbmapmlyYWWT+fXWdounYgWlVi2RZwlCZeSpIhbFXHslJY1Kme98+zuoVet87OOfYrPXZ2pmkk5ri2DQZPFsyEypgWpl2FaRBZgLCHohg6ZPpVIm6gxYW1hgZG6UKFVsriwT9Cycko3wBLkynr8ritguFhIoXGESSJNep0N5uEYSxiTtAaPNYVrdAYM4g1Ri2QqJQZalyCzDMiwM39se2lD8AbNtm6Lavsg/VEoW0xMdB6lU8UfLKCYeKZnhei5ZKovcK5mjLBPfsmk2anieh9+NaPfajNTK7B+Z4I7jY/zVY49z8cpFusEWyknwykMkec7lM/N8ITQxHIPHN69Qy3LuOHQLN932WgZOlZG5wzz6539OO8u584338tDTX6E6O4VhpbQX5tk1u4Ok1+N8PyDNYMsXDDqSEb+CNCXmrE+w1uNdb34LyyefQgz6lMaqLK13MYVBrVw0hC9XTGand/LFLz3IyNk6CSlelHFpfYlbXn87YUtydbkHKG66eT/f/wPvouo3uXJxjSzJWLxyCdf0GZ+5k3/1E/9vVJawunQBYVk8/exzjE+N4rh6smHJ8xC2Ik1ThCi6psRxUtQaVMokSVQUf8kiJUklGXmo2Ds7g70dWMVJBgoWVjcI8yIFyy95rPf6xBhIUaRGZFFElucIoxjs4ZoltlYTvvLQMzRLFV7z5lmUu8XS1hp118ExynR6AdiKbn9AVdmoGLqtmKurLbbiBDsG16/jVCLGdjZYvLiFjIteyRgCaSgsS2JZBqbtEXdSZJKSZybtjYR+J8XwwCyBcnK2rBjMHuO7x1laWGRmdiezU5M4hsRHcv7kVaSELCsmIhrCxHBM8jgvVoINgyTJin6t22O8LUugclX0jzeKfOvx2hB1u0Rf9On1OrgWHNg1RxBHPHnyIv1Y8tz5S9iuy1qnwyBLeO78eQzXJBc5V1YWSfIMw3RxXBcZpIjnR2kX7ZwL260ypcqvVe8rpZBSUswyMfG9EkKYhLC92lt8Dplm0Z9WUqxgG+bzYbja/kxSmKJIZTO3Cys3tjqESYgUCktZtFsRl86vgiXIhGCz1QZpUKmV2H9oF1fm28WKcpZycP8+Tpw6RZ5nuJWi7Vgm82tT34p+3fLaxUCxuK4QSpD0E9rrLdySTaVWQhg5jilIMrY7i+TkUuG5DsL+lv9Uav9AbDMjz1tcWlngypULhP0QC58oNBFjJfzhUaTlU63VyLItri6eZnOrTefqBtNzczhulXiwAKZBkAS0ugZzUyM005jh0YRz57u4VZdYFnfH8jyFK5cYqtYYGx/F6XXppjG5l+GMWfg43FU6yMNfOcn8xTaWqJIl4LsliMPtYFqhhCKWGYZt4g67pN0IW1gMe0MsnF3k2GuOcOu9t/C5L3yKhbUFtja6GNYSk1Pj7BiuUqpUGBkbK1KuTAMzzrn8xBrhWsDk0ATlio9ftllYWydNI6zcx5I28yeXEF1FsNFjoXWZsl9hYsjjthv3sLq6znxnHXf3DI/MXyFNU86cOoUhLCyoBpSzAAEAAElEQVTLZnqkgUxSjE7MeHOaWAkOHrqFsaERTp06hWnZKJUzNT5Glic8maZcvrryUh8iL7rr/nRQ20udJX+EhdV1hGXiGQ067TZ5kmELi9SSrG8G3GI36KqUOIqo1x06YZdOlGCkfaLViIf+8iG6nR6tNCKpuJRHm5T9EqbK6GWDYkU2yWi1V3j4qRMsLnfJsxTDyrdv3RV5eyrPUUIQyaxYFTMUpmGAIej3ByjDQIpigEQvHFByPHbP7cLA4YGHnuLEpSukhsC1YOfwODMHD3BDcpWHP32a9nqG7Tr0+jFKGBhhQhCnlDyXaJCTBhm9xQ6je4eojjSxm5Isi7EshxyDPM2wUgGxJAszZJ6QAp0UTERRzV7yyDo9bM9ha6ODRGAJC1NYqDzDseztnz3EaYpQAnKJ7RQ9IJEGqGLiUJwW7euiNNz+XQmyqPjDgAGubdIYKlOpNfBLNWr1Bp5dIk9T1taWWF3cZG1jiX3HjjLqVVndajM7McF8+wzCzPGGqkwe2s3ShTVKUYC5llE/NEfFOYE5EJx/Yg0zeJz9x2/m2fUVGjcdRCQGX336As89epKJPKQ8M8zKYA25ZZGFfYKBgy3K2DhY1UmibhdMi6l77yCKA9SZ0/grIyRWjRNnFouBM0LSCwbs3bsbYUiCOKTbDxhc3uLue48TBDlPnjqJO3mW43tvp14tI82cW2++gauXF5mccOmHAZZt0Qkzdu8pUx9p8vE//BIybjE+ZrLZ79Fuddixc5al5eAFx/+ryfP/5s5Wh0rNxTIt0rgIWtI8QUrJoNdjpNkoCrVkTsmzGW4OYVsGaZjSjSJa7Ta5UrjlKu1eRL7dbi0XOf1BTJrlWI5RpIrFEUpIUlLyvsWZxy4TdVOO3b4bqzpgbXARI5A0PIdafZiV9R7duIvjmdSqHmlmEHRC1pYVa1uS2CiC80q9QW/QQiGxbYtBlILcLu5VAimKkdeGq7AaFnmgSPvFOZdlFiKEPFOYrknugbAkg3bM8NAkywtrmBmUPJtz56+yttKCzCZIYgwhEMb2cBpRFBrGaVpc0Mbbt3uzYpIpFD1glYQ0SglaEav9jKjTLcb8Oi4T403uqR7BcW2eOnmV9XaXv37kKUKZ4VVKpCiyJEaJIrVLieK2sEwFKmW7oHE73zLPyLfTb54fJf58TmbRya5Y4bUNkyTIigumJC16gm8H5AZFey4lFVmeYWwPORHbKR8IhTQVjufgWT5b7XbRBtBQWK5Fmik67YgrV9eJkUgT5HYbQiMTuFYF2y5WjYMwJokzZuemubq+Sj8Mi77mbAfRqKJtHxJj+4IFjKJwVRbpboNuyNZqi1KlVNSOWCYyyRC2QGaSNElJBgkyyV9wDmjfvtqdea5cWaLbaWEohzSwuXxlCc8tc8PNx0kdg/HGMGXbYWFznoXNC1y+usT41CGazd1Uqg5ha4kki1COoJNkhIlB3avSqPWLtnmqiVszyTKJ8lw6MmVtZYmxMGT/7G4qeU4v7hKrjAxBc8rnzd91M1fOtXnuiQusLw3o98EvOUiZbdcOFDUGUmQ4NZNKvUIDj63NFYwsZevSGnv+0SzZsTfymS/+BUEcE4Yp+aai08s4uXQJz9vghht3ETCgZJW48NwGc5M7WFlv0728RKffIRYx42NDZCpl7/Qsh/buJk4CDGkyGER0+wl+2eQN99zBqZNnSLKMJEuxHI84yTGlgWELBoMuMg+5+fhxPN/lyKFDXF1Y4rOf/QKNxghKpjQbHpZrEgaS2d1zHDi8xtLiKy9HWqjr/GRYWFhgZuaV11hb0/4u5ufnmZ6efql34x+UPue1V7tX43n/ctHtdqnX67z/V+7BVIqpoSk6mzEbrQFBFvDaN95NpV5jYnQfu6aOYImQBx77v1lYP8GJJxa47a53sGPHAcYqFquLX2F1Y5WeIQkS2FEb4sBUndXeCpeW1/jiFy8xNT1BYkTYvk2lUiVKM8q2Td0rs39yjqmJEdb6W7SCoOgEooqBJyqMOHdilacevUAY5DimRxIlZCrDME0EOZZpICyTkukyUx+nv97Fx+Geu+/h4sIlNjdX2L//MBcuXcHzK6xvdFhcbjG/uM4/+kdvZmSmhGuZfOpjX+KGgwdot9o8d/Yqmco5ducRnnn2BAYmB2Z2M1KtsXNukpGRJg88+ATLqz02Om1uueEA9959nNNnz7C0vEYcByRhhEwlWZYwNjHO6PgI5WoNlUuqvoWM+5iOx7MnLyHTmNe/8TjTMzt45NGzjM9M4RiCD//uH/CZh8/R6XSo1Wov9WHzorjuFempqSnm5+epVqvXBoto2iudUoper8fU1NRLvSv/4PQ5r71avZrP+5cbI7aZrE0QXJX4NHn3299Gz9wkyAeUyk0atVE802Rp/Tm64RVaqx1cSvgVn+bQMFXH5JJUVMeGGbQG9JM2G2HK2EDiKIdmvcLhwzs5dWqFqblR2t0WGeb2HZCMZJDSPX+Cg4NZpiemUa5NO+ySqgxwESWHA8c9ZnZP8eRD55g/t0ytZJEZkBs5QzWbimeDMEgxaEWbUBV0V/s8e/okrmtw9MhBSl6d2R27Wd9sEfZTlIR6o86n/uJLHD2yk4N7Z7nnruOoNEXkHjcf2ceJ06fxZYaVW1xd3qK1+RxjjQbPnTvH3n0zVIZK1LKMKyvzPPjYCSYmJ9k5Nc3K4go7RofZMzvH+ctXee70eda3Ap589iF2TI5x52034ggDv15lcuck7XafldU1BkFMrxtSL5dwDQ+v4nL85lv4zMPnXurD5EV13YG0YRj6ylx7VarX6y/1Lrwk9DmvvZq9Ws/7l5v2xS5b3T5ld5TKkOTMxdOM72tgODaG4WEogyhZZH71SWQe0Nvo0GiOo0Qx5TJ3HCIkUTck7GREYUjX7LLWd5gZHcJJAvbsHmVpcZP2WoBbq5IOIizbwnCKVpaJUiy01gmSlJGRYaaGRtnodumLlERJlFB4DcE99x1l/eAoq/MrjA3XyIyMkZEqqADfccHySJVN0s9YvtDClx4blzs06iPkmc2ZM08zPTPBwf3TPPrkGVRWNCA4f/YqB/bMEUUR8/NLjA9XGG5Y3HPHEf7Rd76NNP5zFldaDMKIlXyDeq1MduESfsXHckymdjYZb07xxGOPMv2ON3PTgaJA8M8//VlOXV1CSgPTtPFtBTLnmWee4/jxIzRGhjh58iL1WpmR4f1Eg4TVtS7t3gC7NEBYirndky/xEfLiM77xJpqmaZqmad/+hr0RSqZHnPagElGZdunLAMupUS0P49nQ6V6i3Zsn7IdszrcplRyUKiYIG9LAsR1Wrq7x3COnMRWkKqOX5nQDk6HqJJWSzS23zBH22qR9iSkFeZRioyg7JqZURDJjPe5zYWWR9Y0NZpojzDZGqNkmJdul5HrYZZOJ/RMcfs1hmmMVDCVYmu/S2jLo9iHJJZUKzEyXuO2eOWZuqGI0U9rdNYRIsSwwDEWWxRikOLbEsjKkFMxfWefZZ8/SDzNsz+W7vuMuzLzDF//qk9Rcg4lGiZpvUi5ZCCPDrTqU6h733neM+954C2997U28+Z7jLM9fReaK++9/lFNXVolzsGwbxzK44dA+PNtifn4RYVt4tVHixCcYJFTLJQbdmPX1PnEqefirT/DgVx5HyVdeBxxdiqxpmqZp2ivC0vIKZdtk9OA4h+7ZRzvp49oNqkaZmteg7OSsrZwhC/usXlpDSIFfr4NwARfLLyNyi3LFJQ0SZJgjvZTWIMQx+syN1EE61IbK7No1zalTK4xYDTwvZ9CPyVJBnCtyK8IxcjJlsdySdLZaHN53kN1jk7T7Eb0kJkwHxHmKXbHwPY9EOVz66inWVnqkymB41OfOu/fiTgqwJJVhk8M37SC4GNIKF+gFXVb7NpZtMTU3zD7DZ73d5dz5eWolh808YX2zjWEk9MObOLRnhvZml1uO3UCcZDz53HPccPNRHNfi6G0HuXhhgZOPnaUqHMr7S1y6usxzJ87w3d/1dkrNGjcd2I1UktW1LaamJlhZWmb37AzHjx9mx9QotWoD27W4vLQJymBtbR1lbnLjsZt55pnn2Du6n/PnXllTDUEH0pqmaZqmvULEVkRlrMrOG6fphFs4fp1GbZjm8CiOI4nDFTqdNbJByurVVcrVJrZfJlOKNElIkwQTB6/scujAPhKzGO6jlIMjTCq2oOSVafUzdh6YYmWtQ3s5Z2jYJg4Vm2Yf27XIFJSlT2blGNIgN3LOzV9gtDHG0PAUqAF5KomUIM5SUiUojze56+13c+nsVZ56/DQriyH3//VZ3vrOw1RHwSCiNxAIp8rk6BC1C4vUmj7tvM9Qo8K0N8x0MMSR/XMc2rubqpexkmzh1Yf5pf/6B9yydxedlWUuL6wzOjrO3pn92LLM/tlpHvniCaIgwLFsvIbD/NISJ557hp3Tszx38gS33nYzq0uLJEnKcLNJu9ulXKvgV6tstDr8yR9/BpVnvPa199LpbJGmIUk8wHcVva2L3HzLXp49cZLD++Ze6kPkRacDaU3TNE3TXhGyasaeO3eTeTGWbVMuedjCRuQKqdosbZ1mEPVZm98i7sdMHhhGOC4YAts2sDBw7RKGYyIExL2ExElRVohr2yy3cg7v2oUfZWSiy74bZnnsi5e5fHKT2bkxvEZOrx+SpQrTdBAiJ8sgcU2MzCDurLPeC9kxNsHc5DTzG2tsyS6gyBGoUsahY7PsmK7z+IPnWFvq8NxTy9x6125UJnj8wVM0G5PMzE4wOTrE/gO7eXrxDK7vkMYx9WqDyekZRB6xZ+8UDVXm6TNrrG32eDh8joM7dzK9exrLtFh+5BRepYbrVXjPe/4xY6MNmvUSUZyztrzF/n278B2bi5evMjU9zuOPfJXDB/ewurJGt73FjpkJlleu0Ol0URJKDtSqBjfdPIdSJitLi9x++03EeUTSaXPLnUd48AuPvNSHyItOB9IvUz/8wz9Mu93m4x//+Nfd7r3vfS+HDh3iZ37mZ/5O33djY4PDhw/zxBNP6MIyTfs2o897Tfv6jtx+EKuqMGyJaVlYpkPFK1FxXFK5xfzmZZIoZnV+Fc/yqA0PkWPiOh6eY+G5Lp5bKYLoNGOyPk0QnyPPU3IkpufT7UWMVGokvYDGWI2Z/Q2yygiTpQpDky5PrZ6jG8ZEQYokJ1WQS4FfskhkStmVXF4KmIpHGak1KJc8Ot0O3RgQEt8zGN01zHizzIUzG1w4t8SJR5aoe6McP/IaemnOI4+e4tCOaXorW9Qcn+bUGE5L8czDF5lf2eLQnmkajWHW11JqToOqY1Jxa2z14E8+9RC1ss/td97Kxkafz33ufqI0pHH3bWxudTEdA8ycW2+7kSwJ2XNgFwtLW9x192vZOTtMqVRm9MoSO3dNUaqYrC6v0N7qMTszxfBYlckdR7lyaZn2VpezF5boJ12Ovf4GVtf7rPWCl/oQedHpYsNXsKeffppPf/rT/MRP/MS1xz70oQ9x8OBByuUyzWaT++67j4cffvja8yMjI/zgD/4gH/zgB1+KXdY07Vukz3vt1cyruyQyBsOiWmniexV8zwMjYrO9SLfXZdALsJWkXq9QatQRGPiWTxon5FLieD6mYZAoyaXTq7hGiSwrJrjGUrLZG2AIh7JVwjUF+w7MMDlZYnponGA+pRY3qVklOp0OgzAiDAOiQUjQ66CyHrFskYo+3XCTK0uX6A0iJsZ2sGNolNFynVqphmOXGRppcPT4Lt7wHXcwMjlFHGTUKxXqlsfGQo9arUm/K6l4w6jE4Mr5ZWRmMtQcxhQmZ048x/2f/jLpZpvv+0dv5M5jh7lydYHljS5La12EFFw+c5bhuoUItrj83BN0166Q9jYh7WAbGZlUpNJgbWWNiYkJFldbjE2MMDlRo9Yo0Rhu0hwaJUtNlLL45Ke/zKnTKzz73GVW1kNMt87Q6DirKxvMzE7yru97x0t9iLzo9Ir0K9h//s//mXe/+91UKpVrj+3fv5/f+q3fYvfu3YRhyH/6T/+Jt7zlLZw/f57R0VEAfuRHfoRbb72VX/7lX2ZoaOil2n1N066DPu+1V7MwG+DZdVzbo16tUvObmEKhVI/21jwm0OsGKCmJ0gjDtnBdF9MyMUyT9a114ixGWDA6PcQDjz3FzokdxGZO6uZ0ewPsikN7kDI+Oo3aWsBUMc5MFT9wWXm2w8kLF7npzYcxvC02ey0MmeFVfbI8I8kkeSyxnJxEwiC12diATpBxdHYGyxrm6uJlwjhGmRm5kKSWYnT3ELtmy+StHGNNceTwHEkW43oVFs4t0Qq2ILBYXmiz2mlx6PAstYbHbTcfor0VMjHaZGNjE9PNqA+VGakN0e9scM9rDrFjpsn4SJ0sC+hvJPQ3l6nURji3tEWrGzO/vInMJTI3+epXH+WWG/czPbeHc5cvs/TISVSqyNOUc2dX+OrDJ5kY24vnV1ndGLCwto5ZDoiWYrLIYbhRfakPkRedXpF+kUkp+aVf+iX27t2L67rs3LmT//gf/yMAly9fRgjBH/7hH3Lvvffi+z633XYbZ8+e5dFHH+X48eNUKhXe/va3s76+fu175nnOv/23/5ZGo8Hw8DDvf//7v+Go2jzP+djHPsY73/nOFzz+nve8h/vuu4/du3dz5MgRfu3Xfo1ut8szzzxzbZsjR44wNTXFn/7pn76IPxlNe+XS572mfXtwHZNmuU6z0iCNU3qdLlHQp9tdJgg3EFKxtrDBoJOQSwvbK+N5Lo7t4DgOEonpWKR5RrnpMDbVQCY5Kk9Jk5RBFDOIE1r9CCFtGqUK1aqPN1ImLuWMTe/g8P792HEDs1divNwgCxTddsTaWo9BPyKOEpIkJo4S8iQjiUO6gzbPnj/HylaXqYndNJuT5MonSR3i1CbIFZuqR9CMaB6scPA1c1gViVeCmZFhbpo7yNLiBqFK2HV0L+ZIhZU0Z0P2WYqW+Z0//gSnV9dozgxRaVjYdoLrZNgiJQkCzp1boNuFs2fWkEaZ1XbCxz51P8+eXqK9NWBrq0ur1WZ0eJhLFxf4whcfQUmPRm2UJJE0mk0WljdJM4MTp04yPjnFiVPnOHPpMnMH9mBbZf7s/76fT/zhV17qQ+RFpwPpF9lP//RP84u/+It84AMf4OTJk/zP//k/GR8ff8E2H/zgB/nZn/1ZnnjiCSzL4j3veQ/vf//7+Y3f+A3uv/9+zp8/z8/93M9d2/5Xf/VX+chHPsJ/+2//jQceeICtra1v+MfumWeeodPpcPz48a+5TZIk/PZv/zb1ep2bbrrpBc/dfvvt3H///dfxE9C0Vx993mvat4eqX8IwDDZ7HQaxRBkOXsVmo72GRNJbD1i93CJLBLZbRtg+wrCwTQ+Jjed6lOwyCgthW1SGa3iOgS0gThPiKKQfd2nHbdY7W1imj5GbuBWbpBSz1l3j4MHDlHHw+i5T5TkqVpnBIKbXzYlCSRpkBEFEpz9A5imkHRwzJMg7XFqc59zVqzQbo+ydPkjdq+PZAse3sX0bZQt6dky/2sOecbEmLTbDFtOzM/zgj/wTjh6aJdhYZ+3CMk8/epbWQFIeG2Zi1zjrQZt22EWqmGa9xKCXYntl7HIN6VT5xF8/w8mrLU6cX2Z5fYPbbjvG9I5J+mGfJAtI8z57D01x5vJlWp2Yhx56ho21dXZOD9MPAtY319i7Z5J6zSHLElKZkUYZrYUOTa9BkiTESf5SHyIvOp3a8SLq9Xr8xm/8Br/1W7/FD/3QDwGwZ88e7rnnnhds9773vY+3vvWtAPzkT/4kP/ADP8DnP/957r77bgB+7Md+jI985CPXtv/1X/91fvqnf5p3vetdAPzX//pf+au/+quvuy9XrlzBNE3Gxsb+xnOf/OQn+f7v/36CIGBycpLPfvazjIyMvGCbqakpnnzyyW/uB6Bpr0L6vNe0bx9BnGEFMSW/iW2W8RwPJWO6/Q0sJVi4uEgSZLjCwPcrKAzCKNp+tcBySjiyhGPaZCpjfGaYq1cuUx4psTkYoIAwtPBNm1a/h+8NUynVWO9u4jdsbn/TftSGxcVzGwzafUgz3vja1/Lg6YdZHqwQdAQqU0RxRuxCve4xCAJyIcAQeHbKIILTly9RrwwzMbqTsXyEy8sLDNKYREmkyDDyGFtaOOM2w/4kC7113nzPW1lfv4TvVgjColOG75ZZWV+jn8QcvXUPrc1NZhqjlDIHkdhE0mZ0ci+ty/NcXllldOdhApVQrlcYHWmyubRJpWYyMT7JocNH+PIDj1AfHmNhdYNOt8/oWB3DtmkMVTm4fxeDoI1lZDh2Tr3iIBLJY196Fr9Uplr28Z1X3vrtK+9f9BI6deoUcRzzpje96etud+ONN1777+dXrW644YYXPLa2tgZAp9NheXmZ17zmNdeetyzr6644AYRhiOu6CCH+xnNveMMbeOqpp3jwwQd529vexvd93/dde7/n+b5PELzyqms17cWmz3tN+/YhhINpl3AsH9swceyc/mCFJOsTDxI2l7YwhcL1TCoVFykTpJTkWU6eS6JUkaQSx7JRJMQq5fKVZYSyyXNJlmUkSQLkDOKE1a0+nutjCZNMKFQtI3ba3HT8IDceOsqoP86QHOJd934n07URkkFOtx0zGOSESU5v0CfKEtrdNkk6IM07RHGHVmeDxZVFri4skWcGu6f3MVQZxcYnTwVJLglVQl8MSOoJxg6D1XSeHUdm+NQXvsznvvQ4o1PTHDmyn1uPHmLf5BR1YbNjaBTLMKiUKly8usbDz5zhrz73BaI4wrQc4khy6coiz5w7zVa4CWbE3Nwke/buY3W5RWuzTxQOMJCUPJ9BELPZH5A6Gaav2HVghp17J7ErJq97y2vYs3+SG284hInilpsPkiaDl/oQedHpQPpF5Pv+32k727av/ffzf/D+98fktzhGc2RkhCAItk/4FyqXy+zdu5c77riDD3/4w1iWxYc//OEXbLO1tXWtCEnTtK9Nn/ea9u3DMW3KdolmtUmzVsd3DTbbC0iVsrW0RdQJMYREkeP6NsgUUyjSLCLLM0AgDDAMCykVwrbpRYp+P8FQkCaKJI5JspggTQmSnCDIqJVr2LaNcmBkV5PcyZlfXqTb7yKEieqm3Dh1gKFSjSCI6fcSuq2QVicgiTOiMCJPEmQekqs+UbzFZnuZ5c1lTlw4w8X5BabGdrB/chczzVFGqzXKnodl2+SGQUDEiaXn6De63P6uYwwdbqLGbQY1UA2HofEmZmhTkz4Nq8LaSpuF5TUyFJZj0d/s4KG4cOYidb+BmzvIQIFSjE9Ms7S0ge+XefPr7ua1x49w44E5SraByBWXry7SGBmmPFJmbu9OzJKD7Ts0GiUmp+v0olV27Z5geXmFoeGRb/g7fLnRgfSLaN++ffi+z+c///kX7XvW63UmJydf0KoqyzIef/zxr/u6m2++GYCTJ7/xOE4pJXEcv+CxEydOcMstt3zzO6xprzL6vNe0bx/1SoWxoQaWAXHYo9/foj/oYSuP1csrWCLHskAqMC0HpSS2rQjCLYKoTRQHCAFKWtiWQ6nqUWmWGGqWqfkuWZKRpTlxkjCIAuI8o9WNqFSa2MJEGIq+6pLYPZqjFseO7aNWNrl86jTxSkC2llOz60SDmH4/pN0akKWKNE6JBhFBPyAMemQyIkz6tActNrpbLKwucnn+Cr1BwPToDKO1MUwlSJOMNFckMqebRywO2ljjJre940YO3b2fkQOTjB+eJXIVl+YvU/V8GuUh2t0+I2N1GnWP8dEmJV/yXd95F/fccYQdo8NMN8ZpL/YwlcnKwgJht8v85fNkaciefXOkMmJ21ySNRh3PrKIGDtMjuzHzEq3VNml3QLzZYWqoSbNR4tlTz7La28Ad917qQ+RFpwPpF5HnefzUT/0U73//+/noRz/KhQsXeOihh/7Gqs836yd/8if5xV/8RT7+8Y9z+vRp/uW//Je02+2v+5rR0VGOHTvGAw88cO2xwWDAz/zMz/DQQw9x5coVHn/8cX70R3+UxcVF3v3ud1/bLggCHn/8cd7ylrd8S/utaa8G+rzXtG8fJdum29ukF2xi2BGd3ioyy3EzHxlauLaDaxuYpsAqlUgRJEmCIgWRYJkGrlPBtjxMy6BUFtx84xw7JxtMDFchT0iShCyDOA7oRz16SUqnn9GoDEMGhiNpzAgO3jrGrrkhVhbOsXNiiIpVYsKb5a23vZ2qVSIaRET9iKAbEPVj+r2YQT+m141RmUTlKXEakciIKO2z0d3k/MJVLi2sofDYOb2HkfoovrBxLQNh5EgkiUjpyQ5b4Sq5GBCqLr18ix37xnGGXUIHAhFx8JbdKDMiCENGJyc5cPAQUxOTBP0BBg6PPPgcFX+EbrvL2uoaZb9MJBVPnb2Icm2GJxtstFfptNusLa6zcHGFT3z8i4Rt6K53aFaG8cwKO6cmuf32G9m5Z4I777vtpT5EXnS62PBF9oEPfADLsvi5n/s5lpaWmJyc5F/8i3/xLX3Pf/fv/h3Ly8v80A/9EIZh8KM/+qN8z/d8D51O5+u+7sd//Mf56Ec/yr/+1/8aANM0OX36NL/3e7/HxsYGw8PD3Hbbbdx///0cOXLk2uv+7M/+jJ07d3Lvvfd+S/utaa8W+rzXtG8PQTig5tUolz08X7GwsIxlCIgMdk/dTMdZoNO7QEKOV6kS5BLTthHYKKVwHRfHEFimSxpn2LbFzMwQVd9AySqmWEbmkjhKMB1FmAS0Bn1kLrn10F7ypE+cdnCqCiRstjYw7BwlMiSCA/uP0F5oc9PszTxy9lH6QYABWKaBlIosF3ieQBghaarIRI5tOOQqph/7RKEiXZds9NtUyhWmJ6aZbAyztrVEJ9hCODa5MjBNhyxKGYQthG1w6PgBZD+l1e4gvBLjB8fpZh2m903TbYUMmylPnz3BzMQ0k7MznDt/hRybxZUOYzt2sdW5yMX5FfaWynTCmPVOi96gy9yemWIEu0zJZMZmL0AsbFJyHB4+/Rw7dk6ye98Iu6cnMZYsnv7y17+r9nIk1DdqTKq9bIVhyIEDB/iDP/gD7rzzzr/z6+644w5+4id+gve85z1/j3unadrfB33ea69G3W6Xer3Of/nT9zA2Mc5IfRRhtzl37hQ1R9C+3OXxzy5TcmvEcguzlnL8rd9Jy+jhuU1GahM0SiOMN+ewDcnFpa9ydf0UpmFjI+l1WnhelROnr7DZ61KqlrEch0qlQr3epOLWOTy9k3rZYLO7SCYSkkECbZOtc218UaLWaHL+/DJX5tcZmWki6gnPXD1FPwvwfYccgeVZuCWXcsnBdT0yCaZtIQyJ79XIUoEQNpbl4rklGrUGO4ZHGK67hFmXla01uv0BUoEClFIIBZZhUsKkuxWQ9BVpAFmYEXcUnbUOu3ZNceHSEmXH5Z7bjnPp0gJnL8wzNzfHkRsO89ef/zJhEDM83iSIe5w4eZY9e2Y5enAvWZRx5cpVdkxP8diT50nDkDe/7laSJEaZYJUESmRcOHeBxvgEP/+LH6fT6VCr1V7qw+ZFoVekX8F83+ejH/0oGxsbf+fXbGxs8K53vYsf+IEf+HvcM03T/r7o8157NTvxzBLHnAYjDcXW5iZkknLVYOKoYKI5xqWzBpcWwalUUIZPnARYNqS5QpgW/STAERLPLZFLyGSKadmEUY4QKUNDNZY31hGWjSMFrpMThzGNskE/SvGcCoZRIYy2wHIxyiZWs4KVlKhUm4ThJZSEk09eZO/BGXaWZ7k6WKDb75BLgZM6KCkQmcKoWOQopJSYtkkYBFiWS5zEGGmMlBkIicoSNjdNHM9mdGQKz+nR6rWJ0hjDMEjyjEjGxEri1VzKJZul55bxVJluu8+e6X2cPPEcTz93kbHhMW6/JWfn7h1Iw+ZLX3qU5bUOTz99kjAI2TU3xYHD+6mXh1Gpw4VzS2xtbFKrlKmVq2ysrjDSrOH7Pnmes7qxzO6jcwyMlPJ4g1SlL/Uh8qLTgfQr3Otf//pvavuRkRHe//73//3sjKZp/yD0ea+9Wl25tI7rXmRstEqn28bCwJIZMu0zNAZepcpKq8Wgb5FmMUq4KGGSK0hySdDbwsozyr6DZVmEaUyOC8IhDGP8kgtAHOcgMpIkJ00zDKXoxRnl2KRSmWBj0COVKZYFlR1VksWYNI0YGxtnZGSSq1cWOTx3A195+mGO3XiMJ08/wlq3R5qGxHFG5JioTGDYIGwDYdlYVkqlapCmMUIULfhyUqQKiQyfpC0ZJCmjQ3V2Te6k023RHvRQCpRUSFJiInIrYerGIYbsOmnWR8k2viNoNGqsrK3zl3/1VW57zVF2zEyT8yiPPv4EUTRgZKTJsWOHsR2H9tYWnVaXRr1MnsZ4jsnC1QWGm3VqVZeNtXXOX7jIjbceIg77VMeaiLlpokH89X+BL0M6kNY0TdM07RUhSSVXrizz2OMwMw1OmrG1GuLYgjQOyPI+Bw7U6PTKCEMiswykoux69PodpISqV8YwTKq+R5LFIAzSRCFygVvx8N0yYZKSJ5I0ishcQZoGxHGHMK9TNZqMVCZZaS0RkSMcRd/sU1E+YxMjCKPG7Ows7c0BRw/cwqUrZ7j7hrt44MTjLLbWibKAcACDfkSlUsYwDRzPwfVtPNMmTxOUMFBKkCuJymNEWRJEMaqdE0YDSq7H9OQU9cowW511+kkPiUmGgZIZUkBHdtl71xRRKySt1Ml9GCrdSJaYpBJWVxbwrYzh2XHGxsdIopySV+GZZ56h4lk4rsttt92AIRSLC0vM7dqJYZrsmGjS6W8yd2iaM+fPopKYHbvGcMcqDPrRN/4lvszoQFrTNE3TtJe158u9wjDBtgTnzy7QrE4QbbRYvnCFKMrYvWuMyckahp3iVRPiOCSMUkpWmU6rTZIJlBKoWJGnEVGQIKTBoBcRDVJEbpDJlEq5TruzTJYIyCWWKdnYWMF3+8jUJA0Shpsl8hTCNCMWCrdepT/IaS2v8ZUHvsxtx45gCpNKc5RL5zYZRBF7p/aQKcnS+gqJLFripXGfKEowLYdKxSUJJOWaT5zG2K6BZUtSA8gNwjAi6EW4ro9hWLRbAVXXZXZmDNdxmF9Zph0EmEJhGBITKFkJti8Z2lvF9EzOPnGJqFfh6soyY40aRw4fJQeWFpdIkpz2VpPx8Qkcx6VerWIKhWWaRFHMk0+dxjFNNm2D5kSNc1cu0ekN2Du9k6FGHaPkovBe8Pt6JdDFhpqmaZqmvawtLCwwMzPzUu+G9nc0Pz/P9PT0S70bLwodSGuapmma9rImpWRpaYlqtXptcqj27UcpRa/XY2pqCsN4ZYwy0YG0pmmapmmapl2HV8blgKZpmqZpmqb9A9OBtKZpmqZpmqZdBx1Ia5qmaZqmadp10IG0pmmapmmapl0HHUhrmqZpmvaq9/rXv55/82/+zd/7+8zNzfHrv/7rX3ebD33oQ9x8881/L+//4Q9/mLe85S3f1GvuuOMO/viP//jvZX9e7nQgrWmapmma9hIRQvDxj3/8H+S9oijiAx/4AB/84Af/1ud///d/HyEE3/3d3/2Cx3/2Z3+Wf//v/z1Syn+AvXx50YG0pmmapmnaq8DHPvYxarUad99999947vLly7zvfe/j3nvv/RvPvf3tb6fX6/EXf/EX/xC7+bKiA2lN0zRN0zSKwS7vf//7GRoaYmJigg996EMveL7dbvPjP/7jjI6OUqvVeOMb38jTTz997fkLFy7wXd/1XYyPj1OpVLjtttv43Oc+9zXfb25uDoDv+Z7vQQhx7evn/ff//t+Zm5ujXq/z/d///fR6PQA++tGPMjw8TBzHL9j+u7/7u3nve9/7Nd/v93//93nnO9/5Nx7P85x/+k//Kf/hP/wHdu/e/TeeN02Td7zjHfz+7//+1/zer1Y6kNY0TdM0TQN+7/d+j3K5zMMPP8wv/dIv8fM///N89rOfvfb8u9/9btbW1viLv/gLHn/8cY4dO8ab3vQmtra2AOj3+7zjHe/g85//PE8++SRve9vbeOc738nVq1f/1vd79NFHAfjd3/1dlpeXr30NRVD+8Y9/nE9+8pN88pOf5Etf+hK/+Iu/eG0/8jznz//8z69tv7a2xqc+9Sl+9Ed/9Gv++x544AGOHz/+Nx7/+Z//ecbGxvixH/uxr/na22+/nfvvv/9rPv9qpQNpTdM0TdM04MYbb+SDH/wg+/bt4wd/8Ac5fvw4n//854EiCH3kkUf4oz/6I44fP86+ffv4lV/5FRqNBh/72McAuOmmm/jn//yfc/ToUfbt28cv/MIvsGfPnhcEvP//RkdHAWg0GkxMTFz7GorV8Y985CMcPXqUe++9l/e+973X9sX3fd7znvfwu7/7u9e2/x//43+wc+dOXv/61/+t79Vut+l0OkxNTb3g8QceeIAPf/jD/M7v/M7X/dlMTU0xPz+v86T/N9ZLvQOapmmapmnfDm688cYXfD05Ocna2hoATz/9NP1+n+Hh4RdsE4YhFy5cAIoV6Q996EN86lOfYnl5mSzLCMPwa65Ifz1zc3NUq9W/dV8A/tk/+2fcdtttLC4usmPHDj7ykY/wwz/8wwgh/tbvF4YhAJ7nXXus1+vx3ve+l9/5nd9hZGTk6+6P7/tIKYnjGN/3v+l/zyuVDqQ1TdM0TdMA27Zf8LUQ4toKbL/fZ3Jyki9+8Yt/43WNRgOA973vfXz2s5/lV37lV9i7dy++7/O93/u9JEnyou4LwC233MJNN93ERz/6Ud7ylrfw3HPP8alPfeprfr/h4WGEELRarWuPXbhwgcuXL78gb/r597AsizNnzrBnzx4Atra2KJfLOoj+3+hAWtM0TdM07Rs4duwYKysrWJb1N4oCn/eVr3yFH/7hH+Z7vud7gCL4vnz58tf9vrZtk+f5de3Tj//4j/Prv/7rLC4uct999zEzM/M1t3Uch8OHD3Py5MlrfaQPHjzIs88++4LtfvZnf5Zer8dv/MZvvOD7nThxgltuueW69vOVTOdIa5qmaZqmfQP33Xcfd955J9/93d/NZz7zGS5fvsyDDz7I//l//p889thjAOzbt48/+ZM/4amnnuLpp5/mPe95zzfMKZ6bm+Pzn/88KysrL1gt/rt4z3vew8LCAr/zO7/zdYsMn/fWt76VBx544NrXnudx9OjRF/yv0WhQrVY5evQojuNc2/b+++//pge5vBroQFrTNE3TNO0bEELw6U9/mte+9rX8yI/8CPv37+f7v//7uXLlCuPj4wD82q/9Gs1mk7vuuot3vvOdvPWtb+XYsWNf9/v+6q/+Kp/97GeZmZn5pld86/U6//gf/2MqlcrfGKLyt/mxH/sxPv3pT9PpdL6p91lcXOTBBx/kR37kR76p170aCKWUeql3QtM0TdM0TfvmvelNb+LIkSP85m/+5t9p+3e/+90cO3aMn/7pn/47v8dP/dRP0Wq1+O3f/u3r3c1XLL0irWmapmma9jLTarX40z/9U774xS/yr/7Vv/o7v+6Xf/mXqVQq39R7jY2N8Qu/8Avf7C6+KugVaU3TNE3TtJeZubk5Wq0WH/jAB3jf+973Uu/Oq5YOpDVN0zRN0zTtOujUDk3TNE3TNE27DjqQ1jRN0zRN07TroANpTdM0TdM0TbsOOpDWNE3TNE3TtOugA2lN0zRN0zRNuw46kNY0TdM0TdO066ADaU3TNE3TNE27DjqQ1jRN0zRN07TroANpTdM0TdM0TbsOOpDWNE3TNE3TtOugA2lN0zRN0zRNuw46kNY0TdM0TdO066ADaU3TNE3TNE27DjqQ1jRN0zRN07TroANpTdM0TdM0TbsOOpDWNE3TNE3TtOugA2lN0zRN0zRNuw46kNY0TdM0TdO066ADaU3TNE3TNE27DjqQ1jRN0zRN07TroANpTdM0TdM0TbsOOpDWNE3TNE3TtOugA2lN0zRN0zRNuw46kNY0TdM0TdO066ADaU3TNE3TNE27DjqQ1jRN0zRN07TroANpTdM0TdM0TbsOOpDWNE3TNE3TtOugA2lN0zRN0zRNuw46kNY0TdM0TdO066ADaU3TNE3TNE27DjqQ1jRN0zRN07TroANpTdM0TdM0TbsOOpDWNE3TNE3TtOugA2lN0zRN0zRNuw46kNY0TdM0TdO066ADaU3TNE3TNE27DjqQ1jRN0zRN07TroANpTdM0TdM0TbsOOpDWNE3TNE3TtOtgvdQ78LVIKVlaWqJarSKEeKl3R3uZUErR6/WYmprCMPR14iuJ/kx49dLntfaN6M+Hl4dX4rn8bRtILy0tMTMz81LvhvYyNT8/z/T09Eu9G9qLSH8maPq81r4W/fnw8vJKOpe/bQPparUKwPf9HzXe+LYSjzy6ycVFRX1qmEGQEIdQsiuI2GZlqUucRPjVFL8Co5NVshAufHWL2d1DHLx1ktHJaaI8oVLrk+dbnH12wPqSw6Eje5mZbeK5JYSZgBoQJykrqwHzixtcvbTA/EKMj+Lu0TFqoYFrGgih8EcqRHM2cSNjEPQZiap0ntgiHyjskqKxq8yuN95AJ2rxuc+fp9VL8H2PPO5TqthMjFfYscMjKA0I+jl//akFgp6F5Sh2zgxTNj1WL3VZu5yxsdLDiAW2UlgCMgwsAw7srDE6ZLG41mGtn9FHYBgCQ4GMJWkgsRCMTZf5hV/+AR74yoP8+f88SXfLIy+nzL7GgJqBtBW5At9THD1UpVly+MIfdzn7UICZCZRysIyYxFQM72piNTImdgq8csD+I8NsdrssXrS48liCX805eqtH1DJ56is98kjglV2ULxBVRRyaRGGCa1ns3GPxfT94hCRNuXg2IMsSSiUX03AwTZs4lfQGIbHM8UomWbpKybPpdCVBkAEC13aJowSBQRTlfOY3168dP9orx/O/0wPH58gyyBMwAd83OHzDHGVf4Dk2MlEsr2zSqDVJo5QsjZFZwsjwEAqJW3Jod3oIJaiWPIxMUWtUyGWO57qoPCMII9Y2e2TSIkkz2oMu5YrN7l2TDDerOI6FTBJaa21aG136nYhUCpRtoCxBKkz6cUpjpMzQSJkwTmlt9YkGOWXbZW5kGB+BcA1SK2crHNCPAqwsZ7ZWY7RRYdNO2ZIxtVKVydEx1tfXqJSrDAYBV+cXcFyPXbOzmEqQtBM2FlvYFYvGWI21+TU8w2dm9y7CMCJXMDo1RhjHnDp1hoXFRfIsw7UsZCqxgZLnkAhwSh6b3R79OKdSdqiUTO66dZabDk4h44QoM+gngLD54gMP4JRLjM9MkMmcfrdF3B2wPr9K1a7QaQsuXtli7+45KpZBp98hJ6Hq2VimxSCD9SBCeSZDE0NcunoFlWTcfMtuNrY6rCwHzE0P8+bXHefHvv839XmtfU3PHxtvuOMmTMNk7+5dHD20l2rdYX7zKueWLrJjxySe5ZKGKft37yfuRmyutxib3MHI2DAnL5/k1Px5unGAsk38ksXEsMfR/bs4tP8g7W7A0spVDDNk9+xuuusdlDRpjDRZXHia3XtmePq5RT736dOsXm1z6727uOM1Y5RKkOY2C4tdFlf6uL5Hc6hKqVylNZAsLrVZOLvJyYevEHVzkCkIRbPu8YM/fB+55fHs2SXCSNDbGrBw6SrtrTamZ1FqViCNkFFEechmz+Emd969l9GhCYThEYUmn/6DL3PqsStIpQijBAyBKaBaLiGloh/0EaaNMAyGKi63HNrL+Ng4C0trPP3cGXpBn6FmA8uyWd7cIIwzHNPEdkyqQxUyARutPlIBSFxHACkjTYddsyPY5NRqNUqNIZ4+cZUv/MXJV9S5/G0bSD9/ayaKTS6dNXnt64dY/IM1+p0OzeEaXTOi093i8rMRYSdnfKyKYZqU6zbVhkNPJtiuSZZJpnfsY3yqSaLaGHYZyTAjQx6u1yTJA8Ioo5t1qfgZtVKGCCJ2DZXYc3gCQ07SbfW4cHUDc2BgDyTxeoAnXUL67B3ZTacZYzSaiFbMZH2Cuj/G6GQJyn26vskTX23RmJjmhjtGKVdC6lWJ7cc4LoTdTTpKMjbapDm8gkKQK0kr6LD3Tp/qLhf5pGKoO060ldG6MkD0UxASqwKDWkhlvIrVcCgnBhXbxBA5nmOhcpP2WorspQx6IX/8Bw/zk//+jZw7c5XHHwhIhAGOQ3OqzI5dY+RC0dnMWOv0CNOYo3c1WD4Xka77KJGiFJiehVO3MUo5zfH6/4+9//q1bMvS/LDfnHP5tf3ex0fECX/juvS+0lRWVVZXNRstVrUogRIFiXJvEgRBT5L+AgF8EQgSIimhCciQYJPd1RK7mlVd3mRV2pv3xjXhI4432+/l15pz6mFHlrr11AQ6+2ZexO8h3uJEbJyx9hpzzG98Hw0NaZkThwFCV1TTithx2Nlp8zwpuXp3g9NnCeW0RE8b4m2X7sgHI8AYtvcMwj8mTWKirktZNtS6YblqcB0fawRKuFBUqFpAFTHPc4ySRKIFKDCSJtU0xpBl5l+on1d8cvjp79T1FGAwjQErEEKRphm7O7soa9GiJg4chG6IQg/tKzABSZrh+x79IKIpa6RQBK5L6Cs6YUStGxrd0FQNg7iDKzysUjS2QosWWzsD4shnPptxejQnS2uiqEO00ad2F7SDAL8doo0lzwzOIiVQilbkE8UOUhnmToEvPTa2hyxPL3GMwBQVg3aLKPKhaqhrTVlqjAU/DLFW4rsBvVabIAopyxzlSIQElCUIAsqkxBGCzVYX11EMBm2yvOG9Rx8wW6SMRhsU0jKdz5muUlZFQ1VVoCs8FTLq9UisprEZShiiVkxucmoDRihmi4wwDgnaPoenY/JC8t6HH7Kq4MruiLjdw/ddWkGI6VXETohOGnRZ0m75KM9CAKHy6AYx3/zMW1wZjrj/9JgfPXnOZZ1zfnZGU1uGgxatbshkvmTYC/nyF+6hHPsv1MArXvH/z09r460vXGdnc4hvfXp9HxsZGt1w+9o1MBWL2TlOEPBk8YCB22H/jRG7m9tMLufMzs6pVgW9bouwHyM8S1KlPDw8YHOzy81rN2jHLvc//BFSCm7duclykRB3QppmiHRhNsuo8oZf/tW32H+jixdkdLoh45mgsi5+7OH5hlYbhNKMx5esVgl1U1DbGi0EQkikgLps2OhbvvzN1zgZP+SPfv8B88sK3YAVFuFYpKrpd1s4psUimVOVGiMaWn2XwI948PAMv21xQkOyqBESlBC0ooDb1/cRSvDoyTOSokRKidEGRwluXtsl8H2eHByyKhIsljgMCD0PY8BVLoHn4zs+jmNxlKQxFmsVldZIYal1g3Qk7dDh6tUtFmlNmZf/wu/rk8DPbSP9Ux48KFjMGj7zxSFf/qLPn3/P4ljLVsdH25z+ZoDNU6TVuJ6kanLCoEMdBOzcaPHtb3+T0Wibfq/FqvCxjiYvM7yooqxPKRtNUoQUTYHyLcl4hlLgqAJpK5rKcONml42dLU4nBWVW0/V2yKYNLbeLdAzSU9hKMxz26G25DLst6mbMSiccX85YZDW9jYhGnVCLBiNiEIoXB8fEQUBeuVRVTncYkyQ1rhvjh6C1S3+z5uobHk8/WCIjh2EvpJ4rWrHEiWqsUzOWc0wssUEDoqSxkIoKIwTxvsITHqIyfLR8xO/8ZZ9P/63XOMoec/vtW2y/HuN2BUZL8jqnLj2mFwHT2ZRhu+Yrv3mNH/3eJYvLCoVEBQLH14ShwjQ1Vll0o7BCYBOQuUCULh+9k5IVltwktLc9ai8knaRUY43n5/R7EXEr5WvfjDi/HPOn/82EIHJ57a02RQG4Act0TrowTM8LZmc5xVmF30ikVeBKlJ8gJASxix+7dAYxIQaYfNxl+4qfIbq2CASuIwFBow0HRxdkScL2sMew26bT7jCfrOh0XIqmZtgfYMqG6XSKg8OVrV3Ozy/oxDGDVgtrLdOzC+q6RgrLZn9AuxPihS5aNMxWE85ODlmtShwnRkkPrx2z//otFoslNQ3XdrdotUNOz8akswtCRyE0oMGLFJ2Oh64NaEFla0rbUFWaOI7xPZ+2gjzNCSOPi/mcwtG4Kub0ckooQ7Y3u2hbUxQlRV4RoCiKijiO8EKXOHK5urHBi4sj2q0OjcgZH5+xyhqq5pLJfA5CkKQFQRBRVgaDBUeR5CVYQ7vjk+YF0vWpG4NUHnmpOTid8uDpIR4VQkYsVxXL3NIeXmWRC4qDOb6rCDzLoBOS1Q3jiwmULpubHe5+6gZFkzMdjymymj955z6hq+h1O3zm9ZucJzM+OLEIJXj9zat4ShAqy7/129/kxrVtzqbLj7nqXvGLwtd//R62tpw+m3OWnlGYCttXpCZHU+EOI8IgxFYOlajp73sMdzzaV7aYsU/ygxVZWnO9v8m161exGBq9QGrNeHzC5uY+26ObLBeam9d2aMWaulnR7W9yOr7k9HLG7bc2+cIvXedifsyf/+W7JGnFMnE4Pl4Rd0Luvr5Pow15OuHsKGV6WfDso3OKtERYD4FFCgdtLIfHZ3zVy/nlX7nD4wenTE/O0I1BuorAdzBVTTrVUFvmy4xePyJbSU5PxxTZC/76Lx9wdJzQGkboOoUaBv02vU7Enes7eJ7HdDwmK3NQhtqRPDs/ZvtiRF40SAXKdUmKAiEFjiPY3GyhlE9TGKIgpHE0ypU0tQVrYT3jIE80Lz46pdluE7pT8gaMth93ifwr5+e+kV7Mc8rU4/f+ccJv//ev8P3vHbNaVGxveLjK0N1UFDMH3Wg8xyeKa7A1dWO4/tY+m9d38L2AJKuptEejF1hZ4rgFrVhRVJq0OMeThqIwFNmSXjdCCE1Ta2rj8uygwBeWdhDjCs3kfEEkYhzXUEvDeLGk7QUgJH63Q1YnlFXNsgg4Pbjg4uKMyWTGaKvN7pWAeDciXc3pdFpoa3CMg3A8OgOfkxc1Lg5VMWNy6XGnH3DnrkQbwcP7S4zXMLjdRlKwWhVYI5BG0egapSzSlQghybIG15MIaQnbNY22VIXmd//y+7z9uet853/xGSwe2loaY6itpGxclCcRvqDIFJe5ZrhRc+fXA84fWs4+KDCNoG3aLI4m1J2AeEehmxpbecxfaBxX0OopFhON6wdQ1SgVIEeScCjIxhUiN0QbFb/6nRZxUHBw2mJ7x7J3rUurD+OLJe12j9FmTKddE0Uu2IbjSUO6aPC0obQ1YRigcJm9SDC2IYwWJFX1cZfsK37GNJVeL6lYi+cqjBXYxpImDVmo2R76OK5mOV9hrKbXinGMxfMjMidnOV0RjBS6bpjOlhSrnMjz6AQRbschCj3ilk9SJBweHZPXBbiKsN1lmc0IWx2Wy5SeF5JmOWVdgbbYsqG7EZDFIReOpN/qkRcV2SKnG8SEkY+uLct5zvnFOXubIxzXIfQ9JAaLwOQ1w94Igcez8TGudQj9NuPZDMfVxK2QsmqoK4vjQlEUCCTCUWRNQasdkD3JCZSH1g1xq01eLijynKrIUZ5LUdY0jUVIxbVr17DGsJjMWS1XuH6AlRasRilFYyyNFhhtefL0hDpdEgQtcFrcvXuXeWmYpwleFFJXDaE0FHVJYS1p1bCzscH+3Zuolo+vHQbDDqtlyZOPnnIyXeDNxty2NfvXtnhyYXjtzj69jkOyTPjip+9w60qXlm/InE/ey/cVPxuycQ5GIaUkkTmmK9HSYq3E9XxaoYvvOvR3rxM6kspZkNtjwvaA1z67x9aNFumiwRaCQRzQbnUoqw5G5WRpSlUVvPXm61SVwXV8OpFPVTkgcy6nKz77+dcZDCIwKc+ePsYLO2wOWtizjHhlsVqQzeHoo3OOnk/Jc8NsvKQuLAIHSwXSQTkKKwzvf/SCjx59hBu5bG3HYDXCagSCPM1odE1hHCQOtlEcP17wgz9+xr1Pb3F+esjZi3OMdmgP+2wMuhTzhCu7W+RJgassrgLPk0Qdn97ugKAdgDC8d/mCOq8pPE0jLVWWU1clnW5AfxASBC1mk5w0Swk6AX7gUTUlVlukEIBFCsmdq1e5sb9Fp9fiMsmx8vTjLpF/5fzcN9KyAKs1H72fU65u8Y2vXvL//qOcvGlot136gwa93WJ8mOMISa/tI5VBiIrrN0coL0VTkxcpqIwobijKCbqpWOQufhSxtRmSLHOU8Al6baxuqKuKuq4BwySZo5wKWfQ4eZLTadp86o3XSCcnPD47YdmyrEhYzWc8PVZgBUXe4Ll9Tp6kNDUYNOfnYwbDayRphR8KpF1rfEFwMZmwMWjxkRiT5RbHDzh8MWV3b4f93Rb9jUu2r0WcPM/JCsOgH+HWGUVmKOuGVkfiBSBQlKXGC6DXdymrCqPAjxz6Oz1u37lF2InQVmGNj9VgTYPQgtBEKFvgNtAiIFQx2WrJrFziXrNc84cc/njC8786QrgSzxV87rWAbt9y8SOf5GjF9tUeV15rKGRBkYKVUGQpDQrtNsiBQM5d3nzdcvO1jEcf+Hz2zbu8eW+BlZJnz6c0teDkeEV/0Eapht4wZDDqEATHHLy3ol4prDVUQiMqaKSFGoQRUL164X7isRqJxBiLqTQICVJSJDVTZ0kr9lHKYoUlckPaQQtfubhOgOlasnyFUi7X9q7x4sUhNvaIgpjQdWh0zXQy5+i4RLqSTm/Andd3OJ1eUFqLn1Ys0xVVvf6OSOcJyXJFntYcHV4wvZhgpaRIa0yZgICqboi7AaHv0ukImqYhnaagNhiNehhdoqxFOg5Wx1RZTjfo4OkxVJZBt814dsosFQRxRL8/5PmLc6RQ1LWlbjRaWvy2S6OgtgbPGiaTS4yxbG70SZOMoiixxrw8fNR0B0OuXb+O7wfMZ1MeP/gIQ8Wg02JV1viewqDphJIvvn2H/d0+0mrSrMTv9FhWUF0sqRsPU9YEniKOFHWVEXdiROQiez5+N0CamuXiklVWUmpF1PXxAmjKivPVlM9f/Qzb4xlep4UvE/av73P3xj6BJynyBE/VH3fVveIXhOLSsLU9ZKFSKq9G+B5NqUEIQt9nf2uDXitAKQdrQDc+s1VNowWIHjg10aDAcySmylmJEuFppBAo61KWJXFYMex3QBcUeU6ja4xWbGxsYB3L0eELzs9PuXJlwJ27t5gnlvO9gsH2nMW85vTRBe//5RFZajHGoDWAwFoN0uD6CsdxcB04v0iYzlb0gw69QYzjCLQWWLEeghktqLVB2fUzUheW+98/5dH9I6RTEbUcdvZ6zBYpFQ1By+dkPGcxXjGf5kgFZ4sJtWwwbk0w6OJ6PtoabOjR8T0q12H8YkxR1qi8Rs0zwlBQaktR1fgEDPo98uySWhgQAmMkQejx9V/6FINOzHS+4nSe0jQfZ3X8bPi5b6SDUPHWG7us9JTf/f1D/p3/SZ933st4fgmDrodwDb3NgGRRYHVNKwjodjtsjobsXR1R1wtq69BQI3QJFkb9Fml6zPn5gvo8xHM9kpXBmobVfI6uNFmR0N+17F1t4+iMeSr54Z8/5exJxu2dHTa7u8wuZ5zkGd2wjygLprkmqRJk6rA6sTx7cUBr2yNzGlzfIITlww8u6HS6BHGFkAWOsujacnt/h4uzis0th1a0xf33jvEjybPHc3avdfADxeYVnzBucfxsRoOL48a4vqGsV2hrUa6grmqitsv+9S02tzoo5bDMUpTjs7G5i5Q+jQCFi60EjjAI01Ce5rx4P6Gs5izrknLesLPZZ7i1wSJbUtqSzjDnM9/e4se/e4YtJNXYEAc+vit4/y/OMI0lFwlez2Frp4WpHZrM4/Kk4PB5ijGKVVqy2ZV85Zdizk8TLi9GXLu6Ymsv5nQ84fQgwTYRZdmwSgpabUltNL7fcOPTLnFvwAc/npDPBVWtcQDRKKQApRTCKkB/3GX7ip8hxlga0+AoF60NxhqUEkgBs3mG40zY2OhjtaAuDW7s4yqf+XzBcpXgSMFqvCR0PTbjHu12RJUXXF4sKauaIIjY2LxKHEcYatJZRTor8doRnahNe6vL6ek5TVXhiS6ecInCCKkteVqRlQV1pcjTnE6/RRwFZKsCP3IIY5d2J6DMSg4vTglDB89VRKHLxXSK48QsszmeqAili2Og1/GZLi1aAAqC0MOVCmkktrEURYlUgC/JdM3O/h7z1YLxZEpSg3ICXOXgBQHWGrTVCEcyGPTwfBcEtNotrt24TpPMefPePtNkQV7XeA5sth3u3dgh8ByEkPQGLouipljMiANBHLVQwlBWKXWdoZSk228x2OhxeHzG3kabN6/EmDDmB48mnK0KRv0hlLBaNoy2hqggZDgckOUrdjZGfP6tt1HSkBVzGm2x4pNhk/WKnz0bw22QDcKXtHstKnf9fSGFpNMK2Rv12d/eIC9y8rKhMW1M44JpYRtBmTYU1RTlSc7PF/Q7HjujFrV1WKVrCUMcScLAB2OpyxQrBbXWLJYzstWcMkvY3exzfX9AXpacXKZUjaDdcQmCAMcKzl8kHD2cYVFIabEGEBYLGGFpjEZqyAtoRT3SpKSsS5AGay26MQjk+u8ZTehH+H5Almc0xpCuLFpDuqyxzQrHD1hmJVGwlmDMVyWXi4zaNpS2wQrD4uEhqyRlb3+PoB2tB2axS2sUkSw8snFDVVvKEpqmIogiWl0XXTcMtkeMpwvqxmDQWAHaGqbZHNtkzGcF5xdT0pca6U8SP/eNtNOV1FqzShs+eD7lxZN7/J1vZ/wn/9mUxcwSDmLc0PCpL1zBNTWO0PR7QwQdlsslni8xtsb3QxzhUiRLkmlGKx6xsSHJMs3pwSWPn56SZmAbj+llQpJmXH0tQPkVcSvg3e9PKRY+X//WbXojl78+eYdOZwvhdEmeTJHjlJWncK53ECvL9P1zRqMWF6RUhSBSLlmasVwsiaIzbr8WsrvbIwwN58tzdJVTVwlvf2bEi+clCIuSAZOLkocfTJGhSxArOj0Px4l58v6cbL5ezPH9GiE0WhusUSgpEYDWDRbD3tUdjA1RTgcpQ2xTgAVrG549eUyWnNKTPnUh6W841IXF5jEP7h9xnT5R7EBdMdhW3LojmKwinvxJgouHqxzms5pkLgg3BG9/rUdnq6CsNY71mUxTjg9TqHykgF5L8et/r4vnSu6/V9He8Lg4AVs1aNVmq9/F1CmVLamaHCE7VKXBcwNGoxaOs8DvCA6fZhw/SygXBqdWiEZQVetFild8smkageusF3KEtS8PUeA4LtY2WCtot9oksymrxYpu0CE3JdPJBM9x6Ecd2r5PYxpmacLleIyRkJUNnU6Pnd3r9DttlIQsz1klCb6MSecZZZGjy5puFOE4DrbR9LsdlmaOLx2iwZDT8wl1XaAci6kbTGXJ04JOOwRP0IkjqkHN7DJjkeZsDrt0egMuFytK0dDa6qKMYssVeG2XZZrgKBe0xNQWYSwKQez5SGMp8pyoHRK2O7R6PfIqx3Xb3Ll5gw+enrHKGwoMceyANS9f2oY0TSiKFJAgBHE7xml5RP2QoCfwXQelK7Z7LYwx1NolLUsKXTJd5uRVSV6kWKvZ6HfRVFSNRvo+USTodmKePDrh8aOn3Bne4Mpen520R2fXQ2pIZhlbW1fZ27/BMq24d+cOncihHQd0uj0m43OE8gDF84Ojj7vsXvELQtwJME7NZrzBxElobI7A4krY7AR0QrCmIvJDQk9RNw1lUSPQZEnBZs8jq1o8fXHC8cEpy5ZDnfXBeGRFiWsbWoFBSkk37hGHPtPpjIvxjKfHL5AqZziMCEOX45Mx57OK2UojcFhOE6I4ZLTV5srNPqdP54haooWDkQawGCEwRlPWJXVpKE5z/uD3f4TXh/GkRluzftdrEFqDWN/CKiXxlEOqNWVZYoRASEXTSM6Pc5RT4SiJjBwcP6BCURtNbUCjkELRlA0nB1PKomH/1lXCToSQFtdXKFegXn7vaitRUtDqRGRFRp4VtFoRrXZMmpYvDwWQ5SXvvvuY65sjlqua07M5afKqkf7XTmuvzYcnZ4gGIuPwX//OjP/d/+YGb99N+NETS9BbN3/5QvD82YJfu3ONvd0rTKcl0vWYr3I6gWHU6VOVCQmaQvs8O5hwOZniCIdQeHRjn/OLBU+fjNGlxsVy+IFlZyemquH6lSt4+yFlvaQoPXrdNlWeUD6dc6UKmVmP3LN08XGrlP2eh+53OJc5jbbkukJ6IU2WM5uds0i24czFUQWjwQZGZERRw3Aw4NnjI4RVCGlZrAz37y9447M9PCUY9QNcUXP8cEllFaYRxJ5DEGsqHKSjscZwdrqgNCX9jRY9FI7XxXHamDrHFQWHB2Pe//FzkuWU3V3JvV8a8YUvtzk7zume5Rw3OWVi8bTHR3814d5bAwLPkJYlX/72kPEHNWHfJYgkq4Wmd93n5uf7lMGSVV1Rr1p89OMVVWHX10RC45kur99r+NTbDn/6Z0sOL+HTN2uclsf7D445Pk44PtAspg47+122bnkUeU2RC6SoaMUejlQMNmLCVoDX8zl9nJA+KxEF0Bg88Woi/UnHaoEGatPgKYnjKqQjcRyBqwKMNkzHM3aHQ8ZHY85PzgiUw0a3jee4mKbi5HTCoiwptEG5HqPRBnkzJwxiAj8g8H2UtKRpSlVUdHsdYhtyclqhGgWmoanWk6H+RhsnbtP2I9CWledR+5ooipkvF3jWxVGKalHSij3CKMDd8EHPmGcZcRxSak2312eZpezfuko6XeAO25xNphwdTiiMAVux0e4TxwGeo+hGLZSEfJnhOBJXBlSNYDjc5NNv3OD7P/gxTw4uqT2JFIrtjU2qumA6m9DodSjCbD5HSoWUDkIY2rFiuloQ+RJbW04ODsh3N+m0u1S65vRyynyxYrmY8dYb19notnj09JBnjw/o91t0hi20bZDN+urZaM3B2ZI/fueAu8sM61rCULFYFNS65s3Xb7LMG7ZHQ/Z3dxBGk+U5y2WG64fMlhmXsxm19T7usnvFLwiTxZh2L6KxGjxFVVgmkyX9lkMrdGhFAqtLpBdQlgWHB484Oj7i6tVbbG/tEIUtrI3Z3Rrw1r090iwH7eFIj6Yp8T2X+WrFZDmlFbTpeR0CEWGWgpYYMUuPOTu7JIoiZrOcRdKga8X8LOX8ZEpvGPKVXx6wd63D872YyUmBxAfHoa5LjDVICYiXk2etePhowtXXO+xeHxG1zymyEiUkUkq0NRhjSLOMLC+pdQNSrW9oBRit1wMHIzFIprMlnl/iKoV0fNASac36ebUCawyT8xWmOWD32hZRr7WWmfguNRVSSRzfBSnQuiYKPaoiw3UkGxs9ppM5ZSWQQmG15ex4yWbcZ5nVTBY59Stpx79+2nGPqtewnK9Yppr3Hx/zg+9v8s1v7PPo+XPMrCYeuahOzae/cpW9m7sURU6tM7LlWk4w2rxHGCccnT7j5DzHDyQUBlt4HJ9rPnjnCXUDOzfbDLdSZmNLkUhC1yWpfGwGBSmbow7d1g0uL5csTqasFhXLRUVqSuamYnd/j8h16IYB7qbiB5dTtl7bZppOKOqappH4foCDT504PLs4xQ8F5+clt27u0Gm3cR2L54Hr+lhjUdIjWTQ4MiKKIS9KLi5TpOfSkJNlmt3tLpWeYjQ01qMsSrwqZ//ukO29baTsoxwHa3JMVfHBTx7y4ukRaEHkSGzpMp7UsJkRD31u9HwuFx+y34ZqPsYBPvzehFtmwLAzwG9pPverexRFhvFytvfhW78VkYuMJIFipfjwvQlJJggCD8c3OHi0whW/+htDLl8kTI5CXFVx/GJBMViCY9GEZHlGViY8+yhDuH062wFlJUFuUlfrZcaiWJBkGe1+SHCvz+FqQpHU0Ci0/QQ+pa/4F5BS4vkuvpJsD/vM5jOapkEIByssujCU04TC+vQcn26rg+95ZHnKrJjTWI2VEjeIMLWhbDST6YJ+t8uVvV2iIMBzXVarBVJJ2u2I1WpFXhbY2qKEJPQ8XFdhgaYo6cZtfOGgTc3V7W3aqwQpHXqtmNkyodY1gfRwrUeyyFGuw5t37zKfr8iyFePFDN+P2NraQSIYDgcUWcniMGd8uaQyEAYusRfjSkknbtHzA9pxiycnB1SqoHYlpXE5PD7j8uSEycWYOAjZubLN62+8SVU3PHn6lGWaY6oVSkjyLEcIhed5GF0QuQHdqIeQHn/4+39Okqx4erTAcV3ysqKqa6zRRMry7o/uY0zFPC0pa4uSLmE7AsfiKEGtG4xQ5KXm2fF0rdfeCult+Uwu57x2dZ9Rp8/OZkzkt7G6YrZcURQVYRiTFJqLmaE0bYom/7jL7hW/IBycHKJOFJN6yfDT+zhOiO9Iui0fQ01R5zi2pNGC+x894Lvf/Ut0Y3n0+Dl371xnZ2eDIPBxHJemKanrmlobZrMpF5czklVBGDts7cTY4pyh2uZXvvgtEn/dsKu6zdmLI1aLjNVCU5WWxbTg9HhJXRmCcImnHAZbHb7yS3f48V8843JsMI5CSIEwDWiNtADrhjRNDe12i898/ibv/MUJ8/Hl3zTStllLKIqmYT2mBuU6SLG+mbY0WGuwwqCNpTYaqgo/CPipAZ3r+yAlaV3SNBprBdNxRtOcsXd9i7gdEbYiUJKszPH8AE8qIq/H1nBIgCByFKNRj+N2RDVbrv8rysV3Y6xeOwOlZYPlk2N791N+7hvppx8d4AYSK6HWllVp+Se/94T//f/hq7x565APfgKrVsPgeovhzpDZsqDfDnBdSxx5ODKgao75kz9+Rl0LXE/x6McT3v+rMxLdkBQNViuEVmSrMfc+u0Xgz+kOurz91h7GFkCFCSTCpsynDacnC548uUBKj1IZ5q5me2tEd9jD0SUya3CUw7ROWT3U3Hx9wOnkHCM8fD9gOS+5PE4I+xFKBSwWhvffn3H7lsegX3P1msPZkSJJCxpACZeTgxlvDbsskhzPbeHHFhVkNFXD0emE117b4OTonCCytAcBnm/p9fsIGSBdgaKgSnK++yc/Jkkz3FDT63ukaYUXeVxOl7w4Ocf3RyyWOZOlQlnD/nWHX/u11xkfFbz7zoIH78z54q8q7n6jRkiB9Aw2g15nwOy4wtUlTx8WNFmLxqbgQLcXY3PBV77cZdj3+I/+/ZyNGy2GMTx+H47bGZ/69Daf/eo+G7s53/2zB6Tjmqcfjfns8BaObDg/XyFsQH9DsbHRYdDvUjWS+SSnzSY/mR1RFQ26MR93yb7iZ4zvO/iewhGCNM/QjUUhcY3AqwRtP2Kr1WUz6qCbmlWaMJnXoCRO4AMe2hjiKKatHBqjWSxWhL5Hr90m9F2stRhjUY6DtBIlFK5yiYKIKApoxyGOI3EcRVnW+MpDakEQ+lgg8CLSLKfj+eSlAcp1E145BJGi3Ynp+R5Rv8u5aGh32izmGScHRwhriFsdVmnB8ekYV/ogBY2uKasK1w+I4oAkW1HnFaIR7PSHFNLl+++8x+Likv3NEaFq02kZOp02p+dnPH9xxOb2Ljdu3+P9999FsPZyRxqKIicMHKypiP2Ad9/9CN0YwqhN3UhWRUGjK1xpaMcedVFyMcnpdGKko8iXCVliiMM+pVmCskR+gINGYPGsi9SwO9qiqAv2Nja4vr9PFLVwXZ/FcobRDa5SIFzefXLChwenaCPwfR/9SRxjveJnwv33n7GaZoyTKfdMw6e+fJudW1tYcg5PJzhUDFouxmrS0sVzb/L00RFRC+JwRq+3vlU5Pb3k3XePmE41WWapKotyXIKWz5XrfYbGspqtmF5WvLk3YXs04mByzLMnZzz46IKLo5pq5WAagzEWbRyEtVSZ4a/+8Ijhpscbr11h0GlxcTGlzhsMGiUkxqxd5Bwh8RyFrjVFluA6mt2rXR7+ZAys7T+lkFgp188zFms0GIPFvpS/rT2brV570wsAAdpommYtC713dZ+b+1coqoqTyZT3n71glResFgUvnhyzuTUkiELiTshsvGCZLLiyMeLK5gBXCq7sbdIddBBFRbfXZr5YoTU4ysHzPYqqprESKQVCfPIMAX7uG+mmNEgl8JyAwFFI0XA2LvjLP53wnW+/wXvf/xGiusL4JGH/ZofAd1HKEHguTWm4OJ2RLscoGeJJyzt/eM6P/viMBoPTk7gxSKfBoUHUgpMHF3z5N28TbWlQBb1Q0e9uUJSwmCVcTBNePLugKDWtDvgqQHoNu/2Yfi9idraEy5RZbejf6nH2YEw6jwmUT5bkJE3N1naE9BXp0pBnOVI1KF8yWxV0OgGDjQDPT+g5AVUNWd6wmGRQdNkddLkUGVubLtnUZT6uKYqGVaLpBj2aVY6wUPg1pnEQysdVBjH3+bP/6gcsLtbTuP5Wn7qx6Frj+g5KgGkEh+czihqU24AVGCmxcc6Nz3S48rZiMk2JeoZSFygJrq9YXnb4B/+3p3hdycae5OhFRacfM4gMQcvwuS/fohdlfObNNn/4Dw+pVobNvuE8N2yMPI4vG/7od4+4cXvJt3/567x2+01+5x/9Hs8fX/DeD57z1uf2qWgwKGZTjeP4aD0HYxFOxuhOl9ebTd7/43Pqo0/eQ/qKf5HAU3i+i6g1TVoRWUWkFMMoYmvYx1WKPC+4nM5wAo/KQtDpErdjlqsEacEToCSMRmu5R70xZHO4Qa/dRlcldVUjlEJYC1rSijq0lWU6nVAVBTbwCcMAKZz1DzIO0nEoqpqibNb/P+lxcHTG6WRG4HsEgYMp1letF8WE8eklq0XCPM+R3gme57PR7ZCuFkznJ+s9Ay3YbHeZJAtqKVhmS7JyTlKmrCrF9PyEdqfDDdclnSx4/vwYKQTTVcn+Rp+mWXL/gwdoK9aHh1aXbq9Pt91huVqyWk6JIp/9W1cIWz4t36U2NXu725ydTzBCUFYVCovvu8ShYmerz9HRGWXe4HoBuBbHLbm4mDEbJxiVs7nTZ7sfc3Oji2MteZrT8gRlWSDdgLffuEW/00NKl9l0Rt1UGBxenM05uswobIiRbSpdUmUlnTj+uMvuFb8giEqyt7lHsiqZP5ugPrPHles9np/UPH5+iTWGYsNlmczJ6hYXFzUfvLNAKUvodLh3vY1yQi5PTjl8XDIba6xxcD2F9UrcToTyffKyYjJJOX7vnA3/HT79qRvovGS1zOhvDVguJ5SZwdQSa0FiMaxt+EylmJ1aHpVzjDbopsYYi7VghXm5w2QJQ5/hoANqSRx4NE3O3rUWrgt1aUCug5mElQjsumE2/E3TbKVEiLWM2jTrRWMDOJ4CaTDW4gjLoBPwxbduooCHR6ecTS/JmgJjFEXaMD6fsrU7YjDqkWUFRbI+WCMstWkYbW/g+D7FeE5VVevPYS2ahkwXLGoX4bu4vgdZ8XGXyL9yfu4baccFUxuKtEQphRsaRDzgz/7yOV//xrf42q885elxjXFcJhdnDAc+2u9TFSmziwmRG9Pv9Tl5vuIHf3TB0cM5v/TLr3PtrR2iviAtp5yfHrE8TbBG8PlvvMbwZp+PDl+QaodAeoynBWXjMz6rePLRGU1VMxz0WOUZw15M5FuujPqkVQpFhdQu42RJZxQRH0lOjie89bmbSHeO53t4kWWWzrCNy/bGJnGnYXPfIEyO63m4fkWnV3P4vKKoBJ4fEngR5QriOKfXarjx+VtMjn/CxUkO0uH8Ysko7vHwryfsXInp3fEpSs3AsXg25B/9P97lnT88BQ3SSuKgQoiG1kjQ7CvaXwyJlE81qzGVxkiD6w8onIjH9y8YbaT0Ri12r/RwPcFsOsMYQbPy+NN/+gJTOlzdj4mGlt5JRV5OCX3B1WsDXn9jk37nAcvVgh//8JKNrYA/+/8smRcut78WoGyAsJqnH2Q06ff4wpfv8T/6X/4G/+g//ys+/PFTPvrJKZ/76i3m80uCIKYp20StGoymERWZntG66vPWt7d5+AdjzmefvGWGV/z/sLpBpxrPSFrCZbvTY6MV4biQJitmtSbXlq2dba7sXWEynTDcGOA4LnleUlUV3U4bxxFEYYjnKESgiHyfpqqoyhIEmKah2+vSikPmiymN0Qx6Peq6otftELgeWVqCUQRhROAHnGcXaCuYLlOsgI2NLYx0GI2GRIFPXeas8gXHR+eYQFBUBfNFinI97t65Q7s3pCwyhpFLUVQUy4o4VGzuXaXdC/E8OB2fUVUZvt8j1ZpsseCH7z186WDSYHE4m04Z9odczqY0WGqtcZTi/PyURjfErRZYg5AVb3z6NlmVIqhpd7o0Vc2LwwOqpmRze4Mg8GhFIQ6Sbj8iDn16cYfnz05wlGLUDXC0oMxKzg7OwK3Y3dqiLAu2Rn36ccgyTdneHmAt9Dp9ht0RebIiW67WB3Ys09WCx4cTMh3T7gV4jcaRDrosGEWfvOvgV/xsaEdt4jDAcxySixVP759ycX4JfoQr+rx4NuHksCDVFY7boWhylKeoEsOzD1bcj+f40YoPHyW8+ChjudAIIQljxfB6BzcMkY6lyFOypGK5qBnPCqbTlKvDbd66eYfcgdB5wHvpIYuywViFQGCtAAFSOTiOS1lYqqbC0uA6iqa2mJeLemABS12VWFvguS5pmjPYjIlid/1zzVpHDT8dNcPaRm8t4zBYlBRIy9pmz1qEkggXlKfxHdjb2yF3Sn74+D2W0xnHF1OMLNm+NmC1zEmXOVleMRlPGW0MiOOYIq04H094590PuHHtKoNBn6rWnLw4I10V60YakEogfZdSgpEOSImxn7xh1899Iy2EQFmBsYLdTo/QFyTzFfNc8ae/e8KvfuczZH/+mHElWE7h5vWIp8+nJGnO9sYGyWzMD3/4gvRC4IeC/97/6m3e+NJrxJ2IxeocL+ySVymm6HJy3GCDimkxphvFFKUhW9VshgMup5f85CdHLCZLrl4f0qDxgxaOD9d2tshcgzKKHeVTtAVO7GOkQKOpjWE8mVLUObWpqeqILK/pdgNOLhbs+R77O10uLiYopeh0fHau+Dx+VDJfgnJSqtzn+HDFleubBKHFdwW72wHjy4TloqGsJYXT0N3oMU5X+K6HUQZPaM4ez3j3z56iirXxetlYdFaxNfRRuBw9LDCO5q0vtZg8T7h8onGsQpEDKa5X0+4vufeVIV/+DUB5bA1ugCo5fyEpV0/49DeukcmMF08XVGVNu+UQdhrarRbJ5JhbWx7/xT89ZHSrx+VHJRenaxnG6YcZm/e6HNUTirphtUw4Pz7FqJp/89/6Gp12yF/9+bscPLugtyPRLhwdL7l920fbBYN+iJM1RK5DvysJgw0evv9qw/+TjK8Ffddnp9Oj5bg0RnM5m4ArGWxuMPRDzsdT9vausDHo02+3EGrttdrvdDDWEscxxmqa2uBKF2FZT14dhX35EivLgjxVeL6DtJbA8QjCcN1oawWuS6vtUTeGwAvwPI84DknyEse6KMej22nTbrWI4wghLGXpIV3FVVeSqRzrG5zzC2azhLOLc3Y3Nul0uqTFlBs3t3GFy2DQJWqFjPo9qjLh6aFh1FHcvPUp/v7B71KjmCUlvV4H72XEeN5oDsbneHGMI9e6RiEEta45vzzFWEsYOFy/eQU/khip2NkcYeuGIA7Y2h1y7eYV4jhAYImUh2ggK3OSRYZt7N8cPHyp2eiE5I6DVA4be9tsDbYpwpyWdPFcRU/C/pUtLIaiqpmMx3RbPlWRkuY1UbtL1AoQoqGuMooixXE03UCxN9xmEEcfd9m94hcEqw1JkrBYpVSJYXyY0DQxSiWYyvL80THj2QTVFrT7XbJxTVWUaK24PE/44P0T9raHBLbHIC4o0imOctjY6NAdrZvYXkex2fHRlwHLrmI4GNLrDrl5tc/BxQGPLy/Y2R2wuJVyqBaYwkPhMZ/Msch1CqjrYMw6wMgNFK1OQDqvKHLDWqBoycqCvMxxwpLnzydkpiYMenihwtoKDVhjsBaUFOuptARhQEm5tqDTGqMtxrKeYIv1bDzuenzhy69x5603+cl7j/ndv/4Ri+kKLIT9iDv3trjRuka6yDk+OGd6MePsZIISDq7rUVcVZ5M5G4MhrpQ0CLSxaG1BCASCOAho+RF+FJHUa/32K430x0DZWBytuLrdpe+7vHbtKu+9ex9dWv7qDx7xzW/9Fm/cO+AHH8zJlgMePTgjzXJU6PPi+Jgqq/jUNz9PrxUQeHO0XNF4EwySIJLUusTzfCbpFK8Tog241qUTd4m2fCbThIsXYz784IDZNKHVbaE9lzAK6bgBsQt+6FDqjJYKqVYZwVARRJZn1QotXfwIFsuEtz9zg8PDY7J0ibQBDl0aOafbF7hKs7PVwZEFkae4cS3mr4MEuQqwRlLkNVkV8/RFytbWgMvzU6JuzO6VDN+3pLlGOCXRNReqkFoUVHqF0CP++J98RJnW3Ls64Pq1Afc/eIGpGoSw5KuSJNM8fya480WPu1+OGVwxDGMfoTVBrNi5EuGFsHm1i9taUtewzC7oDTx29vu8/eVNjo5OiNsjVucSUyvK0jCIXRxKrm1V3P/BkqcfReT1Ci0CGgHGCCaHSzZ22wQCamVJ84rDowkX83MuL4748le+zPbGiD/8w++ysbtHnmYox2U2ddi96hF1DFXt0d/a4nJyRHX9lWPHJ5277QFd36eqKy7nS5KmxnouvfYAFbWQyuH6tat0W9HLqatEm3Vsbb/b43wy4WI8odNuEfo+phG43np/wQt8PN+hqWu80iUvUoQIicIIx3Ex2hIFbYxd6//C0KMoS4QQOK5k0O+gzQzX8RBCIYB2q402Gix4rk/oGnbCgEkzJncyBptthLIs5ytOz07ZHfWZzgu6/Yhhr0schkReQOhbqmzOlZHL/tYeZTXji5/eZLxsuJxlTOYTlOPiOAojYO/6Dm+8fo/5bMaLkxMux1OSJCVPC6LQZ3O7R6cf47sOo+4mSkBhaupSc3V/FxBYU+MgkMYyX8159OAxWbXeLVkuMlpRwK0393jvnSe8eHLKsN+l04uYj6ecHZ8S+R7dYQeJ4PxsgqPWC6FuB+rGpUGAdPH8iHS1pBX6COVj0Bhd0Q1C+qHC1unHXXav+AXB9QK0rsmKkkYI0mnOaNRF5yW2sFyJdwiLkPcfPOGwXFtLSuUjhUNWNDx8fMB8tmRrY4N2FOM7SzxPcX1/B2dTkJUrLo5XeJmhLi2OUhR5xngyo9sxfOa1WxS24taoR38QUemfkM4VW4MrPPygocxK9jZH9Dttzi/HpE2CE0sGux26Hcv5wZIkK9aBKMZirKGpDJfnBavcIGSCVdCYtUxjffJf+1Aba9eLhT+d+r4cVq+N9V5ahgqBNiAcRX8jAJujdUWjoTYCayXlPOPR+0/YvrLF9bvX2djf4PmDUw4eHlImBVJItBRkTcnF/JJG3CLs9ukNuzw7vcSyzslqhyFXt3eQkc/T83MabV9quT9Z/Nw30leuBUzPSy6mYy4dyaP5OcIa3MBjaVZ890cn/NJ3PsezZ39KKDN83xDFFuHnpEnJ7p1buJGH42oaU9Hu7CBMl6Jc4Ifr02BTa3xvkyzTtFoerrW0lcN0saKYpqTPx4SXOSI1RLsR0veZzJdEXsVgb4j0DKHjENaSsrQ4ecoo9nk+L3C1QbqWqtQ8fXjM3s4OZ+Ul83nNtL7k3qdi2h3DwdGMq3tdAt+jzhu6nYDuUDJfWIT1QRccXWbYlsvFImO1KhG6YjVRNJVEqpx2T1FHBj11MFawXKRMJzWT2ZLtu12izZKFOqVyBcINWLo1UcfhK6/tkXsLnh5cIH3FzS8EbG1r4shFKYHnanQFvlOuH1qZschynLBPFLp8+Vd32HhgePeHY5BLHE8SRC63r23xxj2XjdaA/+S/fE7v2hAx93h0eIEQAiEtVJL5QU640aWQKVXd8OLZil/69gajocvv/uN/hmp6DKOQ8fGcrf2YRZYwvgzY3hxQLFfYWpGvCqRw6bQ+eQ/pK/5F6jzjKFmRNJoCqKyhHUZkxvLhk+d04ha39q+ySFLSLOP8cozjuFy9skdZVhRlg3m5qBNHMdJCHEa4joOpNY4DjpIEYcBiUZDlOb4XYLSlqg2eJ+l02ygFVdVg9DqAoFxkREFIOwgQSpEVFVVdEIUeTVWvf0atEQ2gNe0gpmgyWnGMaWq0bpjOxwy7Ea+/fodW7DMadFnOZiTZiqVumCVLDo+OcByXuOVxc7/Fp1pdnp4mHF3UnJ1OSTONkILDw+dEkUu73eK1125x69Y+x0dHKAvtdoSmRMiGrV4XB2jqmv5oE8d1WaYZSbLCdxUA9z98QK/TwnO9tUOHZ8GVxJ0Wo9GIunkM0qMsDS8OTigpKZZLXrt9nTSd0Wq38KIevuszHp+RpZeIsUemLaP+Ju1G04sj3r59lfmqojYK3+vhKkteZKSr1cdYca/4RUJIRV0WFFVJrQWPHjzHOBbXFZTLnL3RNt1uh0AFlNQYo7BSsM4fdkiKivpiglAug/4Az3OpmxKta5aTlKPZOelQITYVk8uChhG1NqRFyZPjQ15/fZvPf+ou958dcXZyxmw2oyl8alEQdjyEsYSeIgoVjmtxfIETQNh2aPe7rC7ztdFAY/A8l8BzEdLSVFDlgqwsCdoR0kkxtfkbXbS2LzcU10JrsHZtf/eyqf7n/9SV5ex4wT/8B3+N4ymKsqbINdaIde+tFfNxwWr2gjzL+dw3Ps9nvvo63X6LFw8OGR+PoZYgJOeLBQ8OD3gtDPF9BxBIBAZBv9tjczjkPFmQZxV5Xn4C2+hfgEZ6Na/BtWgJrqfwPIlEIYVl/06ItzWn5X2Kne57HJ8DTU6tG6TN6AUhbpEgsgbtuETDDqZogBTpNeRFwvn5CcaAowKioIcxDZaA8bxksSo4enjERq74fH+PuLciaXuUKEKvjSfWJ1E/jJEOyMoQ+DHZaUGWFOhGoZXAcQVNaRmfFhw+esQbb9+me83FiBnXbwXUeklWK0qr0dmSbuQTd3yu7PscHtQoK4iikK2dNrbMMJXh+saQIIYPsxfkRQVWkKUZr7/d5Ud/tUAah2QOD8sJwUZF0xOI3ZqtKz3ElYbd7S7T1SWjzYgsnVNOC+IY2r31FVZT58wnDaJwMKnH+fOSkycX3PlCh7e+6RDEDZfTGe12QxzAtTsuedLh7HCJkQI3qLm6a3j7jYAf/PEpRQobriW0AWQgrcVIC0IitCQdZ/gbEmMFtQYRVCwTQTZVHD84IW6BMxRs7fu0YkVVGQ6errj9usfe1S5J0rBMDYtX79tPPAdJQi3XoQBGSIRUFJVGJxkYKBcrmucHjHo9Gt3guR7tbpcsL5gvVijP49ruNpuDLp0opHkZ950kKxylsGikI2hoMK6kQqCbhtDzEY5DWa/dM8LAW0+BtEX5CtM0pHmCowTdTkDcliR5geeVtHyFo2G+zLk4OEK1fUa3Nsl0RWFS4rhFVTeUSUNer9jY3CNNLplcWs6PTnEqCSLij370PrO0wACua7m13+fWVWgrn71uQMsJGU9XJFlBWWbcf/c+SIEXhBij2dvqc+/2NeqywI9CWq0YT3l02x1005DkGfPViqo2NJXGVWqtdd7axhQFTWEp05L+qIuwkk4cEiiX0JW0Y5+d7S0OTg9plGU0auFGiiubI4abW1SlZDxZMltNuX1zm7ypSZYZjU0JvA6Bp0BA5LsslzlQUtUNjhQk2asH+xX/cghH4bguxkKtDfOk4OjoEkcpFuMF5xcrHNehFmCEeCk1ED9tMbFCUjYwW6Qo5VBrTVE2HJ5cUMYV3c0Rd9/Y5LN3ezx+9ILZcRs/9lkmCWfJBeFQc+/mPmfPDvjeX3xIngtC1yNZTWn3PXYGQ9LZgqfnJyzSFU6kCGJFXRU02sfzFHEcYpL1kqCvJHHcph2GlAaWiwzfjxEKlBbribM1f9NDr7XY609lXlro/VRCLbBYbbAGBIoycdG+wkoHKNef/6W1h3l5o3ZxNOX02TG37t1iMOqQL0esZius1kgkZVPx0YPn5MuG6aIAvR5E+K2IVZ7x4ZPnaFdSaYvWhtD9uW87/1vzc/+JhPUY9QSOqXAaHyElTWW4/fqIL3x9QO2W/OTDh7x970v80Xf/S86nBf1Wj/2bPZY25aPpRyjfQVmHnc0Bu1e79Iea0PV4cT7F2hg/cKjLinYsSBeSsoy5nFxycbjgJ/fP2IsDPnP7Gn7VYmEKyiSj3ekSR5ar2y0GnQBHRqzqI5w9TX4x5OR4wuC1mOlZgZINVS2oCkFWaX7w3kN+/de/xS9/5xqXs/doEofSCA5Ollzd6VKYmqZecOPGJj/402M8YemFEX3h0fN6VIlg9bTgQi65etvj7tsBRWpYrRKMscQ9Q7pQZHOHi6MjkBXtvkS5FjeAUmqeHM9pdxxKXTOZZ1jrsjNqI5yKFwcTPONx+hOPyycrltMpeJY7nx/R2xVUpSLyCtphjOdmxFEX4cfs3phz51Ntnh+V9FtwZUfhBQEfnRyw//mAxbwgXcHuqM+Lwwm1tCAFdanJFyW7w03S+hSrFI0wHL2YMV14uF4LUWm24oqvfg5O5g0fPlLMsobjU8PIeGhruHZ9h8Nnlx93yb7iZ8y8MUj35TY6EDgugrUrhaMctLXM0wzHdWnHMVK5SClZJusFwDxL8ZQicBx0XZNnOXVd4yiF1hptGpRUGE+iA4eyMeiqJkk1kR+gpKBsGupVie8IhGwoy4JVnhC3Am7dukqv4yMVFGWFQKHzmuV5ynm+IklXWJ0TLiKu7O8xKSYotba3szrBDQVFkTObLkmnBReHc5xa4UWCNDcUjcJxJVYInh4ugJAqm2Fq2NjYYLcVYLshRjnkDRRNQ5anxIHPzd0BPV/S39ojjEOEcnAdj7KsqIAwalFUGqmgFbfwHIHVhjovcTQUs4aN0TZuSxH5CxbTGU8eH2KVYHOzQ+AJXOmQJDXSWbFaJdy40eXDjw548NEhWTLjK196jd2dAcfnR2z0JVt9l07coKSgqBoWyxlV3aDky8l5pbHVKx/pV/zLYdEk6Yqmrqk1WCM4PZkihQRjCTd8Blc3aI4uWOaz9d2U5WU893qSaywsVylZllPWDVZAWpaMro/obrVJqwrhO9x54yonoUSPa5argrlImOQpl5MTrmx38YSDjVy2NvvUTU5VJOzuXOVcWIzOUabAYCnLmtkkoWhqPOWyNeiu7T2LCt/12B512NlpsSgKjo4n+B44oUNdN0RBQOi6LFcpRVXBy0b6n1/pE0IghEBai5B2rQYxEtGA57sEUQCxYLFKSbIcY/TaTM9Yykzz/vcfcn5wSbLKSFbrxEUrxMt8CsF4siJbPsP3WwihcH2H0XYfz1GczeYYKajM+lDQDyKec/ZxlMbPjJ/7RnqkW3zj5hX6KJLJCbX1SJ0W0yzhxz85ZzwpGIhD/tf/0/8t9+78JYd/9pwklfz4R5dELZfBYItqlnGxGPP0ZIH/vsv1KwNu3O3gtpz1i1i5NFiaIsIVcD495fKy5J33DklQlNsDel+5znt//h5CCkadFlE7QsgVcSdilaZYXRN0DI/KYz48aLhcGN7sbqEuGrCWstCsljVGrSdYWV5jKWmakjyzOKFEN4Yo2ABTs1ikZEXDpz4XU6ddfvgX59wvT4k92OgrCAQiFiSHFTeuj4iiNrqxLJYVcdchXdWURY3VGcOB4uq1PucXM8ZnKVGkmE0LkkyRVZosgXZbcHFQIxuX8WVJq695+miKuTREo4i73xpy7/OGrSs5wgg0GZ4fkGWK6Zlg76pgtB3x7V/f5bvfP8WmOfs3hhxeTNi8q9E2Z7eOSS9djqnw4h5Hh0uKVYMuCkzpcPF8wfCNPpPlgumBz+mzFIzg2i3Ld/5Wm6//8haPHxc8+uCStlMzTwTPXqS44Taa9TTQmldLSZ90aiSuFXhK4TgOURTgex7LVUJTNziui+8GOK5PVWnKMiMvCvrdNp1Om8B1caVgOp6ilMB1XVzXpRVH5FlGlqcoofCCkBJL5goKY1GNIW1KYtfDmpp+K6DdC/EDh0fPXnCZLmkCuFjNuJitF5iyJMcRDnVdkycNhVVsXb9GgwGtWJ4uOJueISNDK47Js5IXh6dk8wTXGHZ7G8hyHTU83A7oRh2SYoKua0ZbIxqjeXR4idUC1wqKUvP6tT2GnRgZxxwtU0oM2xtdQlfQiyM2ByM67TZhq0XVNKxWKUmSsioK0qIEq6hMjVQaaySnB8fU2YpOGHLvtSuUtaLSFft7O6ArPnrwjKpoCHyXW7evUVnNeJHgIdnc7PLw6SU/fOcQJS2f//Q9rl7bAClotXp4dY0jJdP5DN/3UcpHiAbpNLw4OGXQb7E5GGDFq0b6Ff9yOEpSlBUGu3aJEAKDRHku0hFoFxarFfPlCiEhdh3aUUyaZhTaYOzLuG3fx2iDdMDohiIvkRKMbZgmlseHK966PWK4Z/jT798nm9RcfX3E5XzFez/8IXev7PGZN3c5GlcMt2NOL1OE1qT1jKxKyMqSqq4QrqUqakQj8K3AFDWVztF1zla/x/7eFv2BR+BrVCywVuP4ilYvZFXkbPQ63L1+hcfPjnh6eEZj13KPn/LT6TTWIiX0O21qrUmyjKYoyRqNLmuCKMQXHhUNFYCQWLlOO8wSzVF6+VImItcaaASNXjuaGOlQak3Lc4ijNvM8oSoKCuWQrSqSqkS5Lpu9Dpu9AT/i0cdSGz8rfu4baedgxSy45LWv3WUyOeZomXK0Ose0JVt+m5bu0nF7/LPf+wN+4+/8Jj++/3+hNh7LsmJ1brh4MeVq1GN7d48n6RHjtEAGNRs3fKKqJvIjNocDJosDJmOIA0ueLXjvh5ekC01dS67uX+FgckaBpRV38byA1Tyj33cRcu213FhAFDg3POYbmtaghddxwLUoBY4jAf03p0Tb1GA8pJBIYel2POLAI1lOUSZld3uDRheco/nhDw9YZg29rZDBUFDXKVll8auI5NyQLsaU5SWeB4MrHptbfS5PLqmbjMB3cITAcQSe2uDoYILratygRSMsZV7gyghdCC6OHM4frKiSimufj9l/zSdpw9f+zhXKzTGjqx51XhKIbRxfYGVNWQt+9M4Zyu3Sa+fEscMvfaOFV0vCjuLgUcpgd5vVakErCNncDei0V5w9BtXqcfqkIc8KJIpsWbPnXqGQNZdPluxthHz170V885eucPK45v/0f3zOo/sp7d6IN77WxenVnM8rLs5z9q4OqMoaVy0/xmp9xb8OhJA40kFKiaMUUkDT1Ot0PrPed1/bPDmUZUHTaDbiHoHnMex1CDwPR8i1JZzrEkURvu8jhf2bkBVXOoTSxa0tygE3DLAoylpTac08WfGjhw8o8gxjLGlRrP9NwJUKXykcJXClJPaDta2l4+E5Pt1eCyGhMYbLswnWCPxwnWRqtaQs4DxPiF2PjjJUmea1269TA91Rm6vXWhxfnmH0gju3b7HIDU8fn1JXhqwxXCwTlKsIlEJKS9t1kViaomAynSOkyyqvKY7P1ktI1q4n8q6PEA6NsZRVTWNrpmVO0IrY2+4y7IXMpwsefHjI8dmSnd0Rw67P5rCP58QsV0vmsyWdVpvAj+jEHsIGPH9yQi+McJyGbqdFVUsWS6hKD8fxaBqHJFnieQUbo5go9Gm0IPQljrRIaej0Xh2QX/Evx9nJOcvlaj1dlutrKyEhjH2c0MGRUOclVir8QNGJIt66e5vpZM77T55jzLoJrZoaKSSe41I2DatZSr4oaY9ilOOyzD2SQtKYOTZOOXu6IDz1WSwW3L//nPa3I37r736B/+A//n3OTmvuffYuSZIgG59Hz8+4PJ/jeOu4bSk9mlrSAI1pWKQrjDbcuLbFp16/zTKdsiwuaYIapKHV9QnjgGJe4TqGG1dGYA2n4xnLLF83z4J1AMpLacdPJSBNs75xkwiqusZoja5r6rLBSg8sSCNeBrk4GAHWmr/RWgsp+Om827zUkwilMLrBcQSboyGrk5zpxZIVgPQpaosqCkabPYLY/1jq4mfJz30j/a1f+zQ//OgR//jDn/DoYkqCJIoUO6GDu8hRFbwzO+LD5QM+96tf4/Nv3eW95xeM5xW2CVicpMzOnrF5pcvNr1xnNViwdbNPZRru7GxjGs3DZ0+p6ojdzS7FYsGLRwnLWQZaQqn5o3/yPd7+0jZS+dTGkC+WBF5A4DoEnqCoNE2zzquPh5rdGx7zZyWeD9K11LUhijxWS41UAi0sWTZHSR8lGuLI5+KiZGezRbcf0Yl7VNWCdJwyfiJp5i67VyxBJ8caidEOjhE0GTTwMqVI4rc8lsuU0WjEaNRjcrHC8ySh57J/bYdHHx5RV22kqGkyB+nXuEbhpHD8uGR2uEBVEonD4YOcX/+3Bwx/xae7M0dGkippGD9q85e/d8Tf+Xc2uPm2oqkTirzive8W/Oo3R4zzZ/R6DndvDDk+mTNdCZxSk8wES5MTtzy8uI3rC7J0SmUqkrLCMWvz+LqcMujX/Mqv7PHFXx5wejrjP/4PHvGjP05JzjTGNuTlgp0ZfOoLLcbfq5hf5FzbM7QCRRS8Cm74pOMogXIkQgrC0KfX6XJ5eYnjemix1joWTc3FdIIrJb1Om0Gvy+agSzuK8FwX3TREYQclJa7joDDURUld5AhrcQTEjkQVFYN+h9M8x4YBbuhT14aahtPleqFZoP85jaJAiBpH6JdBCBZkgZAShaATR3xqa5Msz9BNtV6WLDVt0aYsC6rSYoykaiytMObwYsHN0RY7W9tMlzPcTs21rS6vK4+ytJyPc9qhRxxIKtbOPztXd5nMlwwdwc5Gj1boc352SdIIpsslXtRGKI+kLFgWKa6QfPjBQzzPX8s5wpBOt43ru/ixj24yaiuYpAVuq41WitxYPnxyCHXB9mjAa3fu8rWvfpUsLam1Ybi1QaNT6iLltZtvY5sFRbVAS4vjeow2NqnKlNABP/CYJ12miyVpbqgLTTsOeOveTfIyo2kqfN/9uMvuFb8gOMpfL80Z0MKAElRVyXJhkIkg8FyiOMQRFscVtLoBm5sddjeHnI+nnE2X1E1D1TQoKfHUuk2qq4ZkljKsB9RUXE5znh07XN0SfP1XrhGqEyaHBTqF5VLzvXdf8K1v3ONXvv4Wv/snH3Dj6jbHp8fUVUNv6DG5tOxcHXI2HpMkFco4CClQAJ5EWkupS8bTMc9PXlCIDH/o4UjF5HxKfzTESs35eMLBwRGO4zPotsiLklLXL+Uq60ZaIF46esAyKfB8l3a7TVXX5GWBbhocK3GVi6kN0oAQ4EiBNmLt5iEt8qcHE+T6uw3Wk/+XU+nZcoXyx+sFbK1RQQDKQWqDrQ2LLIP0577t/G/Nz/0n+oOnH5KplOoyAF/QE7DXbTEyHsFKMKkK6o5mYht+5/f+kv/h3/1tXlz8n1FCU9cZq8uCuFYsnuc8yE/4xv/sNeIdj1HkMbk4Iwg6CBUSt/oslue8+73nHD5d0R9GtLc6HD4a4wcOQkk8BRtbEZPLOYFn2dvr0Q49Rv0u55OE8aygvenx1p2Yjy7njFot9q61OXyyoNEGxxGUZj31Ojp8wdFBgxdX9PoDDs7O8b2GbjtkdX5GN4Rbuzt84LwgaldsbLmkxjCZWOpSIEVFEJh1Kltd44Y+3Q2f84uEs9ME12njujlVlfLZr+5TNSsKnSNdhVBr3aYsffwqhKlDdTzBK0Eqg5ES3/Ho9B261wxQ4OQeyVTx/f9mRnYp2Oi18EVDHLnMJmM+eKekOS/49f/xNlJPiP0h73/wmKDTxuqct+5c5+xowcGzjNN34L0/O4XcRypLJ46om4Kdfcl3/nabr3zrHrNJzv/z7x/xw+9nlImh0QJXCkrjcueLLt/8LYewV3D7vMv4TDEfj9m9usOL4/nHXLGv+FkTej6tOFpPXSwsFitqbWhMBXKt23OUotdu0Wu3aYUB2xtDOpGP6yistVR1jascDIaqKrA0dFoBvfaA9x8+Jo4GOFLgOx5NafFwyLXBKghDD+v5xJ0WaVZijMQi0NZijEEKgREghXi5/MN6yiMFg7iD2+0iHUlTlbi+j9OKwfNQ+Ai7QIgGjeZiviAwknani+sqoijAiSxSZUiRE0QezlZMWsDdX3mT7a0h08WShy9mdEddfF8iyJmuElZG8/R0QpIWFDbktuvRagekZU6jLWVdM5kl1PU5Umhu37yG6wniuE2/1yWKe8znS4xtEJ6P40hcp4UUMYW1/OjDj3j3o6e8de91bt++yXwxJY48dnav0IoCjOnwk/fOOB2fk64SXr93m6bK2dsegZH4UuNKzcbGHmUaslhdUuclxmi0LpGfwAWlV/xssEIgHRfsuhkVjsQqiS7XaX9Z1mArTbfTWacZdjw2rvToB10ePBlxOZtTNeuIbd2AkQ1KKSQOi3FClRlsYJjrFZfTgL3NmE4rYbCl+ckPDsF0qBuX+w/H/Mmff8Cvf+ez/ODHD3jvez9h+/qQk4sL0nyJcqHTj7hcOKRZgo/FkRJHgJEG4QhOp2OyomC8WpCbjL1oQByEzCYFjpPghg7LScL9h8/Z391hb3PEKs2ZzJZos16clFL8TUw4CKxay12kBEeAbuq1NZ4EaxpMUyAlSOkQ+B6NtlTper/Ec3yk9NBWra35jGYdp7Re8iyNYb6YIdx1z1Rri9E1Vms838PvdamcT55vx8/9t9NFWeIGLsJtcD3JRiuinRm2HY9ENjypFlSxoaksP37/r/nv/tqvcG//Gs+fPCGvM1wtcR2DxMPxXMK4jTUlvZbPzuguBwdzItdDOSUn5zNWqyV33ujz9mduEQ0hVHfwHRctLEeHE6aLjGDPo6pzprMJw9bVtZ2Nrxk/EUwWIdeGirIQNAvJr/2t6/zO/+sRh9MK5UlcbfAChRCaOoP+SJBWKVe3YxZpQqU38T2fYbtZezy7mt5rltJUlNbghApjBFWuQMKwpyimFaHrsXW9TVqtWE4F2TwhdBp+6cu7fPrtmP/0//4RQnpEvkSkiulxzfJ4iV8JHAvSOuvTpnXwI8mv/VaPazckfqRZZRqN4J0/zDn5oODrv30Vf1iDCSiqBAPIBl48nXN5EPOlr0WcLc5JdY0qVlwb7lKOFdmBZPEhJBcWg8A4NZ4v6G4Jvvl37/Kb/8YtxpMF/9n/9QnvfjhlVbYpGhdHlLhaIoTh7jcH/PK/7RJtVbg24o23Ip64hoPjiqKZsTXqfdwl+4qfMcpxcByHpm4oigptDVKqdfKp6+IoRei73N2/RieKcKQhDtQ6otdo6kaT5TlVWZNlGYEreO3mFVzHMlvO6Q0GRHEbKQI2hjtkTUORJ5RNQ0VNWRR02z2uXN2jLGpWSUqeF+toXmtfbr0LhJQACLMOSTDGIj0PpAvSw0iLcSRGCWaVxlEe2zs3WSymHJ0cUZQVlYYayMqS2WJGO4TQhTyvsMriKUkjG9qxYaMXs0oT2t0Qx/GQdcFstuBskWHCAaI9YLUc8/37jzk+PuU3fvWLDHttZqslV69t8+79x1hXcuvGNa5sD5lOJ2xvdFFqbSe2t7VHmpVko4azs/VCYG1AGWgs1KbkyeEjkmKJ60T0+wOOz6YMBh2U1BydLdFaEAUxTVHz+MkLvvtXP2Y06nDt2iauH+AFXeo8A+vQ6XSZTCeUteFkPP9Ya+4VvziM5wuyokBbjes59Pt9qqpguUwwBqxca6arvMaVlvODcz7qPuDuteu0owAlAWuw1qz1v9j19NVKkknK5cEFg+t9Gm24nEy4OK+5cq/P9ZspX/yG4Y/+ySFpXqPrhn/0T9/nC1+6ybd/5R7/0d//E6Lep7HCIU1rKm04OVlQ5IZWHBI7IbIU1HmBxqICy9lyzul8iQGEo8mLBt8PKJIFTpjTHcSklyumq5RhltMfbhD4/lp6IeX6O9FxabdihIU0S6mNoW5KVqsS33FxpKQxFtM0SBccB1qdkKxqkI5ACoFyBdY0dAKHG1f32NvZ43y84v7DpxR1jZXrgYF0DK4ncXyJsC7GKHRl1ja6kYdWgjL/5CUP/9w30sYRNKoi9ByGrkMrgWoiuHQr2LKIyFAUFtd3EV7OH//VP+M73/m7vP/432d/8Ck6n6q5fLRger5k+26LqxsBaaAQos35RUVdtoiCEEc+Y2djyY3fGuK6PtujDfrRl8DM0E2F54z47I0VR5MfM69mNE2H+aWkFcUoaXCUJV1Inj88pffVLa7c3iOIAnZHG2xfueTw8Ixe3yfuKdrDmI1Biyv7PbxghtE1mfXxlcSzFXd32gw7GS+MZlU0GF+iG2h0QxB42Mbiuc5aE7kyeKFABhnpIuLq7g5P5yv8GH75a3t8/WseTw/GFJmDnTUcPyzJz2scAxiB1w7Z293g8MUZtVWEnYjf/Hf7vPFVS7vX4mR6QGMFZ8c1738vpduPefMrDmXdZmMwQGQVVp8Qt9dXtI/fX/Cbf/sGP/jhIZG3iTU5xUVAOjF4tKDKKAtwYw8ZNYRDw+ZNgR97/If/3rvc/94loT9g6QpEXBL7UCYlVe7Q3nb59m9HdLcEAkVSwOnxOYHXZW8r4GI2o+l7H3fJvuJnjFKSpq5pqnotgRQS1/dwpaIVxWA1OxtDtvpdXCmom5zFYkyn3aduNPPlisV8idV2Levotjk5n6IUtNodhsMWjlJUZYU2BqENoVSoqqHUBqRgvlwSdyI+/+XPcHkx4d2fvL9e7v3ptrzlpVP1S1/Wl9erjbEoKTHG4AcBVVVgDLiuT5IluFYw2rpKt7/Jg4cf0hQ5D45P2Oq28RxLYAyVNhQaDAZfre3hprMpYRhgTMWgFzCdLcmTlCwtcNyApDIoz2WwPWC1WnE2XfCT+x9y5+51zi/PuXHtOsvJCuE5XNvdJnYdTNDCB7JVinkZqNLrj+i2Wrx55zYPnz7FCIHjKKxpuHFlhzs393lxcMFP7j8Bc0AYOOxf2QajWa7mjKfHdNo+J8cnWOtweppzcpzy9PGEsBugvEdIDEVW0e60uPfaTRptOB9/8l6+r/jZ8OGjJwghMKwdfXY3N2jqkqdlRVrUCFdRa8OySlEIkjTnr797n/ODGSrwcQKFLyx1YzDmpSTCaJRQ6Moyfj5mMOzgdh2SJOP4tOazd9pc29vAlR5PPppz/oMLaiM5PK/4vT98n9/+Nz/Pa3e2+eD+Ewa722hjqBrL5XhJVWs6YcgwbJNMMxZ5gZE1cSRpsFTG4rkK1127dIRegJIONIbrtwe4teHowZiHL47pLXIMAj/wMcbQjkNcZz1caOoao5v1gR5Lu9tmf2+XxWrJwdkZQrzUc0hFEPtEg5jVsqKuK5SQGCPZGQ34zJu3UVYitWbcbZE1hlw3a025BByDG0G322U+KxCiAUcilKDKCorkkxeu9HPfSLuBoBW69ITPv/HZz3L+0Qu++4MD1G6LaL9NVVgEPmVqcDse0/wU3Xjsbgz4z//Bfb715X2+8+9+lsEwot1pIGhw/au0vCuUeox/QxC4CU8uHtBqHIq8pMg0UhuGkcsqMwStLq7p4zkdxHBKejDGljVfeftL+MEus+klDSscVTE+rjh4lvD67W2GG5ayyBhtt/nbv7XPYLPFcCtAS4uoJTY/J/RbVFVN1NL4kaDfbYiCFXk6Js08dCPIaoPRAuFIyrpBSvkyKEWRpQ2tDZfhtsfz52fs9kd885tbXL8qGIUZLvDseU5WRpx9dEp1LrFSonoWFYEcNMyDMbIjiDqKv/c/HzG4veB0WpGTslhlpJnH+Ymgqiz7b3fY2K/xvBFpkjCd5NjaEscg3YavfPUaydIyOd3ge99NkTLnzpYmX9YEnoPj+LjtBK/RuLGPwfD4I807f/Q+ke7Ti/dYJucsy5Kwp+ju+DhhQxMbPv2tXUQnZTxu02QOl+MLkjPLVijJ0xppFJPLV8uGn3gshL6PEwS4nktRVtSNJnRdYk9ydfcKOxtDHGtQVhLEIYs05/mLZ+S5RihJGAa0Wx3acQvfc1BCYIXACJeqrkmSFVrXhHFE6PjMJgm2rFGhj3DWISVlVSEEbG4P6LxocXE2xQr5MlVMYI1BiZ+20wKUQ6MtjuOsk8Hs2sdWKgcLRK0WeZYyTwu6rRZf+MJXefroAWeXFziOR8uHLi7GSprGYk2FKxXSutSlZrVc4bdalEWN41RIpambhvl8gnbaBL0+bjdAX91gcnZOkuUIaej2Btja8PnXXuPBw4fYec7ZfMlsOWOrN6BOa8ZZhtOKOLk44eLwlM+/9Raf+e/8BoeXl+C4xL7HsBVycXLGkyfPyYuabDmjE7jMHMHVvX0Sm3B6sWSxEmwMWhRZg87Bd3xM5lEpH7/vcXB8zGxWUFeXHDyfs7HRZbx65drxin850rJZH+6spCxqZpdTXOelt7KSWGvQDWizXv9vBMxXFU8Pz9c2cAhu3rpCXmbMFivm8wzbSISUOFLglBY9yen0NrChIs1KPnh8xI2rIVLBzpUW3v1LRONTNw1/8IfP+NpXbvCbf+vT/Hv/4e+T1OcUVUleVshmnTTYFBWzbMpiklI1FuGCdCSR7+I0Fket9zqyoqQVRbRaEa6SXL8eEwJHTxZkpWbkBcSBT5qnSNPw2o2rZFnJwydPabRBui6uWhsfOBJakU/dBOvDvRBobRDKwaLZ3B6QJec0ZYMQgs3NPl/46mf53vff4/x4QqffpT3ocm00ItcNh8enpKsU11eMNjqMdoegLlnNS7JVQ5GvA6t2hz0efsw18q+an/tGuuXDhuvRWzo0zy/56pv79JXH+XLF4+WCWguKqkKhmM5ytq71+C9+9z+lSKYoo/mTf/KCR/dP+e3/wZe49mnLlDNqjmmFIVHXIm1Oy5tznkwRskWvvUs3gnZUo805ZV3hygGDeECh5yA2ubl/D2MuabKPaFzF5uA6Ro7ptB8SS8XlYUK/M6UQMf/gH/6A7f0RX/n6CJwpfitkMq64fLGimc75/JdDkBWObEjSjDQPcNw2STKhWDrIOgRdo4RBC7BWgrUoF5QwuL4hbre4cXvEYOrxqVs7+P4KxzMo36WuB/zFn5yQmDZNAq7SyIFEtkG2DN62wKqKYSvma1+/wtZrl8wzjdOKyWyJ8nz0NCafpwyuwetf6uKGSzbaIUoV/OD9knQGbaPpb4Z84Usd/uvfOeOdHzgcPKsos5z/L3t/Fmxplp7nYc9a6x/3fPY+c85TDVlzdXd1N3qoBhoNAiBpEgJMSCQ9KGjaDofC4Qvf+MY3vrPDEXJItkVaMmlTpMUBMCmKBIkZDfTcXdVVlZVVOZ/MMw973v+4Jl/sBBShK0UIrepu5xtxIk7kiRMnL77/39/61vc+70FwD2ssL796mdPJlEk9x3jDbFdjC1Aiohk32FjtMB5OmE1rQgX6LCOPS2682aX9xYTrrwYsyghrety/tUNTNKgPBd/44SELXfPFv/oiB6dnn3TJPtOPWFprnHV0el1CFRCIgNrWvHjtChe31uk2G6in7OP5fEGW16xsdTgbjen1ugwGA4QAbz1pFBGECm00ul6uiQggkCClpyxLjPOUVUm5yCGQqFAhlUIqSW0sVV0TxRFe+OXVMUtElGS54rHcP1QgFHGU0G60KMuKeVWgVIBQS3ZtGAQgoCgKjAepYja2zlGWBXvDIb1Esra9znhYYbwgijw+doRRQJ7VjM/mbLd7SOlIYsVKs4ddaKI0otPZwLSauFaCrStO9w3OOVrNkPF8TtJMCHNNKwrphAku0Ayur1JoxyTTECUUdc3BkyfEUnIyPIYQNja32Ds6Q6QtDCH7JxPmsxxXV3SbgpvXL3Pv/i7t7gZOhJTa0W4nrK+tcXY6Z3w6pBF26Pc2eXK8j1vkWB9hTYVwkn53nSSImY2ePdfP9N9O1i7NvwKBc579ozOU9JRG45FLaLR/Gpct5ZJB7yXTvGJWViA96vCUtB3y4ivnGU2mDI/nmApstTwgDw/OGGdDwk7Atec3ePR4zq1bD+i12zzcGeIsRGGA846zieF3fu9j/v3/ydu8fHOLr397j1qDVCCkJ1ABRVkxmVV4KxFKoQKHUhDFgHDUdYWuPboWeOHw0pDNDEaX9NaD5X4VnlrXy69Kk6hlg+edxTqPCgKSKFzy2ivP2WSKvnMPax1SKNIkodZ2OWhTCiHBOoOxhtW1Nr/261/j/Q/ucfvePiqK2NzaYPPSeYJIEmvL0dkIPZ4RhIJmHCKNZtCLWV3pLFdY8ookCEhaP323Sz/2jfQKiu5MERdwejRjtRuj3JyrF9c4ODGIak4QCUKrqCuYlgHtbpOPfnjExjXP3vdq8h248zs7NGfrrHx2g1vVbaTqcnpW4GWTi50GadxE0KPIFnR7IZWIsGpBlGiMmzAr9xlnIWljwHi8Q9rs025bjs/eX3KlwxV+8Qtf5dGt32CUz3nn3X2GwwpXhhhRUFtHu5Nyejhmegrf+MP3eeuN58jrGRBz5XyHh09GyyunylOUCjAURYlxgkaUEoUW7QzaLuM8m2lAoymYFxkf/KDm0zd7nFtzjObQCDtIl3N3d5fD05pQa+rSE6WCoOEh9sRdAcqyspJw/rmQztYUEcQ0uyFHJxOs9DRcyDv/MqeyhmtvxFx7S1KUIa1zFm0c2XFJLAK0jPjaz51nPin4nf/qlKPDgCzLSCPJLNR44bn78AnlvCDPFdnUIbQg0BIpJMbBbDJhPh8DHolAtgVv/YULXHg54mR6Aj3HfDfkbOeAtGhzcDvj8QcTdG1JNhX7BxPWL3Y/2YJ9ph+5nPfURpOXBaEUJHHM1fXzvHblMu0oYHQ2ZDydsboywFYVqi1BOTbP9YllGylCiqyi3WyilMQLjzY1s8WcNG3QbDYIwpC6rqnLmryuKYsKnMPUNZmpsTwN2xXgnGM4mSCkQALGOLxfoi6VULinTFclBGurA5qNBtYbqqFG+uDp/rQD4YiimKqqQSiCMEIGEc3uCnVdMS8Ljo4meDUkbFoGKxGRFIR4ag2BiFAqJgiXTbgxJZuDLrLRpa4FGZDrmvHZGbqq2N074vh4jc31HrPpkK2VTbpb60wWBTNTMjzOkGmDOw8e02g3CJPltD1qxvhmxLSusWdTtrYu0Gz1KIqC7cvXebRzAE7z0vPXGB2foF1F5UvWN7oktxVxGGK9pdlJscoTtFKGiylPDk4xeNJWiBCSJAjY3lxnbbVBqwO/+U9ufWI190w/SRJLqoSUIAQG0MZijUMuf7z0MDxFXaYqJIyWB926rrHWMRnlzOaWrUsdvvD2NaazCmMD9h6csXf/mHarRVEWPHqyx+nhMUkjoswLQnlEVbD0AHmHCiOkEHzvnWN+/msjvvr2y/zgvWPmi5IkiQnCCGUV2aICFP5pOoyQAmc9pnLUtaWuJc4pytIsPSGhZLYo2X10xtUXN4g7kjzTHJ+dIYVCOwfOczIcY50DBNYv30udZo8gqBnPZ5zMMgIh2N7YoJGGLLKCTBeEUcpiUZHXmrQT8Zf/nS9Rm5pvf/s2hXYoNCfHp6gopLI12WzO2fEIXdYo5xifjskWM1a3Vrh49Rw4j9GCbDFlsCo/wdr40ejHvpHWhyVpcwWlIDeaRQ5R1OLJwyPidoIzklp5bGnZXOtRWcNLL25x/GTO8UnJuOvIp46q1iweLbj44io3n7vJolog5gUVNYtEoGzE6OSUza0Ox+Mpi8WMTnzM6kqfZhIysZazecYaMUEqeHB0xGraY2NljWZD4bOYq1cv8z/9m7/O/+n/8p8zzEq08zTbmvFkzJMnR1wQHc72M777J/coygXaGUQQcXYyYu/Aon1AGBuqaki3E5IVgv5KzNnEMT7NkIGn02siRYQKJXhHEFviqOJnv7DFhXWBs9BurZCGJSsNz0Es0SXYsxwRCVQvhNASp452V5K2PIOBYlZlPNmPcLJNaRekDYmxDQ7eFRy+O4Sm5We+toFqntIKLuFdwXw2Y7xXYWrLxkXJ219Z5x/+g4853K/JcoPE46VDdRTeSkbjjMhIzMwhKoHwy/1KayzGCMZzgxUBIvCobkS87smDkmGWkTYDFkOLPumxeFDy4AfHlBON9xYajnQt4WB0QNLZ+KRL9pl+xIqiiDiKOLe5QTOQrHc6dKMYN5ywAPLFgtoaiEPWzm2iZU0QeERg8apcfqAqsN5gLSRJQhAElMVyQnzuwvnl1GY0ZjxdkOU5ZVlR43F1gA0kRgi8ACkly4ACQaU1UipEIDBmyXE1OKSQKBXQSGO2tzeXZA8liaMI6cBaQxAEOG+RSi4nZR6SOGEmFUIFRI2UvCopjeHG1W2MWOBsTV5AEmg63Q4qboISSLeM2p7NZ4gqIKgb4FLsvEKJkHacciKXe6Lz2YwXntskX4wY52M6m+s83nnC+eevsffoiNNRRlk5VGTY2tzmqKhpdHokKz2sFszrmvmTx5zf1KRxg2azyeufeZ0ym7LSCrhyZYXzZyd4X/HCc9sMum8yGg3J8pq41SBpp+yeDamKCq8k0kswgiSJCKTj5PSIXm+D11+6+kmX3TP9xEgs74PE0gEnBMumWgXgnt4XSUmgJIGUNNKIVjNFa03mDJVehrJYDQ/uHPDCyxv0BgG1C7k5uE53rUN2llMeaBQpOlvWbFEpqqdH7DAOKCuPMRqVhCxKwQe39/n5r97ky1+4zn/xG+/hvEUph/QB7VaHUNUsioy4mxKFjtoWSxSdDAmjAF05jK4wRtPoxJgDePxwyqtvXeL85R6jw2NqY8G7Je3GOfaOTkGCcRa8pChLTKsmTmMi28BXNUosJ8915YmiANVKaPRa7B8NMd5w5cIG779/jwd3D6hKjUDiLRztnzKfZgRKkESS84Mu5WKBtRXFrGA8diStBtZoBAZb1jSimsFg7ZMukD93/dg30knZoJIghKYuLHfv7/LmG8/TWNTUkwXUEUYapEgI44jJZMLdO4a//GvXuPWhws4eMXpX4QvD2WLE3rBDIxsQ24QrJqUM5pTzMelKxWDDY4Vjlk0oa41lxuGTA+azB2wMttjc6EHQZDIb4mWXouwhRIeinDLPcp6cznnxpcv8j371q/y9/8/vMDXlMp5cwtnRhE4r4da7ByxmCzo9xfBsTBJdZKWf8/hOTrPRwWhDjKKdKkozZzou8UbR7TSZTxYsTjVZWeGlp70R8ak3B9y8orl6yTGc1nihsNZR+Qlho8HJrsPlhqqyhC2JDS1BKGg0BP2u5PmXOozGE2oZcjRyzPMpz7/URIaGyb7ju/9yAVWCJ+PS1horzTO66QqtxHJ3R/PBD2riRPFr/842p+Mpf/A7Y3TpERiQYENBLizCK5yR2BxqLfBCYozlKYWSMJaoZkzhagIF0WaICSy3b5/wvIy5cK7D6EnED3/vMeUx6InHS4loOXoXmySrIZnWfPThs4jwn3YlIqBBQFeEXFnpkcoAV2tqr3GBYmJqgkYKafSU7yyIg4D+SpuiqjBo4kaKM4YkaVDVFXjor/SxEsbzKdo5zkYTirJEKkmFZ55nNNIYlPgzdqp1y0CCMI4wgNMapSQyUMuRtVh+kreaDT7z5husDfrU1tBoNInyHLRFCYFzDhWEOCGRUi7RVR6CIKQyGhEGEIUMswUvRC0iGXNyVhKqgM5qQqMRIeMQbWsaaQOjM2wumEwXtOQAaUCWFm0KYiHpdDqYWrNYLKdJK52Ewfo247EmabRYzAteef5T3L67w+7OHr3NNrqyREHCfFbRy/VyH9w68tGMcjTjuRuXaXZ6aGdoDbpcurRJI9BsLro4p3H1ghtXu6TPr9HtrXI6LVhdX+HWx3sMT6fossN8WlGVBf1OjywfM1/kPN4Zsrfz0xUp/Ew/Qnmwzj5lHj+Ny3YO5xzCLX0JwnusNmhjUJ0WxhrmiwVCBsvft0vj3ei05Dt/cp+v/MWXqb0jrzOuvXKJYlIxy27hjgTOSpSMcLbGIwlDT6MZEyVqiYzEYoXibK7J6oqvfPEav//7H3NwZlDe0mnGpK0GUzJKXRGlAXEsKeYFDo/3BnBLDC9LXF2UpoRJyPB0yYC+/uKA2z84RhdLe7P3Hgssqmo54UYihWNlLeGtt19Eqja3bj/iyd4RrrZMi4JGqOj2G7RXOxhAqpDV1QHzecXduweY2iNRKKnoN5u89sqLrG+s8eDBA8bDE5TOiTBoliswVS053FvQaIyYTXKKbM6Fcz3uf/zT9yz/2DfSWMGiqNjaWKGazpnOLbfuPub1l17kyfffY10lLMo5MlJ4PGVV82hnxBe+pHj505tsbHo++Ken+F3H8599nfhixOxkQnxkyEcW3/WYuEv4XIBLD5mXC1ZX1jg6OKLXgkdHc1QSMl48oC4V7StXabcalEhsYZlkc7pRxkZnjSQKiOSCr7y9TWflF/i7//D3GeYVBB4lomVU5mxMp50ShI6dhyc8ut9l87zgxesx43FOGqU0403ORkcU2qOrpTGi2QlYCE9dGyQBDk2vq3j1dclm15JPBM2oQxBlhEGXK5tr2NLz/e8f4wyICIJIYANLEAvW1hVvfbrP1nlFZTa5szNhb9diSKhrQUDMx98oWRxqvBBcvtLiwjWDpEmj7ajNkB9+c0IgFTdf6fD2W1f5O3/3B8wziVCgABEJZCywwqFiRztpcPYox+r/mq3rBSAdcVOh1hReQRRLZmaKIsBWlmbYZ++h58OvH7B47Li41mehZkw8pJsNkq0QGSlcEVNr+8nW6zP9yNWRinNJkzWvcPOSM60J04io3UA2EoZnx8TScyFQCOMRzmNLzcb5AcP5GJ1KFuMcawU6M1jrSaIUEQXMigWjcY0IQnwjwoeCyloImwSRxAiPdW5pTHT2KZMDGo0mUo6w1mOcQzhPHEUEgQIEz9+4xo0rVwkDgVziXGkkKVD9WVCCUIIggCLPKKtqGc4QhFgvcAiCOKE0FWcjQ+AN85mht9JEqIQwSTBCMFssON9dRVcpphFRJDWT8YiWCrBe00pDNqI2w/EIF4RkueHsNOfyxW0SCXWdMVjt4XNDkoYc7u8SRyG1seSjGYvpnF7dYLY/Jmo3KWvLye4Jk5NT4tAh0wbpSpfpbMKjJwdc2OqiZIz0AY1WwtpKmzSOESIkKU555eZFbtzY5uT4kId3TvmTb+ySpBGh9Ehh+cLnX2e9v8673//hJ1hxz/STpCAJkMISBJ4glEuuu1PoejllFn6JqXTWY/As8gJtauraECUNnPc4bwEJGh7eO+P67piNS6s8+vAOO+4R586fZ/PqgLCpCGTAbJqhjWE2nQMQOUMcC9JEIaQgiKB0nt3DCTcurPLVr1zjH//mRygs0ju81U+TUAPmp1OyyNNIPY00oawrcIY4AukFZZHTG6SkrYB8suDh3TPWt/qk7QBdwZ+ygrzzOP+noVCe81ea/Mpf+zznL2+zuXWV1x5f4Vvf+SEP7u4zPJ4QBpLXPv8cNY5vfecDAhljasPweIL0IamSpGFAK425tL3BqzeuUtQl1WxOPsnwiUJEAcYqytpSakt5nDOZPUBIzcZ2m+PRgid3fvqGXT/2jXScBIzGM3qtJr1Wj9zmnAwnjMYZZm55/fo2090HzLAIKTk5PaGnOpweFQStlLXtbT7z6w2+8188wTYhlYL8eMzB+2dMDzxyPeLxaIr93SZf+bUtulfmWGs5t9oDr+kkirPJkJVBzPZghTQpmOanzGYVq60tvBrQaLQZJDFpmJDrKWnT8/zNkP/F3/5Z/uE//RaP90a0mykP7j3Ge4NzkqrQlLnkYH/G+lbMZkfRiUKMKdGioMBQGUe/lTIZ1WitafcbjI4KCAMMcPV6h9VWxNnQ0UkCOokjST3dVgPpcg6HJU/2arSDIBTI0KNCz0o/5NLVhO1tgZAFSilevNpF+JzxxJBnCdWZZO9OhQwMNEM+9XPbmOAIyVVkUJJnY4bDmq1L8Cv/3hZ7u8f8yR8PKY1DKY+3griZoFoOKyTaaWpRka5FTBcWUTu8cwSRIgwlVtXY0PDcmxeYzo4o9xzSaHrNlDgY8EfffR+bC6wXPD4cEnVC0s02eTAj8mCmmmoG9lkf/VOvL125TiMKOZpNubU7ImgmvPDSNYgEps7p9jsIpah1jTd6aRSsKnprLZqtNrMsY7DZ4c6tHfLMs7q5zbDKKJ2hVJ6sLjB1iVIBSZpCJLFWEUch3nnqssS6JQFAqeVaRxwtEVO6Mvil1xBdW5RStBspF85v4l0FxIRBiDY1zSQlUCFZWWKsRQqBcJ52s0lVV0uXvQyWHOcagijBK7j/pGClGTBYWQc8XsWUSOq6JE4bZEVBnPTYW9yn0QnRRY0XJZ1Og8ZKTJDnXL+0weraBkf7u0xHBa3nIoTNWGmnzBaGqNfg3fe+ycnZDjUgojX29/dJVEAnalMcZ9x+5w6EEVlWsNprsbKyypPRCaeLERuDVcaTKbqe8+lXXmC9t0Kglnvnx2fHWJshBKRJRFnM2Ry0ufbVLc5tr/P+7WO8D+iYhMPjU9577xZJmHyyRfdMPzH61OeusLnewWMwxpBlJVWhUYHA1JrR2YKjgyllsVz5qLXGs9xrts7j3DJYCTxegM1qvvcnH/NW8CL9fpvR2ZR7d+8TKMWrb1zn2rXLTGc1H956zK13HnC4d4SfVkSxRj5F53X7XZqdFpPMM81K3v7yc3zv+3s83lkwnY5xGvAREoWpPF5rklChJASBxGpHXddEgcRqj/eOKBJkRvDR+8dIFZG2Y6ZnOfCnDHsPzgGQNDxvfv4SrRW4/d577D3cp7e6xo0bq0Sx4wNfEgrFp794EysEDx8eMB8XLKYZ0iyDqZpRwOVzG2ys9qjKBfc//ojhbM7kbEQgBK1Ok8o7FtOSRVZgkBBKdGZY20zBKw4PRlTmk6uNH5V+7Bvp2bxkpd1gMp6zca1FgsSKDmfDOVUBdn/KlW6Hu65knOX0hUdLgdRrRNEUW0e0NiN+8T94CXMS8Bv/j+9zenDGuQsNAgLMNGc3y6lwiO80uVzGXL0q6KWGXqtJp6sotysQMJ2dsu9zRmNNgES2HnFwdI+Dg23Ob2Y0ZBslFfP8ASJqsbaxzd/8ta/yf/07/wrlMkZHU3JtUDYgsOCrABFY7j6ZI4VnrbtCO/XMq5K94YKZkby22eTRScyDeY5aCWiImKmtiHoBV68l9NMGk0nF3kmG2OjjlETlIxa1Ye8s4+xYI70kjELC1LJ5ucn6lsRQsX8q6fZTptOCwYpiYzVgdFIzOUv4/u8fM60NwWqK8DVXng9pJQ2SzgqymmGtJ2/XXL/Q4qWbMf/Rf/yQSbYk5kYCvIZms8WMMWGY4EpDLTSy5wkGCntocEKRbPQQWNKVNnJgOJ0M6Xeb9AeaYpqzuXGBb33jPjhPHEo6l1tsXexQBJqd/TFRIJAWqqxCqIQk+rEv6Wf676jd00MmVU6tAnwUkYQCqwDh0XVNq9Xk4OiIfeHptBpoXSOEIctL2o3WcoYcCHprbQozZVJMKL1AC0FmNNosE8GwjkJrmq0UISReLG9QwjDEVBXGLNcvhJA0mw26vTZ1bZbrHkiQEuscjU5ClABUhCrE+gpna8IgWiZ2hiFhGCKEwNqaVrPF6WhEbe0yiEEIlJQkSYK1CYGwGOnorK4ymx6iEVg8QQihctT1AutjFrXE2wwZJ/T6bdJGB0/N+fYq5Tynm0Y8XizIdUQxm3Lp6jm0swgShAhZO9fh2myLvaMZeIcxGoIQYyx6XhHaEOMsrTAiEJ4nDx9z+aUbnE6PmI3PuHrlCrPZiL3DY4q8QsmQPCsIlWW1l+KsozJ2GdBiDGHa5OKN85xUmuOTBeXQ8kffuIUzhu3twSdYcc/0kyRTeaSLmE1LdnYPWCxKjDYkiaQ/aHLxyoDN7RXufnzEZFRSPPVGSKXw3uKcRcnlLZCxhkG3Qz4VfOv33uflz9ygmbRYTEbUtuL0+IyVXsLq6oBXXtsmUIJsPmcymoEQxGmAdZaLlzboD3pkec3uwZiXr6/xtZ+9xt/7++9Q1TVV6cBbkriB9BKjPbry1JXGYimLijCMiAJFXRvqUtNoJIzJOdrNidIzoiRChgXCSaRUy5szu3RwXH9hg/5Wl/c/3OHJ3Sk7d94jCEK2r2wTNlKmk5pWK+LRk102NtZpRQmjbIoSAVIsWfUrrRbPX7rA2qDN8fCU2nnccIICWt0GcStmPpqhdY2zHqHAeUuzHdHrNTg5GjGfagThJ10if+76se86kiig3UqJ05D9sxO6rQZFWTBZGNq9FCED5Kjk+nafO5NT1GCFbLLg6DDjhcsdQpXibITmkMa5is71HNZiklWJP5GoytPOE1av9jmYD3n4+wU791t89s0OjWs5jbjLStqnqkesba1SmBpMhVIxtdYkzYDh+JCP98Zs9l9kpbWOUE2kkAy6NedWUv7Hf/1r/NG3fxtvKwIvqUuzfCjCgEAmBMGMycJT6pL1VUlzVpOXFuMsly+1md9fcHSmiDqKUb9kZZRw5VqTqtY0I8vqKogg5XhYYnSA6FSsr7U4+eEYWwvCUNDfCti81KDddXhR4kTMzmPDi62Afj8mDXJ8QyGrdf7oD/epZiASC8QkMmTzsqfRWCOUbXw44ezEUueOv/I3LvLooxn3bxeEoUKEENYJs0mFeIoQE0qjQrncU/OQbsF4KqgXEqlSitkZdV0jjGdxlDPsxHzqjSvsP97n5HTMYlYRCMVrr2xi64jTxZCjYY7xntV+j6JYgLBItYwSf6afbu3VOdsXtlnptel02igp6DUby91G4yjKkrSREiYxlbHkZUWaKipj6QhBEoV44eivd8jKbJmcGjd4fDSkqEqcCBBSgLcIIC9y2u0ODo/zfnkFG4boqqaq9fLvFpZms0nWKpnNMpxzeAmNOCZqxjzcfcgLly/TaifgIYiWz4P3jkAI4ihZGoJCRW1rpFRLv0QU/VliY5JEWCuIwwjhSx48GTGfD2l2N+j0EhSWuprRDiRZkdPqrvJgZ7JcM2nmaK/QeYGtHfWiZsIZ7aRBmS043D1je3uTREX0NzfYPxmS64rLV7c4Gy7QWUEItFtNZBCwKHOazTbe13g0kRR8dOsjzqYzbr5+nVxP2ds7ptfvcjrJOT4bcWFzm9WVDmngCKSjtgKHwogQKyUPdoc8PplxMq9QsUMGUBqDRDCZ5Z902T3TT4gefHwG1dI8eHxoKJ+uc0xHmoPdY9rtUza2Vmi1GkgRMhvnFGUNRhKoECUEMgzwT1dA1jYGrJ9f4d133udbv3sbISVRFNFoRjyojzg7HtNqpTjrGY9zogga7QZpO6Xbi6jLjEBKdh8dc3x4RCO2mPw8n/n0Bb75zcd8eHtKEEq0tlS6REqxXN904L3AO4GuBYGUOAvGOrJZQbPdRipBlTlODzPagy5pN0ZnDrx4Go8uCJUkTRIC2eTac+tE0Zj5VHF6OKYqYeP8OousptlWlJXl1nv3Od4/BSfo9/tYO0RYiXEWqSCKlmi8+XSGKUvSRowGxofD5TsrCLEhaA8Ejt5qSp4VzEYL8JIofUbt+O9dCsiyghfefI7vfvsHxHWCdwH37hxw8+YlTocTXnxujY+Pj2kq2NrsMMkmzGZTxjOBkoZOswPuKqp1xv/wf7XKcLjg6EgwH1oWlSG2HdYvXKUyBdbMaIaGVjfiwdCxGM3ZWN1kbe0icl7SSiNSlVMZzXg2p93cpBFnlDrj7uPvcGHjZdb7WwgNUVDS7sS8+do2nk/xB1//NqNhQJ4I6sJTzgqOn5S8daNNXszJteBwbFjtxfQaLYKkJI4tm50mDx7O6G+l2JbgslrFRTO6zR5elyhREoQRzWaLlW6TZjNiko3JFgFR5Dl/acDm1YjKDXEIFnNNXoV4AXnuaKWaOA6Zz0Le//4Z1UyirUAoA67ihesd1rcdxjdpKEUtcuYLy6df63HxXMr//n/7gPl4k3bvBJzEZU1ke0wlC9Y2+5TVgtfffJF337nHZFTRTB29QcCwcviixOcVspcsAfkWFuOaO7d2KIoaXeVUBfgK3v3+MdpJor6hDv3SlGU0RjuUXELmnX7WSP+0a+Eck8Wcmy9c4fmrlxgNJ1hnKYuSMFRoL2mpFCUUi8WCWZFB3GE4r8nskEZD0WyFBIGnv9pESImXms21lMJaMgPGW6RbpnEtd5gNXoATLD0AXhKZiMppHMsoYakU/X4f72GRlUgl6K/2CcKASbbg48f3qPSCjbVNlAifTq4hUgFxFOJKjRCCSCniMEAKT7ORLlMWEYRRSmAl7VYbj6Uu51TDCe9+cIAKN1jrSaLAESiN94ZK1yStJtNJxv7pIamdYDNBu7mCcAHNKGHrxg3mkwlR6KkqTzNtEskAZw0qCtkaNHl+uMKtj05IhWQxneJmOVWR01+JwXpascILwSyD/SeHmLri5ZdvkOmK6WzG+nqfKI1oNZuEUuKdpbKCQiuySjPPahb5gvGs4vz2ZbrtEcdHD1ioirQVcXF7m0G7xW/w3idcec/0kyGFlBFJHCw57QZCFULgKHOPqSTjo5LBapft1Q5JmDCczsmyAmMNqADlPTiP8FBVBWl7jcHGgJODCeW0xtsKoTzdfkqg1gml5PRkxMH+EI8iTCM2twesrrU4PdzncH9InhcIJVlf7/DhnSGXL6zxS7/8EjtPvo2ZGUKpsLVGSIVkudvtncBZgXcKbTxJDMJLyryi118haoRUeUG+qGgPHI12xHgxRzqBkksTkvOOnYdHDDaaXLq2TSAs3UGD6byg0obj4xOMrfAoTg6H7Nw7YjRa0EybbGwPyIucfFIyXeR8cOce02yV0XzObDIlliFSKuZ5TVVbgkAQRwF4waIqSVoRYaA4PDhBSsPmdp+1jQ4P3v3p2pP+CWikBUp5wrbgS1/7FB/+yftEYcLLL2xx/eoGH9YVg16TlalgphUXey1Me0KcxgwnI1QItT8mchukjZheeomty1usN2bsrxwQ9it2j/ao9V1CBGkUIJHs7C2I0m2CJOW9+2d0Tztc2+rT7bS4sH6Z/ZMH+K4jn06IpWc92eTK1TaPDh9idM3VKy/jfcG0KmjELd586XVOTh7zh79/yOpKnylQTE453MnwVcLV7YRbD3JKC+dXbzCIFjwa7TCa1+QTz7lOk6YK6QYDVoIFd1zOlY0G2iwo8pBQKNa3E+ryjMncM89z5nPFuUsxb32pxYcPD6mtJxUCZyKmuabRVQgZYk3NwRl8+K5nNqkRzqJ8gPCKKKz4hV/qY6sFYecyiVyQ1SMaQvErv7zO978x4/7Dku7lgPEoRWQGXdesXIpINiS5MQRK8sKLV5lOMz5Y7FBp6G9HmLhGRAZvwLc8hauWCUsVzIaayjqMF+hyyZx2XtHqNxHRAoUhDBV5XlPkDiEEYQjBT9+t0TP9N9RuN+n1WkThMpo6CDzFLEPrGmMqAiHQzhMqRdJsUEiYa8/kcISQlk4npL8Sk8QBDkWgJEpa1vsx07wgH1Z4r0AJkJLaWbKqIIoinFjG6yaxArs0MVXG/Zl5NgxD1jfWSOYZWmviOMZZqI0lq2uenB7gpWdrbZsgjPFeEoUpIIjDGClBBCGNNEFbQ1mVeG8JFCRxhHMhSaMFOAKlOLd9nYeP3uPhzojui31WmopIQTMNmVeGJAk4tRXOOKbjGRcG12i1exwezZYGqzLnwvlzOFGjNSRNyenwGG1KkiQgacLnPnuZbFZy62HBvCgoqgmDVptKzwm95S9/5Ut8cO8x40VOt9NjeDzjA32XL3zlFQpjODrcZ3XQ4/D4mKrXJVRQVSW1qTFPKT2BMlzYbLPSCSgaEa6A2UjQSARf/NwbnBv0+T/wm59s4T3TT4b8Mj00iQKiQFFUeulp8CBlQCtNWO93eOHaZazRFNUTWiIlTJd8eV1ZarP0Oljn2HtyQtqNSBoRaSsCwGmHFw4VBaSNBmsb6wRxg/GkoMyX/PnFdEIUWLJMU2TLVTAhoa4mTMeCrdVd3v7SS9y8ucq3vrtHKCUCia6WDGiJRPhlAEwQSMJQLSkkdknmEkg63Rb5RIML8dpy/kKTm88NsKVnMizY2x2S5zWTseb9d3Y4OT5DhILaSprdBousoDitaDQV/f4aa2vneHBvBGFAaSochiCSaCzWC3ZOzxhXGVJAJATa1YznOU4pYhXR6YRcvLRGkTseHRwT9lOyRYZQlnOXe/RWE1b60SdcIH/++rFvpNf7Pco6ZzY85W/8z/8SzXRIcVDx1s1X2DkeMph0CdOQjbUV7ry7w/DegnOXG9zfOeCtK1tYTjkbptTZLpNZid68zOX1C/RbIavt1zmafZ9kJWU4F4T9DG2PufVDyXe/k/HaW4bWwGNEQl42ORga8iJj0E3RdZu19Q4Ltc98XnLn/pDnrjS5tLHOvaNH3N3XXNzYRLqANPSs97f52bff4PCw5P7HJaOTHO08s8mCanqe1vqIVuqoixShK2Q8ZNBQHAvH0XBKJ+rTdJLtqMlYHXP5ap92uyBo9vCZQhKTZUu3/2ojJYgHjM+O+cKX19FqukQAWUGmoTYKIS0bgxTvFlgPw1GT9384QkRLokZsUggrXnupxyuvaeY6Iq0lNTNCpbh+PsKbgH/2G7dZGUjGxQk+WEO4OYaST799hQd7h+T7U9LIk8SSl1+8wPsfPEY78K3lNKvRb2JTwzyvEUphS43yy7Gfd4669hgDYSBQqSezEyLjaDSSpfGrNji/5FrWusY7/UmX7DP9iLXea3Jutc/6oIfzhihSFFXO2emIpNFccqYDRRAEmLqidBZkCDJEBgF57bETgzYFUkmCwLPSiVkbpPS7MUfjAu0CEEuMlBeeStcEUYizmlDBuY0Vnjw5pRIsTYZGs7T3LKfM0nvajQaRUhhr0LUgwxEoyeP9A2bzjMvnLhMHCQKFc5I0TnDeIpQjjkLGixl+ntOKHZ3VLs1Gg6KUSP+UXx3GqHaX9fVzHBzcp9tQbA42mc7mFFYSSEWZ5zhrMUKhsUzyEdbWTGZjVlYSMlGgvabRSvBCsMgmeJY4vrwouf/4hM/dvMKv/PKnOP/OfR4fneK9IGl0+d533+flS+e4sNnid791Ckim0wXHZxNOToa8+vJ5ko6iGSs21nrs7R6gwoC6KoijgDiCWAnSJCAQEtx8iQ8UmtVeSjbQ3Ls74uGDR1zo9z/RmnumnxxJ4bBG0+l3aSQxi7zELCmVgCTLS8bSEyuJ85JiviCrKqQMSJIQ8FR5jbVLf0KRG3buH9EaNKi0xktP0o6RgaA2FXfu7vBk/4A0jRmstcnmmtOzKfNpSZGXS5SlhUBFWGcYni2wrs2dh3PeeC3nK29f5YPbh8xnNTKMUVZgtMM7gVIRwkIcyuXh3UtMtaQC6ULT6SaM2zGBDAil4u0vv8iVywNWuysc7I+49cE+tz444Ox0wkuvXuH1t14liBXzWcHe7jEf3LqLVIpmM+AXf+FrPN45Rtca7R3aWnYP9ymqEi2f7j17QaHD5cDLCeqipjaOJFKc21rhxde3eeON6zy4c0ypasa6oJrPWdto0R0kNNtqedP9U6Yf+0Z6UWS0Wh2MFgyrXT7/q6/y8W9/wO6TB+wOZ9zbP+VolJItak4PDePfe8Iv/o3X2Pv4Ib/w5W3m6THaL1jvrqACz8PTB4zznMv9l7i08iqX+p/HCEGRfYNzq+fJdU73zUvU+R0azZps7pFBjPaOs2GOdTEH41POb6wTjFPScI1R+QDbgQ/39uiNNI1OQjZ9yFDEqO4KlX5AXQcgmnzu7U+xv/8B1eMxiVOc6zU4uLPgzUs9nr8u+PD9GcejM6JojvGeUVBQrWsKOaUfbCDzBsVqyo2XBzwaDemZFqOpIUnAoynrkrAlGZ4qOmsh7fWaB49yJJrBakRZCMYzjbKeS1spa6s102nEB9/POdmvl4lsXiJqB17z8ivbqGgHpy8yaA0Yzoe0Ys1Gb52/85/uszm4xNVuwnce71AkM/JiQbPbwgWOs7OKWEaEscWYgk+/cYN//lvfIZ/XlGUJ1rK3d8zqegdTZERIklAQxFAZQ1E5TC2Wvq1IYTwo5YmikCgKmU4XGO0xWmKMI44UuE+6Yp/pR63nrl6knSZkecZkUuGcI4pj+v0Bs0WGNjmrq2vkVUVRaybznNI5wlChlkMdZCCxaMJIEkhYLOZEsaKRRsShpKyWTbF3f7rSIfHe4fEIqdBW48QSgye8Rz39v3kEWmu8tTSSBJxDSpBi6bZfzCvqSGLsiKrMuHHpCp1mnyhMUcqD9UShottOKKsR3WbE5c1zBFKQFYooSHEuRAUShyevBGsbF5nOZ7zzwUNWOgGXL7ZA2iU3ttNkNJ6RLQqMEczyjEbYYGt9nbXeGkkaUJQLjMrIKk+r3SHLDXXlEEIhgxaVEzS7AZ//zDVenp3jn//Od/jWdx+gwpA3P3OT+weH7I7nzHKNUBFhEOCt4vGDIz79uUvoRY60NVGoyPI5aZrghUSFAa00QglPHIWUxQzjNWmcstrtUa56mmnAk709qtdf/yRL7pl+ghRLyenxMUkYEAYhUkrEU5qdk4rSWs7GM27ffUQjChifzVkYu0wmVYIwDmk0k6WprzZ4B4tZhVMKGSg8gtoapPc4B1Yv01sSFRCkoE2JMRonUlSsiJVEVxbpHJ1OE4Qjz3KOhwHffeceX/nCi7z5xjm+9d19pFRIKZYZC08Z9FJAGikEgrIyFFmFMzV1VdHb6BEnIV47GnHM7fcf89EHj7h8YY3Pf/5V/sqvPsdf/Ksxu7u7GF3T6vZY6a+SRi2+8913GU5GNJottrbWMdrz/W++A8YTBCHaWvKiACURocLriihIUMIjPVS1pTYgQkmYKtJ+xPnnNrj83CrNdsy9012mBzMaTUmjLdm+0KPXW/7+T5t+7BvpSpdkRwUnueQzZ1uwEXDjSzf5g//sO5ycziit4uwgZzwqqaxgepzxnd96zPHjMd+9eMgbf/MKXuyDtZQmxkjFSTXiZOeb7JyOuHnpMzSDFbZX+9T5jLXOG/REzF//Kz0+3vuY23cPaCQbVHLGYKWNwBKGKyxygdUW5UMWRYJxFdr0COoxPWlYacTce3iP7PwlLqwOMO4jDD3muuCtv/ACuw+PuV6lvLFyiYdP9qjGmxTRKZvnErwMyHJoNQPGc0Njq4GKFWfjY4b6hNZmTJIKFtOQk9MRKgiRwtFKQlpByrSwFGKVjWsVw3KBCC2Xrq4wmxaYUNNqeNpJl6RhUYHive9p7n00IghjnLVYBz6tiETCxlaIFTXnen3aKuPjxTGfW4m5ezvnD753zC+99jzZzoRURmRakE1L2mmHxVnFYlrjBDhpOBue8ZlXL3Pz5TXe+cEexteAwBnNYjYlSaHKNa1YESpJNtbgBUEoniZTWYwFIT1BELFYVAgC8BYpJUotm5ifvkf0mf6bks4xm4wYDS0OQVVrLpw7h5CSUCqSNEKgkdKSPJ12eu/R2qENoCQYiwwkYRyTphFhYBhPK1qdFmkSs9AW8zQDXDwNTLHWIISg1IbdoyHaLPF0XoK1HmsddW2Yzhc0Gg2sMdQsDYSBFwSBRBCgpFqGtoSeRXlGmiz50doYPAHGQr/bpJ2u020ohKupKockZn11iyBsPvVojKltgTYxqxsXmExP+PYPdhHyCv1BBMKQhgFRIKGRMp0vyPOMwwyuXbnG0fEYEVasbzVQUjGZj1hUOXHQpNPsMlnknJwc8aQBrPVIhCLpxbzyxnWSQZNWr81BccR0rulf2UQOF8yHC5I0Il8U3H90wpVr63RXAuqsxGtDmCaESlFbz6I05EVFM4oJFOBTorBBFCmstgRyytVLG9y9N+Tw6PgTrbln+slRECgWWcHO7gEqCGg1WsyzEgtYLEJItBc82D0iDhWF9uAlzrOkZeiKZjOh025QVDX5osCUlnyUkzQiwihcNtjCIxDEStJMY5pE2LnBFZY0iegNWvTXIq5c6NFptJicTDHGof15vvntd6hrx87ejMlkztd+/gU+undCnkMYKJxWCJaHeQEgBXmhKeYGaxwXL2/zM29/hk6vg61+wPM3LvO1n/8cUgmyXPPBDz/AuhZJ3MYD589tcvvWA4Ynu0xXZqyub/L8zeepBRjneP2N1zk5HhK2U4KyIihKijxDlYJ2r4X0mtJYmo0IKQN06cgrjXOW1X6PpCEImgEi9DjpOJkfETRgpR+DmNFqh0QhnN/eYD6bf6L18aPQj30jfeFGgh1DpUPG9zXhRkm/0+Pqz1zn43/4AeNZyXCUEwQBgZPEBkbjQ8Ke5He/fovopVf50tvnmM2fMJ5BXYaUtsQrxenhDyh9xc1L10mb0KZJ5N6g3RgRyhaNG026re9zcpJQBYp5PiJJtpnPFK629DsJw/E+pZ6wstLlX/3eXS5vDWg1DGGYsn4+53TxmLY6x8XLHuML1geSMJZ8+s0LXNhTDKxiSMLRnkOuWoJkSbTsdVrYfMb8oWNxV6OpeeXLAy59ytM8FxLYnGvX+jw+HRGGMY0oQeoc5bb5jd+5C/E+q9sl84ViNlNIXzOfLCNAGxGsDUIaccTJvmB354RWK6AKK6z1OCsprWG9mXLpikPGqzRShdaP6UUlyl/iez88opIBv//+t8kPKnza4eSoIKihGFf4okUUSry3GL+Mat1Yb/KZty7y4ceHoCXzaU0kPY04orXa5Gj3lCgSYD1huGR8CiQei7UeKQRRFKJrS1UYjBZY5xDCgYfa+mcc6f8/kHWWIFAEsUIGIR0VoAKJ0pKtzQ3AcTY5Y1oUpN0eaRxSWqieTpelECDAVJa6zpnPctIkYBYHNBaCZrvPNB/itUaIgLTZIsvnOO8AgbUWJQOc8KiIP3PTB0pSaEMSxyRR/BRn95RHay3OOupaU9eCupZYIwmVZTYbcXHrEoPuFrVZhigECmQQEKoQLySzxQREipIBVVUxnE0pqmLp6vew0u0Tx22OTqb83tfv87nPXeTCdkIaeRqxIokSemmHyX5GQsrB4QEqFKi0ZuPSRWQArVaKMZpWKyIMQxpRxMbGOhubA1QA1itORyP66xFvnbvB8SjD+QDfhRFnvHTpIju377P/+Iy40WCcF3zv/Uf8pV98FelrwkDirKDIa07GpzjhsJXnxuWrrK20SUJJElukt8RSIM8ppGxR147T0U+XOemZfnSSQUAcJERxSllXBEGIFBr/lLqjlj5CFlVNXi/JHP5PVz88OOvJXYm1jjCJSJoJ5aLEZDVlZXBxSO3cMtJeSmToKERNNsnQ1uFCCJsR0/GIXq/BC89d58blixRzxzvf/ZCz4YJmEnN4OMbqBt/41n0++/kX2dpa4f79Kd564kTS6aQ0ujHjocFYga4splqSzH71b/wFvvizb+EtvPryFdZX17l8YZs0aYJUfPELbyEDjzWGyWSCc3DpwgX2d454cu+Y9995yLSsODg+ozaWB3ee8OVf+Cyvf/EV/vW/+ANqXWFKAxrabUngBc0kIIpCnJdUxlC75RqoLmvSKGE+y/njr/+AWmvuPHrI+cuXyfMZshewud1CyJr7D+5xfvPyJ1whf/76sW+k/+p/8FU+/IO7/OG/vsO3/s3H/I3X/yLf3/kDvvz61xj//R8ym2riRsyv/OrP8lv/4o/JZo6Ni4q6p/FGsXN/j060zWd/5gW2BpaTYUZtQ7TJMR1LMxwhzR5B2COvYggMWE1dTgjDl7i4knNjq8H+Cdw+esjD3VMC2efq+QGt1HJ4pDCFIN0ImE0139s5wdRrvP4zAdpUtJrw5OQbwKe4tH2RC70h1CPefH2L3Ud3meYlRhWcDUMuX16j1ssPkrSZcDid89K1K1zcfh5nMvamEx58cMxbNwKknDHOBLGPGbSbdBKFrxf88NtDPvxgwef+wiprnSajs5I46VKXJUrGJNHyxP3G6xdYjCu+9bu72MoTCEFnvUmSdDg5WiBLy6de3yRKRzzeU4itESvpiJc3Y967pTHRZSiPWIia5kVPr13TDzVPZh5bZ5wdVSSpwz6dAuZFgSXn0uUmFy51eHhnhvcQBgG6thi9THC0ylPldmlwyC3OLScMqOXOhlKKstCUpcVogRCeRiNAawsaOjpmQvWJ1uwz/WgVhxHtVoIXjrQVEwQRk+GMKIxotROqusJ6KGuLWSzothtUZoGtHYbl9FgIgQpjPMukwqzwzPMKOatJJzXrG6uUVUZRlugye+qAd4AEITDO4b1HYEkaEdoanFuaAptxurwd8cuQB6xfpnh6gfUe78AaizOaKIBOK2CRD5Fes9I/jwoaGOswWmBEhPWKqNGlqgNKXVPXbvncGIW1kjiM8D6k0x5wfLTP2bjigw+fsL12gzi0xFHA8XDBYqYJZYR3BZEI6HS6NHsJ3W6IVJr5oiBQCWVVkecFeWEI4pCDg0MCKtIwRgUCFQWUVY63QJAyGY/RlaTUhqsvXsPKBGtitC0ovebu3pyNtZTaLVfG6roiaTQQ0vFkcso33nmP65cvsLXaYnu1RSQczlriMGClG/LKK+c5Pak/4ap7pp8UTRYL4rhJo9GirCqyvESogFAF1GI555VPD7nL1Sxwfvk8AyAF3gvyrCaynqgZ0eimFLMcqz1lYRCBxAPWeSrhUdaCAhWFRHGAx1EVNeurm2yupQgz5eDJCfPjIYmICLxaMpVtyQ/eP8JHKWESsTRaCLr9Blcur2G8JpstyDONN8s1sqo2/Ivf/F0ePXzIa69dQCnP//vv/CNWugOef+ka1164TNKMmYznTMczHtzd5d6HO+w9PMLUEAThcp3VO5yUtDotbmcPiZvw8mdeWf68MkgvaaQNVtf7YCvqXGGMpyo0Va2X5k0h0ZWmnfaIQsVsNuPDu4/RHlqtBs1U0F9ps7bRZNC/zHg+ZO/o4BOsjh+Nfuwb6XvZI97+W2/T2djgoz/4kNP3Drjx6S5hnNJdWcW5Mf/uv/8FXntrwG/+kwo8HN+puHhjhYmfMzzL+MNvPGR1MODyxQbrzQ6VTxgXQ0pTgRxy/2jOIk9xts21SxGxyGgqTS9MSeQ5pvNbPHfuZ6lck6PTb1PUBfO8YGu9y/is4vC0ZOOCo9uN2R9WfO+dA9YuvE6jpbF2xNZmwMcHD3DRKjc2+lxdLUhkxP1eQDnUbG6scVjUKD1n9xTCsE3oz0FZst1vk9+dEJiKjz88IL/h+YrsUtc5M2UJvCAOcxLZYDgM+MPf36M6E3TCNrPylPnCU3nJ8EjTDGOUMUjlOX4s+Y3/+A7Dx4a4KVi7uMkv/PIvs/ncRf7+//M/Z3bvhPFiyr/8gymnZzVp6PmVnzuPXVnjP/oP73A4qXCmDUEAruCtT0d87t9NeO/dOZ21de7uOr733hAhJGjLw70Tvnv7EdcudfkLv/A8/6/jHzA7dU+vwzXmYEInWaLrfCCxOkDXmkZTEQRgjEcpRRAotDFIxVNEkaBYGKSE1W6bLk2ecPgJV+0z/SilgmAZYKIEdQ1Vpam1JYoE08Wc6WxGZQxSCXCetU6bJIp5cHBM8dTn4gGr7XJCLSVSSfABzjsWWU3xeJ+1tS6r/R7zImNRaEAuUXjWLPtpqZZxwtKjYkksJUo0wS3NQsaD8st1I4UED8ILnHUEUuG8xKEoK808n6KkJpgLuu0NoiCEOCAva4z2BEGMQNBOEkwoWOQ5xDFKGqo6J6tKmq0ujgBtag6PMvZ2x1y72scYh3Ge0npKV5JKwSJ3JIVisNFChY4szyjqmslsQRxoAmVYlJpBmpLEAf12SCMKKKuSrLR4t1wVeXz8mNoEeB9zeJqjlKRz7jx4SRAkVDrnIC85fjInigTWTbHGoEKQylNZhwgVDw8P2D/1DJoRV7fWuXRuQLsRIJTHCofnp489+0w/IomA2hgm8xllVVNbTagEHoHELT0PUiCcREmFxyLdU7QlS2+AkAqcwxmPsxYRCeJOgi4svva02w1qb8jqGougthBGyxwFIQXOgLWO6TDnwUcnnOyP+frv3mOQpDz//Dls6XBGUVcS75oIWjQbNUkisQZaKw1KWzOdzKhKjTOawWqf8dmEsvI8eTzkaP+UrY2Ar/78W/zjf/D7/OC7+/zJNz5i+2qH/sYKR/tjzm2vU+SGh4/OWEzrJV4zEohAYsSyETbWQW25/cF92oOVJbteKII0IQgk3lQ0GxJ8SDmp0LVDIXACVCDBS3zgWd1o0VcBeV0wnWf88AffRudD1jZatBohrZbA+JD00gXgnU+6Sv5c9WPfSO98/JC6tnz6515ldQu+8W+/y9X4NRrhh/zML73Khx8e87kvbiNiTZgGZFWJyxRnexnBIMTmgjou+Bf/5o/42//eL3Lp+jqLMqdyEi8rNgYRO09GTEvBYtHk/Y93uHb5BtcubBMlllxPsaKgLI947dw1eumYW/sfUhQOU3c5Gw+ZThPy0pE0JVIFaGf5wfce8Wu//iZF5ZlPMybjIw6iuzw3+Dwr8QZla5/XPrvB/mif0TDD9COqKiQvpizylOFogZk1+Xt/912Sog9hyf7JgjffuEAcKZzuYauCjbWIs7NDfAtGwwaHh5q0FdPq9rm/d4R0LWTtUIEgjDSqAD0T/Oa//YDhfY33lnM3bvK3/3f/M0Zmzj/7jX/O8eEJzbZmUWcsdmqwITrRODXg//Z/PuXuOxleQhxldLcCrl9scuVKg/Z6yctvO3w04nG2fLkYI2gkAeNZzm/8f7/BV37mJi++dpXti3c4fTwmICFMFK6qcG5pYHBeLM2DcYBzliRNMUagZLhsuvUyBEOIp9dybokdW91Y48qFy3z3688a6Z9mzecLcBZjHdpDksSEKiSJImpdEyYJiVI4IXDegq5ZSUIub/R5fDwl0xYrls20dw6Hxz+FvQgJQkms95yczagqTX/QwVuH8RZtNAhHI0kQBGitCRRotTzwdbttynlJXdqnjvblBDwMQ2pTL/F2TykzrobZuMI2BI3YkauCQI5x1jDobxAFCc5BXVWkSYoKAwIlUCKkDkMMBu0EldXURtNotonChLrKMCbguz/cpfKWIAxIY4VOPYt5zWixoJ4bOklKlPQwxhOGKWHoOR2PQAYoHP2VLnlWsNKUJJGiyGvmWY6hwSy3nE1r8lrhfUjaaGKNRgpPEMd4LzBWY1lOvWSYYpTHBx4ZPV2tcTXO5XhrcEJS1qCExAXtp826RQKdZkS2yD7JknumnyBdvnIZ7zxCSEaTMXY8QesaXWY4sxy6BFLglURJASIA758aCf90K3mJnUMsb6+MsyA8QaoIIkG/16KsNYWtl//uQNplBLkQkqo2uNpz+50hD25lzKY5RWaZN3NceMIsN1gnyOeWo92cR70TNs+3eOH5LT66c8xinpFnnjyr8N7R7EQkLYhKiUii5ZHAwpMnJ6wOOrz62nXu3P4e80XNweEcH0U4pWh1e7Takr3dGaJyOGuovcUbhwwVEkdV5FTCUpSGb379++himd9hjKGaa46e1CQtRaPRxFSOWIQEkSIrSpz31M6gYo9QnulkzGSeobXBFpIosAxPxvS6DZSSOOnBNz7pEvlz1499I61GTY7Ce3y9POTzr7zFZ91r/Kt/egfRvMyl19e5+nKHPBNsbgZsPB9zeqYQiWYwgNrlxKnmwpUWjSTk/Vv3kWXIhfMbtAJY5GN0EdJfuUjcSrh3f5/17RYPj+6wc/yIDxvneeHFTS5uXmSWLVhPDZe6Gww6K+QWHuzdRskJaTyg3QmIG44gcdhaMhwuODhYcO3GedJ4QpxMCJnywd3v8MaN1zi/eoXotRY73zpifmAYP8i5+rnLXL2UoOcVtV/gqopQpOwcT5mKCuUlm6tNhAJkk04YEFpPGnT4/h9VXNm6zi/9DwKGYoQOdikKTb8bkU8ntHsJ2Ynj+OOa2a5FzzWhl9SJpHlF8ccf/wnf+NZ3GZ9MCYyEyOFoYco5Stasryf8839yl2//tuHnfv4Kh8f7vPhqwqfeXqc7SPnh90f8h/+4gqTLhZcLtFA4UaGNJ007CGmYzir++Bv3yL3jrZ95if1775Cd+iWv0lniKMLlNdqA0ZYokii1XN+IooDFoqLI9VNXM0ixnPWFQYSznuHZjEF78glX7DP9qBXHCVKGzCdj3J9OVfDoqmKaZ/T6XZqNhF6nhbeaOE6I4wgVLpFNO0dD5trhlVg6+oVcvuStBe9xxqGtQyjB2WjBPCs4t71GmgTMswlBI2RRlmhtiaQCAd4bpHA0mk3wAZ1ul2pRUywqbO3RzmK9xBqHFQ5jPM4K6sqQzZf703Y1RLsZSZ7hnGZz4xKNpIEzhlB6AiFJooi8WDYD1tY4rzG2xlqNEhCFIRKJcTCceW7dPuHmzU2Ed4RqeeNTlDW1hpPZFNRFKi1I0jZpI2B13fJ4d0YcSp67cp6zo31wCXcenXF2OmR1bUAUK2ZlTa49zkdImdBtdcGVKOVQYUBZ1SRJQGwFDk8QCPI8oy7N02bDIfzy+7rSCBXivGCRlTizy5svnuPSRkiahISRR9ftT7jqnuknRVW+WKb+tjqc29ri6tVLPHm8w+HBIUEaE0qJs4ayWh5spRQEKiAIQ2qrsX6ZhOilRMmlodCzZCl74YjigDhVCOmQmcN6lri4yqBdjcgqQBCriGzumbpqScIKJZUS7JxOmVdL/wU+YDyq+dY37vHSa+usbfVpJQHbgwFpGPDurR2chzB05OUMQkcYKJRQFKVld2+Ic56XXrnMb/6z7z29VROESYgTcHwyJlYx3jqsc7in6yvCg9cWXWukApTAecimJZKAsihAO5I4wHuHChpIFeMxy3eVWb4rpRAIIEkj0gZcHWzxwfsPEOGSLOSFRNeGex/tUlU1569tsSgmn2B1/Gj0Y99I3/l6Qf9Kn87riu9l3+Pq5Wv82t/6HL/924+I1/f4a3/rJWQYUHhL53ITNgNOpyeYVHOx26UlWlTjnOc/c47hxPBf/s63+fSrL/LK5/rETcVovmBelhRlTr8dkuczLm5rCAT3PvghDw+6vPHSc7xx4wKn9T7js5z1lVdZaw5YubJOPhZ859ZtGuEWQiRoMryQeBSPHh3w6ptvEgQRKypmPp0y9ye8/+QONy+9RG/7HG987VNsNs44LgoOHk45/7rGBQLnCxSedmhpJ5pZ6VENyUsvnqOq98lKTb9niaOCW9+M+E//j1Oc+Tq9Lcdf/l8+z/h4RjVuInoGUdas5mtMb83I9y0+D0kCRyFK1l5dpVgd8cG972HqnFhInHFYYfC1wEnD+oYkqpv88W9n3Li2zkufhb/08g2k1PzxH57yR//VlJMDEFHA1o2Y4FHM7sEUYbvEMiNbLHChZWOzxaLK+Te/9T7Pv3GZmy9f49t/eJuNSw26bYWZwl5RErC8chPCkTai5RqHUsu0NbVMenLWEcYBYRQjXEyZl5wcTQifRYT/1CsrSoqiIm02aSQpSkmM0SyyOXlZ0Jdd2s2ExXxOUZZUxlJNJownU9K0y/nBgN2zCQtrsN4TIBAS4ijCeos2FXiN8AFISWU8j54c0W7FXDy/gbEZ0nlMbXHSk8Qh7QS67YR2SxFKgTGC1e4WzajN6HTM8ekpDe+Z5wsqq3HCY53HAbXznEwKjDSsERJ0IrRZMB4d0Ols0UgiolASBRFCOpRxVFmG8yXW1Thv8FiEEEgpwHtsbXESzs5Kzs4K4mSZ0Jg2EhaZQ9eW4Szn8ZNjOt0bGK0wlSaSnl4rIRIxkYdzm+f48P5DDodzpGyQnXjWVpYpa94LJIIoCEmihFYaE8WO2hiCUOIRzGY1iyyjrErU05bEW8d0MWc0HDGdzrHW02x3SJpN4jiiLi3eO4zucXkrQvgab5/x4Z/pv51G0xmXL1/j2tXLrK+tLNNxZ0MCV/HCczfIpnP29o84PD2lthaJxFqNkCybQzwICISgmSZY4ajLHC8BJbDSUwtDLWqCQOAsoCR1WaG1QUlBGsV4C8YCLBF2UUOSdBRhGKIzyOceYy3eWtq9NrWB45MhSSQZJBGXVtf44fceMi8qWishMlQ46zFmucYWRjCeTDk+OuPGcxcYrLcZjWuMdctbsCjk8HhIO24j5HLCLrwnUgHOOnSpiQNFp5liI8nCVNSVJkmWf2ul1yAKw+XzHIdkVYkXgryqqIsacESBwntPVWasrvXoDzrcunUf76Coa1rNeLnmpiUP7h8wXRR0ej99h+If+0Y6z2c0j1Ju/daY7RfazE72eOFF+Kt/7dO8/+E7rL/YIG5pxgvJvUdD0l6Lzc0NNrspV1b61GcZu48hzRIeffQucbfH7UcfUScrXHylQ1VqEAmdrmPQiXF1zmw+pdCamy/1ODoR3HtyhzAccbASs9a9hBWCwK2zFvb4xc/0SNOID588ptNZBTnCedDWcngy5mw6YWWlDTpACMnCHjMe3ieOmqx127z+M6/w6Hv/lGJXc1hNeP6z54jTgDgMKHxOGFu22w2i0NF7YYXuRsHZvCAOE5pxwMHDVf7Rf/Ix81GNEAZvQqZnMbk0DMKUwZqmHGvyo4r5kzlCC7SuKIXk4mfWOff5PiYJmZ+W6KlhOskJIxisRkgWrK7Cai9m9Mhy80aHzbWK0yPNd947JStLAplyemZoNlJ8qml2a1ZWIoZjST2zFFrTGYQ8/8Ymly5e4uDRAT98Z4/3fviYxMbI0PPam+dptmbs31swHoGYg6khbSQkSYB3y5dNoBTWeUztlpQEGRNHDbJZvbyml55R8ewK+Kdd1nukWqIQlRQYXbPIMybzKe1ei3aniTEVtS45PR2yKCx5VaNUyOWLq1zY6JHEDe4fHbEwBmst1hqMkQRhAMhlpLBcXvFaB04IpvOKj+/tsrXZZ3tti7PhiLwoaSSCXiNgvZ8SRwmhdJwOa+I4YGN9lf5gwOrmGmdnQxbzBWfDU/K6XH4gW4fDoTVUhaTMQMeSSuUESKSMSNMerWaKNctQhNoajM2JIsHJeEpd10jhMbrCefNnTbpyUAN3751y+com1mmMs6TNlCKbo2tPXQkmw4wL51tcOX+BQJ6w0mhxfusGyjs+fHibvfGC0cLRbMZUeYD3FSu9hG4zopHExHGPJArxviBSSxxhVdbM5gVlUaMrTSgk1pacnp1xcjJmvqiXODJrccCsmOD8mChUJGHIox3JvQdNvvyZC1y/1CMI4k+05p7pJ0cvv/wi169dpddqYnVBUczZXl0h9JoQQz6fUpYFPDUcCiAMQqyxCCWWE2u/XPCQgcIrhcsseIEMA+JGwqXnr1KVBZMPPkbUjiQOkcIsiTMqRniFMQ68AOGQgaDbbxMkmutXVmg1Y779jR1OjzOCRLB2rk2jG7KYj7m4sUbkSqaHIzpBxGmVkWeSZidFekdV5lhr6bQClBQ8fLTD5z7/Gc6d73Ny8gSjLXs7x/TWupRVBcXy8BpKiS4tzhq894RSEQpBt9UmE5ZxVWJKTZQ6+hstPnXzBjs7u0wnBbY2y6ZZeTwGL5Z4LO89CEuQGM5f7LG7d0wUQ2e1Q6vTpN1MwRrKssA5y2w25fBw/xOtjx+Ffuwb6V//39zg8NEJt39Q8s43FkwLww8uTPjKX7S89OkbiFDT7g743gd3mM8qhmPD7u6Iu6Hk40GT114+z+tfXSeJxnzh88+zM4SbL17FyWM64Q0Gq010WXE2PWU6PqEshyQR9BtdWrFnbWXBNFvgVMHDvQaTcYg4fxvTOyCWksBe4+UrXwIleO5CjKxm/OD7Z1gUpZYcj0oKXdCJunRXBhRn+1jjuPNoh+7LN5nkU8596nm+960/JreO0TQlisdslz3mVUylQtbX2pxrRbz2a33KcI/ZQrLaqzg6Uvybfznl6LHGW4NQnro07B4USCm5/40JP/vXN2i3a+aDkuC6Z/HQUDnJ4Lkuz331GjoqCGuBbzZYxBlJ6rm0sUKZL1jMCzavNKgyyIee2UnJqzdfJgoVd779bV78Uo/1a4qP312wONCk5xI2LnUwfkgzicgXhrWrbTavdyCSfPjRXV67vs21G28x155v//73WVkHazMSFWGdByERIkSFjrQREIVLM+FipqkqT2U8Ckk7TWmm7SVaT1YE8XIPvKjzT7pkn+lHLClgsNqn3W6ii4pqMsdRkTQTokaDg+NTOp0WRkSotIWyFbbQ5GVFUVaY+owsr7i4ucWT01OKukI7i3MOXZsl+9yBlB7xdLVIiKUh0TvH2WkGVnDpwgXm8yGdtmNzNSLyHhVCEDiCUFCajNFihBAR3X6P9fV1nF0ysG9//BFPDvcQ0pGkIUI5BAIhFd4v2a7a1RTlBO88SgUolQLL3eEo0BgMlVkmp1lrMGWBrmvwAmf90xUoyWxq2NkZ0eolqKd7kUkjoTYFTdWEheDw/iHpc5usdgdYv4pzEXldMVpU1FYiVIwKE4qyphE6Vvtt4kgRRD20CZYTL6+YZXOmWc7h8QzhJNJ6Gl6w2e5w+8Ehu08OyCuPQ+Hl0ojpAbxDCI9TChd4rIS5UXzzw1NE3OTC4Kdvr/KZfjSSpmTn7od4Z5/6aRx5nrO7e8AHH35EVdunXiZw1uKlJE1TtK5x3qKUQjiLExD1mqxsreJ3FSfHp1hdU9ee8XyIqWuwlhBJM1Jc3NrG15rR6YLhqMA5AIuQEhWEdFbahC1D0o5Z6UVsn2sQxgEoSdIJcVJQ14abN1fZarf4w9/4mDgIUIGi1hKxsBhjkB6CZX9OXToe3N3jy196iytX13n3+zs4DfNhSRSnSBT7e0coJ5fITm2opUAouVxYcYLJdM7UVBiWODupJK+98iJUmtksAykx2YKt85sMzZypNxA8pZ3gaLZCnn9xA6kUDx+eMugPaHabdFfaSCy6cnRaPWqjSRsJdQUw/SRL5M9dP/aN9PlXV3npywM+/5eanOzBdFIynE4YFvv8ztf3iHsCbZu898EpPpJgHEpIdAVHhwuwhzx/4ybjRYaWIeP5GaP5AVtbPZ7sPEGUEZ967rNsbV9nZu5RekleDTk7miDMcu/5wqDLPDOUKmc4/5A7R/uMq4u0023OtUOms0Ne3voqjShl65cFb9084cNHJzwaDcnqKaps41RFPqtJ2GS+WDBlwWk+o7PR4dyN89BNmBc5k1FNa6VCJAGFDniwV6HTmFdea7Ny0+BMzKVuQqOpeO+jgm/+7gmmUqSpwska58HlEe99MMWNA37rHxxTzjJ6657Na4qbzw3YeVjh2xafQBxECC8w1GSLKdtXGhTVhJ3jjHMXA2Lb4t3fGzF9YomIicIujUbN6FBjdYPL1zZJxIRFUdHoQNSZM2ikMHG4QHBurU2hLR99MOb115vcvNmn9oqjLOOzb1/k4e1dRqMDylmD0VlJWS6vrtqtBnESU5cFdWWQUhIEIJH4wqEqj48NIpJEsUMFcnlN9qcIo2f6qVWSxoSBROuCWueoSNJrdqmFYKEdCwuzeblsJuMmraSDjBoMT04p8pzGyirdbooWARfWNjgen7GoCpAKL1jGfSuFeBrkgvdY6zF6uZvsrebgeMpwOGFrvcv5zVWEqZbIRieYZQXjrKKwMCtqlIjpdwa0Gi3SKKYz6PHpT79B+07Cu7dvUzqLVAZhPK24yUwZnAsAt4TbeodYSLrdreV+os7oNSWjrEbXBVWd471DCr80UwGCp1fOwgOSybQieGrCLKqKZtpEGs/de49RF66yut5mf3dKZ3WV2hXk2qJCgfGWxSIDGWJNidElzc4qSgnW+32sUSBjsjLneDRiXhRkRYl0jm6zzcmTfdpJwoVel9N2h1u1xTiBlB7pBV4owlSxutEjacZEcYR3lkAoBv0VKl3zg7tnFBfXPtmie6afGL3z7rsoIbDOUuunN07G4BwIJ/ECsBr3lB0tnMOZetl4O4cUGgVEcUCaBHhbUZY51miE95DA9PQEBWz2OmTTimqa4xoRrTRhDFinl6QZL1AsST/Wa9bWV8h9zuFpQbsXUgtJVljmiwKx8GQLw/HxmM995hLt8ynz/SlBHFIby3SWoSQ0mgHCG4rMMqs1H390wDzLWV3voQKFqzR6YcimOStrPWSg0AuNkJ6twQo+UBxPp3jnSaOEsqrxxhHGEVobcIYkinjy5BAvQvL5gqDShAYCL/DO45wjCBRSeVY3Yl54aZPJqOTK5RtE0nF8csh8XBNFkiQKCKRDBAKZhqx0m59sgfwI9GPfSD8+mLNSRQTK4AcZYeqI0xw1npKPFpydKXAD9NPrlUbDoZQjUAFpmhKG8M0//pi0rJDhnOuvXmaj2eL+vT1ODgv+4tu/wO7je5yOj7n24vN4cQMvIlqrhoZ0SCU5OpnTSFe5dLHLNB8xXQz56HFGWTzhwtaQq+cvEQUBSdDi6vZnubjuuHj5XfYXJzw5PaHWGdE8QOiQO390wmAtZPW64+DwMWu9LtsbL/PKl1/m+//oD9FzR2s74WxYo3oO0zE8PMn4y59/ntPykK1BykpL8+CHMf/sP9mhONPYArLCI2JPZ22FcuIIJaxc8owfZ9hDw+6ZwIQtLr4mMW2NUwFKBqRhiNM1o6MDtraa9LdqeoMVZEez1ZU8fGfK2X1wdYyVJdYJGs2UGMHRhxUnNxzew+qW4ue/ss2FFwSjR3Nmu3PWuy9iRjGnh4/obQY0VwTGBoShoKgygriJriKkU5we50gpWN+MyGYWKQuQnvkiw9ZgquVudBgqjLAYXZOIBERN0rAgHHVmUD/2Ff1M/12VBIpICaIoIJAp2nqqSlPpGqKUJG1QWU8oFGhLI4rZ2jzH1sYmpqqYzReUtSUvNcY6uv0eSZQwzhegPEosgxZ4uqJl3JIbLaXEO499mp8phWTveMp4vuDVFy6wvdZgPJkzzywiSKiNwSmN1ZpKa+J5QhLFKKWQVnPpymV29g44Gw9xQiOCkFazgwoc2lqCIKXdbBDKAF1neL1AEtJNA4wtMNWUOKhZ70WUZU2xqPFPDZPL/ns57xUCrHFki5JWt0VWFORVTRInTKYVGkWadgiCiLSxQgBUi5yDkwOmiyEIA87jjSQOBHEY4rQgjVNavR7aOLQuGKysYL0kn+X0Wy3u3b3HRq/Pxtoa/bUVGvspiCURQHiIoohzF89z+cY2tc8YzycsDw8SrMMJjVcCTcytx2efXME900+UsqwgDAO0sUtWtPNLsx//tX9myYBfHug67Qa9bofZfIarlqFLsERWhrWjPp1h5xWxD1hpJbx64wpXL28SBwFlbrn18Q4PnuxxdjDiTAq8CGm3m+T5cmfaGUflPcOTERtXV1BpSiNu0F8bEA8r9g4nhCFgIJtmfOe7O3zuc5f51Ns3+PZ7hwij8HY5LEqTEE+N1gbvJU5LHu6M+a1/+13u3jvEGIM1BvBURYX3lqQdM800CJBqGW++XIWULAH3js1el9w5zsqaqtK8+8GH6KxCOIVeVFzZ3marv8q8qAgCRW1AyoC04fnCz16hkcbgYp672qPIp+j6BIKITqdPmkRI3DJgTQjaaQv4+L//wvgR6se+7Tg+PCLPI7QOCOMWhY5ZW79E0DzhZPQerTjB2Yprl3rozHJyMkF7jwo1ncsrXLm+zmZP06xzzk7hD3/3XdY/6BKvKfaeZFy/sEs+v0+vNeD4ZMS7H79Hb6uLVD16DUdvNSLTjifHx8TBMvkrbbUJZEm/XzCdP+TuozHdzgNa8QXWmi1aYcJqt0uS1mz24OB4hL2Tc/idEdWHE4bbES9cucS8rHiy+z7p+RZf/PnL/Je/1WC8P+LNz5yjGa9TNoasbDV58+cuEV86pnQCHwW898GMf/l/P2TxpCSx0O0mTKcl1kJ/tcsH7z6kNRCcu5gyvV/SXmmyfi3mi79+k0dne1S7OcoqfC1RkeTk9IgkcLT6EZ/6woB5vaCsQ0YfKHbeXVAsNNrVRE7yb//1O/zSr57n6vWI1BdMH+7wt/7XX6anUra3JTtPTjjeg6DKORmPGD52NAcB4arl+FhxP33ClUtdPCWOiFajQVVGjPIFk8mYOLR0ugFhDFpXJIlkmlmECGk1UoI4JMcQtQS1yylzTW8lADxRDM2W4oxn8YY/zWp2mkuGtDHUtWE4mRMFMSurqxRK4YOIsqrJi4JWr0ORFSzqiqTdwklB7D0mKwiMxVSWoyeHNHptNlYHaKvJssXTcBVJJBXaOkK55NAaa5+mo1m8Ae0940rznR884Lmrm6yvry2nX9ZRljmddoi2lqquyeuSRqOBQFLlOTIM+PLbX2Ixyzg9PeT4dJ/F3GLmBe1OSt830D5GCY9Ulun0mCTuItMGzhmEq1hJJdYLprWh2V4SPpZJbf7pzsTTPUYHi1nOSt8SiIhQhJjaEcQxWmi88AwGawRhQLYYgsvQ9QQhoNNpUmYVg24LvGKtv876ao9es40xjul8xGiakVWGxVP01e3b79Lo9PjMF79IWlbcv79DnZcMmimjvKY3GPALv/gLdAc9ZsWUB0/uL9dJAe8t1juM9zjrEMqjvfpEa+6ZfnKk7TIG3JmnIStePK2rJcoOWDKlpURKKKqaMMtwT1NIrXUgBba2BE7RCCOaMiIOJde3zvPlNz/D9mqb8XjIw+kBynniMKKsNFVlaLYitld7lLXm5HREUVpwUIwK5mcFncE6qrH0AvTIiTtt1gb/P/b+K1azNT/vxH7v+668vrxzqFwn1Ml9OrFzN5tRlChpJGpkje3RWDY8N2PANnzhC/vCgGEBNiAb9vjCYSxrTI3EUSbZzOxmZ3afnCvnnfeXV36DL1aJmjtx4G6fw4N6gLqpQu2Nqv1+a/3Xfz3P7xkx2R9z8vCYB3tzvv0n1/kP/vrPcPnKGrM3ThGNIAwDhNToRiNky713nmA8N/zW772K78V4kU/o5J9B/OqmJupGVMsapRUH4xmNsRjV0oayoiTxWqukKwo82/5NI8EPQ5bTBdJYBmlMHIT4SpGkMYONAU7UPH0l4ennt/nT79+kLjT9gU+jl4DhiSc2OH/+eYSMqBuLtQ7d1Kx0JfAHH94B+SnoIz9IH78V80A3zN2UJ54LseGC63s3yGcl+thnd3MLGxzyhZ+7wt/6lT6vvHaN+wcFd/cfcDyb8tabM/T2Ks9sxVy84HFcBFz74Bi9FxB4MFtOuH71PhdWY/bvv8Z+ccy1gwkKj9BXbKbreEmXC5e3UH7NjXsPWBqNoKFrBdocEvgZB6eCg5Pr7K5v8dTZTXzpSMKEyIs4+8QGR/UDhssOdlIRPeHx3tsnTB5IPv/XUu5EV3nhzCf5hb/0Ej96/U0wIUFnwbXvzEniiE/9gkQFBtEYDu7CN/6rBTfenbLWiXjhXI8ruxt897VbjEtLNVkg0QgCfvytE5q5Y/PTCT/3t5/HG1pW5CqemFFXBXeu3meQSqTNOD0pKZFc/6BgtphipxE/+uMx1fEj35QAg+PajWOyf3zKVz+zzs996TImqLn+cMpbB0f87u8fcePajNlBgR96eOuOvKrIM8mzT5xHVBlH0xO2N7uEQnB0MKdeeCyXltlJhhQ+xkKNT5nXKA9GayGjVUex1CxOSpqmRHiGykDdWLxAIpUgikKkaqgqC48H6Y+1uv0OR4cHFEXNoDdkMVuSJI7NTpdAKfK6Ju6mVPmSPJsjlcd4PkMi8aRCSkm328VzAUrnxGFCXpcUkyXrWxusdUfMZmOW2QzhLBiLMqAB6QQq9FCeoNZtm5l1BtNorl1/yCIzbG5usKwypDM4q9uwrJDtRkiKP2OvjhdTummHtfU1dne2+e73FhyeHuBFko2NIXnuSENJ4CkCH5qypCjmeJ6PwBB6gmHqs8hLhM3JskXr5EAgH722tg4QLYKOBmbjJRsbKzRlRVMb1ta6pKOY1Z1Vkm7Iol6QlzPm2Yy8qihrjXOWQSfh3PYWg06PRlsm04z5rKRpKpZlyel0wfHplNki5/DkiEZInrhwHqEU01nO8eEpo26fZy6dJxOarYvnyPWC7CjDDxWI1geOtRgcUj0KlFqBdRJjH3+mH+vPJ4dASInnCRrdZh/+7RDd8qUFnmozD8YatDZIqYhjjzrLaJzFAb4QNLWmLiuEA08oppMZr736Jrd6CcenJ9zfP6EwoLWlaSyB77Ozus7W5oiizlFYDk8X1LXFVbD3wQFJ0mH1hadB1/jCIQLLyeGca+/cYjYtqGrBD3+4zzPPHrG+PcR//5RUhERpSJ7NMU3LkkeoNs+Bpa4sSRrghR55Xrecdu0os4q03yFMA6gkVemotW3Dh56kMYZSwulyTllVBJ6H0BbhoKka8iwnDX1m+YLOPEJJ2D6zweqZXSxH/OzXdrlz45Sr7xySBh3u3pqS1QuU0oRej2HvPqtrl1ndvEw3HXF4eJvp5PTDPiI/cX3kB+lr75xy9hlFMii4sXcbYyqkMhTjiJvvFlTNPXYuhrzy2i2++qmf4yuf+QyvvPkjmixh1ElJhx4bozMc7x1zXE1IVz1WdlOk53F8f8bV109I/HUCr8/Wzogb7+yz1AqaitQPuHPjDi987jzIhGW5YG3tPFnmCOOSxeyUyazloNZa4xDkzT5v39wjW2gunHmK1eEmSRQweGqX4WVN9GKIDhq++Tsn3Hm7IfUDXvzFJcedW3zh5za4tefhu4CQmAcPb/Lyz10kGE3ZSHY4uNHln/2/3+HuqxmhC6kyw+Sw4MSb4gUewlZYnXNua4Vb9w9Z5obtyx2+9KvPka6lNEKThgIlK5SWHN3fo/9Eh737BXv3l5Q3M+7fCXnhk46DO5okCZCDCixkOfi2RQMtTw26irl1UOCvdPgnv/lDwv4KZ57c4cJal/vXDhkfZRAIZBNgjxre+8Y9Pvkr27g1zcmpw4oVTu4dc3J/glEOXbXFEUEcoaRiclJgjaVqapJUMhp47FzSNJXHyaFHkVmiGAajBJzg5KhCNwLnHmOyPu66du0mZ87sEvk1QiqE8gnjhGy5ZNk0yCCgtI7Q86gbg0Ky0h9SVRqJIAkjhHPky0N8z2M2XxDFCVjF8f0jRoMeoqwZ+D5SQByEDLoDljXsj8dU1ORljjGWMPaJ4hDrfBwwnUzRVcGlS7v0IkXZOJZKU9UNSENZFTjXeijnyxllvUI37SCl5OWXPsmfvvoDKpNR5hndsIe0AtEolC9pXEXTFJRVjich8ALqOicKBJ60OFPgSQ2NRcm2VKZ9AG5LYDwgJCAgYpHndHsR3a4ijgXKd2TVmNPZEbPFkrJpKPKGNEjZ2tjgzOZqGyAuGvKioawtgR9QVTlZkXNwNObugz0MjqCbsrOxShCHIATZIiOKU648/TRPisuM6ynjesnClFinKEuLEoLQ8zDOIESL1hPCYp3B9xRGf8iH7rH+AkmgtWlhiw6EEI820f/O6pTEMb1eh+l8hhKKJy6cJwo8Xn/3fWxdIYWkk0SkacJ0NkNIhZSC6aLgjQ9u00ljyrKgqGqcVK3P2DnWR2tcOrNDFAnmRcPmWp+qMUwXBd04RecV7//gA2bHFXHssb2ZktcZb791k5PDWct6tj77RzW/+Y33WFvr0+2HrCYDVtb77D3Y487tQ8yj/EPLwVeUhW4fGGipRv/W3lUVNWkfom5MZTVN3hZQhUFA2k2oygLhSZrYQ9sarME+eqNWFAVBohit9FGhjwoUUaQo6zn799/hq1+/QBJ5vP7KXcpCQFNTNo5ZBn4oKUvodHu88vorFM2PqStNoDyS4CM/dv631kf+X7T6nGYezSi0pKwkfXrsfVAyXzguPrNJb2uB9RXf+t4H/MFvPeDFS8/wq7/4Bb70d3y+/er3+cY3f8wbs/v88mde5skrOyyY4hUPOVnkdM8NCESDdRm751c4f2mVV+5fY3pckqiIYCYQmWZ6MufILRgOh2yujEh7Bdql3NxvCOIVhAzodCuaZsJ8mlM1Dd1RxM3Dd7h65wO8uIMQXXbWz7B97gppXPGXfm2DFXnMG398wOK4Ivp7fS48GfM3/9ZFOonGbyp+5eefIN0ICaxh8m7NP/o/fp9r7y3oxAm5zklHEZ1hwv2TnGv3FhTC0h/67N05pqks/TMxn/iVJ9m8OMIqh20UaSAQ2tBPBJfPDVgWGUtdoqSEwuPibkB+UHLrVYXOLH6gmE9MW/kWK2ohqazlt390lz893CfaFMgzklo1vHb/bfxYEKxIup2IsqgxSlNnBnECb/zru3yi2uGke8S0MOxfzUmcRCQarVtWtO9FjCcTmsohhMJpQzYTlIuGThd6fcP6jgBpcFaxmBfMZ5aycmB9TCN5vJH+eKuqNGVeM+r1OZlNEYHP8XzBcZ5jPIlFYGk9zNY6hHtUY9gSYhGmtT1IK4iSmCzPmYwnDEarGOOw2uA7CB1I0zAMfbbShLeP9jl6uE9DQ3fYw3OCclGQ5xLpC7xHhA9PCg73jljfWKPfiQibBt+TFFVNpRXzosbzAnRTkpc50/mUOowZdvt89fNf4d2rrzNd7lMEliYEGfaIwoQg8DidjMkWC/r9HkL4rQ/aGYJA0el49Lo+eVU+enUNxgGPWNmjbp/nnnqWW3fuIKRHFPkksaLXC2nqjLKqyKuSWVbQTbpc3h0wGqzieQohDHVTsSwqZrnG91O8IKXShrJeMpkuqHTD5WeeQGORvodD4BpDP+lwfOsBx/sTeoMOtnYMOn3QDbM8Q7sGpXjUhOiwzrShLlybeVCuLaF6rMf6c0ghsab1/iLEn9k4BK7FLTpaH7Fp/fjOWXCaOIzbpkMgCHzOX9ymF6UsimWLwdMOA8RxzPkzuygpmC2WTBYZx+MJcRSyvbGCcxXzRUY8DOl7McnMp3iEqAyER55lfPDmVTQ1l86vcP7iJk63zAxrwQlBbQXvvHvIhYuG4WoflGIyPSUvKqxtN+tRIuh0E4q8pqw1xhr8QBIGPkop6qZC1xrdNMRphzrL0MYglaLb7+LF6lHxmqVWIOIAW5Ytyk8JRmspT55/glGvz2xvyt7+Ib1hzGrXp7eqeOrpTb71x1d5uFchGkGnF9GLJcuyYme3x/rOGn/0nXd4452bNBak8BF1iMk/fsuuj/wgfXjgM9pZIfYN5UnNm2/MOT2wPPOpbUZbGi/MUEKQdjvc27P88ffe4Hvfeo1Pvfwkv/q3P82v/lrB4d2SLz7xAu+89V3Wz/V4dneAW/GZzxVp8BKvvPYjZtkp0qYM0oTTWU0wbwgOJCKNuHM8Jh9bTD1llOzzhU8/iZcE7N0v8b2S9/IF6ztdPv+FZ7n61l3yzFIuHWfWI3ppgQkrHp5OePPd+9xPemwMNxmNerzwS31e+sIW3/+ja9y78ZBz57dZXwnwPB8pPZ5/pkteFsjqPN+98zZPf+4iL3ytR5IG4FX0OjXmKOP3/tl1GunAeuTzhsK3RGdjnvvKZZ751AWQGmF9emHC6ck1+knI+fWU6cEx515a54WfH/G93zticmjpdS3f/q8Ns4cCJwokAtt4dLoBm5d6VKIgHFlEasitZjrXqCDE2QZjFVYYtKzwFLjA0h9GVH2BOFbYqeWHv3OXcDMg2YoJPY84iihZEiceaRKTZQV51lDXFt93CNleEINIEURQ14Ist1SVo5M60tQnTaEsLNnSUs4sj2NJH29FYYRCMJ6OmWUZubb8W0ePcfbf+R9pEXAC2mpuAcZolJII0zYaFmVBp9MhL2sODveoqopskTIMJXEasj7s0U1ijo+mVLXBIaiKmsnkHoPBkP6oR6Ebiqqi9ARCCspGs8gq7u2dsL6xytkz6wzSiLVRn5NZRW3A9x2lqNA2Z5JpyqZLYwzdKOTChfMcnsCd29cY759w6cwZkie6SCXpJjGz+RJrNNpYoqiLLacEgY/WFd1uyMm4xBqQjywd8lEhxNkzuzzY26dyLfnEUxJPSZSEyrRtbIqIfhIw7PUZDfpY09DoFhG2zGvyrCb0Qwa9Ps61Q0tZlCzzjM2dddJuRFYWgCP2FeRL6pMjNqKE8njO+OCUh+N9okHCrCp45hPPkbuSPDsgjkLyusZagbWWsqyxWGzTUJf2wz10j/UXRr5S1I3GufYz4IR71D76Z7EByqbhdDLFiPazcevefYa9LrVuUEoR+h6b59c4uXdInucoAUjHWr/Hz7z0ApfO79I0DXvHp0yXJff39thaW+GJczsEvuTtm++zNz4hrzRZnYPnqHXJIO3QSEuRFRgND+6fsrUxYHdzxGxa4lwbbLZGUjaOKElJuz55YciXNcdHS4yBMICLF9cZrgx5//17LOcVVdG0gcQ4JElT5vM5RZVTljVe2LKcjTX0+x1UoCjqgv5qijaa2emSyA8IkpAw8HG6YfvcGucvbzE7XjKZZUwXJWHHY7Cu+NLPPsP+4ZL33jtFO9leY/0AgWFza4Q18Fu/+SZGWhrRgFQtRrQ0mPLjR9b6yA/SP/6tI+JEEQaSJrdorVADD9FpeP7KRVZHG7z1wQM6HYUf5MzzkpVhn3BUcO3wLVYvrvLUC5J8echoTfHOW+8Shx1sYZiUlude6BKNAnbP9BkMUgJpCa0hdQHF6Ry6Haa6JFJdGpExPnL8w//D9/jV/+jzoBYEapUiX/Bwb8npFI6Oan707XugA4Y+fPnZVZ7ZHXI+7TPvlTAyFN59Hh5KnAlYWxvys397A5fXWFfgeyvMc4sftlzLUElKXbL9coe0yinKJc4K+oOEUTdgJ9nghc88xT/4+9/hwbVjrABvK2DzUxu89OUr+J5GoUi8hPs3HrJ/9wY76wHX3j5la1Oxe1njbzece8mx+jDkve9oZvcjojinP4yZjmuaWmCqmtN7c4KOwhkIdMQTz/UYbOWcLqcsFjXLhaUz8MBBXRqyuST2fFRcUe80yHWBl3kUMwkNxIkEaTHa0RuEFHlBllUoKen3W3yR7wX4QcvWXcwatLaYxmGtoJhBkloGo5AwhDB0iH7N3e/XH/axfayfoiaLJf3BAKsbJrMZWvg0KJSSKKEwrvX4SQHSPkJPGd3eoBCkYcqg2+Xm1ZuEfozneXSSFGslCsXOzi5Rk3NpY4WyysitYmEdlROEUUyjNY3WTCdTrDbsnNlinM3JdYMWDodCW0MYCCaTMcbkXDy7S7+vKIucQDrqxtBLPZLIUdU1lS5JRcqyzMizCf1uwubaiMO9Ex4enjJaWWVlJcboBiUkZVmQdHpYA1EQ0Y1qAi8l8CVnzq5zeDJlsaxQCJRwdJII7dqBHwG9Tsz6SsCgG6KNodGgvAjfUwy6CZ00RjhDYxrqukKq9v8oCBIEAdh2SJ/UBQ8e7pGXBWdH5xFS0ut2qauGNI6QTUVfWPprA/JKM7eK3qWn2Z+e8u61a1SznJUzm1y4fJ6lzTk4PWRZZggveFT60BI8Wof6Yz3Wv1/atNvZtkcTHA7rLMIJhGjJEQ6oHpUhSSU5ms6ZLTKEkgRhgLWWoKuYZAuqsmClN8BXkjNbG+xurrFczDg4OqIxEIcJgSfRTc1kPKbRNbNZxvGyYFJkLIoST4YMeh22drbwZlOyI0s1bcjzhr29Ey5d3mQwiDmZFCjRbs/7g5hPfuZZynLOm2/e5HB/TL7UrU3Fh6P9Ux48OGY2LRFCUBYNUnkoH3xf4QUeSnuPyCUGpSSB75EkMXXTUDcVYdwnEIpslhNGPp0oQBcltqkxxnDjxl3u3TikK7tsba6T1ydcee4y0g959QfXccYhhKXBULiMTidmelJyeDgDH8KBxCqJco5u4jMYdNle3+J737z9YR+Tn6g+8oO0sFBlBl22LUFCaZJ+yOp2j0u7HfrDNb71wz2MdfRCj82dLTY2A1760pOEmwJtNJWZEMZDnn95hTPnt7jxwW1O7YRLz2xyOHnI2fUNLp+9wPF4sCUuYwABAABJREFUymI5JULyK7/wH/Kq/ANuLG7T7fjUVqPwKI5K9O2C7/7Ga6x/oce4yIkSHytr6qbm0ovnef2VffLjiqIWzA/nPJwXlMsK+UTKi7/2NNNmSZTDwQdL7jz0iJ4pSIY1s9pxejil11lluaiplEEqiz2umD+AtN9jtaPxkgrnL3BGsXAJdvWU//n/9rPce+uYV16/y51syUufe47d1RVi3+KcZXx7j4OrbyBqyZvfO6U/iNm8MmKwk+K8gkBlnB4E3H19gXA+l5+9wHTxEJU5qqyhLgXO5ORTMA9ajE52o+CFL2+xcjlgsA0PHixZWTWM1gSN1ty+VVNnFUJYAulRZZowCIgHERKJUgGJH4DWZOWSuswJo9bPpjyJsx51JZicth9qZxXSegjnEShJmvp0uyHCSrKxYZGVCOto+9we6+Oqo5M5ZX2X0bCP8kJ8IXEWpHAIDMpZhG1/KUDY9veNMQipCKxhfjKm3xnSaCjLmjwv6PX6DHoDEj8iVoqjyZzaNXi9hOMsY77M6Xb6FGWBFJJ+r8/O9hbSQao84tjnaD7HCoEnFAoB1lFXhms37zAazTl79gKVthTFkt5g2LJr6xpcQVVNicMAY0ucMwyHKdPTCTfv3MMPfF5OnsSa9rOBsGjdIIWHp2KioCYMPAb9lK6XMNocce/OAXVuMFXNxvoIY0v8SKGsIA4lUSgJwwhBiCdTfOUTKkVTlRxnC+qmRCqJ5ymiABwVPhJjNcvFlLffv8F7t+5QOMfFK08QxAnaAU1ry/KUT1Ma7ty7y6eeuMzOMGRy94CTuUKFPmfPnKExhns3H/Laa++ydX6bMxc26XdDjNPM8jlFU+F7Ci0/flusx/rpyAmJELblwAsQQoK1OBxStrQKIWU7XAqFUgqERPkBceRTNTV50zBcT3ny2TPUs4pnLl9kbTikqUuqqqAocuIoZiVNmGUl4/GYxWKOJwVCCZQXoPDJ8ob5skZKDVKyv5hglWOw1kdbQ10qjsY5a1nO5taAySxDoFDC0OmEZEVGVVRIJNYYcBalFNbBZFpQ1wajBUo5qrwijGPqumaJoGkMIJCo9q1uHGC1wApJVRcY2xCEgiAMmfkSX0GkFLWTFI2jrCzZfIGuarbPDlkZdehu9bnwxBbf+O03uXPzkPMXz5BVGXESgva5d+uI8VGOtpIgkhhnscbiKcXTT57jl3/+5+l3R/yf/nff+LCPyU9UH/1BWoDvt15HJ8AIR3+tg0wc02pONetw/UZBHK/gB4bOQPCJX7lCvNWlYopxc2azIwbJiOIgwwlHHdTURYNb5rz3zqusdvr8y3/5W8zLBY2f4QWS167/Cd0rPuqtighL42piEzEel8SpT7ZY4ts+0s+wlcb3PNJI4Hcsz728wht//JDY+JhJwKS2BBsew2fXOZoVWOsRLn2mrx/w5ukhycoW61GOMilrvXWUSzHC57W3bnD3+h2OXp1xfEtSOMPW+R6Xnu8y3PHwQkUQLQlCwe5WTLUR8Qt/8/PkTsFggMZRLmvefvcNTo9vU80cb/3hAikkdVJirMToPvNZiFseE6uSnTVF4Rt2Vze5+s5dTC1QEoR75Fl2FuUc0joWhw3f/ZcPSFclw/UEbQ3TRLP7dy7TudywuuOY7FXcvH5IkWu0smAcRbYkCSOUp/AExDLA2YggVjTU1M5gjWK5aBsNcS3X11MB4COFj24MD/cWjFYlZ3c2qKsJcR0yziTwuCb846yk02e6zDiZPmBt1GdrcwOlJL1eFyugyHMkjiprb0JOwNbmJtZoFlnJdF5T1xJLyCIr0BbwYnw/JI0jTk/GOF0y7McM1kY8PBozzyuGox7dXgfT5EjruHzpEt1uyv7RAYNOhzgNWe11uX14RFGUzCtH7kGchHiBT62nGH2b3TPbrAwThKixAvqdAJwgjBqEq1ufc76kamrCToQMPF574wa6Mjz3zA5pEpDlS7R2xHEHYxRhmIKtWRsMOclylK8YjlJmZk7a7bG53mNZl3hV6zFPYkk37eCJmGFvgzROcK4mz+cI53CmpK4LPC+gaSqapsbZJYv5ktPTGVdv77E/yelvbvPk7hZ+EmKlRCkP5xxKSiw+x3nOB+M5+e27pEJwOMt4e+8Qg6Db73D2wnmSKKI5nVDNSh6+ewclHWub6wziDp6DwPPwPvJ3qsf6qGh1ZcR0Pm+LQ5zFWPsoeOhwwqG81gNstfuz9kPf8xESirKiqCuU59Hp9rj0CxuIQvCJi8+xttrn9ffe4vrxTbqDDkHiMbYVB8s5NpRs7e7QWxkxn81wQhBGIStrI4xcMJ8uyMuS8XyBweL7PkknIkkjLDWTZc7Gep/hIGI2a9qAral58/UPcM7gScVw1KGsZm1Y2Vi0sVjTBioDP2ytVp6iMZp8VuEsbcbAtki/MA0QzsPWDc4YfE+S+h4SRxJ7BEqxmGUUixwXwniaUS0zhkFAEBq6K5oXP3OO96/d5969Md1uxHPPbrG6PmD/cMZ3v3WV6TjHGoHwDTJQGMBaQbfT5VOfepkoiPnON7/zYR+Rn7g+8pcnKVtvE4C1DhQEUcCiqCkan+PTjCJXhKEgXhF89qvP4m84Dmc3qapjlCiIwoTB6oB333uDqNtDdsBzAVUx4/wFCXrKRn/AwPYQSRfpKkx1jBURv/hXP0UdBjhfEElL/rM1fX+AjQy5v2BZ9JhPc6aTgjMrmkIu+fJXB3z2xSHNyZTgKCdSHQYXAk7SU6gVHST+do8Lf2edS4Ej6swQSlI3jnmWsTZcYZZbbt85ZO9wQmUMZ1+8wDNfvYAL4Fvf/jHz2zXGSEKlULJmZe0Bq+urPHUhJemHxMmCRufceOcDypMxRzck73x3Ss9FrJ1POWmmvPvePt0dyWJ+ynM7n2L1nEd/+Sr9fp8LLy7IPY/xQTvQnh42lKXDGRBGYK1DCoNrNMWexJ46GqOxSL4dHvGX/7PPEqiS8xcl6xubHD2cc+v6Q04OMxojWGaOclmy8Jasj1aRQmK0oXYNTkJV0TazIRHSIaTAOoOnAoQV7QVQOw4OJlBbwsphZzXx45zhx15pktDpdrl1+zZ7B2OqQjPsd1hM5xhTM52M2VhZZdBJqYzm8PiERlc468hLzem0otQ+YdQHFdAd9sFZojjANiWD3oDaFKQrCVEcEych5y+dZ211hNENu7sbHB9OmU6mbVGCkOxs7wAVUDPsJ1y7c5+TxZLagHMaUTgWi4qiqJgtlgwHHbY214hjH2xFHEqSUBN6Hk0j8WXC0UmOkJbBMGEyHvPa27fRTcPPfPJJ0jCh1A3GGEARRV086bhwRtLcvE0pBP1uAlbj6gblG9bSGOskjbF0Oilp2GNtuMGg20dJKPOGYllR6Zq8yFhWDdPlSVudrhtmkwl1lbGyMmT77AajcyEy7eGUAiEIPA/r2kCnkh5JlPDa7Xd49+SYtw4OWyIHEmNassBRmUMn4Ws/+xV+5qufJ1/MyI6OmO0fIheaemnY399D+T6HJx+vSuHH+unJmYYoDKjqBmta3J2QPCJvSDyv3UbjLPZR0ZLnKRqt0VojpEIJxYObJ1x69jn+2n/yS1z99lX+5Xf+lBuHDzDSICeq9V4r1WaijObwzjXkvbZ9VziwwhJ2I9a3VtG6oSlqxsdjrLOPtuYSz1fEqUe3P2BtY4XFvKCqjpFCIKVgbWPAaGXA/sNDauNIFj55ZjDa4azEPipqUb5HYwxOtthIYw1SSKQQNFWFV0LY9YljhdYNtTWYUvPwg4ds7mxwZnubB/cPOTmeYOqGaBi3CwYl0dQUYswTL13k8GTJe+8fkHZCvvjZZ/naVz7DD3/0Dq/+6H0WiwrPD0h7Hp3VhGm5pDT20eDv+Ff/+nexVYPvxL/3Z/gXTR/5Qfq/KWHbkq06d5zslxw+MOhmjtMNXljz3Oe3kKOHLPIxgW/x/YjTw5hxWfNkZHjmmSdI+jt4UhJGEYezB2TNQ0Jfs9HtI9VZiiZAqhNcMyYJ1qhdxH4+I7QZqnF0dzcpdMOirvCdz85qwnSw4OwXztMsQx6OF3hhgdttCC5pnts8y7Kq2XtwxJleB4NlcVJRRII6zBgqSVeOcFIzLzVlUzCrZxzPD5DyAL8jWfnEKl/9+U+zNJLf/Dd/xLSsKKuSTj9kZSNga7ROEkZMFhlX927y6TPPkS0PuHf9OtU45/oPCw7eB5YStxVy9lMjDt8+4eGe5v3XxojK8O3/x48ZxR7lrOQ//p9cJlopkYHixc9t8Jf/2kv88bd+yBuvjznZNyyOHeW0HWTjUJGGkk5X4qdd0tTH63g8fOOY7Re3uXZ/j9e+8w7L05qLF7ZZ3xhyaJYspxlVVuF0gfQD/MgitCRwEU1j8H1H0Fd4XoOxpt0qOINrCowt8UJJ13nkZc3R8Zi0UnR1gK0evwL+uKuXJpSPtkhNbZjMS2oNvi9aFJwXssjy1kvcVnCxyAskivEso9ACz+9QaYeUUGvDM88+jTIlN95+g/UzZ+n01hDUTKenbK6OWBkNKMucZbakrmA6mxGGMX4Q0tQNujaU1ZK1tS6DoEPi+Vy9dYej5ZLaGLR1aGsJQp/pomQyL3nwcMyTl8+yudbDk47QU/ieBCsZdDs0dUFRzEk7PlEgyOZw49o+a2nMlWfP4okGaxuStIeSAs8TJJGmn3TRWU4chSATqqKgMgWBjOmnMb5K8Lwu66NNOkmKbjRlXbNczDk6nnM0nnIyn3NwOmeWl8RpQJL4dFOPC+cvsLG2QWe4xcPTGQfTHITXsqrbPguEkPgqwOE4OD0mt629DMBh0M5irEBYx9Ubt6h1zZe+9Hk6nYhnP/kcXvMUb//oTW7cvE2TGQ6nC7L8sV3rsf58ioIAbSvCMMRVNTjdNmp67RvVpq6RAqIoAESL0MS2dBvPQ0lFL4k5vLlPJ/wyyofP/dXP8+ODd5gdlBSFJXQdmtqimxpHy4fHuEcDrkUKQDiy6RIhJX4ctIHHxhB6IWXVUNbNo7xFw4N7JwS+h0OSJCFaN6ys9Th/cZssW5DlGdZZOr2UqlxitG6HbQ+kMtRNhpMCZ2P8QOCVoGRrwWwajSwgSCJwiiJbYsua0PcoZxVsSIq8ZDqZU5Y1EtHaaIVgY73PINV85itPIQKfH3/7XTwp+bW//lWevHSBP/nOG3zve28xmy9I+zHPf+I8X/jCZ5gUJf/4n/8WIrcYZ3BCkRUZvjQM1h5XhP//XQ6FFB7QoIAw8Hjm4i4Pivu8/8GYNLVsbDVcerpibWNGlEZY26eYzDi+U1FP+3z9i7/MC8+cxXpXcNJQV5qD+dv0OgnliUecdPDDAVVVUVcgfAXWZ+iHTBZHSKuIg4gk7eKpXWwdk7vX0SwYZ/v0Oz2yuSZvCgYDWBERe+OKouxx/bTHZP4AYVZRS8kiW6JsAsWYQaxQ9ZAfvlbwic/F5GQYndOc7DHoN/ylr32aRfkJfuf7/4Tff/UPKRcxx6dHbAw3+fqvvoBzC7S0bPW2OR0vuX7vh3zuuZdYLO5w+vA25b7i9W8uefh+TajBBZKnv7TCS7/Y4dRPmJ4a+pHH9347I9s3zD3H5uYmF57tc1o3HC8cN791n3ffG6NFRWcNLq+F2DqkNoZO17Gz3qWe1+zfrzk+tCwmGeXhgtt3j9l5+JCbD/bRM0eRa96b3qfTTUi6KaPRCrpvmU4WHMxyeh2fJApxZU0xq3GuvUgEgd++kpIWXQmWswotaatXpaDTC3BGImtoGoGpS5h8yIf2sX6qsk3NcrZECsVTVy5TN5rj41OkH5P0YuaTU06PxyyymjgK6PX7hGFAnldYs6CX9vDCDkWjKHWD58G5s9u89sNvARWLfEK2nBIqRxC0m6OHBwekSYuaun79Ntmi5MpTz1AVFUEQY62j2+kRBSFOa+YnY2Ih2e4PyJqayhoyXeMag5GqbTt0lqs377J/EPLClYttqE40BL5PL43pJzF1NyUQkvkgYWlh2O0xPlmwmJYEHXDOUjca328xfkHgYaoa1TjCyIM4xFOONPTwFQS+TxL0WRtuM+h0kTgUAmNhPsu5fe+Y9+/ex3g+Sb/L9vYmK6M+xtb0Ysn69ipZbpjsT+j2Rwwbj1wbtHGPNm2uxXyFPkVZcjqdYVz7Z7TwhEdc33bgaBq4fuMOJ+MJu9urdOOA1X4Hs1wwSgM6csj4ZE5TPaZ2PNafT3XTPHpwE4/QjQJnDM45mka3lK80Jgg8nHvUuFcbOlFMp9NhPJ/gKcMwSvGLkFk5pbe9yqUnznA4O6YWAVF3jYODOYvjGU1ZUxvdliDRNty7dg2LlBKLwymJn8bIR1zrJIqQZYXVFmM0Bw/HFMucOPUJAx9Ea0MRnqQ76NLtdZnODonjmF7fYzgYcvnJTfqDhGVeYq3g/t1DFsuKbi9EIairhke2akxjsLrdZC+LgtgL2NnaoKJmVmTk45JsnuOsQwqB0ICzrKxE/OyXLrCxtcJv/9aPmE2WfPbTz+H5Pv+3/+e/4N69Q3w/4ML5Db7+C1/h+RdeQMiIf/6bv/eoW9GjqTR5UfPSy+tcutTDagu896GekZ+0PvKDtKJ95W9tC0TPbMObb73BmRcEo+2KJ65s8tn0OeKoS10psjyjzkqq8QYvXtniuUufYTQc8mD2NpPymNDbYrW7RqcD1s7YWU+p9ZLZdBMnDMaeEuCj6IA2bPZexNgR905/wMnyDsOOZpBeJGwyinxBvxMSK5+sKMH3Ma4DFkIfbA17e4fUlePk6Ij1rYggkJRLgywCJpMOnm/ZfMIwF0v8UrYBBH9JT0iipKY3NHzx8y9wa/+Avb2bbG+tc/HcKl/9yhfxnaQycDI54c1rv8vKEOrlLfLDiqPr8PofnTDdc1jj0BIGWwEvfO4cmxcCPvX5mtvv3+GDP8yoDg2+AiEda+cbCq3JmjEvfc7nwbtDTKPI64rFXs3BOKOc5wjpePaTW3z257/GE2fXWC4WvPveHV758Vu89fopxyeGe2/u0R0oTqsaa6GsLFbnLOc5DkF30GF1bYS1jsl4TFFUDDodDA35vMHZBukpsoXBjxQ4QxhHhFFb1VwWNc401I1BeG3IpGke33A/7iqqJbP5KfNFxu07d9na2gIJyzxjvpiimwZjJDpvMFLRHY6YL6b4fki328NaD2itQlEAOh/zvT/+LUJl2d1ewRg4PZnRiUO2hqtkZcmsLFhkBVc/uMZymbM6WCMMQ05PTgmUT+iFSGqWkzl1VRH6EZ1UkJcVQhnSUJJYgVUetdOkscD3fYQSFFXN629e48qTFxgMI2gMnvJYGwwIheFIjdFbDfHGAOVCDo8PuXX1Ls++eJFGNxiT4/sBCIknHZEfoAtJIAVWNHS6HYbdhKoq8GXC2soO/XTwZ7XJjbZI63F6POfug31kGrN1ZgcvkARRgHFQWRhnDcXdEzyvS7fTRamIbgKuqrAOGmsoyrYkJ45iJsfHLPMc7QzOtT5ViWv9qc5iHY/GeNki/XSOcxpfOta6Pp/ePsNfeeF5PrO9zmvX7/P6O3c+5JP3WH8RVJsGaw3atChMQYtTtM7iSYnv+0glqaqyHRppM0CR79GNI+YLRV1rsiznd37jt3nyC0+xLDLu7u2TJDH9JCVrNHVZoI1FeB7SteFfrS0gCXwfIQXatgO8exRu5NH3sxK8OEII2jZP3VA7h840ygtJ0h5Z3nDn1hG+EuSLhirXqFSzvT3k0uUtzpxfIe3GLLOa8emcxSKibHIGgwFV17F3/4isrpFS4CmF0xakh4oC6lpzcHpCPIxRwifLMqQSSF8gDJi6xjaaCxc2OH9+lz/641eYz2u09fnBj6/z7e+9g+8FfOKTz3Pu3Bmm0wmdbp8fvfo2P/jTt7jz4ACER1XmlIVhqWqqqv3/aQfpj5c++oO0cMjI4SWWzfMhV17u8sRzEhF53N3XXLte8/wLZynqBmMyMAs6dsjLL30FglOMKmlcSTftcXv8B6x0Q6ZLQ+C3LWNrowGLZUOc9DA6AlPQFAcMRopusMPdg4ZaTCmaFKtWcH7J3uwqJYbpfMC4VFhXM19mlFW7Ed3aSiiKU6qqQeLhBykrg01O9uacHM3pxes0VcbWjkOpGj9NcGWP+vUlycUUs9aQylUmzQOk/S5kIUnT5ee/8hTf/8EHHB4uef+DW1zY3WAyP+Du6V0Kc8wgEKhJylt/knP79Sk2d4RYal+AAL8j+M633+IH7wk66RQ5FZTH8NTTKYNNwcp2zFf+Rodbx+9w6akOs9OEP/nGAdNTS1Fa4igisJJs3xE2ih/c3+OV3/vHnN3p8cJLuzzz4jl+/ldf5MJzt7hx4wDfG1DqgB/M71HVDU4IysIgAYSgKqcsphmjtSFx3GE2PQUy+mspYVBwcphhaotoJM6AxVEWJVHkEURei/pRPlXe4HuwmFU0jylZH3v1V1NUYvGPJJPxhFs35wRhivK8NtkuBEJ5WCGYZTXF/QNGgx5HBycYbel1hgReCHUJpkb5jtPjGZ00IPIl2sKkXHL/uOUdx52Ygzv77B+ckNUNo8Eqab9PbQwn0zHDUY+7ew+oqwVnNoZ04wTlS0qnmJ1OccKhswojGqI0JPAEK72UNG2zHovCUBvJ2+/fYntrhTPbqywWmmHHp9cZYZ2gzg1B5bPe26QbBSyzKYvjOSu7q9SirS4PwphAaqIwZlqNCeIOsR9z8dwmZTEnUAH9zja9R0N0npVtJbADZwyB79Pv9xit9lCx126YaR9apVDURtBU0JUC42BZ5AShjysfvTnEkQY+URAinOb69avtUONcO0g78ANFFHpUlaWw9s/Avu7R93Dy0dADXHt4l2fWV7hycYOzuz3+/m9898M8do/1F0SeUgS+R1U3VLVu8W+utW4I0ULx6qrCWkMcRSjRYvE6nZSmqVDOkueaH7/5Pmu3OyyynCs/c5nDByeMFws6gxqERzmfIAhJez2apqLMMrSpMRbK2hB4EqlUG9TVAj9omzutc9hHvGhBW0RG0G6uhTMsCk2pHWHgsX8/Y3J6jDOGunYYk9PtxeztHXPv3iFaO6qqJox8wkghpaaqW+a9Ug1SGBDtdbGpNEEc4Icey7JCmJok6JBnS7COJA7R2kBj6fQUgSeYTDJ+8MMP6PVG7OzEvP7WXcpS8wtf+QRf/sLLbJ/Z5eh0yq//+m/yR3/yz6iNJq8bpCdBeRhtCcMIlMcrP97j9u1jRoPOh31EfuL6yA/ST37O46XP+py5MMRYjxvvL/nt/3LO4dhy8aUtvvir21gjcdYH7XFh61lSb4WN9T6TuaMUc07GU4ajbbaGL7JYjtna3sC6DU6nBX6WIuU6TT2g1GPSToOiy6IJsM6j8g6Y1kecLD3KEsaLfYp5QNE0PDiaIIIGoTRnd4bEQU6VFxyentDtdOimOxw+1PzwWxOm00OeeFbyM1+4gB87lAxxtYcVEickV3/7GP9UcuWiR+RFqOAMlGNib8GZlYSXn/0qYT/DD475kz+eM17s4R81zMZjmuqEna4jTAPeeXWPyUFBLDxya9FNg+cLZCCJU8nB3Slx5bHzTMriRHH5nKSpNIf7JZ/6uSdIVg3FUYWnEpQQFLXEEoOooOMzGHWYzg4wU41qoK4s9/IcYSd89/sfsHYh4OkXVuh1Otz9YMzk1CEWlgiFQWKEhbZwCmuhzhsO7h8TBEEbSvCg1hVBz7IepUyOK0ytQTisae+7Ra6pa4fwwZoaiSTteKxGDt9vmPPxe+J9rH8n4zm2dtfA1YwGIWUl8dQQ5QfMpmPquq3LRYj2pmUNtXasrG5hm4bITzDSw+kGodqwkbMGJzxOFxnCk4TdgJqQSbagoeHBwwcUtUGqkLTTRQYB82KJRnNwcsjJ6RjpDIN+Fy8S3Hl4gPM8KhmyXC6x2mJ1jTEOpzT9VGICS+QLLJJFrsnLmrsPD5jMplzY2eTi9jr9fkR/sEo2zymaJXWzZGU4xFOCKi+ZHU0ZnlmlqkscIVEa0Ol0EW6CaKDXTWjqmmVW0olWSMKEuioIlE8chiglKWZzTo9P6AQJm/0VcgdVbWnQ2EfsXScEINDGUtYVialYZJpRNERJ9SgYLNhd6aGU463r71OZEgBPtSxbaw1WCwgsaRriXElVmT9raiuqmjQNsEZTN5qFL/mNH7/K2dEqa73eh3nkHusvkGLPI4kiFuTUTYOQDs9TbduhtTirsbTkizwv8KREOEuW5fS6KSujAVWtmWdLcq3JJiV7rzzgMzsv8Nb9WyDhqSfPsrM65QevXCNbzukP+ygp0M0MmraivG4Mvq/wvQBjLUZbpNcy5q1pN9cOh35kOxE4As/DOWgqQ1EZ8kLjq7CNIbiaSucslyWTsWE2yfGVj8AgpaPTV/SGAicMXgpJ2OH4qGA2ralKixAKP/IJIp+o9uithPhJhXEN+axG1xKU5dzFPr/8l17m/Run/OjHdzi7OyKJJFXtmC4cTe3oDTc5mZT84NU/4O13rvNgb0pZO4wzGKHxHHjCttQQZx4tOQLmC8F8uviQT8hPXh/5Qfprv7LD7esZ3/3DU/bvVNjCoqSgsxuyvt1jbaWPsG2l7PbKBquDXRZ5wd2TN4nlOYysaIIjYrlOnHyOWwd/gjep6YYxFSGzuiQJI7Jqj8oW3H8wRXmSopqznL9JEikGq4bDyRFlpVjxGvIyRgMrG1AXiiLXuHnNziimCrscTCw3rlbcvPqA+zcr5vslG9shP//1T+OlB4wXFZE3BDmhmvgc3/epDyUbLz/NNLpHKrrUzZROEuPpGbtbJd3egsoNOL/xefSXf8RyvODwdEaVH5DUsPdqwJuvHhGkAWtrCdFaTdVoTieGfAydgc9wxUc0mrNnE278uObg9QUmB6cccSelux7xre9epSgbtrZgsWhv8tJXeAZsVVOUJV6sEJmF0uEpSX9VsXGh5ksvnQNneO2VGdffLWjmGucaKumQqUKl4PkKpyy1dq2fzAmkkhijMdZRCYdwDXHPx/MD+qOQ2WSB1gYhBUY7pPSoS4NrWg+W1RalGuLY0esGQPnhHtrH+qnq4d0J+aAikDGXnlzn3v1DqtKxvb3Fhd0dDvcPmE4mIBzSk1hrKcoKP4jY3D1HUzv2T2fsHzwkjgQXzm5jnOPkZMyyyIjjkMuXz9NUBdbVOHyMa5BSkiQR/V4Hz1PUdcVsPmVZZNSmwfc97h6Pubp3QNm0waUwjKjxGE+njDoR0vkspkvscITxLHFP4UlBmRUkniDwBa4puHnzFqauuXxplyRWpL0hsRcwO5rh24bADykWJQf7U8JBFxl5iCCg0Y4wTugN+izKktiLOR3PWCwrVs/3UUrhe4q6rjFVQzafU+cZtoRGK0xmWOZLMluxcmGDotEY+WiQFm09nFBQ6YrKSdR8ThJ3oGgIw4SN1XXKcoHRhuFoSHfQZT5e4nkexoHWlmVWkaQhaRqCK9Haop2jNBalJcIaNB7aOmqpeO3wFPXwMbXjsf58OrOzSTcOub93QJbnSCUfWSrMI360bbfUCBpj2zcuOMaz9owNuwmffPlZZvMZ7167SlmXrK6s4SFwJwWTZcb65ed55vlLfPkzX+FPfvwqP/rxmyyyAhz4yiGQbRW54VG9fVswZhtASKRw7UM+AmPbNzaeFNhGIz3Vvp3BUhmNQSEcCOURd/oU2mK0oGocnU7AF7/4LE1dc//+XS49tcH21g7jkyl7ew/oDWKuvndA0/BnQ60fKLorirXzkrVtD+lCju6m3HrrhDhO+ORnn+H5T1zmjXcPmc01N+7MieMAz/OYLQzGWH79N36PwG8XdbV2GNdeIzzl6PVjzlzYIkxTXnvlXZqqwZiKIPSIk4Dp+ON3f/7ID9L/6O/foiwEjQED+AjiUcSlT29hRE6ERCBYW91iZXXIg8MD4mEfXYWo5oBFneN7IY1+H+V1iZKU20cf4NmSGoOd1XjScDrNIKyYTRyeidjZUcyqjFsPC66oHVbSiHAd8lIS+5I4hMGq4+TUYYcJnujzvR/NufdwzmSpmU0LpIY4Dhhe6PA/+B9eYWe9ZFoq/CCkLArW5Qbf/+0jdG7ZOnOWz3ztS9xe/AsCr4vjkH7ah2XJIFyjru5x8+GS3/7t9/iVvznkcPYmZjEkRCKM5fVvT5keNFhpOAly0p6luy7w+11SSrYGIUcnHqMrAeWJ5eoPl4iFQDoHHrzwpT7v3H2fh9OclTTh1XfmTO6muFoipcAXPtZoisbiQkkYWdZGCS99bsjLn5NkpeDb3zrhxjsLfBFglwZdNEhPIAFbGOzcojoeqgsSg7ZgpQNpsaYdrLOFxVcJpRIEsqITxthezLIqkE37es45TZRITA1KSWoD2bSmyhyeUh/yiX2sn7YODyYcHU7pdmLy0hGGEePTKXV1iy9+4fN0k5DbtyyT6QxPQGM1rq5Z2R0SRwmL+RjnHGEUMcsmvH31Kp4n8f0AbQ2iLpnNZ2jXMMsmbGwOWVvtk+c1vV6Hpiqo69aHWTYVEjh/7iwoj72Hh0hPkuVlG44OE1BtGr92kNcaT4VMJyXzqSbpSLa2+1xYX6E2GmctQkBVa5p8yvG+x/rGGkHYIUpT4JTx3oxRp4OXBzR5xs33b/Hy517AtqgAuoM+Kjzh9OED/NEahW7oJEMGvSGhkszGU7JlxnI8p1xmrA76eNKjBi5dvIS5eYfj2zfojgZ43QQVBJR10eLrpABhqZoaT4Vkec7qYIQvAsDjZFwShTFhkOICzXOfeIoHd/fZv7ePUhKj2w1cUeT4aUC/4+OcoNaWWmt8NMoT1HWNH3p4yhHGPqb6+CGzHuuno83RgJVBh62NFfYOT/ng1l3myxwr24fqBtuGAaVoSRdOgLMUjWae5XieRxz6rO5ucXJyxN27D+jEEec2t4lkTNezBJXljW/+iLduPeT5z36K/8X/+H/Eq2+/wR999/uUlcY6h7HtGzGcQyqJdBKtLQ6IwpC6bhDO0c7ZAgVIKcG1BBwpPYQC4+yj64JDGAFKoAXE/RSjJCoJ+OJXP4vn/Sx1M2fQXaUXr/HuB69z7fo7GC25fu2QIA6xwqFlzvb5iMEGFNWcKrd0NlOeVOscPix46517jGczlmXO+pkBWeaYF5q6rLCmvcfmZbth9zyF9BVGW+IQ/oNf/Qqf+dLnsX6H7/zp93n/2k3CSuJ7HmvrXZ54+gzvvnOTd3//4MM9JD9hfeQH6clC0jrwLKFUeM6xsp5iqAijGF9l9Ed9grjhZHyTppjy4PQDlq4iwpGXOUmk2VgLmU1zGitBaJK0y/h4ghf5GOkIlSBJQpbjBaP+iLqYE8Yxg7WQWV4RCcF8URPHHqtD8HSKPhqg5w0Hx2Peeec2h4cC5wmiXoy1Bs9rePnT2zz34ojdHUnihdyfF5SlYeDl/OE/nfDjby75yl+5wqf/6pc4lcfc3j/kycs+RoeocItqOaHIKqSU/JN/+LvsHS148VPrXLwc8J3/WjK/Oefrv7jCpz+xweuv7LN1eZXnX7rANH/Isi44PjJ4CPKiwV+3pOs9XvuDYzzPIROBNZLOKOTiS7CfL7E6pCwt02XO6X0FLm1f1cRtsjmyDRcu9vnlv/cZfvnrz1Euj/jD3/0h/+yfXuPoSFAZg+/lYATGOCQC5XlIB1QWpzXNErzEI0g8Cl2BcYSBonEGDSRpl83za4zHpxydTgkCn17awekaKRvKssG4R94rLanymsQLMU1NGTy2dXzcNZ6cIDyfZZEhg4iVUY+dsxdYHfYQUtPpxIyGQ04nC2aLgjjyufzEZYT0mS9meL6gqms2t3bxxj7T6SFlXSE9hR8qLj15gTAJofBJIsW8njNY7zK0kirXnJw8wGhJEkVsDbqkaUx/NOJkOiPyLDhDkAYoqShqjakbwkChm5pcGyJPMJssSKKQfmfIcqzorSRMJofEkUcUKVJPEcqaOhvz8P6Stc0dVK/DYH0doy3L8ZiqqrBak8YBTVYR9BQ46HQ7dHpdal3j+4oGxdbaBq6p2d8/YTKeEVhF0HgslgZ/FOOHEQeHDzBCcnp8Qq0N7753k4XWPPfSFXqjiLyqEdJvGyJpb6DtcNyQxB20URjr0U3X2Frd4WD6gGgY0eucwzQF48MxgZM0pcP3FHHoEXqKqqpRUtBLfKJQoqRHlpcYJL7yQapHBIDHeqx/v0b9lJ3NFeqm5vDoEIxm1EnR1jBf5jS09faSNmToaBnTBkfeNIjFgu+/+jpPXzjL5voah+MpewfHbK+tEwQBQVPT78bsbKzynR9/wDd/65vceP1dXvzsC3z6mSe58XCfw9MptjDtAtAB1qGkAilorKaqa3zfRzft0P2obhHjwLpH5THGIHRbSKeUxFqN0ZDEHt1hzHxR0GjNN7/1OjduHvDMlQucOTNoH+K3Ys6dv0jjKo7HczrHE4zVoAzbZxIGa5LJZEZZCnxPUtoKkQpWd3soYLDS5fJz57j3cM477zyAWhPHfmuTq0sQgjjyWRl18ZKU6bJkdyPk5U9cotfvcvXBAaeTQ/o9D1NDmqZcvLTOE0+soGTNb/Puh3pGftL6yA/Sw8ses+MalQliPyBMHStnBBdeiDl3LsILZ5wuc+wyQNkaz5UkUcZkeoJ0ksGgh6csWZmBF+E7GAxD6qJmba0Lymu3o9UCPMPaqo8vM5QU1JUBGuZZReHaC32g1rnx3py3X9nn7rVbzJuGzZ0+0vdBGHTlMIWj15E8+0yf51/UjJe3OJmexfUkpZ6yNUq5//0hr/7hewxWNvjZv/7z2ChHeUd0pM9GV+H5Zwj8MxDP8FSDLw1PXRI88xK4PObqjxpuvHPIF59aZ9Cp+ZW/dp4vffUSN8d36PQMf/ev/F1ev/l7vHHtHe69GVPsB8T9OctbpwwDxfqTAdL6HBxpnv70GiYZY2uPunRktsanz/GtnNAFCC+nGylefPkKf+OvfJGXnnuGm9cO+L/+gz/gB3/yNq5SLBfgexYZSMJAYZrmUasRSAFWSrACzwlMJWhKA6VGSocKBCoEIQVSOk7vn9JJU7Z2zxGmQ/bv3UcYTdqLcFIgPUFRNhRlgY9HFCt01iC9kMGwxzH7H/Kpfayfpnr9ACta1mnV5BinieIAqRzj8TG6qnn73bcoG/DDGFSINpIqzwnCEKEEVZURJH3SpIOul5SlxjQ5ly6d5+y5FfZPT2lsDn4X53s0VuMZQxwoqsixnC15+vx5zm6sE/g+ZdOwu9Ljyu4GR9MJNx88pG40q8Mu82VOUdT005j1UY9uGuKJ9vVtGCY0TjGZlNS6Tz4pUMrQiaGXGpR04GoOHt6lzNfY3lplsDYg9HOcWzJa6dPrdrCVaWvRcZRNw8rGiHOXtun2EiIT0okCmiLj5HTM669/wFM7Fzg32mR9dZPhcBVjLALFdDxjNl9QOsd8WVADb772Dleev8zW7jrT5ZQKh/EFvleDijieTNhaj9tgURAhhSQOYtIwZHtrjV6vy/TolMnRpA1fexIpLFXdfk8nPJxtMWRNY7HKoVRIVRp0A0iHs4/58I/159P22pBuErB3OOX27duEQcSVJ54gzzM+uHmbJvu3/mRQ0iGlxFctC10IqBrN0WzOJeDyubPkVcONO7fZPz6iakrqqqQospYl7ynOb26xsb7Kj771Ix6MT0hXezy1s828LLl/dEpRaYzRONqiF4nEGEMDeJ6PrmsQsqVZCIm1BmcsiJZP7YQjVAonJMY4irwGHFJaRhs9mqrh/r0D7t3bJ04lmxsp58+/Q7cfgQSva1g7n1LrNlck/ZrptCKbt0VKtjFUTiOoGHRSVnpdrjxzFuEpbt4+pteNufLkE+TLmqOjY7QOCTxIAoEfKZyoSbuSK889wayouP3uG1y/c4f9vdvEicfqmS12d7bpxA1bawkr/SeB3/0wj8hPXB/5QVqtWHq+4Hy0zXI+I9kWXPzkJjZYgJYslj5vXTtiMoWt0QhXWLZ3NriYrtKPC/bqI7KqYW035cHJFF13GWembfixjsX0iI1hh63NEaX1qG1F3dQUWUMnDYljH60lwngEKuB3vnGbvYc5aU8wC2voCHRcE3o+kXAEdc2Fsz5PvzDg3FlHJzIIYq7tLwgnJ/SDnPmdEf/qv7iNLXx++de+hliTFPkhyj6gnybgQAJNFnLvjuWpC11qd4O//qsX+Be/cZV//usPWd/uc/GyxnXG2HCFKiu5/eAhh7Oc27fu8vyVE/LcsbGxAucbTrTlaFZRF0u6iUIEGt/r49cFm08FnMwksznkRUacJNiTGHk65oknu3z25z7NL37tlxj2+rxy9U/53/+//hG/90/eYXFU4nuSwDm0s3gIOr7k/LkRUhjKzNBUgtNFzumixACNc3hC4UmJqxzKCUQFrgYQCOfwfcP+Ww8Igw5BPyGIEmYnY2TgSNIAJFSNQcSCMPDIFiVh2mXQ36DUj6sNP+7aubiN5wU8eHDAbDEmXyyoFjO2tzcQ0vLw3j0Qhp3tTYTw8f2YRluWecEwDMjyBWmiCBKBc4p4fQD49Lo+V57ZBVmxvRqwub5JXlnyvKHf7SGqDNE0RCsJRerhKFCeo6qW4CAKPJwA52nCgU8qE7Y3trh98w7DXpdukpBEPr6CxFc4bTg5OWSyrAk7XYIoxvNCimrOzTt3Ea5kNAzZ3hiwstJFAdPIo9fv0l0ZEUcxi9MFyhMYYynzkkBJfBUxWu/xlPcEta1xjSUJAsazOfcfHrJ/PEPqB6zEQ5588hJJEnDv/j5VrZnOl20g+NHXREp0bXn39avYSvPMC09yuphicGijqbWmbtpiichLCTwf4QAnWMwz7EaHbLlktLLChUtP8N6bV9GlxtF6Qj2vJRf4QYCUFmE0ihqBoNfrYYyjcTW45kM9c4/1F0dx6KNwLOZLjGvJGdY0dJOQbiemFg4NVEWNsw4lPZQStH1CLey8bDQPDo4Y9vpIpai1YZpn9PsJ1lZYYJEVrA2HnN3eRFtLXpTYAorDnGUj8FOP3V4XLw6ZZRnj2ZLGGOQj9KPVFicsUqg2HA04J/8MFWlpt9PGWOraEgQK5xxl5aibGj+Q7VBtLZ4v0Qam04bpbM79gxnDNUl/qPB8iYxgeZxTzwxVZVBK0e2k5GUb/DONIUl8PE/R761yfNxw98E9DvYWBEHMztY2J6cz9g+PQUqKpqSoGqbLtoAp6oWczjOm73/A3uE+WZaRdruc2TnD9tomTZHh0RDLkMj7yI+d/631kf8XeUGMSkvm1TEMDGwoHs73cAvJ0zuXeXBvn3IxY72/xTAd8NTzZ/GE5a1XXiUKoQw26XU0bqqoFpalWdJPLQeHjvX1Ad1el8op7h9ayibHjz3KBqQX44SlXELib/LU+ZeYLwSe+l0I7xAMY7YSH4Il1SJjNg64fGaNp5/wePHTzxH6AlXvoWkQYk7aNQin2R6d5b/4Pz+g2F/y3Kdf4Ku/+HnumTdIomNuP7xFJFPKqmI+HfPGD3+PIvsAyjWeemqDJOjy/g+vcXBjyWhNQ+A4yjKW1TaLU8mf/uAhXqTRePzn//k/5Mtf38ULJKKY8dmfeYkP3rrKtbuaua1RhaIsl5y9tMJRMcE2PYpszvZ6TNeLsarL/+Z//Z/yuS98kr3pMf/mD/6Y3//Wjxld7NLf6DDTBldK4m6AbtqglR9o/MBSZTP6HUHYTZhaQSeJWOQllQBtwQiDApQUKCfAgclbb6h0QAm20BxdP2TzxR2iOGDqDMtJgecplFR00whjDXEnxUsSlJdSaYupH1s7Pu7aPz0hDEO8OED4EllpGr1kvgyYL9qhdm1tBU+1lIk0iZlnBWVd4vtDTFMRBRLfN/S3upw5d4HZYo8klqRJu6HqdmJk1OV4bjkeP8RqzaibYLIlvhSk/Q5NveTGg2v4KiAOIrRz4AtWNnuEGzFFliNlzuZOyny2oHFzjmcVg24Hz4tJ4pj5wxnjacHZwQqNrpmMx8xmM4qqwWJZlgX7RwW9zjGf+dQTDEcTTo5ndDp9OlGH/lqPfJ7zcO8QAsFTzz+FwFIVJQiJs5JO3CX2fbS1HE/m1AgOZnPeu3uPnZ0NlIiQziGcYL6YIwLRDsPCIR4hwySK29duI5qar3z9yxzNpkzynMpqpJNMphMu7ozwhUKbhsl0yp17D+mvdFhmGVWjWC4q6spitWjrjSVo0xZUFFVNGvtsDFeJlKIuC9YGfebLOXndkKb+h33sHusviMoyJ44GRFFCN0lJOz1eeOoyw1GHTj/k9Vu3yBrNYuowpcVZ0W6nAw8v8tBVRVM0XL/7gOPxBKwgKzTHJzNW1vpsbK6wd3jCdJqxvblB0zRcv3UHYaDfSUFKXOk4PZ2Q1QWj1S4rK12GW5uUWE6nM+aLkqZ2GGPwPY/atVXauNZy0n78HEK61htNG9T1A4nWug0yFoKqqpFCEAaCfj/GOcEyL5lPBHlWMj4xJEnM+CSjqSXWCnAS5SmqRUnU8bA0eF6AE9AYeOu9u/jXD1tCT6nB5nzr5DsIFaCtRBtH2m2tlsv5Eq1LSlvzzvvvozxH2kvYOXeGne1dRt0hvtYkQZflZE55MMNX0Yd6Pn4a+sgP0pcvD7n67j4zB1Gq6fYEKvCo54Z337zNe+/dZ3d1yPmLfZJG4Jo5S91gg5TX333I4Z0ZT3UHrG/5jJ6/wGBVMBxC1p2TxpK7e/fJG4uwiiT1iWVAJ05YzGvu3y+58e6E7HRG/Ksvs3VuhflsxvzUMlvkdFckiQyhrhkNPL7wxW0unvUZZ0fIeBtXj5jZKf3OgJHMGKY9Vr0NxPI+X3z+Mk9//SVkxyIWCxJvShTEmNoQKjjcf4PYm7Nz+SJvvDbl3VcVf+s/avilX9rgy59+kv7ZGZMcZqcT8llOPo+5d61g65KgNJqVlQRVBJjskF4vZLbc41e++hLDV1/nh28syAvwIwj6DafzitgLSHsNK50uv/DSX+aF85/htT99h//l/+r/wu3JHnemx5haMDjfYTD0GK0KgjIhCGpMAllu0NZSa8F0aQijgEHXJ/Q0QSemKiuOZjnNv10YK4kvPZwxWGfbjYB1OAEWUBoWe6cMz/YIAo+0G+OKAl23SCFhDf1ugpGCKAoQ0kNLMMVjkPTHXcY5qqZBeQEq8uj0QpI0RIuSIJLYynD9xjW0EQRhymA4p9vvEcYWqQoGQ4+iqghiy+UnN0E1HM0LxicZaR4y6MT0+yllo0m6I/qrFfcf3qNalkQSpDN4TUPiKzqJT1nmzHVBJ0nY3tkkHfZwvuD09JjZbEIQCuIkpK4Ns2VNaedIU6GbguGKj3GGYT8lK3LuTU8pqwopWjqRdY7aCKaZ4PW379BJA1b6XYrlDIkl8EOiQcR2uE1jahwtBSP0EzpxSl03+EFEHMdUjWY6XeKcINeaWwd7nJweEXlr1HWFgLYiuCeJ/JDA99CNQwhQymGt5d69A37333yTX/qVX6SXao7mYxpnmM6n2B2D8iRZsUCpijO76xwdz9AaDvYm3L31EIxECXDCgnUY0359IaGuGqazGdEjrOXi4SlR4qF8gXPywz52j/UXREEUoo1hY32Nz3/qJXrdHmd3N0hin6cu7nLj4DbLWcFoI0XnlvFRjjUWT0IYKYIgIjMWrS3jrEDY9oHy+GRKeMtjddTh8HiMsIpUSMbzJdY6Lpw7y/F4wsHJhGVegBTEXkxoQsZ3p4zzBWGvQ3e9TzIIyOqavG4eFcUImsbBI966NbYtSGmBIyDaUKQxFuUpmrpBiLbMyAiwFZjxkm7XJ7IeVaVpKoWzbZmL0QHWgrUt9co5D200UrQZBy/2Kcsa0fMBw2yatd/TtoVued7g+YY0jrhw6RzPvPg0Dx/c5fUfvYFUkKQeQjqG6yPOXjjH7tY2o04XXZXcv/MuT+ycZ5T2WBxNqfPxh31EfuL6yA/SF5+Q3LztKLQiXVF0ux7dMOXGwyNm9xt2nt3EKxyHhxmXVwe88vYbzKY5r7/+kCfWn6RTTBh2Pdyk4ru/+xqnsU93LUKFBetrHYbDDfLC4cmA+XHJ3aqkLBpm84zTyYJspjGl4Lf+8PfZ3EmZLiZYB0ILFieO5ZFhlCZ8/a/u0h0umc0HbKxFODHHqHWCBjpqxryak8RDOiS8dHGN5a0ZZ54dclzdIopKiukCZwRREFGXGaM1x+kk5V/91m3mB4LzI0mz2OXrv7jB7euHCHmW4lrG6FxEf6Ph6HjGytmU0jnwHMZomiJjOHB01xJuXS0ot+HK0z6D5Az/+nfuYtIAGRu80sP3DIOhIvG2+O43b/MPfv9fMd6bUVnL6IlNbOWjnCQ7sdx674S6NPg4ulFM3ZRkpkGr1q5RVA7r1QwHguV0TjzokQxi/LpCaGgKELb1TAvrWg9k1A7S1rZta8K1SLz9e/sMdod40sfKCltrhBSsra4QxgGNMWgrcU5R2ho/+sgf6cf6/1HGOJQvccJhMDTCMa8W4ATdMCKNFNIbMFuULLOCaX5ELRaMVro4P2d3d4WyqcmLnKI5palMGz6KIw6mUxoMVsGyzjlZHFPVDistlbNUZY0zmlBC2A/proTIhaYsGmRQY8wCX0UUVUkUWHTiUAqSOEJJnw3doaxr6rKkE0a4nqPbkzT1HrPTU0JZUMsabUE4r72xInBac3Jac/WDQz738gp1UxL4BbUuSZIuQerR8UOiSFI3JcYqFG1Tm5QOpXy63QFSSRxts6ABat0SOJZZxoOHe3TTlI0zm1w/fYjvezijUdIhsOS1JisNWXHEP/2v/hX/4d/6NZ4//wwf3LlKIxrm8wmj3TWyYkkaS3ZUyv2DCdUSHty6D9ohxaOGN/tv+5QB6fAUeD4gNRaL8AydJMQLBNrAMvv4IbMe66ejwdqQTphQVQ0rwwG9ThfhSaIoZtNoun7Anq4J+wmR5zMft8NiU1ckziftJmAsVjuwkGcF1jo8Jzk5mZFXGcqT6MqxfzKnKCriwEcbTVnVLPOCsm5xmWESM+gNaBpNQECzaBhnR2xurdDtdCj6lkyXFJWmrixGQ11qlEc7RP83Bmn7qHZcee1DpVICKyziEXnEOolzmm7Px0wNWIlSHgiDdbq9lkiBDDzCKEEIi9bZI4pQRhxHFEVFsWwo5iUq8EnTGC+Q5EWNsIZQNCShY9CNeehqvNCSxhFJ12PrzCZnzp1jY30F1RS4wtFkSyLliBKPa1fvYIuK0MYf7gH5KegjP3WsrCVcerbLO69OkXiELiRyHme21nnupScZnqt5662rFFnDa9dvUZ5OCZylO/K5c3TIp58bUoY1w7WQZOJz53jBbJoRiJhi2fDg9ox33t1rq3yFIYw84jhAKYkXOqI4hQQOZ3c5ySxOukcBIImPQlFz5XKHJy9GOD9gNpWEfo8Hh/eZVwvsMiPZ7nA0iRGqS6+fkgaKwdkOcq1gwYQVOaOzNmJuFvgiZGu9z7gw3PzmhPw4wh7DV3/xCf7gDz5gY2cF39Pcu33AoNthYytheGaDV969QbypqZaSIBScvdBh90xKJ5DEoeF6VfD2vbd54fIm5y5U/M/+p3+Tb73+Q/bMQ4yf0PUNfrPCN77xHtWRRk4FnhZEkcKnIfVa5+Lh4ZzmtKJ2gvX1DoKCujAUpWNpHNI5fNmwuhKQ2YbO2TWWxpJVNcl6l3pW4kyDRaNDgfMcIhIQCXwVoFTrF1NG4ckGbTNODyqEUrjGYqqKJtPYRmGdwfNE+2DjeRR5hV4+DiV93FXXBicsntcmx5VQOBwWQ6FLlB9CJKnzhlqW4AyuLGGWI4MGtQAZBdSe5XB23KbnhcMJQdLvkvQijOeYjGeMZzVNYzFCtQ962iC0ZjBIiDsRRV21fmJpKE1FoUvm2Qzle2hT4/mSTpBQ5CW4Bj9w9HspWocUWU6YBvRHXZyRrG9uMJ0mHJ9mHB7PmS0rtFNY177edQ4Oj2Zcu7GHoCaIHRcu7xAGijCIMFpjdfioirgijhPAUdcaEsHK6iqj1SGn8wMsjmVd8MG9Owz7CUenEybTGWfPnWVtMGJ/doIvBdaTtJ2i7efMObDOMZ1n/JN/+s/5j//7/12evPAUd/fvcjqZcH4XhANTFuwMUsw84ztvX6VcZDjrME3DIxtqa+US7U8uDH2CwBKGjjTysNqhmwpo/e1x8tja8Vh/PqnYp9cbkMYpWbYkz3PiKGR1fZ1uv8fG6jrv3r/PYp6xs7rB2siwvz/FIRGepDQVDsP6cEAchBwennIyndNoQ60tZ1ZWcUpy684+8+kYiWJt0GPv+JSj8YTatLxqIQWN0RyPT5kvM7R1NM5grWVyuMCeztBRQ2+7j+oIqtDhjKIOfHRj2gCuMe3zpnBtA6N0SOnwfIHyLEo4glDhTBvIdUJgbYMXtBtuP2hDlUIJjJL4UYiRPmEcks0XxIFPXWuMFjgHVVky6PbpBwmV1niewleOtB+grcWZins3rnP39g06Kylp16MziNk9v8v27hmqrOTtH7/N/OiQC7sbDHod3nj1JhfOXiHtJ8xEw3C0+2EfkZ+4PvKDdKNjPvv5M9y/uaCcKrafO8PxwRGrG1t4SYG+K1iJV/A31zjTOU91c0radXzjxh/yvZunpGGXX/vP/gpJUnDjj76F3p/geQovbnBSoHNJk1VtS56QGCHJTYOyAlkJCq/EDyXKh17sE0sfpRzLeYNpKp682OXnvj6gWo6Z5ClL53C3Bf3+JqflNdYHHfLG8tYHBacnV/m7P7fK8cmMr3z2ErmcUNkT+qFhNj6hzDXbu1vU9QSlY9Shz+mb7/OJT19k7p/iFgEvXPga779znTf+8Ec886zgS59ZY3P9Av/pf+9T/GbvG+wfH3DlhXUG3Zi96yeYWcjQDzl7fso7RwsO57sE4pjN8Ij/5G98jT9889u8c79k0PX5vd8+YjZu8APF6EqHyxc7eMJRCUvU+HixxTVQInDbMc3+lCJr6G9JljUUC4cnJE+f7bO5Lbm3XHJSWbSSGOGQUlM3FV7s8BOF7ChcArmusRiUNEjZYvOU8MAafA+grTetcocPlM6yzCcEvsRTiiiJEVLjiQA/DYHswz20j/VTlTMO5RTCCExlsUoRRD5CtfSHvDatVUFJvPBRGt8DpCWKfcp6iVQRk2VOL01wvqLIGpZFBaItLthY69PtRJRVw0Q3lEVFUzeEviANJGFoQRhmmW6tD0GA8jwm+QICSbfXbQd0U1PV1SPzfztI1rUiiSNC36eqGwLfRwlBf+CzshqysRlzbplydJwxnZUUlWGZVS1ZRJc0TU2eL0irkOnBkl6S4HcEjXE02mG0w5OGLJuzuX6G6WSOripCX9LrRkSxIM81KMX9kwOeLy9zPJmDlKRxSJXljJKEQRowtiXWKeqmaW/s2lJri+8HTGYz/sv/z6/zN37tr3N+5zx3HtxhuZjTiRNuTxvqoxlNWbPaGXDgLSmz+aMgtUQIgXMaKeWjrZsjjkKsznFOEicdilJT1xCFHjtbPeDmh3zyHusvgn749ms8d+5pPvHM84Q+XN2/hzaWy7phZbjCmc0t4iAgrxr8wGN1Y8DJ6YzaQRBHJN0API9nds5w5cJ5btx5yLd+/AbLomB1kPDExU0+uLNH3Evw4oT5yZyibmjMAo0giiKs1USBopPEaG1Rvod0DlMbLDDJM5wy9DsR48MDOqMuSRKhTcuZTlIfz2vzQ7oxlHVDi75WeD4I6UAYEOB5AiEUpgYEBIGHcRrPd3iqxUb6UhIGPrUVxP0RJ0dTiqwA4+GcIwlTbF2hlea5ly8y3p+yf3iEtZpASDylqZxmXpR0wx55XaJK6I1Sds6fYWd7m4O9I268dxWTa6ZHCx7eGXPx/BaeGPDa96+hIovwAt4//ngxpOEvwCBd1DlnNlN+/hfOkB0ods6ssLAlb1y/z2k+Znf9DJtbazSLJT/8428zuVHyiZ89R+VXpGuwfn6HIA24d7jPBzf3Wr6z9HHC0OtG/Hc+/3Pcf2rJW/t3uHXvLnfHxzTOYWpF48B3BusMlBYaRdzxSQYQ+BGiyviFr64RqhI/DkjjgLmJmIyXnN4bEw9ikkRz40bJnXvHlCW8/tpVzl1cIes3NCIjQGDwMUHBYCDZHXoI3WX//oQ3/uQGQz/kK1++yPFhyW63S9+b88KLAzYuXwZSjD8ilANW4i/xt//miPvLb7Ccw6//39/j1ntjXnr6PL0rip11x/qZXf74T6/yySd3eev9HzPOHX/5i3+PwZ9+mz965VWyScVzn9hiuGVIRgnZ8gSFz2rcwS9qZCSZnFYM/IBoR+A/G2KmJc1dy6io6CSKrRUfNQx5e7xgrn0s4DmQrqUKEArUqsR5Dqs0Bovng++1numyaACBsBoHVDU0jwL7QSTxjKSqNFEkURJC4eM3Cul7aCxZ9fgV8MddadBlZbSKdZa8yKkqixSSIJQYq2kaQ+BHdEdJ69uva6IoIA4VYSgYjTrMyxLfczRGU+Y1STehcRohBMui+P+y92cxu2XnfSf2W2vt+Z2Hb/6+Mw91amKRVZxEkSIlirRoObJkW3YPdnfgXHRg5CIXCZJcBLlJAqThNGIkTqc7gOO240EeWiMlkaIokuJUrCrWeObxm4d3ft8977VWLt5yB0ZuBERykYXzAw7OzRmAD8/GfvZaz/P7kx/kNKOQc5s9uknB4cmIRazxfZdu3WG1FVGrR4ymCyySZqOO6wgqXRIXFYFeLu/Vam1MPKeqCpQC6YVkWYbBEoQ+fuSTZhlKeuAIXFfQ9JsIX9JdaSDfv9KdLTKSpCKZpURuTrNRZ6W7SpEnzMZz6t2ArIyxJmel031/079kOp3RaNSo8hxjNP1ejRs3LrB/eEJZGbKi4tHRMePJjFajQbNepzQVNd9la7vP/OEBZQnrvT5ZnnNyOqQsl65sow3D4YDf+Bf/kr/yK7/MxuYmp2cnXNg+xyzV3H3rIdPxmFmekJXlsjF4P2ocC0p5CCWWiaVlTlUIoiAAI0kWFUVe0aqHRK5Ez4sPuuye8lPCG7fvUmYaR1rS+ZQ/+M63WeSGL3xywcvPPc/GSp/L2+e4ubfH4ekJNT8iqPnoXFMUBQ3pU2vXsUbTCAICR+EqgesIOq06otAMToYErTYf+cQNHt15yPDJACEEvufiSEHg+UShx/rqKmeDMUKC43kUsxlGWIzS1LohVmlEISiTGFcU1FtNqrKgqEpQisB3cDyBE7gs71ottbpha7vPYpFQVoY4TimLZdqp1aC1pl5ftna+GxAnMX7oEIQuaQlFpcmTDD+sAxW+A1WZYwXkZYEbWozMMDoncAMaUcA8HuK6ilrdR3qCqBYQdULWzy2TFO/dfMytd24R1RSu8sF1ORsmnJ3exzWK0ycTtjb7JGXB/sHgA6yOvxh+4htpbXKMVbzwkR6P1SGP7t3jaOCxfWkHqwv2hgPOjlPkMKdV9Tmez7n/5B7ZZk6r7+AFFbrUvPHG2yRpilQQRGCsJgoDbr91i57c4UuXPkXjC8/w4/sPMfo8333tO9wb7lMZQ2UcKoBCwUJSLUrWu4af/dwOva2cOCvQaQ/LCqURhFGJdaYo12LLDf7kNx9jWqCoMVv4NGsZZrWG71fYiY81YJySmn+RPJ+js0NCr86LL6wR78GFywHPfqSBtjHff/sP8aN1PL/L1/9gn6/8isdKr6QyP2SSv4OeV2Snll//qxc5efkie7cdZosZbr1Bskghc3jj1gnPXbvMD3/4OruPzvjYJ17iL//cp3HsW9BJGZcZJ4M5gReSsFxASkqNzi1RvU26WJBWBVW9or0j2Lq+wiNvRrFXUYiQx+OYWbU83ZdCU+gMoXPcmiEMFIXSlNosw1qUxBGKIisppabQFikEFeA6iqowOL7CVQphDLrSKBfKwuAaRTxOqWSJUJLKtYi2/8EW7FP+wtlY3aLV73AyPKOyDkJbikLheR7WCISQKGnxPZe6K7E2wApDGLhYW1FVBYEnqRmP8TTBCTxqvqLVCgk9b+kzrjSYZVx2LfS5dmmNJC0pypKVdoPIdVGOA16dNM6pN1sYq/GkXM5IVi6+IxHKpV73iOMFSoGjJMqtYYxGKH+ZGup5xIuUej1avrA9QTtoMBlPabWaKEehgoQgSbh8cQdpQQgHR7lo46NcSaZLClMSBT5xvsBqRbvVRwkHgcBzHaTj02s1SMqSl16+zrvv3aFMXN57+BCTVJzbOkcQBFRJjBCCZrtGoxMyGcT4jkThoiRYCY6UaGMRWIoi55t//E3+47/znyLCgKxMcUKfo9mEWZzgedBqRSRJSpkZsMvrZqs1jnRwEUjpEEmF//4tgxKSrhvQD2t4xtAPeh902T3lpwTlC/yO4t7hA3SiKVAM4xm39x7iRA6Hu0ccnwypMsOsSqkM+A2PkpIszpgoQ3tjjazI2D865uD4kCSLQUBRlDx+csximqGTIZ3eMatrfaqkYHQ6xnc8es067XqEtiWjyZjBbIIVFq8m6dR8cBXDyQQci9EGoRSuo7h25TwnozNqoUUqj7IqkUIym6c4nv/+R6fFC1xmiwXWGppNj/X1LlUlGA1y5lONruRSSec5+K5CihCUxXUlbhByeJLgeg5+6OEqD5MlpEmC40h0qTE64+qlTRwrmc9zRrM5VggC5WCsRruGWqfG1rktNte3eO07b/P4/j5WFrieS6Nb4+raOc5OxpzsjcimGYskZ7W/wdr6Cp64zbd48kGXyZ8rP/GNdFJU5IWm2zFcvBQyG8zxpc9kOCSelsSjKVdbNXq5z87GGqPmnCybY4UhCBQUMePhkMPDA9pdj26/wfpKB1PN0EXC2dkZ7/7JmygT8NJf8zk7qHj5wkdxd55lpWrw6OSMWVlQeAXjIiOOXZqe5sYXNli7IJksCmaxYZ5NifOCZthire3QaftMZhnvvlmw91bM1mcUEx0zSEd47YxOtEW/8rn74xPWPraCjOoYYnxnCxWtsv844cc/GFBTPrmMqUeGH797Rj16kY9/7C9xf/cP+bX/qE+97vCbv/NNfuaLXV77wYK1cyG/+W/e5sqVJicnJ8RnDR4eFKwdCK5dX8MrFxynhm+/dp/zvQscnQ35zd/7Dc6vX+DjH13n5vEDxonEVwFGVyjXpdlsUA3P8Os50h3TqFs22x1eunqB47NDDucnfOxXVvj+b5/y8HbOLINKOLiuROuCqsjwpEZ5glSVSHe5jWy0xWqBLiuqCkqrEVbganC1wLMQGInBUqmSSlq0tfi+xFESuRA4c4Oj1DLaObCUdvFBl+xT/oLp9/toufSXIgTKdRESavUWo/EZnusRhh5BKPC95dWnlAYllwlh1i5tESCIahFSCUxRYPKCXGscb/nvKeWivOULTQmJ60cEocIIl0laUVQl2oLrhIwWhtl8OQeppKKsS1wFbp5TVSWOChBWQ1lhEIRejVwLRGXQ1kMFLkYGZNqgsMvterdFaXyqAhy3Rb1ex/UcrNEoZ5liKITCKkteWspcktkKo5bz47P5nH6nThjVMEWJyQt6nQ6P9k9pbNZ59sY13vjuO9jCxXNcOu029aiOEJJFFZMWmk6rRTJNqSsPx4k4UwMyuZylVMrHYvF8j4++9BGO9g/Z3N5gOh3R7jSoNyKSaYJjod+KyDzIY0OVGzzl4AiFrxSr3Q6dZpNWFLDS6tBpdOn0eqz0+jQ6beqtBpWQ/O/+4R9+0KX3lJ8ClOOgIsHh/gHlYulUla7l7uEug2xOlRmmRUZZLm9VpJ/jeyCUAQ1VVlEWJVGjTmUqao0GrueS65K00hSJxlEOykoevPeAzfNbbF89T1IUmEUOWBxfMhrHnExHeHWfzmqDte0Wq1ttykLwm//2TxHC4oUeWWnQQnI6nC33GUxOEFo2NxrUowbjccrByQiDg7GWJBV4QUi7XaNRc7E2J02WjmojxHKWuVJYq/H9gHrNAwUrq02m8YJ6XeD6EZ2VNZLJnGm6eN8KAsqRzOcpuwcnHB2cgXSRjoPyBLmwyJpH0PY5d2mbzbUd3vjTt9i/t4+ykGtNlgmyNGel7/DsixdZXe+w9+CIyeGI27t3qPc9LlzY+KBL5M+dn/hGehZXxAtFsNZgbdunG/XY/9fvobIes0HKRdXjM1sX6KAYx4r9vSFXLrWZmAmukdQxYBc8/5FNuqs1XD+g7vk0vVW++vU3CJor1NuCQBviChYjy9HkFnF5hngypDgdsXKjyStfOcfBaM5r30743Gccrl7tMi/OILW0mz2CQODMUhqNGCV90A6eaPHuqwvMLEdPujQ2DNqfc5wUbGYZK7OLtPyEhbxPN2xjHEtZzImCLd598yZCtNm4WudkPicrNmlEN/gXv/FbnA5KfvVv9ZlMJP/NP3hEb6vJ7fuK3/qt97jw4gozFN/4wTFRBPH8CL3QHJ8ECFnn2qXn2H91H6df8vbJY0Lt4+YRs9EpXv0Yv+nTd1xSmaIdB1FJZk8yqrFLe62JqFc0200WRw6Nc+f5zM9t8Hj8Fm+8N2DlGZ+37mVolifIVVVSZBmOtriuwFOCWC0tBgLQGsrc4CgJDjhWUieEeY6eaSgNCEvlCnRNoD2LEwqy0hBogcoN0krQEonA5BUKATxdOPwwowKH/f095mmGEAIhLNpoJtMJRVlQGYeoHmKkQKiKKHQJfIcoCAiCiNJCVmlEHOPoHFfJZZBJM8L1XXKtmcQZSikCz8UYn9GsYDCYE4U1ZvMp+ftXqv1uH2tjlKOYTBekcUYtjFBywsZ6h1oE09kUrS2dbp0yi9GVpl0L2Vzp4HsOBpjGOceDARJBqx4RBT6ulFRZSaPeRAhLkSUUWY7jOGCWCWhSSYQFaR3qtRaS5QKSYJkommYxrnKIPBfHdel3Vjh++H2yuaLdbRGKOnGR4DqSWbqgFnssFik6FWgDNtE0oxpZkrDa6hEqF6xBOi7aWFrtFr/0pS9z8cJFfv8Pv87ugwc88+IllNR0GzVSZ4KrNZf7K/RrAV2nSyhDVlbW6HT7dNsdmq0OYbeL8lwoDSbPKMuMIo2ZFymD0ymns9MPuuye8lNCNi+4f+8BnZZPazXieJAhBKR5zu7BMY7jo3yFZxxwDGFd4igwpcBmCsdKtDG0ux1MUTEYD5cBRNYyS1OsNmgD9XqIUIp0lrD1yXOsb2/y9d/5Q47mA8qwJFxzeeXj19k6v0JvpUanHVELPO4/GKKkwpj3l2q1wBaSk0GO78vlsrSVKGv5K19+Cd/z+Qf/9W8zmmscV3DxYpfP/uzLdFpdBsMRk+mE+4+eUDkVqmaI5wW+cvGlw3yR4SqoNwMcKeg0fIwtKAnJq4LxaIi1BisAuTSFZGnG7t4RGIdS5xiR0eqHGGWotULOXzrP5uoW777xHicHx6ysNHEcxf7JKWVeMZunvPvmHTbWV7l4dYvVtSaD4xHJPOHm3gPSsw+fovYnvpF+9HCAtAW9sIaz5hN0BZ/5mRXuvRFwqX6O+998j7Q5oELwYKyRkUOZZ9RMRDUomcYFtVDTqKe06jWsEnhKk89AlIKkXuC1FA1HkZbQinrs3XqIUzP06j4vX23x6b+1QVKPOfj9IfZI8DMf2cRzHbY615HCI01TDJZOo6DedCgXY6J6h7ePZ5ReTNitI6sevlmgqxzX9dh/MmLT9fhLX/os7w3+r0S1kCKL8DxFUg159YczTpJj1r0aP/xhzvDhhHu73+DCix7t84bf+Or3yROfxrbgOH2X21+VjOdznD2XaTykylyKecjq2haPp49ZTHOKtw/YO56y0u0Tu9DqbnLy8ISWMUROE6EV2TDH8wu043D7fsXJ3hnZsEQuJPWOg9O1xNUh6UTwu//oLh97dp2/9utXeebKOocHb9BqKKpCUeoCXeYoI6ASyACUr3CVBDRaLwNZKpaOTkeDL3y8zGFxFmNL8F2FcSzGF5RqueGPel+ZV4Epl4aAoipQrrOMX80E8HSe8sPMYDwiyVOsqRAItAaBJkkKyqpAOJoCS2EFykgi6SK8kEr6DOYVKJ/90yHaFgQedPp16r5D4IcY6XE8mlFUDoEXEBcFxhqEcvCiOvPUMM8sSIeksORGEIYRaZZipSKvDL5dLuUJW7G50idJJiwWc7r4RIEgTwoiz8eThsBVxFm+jBAWBlOVoAWiApPkYCRxOUFgqIoEW1VI6SJR1MIaOAotLG7DQUUllS3RViCRFHlFmRVUeUIe+Pi+j+8LItdlcZixOC4hCdBFyjhe8HBvl5V2gySeYg3IzCDHOS9cvsBgcEaZxARSUcY5geNijOGzN57jxY1NRnv7bBSaRmloFRVzZfjCS8/RuPIiP3r1DdInM9ztOr/2t34ZiaCsDPMsZz6bsvfoAZNkzmA4YTgakZuSk7MxcVVRUnL9+W2c5tPE0qf82VBSIV3FtWd3OL/dp9ny+NM/vUO5WI5SJGWKkpKwGVJr+kAORlNrurhhQJ6XlFgOZ2OSszGHgwGVLvEcQeg71IKA0XhGUcX4bkhZlty9f5srL17l+icuIsnZ3u6wsdlldaVGqxHiOIKj4xE/+PE93n5rH8dxKCqDqSRGKHQJldYUpcD1BUVRkSQT/tW/+S610KeqNEJbVlabfOVLH6dVr6EtJMmCs7MBl6+eRzqSwSBe6nytYjFdcHoEi+kCr9BIIPRcaHgsCk28SPA9RVZWCClBLm+yOt2Qc+fXeHj3mMkso7/VRUYKp+awc2Gb1d4KN3/8Ho0w4GOvXCdJ5swmCzxHEucVurIIrdh9eEqWGta3WqxtdoA200nM0cnhB1whf/78xDfSeSG4e39EnlR86Ys36HVDLlxZoRgd8aPfS7hxcYtuv8Grr97F1Fe5+vIldG9OfTzGOTU4l0K6tQ6ffHYNREZe1BD4/OkP72GHDv0rPtlOhoNhls4RccRgmrCYLxANwZe/cgl/5RSqDkcPC154aZO1rZC0AF0IKhsu4z1VxiIZkWSCi+stDg9mvP3OEd6K4sUvrWLKAr8WUkiLtYLXXjvlze//E2r/2c9y4dnz7J3mrERthLRM0kdMznLqKw6JSnntR1OKUcmzn+rTuJDw29/5GpORYqPfp9MMeLx7gs09bGWYTkZkRYWrGzSDPk4pCKVD7Fl2JymFhH6V07+wijAFzb4DhUVXJfPKIh2P0nFw6yk3XuqjnCn7xYiiUMwWmlYnojQVlpJsXvH9bz/ivbuH/Bf/qy8Thitoe0ShoahyQgutqEZFhlurln8vByUknhboClS+nL22cyiLBM9mKBw0FZXVaAXaEWhpkQqQBs8ROKWA3KKEQrjLhSWMZXkW95QPM6OzYwQWZfVSWcXSRa4rvbyRsBqrS6wIKYTL8bRETEvKCopyuTmelRWOs0wR86RHLQwotMPB8YLhwjDLYSWoMZsXFHlOvVZDKkNlNZW12Gq5Mb9I5gRBG2MFjuMhhCBLMtr1EMeUrDbqLNpNHDTK5Chb0m8GNCMfz4vISsk81SB9hDQEkYs2Fck8IZ2UZEmJUgpbVdQCD1c6tDs9GrUGRZ6zmCZM4yluU7J5uY9ScnkhYwTalBS2wiYlWapwA49CF3z0E1fZezDl5CChGbYxuUZETRpRSKPm0Qi2EFJSZCkb9YCd1Q3E+jaPHj9mM6yjrGSt32e10+Xc1hadWh33WocvXr2B60gO8gk/OLiDEyq22qs8frjCKM4pvJAfP36Xbssjz2J+/4+/xe7xjKq0ZMYyWSQYoUiLiqJi+dGsDOVxxUvb5z/gqnvKTwt130FZQ7yY43ltXv7EFpPxnB/+8DHCFbjCIpTmwpUurU6d/d198izHOhpt9XJvJzIUTsVMZFSRpRF5rPQiXnhuh82NLoenY+49OWWalkjHJWhXaHvExz6+yWpv+SxVZUWWTnHbPqaqkFazsbHKn373PiiJlBIlneXyIXapjdQVyoBBYgwcncyQ0lAZi3QFo8mEb/7xG+zsrLCysYmRip1LFyk17D3ZpRn6tLtN7j8+xHUdgprEdRsErrMMb/IN7c4qp5MJSklMWVDmBiE0nquWYS+lYbxIKID2eoeg4+PUJeevXqDf3eD7X3+d0dGQ/nqDy9fPc+HSBbCWdueA11+/Q1VootBHKsVsOkdnFcP9GasbTVa3OwQfDfmjf/HhMvD8xDfSVhaUSB7vT7n5zoif+cwOuedz/kadx98ZcL63zZ0Hj5hnJXWnYPjekO1Pb1KFGXK14tlnNxGlT622Rj2cUKQ+FR32jmPyE4fPPH+NH+ePGT4+ZvCowD5coB1L70JA85pPc8eiRULgdQmVx5d/xSXOF5wMc+J0TKfVJai7lPmcVlNweDbgdFrje6/uUWQunvVpdnI8qUjzjLyqyLXk45+9wYVNQX8r4HgwxyhFuw0bwZc4ePNt9g/+MZ4Lfq3G9osO9boizg4Z7RfkucB1YGOjw8HeGUVsCKzAsZpAeuS6ZDIe4/chH1SoVNJsW5xzTeqNDrPpmHz/iI2tPhSa1JXIhkeRK/JS4ziWnfUOeT7mY7/o8cW/fI03v3PE8ZFlIgR2GuLNNUJrKjcgdgL+7R+8yi98fovJ5IAyK/AxNIWHXRiSXKOmGilBItCVpSqXv7S2SA2ufj+5zBqMtMu5VWkQriKoO0CJkAYBhI6LyQzCiKVzWimsWZob9NODqw89kWNASUqrsHYZpWve/4hSQhD4HpF0KHNNWlTv534sX0yl1gidoY3BEZZuvUW/3cUIyYMnp0xSiHOwwseUHp3mFgcHjylcRZIVWKFwXY8kTnDkcqEnz3OstUvNnpBkWUalLN16D09Ytld7+MqwmE9xEdQcH1cGlFqxyDRahqRpQVoY8iwlFJY6Ib6KaHUbZGnKZDEiqjdptWqEQUA9ioiB6SJGo1npdqi0xWioygKoUI5EKIfKluTF0mM9T1NKL+f8Mx0mkwnJpGSlt0Iyn9GNmqRxwt6TfS5srrHV7/Ls6jUiP8STile2tvE9F6UcrLHkZcU8yTh49ITBeMZwHjNaTPHX2tQurZHlM2Y1yY1f+gJhq49SBlfFpCrBd0Ou5i9w7/e/y/HhnNwIknzZyJj3l5CFhMCXnLvQZnsj+oCr7ik/LZzfbrFxLiSqw+nJKWmasn3O5/KVj+EHLp4vUJ6g0a5hrOX4OOT4ZMbxScx8ZgiCiEpb4mSICgXtlRqeb7j+zArPvrRGWPMpm5qpU7Dph6ystFntt2jXIwLfZTCY8aPXbnN6NubG9S2uXbuE6ypa3Q2+/4Nb5GUJiqW5xoWoFmCloaoKHKlQ0uK4sNqpI0yJxZKWGp2WlCXcunnI3pMz2r09VrdXuXD1Evdu3+Hx3V2Utlx/9grtdkiSFPTWm3ju8n2ZFgWtTh3Xh8BXZFlOMxJMHYNUlnojQElDlhmE69Pd7GKURtUlO5fOs7G6zfd+/wcMDkZ4rmQ8SLknTphMNIqCRs2lFvpMFhnaU6yuNgl8hyIVoB0OH485fHKKG6oPukT+3PmJb6Q31gImsWY+1bz17hEXLndZ3fbodnf4xC+5DN40DCcWT3mIaoZMc6Z3TomuK7zr62RbkpEaI+1latKn1h7x7dd/wKwsMaVmvL/Aa0oKGfD4fk5kKto7ht65gK3tBo7OCN0Gp5OUertNd7OktF1WVjfp65K0nDNLFrSaPqE0rK+t8vBezHDqooVCa8t84WJ0inAtBQVGSdxwTrPv4oYpoe/gyT6mdIjFPqUz5ct/5xqD02NULWM8nzKbSDCgKpcAzYXzisCPGQyHVLnFaQiiFR8/UDgLqIVQ6phGw2NltUPznEsZWiZTTRjW0Ys5p+MzGqsd0hTmA4E1OWHdw/cNXmW5eqnL6lbJalfz819oceu+5c2bCT/6bsbJyKHwLEHHx9RchsMZ49HK0uwhPXwN6+0mT+6MKDON8JandUYbDAatNUpIisyilMB31f8QD66NWf5ZASoQWKmRwuIGEmMMNtO4pbO8chcg5fLrviw/fLNXT/n/5QsvXSVsKkbpjNIKQlXjYPeMNK2o8gxjNS6aCodCa0qz3IyvqqXzWQCuI2jVAs5vbVCvNzgbp4wXFal2sThovRwViQJJr7PGLJmjzfvRJFIsPbG+h+96VMbiOB5pnGKNQRhN03NYqddIFjGzxRSdljjawVOCQEW4Tri0djganaYo5/1gmUrhCkmr1l7OIZfQqbfxhUJXKWkKlc2RAVhf0lxrUpMRuBVFWWAxOK4gCD0qXaJLjTAgHUtpDafDEXmVE+cprq+pqhirHLrNNmcHE052jzA2QycxL1y6wPZKl3iRslhkjCdzDoZnDPKUaVHx3u37TOOMRGvSqkRLQbPX4Nd+5tcIOw3cqkaMpRYFpDojSeYk6dJKYKuMuU3ZvrrJzQcjDJLKsIxLdhyMXBpBOp0mF891cZ+Oaz3lz8jaToMvfOGjRE2ft965ycMnZ/T6K+xc2CAIfLIsI0kWzKYJafa+n90Y8lwzHM2x1QxhFdL6GANxvsBrONw7PGVUpaz0WrQ7DT7y0Wt0223a9Tq1Wp3Q87DGcnp0m8HpnCKF/cdTvnr2BmenY8aTOWeT2XL+WWmkNGyfW+X5F5+jt9ZnkoyYzs/Isjm6zOi3IkSVky1itBYMhgnHZzFxWlFVFXE2ZjiakaYZq6sd3MtbnB0OMLpiu78KwjKYDahshfJrkBsG05h6tTTu1KKQqUzwHPBcg+OArgxnJ1NGkym1ZoAKBVvn17mwfYFHNx9TZBVRI8TYEiMl00nGdLyPJyqaNYEtNVhDUVWEkctHXryI73lkacnobMbwbMbB3lOP9H9w2jVD1PKZBB5llvHNbz7kK1/+CN0dxcrH+rzz7hNOJhOuNLdIdYrXaeI2XG585CLvTfdJdUypLXmxzmCaEDbn7B6NmBUl0su59e6IPDymdAVyp07R8rHnPV75whfJxZDE3SXAI54s2L4ksR6cDEfUfEXggBEeWS7IT2ZstiXGONy7PSKOAwpnQc8XGK8iz3J8PyBNHOJ5gqdc8rmDv9KmMg4+If3goxi5oKgd8LFfboPpsxinzIZTDnaHnB2nlJOCrX6dl585z52HE/KsRLmCWq/GbDzEMSW+Y1FCklc5aztdVs9JRtkMKX1c16JCnyL0EVaS25y1RpPbuxXKEbQ6ilot4/KlkPPn65yNFwxMlyhK2NyYsbPeZqd3wI/Pj5nHNWYjzWg3oVpojvYlJgFRFEQ1ie8oMBoPcO0y+tvaZVKT0eAGglpNYbShFCVYgRSABoRBKLCuQXoKV4JQFgXoVKMSidBgpcVaSxiF2DihrJ6+cD/sPHzyhJ/95BWefeYScVUyPUvRU4fGaod2vcF4NuPW7h5Wgus4GCGXFgyWJ8aOFHiuotftkVWG0XxOo9VlY32Du48PQXkoJciyhEoXGF2S5jme5+MLwfF0hny/QTRYpFQIBGWWY7IcT1f06xFlmnI0m1JUFRhJmQmUJ0kWJWutGkGjwyIZ4gmXLJmRjqbUkLRaPWpehKksxrUE7tI0kuYaJ1qmgU7LGDcM0EJjKJamD20pyxJjWMZsK4k1EkyB4y4/YkNXQKU4OD5jOpkiJcziMzKV0al3mY81eZaxX874ja9+g531FVZX+2RFwTzJuH90yNxR9LfPcXMyoSgNVsllKI3rsLm5xlm+YDYsqEc+1hhGyTFWCuJkhqM0hYW9vSc0Q4Xr+SAUVVlhhXzftyuXEYpYUIZZnDIdjz/osnvKTwkb588zzxWHe3Ni7YLX4nuv7vHN7+5x44VrIDRJvGBwcspkMgEhKQvLZJgQ+SE72+tkWc48KXBCxcXVc6xutdncaNLrNGjVazTCGs1alzCooytDsUgZHA94+HCfP/3OexS5Jc8Nd9+6TZZqpJS4PstZY1exs9bn87/4C+xcusTm6g5KeUzzIWfTJxTFgrJKqPIJyha0aw0iv4Hj+AxPY955+zGvv3WbvIwxGvafHNKoR+ycW+Pi+Q0Ojk44OjghWyScv7RC5VpG05JcG0LHw0qJoWQ0nnE2nCOVor/SYjZNCIMAYyEIfFCWzkqPyxeucfeNB+zde7LU5tVDrIwoKk1VLp3UaZFjCw+hFEo4VKVhd3/A8f6AlWaT7a0erX7I6vo6V66v8LXf2P+gy+TPlZ/4RrqoBLM8oSw9FklJlU55763HXNx8EeFrPvc3LzPbj0nuCA6Oxthawec/9zGe/9QLNOY9bt96DynbCM+ijGYwTjnJcuJFidIuA225uHmFG+d2eDz5JidnY/LjiBOT0+yuUIu6SBnQXpuinDsg5qy1Na4XkZUNZtMZrShEmQrlONx6LeXeOw5+oKh1HVzHZ5rMKUxCXYfMTgPmY/jB63sU5YzGl5ucv1jRbjqU1UNGTIjtgk7YplQ1ZNSm3vXYvN6jiGG4u2Cz0afvNPjBk28QShBGUVcNevWMq+0dHj14yNVXznMw2ae7ljGMM1IRohc5geNxOkzpdSXjU5d6pyR3NBvXS852LW+/OmPzfIBrU9ab5+nLFm/d3uOtg2M++4mrdKTkpU+02bz+Dibr8OY7Q3YfwKO3NYODhGICdUeztu2xmMXkpQSh0VQYAAlYsfRqGKiFPr6nqKqCNFmmp4n3T6aJJMa1SMdglcVqUJlCp4bKGKQQYA1WGOr9FrIZMDw8A56eTH+Y0aKiMAWO79D0ffYeHFGvuzxzcQeTaXSVsrnSYZBXWGNxPI9UQ2ktruMQ+j5hGJAWlrNpyqbfoawsaysrTBYVB8en1OohjiMxQlBYcN0I3/UwpkRZS61exxGSMKihHI/D42PS2RzXaFbqNRwhGA1mZGVFVRpajTZ3bt7h2pWLOMJyfDCkOp6RZCVlWTAanCGqitXNc7RrDTCa0mbM0xmOZOnEbtRwQx/hLs0iuS0oimSZtBpnTIcLrBGELZ+o474fciRxHYuVBgdL3XUJrMeikZPVStJqGZbyZLiLRrPa7mCGBanJCNp9ejsXCCOP27duMZqnTKzDzYe7lI8PyLXFyuXHr8FCWZDqinmWUlpLhaEsSoqqJM1TBAbXgcXRgkazg+dZ9vYeY7Dv3y4tFVzaLGPDV/oNdi6usHd4RjsyH3TZPeWnhLffucfb796mKAu6q21QLnlVcXoWY959jJAGXZUIm6OUh3QURVmgfJfWap3aqk/DDbjaa1FvRGRlhpSaTqdOnpYcDk8JnIiz07ucnUzIZhn9ZoON9RZvvnOfezcP6bU7KNfFC1xKbahKg9ECX1o++amP8Qu/9D+iUAasJdVzRuMxw9kQawvW+utkaco4A+lqMu0znxUEToVwLTde2OH5F27we1/9AyozQyg4Oz5BCEO/22Z1tct8mlDMKxajMSvbXWg4THWJr1ys1uSFZXdvxGiUE0Y+lSkpSsNqN6BZ95kXKfV2nStXrnN0/5h3f/g2lBCEHkK9nxHhKoLAJ2i2lgdkVYk2GiUdqqogzyFONPu3drkXnhI2PGoNn1r44ct6+IlvpKNGDy1GVNoiU4HWOQ93n/DDVx0+/TPXCaIZv/pffJTf/q8f0K11eOedEcOkJMvGnOuH9F96lgfDMSaCRr3NZDSkyBxkDsrRPDo+hOZ5dp7rsn1hndPT+wgdcDY8JaptUDiCwkAqXPo7bRazCVobPJMzWczx3YxmDRaTmOlkg2995x7zPET4DnXlk1UKY7qEUYs0q0jTiukkpWNbVMbh1pM9rtyo41YNCNd4+/5DHK/JetTi/vAJlQwQFozuUGtLgpogUobB8QkvfGabjyuHb/7uXQ7fmvBzv/ASphzywkd6BP05scxQjkWGLrNjzdXVbS6ea3N3/w5HZ5r6tiEQTTyZsNGvcanv0PzUNb7+R+/x7a894HtfO+DFa5f52//ZK2z1X2U2O+bVB2c09na4fmWHKzs1tM1odCr6a3D2YEzzjo/Kc+KpT7woQOrly9G+n8tkLfr9eeiq1MRVQiIEUejSqNdI04wKjZUWN3Kp3AKtNailncHmYArwAPnvFqusZX9/n7XzWzTWenD64dsKfsr/l5/93LOcO9dDOh5ZmpOVBSeDMeNpjBLLpRrpKHquQ0NIxpleumUbTVzPQ0gHbSxxWhBGdbLcRZeCTFsCL6IWhVhjsFZRliVhUKPf7tPvdbl56x2aUYMgDHGUQ6PR5PTslMV0RpWl9Op1pIXdR0es9tr0ul12T4/ZWL1Allny1CBtTj5PORidYq2l3WjgS9jYXkU6FYtqgutKRADtVh0lFVmaYxyHQiqKoqAsM1xlEFozGk7ZPzwjTSqwlp0rG8SU9NtdXF+iRUmapngqROCQJimO47N+YROT53hOjd/++nfZn50QBT5hLaRcVFhhKXXBcJYTFxWnkxkLYSiw5EXB8qtYUFUG+/7MzGweM53PsVi01QgsWZkSRgFZGjOazKnVGnhuhHIMhYGq0iAFQoHrLhPchDRokeC4OZsrTdbawQdcdU/5acHzDPWgSeAGzOIFVglazYjh6ZzpaEQYOVhKer0GfuhhhKW30aHTjljb6NDrNsirksFggjGaMGjQ63fQ1uFsdMaPvvtDZCWJ5xlIlyjwqdUjEmPJTEVrtY7jScLQ8PlPPEOp4dHeCVrA9oWL/PKv/m1OZ0PmyYDAtwyPZ8RZhhaCtCjQZ3Bp4zpn4zlpMmGjG+EqF1cJfN8lThLSOObv/p2/zve+/8ccHR9SmhIXRVkuA6eUY9k630EYw+69Yy5eucDFG9ucnc04PRtx784RJycJ1ghc12CswXVdOq0GuqxQvsPOhYso7fDm917HlBVSOFSVxRaavCzJM401UxxPEdUCGq2IIApQRlMsJlSVxg89ZLuGzioWs5LZtMRUsw+6RP7c+YlvpK9dvsD9sxFhaGg3aizGJZW2vHnzMecvn+P8lk/tvOErf+9j/L//wXfRbxn2X3+C/CsXcXyXlfo602KOsUMcT5AkI0xuCYXLL/7ll/GbNb71g7fYfnLICy9c4fatR2Aq5rN4GaxQFiTpAqQiL1MMgqjWp6wqGlGJpyzdehvXbPBP/tlD0tJDRAmZFBT0ODmconMX4S4fXOmUhC3wREV3pcPe2YDjgcPKSpc/+uET/vHXfsSzV9b47MearK1ssTBneKpi9/SUZNKm028wLSbQFWxu7hAJw6d0g/d+mKDCBSM7QrUskzKlCkKGCQzGBc1axJp/jV966a9gzX9FXD0g9yp6gc/PvbTFuf5LrLVvgDE8+0zIf/ff/ZD9fcN7j474L/8vv8+nPnqev/ZXP8nzz/8xv/f9+3zvB03kRzfodlZ59/5DhumC1vmQV34x4kdf0xxPF9hUI7QDatlMC8H7J07L0ycp7fvKZ8siKVgkxfvRwQIcED4gLY5SaCMwmaVKoO6GrHVbnJ0OEELiKoWuKk6OTuhc2PxgC/Ypf+F0ug6e71JUJXGWgO+gmjUWmabMM9aabcosJQhcillMQ/kII9BIfC+gMpBXJdoqFokmciStWo1Ws8bpcEotrJGkKa4K6LWbCCtY661hTQUVdFpduv0+88WCk9Mzjg6PKOOUSLnMRlOmlaVMUupRnVZhSeKK27cfkeeaoiwoBBhfsX5hi5VeC18KrKlQWFwlCFwXWL6ErJFY6SKFS6UtWhfkRYJEM5/FpNOMw4MBZQWO49JohzRaEcJzCPwI1wFjC9K0JJcCbTyGGSxKKHSJtJqOZwnqPkmaMaqm1AoHrGQ6nfPqm29Sazbpr62Ru+ALQ9UIefBgF6stWpv/weWNFCwWMcn7KWlZluAoi6MkaTJfBmt1V5kvFhSlodNooSsHi8YYcAOPdrfP2eCUMADHtUzHEzzrMDp+eiL9lD8b59Y3kVpRFZpShmS24PzGJjtbm9SaIVrkzOIFQkK9EdLttui26rTrPtIxTCYTArfG2jNXWCwK1lbXGE5HrK5so3MHL6iRzHOiTsQiiRnECfGDnHDfo92o0V1rUmQVQklkBeligeMIwmbIL33lr9OMVpkWGTf33qIWSVxlEULgSYdFkTMzI/YG93BUQegENDwfR9SoyooizrGlACl4dPKYX/jCz/Paa69x6967JPMhjfoGQjkIu2zKBS73Hw6xQvGple5yVwvBZFxgjIsxGmPF+420Q6MecHQ8o95q0eus8c733mQxi+n2OnhuwGw8xxqNxGDykjzRGCzzUcp0lNDtNzFSowGJRQSaF165RK/d5uZ7j8niFArDLT5co1o/8Y30dP+QftRjbgZE7QLf8UljQZHBH//JW/xHv/Y5pEporTr8zf/ZxxkNv0dnxeHh/h7n65dwPcHWSo2T+YLKSnzPkiUZAsX+4TFXOi/w/EvPc//BLp/8+LM0mxHjYcnp2Zy0kkgUB4cDDg+OeeUGODaj15GUo5jtlXUit8/ByYSvfuMBd3aH5NrS6hh6/QanhzPKQlHmKQ4GjWZtq8HPP/ciLmOOj6dk2qEWrPNkeMq/+KM/YTCCd28PebD7XXZ22ly/0eXFZ7o0ayPeeXSM0RtEjS5SFuTC4SRe4F8L+cz1Hid797ATzaOTBaOZWY5O+A6OiHDKGv/Pv/9HvPknd/jZv7Xg17/yKTwnoG7P02g8QZqESDTJdcGnX/x1/slsj+M7twm6C8rE5189mRKfaf7u/3ydT7804bU3Q8ap5mxRcHhUYUyd+VzT3sz4yt9d5e5rGbe+M0Ioi3jfSLeckV5K35VSuEpgjUZXBlhK8I0F5QmEBzgGDTiOwpYWFUtMDrVWnbP5BONInKWFDGUtNsuxh2cfXLE+5T8QmjSLSfMCLSy9zTXG5SnNTsTuo0N2hwMCz2WcxuSTjF47JDSSTFeYokBbsYzolgqtBY4X0mi2SLKMZq1Bq9UhLXJm0wWXzl3Gdz12dx8TpzEbGxvMF3P29/ZJ84zxaESepCgrKJKKZJZgNWAtu4cDqnI5tjCeTBBK0uw2EDVB6Um0rEirGdJzaTbqSxWfcvA9j/lsmcDmeQFVZSlKjTYFUKKkochLkkVJPKtY6+7QaEY0Gj5GlshQYl2JkoLQ9ykyQzsQTNIUrVxOZhnaSFzHZZFl5PmI9fUW9+4tmGYJVeFSLipMIFnfWuFkeEwhDFeeu8733rvFcDLDWInRBmvF+x/JS/FkuohJFzNqnqXRrNPttBiNxuztHrJIDHmmWSxmeK6DLyXJfEGrHZKXFun5TBZjlC9wXIkUDsPhFGUknfrTE+mn/NkYDxacP3eeVqdNf20NFSpG8zG7hw8ZjE9wXcXGzg7dVnP5vNcbhK5LnM545+7bJFnOSq/FSrtD3S/otTt4ns9kPmfv4IjRIsNza+R6ThQorLEssozhbIaVgtlZzPg4xpc+2XCprStkxsdfeYlWZw3rwv7ZAVYsb2M8JQgcB13mUGUgFIvZMZFSFHnGg+Eug8EEz43odLtEUUSzXifWGXtnJ1y78QKtdpsfvfF9ZuMJ7V4PIzTKi8jznJc/+RGqdEFVacoqJfRdrLZYo7HW4jgSPwioypJWs8mjvQmXrpzn4MERD+48IWy2uPLcDbJFSrpIycoCYyp0VaI1GAu2shhTUA8NRhpKU+BLh7ys2D89YzJNcHyHj167zCsvXuFbX/9vP+gy+XPlJ76Rvtb8OO89fhuvodHNGWdFwmQuqWJLPE345rff4q98+RWwJc0Vw3/+v/0sf/StH3DkZdSrBC/LqTV82vWAotQcHE6YjwuM9NnYOc+3vv19Pv6Zj3KU5ywWGabSWGMZDKb88be+z+nxIcJYRCV4fu0C2+e7ZEVBpx0SqZCTYcmbN4fc2T3Fhpp2oHju2hphrc5seEY2LVC+xgqL60N31SWsJSzOTvCMZJHB0emA3ZMnHCQTHD9kME+QRjG8ecbe/oIntyes7vS4frnF177+JteuPMNzz69RVCP80CU3c3Iyzt1YY9O0aDyc8eZrJyTjORe2GkyOXG59LyUbaz71M11e+YSm5Z7H14p3f7BK4yOWmHcJvB9xOt1Hiohf/tVn+ME330MZh2JiMZHh9795i2c/9iLnXj5HZR+QSLh765Q09phNNcKUyI4i86dc/bRPp9Pj1d8bkc8N0lgEajkvbUCbColCCkFlQMjl70aDNRbPV+RoXB+KvESkDnpcUWmFux5ghWF+Nl5e5fsBpoCkKsgb7gddsk/5C6YwOdXCcHY2R7gh+2czTocJukoorKQqNDU3QCcFodegTCvqjTquMCyyBJRCSQelHHzXx/cCtDVLfZ702NrcpqxKDtQhw8GARqPBaDIiCJdx4YPBGYPhkLJcJnf6SqELw3yRoI3EWg3WcjqdgtU8e+0yp2cDgsih3g6xgeZ0PkFT0q418RyDkhWuG2CtIC4L8HyqCoTVeL5DkmfE6QJPOVR5wXQyI5nklKklMRO63SY7O2vsn+ziOAGVVbiOS57mxNOUsF4jTyaoMGB7Y50kS+i1G5ydKqzOqdc89vcHDCZzchkiKsN47wg3CtnaOsc7t29yMJryZDhjEGcYYzHL4NHlYjAGZUFUhuHhHr7pMj3RvDObYYyl1DAeJyAcXM8jDEJ0YTnYO6HZjviZz36a3uYG+8e7CAGnR3vEoxN6vQZ/868+x2anzT/8r+5/0KX3lJ8C/sZ//HeQnuDJ0R439+8xmp4iPWi3Iq6vnSMKPSIvolPv0mut4Hshcbrg7bt3kH6Dy+euYCrJeDbAGod7D+6zd3jMzZt32d87ZDbP8UKXRuSSFwvmcUqpFUjJLJ3j1F0aKw2qWUVaFjhG0l1vcu3aBU5GDzieLZgsTimyDFNUyAIWZYYxOWWRUlYltU6flf4GpeswtTlBIJBOyenoMelBge/WOb9znkonxGlKt9fhM5/+LN/69g9w3AA8idYWJTzibMHli9uEYUCrHhFrjVJqeSusDFHokhQzGmGAqSRBvU0j7PD9P/gj4liTFQmvv/YenpSUcYo1JVIa5PvGWixYLNYsNaSe65GnKbYU6FIySypOjs+ggvkkwVYfvqyHn/hG+p//P37EX/87H4PemIPiFtnKFCssY3JM6XH3yTHfeu1tXn7xPL16m9a5Gs4Xf4Z/9m++y9nJgmcv9vjEC9exRcbReMKP33mMLiz1Zo1md52XP214/OAu7W6LyXRBVWqE0Jyc7TOcSEKnjutk9DsblFkNbRNmC4NsZ7xzb5ff/ZMpdx+fIlzF6kqDK5dqXL24w6PdE7a26wwe7+NEHlIaXCVptgLu3nyIXliuXbzClQt1mq2C3TuPiNYD5oMcBx9BRFEk7B1mjEcZ7ccjLl9t8NyVy7z+5i1W1jyilsaKkkB5OFKg1TLGdOtig16nyd7NIWd3c773m2Nmw4R2I+CTn3wJ8q/hR5os9fnf/x//7/y9/8Uz3PjkiN3BYxr1FZpByYvPJWxthuwfWKgVtOs1bOTyD/5ft/jlxSWuXN1hPJuTxRZTLvVfk3mOHhsaLUlRpfSu1PjUr6zz/d89oxprpF66fo2xGAuZMCglsEosF5HcZRCLxGKRKGFRnkIWDvlphSogqHnUm3UeHx0trR2OoLCWQls04DU+fIsMT/n3GU8m5KniRz96iF+rk2QaY32KTDMezWhHNS5f2yRWAoPk+GTImuOQ65z2So9Jni9vPjDvJ21aEArpCrQ1DM5OqEURrpIcD44ZT0/RtuTgeIjVOVWZQZkgdUUjEDTrXSaDBbPJbDnrKx2EMHRbNdZ6TZRb0V+vs7Z9nqApyI2h06lhTIXVJcYVWCGXdg/hUer3vdimIFAungJhKkwhmMUxJtckkwKrHZphg8Bz0XnBrXffJer6mErhhy0cpZhNZ4zPFohBSi40VTZgpb9Nt72C61g2OiFP9vdJc8W58+vcunXILE9pugE6NzzePeTx0TFJnmCmKcZxcKUiNxrk8obJdSW+D83QodPw8NAMj45w6g28eo2XX7jEpfM9ijxnPMuJU7i4fZ1/+k9/ZzlmYywXrl0m1wX1ZkRWFqxvbDA0OfUI2pFLnmcfdNk95aeEf/xb/xq8gqju0e8tF1brUUjoKXypMZWmzHImxZwiERS6YBhPKLwQXYUcnKQMT864d/chk/GMeJGSJDlpqtFWUpQORZngex6OkFixDFIRVlCUYF1NKgqaq21ym6GRrG9fZWftPA/PTnj37htMZjGTyZSNtS5TkzMcHHH9ys5y68BCr9NntX+RQIUEASTZjNPREXce3mY2n3J8cszx6QkXzu3QajUYjoZcOXeBK5ef5Qevvs4zH7lIZUqsqXA9h3fv3OWF6+cJXEViy2UTLARKShxHQmE5t7nOyemEZrPL2fGAxXxBqQ15oUniDCksvhL4LrhS4rgKpQwGEFYgrCCZJxgToLWgyCp830W7Bjf0iCcVx4OCr3/nzgdcIX/+/MQ30p/4yiVG84hVU/C5q5/gVvgeN91HtFcipocuo0HFq68/YL23SvfyDko5bPa2+dVf+jz/zT/6N5zu9/jEc8/jyITHT54wmsTLJRiR8/tf/UM+83MvEvge+SJnVM5xHJeoJqjL5Y/GEz791hqnR0PeXDzihY9tE1Ylw5niN762z83bc6JGwOXtHuc2PbY2ekwWOcZUSwd13SEpyvdT1BS69CjjkE7oM58XvP3j2xwfnqc0W3T9Kf7agKoAnQqKXCKlZZaWxFVBoUtWVgStTsiPXr3LL/zix9BmgO8G1KImSVoQ+gGFHiNaKc9/8iLfGw5IzJDuOY+Pv7LDyoUameyRlbscnZbMZzMe3tRc/XjFID6g0bhEIOs8f63k//B/e8A//Ze73H4imC0yKlMyPxH88//6LTb6dTqtgMsvXWSuHhFEFX1dx7gaIZbzmklpkZ2Y5z7f4/WvnWLiClU5uMpS2eW1kjEWKaEWudhCUFq19P56BilAxJLZfoFc2KUrOk852jtA2OV4iDGG6XSGlAKUherpLOWHnUIb3r11yOEgx5xVoA1RECJxCKzLxY3zuMInSSvismCWZbizKa12ncPdXZrdPlYpvEDRa7UIXA9rNGVZUFY58zgnLzMGo2U0cFUZJtMpyWJKzTW0BDTaNVSgmCVTjC3or65wMhzjey7tTgvHhU7LZ6Xls9qJqNdCgkgiVYmvwSi19CXrkqKsmMY5vhegVInjuMzmUyQlee4QqibKOpg0p0addqtBEVYoFWKRaJ1j5AwZKpJyQTbO2IxaBL7LQkoWi5x62MKQU8qCyWxIVcas9ep0GgFmvc87d3Zpdzu4wQlpWS4d7kqRZzndWou1bhuNpVCCo0XM6XS+tOg4Bj8U1EOJ75RYW2FMwCwu+ejzm1y9vEZVZDw5GvD2m3c4OV7geSGD83PS0RQEtFe7TOIpRVkwn89xfUWvG9FwVpidPEBrSauz8kGX3VN+SjgZD/jsZ1+i2wwQWIypqPs+ihJbFSRxzHiS0mk5WOFyND4B36MoLT/64Y853D0gnqU4UqCkxlUuniPIJBSpQVuB7/mUUmCsojRgrMVBLm9oACs0i3JCp97A80Je/tTH8f0AVxpWOm2QPkGthu8r7t+8hykTpLxEzavRaDggI04GU5L4hNPxPsI3hIGg1WtRkVGruZyeTbj74D16nRU21jfYPznCrQuuXr3Mm9+/yyufvUphC2p+QJrC6WBIOwgp8hKlljtKjjJ4PgTaYaXb542397jyzEVODw/p9mtMRjFJUlFqqIxA6+UYpnBBSIXjLD8krLEoBLq05HmF8n2gwr6/TOx5Lso1VBXk5YcvNe0nvpEubMydh9/l+68b6r5h7YUeL3/p4+wtDnjSOMFqCDzBd1/9Ia16g3azQ+D1ePbyJq88f4Ufv/uY40FBZ81jcDbAVx4rKx6uU3B6Jnjz9bs8/8wNHj66x/5sH6mgFngUWU4U1GnXezy6s0en7fM3/sYrWHGT0ajOv/7tY27eMQjHp7vSoL/iU4sMuqp4fDykGynWWyGnq5a9wYTAV0ShT7PW4J3DfV7bPaZUJUoKdOiRixHPvbTDuwdnZGh8T5I7mqoyuGGNOJ5zcqY5GxzQ7YW4jmD/0SFXLzm4siCZnSFlkzwPUa6mVZPE6Rmf+HLIuQvP8uof79LudQkCTTpvg8yJ/AiF5tabA37xb3aZJY/ZO9ulf+5jWFtnfWeVzWeO6N2oMZtInjzIePIoJZtUPHlnxsNZwv6dnBs/v4K/WjKxCzQunhTYsiIuDLVag7UbgpdVj3e/MaMcZiCXD50xyxMtx5F4rqLMSpSEUgIuKO2QD0vszIIVaLmchdZpjmI5Gy2lxHGWDbW1YH7yS/op/3/y4PGAh/sjssrFYNFlRZrPqQcRF7d3aDVrOK6iMJq9w2Na3R6j2Zw4S/C9gEWS8/jwCed2ztH2IqxwSeKYpKqwRYYWMM8WFHlMWeQURQ55Sst16Ec+K0GIEDAo5mQ6Ja/ACMPOlR2sAisqpCPI3YpBlhEYA7rAsRENr4YpBWmeUWmLUg6FtpRGY6uUunIQaLRZpp9J5VAZidEO3WiFwCgiz+dsPiRqBGgqtNXENkWXC6QnkX6ANpo0j8mqHKMcpPKJpyNEKJhOFkgc5osMZQ2hUqy2upyc7hGFAcmipMLgKIEv4NlL2+RZjvQDRmlCnEyp9WocDObkxiKFeV+Bp0lLGC8SZouMfDLmi5/4HN97/W1+/9t3eHzviDQ2uCKmUYa8fP0G+9PvsrrRJc3m1KKQes0HclZXHDYub7M4kxwcDql084Muu6f8lHDl/BbdsE7T8VmkMboscGs+cTxlf+8xWVayurpDrdYgriqmacbobMhoMGBwsEuRJkgJnuctT1qFwVHgOgopJFZ6NFf6+DVDMi+I2nVO98c4WMqiwg80US1AiAovMqyu9VjbWWc4OcJ1CrqtJr21HQ5ODrl75xbTaYzCMJlkXDrXp9ff4Gvf+Db7e0ckSYxXc7j6/CWaLZ9+w2NtrYfvWjxPMpulLGZDTk8q+r0V4jSjv93mRnGBk90B526sUKQZm70VFtmM2CqqamnYEVLT79UwImV9tY2pBOCicNh/fIDnK3qrDeQIptMMXYGxgrzUCATKAO+nkFolkAakUqAcrJJowXIZWRus1biBxGqDKZ+OdvwH597rI3qtEOHOeHQU8+ynnuWNf36TGz9zBdkTzJrx0lecFvz217/Dpz/5Oc5tKhzh8cXPfZR3b+1x+94Zl3zFcDiiHUXUm4aHT0bkqY/WQ6RKyJIxoImTEukFbHS3SGLD3ffus9Lq8As/v00YzChtxO99c8g77y4QRtLbaJAnJbduHTJfbdCo5birNRzHsNKoMZ4eIYUDukLJkk474NL5VY73TiksOL7AC4dcO9fn7vcOaV1cofBiTF6i/QJrJK6nKEcaJ1SkiUQITRiWJLMBO52rzLMRVhTUajUmWUXNbZEtctY7TQbzKec+4rC+eRE1bCPtCM8twR0DDQJfcO/dU+Tk51hdmXI0usPZYotad4NFIZjn8MYPCrZ3NNdvuFx+ts/Bk4SHP8yZZBWnj0bM/9WCF35xh7yXEfmGSEpWOj1GkzlpXpFhqG+WfOxLK3zvt/Yp58sXr+cqilJTloY0zhGlxQgQvsSRimRYYicWB6iEpSwtgSfQWQH2/S9jlg+lEAKMZXE4/wCr9Sn/IXj73V1K3cAKQa/TJc0rRmcjIhSLOGGxiPEcRZEXhGFElhdIpWh1V9k/PuH44JDCGMqqwqs02eAMHEVSFIRhQKVLwOKbgk7k4tYkeeBxfDxjmuTg5WxtraGKAohYjkda6l0P6QrKUoCw+IGiGXjU6g6+L7HSMl4keEGAcgRlWTKLE5I0B2vodz08V5CmKbqqAA+hQtJScnoywy8cOlEDF4coaqIcF61LMh2T2ZSg5iEcZ5maKCRIKIVlURaMxwecjU5Z2WiDUizcEs/1sCZHJzmRqxC6wnUdgsiDwiCVpMhzDk9OuXDhHMPZgjKb88uf/yRxlvF733qdkyRBlwXaBWkMhRHEeYWVisHZhMP9fU4PT9m7e0zg+qhaRVVZSlOytb7K1vYqXqgYT08xukajHlGVKaYYU3ObrJ9fQwqXIOp+sEX3lJ8axoMzZmt1NvsXaDZXePBkxsNH93FlxXwSEyeWwCsJogXjIuHu3h5ZlnN6cIi2Bb1uDVjWr6sUoAmDAAtkhcF1fBrNBkU1QyoXt2bprjWYns1BOJSlxsQp7XZILXL56Ede4K233+HVN14nznNmSUZrpU/UCtFFQa3WJE4KxvOKyih+73e/xs27D6m0xhoDC8t89g7nL29SbLehH9Bf6dDvtjg8PEKRofMxxwdzOiubxPGcK9dXaERXmJcTjpITjCnBSNKswpplgJLnwMqKzyRNuHb+Mu/8eJ/Ab5DFOYPjGa5raHZq9PotHNdlMlpQ5ZbKCMoSeH8mWguB47koIVGuwjoSI2CpxhRIY9GmwvU9TGXJs6cn0v/Bef1bj1hvBjz/kR6Hw4qwN+VLH32O//YfvoqoCz7/69cY+8eYUHN4MuX1139INr/KztYVup02f/s//TiHhw948rhJstAoL+NkIBgOPfzApd6Q3L9zjywpSNOClfYqHW+TB28fMDMD/tKXXmCr3yYdlXiXWrz9TsyPfnSKVppmQ5GlC4pRQqcVkWcOQjg4Mw0oZBURZwapBFmumc1KqlLw2Y+8SL6fcn/yiGc+3kKJgG9+fczP3/g0WysBbyavcmwzcsfHj0t84WA8SV6WqMBF+w65rHjr7jHP3FilEcB6exVXZqgyxhiJ13CYlVA5LSJZIvuWzk7CnclNpApwcsl8WpInDrNxzte++oC/8ff6ePIOZ9NbmOARtlnxlb+6yWJ+wve/WVGaBVtbBZcvt3nuP2kyPptz57WS3ZslP/ytXbav19m6FCLqlh/9yZTOVojTKXHCiDDUNLctr3x5kx9/Z0g6SJHLI2TyAnRpaYUuwhqEFWQHJZQGZZYT0w6AEIhqmdrmKLAClJQYvYx+ltZSjD98jsqn/PvUayGGOvNpxmK+AKHI84ypAVVp+s0GkV+n321zNptipcM8yzi9f495nmOERSpFWpXkJkfKiHwRQ6VxpaBb96i0ZjJO6dUlzz+zheMJbj4Y8uSwIE1z9qcx06JgVmoqJRC2QGcVgXDpdFok8RyrS0LPx3GWy41JITDWYT5LAY2ShqosSJKUPK8IXEunXqPUJa4fksQZeaAoU8hSTbpIoDBEQURlNGUyQ7gVpUipRQrPE6QVONIl9CKKIicrJafzmHu39/CkpNbuUFYJtVqDorCkznJ/YzwZY0uD1IKNtR4mL0hOFhSZQUsFXsDjw3sYU/LbX/0W41mMCkIankNcJlSlxA+8ZbJiZZECRqOMt989ZW8/ZTIpaTSWqW6SgqzMaLRq3Lh+iZFNqYqCSkuEMLQjqDmafitku7+CckL2j5/OSD/lz4bnhTx68gghCk7Ppty69YBeM+LCzgrjgaDUEjYUaRFT6ZidjS6D0ZjjvQzhKhJToaiodwKyLEcqSRg5RK2Qy9fXmGUGpxZweDwlCELKoiBq+lhTEbkueV6SphWBG/DpT32Kuw8e89qbt0gLS5zq5UL9ozN2Lq1w4/kdRkrQX2lSazY4Gc559737ZHm1tFs5Amss2aLg3nu7TEdTGp+8jpUZNVdy4cJ5Ll28QLKYMzybsnd0Rru9xmS2XMQvTYVyFXmVEXgR8bxAaEHgS+qNBrlZsN1bIZ8LhpOU7QsbLCYxuhIIY4lnKa5fUn8/oGo8nJNnFQZL2PCRNcVkmmIl4C4XLq1YGroEAq0FphJorVHOcv8sTdMPukT+3PmJb6TLysH1Qz7/5Zf41f+8ztHwLp2tGq1+m6O9hM32NnmWMs9ifv5nf45He3d5cnKHTKZcCS6wtrlCmsdY20AKF43l+DRGOSHNZgRGMzhJENbn3OolsnnFN//0LcLI4nc9ZrOYT7zUx10LmS08/u1/f4s0KfAjAVqjjaYeOtRCh9OTEUZYrrZ2ODyc8vB0grEOuqhQnsQgyIuU1x/e5Non+3TzKcPDCLnY5tefW8GtMmb332ZnM8IJXNRqQVk2mB8LWpGH7wpKJGE9IlmUJJnDew+m6GLIxa2CjdWQ1XaXZlRjb3BAUWQI4VFrtJkXlmmRsbAujTJhxd2m9DP6lxUNU2PuWbCrKLnH1EzxiyaL+RChBb/yaz0e39/lyU3L49cy7n/nmI2dgGdeqvOpLzX56Ofn3LtZcOethP1vTHjxmRVknPPj352jQoXwFX5kCSOfIPJ59rmrZMOE0f4x1Xi+1OcgkI6DwjBPC5b5DuL9tLP3BdTGog00Gz7ClhRGYiwY5HJj2FoEH76v3af8+5y7sMLDB3N8xyPLS9I8JvQ9Is+lXveR0mJNRVnl5LqgFJJxGpOZCsRSrRbWI+qNOhOd4i4kLScgT2NSodnob3N6PMDRgulowd07h6ystWg1G0SzgoWUHM+maAdM4AEGIRXCKEojOB2MWOu28FVFr1XDEZa4MIznGbPZkFrNJfQgChwC38dRGu0oQJJmmrNRiusFBEGdk5Mp4+MF5Swnnyece2EHoRRR3QMqFnqEUhptc/JSIUQNx/FQSlFpj6ryiRpdtDpinhlOxynttkdlSsqixG036Xd7xHFKkVekixxtS65e3GR/npItBEenp5zOpxRWU1U5toSo1sIJHBKToCqL0ZDGOb7nEbkVua7IjeAf/fM/pSwsaWqwtsIPIHCXIS3vPbpL7lRoral0RZbG1PyYnc0VLqz1CB3FYjYnaoQsFvEHXHVP+Wnhox/5OK/+6I/5znfeIp6nRG7E2ZOMm6/dZDiKeeaFqyyyPVqdiP56m2vXnyFPXmd7q8XG5iUcp4njCCQlp8NjFosYicQRHmEYcLHWYjAXJFkdIQLyzJAsFrS6dZphwOB0RKfd5S/94i9yNjzjR2+/TaoBN8CxiizJKPOKwdGA7EKLG1fPEzU3ODkd8vjxLllu0OVSHIA0BIECY9DacHo45U++8SbPvniRre0uqZ7jOdD0AxrNOtdrbU4GcxZJSS3KSJJk+Q4VEqzk7GRMu96iFiiChoPjCi5tXeEbf3wTLSX1RpMnB4fLsUshqHJNkmS4aUGz3WBlrc10tKBIcxqtGqEbsUiPKHUFwsFglv8XFokAuzRxYZbKUcdb2kI+bPzEN9Kf/soNzq83+OGtA571fC5dD/G7Ff2rGtXVpGLE1evP8vjJCTtbF7l06QL7h/eZzZ4QiiGR7OI7EUbUcJRPWuWEQQjWRReGIrNEXo/QaXD77QOSdMGV51c4d6lNWhiK0mEyNeysRPyz33yP3eME15FEjqIRugihqNUVk1mC1i5GSjyrSGYJk6SiKi1KSqQEITRBZCF4wmDYZHF4jS8++yL+bEYtPmYWnJGLISf3HfaeOFz74jaP3Ec4ay5OaTGlQeeG2WiO1ZLBLGc8CgjrfR4PBPdOzuh6Q66c2yLwQza7DXwlmGYzfOlRSktpfEpqhM0LYEb8n/7L/ynvPniDH73zmO9+Y4PPf/lnWaTf4uZ7+zx35Vka3imun/Of/E34+//rhzBzCK3L6FbG9+7mvNVTnHs25PwLda5/DE73Kx6/l9De9timZP9ugpuAW9ZJhxknizELfUCr7kFpcT2XqigRWGbzlNBdemktEPgexvy7MBcJlcER0G1GSJMzTSpmuaZCLOXUlcDop430hx0vCinMCOWFuBKMMrTbbTxHIXJDrkuEqpGVBVrAaDGhsAblKsJaQKddxw0DhHLQAsZVSp6n7Kz1adfqHB6fEi9iOu0mtVpIGNYYTy239g4YFIbKA1V3AIsnFBaD5/hoXSGVYDHN0EVJa7XPIskIPMVgNGJRaEpdURMuWVGRZyX1ehOkQ+BLGo060zintB5ZYljM5owPJ6zUNyg8l8fHu9xv7nLjymVCJ2BexAySIV7dUJYWayCIfFzPRymoRyEbaw2e7I9QrrM8FQrCZfhKlqKEZT538T3Jsy/eYDSecXh8Qp5Zqlyz3etSDDNq7Ra11c4yGjmqUY9afO7zP894MuI3f+e/R0pwpaXXblIPQ5TrsH5uh8Es5/79fWaHZwjpkJca6ThEgYeV8KNbb7P9zBVK9NJggqTR7DJPSo4GMTrPuHHxKk6lcOWH7+X7lL8YVvrrvPLyZ/nD3/0DbGEZDzOKeUWaa9wwZDif4rc6WAu79/c4Ozjm2Y9c5MrODrXGBqWGJE2Bkka9iesHWBSe45MuhpRlTLPhYXTFySgmiFYxuqAUhrzM2N5q88tf/gIPdqe8+s57aMci8HCDELfuErWbZGlMVcwZjkY899wlWnXJyUnJycmAShuEBGsEAklVGDxPURlNUZRMxiVvv3Gf9bXPkSuNFZoMTdRpUOWwIlzG4xmT2ZTNjQ0Oj484OjrFV3VWO01c4MJGj0E84JWPvMIPvnOXpNDUul3qjRaT6R2MtZTaIpXEWoc4rsjzKZ12RK/fZD5dMBqOUTamyEqMlFhrsGKptLVSIJRdhrJooALrWDxXsLbVZf/t6QdcJX++/MQ30v+T/+XnWeuvQFEn9F2MmGCl5ud/tcMffv0bvPbeY6LolCiq8c7NWwRBROg26AWbtN06ymhOj8Y82N3DaImjQkJfEi8KrHHxRMT4LOXd/ZsEATTaLvN0wP1HY6JaRBk2+ParT5iP7vL27RHCk/iuwPMEOxd9djabPHoSM5wY8tIslTOJ4PlnLvP1773DMqLPohxFUea4rqSuG7z61RnxSU7x5hM+dW2D+iVJaoZI5TDZr9j/foxXhZz71S0eyWPyviEdgM1A5xphJVUhONydsXHeYzheENVDqqzi9J1jGrWQjX7Mpe0m9cChXvNYlDGzLKWMAm5P32G6V/HgT4f8pS9+kXPr9/nqv/0GLz/z16hFlpPBkNVewealJmfHp1y90uXlT2R873dOsLpASg2VojoT3P3OnDuvzunv1Ln0MY+XP99Bi5SN5yTGq7H7Xs5smKGEJggMtVJQpiVSSqy1uI7EmGWTvNR+CTSWUhuElFSmQimB60oaviLyBNmsJLCG1GpU4FKVdmkBERJ4au74MFNZl0VRYXVMaQxBGKJDl6QsGQ6HjGZTGu0Wqa0YZwtKKXE8l1a7QafdIAwkFaCtJPB9PGMx8wTfd6kFAUd5yjxLsWNDuohZ6XSIajXUKMbIhKjpsbrWWZ7iaonnetTDgDieLUcWIo8yy7n76JA0jrm81WGl28KP55ShC7bCask8LkmrDGMEjpLMUstwnDMYZTjWwSxSum6TlUaXo8UJSZYzGE9AgBaGw/GAwikI8pJGPcT1a0gnwnMddKWXkb+NFvNpghQuxlbM4phLV9YpkhG1yENXJfN5hufM+OhLl8Fo/uQ773F8MOLLz72EPcuIVle58emX+Ze/85v0eh3a3Q6Zznjznbdpt5o8c+0cZ2fH2KrCEQLXUew9OeD2w1PiOMdzHIQQaJYO+aw0WGEoqbBKUOQFtdBHKcX9RxPQJRv9Jh99Zguv3mEySyh4OtrxlD8b2li2ty/T723yJ69/nyqBF565zrWtFrqu6azWCHwDOmGt3+DC+QtsbF5kUYBVLi3Po4gKyiqjHkXEZcFoMuN4NuH4cB/XsXTaba5dXMeqM0aLjHOXrzId7JPPJ3z85RtMk5i7Tx5T2pSwFpBOl/sHrU4H13epRR6LyYCimlNWFXmWcHJ0xHg0wPWc5eaPWb4fhTUIAVHNQQi9bFirijde+zEbWx0aLZey06Cqg+/4bG6vceOZq9y+c5fR+JSL57dp1urcu3OfjY0ua80O4yRm2/TZfzLmbDIjajbY2N7EUQ7xYgEWtIE0MyAExkryUjPSc1qtkGazQS4L4nG2XDxUy/X/f3cItjzbEu+nDpdYY1BC4rmCsPbhy3r4iW+k9wcnvHv/AY4wKJUznWYcD6YMpyecnA5QwkPKksBfnmCmmcYYSzsQXNzZwHFdxuMUowM812G0yBkOUyK3zf7uhPnkGM+zRA1JrQHKrXA9F6M9pgPL1JkgXMXu4xgrJUaUNFotLl/u8MJLgl7kcuvOnNlcE3g+ZaEZnaawaqgEOFikAj9wCHwXpTzuvp0xfJKSJnN+fGrI0oRXai7Nbg27MIwe5ISRT6oNt7+dsvnSFbBP2C0WLBYap1J47lKNd3YyYnV9A51ZhrMxQaOOCurEU4jzmMpAy1XUvJKNzTbSt5SFRVdN+tuGo8sJ/5v/89/ncx+9ziufPceDs2+zcf0anbVDcv8e42SbdmeNKj7lxZ+VvPZtqMbL+WQjBKWtltFGqeXo7oyje4KwN2fn+YDLz9b55F+uOP/RiHtv5+zfXjCfewTGYmyFfj86HAmuC60gIo0LsqpCKEGlK3RhsSzdmsJYGqFPM/Dohl2KvEJOp8RCklUaIwW5tR90yT7lL5i33nnMLC7QtmJtfR3P8xgMhjgocmMo4gWvvfs2Ujl4vqS72sE6Lp7r4geCRt0nzkuKymCqDJRHVAux1nI2GpCXBUIKCmPYXltF+T7DZEEmK/AkhdZMpjFKSGqez/rKClk6x2mEzI5mjKYLsrwgLwyUhjzN6Ne71F1DXJRkuSbPNc16RFwYtHXotHuM4hmLzKEqHIo4p+vVaHgNdFEhpcDzPeaLBZWuwHqoIMATyfu3XWZ5dSoVnueRxFMqVbB/dsT+yQFJnlMZy9nZCF1dJvBCpHA4Gy9IDmdsrXfp1AUXL64xGk65/e4uohBc2dhC1+vcvnsH4Tr0ewFWL3j1B3+KsQ71VofheMF4vDTpWJ3i6orxvKAoSrCW/kqLnYvbPNk94vjgGHCptMAKi++FyHyB6wiSpCIvBJ7boLJNlNtlMEyBgjj5cEUKP+Uvjnq9QT2K+NSnP8H3vvUGi2nCrJgTGE3dVzhOxdnpIfPpAClgMBrx5ZVrNKIG08UZd3bvEkV1ep0eea75+tf+iNF4TJ4VLJKCJCtxHYHvubRWNmiv74AbsLK2g99vI5TP27cekOUpUc2hrBRRw8cIw3QxoU6ddqfBxcuXCZ0CoTwePt7n3u27mLJAKYnRFmPM8kWLoCwrXB9WV+ukaUKWVcynY3y3ot8+T+REZElBolMmwzG9VoswdLAyYjAbUG/W+PQnXqQb+Jzv7zCZpRxMFrx561W6K13661usrp/jbHeA0QWOFJTV8qNk6dkHrKDIYTRIyBsV7UadRjfAimw5dy6WoxxYu7Rq2WVoixtaghr4gcVRBVWRf6D18RfBT3wjbW3Few/eZHd3j0bgY4xDrCukU1JrKHQlsVZhhCUvLQqX0HNQoeTByRmOGyArcGSFlIo0MSRJxWx+Rjwv8CMIa1BruUircZQgzSq0MfjSoqTDyZ4gS0uCuuL6jXMoVZLnCW61gSstm1sN7tw9ZTrVgGD/eMA4sejcIrXA+A6TWcrl7Qa6kpwuBGfTDFcoCiUIrvo8GrmUDzJ2zjs8PsrJ6hVxnJE8zjmdxWxtdVCzFJUbtDW4nkQCWVFx/96QRsPHWs3ewSG93hqNuktzvcbZqGTiVNRDwf50l3bTY20twHELitLyic9cZDQ6x7/97R/ze98yPHst4n+8+gXOd8YIlfPu/SM+8dzPczrY5SSfcenFNne+PVyeGmuFYflQWCOw1oKy6JOcO2c5938wZ+2iz6WXQj79i4ric232blv234uZnAps6aBLg640SkqUlQjA9SWBo3AUFGVFpcEIhVWammtxKTkZZ9RbEZevblBoh7fe2UdjsE9Poz/0zOcVRijavQ6tdpNHD5+QxQW+4yIx9BoN1tstFnnC6vkN2mtNJvOYRVpRrwU0Gh6eL8nzEs91cUWAl0NepCgkQklc36PbbhEXCcNkxlmeUQiLFwY4jovvBKz1uoShx3Q+Z3dvn0pYhpN4ucnvu+RlgtWGQLlIDQ0vxJMuuTLoUJCUBrcwTBNNnOTMZhV5bBH5/4e9P3uWLMvS+7DfHs7os9/5xjzlWDnV2NVdhUY30ARhAiFSMpKCTBJlJsn0f0gvepXe9CBKMkmkEQRAAAQaIHququ6aMrMq58jMmOPOPruf42fagx48uik9qWWGQmalxfdw7UbYffCIu9z3Omt/6/dBiwBde3zgKOuKvCiwz7b4p4slvijZv7yLMQYl11g869oRxoooCJFxynKx4OTkEa1EslpZdKBp6oaHD4/YHSYIEo7PF6yyGi1D8DGDluDVV64So/FuM00eLydMwowbt7Zo9UJCnWK14Wy0YrFqWGWWeWYRzpGXFXEaUJsNazcMYWt7wHC7z8n5BQ5BbRwq0IR681qVEJimwTsJXiG8oNdqbyx5XqLEiv29wRddds/1a6KmqlCdNrdu3+D1N+/w7rv3WNicvnRcvbpPv+U53OlSVYr12rG3+xJR2qWsS2pniVoJ1gMi5GK04OjJGfm62Cz4WoexlihW7Oy0WSzOkTqk173BetlgHKS39tDRBC9z0jRhNKsY7m7TGfQ2WM6yoSpyKuX47nfeJCsy6krwt37nt0FBYwzOetZFgXdQVyXLbEZVLAhUjfCKONQY11Cu13zy8WeMd3c5ODxk0O3QTUMiDd5ZcIKmLDk+vqCfpFx/5Q3iVofrwyvY0zP297cZ7Byye3AITvPhj99lsNXB2iVNbuEv95OEQDy7MTZOkmU1adrQ6bewCPKlxfpN4BrOIwGFJwo823sR3QEURY6tBevKfNEl8m9dX/pGuqg0b379G4RhiXfLTQiHT1lmK6YXBWXtEULS7WisdTT15krCCnAS0rjEeE3ZGJzVWFnSiIas9EQdS7cnGO4EjCcNgVcM45SDdotFtsBEhtmiYZUZdKAIAs1kNMe7hlYoOb2oWJUNqhUx2Gtz9nSNFhJJjUDjnCWMQ8qyQGhHqAOUMkjlieIIW3he+3ZKf9jmX/83D9kZtqlaHYrYE+xIMpWThJrUSB79eEr76gGhHuPCNVGSMs4WyFCwrg31xBIHEeu5w1Urzk2Fq/bo9QOS1NO6skVeWrJxztlyzrXLu/TiCE3J976/y9HRBe//dMyHv6z5z/+PD/jf/e//Prn6jKOnP+Jf/vjHfPzxCVo23Hl9hw9/OEM4D6J69gS6+V0JKUBu3kTSg608Tz+uGR9VfO23QmQcsnOouPLyLquZ5+knC47ulmRTS6MkuamoG0M77jBMHPv7XZbrgnVhGE1zCALa3T6VrLAtx+l6QbwfcXoyonGba2P3vI/+yqusSqI0Yn93h2yVURYVHolUklQpDoZDtntdUpvQ3o64fNjD0+bB0xEilCgqItmQtIPNIox1ZHmOCMPN1WQaYIqKrMm5sr+P6mqWJ2sINEkQsrezRRrFKKk4OjlltFiyLhuiKKKd9KiM2VzHOk+iJN0kwRvQSUyeLYnDABkERIkitoLGZcxmGb4WaBsSSEmxmlI3Fe04xhaW4+MjWlHMVn9AVa4RvqJeO4Rf40NP4zdEkDBK8M6itUYpRRJprl3aYTrLydcN1lkePz0hkPtYa8kLi3eK2liWuUHLgF4acfvWPtVxTi0rwljyN777Mmm/xQefPOL3//gHLFeWqt6s9jpnn03PoDCe0Ah63QHDVsQqW3J2dsbOwYB2O9kEJ0lPb9hma6tFWWVIqfB+swwVKuhGgu+99SoH2z1Go2Okb6jLr97h+1y/GiVRQhQECJ/wd//+9ymAp2cXRHGLy7uHtFsKqQzeNUTxkCi9zslkQmktRbkkLzLCqMU777/P2z9/hyyvECrYLLZLTxhG9Acx29stktDx4MkjfF2ShIrd7SH37t1HYLl27TIn56cIDVlZEpmYl++8QitpMZqOGKYxcRxyOq0haRMkm14m9B6tFH3vEUIQBRJjSrQWpFqgrGUxnXB09ISz8w1r+uzkjIvzCYEKaSURe9td7ty6yvWrV8A5AhUAjnaUIgJBkMS8/MJLTNYldx895creZe5+fJfp5ALwCLUZMAMb5jRik2Ao4BkaAK0TrJV4L9CBwjebZsC7DTqz3YmQsmG1yLlx85Db33iRpjGMxxk/+CfvfDHF8SvSl76Rtj4m1AG3b9zhycP3WZeC6bRgbUt8omh3PEo6cAYk2KqhMiE+0CSpprQFTQ3tuMd8NKfTS5jnNSqxXDlocetOQtQSXDsPmJ0atnYD4l7A8kmFJqEoLF5ClAZIFbBeFqRxRNhOOJ9lXGSGugkwRqFQtFPYGkis2BxkWku6cQepHUo4otASaE9dOW69BC99rc+//GdPWWaO7esJ525F65rHBJZQB/R0i9HdnPzMsH7oufO9PnK7w9g6okEba0qyqgDniBoI4hAVgBWao4sZhW+zHbS5+/AEJRv6g4DAWs7OltDp0hlGXNqJ+F/+L17l/1q9zXt/tuYHv/8Z/+jKXf7T/+01XrxzlX/yhx9wNhcMEsnhZcGNNzo8+MUm2cx7kH8J1XCbKyD17M9N7XHWUY0DPvpTeOmbfX789jlxWHH9hYAX3gh54Rs9To8qzj5bMz321EVDN8lZW8/dxxVl44iVpJeGBFrz4OE5V1/YJRgKhF1zUk2pFHgtwXk63TajIvuiy/a5foVqxwE3bx8SJYrJKCcMNc4IgnATK398cUqjHCqNyKYrgrjh2qUhh3t9lkVNoCRRGDCdF2TLktlsTJ1VDActbr5wGyUiQqGJQ0kSCypbIQOHr2q0Uvh6iQ8MT06mOJ9wuHuF0eSCJImJwhYX4zGT6QTRNHTigFQqpFMs5yW4EEmMJMA7wcXFDGs03bBLWVdYIQk7IflixWxygRCGKwf73Ll1DWcscSBR2hIGjnJxAbpG2BARxsRpFyUkztRIb4i0phVGjCbTDRqyrjDO4p3h6OiEq1cOqaoG6TZ4qvPRDG+77O3sstVJOTc1WZHjtWZ3d5tVvuDhvYcoPKHy1Li/WgRWUmKtw+GpjGc8mxG3I65cOURR0mlpmq02g36H5TKjP+jwyus3mS1X+EphrATnSLTnN15/mTduX+fkfIySgihKeHT8nA//XH89RWGIVgGNMJQNrOsCpOTkbMW6iIl1wMOHj1FaceV2zE8+eIfhznWG/S2sh/FywcX4MZ9/9DlpnNAb9snyAlMbGiPI8opsVfHowQLsJhBsd9sgnKUqMq7vXWFn+zY6TpktZsQtzd7hTS7tHaK8pp22KasVB/u7TJYL0BJb1VipEMJhrNks4BpPURQkoabbTphlFRPriBUM+tu8ubtNGoKp1jhbUVUlQRAx7HRJ05TKOE5OR8xWM1aLFaHwvHr7JsmVlMYWxEHCa3deJS8gW6x552fvYeoGU1uU9JvUQu+eLT2CBJAbHB8eitWatfHkqzVBkOClfja99igBjalx1tLUnnd+cs7pE09VV4Str5798kvfSHsBQoVc2X2ZH/wXD/j07TGHt7d4+bf7rMIzrNiwiG2tKDNPVTuiGHxQUyOYjBoCIUmUxtYCEQm2hwmHwz4H7T4P3n/CwQ3PzgCuXI5RqsRKw1vbe/zsZxXLeUG7k1LaBu8tmAYnwVjNcH+btC0ZnTnyxRmDtufW7YBeS/P4yBIGMXVjkI1BhQq8Jwgsgy3NnZfbfPe3tvizPz5jcl7jHFSiZjqdb4gVLiSpYs4+yqnnFuk8t251+Vu/cZ0icYzzNSIqyVaas/EJBotxAZ04QSuBcZLG1cQWdBEyaEcMO5KdjuJ0JDh9onk4aqA858a1bX7z+y/zv/lfKf4P93/Eo8c1//j/+d/igt8kvTMncgLZlFjdweD5D/7n2/yXY8PFoxxwGMsmitVuclK0hr98mLXCU3mLX1nufXTCi2/2+ezdJb/4g4Koo9i7tubyC4pLfytinYUcfRYyfVSxGFUY62lKz8FuwCvXBzx5vKBE8Onnp7SutND7GqsqZBpSmgItBJWqv8Bqfa5/F/rWmzc4ONzi/tMJ1lSEoaABev02rsgJAoHuSnJT4p3lbFwShX/JI/e42pIXjuWs4uyioCk8w27Kq2++hNOa8TjH155QWba6Ia2W5uZhFytSauPQkWY8m+GsZmtrm/W6ZKc/ZNDvs1ytCeSzw63I6bSHmMKyoOF0NMVaz9buEBXDqrKUZcDRwyOqRcaVg0sEQQzWMhh2wHSxVUXjamxtEb5hcLjFcr2kdBbtxYbUoTRKhyAkQjrWRUkoJFpp9rZ2sVXIQz1j4iviMCQJwdqS6eSCvf2rnJyNmC5ywkjQNDXzeY7oabauDEl6KSfnU/78L37O0ck5k9kajySIBLqpcEZinUWIzVTK+c1kWoWa67eucvX6AYm2DLuSsim4dGmbQaeLrg22aVhXa5wHJTzOGF66dZXfevNlnh6fkpcNWZHz4GTCvePn+Lvn+uvJOYEONMoEPH56gnENURwQxm0qm9Lrb3HzesJoPuHB0yMaW3Hl4JBeZ8jk3lMaZ6kqg0fwwit3mC1y7n5wj7IsaRqFd5LabRbrBI6dThuPoNsbstVrc+3wGteu3OB8MuLa1Uv4OCMOI3aGWwzaAVW5pJdo5ospTWOItKDVDsnKBus9TjmUUjQ4rPZgKzpBB1taFlXOolrTDnp4ZaExBDic8zirWK8y1tOM9TpjvV4TRSFJEvLCwT7XLl9he/cArWK0VEQ64XB7j5dvVvzk3fdZrnI8oCNIvKJpLNaKZ1PoDRnLWPvMC+2pixotBFoIvHNYbxBCEARsFialoKkbQJItDZ/MnhC3QlT8pW87///Wl/5fNGxvodsVWMfrb3yLz3/0L2lOBXa8x+HtLZbugrP7E0qnyU1DpxND4En6IZNpifURdek5LifYyuAoiFPNa6++xtN7n/LaN3c5vNIl7q5RJiMVMb3+AT9+Z8Rnnx0hVLjxCxiLkB7nBVE7pHaGqikIjaAqM65eU1zebXNtt0svHfDZ/Y/+Ch7RaiVErRjjLOv1iu09uPbdDh+9k/Po8xItQ5QGKRS+lrQjQVKHHN1dUdUgU0n3UoB4Q2DutLm81+fJD/8N9ajATne5s/8Cq3VOd6AQUc5bb32LdeH44IOPsUIym8PRx094/YUBapnxB390zGQmsCuNcAqE57/6Rz/jd//9m/xP/sE3+T/98oesc8v/4//8J+y/2OH1v7nNnYMVSXef3rYmXz7ljd/a4Q+OcyjFJl3Qe4TYLFZuorsFgQJrwBiHM5L6DNQnOdde73L3pwvMxHE8qXn6vqO1V3PlJc3VF0JeeL3LdFTw8GPH6kHNazf2Geop+y/vUNuUTyZzHrFARxorLT5V6FThVx77nCP9lVenmzIaj3j86AjfbDbGRQzXru5x8vgJg16L69eGHJ+NiaKArWEbgaffbmOaknxlKSpPlTe4dc21gwNee/MlTCCYZjVBEhO2NYm07A07JJHHWENhNRfTjFVmaBpFmvTRKmSdjwijgPF0wnKZcXZ+SrHMiKykWjXcW4w4Op2wymuEkujoASoKySvDbJHhjWW33eHm/mWUa6jKjCQA2elQS8l8NkOHilY7YJxNKF2NFwJpJUkQor3DG0u3HdLvdLC1JF+uSBPN1vYW49MFgzjhyC1QQBJIDg/3mE7nNGbB7naf80mGDhTtQDMeTfGuRRKDjgW7l/t0yy618SyyYyazBVorbl7qo3TI+UXGfFViAKEEQsL129e49dJtOp2YxGdc3QuZ52vOk4pdFfF7336TmZnz9OQEh8Yj6EWS7775Mk9OTklaWxhpsUKR15rj0VdvQem5fjUKdUhdW1brgmW2QgewM+hx6cot7j54wnhyQrcdE0QRqIDDvSGBgGU2ozE1W8MeO4Nt3rh9g94g5cHTMR/84jPwGuE83nrCKMZbh/cFnV5KVVU474mTCKVDqtohheLS3h5ha8D2zg2mkwtMmNCNA+ZFifWGBIlsHIEN6KVtRpMxSAgllE1NqiWBVKRNiWnWeFtiMATFGqykcDUej0ShZMxWr0cah6RpTKA3i8dBGKJkgo7aPHzyGO0Nd269hPeSUMZsd/oU6wVSK5RWSGdIeiHWekyzsalGQYATsC5KrHV45yiKhkhJgijCekltHHhHomMQmmJd/dXPSOEIAoWW+lkU+VdLX/pG+rC/w1qsWFYTfvM/eBOpMv7Nv/wx66DP9OkUT0MSdCgqQ6Jieplka9DmZLRgPsroJW3Gq4x5XZBGGq0hNIrJ7Ijv/3uvo0SFszO0XBK5Ad2O5Gi04gd/MaGsPEJUIBWtJKaqCzq9EGsFaZTQVl38fMZAO+J+nzZb/Pa3vsP9xycYJ/G2IU5jlouclhQ4nyKl4vrNiM/++YrJk4w4qvFG4lohTpRIIej0ItZTA0NFuxtA22ESw8OLE8wfGf6z/+zv8/ILt3jnZ+/z2fSE/dcvc/ThMdtpQBgKulcO+LN/9kf87N0PUDqg0+0w6OxwMat5+dVXafwJDouKAsrC4ZFUueUf/6OP+Z3vvsCdV17g3R99gmw8D95Zcvyk4jf+zlWqwxNGM0deNOzcTHntewf84o/OkDiU8ARSY6TFW49Qkr3LW1yslizmNU3h0NYzPjJEseTOazGfv1tv+JKmIjut+XRa89k7BcODiKu323zz+xK+69HVjGwRoGc1/V4L8zRHkmJKC22L7HiuvdHj5OM5Rf7cJP1V18OnC1arOU2zwap5a7l0uE0rDTZBI65AknFtv0WcbJ7sTANYgzAebMBqXlLNS27vH/CN77zFqMyZLh1ZUdFJIiQNaRwhhaRumo1tQQouZmu8ioiiHmVpGE/G5OuMOBlyenbCdLFgmWXYqiF0ivsPT5jNM2ojaZzF0YCAxtlNCpjfMOanRc6Pf/k2333tNbqhJmkFLJs1YRLTasUEiWLVZBwvloTtCOUh9J7k2Ua90hFpnG5sK0mLumqwHpTf0Dz6nS5SnGKsYbZs2D7s8+q3XmN8PuPq3gHLxX1Wa8MqL2hFjnYrJIw0eEg7HUo759KlAbtbXZbzDO8d21ttup0WUiV89PkRf/rTj5nnjk63yxtfe5HBVpdQS3RT0goChJUgBaU3fPjZ5xxe38E9I5IE2vG1F2+xnJ/R7m6TJG3e/+gj5tkUHUXMFs/tWs/119PDszFRK+T+g/s8PZ2Qr2tkUOF8xenFBUfHS7rtiJdfehUvJZ12j/lqhpeSQIT0ow6JDgicY10uOH90RFNZnAPvBc5DXdcIPEEoCQJNpx2xLlacnFW00h46aKG1pJP2mecTPr97l9OzU0zd0GmltFsxSRLSDQK2ekNm8zXr01NWeUYQBURRjZKSTruNALLKUFmHjmJ0nJBby2JebzB0dbUh9miolstNIqLypIkmTSK8Ebxy+7usxjNG4zG//Z3foihKkrBGEtJvbbO71UKrBikF1iucEASxIogVrhYk7YQ4DXFjS7He3KDjBWXt8EI8831sfJ5142jmJY1pMNZhZEOaaKIgpDYW9xUka33pG+n1cszupRexjeBo8oTLbw24dO4Z+ScUS0kiQtAFURSgRjGLuwW9q3DazFGDEOEERW6pKoctLbZ0eCsQekxZdulFfYSsGXZ2CLVkPF/xZ38+5nRUI4RECI+SCmscYRQQRTHZvKAdSrLZU5SEfGH46Gdr/qf/6W/ToJlmjqx0KKVxtiFOUhQB3giiOGbkBLrbRnRq4sAQyoi/+z/+Pj/+5C+IZMjawTI0mB0DoSVuaYy1OCN5eP+C/9v/5V/w4k2FUDEytZzMz/jat19iND7i8HCLzz99wPu//BRJwJXDQ772tVd5/+2HfPzJGa+99E2q2iOlwDlPkkSs6xyPwlcRP/yzT9luDXGRwtUGHKzPa374T57y8vd3OPyaQOkRs2bKzW8c8vRhwuRRSegClK+wdvMmMVhWzYqdmy2SKmFxVlNcFGBgfM/S7Rn27mjOPi0JvUZFmrpucGvPdGFZ3J/T7ntuvRKxfVkRH0aYQcVxdsQkyLGVxs4EqUwxrqKsSnYutVgtYTx9HhP+Vda7Hz8l1JIw3HiIBr0WN68esFptsHNehHRaEa1YU1YVznmiKKKpGsbjJWdnOetFzeWdfXa3dzgeTZg5KBtPEioSKRi0W8ShpqxrAgVhGDGaZCyzjZcxrnO898ymc6xrWB/lFGVBXRb4usGVDefjCYvZAuPFZoIs/9IGIZFqM4V13uOsYF1YSlvxF+9/RDuOiJ5ReayzJInk8o0dLhZzFqUh8Yo0ge0oIAwUdWNobMmgMTR1TSAFadpisZwjpGQw7JGtLC8e7nI6nbIqLZ9/es5wZ4/bN3d57cYlikXOz95/yCpXBELQjkp2h9sYXzEaT+h2Omz3hzRlznYvxJhNqitYQt3w2p0tyuoGP//oCd/59it875svEoYabxqm5yVlZViuSvrtlJXN+fknn/N3ru6jrOPydspvfOsVLh9sEyhJ4wI+e/yUe0cjSluzu9UiFOEXXXbP9Wui//wf/VO2twe0Io0KI/qDIVIJlrMJvVaAFl1aaUS33WWZz1FKs1jM8NZjFjnvfvou3TTh8u4urUGbfF7ivaLTTVis1shmc/sap56d3T5xK+DmrUucnT1llWVY31A1GQ8ejfnRT97lbDFHhRFSS6I4ZF5WqLkg0oJ2GLFcfMZ4sqRpDA4Io5AoDpHCbRphNnkKQkAYJdjGU5YlSaRpdzo0xhFogZSCuixR2pNGnp1BwlZ7l9/8+t8nCiKePvqY77z2XZQYcjZ+l15nSOWmBLHiO1//OrUvefvtjzkbLcnWDcY3hKGiwRMlmu29AWg4O5lQWYfwArx4tijsN2nEQmIbj7UW5yxCgA5ClNYYU6MDgf4KkrW+9I20ChryVcFolLEWhq3eFnG/R209kUxQjcGrhm4pMAvFZ6MFzV5NMBS0hyHHTxfUBqzZYJcCFE29MdInyZhhZ8Cgc4m6rlmWJ7z30YIf/2jOuqmJAk0cRzhnMbahGye4smR3R3H9pkbHOVkTMc5SbJJDb8k7d4/50U8/pfEOJTWhllTWUxZreu02QhqCYcjf+V9/naf5HzI5AZVaFuKY3laAzRym8sRJQhgZpHBY61EuoLAbvMzp8ZhhJ8YUjnoMj4oxKmvT3+5Qzgv+8Ac/wGaeVhyyP+zyJ//mz3n6aEEcwz/913+KxSGQWOvR2hPGAmMavHU4NOfFBWpLUY4dorJo4fFFyTv/5oije13ufHOXoJ9Rt8Z87+8Nee/P1pzcXeKMQ3rAC6SH9bRAJKAHCZ1LEe1hiJ1XFOOSTz+WvPqNAHMYMDs2NHmDEHbzUIvDWlCZZrhMCB5a6tYCvQeiH/Ha715iNGp48lnG5F5JtTYI69nZGRIkz7f7v+qyBqzYTHM77YDXX7tNFEg+u3tGXTR0WgFNUzIrDXGSghBIpaibGmM169Kx3R1yaThExiFT45FRQi9UDPsderEiCTx5lhPIDfnCO4N0HmENxpQs6hprDKvlAiEldVVjjMVZiygaEidZrWu85a+m5mESUDqLtQ78xiYmtN5sxFuHQ3CxWnOxWqOEwwNSWQ5223RMn8xDg0bUDWkSopXG2g1nvdVOMYAxlk1kOQSBpq5KiqJgkLb4H3z3NzmdzfgXf/rnVM5z9vCE33rze8ync45PTggDQV5tuPBa1Ny4NiTQEikEs/mSiV3RaScMt7cQfjO9Mo0lW+WEWvPWq5e5cjAgjDXL08+JwpCqzEnabd6/N6a2isGwhzGO2jt+8d4H/Ma3XuWFG0N2tzp42/Dg0Qlhe4eHp1NKU6ODlCjskKb9L7TmnuvXRzoMGGz32eomDDoKZyu2draQ3hKJhkAYltmKs/MTvK/J8h6LxZzdfodLVwYcDF+h1+uxXjecjZY4H9Du9+huD1GjKUqHdNqaQc+y3Q+oCoMza7TyFKYkUJLHD5/yh3/2DuPpivZOHy89aSd5lhQIQSARzqB0xGx+gXECi9wMuLykqi1KWMI4pqotpi4IwoC6kVRlhalrwqDLZLxkNlkSKIGUnm4n4GsvXOVbr7/IsJeSxlfZ3brGxek9Xr35CvtbLzDPl+xv75Otc6wQzJcV+9tXuX3jjNZg8/mYrQVnJwsefHbC43tH6FAwGLQIA002X2NLg/Ab2KyQ4LxHAEpsvOPPvhAEz24NsYShZziUKPV8Iv3vXA0ltpzRsLEghCqhHfc5efqQ7TZEqUSs4beuvMoi0nw2mzAKC7a0Qq0Fbq1oqs10WesApaAqHR/9csHrr7TZGrRIaHN68RPWdZuf/OQhdW2JgwCpIW1F1HWBlJLdLcfOjibtaRoLV6/d4Wy05ORuwMsvh7z8Gvz4zydMljnWS4TzOOdprCUNNWHgCGPPuiyYzwNWRcPf/R/d4PPPHjNeTDnYPeTN1y/x9jufcHQyprQNlbUopalrj4oUzm5oGAKBcY7Geeql4L0PHvL93z3g/U8ec/9RgZIBwysDPrr/iOlFQ6gikA2T1ZxWW1OUnjK3KNEgEwkmQsoaoQVWBojA4HKHbBShCqhMRegE0/tLfnK0Iu4ldPcTrr1c872/FzJ6fZv7vwgYPbygzguUDVDGUZ5XpGGITT112qADS9KJKM89j++WvPJan1U2p5pZlGTDjJYaKRwH2z26usfnd49o9dvszCMeTFfkSc3u9YA3f7NNU3a4eFowOV2zGK9w588b6a+6lFboQDLsJXz9G3cIQ8lktGQxzwkDwZW9LXqtmFVWUFWbmNuiKChKg9QRDkXUbpH2OyzqCmMF7ahLO0lJwxAtYbFc4p1AKnCNwxtPIiQ39wbcPxoxzWpW+Wax1TlHti6xlUE1lu0o4dVXbyJe+hqfPnzK/SdPWBUrGlORxDFVs+HRSinx/OUqxX9/uPz32ClJEEgOrlxiVVZUDahA0+0GhKFBK087jREqJIhCgkBRNSVee6r1xo+N9/R6HR6fndFu9RifTxGNJxRw8XjGn/3wY+4/PmUyWnCwf4C3jrJ21DZk3RikbWjMJoU0X1eMl2vOZglhKOm0U0IJcdoijmPK+ZK9vR5xGiJFgzU1zjXce3LC03HGbNWwzA2mKmilCZPpnM/v3uOVG7/Jbn8H6z3DwQHjRcX9kynWGsJY0TQea+W/4yp7rl9XDQYxg46gWJ7QiRMQMeOLE+azKd/71lvsbw04Oj3lk/s/Z3d/yOnZmN3dS8Sho6pzvFf84R++w2efneKB/pUter2QwVYXFYdEnZhWLOnFhlg0mHLF0ycTXn3pFvX2nKZY8fY795nMC0QYkKQphpo4jXB4Ah0SSUU7jBiPphSVw4tN+qoQfpMSKCxKKYzbRHULEeCMYjSZ0NQNaZqwWlSs5hnWWJz2XN7v8Tu/+QZbvYQ0lECAkBpXL1E2Z3v7Bo6Y9foxrU6HVW6IvMR6z2xZcHXvJc7np+iwJPCegxu7vPjaG5yfjPj5n/+IOJZ4FxJFAVop8JulSKkkWPvM7sHmi3AoKZGBJgggbXl2dwN2tiy9dos/4KtF4fnSN9LWxhwedpjUDzBlxrrw3Li0Sza5oKpq6rVgz6ZUeU4WQDRoQHpMbSmqCiM8SVtRF466qZFA1FKYOuZHf7zg+j84Z7x4wHyV8/ARHD/NQXhq44ikYp1l9HqCnV3N5cOI9Ury3jsrhnt9btyJ6KZ9rB1x41KHllxw7caQ4l/dIxABSm0mPEZIlItREcRaMYwlSsz5e//xdV48yPjFT2ucafHmzg7feu1bpGaLP3r4x+hezCenT1irhlqA1g7pNa4CVEPVCCZ5jhAB3nqsr6ESCKd5+eu32D2MiILLfCBPuf/zI7quRdiSBFJQ1AY7sfhG4AJBGIBvYoSwWL8JvEjbIappsFVNBUi/maypCoqzjOyk4PRjMH+jxc2X+0T9NV5aUOC8BAtBZWHm8Eqj0gDnShpZE+0n+Erz8CTn1itb3H17hCwdMYrGC8BzsawZjU7Y7cZc3+8zX6w4f7JmbATHjySt3or9qxE7lxX7t/rMx4KLewueTtdfaM0+169WUeA53G/x2ivX6bZClllJnjd47/mNb79COxV4Y+i0O9TWY6wjMwWl2XigK9swqzKmTQ5a0o5CYm3oxJsQoHWRUTtBUVR0oxDlHU1eYcqGvg643O+Szc/wdYOxAmMcykpc0TCIUl67dZtBu8NyuWZruM08K/ATS9WUNM4/SyuTOCTePeOvC/5qiuM9eCVwztLtdYhiyXpVgd9Mhx2bHYS0nSCUozYlgXd02ylVPmORLSiKAqU0aZiiI81njx/ww5/8kiBKsY1FScHlS3sc3xtxMV1SW0vjDM5ZZKgI45C8KNEheCHppDGIgIenI6yQZGWDcwu6acClvT5JlOOtJY5j3LLBGE+Wrwm0ozvocuUwwZ1MyfIaIaFuasp1wb3H5/zf/6t/zYt3bvHCi7eoasNqteDGjaucLxegBVErIYqTL7jqnuvXRZ0oJ/aSS/sp21sHDLcOWWU5Z6NzOu0OZbnB2K3yEjVbEMeGrd4OR0dTHt97zIN755xdLHHW8Z3vvsqVF/Z48uOf8PT+GhmGCD9gdpRzLmF8fEpVVWAcSRBx6aDNtcN9usk2i9//ObMqB2HotUNaSYhQEQJBiMRawfnFAiEVKtCbya61CCUJQ0WkBY0D7yXVuqDISzZJMY58mdEU9Qb5msa8ducGX3/1ErP5KUvRY2fvMqWNqJczWBsOtg42PmsmVM0cUcZI3cIZidIB82JGJ+6x3b3M08nHKGnJy4ZJFrO0a66+chWzWBF5QdIN0UuFLTY86c1nlnsWbOhwzuG9QQXB5mFeeKTweG+wTrCuvnqLw1/6Rnq5HCH3+2xFlnYUoIRjrjbc6NBLXmSb8TznXz29xyR0lKFk0IrAW6wFLz3Ca6LUEIbQaWvCQGCbhs/vFdx7NGFra8l8HfCnP3zIMncgFWEQEgeGrW3JrTttAgVPnmY8elBT1IJbr+1zPs3px1vY5pSz0YJP3m/I7RbGeMJAoxRkdUMYa6qmJIq3icOUCscvjn6AqwTHn8Y8eFTzxn7K+798xD/8Fz9mutC0as8br/Q57O5wf3mGCgWhd9AyxD2FHjjcWCPZNLeJ1CSAUA4rBHnRMJlVNJVherog0RJfGVSTIp3G1CsSJSlOc7rtFlW7QMchphRoEWOw6ERQjWpCFMqaZ3gb2MDuQGtPk2t+8ceO5WjCm99OaOmEj35usXWFtOBrzWq6Ju72KbzZHLS6oShytNIYPKEpuPxKh6cfLFCNwOMwCEaLNanwfOPyZVqtkEdnY4z3KONRmSNfST5+uma4G9Lfadi7lHLlpZB33nneSH+V9cYrl9nZ6dJuaTwG6wxZXtDrtGhFnjiKcXgUijQOqBtHFUlmszl7OwdsDS5T1wVpN6Hf6xBEAeu6pq5WWB2RlyVFvZno5LWjLBqoDbIWZPMcW26+dyXPEFEb7sReu8trt24yaLXwTlIZSWklF5MJ250Wve4uD09Pqax5NnaW/BXax3vwmzCjTYTYpqneHnboJJIo6pLXikVescwqjHWE2nKw3UGpCKUUaRQTqQ7z1YjGG6pyMziwlac7bNPYgGJd0U4UL928wZWDQ+6fHHMxm2O9ZDyesbWzjVKeONIopZFKsVyV9Nophobl2rMsNkuQjYHFRcXJ6IJAb9JWnfdYw8aiJSXd1HNoHf1+m91eSBIFPDnKWK5L4iBmntcs1zOOR+/zZz/5kLpp6LY0167t0to9oKpzzt2Ys/PRF1Nsz/VrpxevbPPyraus5jNsUzC6OCUIYob9Pov5gtFoRGkdTd1skgPLipPPj3j3hx9zcjqlrhuMc3S7MdduXebzJ58xm8zJ15vegEdnmNoinMe6DXouVBLvDBfnF5x2ugy619jb2aaeeQaDFnu7bZwMKCpHqhMiYv78Zz+naSzyWdibVJulYSkF3taEYcRytKSpG/LVGu8cwnvCwBMGG8b9pb3LXDu8zHI64unTR7R6Xa7dfItluUlGHIQhvUtXqb1GxJonZw/pxJJ5XhAlCb62JFHEZDnFe48QIefnS+K2wBnPaLLgbFIgvGMQSgZpwu7egMVsRWEtm0Qmj5IeLyTGOqxrkNITBBLnHY2xVJXFOkGWl9TmubXj37myfMyw8xphcEgja8bzGVGSEOiAWzdvcivcpl8Z3vnBD5jmFUmqaZxACYV1oAJFuXakbcn2gaTbD1nODM5WOKn5wV885ff+/S0+e1jx6OkakISBp9f1vPhCwtZOwGi05vSoYj4XSJUigwYRSIwIOB7lBI3l5Djj4w5ka4NAEgQBq2yBFJq6qkjaIUXjmE1z4kTwt797ib/4k/v84Cc5ygrOLp7QOEFZb0z6M+34s0ef0igHytMJIr710g1ct+BocYFwntWywSuJwVMLhw3AaWgnKYuzin67z+mjY9aLjCRSCOvIZ0uKQuGcRGKJrcdcNOi2QoY1AW1oQIjNk3FlPa0gImygxmzeLE5gnEdqj1UNmIAHH1Yszz1f/9023V7Cu382o5w7pNoseNp5QzIMaWpHmrbI7RprPAbPyXLF7cMercOExXGJ8oBQ1NajpeDh0QWNb3GvWLNIJE0oiCKFKWpEKYhlj4v7E87ur9Gp+qJL9rl+xdobpiSRIAkUSMGw2+LD7IjtQYs0VjRNQxS3MMbTmIasaHhyNCaK2ly/dptQxTRNjZYVYShpAHDEYUBWFiyyinZnl6osWGYZ68WMYdxiPSmZj3Mqa8iWFcpqkmfT5HI1p9fpEktNlZfUTqB0zGJ2TFNXXLt0hd3tAVnTMHl6vrkBFR65STLaGNe8f/b3IIQn1LDdidnpxhxPFszmayqnQCoiq7FO0FiLlB6tJIFSaBGRRm3WZYX1jvF8TllYWv0Wq1lBp9emjjXXDvfopwl7b76BkJIHZ2ccTybk4znxVkocBsRhvEmLbHUYLUpE2KPT32VVzWjKhrTVZu08lbE4F1CXnjgOccLSWIO3DlVLVoVE6s0UsLEN+1cOOT6fkS1zAumQ2qOUxxiDlpqmNDx8PKZ5skTEbeoaxhfzL67gnuvXSpOzM/7Vx++xXs/pDfe5/dJb9PtbeC85OxthkCiluX3nRdqdiMVozuRowWySU64txjq6g4S3vvMCF9kpd+89IltZGgNCeYytkELircc/W7izQpLlDVf2NK1uytv3P+NoNaK73aPV6SB0SKQiIiTCKn7yo59RmhrYBBnpQBFFEVJJJI601WKdF5TrirpqwDvCsGFnILm+12dv+5BI7zFfrbh/73OQNbdf/jqvvvwN+luXqS5O6FrJ7cPrxEmHvFxTZiuqpiKOEypX4+sCEYa0REwShcxXU87Gp9x/cEq7q+n1E6SXSFuxWhtUotnebzMYhrQ6Ac7UCAu2ERijsFYgnQOhiGJJtxtTW0dROJwXtFsxeweaVisFnnzRZfJvVV/6RrqqKmoLtUmZlBWjzFH5FkHY49L+ZcRgj1/+4KfMS4NUEIYO6wWgsF5gXI0KNINdyeXbIbV1TBeW2mx8SKOJ49GjIT/72dtopUnaniuXQ+7c2WJdVnzwwYSqkuS5oK4gTQXdTkgrVUgBUVPxH75wjYlt+OT4nPPFFIHCe4eUHtN4gkCxvdem1e5SrA1xpNhrDRjqLpUZQRAwNjXLCvRckHiF6EiWziCASECTlYw/nqCkw9WW7nDIMJHM7ZzKWwSbcIZIaMJaEzYRj985Y7ZabV5na/PGNyWYWiClpvINgYB82tDuJYS7Bh940JZL+7scfTrBI5it8k16IWCNQycBQjt8HLIuDDpsKEvDyZln9fs13/zNDn/j727x8x9OuDixCAfVJKPT2qL0jsw0tNpt1lkGTlBVcP94xY2b29RlQzUyaO9RgUZrxcWyxESeGWC6Guc9ubM4DT71LNWKOnD4WmCy5xzpr7oi5ZECAi1J4ojPPj9iOZ+y1RmQpBFVXdGYGh0kTBcrTi/mWCRXr17DC0lRC5pGECcxi6ziYjInCAKSyFLUJVHcAixR6Eh0gMkE2aJkNspYryp6gz7CFigvCcIQISQmy8BBFIQU6zVVI0B5sDU3L+1xcnLKbJVxdDbDWoH3HucMCkcgQAabmG7ExurRakVc3u1zeaeH9IKsaCgbi/ECHcjNhr/fTIzjOEYpSVWt0cLS7bSYLSbkRYOxUBmLUJCkIb2oQyD7OFtjRcPs/JjtVsTeq7d554OSGy/u8ejJlHyaUe0M2NodEiUpo/kKFUbs7W6TrWsWiyXOWeIkxpXVM2uko6orAq0ItKQxjqyouZjBaF5Q25rBTo/bt24zHq/54N0PUCEEQbD5vMRy5+pl+u0uT04uOJqumI8mNI3H2a/eFOu5fjV659132NkS3Li2g/GOZbZivixppykPP3vC6dMJXguu3LlEKCUt2ebzx0fUlUcpjRWGN755i51LCR/c/4z5ssBaAWxsXN6BZdMcKrk5670UHE9Kvv2NbxDEPUaLp6S9Nq1+Gx3FOC/RxFxcTHjv/Y8oygqtFQhJWZVUdUlVp3S7Kb12gqkNo/PZM2ZzTZI0XL2c8tKVLpd6B/zil1OOR8foWJHEEW+89SYvvfx1kvaQe48+I5KKm9uHOCdZZCsmy3NUEJCvN/teSEdDiZAJi0JwcnLOO++9T397SFU0TGcz+ssIHYRgQvCCPM9RusfWMKTTDSmyHKUFjQTjQDgPWIJQEIYKaw0CgRAbJN58UdHqRhTVV++M/tI30quyZJHXbHUu06iQ0+UMnaZ8+vCMbGZw7T4/f/cjglATt2Ism7QdJyQWSxAoGmfo9DVlk1E1IVXTUK4316dTW/LRRwtEkzLo1rz00hbttuT+gxGTiaOuPK12uFnE8wbjLa1WQq8VUFY1+2FM97ji/HzOyy/c4Hx0lzDRWGuQUqGUQAYCGULRlNRNSNxK+cM/P+HPf7JmVFnyxhOFAaawBGnA0EiuxC3em41ZBQJpHSqE5brEnjeUFaTf1zz65ZRs1JCEgt3tFokJ0WWCedxwPH1K+2pAGCtUBJ1hm9l0CSEI46CymNqBE+Agf1KgVYtwCK++tUtkNfd/Xm/iQJUgCDbXNt55rG1otxO2rveolHtG/EjIFiWL04Yf/sGSV153fPt3hrz37oSnH9f4xlPOVgS7myvhIi9Iw5CmbGicoqrh0cWYK7e7nORL3NohpWVdOUQomS83bz7dlVhpqQqLsQrjLGWxRmvQWoJVwPOFw6+ywnDjKQzDAO8bvGg4PGhz8+YODotUmiiKKSrDbJ6xtbXDpSu3SKOUunLMFkuCOGY6XTOarXBeMewlVLZmuTaEoUGpip1+TLWqWWG5GM8pcsvlS4eApd9KuVhUG1KNEsRxi/F0TtlYRvM5yJjR9ALTlLz56svc/fwzZuuKojJYv/FCetcQBJLrlw8pbYOOQxweHWpaacBWKuh0Yh6fnVA0DZ1em2VWUtsa7QXGS4rSEqgG1ZNYW2NdxXq9Ik1jlvmaqqqRKqQRDe1eh07UIZKK2WICATgcO9tdwkjzO9+7Q+FKJhcpO1sHfPrxI26UnhdfuY0XMcejBZ1Oh92dLviKsq4IwxZRpKnqZrPYZA1lWaO1JIpCGqPJK7dJlYw1cSdFBZKDg13uBhprCvCbePCtbov1ckokFW+89irbkylPzuacnE3J8+eJpc/119NgS7K7n2CsxXjPk6MnrNeGrf6Q4yenHD9e0O53+do3LvPay9d4+vEjinWN95YwhsGwwzwbUz2aUJUlAo/HIlWErTZkqQ2j4lkQmRToOERECb//Zx+QtFJkJyVut0iSBNs4ptOcz0+f8OjJ8YbGIzcP00oJwjik3WkRxiFKSFbLnPHFlLrakKzabcXhfo9bB0OG7T3+9M8fMR7nG8xdr8N3fvs73Lxxi263wyqfEAjHfnuXOAg4n50yGl+wWi84nywYTzNa7YhOKyaNYm7eeYWTouT9Dz/iww8/oXGWdZWho4DZ1BAmDY2tmM0KYg1KHLK93WYw6HB+NKWqKrzXzyyfDikhbWuCSLNeN+AVAoFSIYuZQ0jHwaXeF1sgvwJ96Rvps9EFla1pR23W9YxhqlAiIO61+fTkHOvHxFFA0zQUq5owBBErko6gKcyGldyFwysdKlOyGINbxygPzlu00kynU373d15mMT9htljzk58uqStNGEAcSqS3CKdQ2lPUDVtJFxFAW6eop3NOP5/z+NGcaCkJD2OqfEEcxii/mbQk7QRjPToIyIuG7naLP3n7IZ8+LqgdxIHcvIm9JQ8cu5cO+d3dy/SOY34yOSfTFVbA2OSkYYDUIUrX2GlNmFv2bMzvXTlg2PY8WJWkFyWdJGStPGtlabcDsrygrC3g8cqhrEDUG4atEg5fCs4fFXzt1h6vvjng7X/zkPW0QTgJCOrG4gApNzHg+bQgm5Z4DTrVqJakPUiQQ8XitOC9ny+ZzWte/9YOg17B3XcX5IuatBUStkKcK3HekXYSGptjrKVoLOd5xfatAacfj/HWooWmagx22SA0yLbDSwdKop7506zfPA9UzuH9V49R+Vz/32qsxdQVIMiLGhlIrl7fZjBIqOoSLVOUCnn48DPiVo9LV66zyErWpSTWIYPtNous4HSywDjNoNsn0J6yzAiClN3dXTQVrUhjZh5lJNIJWklMr93G42lcwKI4p/EbW0XY6SDTBCMVjdDce3iPLK/wjeXH77zPbLFkbR0W8N4AjlBJrl+5zHw+Je136Q86aLVh10eB4Pphn0W+okIio5iybjYNqRZEgQTnEV4QqpAoDEFAZWrWVYl1DYN+G+8z1oWlMoa6NkzPH7M33OLq5ctkqyX7Ozss5lOczWh1Y/6bf/oei7VnlBvsquST949oasnX3nqJoqhZlBmd2BIf9pgu10yWa3QQ45E46zYpp0gaa3Ae4ijZNPi+pj9IEdLSmIrt7RZRDOuFxTSCTlfTikKydcPDT+6TG83VG1do9wZcurTP6cWCBz978MUW3nP9WiiOA2TYwco+dQ3GOW7duIEmoMw/oilqWlc6VE3Dz372PiefPyBuaYYqJUwkYUtu4sBrTV43JO0IJyzZwrDZD9o00QLwzqGigN7WkCRNmY4nJP0+WMdiNCafzJiMZqzma3ASFWi88CitCKKAINSoQNLqxAhnqbOKyWSOtYZACdJOQrcleenKi1Srhj997wGtbpebLwyRgefVN17j2s3bNNbw4PgpsVDstba5tL3N/Sf3+OTRPVbrjKIqODodkWcNUjrSJADj+OzhQ6bLGaGSpK2E2aIANv2IacBTUBtDHGgCKZgv5kwnE5raEoWSvBRIJdBCYhqPDkKk3NgrlVJ4v7mdCgKPt5Zi5YhU/MUVx69IX/pGut1tkRULGt/QDtsMkx5hUHH5yg7nkxllZoiClLqukQLCSBNFGySLfMaR2rvaoWxqJmeWiweGJg8p1hVpazM1Kco1vZ0W7/xyzui8pi43aWNeOqRW5HnNuvQ4IRHOEQeSzJV0fciLcZe9l7a4vJ3zoVjzuSiw1tIYg20McRRjK48kpK48TSwRWjPYSmlMgVACB3jjCNKQvKr5bDLislf8rSt73B72+C+ffMJSbTyHVjh2dyKU0bSlxmjP1+/scX1LUdkFLwwDvvc3b+JabX7/7D18qAnikKIo/gpNo0XAOnNIv4HCOzwu1uzfavHW93eppefkqILGI5zEGI+UIPVf7UThHCjrCazCNo5iZlg9rbAIlPA4D48+KRmPLvj293t867f7/OKnK5ajNXHYo5KK0hjCFkQtgSgU1mpG8wI5hO0rCcunBdJtPOcWjzMeUbnNjTkSqQXWNRuWrufZwa2on8eEf6WllEZIiXeO2TxnPF3T70UASLGZVI/HE/b294jbPcbzBU60ESqkqD1KV3hXIAWkSUwcgLMFcayoaguuxLkK2ySsxhk2c1w/uMJyUbDIClQYkfaGvLlzmdpakIJ1saZpKi6ynNP5jMlqAYAxhqY0NELSeItxG9Z0KBW3r1yhrioW2Zrtg13SMCSJQpxzDFJBnCQ8eHxG4QWzZU1pHIFWJFqShoJhO2Rn2CaJQ8BurrBXE2pnmC/XmMahpUKHgrSlqBZL0laX07MLvLG8/MItpHT0ewndnQH/r3/xQ8aZpQaOxxPaNqReNvzr3/8Ry2LNS69cp520GKSCrCgIw4BFPqJuGpI4wjxja1shsEohvQBrqNc5jjVJoAiFIVvUaBHwW9+5wYO7j2hqS6A2dJWy9BS14J2PHlAYuHXrKoNuG62+9EfVc31JZH2H2bLLdDJHyxohJW2dksguESFbvS6h1Hz0y/dxpuIbb77MdD7m4eMHZNmCeq0QdUxR1iTDlLyeg/AEIZjCglB/Rav0QhCEEXjJ+emIJAlYLpbUVY6WiuU0o8gNiM3ttDMOL0CrjdWyKSu00kiryBcrZpMM6yFNNVrBbr/Lmy+/zNGjI46ONrxpny9odYe89e232N3fBWqqpqZuPNvtAbv9PearGYPhkHTSw8iAeZZjGkNZVUjlkNIxOpuSLpdYGgKt6KUdvvXWtzg6f8zR2T2qoqQTaDptSZ6XDAdbPHz4gCzLCIM2w52UtCVZLtc0tUNrgZAa4zzOGHSgNw8MWmGamro24Axb3f4XWB2/Gn3pP528tMxXE+bZnICQSHbQrYivvXyL9z56gDEldZkjni3uNLUlbWnCIABKhNBkS7g4y6jmQBHhjCUMNVLZjZ+ysZyNLLXtkRcXKOUI4gapFFIrrGtwHsIkxBcl/WGHWEsGFxZ3tELv7pB4S1cpRCFoGoM1njSKn4U0GIpcUjcGoUM8hjdfv83rN/5jFtMF2TLjfHTOhx9/QjE1lLLhLCloEsPXB9tk6Sv8s08/wkuockPVyynXbRSKl16+xe/+7W8wPvoFmRX0WymJLbn72RnxLgx2+hRZTt00CARaKsRasz5fE5fgtcAEsHVrwBu/t09nV1KViuXYIa1A+GdwSLEZRXs2UAGlAAk1djNlUyAcKBOAtDhhCYQnmzT8+R/MeP3rKd/93Yhf/KTm4mJFuBOx9pb5bBPXahtDgKb2NZPFmvagh84a3NzgjMV7sYHZF5ZYB+Te4wTPgO+bmwfn/vLK7bm+ypJakiYJUiqOj8cknTYH+1sYUxLHKa20RbfTJWm1meclzcKwrhsaamprWGUZUZKAa9DCoJVBCU+7nVBXJZoC42p+/u6npHXM/tY+80WJDVKGe5dodTu0ewOEVJydXzCajFgVa4pizTrLeHp2jnt2beulx3qPkKCkQCmNFpJLe3tEKuDi4pxL+/tcOTgkSUPqqqJs1nTaPe4/PeJstsbKkKoBhEQJT7cds78T0+1KvLDUTUMQRZi6ojKwbjwnk5J1aUkCSb+T4nCIMKBYF8RJRLvbYr5cEinL1Svb3H96wvl0hYo0B4M+GIdfGkoEeeX40Tt3+eDhE6SoefHWFYbbW5TrhkApnLU05RrvPFJIgjAiTVLWec6De/coy4K9/ZRXbl5j2FLsb/doxV1wt1j/za/z3of3+fCjx5yNc6Z5g5EKYx137z2l3Wnx6u1LtPTzJeLn+uupqAYs1w5blOxfShAi5PLePo8/PiPwilYcsF7OIZH8zt9+k8FOi6Of3sWIFdvbbfKZoaqgn3Z55dWr/PLxXR6dj2j3Q5I2FGu7IfkAIKjLJZOzjChW1Gi80dRVzWxZ4+wmOEoFEmst3niQHtuUaO1pd2Kk90wuVhRZgxCSKHAMOgmv3nqBSLf46L0njMZnCOGIQ0m73eHl119me3cHJTyBMiQ6oKc6XNu9zqPje6zLOdcu3yTPCrJ8hZCCurabwCZriCJBnAY0TY1xhqqoaQcRrsn4jW98mz/+4Zjp7Jw4FgRJSF1atvs9HozGREHAcKuLG6R4m3D3o0dU5aZxFjJESEMYOtqteGNhcbA2niCAvb0+B4dXvsjy+JXoS99Il3XOeHYBNzyt1gBfN6ybMZf3LoMRBIFCaIX3njjRBIGhrhtkFCCVoioM54/WKClxtaIpG8DQ6wWkbQHeEmjNaLLk+p0rnJye4SwYI4liSdNYzLMGTVhPFGp6Wy0uJW2+RkQQKz5eHDOXOTbpIhpBGIab+EzYIGXw7Gz30aFiXeaEaovJxRldan77N75HGGqW1Zp//vv/nJ/+8Ac0tuGxmfGnS8+3ioJXZJvzGzf4+d1H1I2j0xdkOeTzNenuisWjj9Fyw6gtS4nMDC+8dIV6kPFpldEszOZgR6KdJLuoUAVoQipjaV/u8Vv/0W2SPY/UMLvIkEaD9UjpUeLZtnKzaaKl5K/iQJ11mz4bkB6CqKZxYO3mZyIpsAV88Paaa3cS3vpOj88/WfNoXBH1Q6ytacrN0pLPSwI8vlac5jmXr7VZVAtc9pfsXYGsHf5ZOI151uQHQYC1FmstdfncH/1VlxSSQEmKomJdNOxdatFNU2yt2B4O8V4ipCbLatZ5jnYCZSoaZ9BhhHEOW6xopSBlRbGuabcjZvM5s/GU05MRo8mKKEq51N/B2TXr2qOTGJskyLTNsiw5OjpiMhlRFAVlVbHOM/LVijSOkBqsbahrTxxqXrp5i5OTM55ejBhs7bHV6/Hk6DE7hztcvnxA3dSsZwXgCYUhSkKWZUNWC1CAgCAQ9PopcaIpG8PFrKbXpAw6LZSUdPoDpssVq8ohVEJe56wry6rMUR60lARxyJ3LV6hWGbPJmKuHQ/Ky4nS8pD0coBDs7+wyOR5Tic1OhDGOcpkxylZYBA+PF3TbMWmrveHNpwlXr11lb3cXHYQkaQutAn70gx+xzkvAY/OSGzs9krDm+l4HfERRCLb7u8i0TdDf4r/9/R+zMgYnNEhBbR0ffnKf/X7M1b3dL7jqnuvXRb3+ZU6ePqaY55jdiOGgRZmVLJcZ7X6LoippqoIXX73O/kHIex/9mLoccfPKHqtpQ+4Khv0+L129RiuAVCkGrTbLOkcFnsGWxruIZ3idZ8FJAVVVUdYlWQHebALTNlAfgXMbW5ZQjiTRtDoRSgoaY5lOVlgvCLWg14558cZ1tjtDPvjwHhfj+Qax5w1agdABL756h+vXD9Fa4kyDUIrQBVzfu8x0cc754phW0mE6W/Hk6AmNa7h0sMsTcUQ7jVmsZjgn2Nlps1xkTFcN5dqwCDIeP7nLaHpCv9tmlY0Jw5jlYs2dm3foRn0Odgr6w5RGSbJScfpoTqsdsdXvMZ+VlPXGMx5FmrSl0VLS7XSYT2fgDTdu7fPJJ5980SXyb11f+kY61AGL5ZTR7JgwiDBWkJcJYbxLL+2DmRIEAYvV5lBVlSdNBUVREyUxIi8RXiJFQeMtOlFcu9lHa8t0XNBUECrN+OKMr3/9dYT3JGGEUA0SyWrdUNWOVivFVTXBdsTusMMt34bzKethxUk+Jl8kXH71deR7P0N5QRwlrNc51jpCHdOOQupGYGyMs21MlPFf/9f/hGy65JW3bpGXGTduXuOnP0twhcVKh7i1xWjmic9KXt/q8STucb+ekLYiltkCbyVXt/eZH8+49rUBY3lCLFM6vZQPPz3DfKNPkS0osmYTEFMFLJ6WpDbApx63tohQ8s3/8A6dqxlJGKJ8j6RnoWUxQmCdJ4wEaStktTBYa5HP9iyc91QWlAAtBUoIwgiU2XCgJRLjPFY4hBU8/DQnX1S88FqXVjfi0WlBriGnoRcG6MATxIK6Frg6YF7lpJci5vdqIi/w4hlqKG9IlCSXBuM39hMhA3SgaGzD/2dK3HN99ZSEKUkScnw+YWu3x6DfwlQNvW6ffN0wm62wVmCsJ44i0lCRdGA0W/L4aIaQkr29Lp00ZbHKWOcNo4nn+PiY5WxJmRuytaPXC3nl5lW2hrsMvSRKIpQOCaOIfD4jL1abAyPpscoyumnM1u1bHAwHlKspF6MRP3nvI7zxdKOI/Zdf5PKlq5TGMJ9N2NvfJkhDsjzDOo+zDiUc+5d7rPIVeWXxXoKz9HodwlCxLgrKpiYIQCuH9Y5hP0LgCSTsb20xni0JtGc4aLMuGlZZRVMbttopOtxcv3bSFkZauu2UP/3Je3QvXSaKM2bTGRcXM4q8otfqMGWJ988wX2LDhrZKkNWWMBG8/NILfPOb32A43MI6S5YtyYucPM84PT3FGoc1JTdvvACyzedPj1k3a/otGPQG1DgeHJ9Ta8Ur33qdYPCU1bOr4jRKacUBx/MJ273WF112z/VrIt9UiLLC1ZKmkGSqYFw8RrRjOh2NX1VEIsXYBT/+yT2Mybl6cInltCEOQ1565YDQRgjf8ODxCaDot1uEjWKaz3GYzdRok6aEsYJ1tcZZ8cz24TDGEoSKVivBOYfSCqVAhxJrDVmeY2qHkJJQB+wP2ty+dondzpBPP33Khz//HKclMhAIB94rvPBcvnqVW7dv0I4F4EDFpGGXJO1TVhmn00dUviIRQ87Gc5brkr3tAS/evkm3l+Ks5p1338HYjEE/JdCSxTrHestkvkSKFkWdg3BEkcZZeOPVr9NOtnjy6Ck3r98i7WiM1nz2cERRrknTkH4rQWApG4ezEEiPszVJ2ubOzUvom/ukqWZ7f5vHT8bAO19wlfzb1Ze+kV7mNe3WmiiEVCVUVYalJG1JrlzeY/7hlKqq8RhUKHHeooIQjeLG1X0CjhiNczwOrSUex2KRUVdmg4FDEIWOPMtotRLa7QgagReeprJIsfFLR6GisHB5d8C3rlzheiM4657x4egJsyjlG7/5e2y9+TX0+xuMXl2XSLnB4/QTQScS5KucXquDyRuGacS6WvIv//C/4+0HWzhpqJaO1SwnTTUegUxa7Bx0mU+eUEw9t/Yv8fT+lE4/YHpRcePqHp8+eMp3XztkWlcYXzI9qjjQXfqDNqfGIBpoVSn5vGZxUeCXjrV1FNajhObW67tceyUh6saEukQ6x+Jkyd7lLSZ3n4Lf4OmEcEjnUXKzwyz8ppGOBZuIUClxzmJraGo219nKYRw4t2mqlfScPTUsFhmvvbHNq3fgs2PLpJKs1w2dbouqXhFIh/cNi7mltxuSbgnM1CGdQHiPUhJbNESJRAiHFWCsAbH5oGqee6S/0pJCIZWi00mJkpg0DEiiiPOLCU0D7XSADAVNU7JcLjhflzRNSWUcUZBQNQXD3g5Pjk745NMTnA9AhsymC+p1ifIhB7sHvPrS67RaQ6QOyfOMfr9LFCdMphOsMwyGXaw1PH70iKaqubyzz7DV5vGDhzTrjCBSXLt6Gec0Fo2TIYiaQAn67RZnszNkUBFIRSxj8rIkjCSX9gYcT85BOASWJGkTxZt4YesldVXjUHihma0qrJVoIeHZ1OrqwS5OnDPLG6wJWdIgZcy6crSikMUqx88XvHh9l48+fQBBi7xuWC0XOGMYT+fY2rNa55v9CTYLW0JIWq2Y3d1dXn7pRW5ev8HWcIt22to028aQhCBVwL37n3N2PsI0jjgJObx1jT96+1OCIEaGDZ1uwtHFBQaLQ7JYrUlbCS+8dJ041mgZsbd9ifPxKWWVUX71wtCe61ekphrTapVoJYhjySrLyEuHDjVCOi6WY1ZZRjyG7Z2Y1154CWEDBpdCbr9wAylDTo9GzCcTUqn5xlu/zWwx5Z333iOKU2arBet1jpQSqSWSDcO9rM1m+VAK0m6MUoqybEB5LIa6trjS4w3EgWZ/r83uzoBhr4OwMD6d8eSTJzSVY9CPUC2NVOIZTSSm2xvwN77/Wwx7mkA5rDEEskXgNwSO8fwYFRiiIGR7uM1P7/6colhz7dLrFGVOuxPw5PGU6WxJFFq8kwz6A+TxKUGgybIKP87ZHUa0EkHSarF/+RI7gz1MEzBdzNjaatOSCUnY4vG9dynyCkfJbi/g9u0BUdzi7GzMap4h/ObhXjnL937jW+hQMF6tWCyPv+gS+beuL30j3fgAncQU1QKJoZXEzE2DUJ69nR5vVxapBN1+QhhLdCgJEFTzku1YcvU7l/jh20+5GJXoSOO9Y515BDHeWoxz4AV1Y9BK0e7ErGY5cRywzhucU8RxiHUGG8DObsowDtjZ2+Ht6IfI3Q6v3fkOrd1DmmpFEG4CIbx3BIHGW8+lvR6dJAIRIoRG64D+IMUpy3KVY48tcazQLqDbCpDCoQn5ix99wOeR4NvJZeTYMZ1PSANNuwePP3bshhFPnl6QniS8enkbIxr67R4+t3hbUM1q1AKy+xXzeYn2oCybMBWhCbZTXv/3rpJVZxTLDttDj3EZvWGL/UsJn8gnm5srJFXRoBAbnJ/YTHylBy033xg2qCHRbObBjYS0H9MbJjTSoja54XgDflHy9LMxd15Ief1ai3ujFUeZw9gNx1MoQ20s3ocs1yX71zSjqoHcI53AG09jnvF3E0klwQq7SYaTzz3SX3UpJdFaMhy0aRqLs548ywjDCNdYpqM53V6PbF0yWxVczGakScjXXn6JWVbw0ScfMZ10mE2mlOsC4wzZeoG1HhxsDbd487W36KQ91vkaaw29XpfGWpo8p6wLsvWK8eiC5WKBbSwvXLuONI7Hjx/w8Yef8PKLL4BXNAbiJCWrLUWzpqhqnDMs51PKMuPNr98m8jBs7fHp54+4ev0A42rWpiEININejIziTcCKtXg8SgUEWhBq0NKRhAFKK4RUSAmdJGCn2+b47Ij5csO/d87SVJ42ntLl7LYCxpMlnx3NuHb7KpP1nLfeuIPTIQ+OxlSFYz1eMs5HG0aBELRbLf7O3/09Lh0c0Gl3CHSIMYZVtsR7i6Ch3Ql5eO+En/z0Hepm83prJ3j/0wds7bdIRYmOoPYNZVkzGk35L/7xu2SlJ4gCvHS8+voNDg6HnI3uoXSyWeY0zy1bz/XX08ZPvERqy2KtOT2ZU1tD3BJI4ciyNd005uUXr/DKy3fY6u3RSlo0tuT9Tz5iscwIo4TDawfcees23mtWizNitVnE3entIoaSqilZLOessjWNMQRaIwKxifpuaqoCtAoJhSJJQtqtmFaSkEQhrUTTlBZJQDmvuRgvQAg6vTZ7Wy3294ZYJZkuFozmU67eusm33voN2kmIsXOy9ZpAJ3SilF5ryHh6jpc1SniGnTah8BT5jH4r5mBvj8nyiNoW/PK9jzg9m9BpByilaKUtrPHUzWZpf17WSOHY39tjb3efd979BOPu0u50MNYwnq/o9Ptk8zXlusY0hr3dHndeuMrO7oCq8gRSknc69LsDut0tLs5O+fCjz4jTmE8fHvP+h/e/6BL5t64vfSN9cjJBqJpv3FmR1Y9wrkM77tGImkuXtjCNASvQtaQxBmcbeoFgJ03IxiMWS7h95xLno/vAhmfqncY6S6A0XjR0uy3miwKEpz9oIZ3HuQYhNlNsZx3WOjqR5ualIcePn/Lad1/kf/if/H2mpWeeaR4d3+fR6QS9rBDCb0Dq3qMDRenh0wcnHNy+RqfTIQkDBjrlWr/DVjTksNdn3Kz44OIJjS65OmzzD/6j/4Q/+MmP+Pzzz3iSZbwebVOeZ2AccavhYLDL7INzJuuan31+TrWluHpNka0cclmQpCFqlqMvLAMiGt/gJRBa6maD7Xn1t67idwouHVzFCtCiYHtvn7J8TBpvAmfcMx+Y0JKqdoTBhoHpvMf4DQJWio1JWgmB9wIrPJ3dhGgQsBZrrPLYxiCcx2tI4gCrYjLfQdRLDg5aNOclx4slcStFWAtWYEXNau1pBQHd3ZDZk4okiTCNwzQGUfsNWaUl0RKUkDTm+TT6q64w3GyCIwQCz7LIsE7y5OlTjk9nzBYNQmmcMPT6bSIlGQx2OB2v+PjzeyShoiwLrlza4ebNq7z9i7us8pKqhk7aY3t3D+s2Ny3D7SFBuHkAn8ynrNcF+TpjsZhR5TmRDrlx8wZFnjEfnXP76lUSKRmNZwz297FuRWkc3oLa8HmIIsliOac0Bd/55i1W5+fspgPa2rH0DR8en7BsHF5odKApTY33UNU1QbBZuhPW0ksidgdd2mnwLDipYL7MiCJNt9tmOOhzPptjrcB5gRaKrKxRnZhOO+UPfvgLgm6XCsv+5QN2DndxYcTBzRdwDo7vPuWPHvzpxucpBKapEc7TShIkAtvUCOEo64IgkJR1xucfH/Pw0Tmj8QLrPB6Ht4rjowk7+x06qcQ1Ex4+eEKxzGm3D5hOc/K1QypNXQsm5x/z4quHXL2xzeGhJsGwzJ6PpJ/rr6feYIfFIqe0Bcvzc9alx9Ow3+5w69ollquMQWeAd5anTx4xaU+4fuU6F+Nznpw8YV01IDzjxRm3rt/iyv4N3vzaS6Sx4qdv3+V8kpF2W+wOerzxyotEccj56Ix1USKt43BnDy0k0/mSbFVuaF3eM5+vuPf5E7b6LbRWlLXj4NIBrU7KwZUu/eEQ7IL9geTOjRs8ejLmww8/Z9lU3Ho1RkqJ9w3rqqJsBEGlOewPmC6nzIo5i+wCfEMnthTrOetyxe7OEISjqCxHp3NG44yysHgcUbymrBqM8dS1xTqPcYJ53vDkNGe4HRBEKYvJhNpUCKnQkznWK5TUKCUJIk1e17z93ufs7+4hUSwmUzqtFGME5+OMp2cLfvnhXZQUrNaGsvzqndFf+kY6CRIgYrIYsey3aYUxdaXJ6prbty8xGHSYr4oNFNw6tLVcPRzSjhQyiuhfvoLvCq5fW3P06HTj34kirC0RAryTZFkBiM2SkhCsVgtUoLAe7DPPT9KSvHRpB1XVvPvpE+b35ly7klLELYyzEAm6FrR+huaSjqq2JN0WhZf02ynL1YrFvKY52KEnI17r99gtElZ3TwmihmvXQtxhyBu7l3jj9pCv/8b/jD/8wz/m6Q/uslcY9nb7LCsDHj7+6ITffvkV7v3FRxTWcVEadkzA/aM5MozR1qBNSHU+Z56VOOewz+AbYaCRScCdr++ycseslhGXL21TrSWnR3O6HcGnkxHiWYpa0JG40CFdgFYKpTaHuWUTFa6EwDWOprEIITY+tMiRizWNtWgfkMYpTVVhsSyQ5Lbk5DhDKU+3E3K4HTErDcYZVBwi6oYwdpjCM7lwXD8ICPsKk4GpDF6CFYAWeOHwwm9uF+QXWa3P9e9CYShI4oSm2XDMlQp4cnzG4+NzrA2pG0mzNiAsO8OIr714g3XV8O4n96ibmquX9ghUQCtJGW61eOvN2xj3gJOzFfuHu+ggoK4rzicXeDzOeaIg2CSROU+kNYEXDLe26Xf7HB09Zb1csNvpsNvtst3p8ieTt7FC42RAuS4JgxhrHdI39NKQIFBk5WaZN4kjNJZuL+H+0YLjWYFXEcZvlnyt9CA3CWHOWnSo6LUjhp2AXjtCa8FoPuFivmS6qlFS00oCtA7Y3x7y+HRBVXuMgNwJKpXwp+9/jm93CNsRp9Mxt/a3UOkAkLSjCCEl83S2SUzFI5XGOs9oNOaN118n1JqyyDC2pNMJeXJ2zOPjR4RRwOn5iKoygMR5gTAwHy05fXLBdnefXjukXi4QUZuf/PQeZenwHqTUSG1pasHR04zLV27hqpDUKh4cnX/RZfdcvya6fOkqdTWCsoTQYkxDGChuXttlb6dHvl5wOjoiy9ZEUYyQMF9M2d7ZJklTsirDGkvVVDx6/CmT8RmHe4e0Wh26LU2W13TSiL3tmJeuX6KsLXGk6aQpLxxeJvUhf/Inf8H9nz7Gi4iw3SLd7pO0Ajqdgq3tPhejKUUjcCrGIOh2upSmYTWfglWs1467nx3z5GxB1EuYTEecjx7QSgOskBSlZLc/ZFkYzudjRvMzyjpDCU8SpZQmo91L2d3bZpmv+Ok7nzCZ5pSVwQmwXlAbh/Ul1juQG2ADbB7gL+YlxxdLorSDmC9ZZRXgSFqOk7MJSqjN2R9IGgeTWcVicUKowdUN2bJgOimYzEum8zk6dISBwHg2eK+vmL70jXTLBShbMJuOmQ0v0dtrk3oNHqpgSacXsSzrTbOrHXdu9ZG1p9XbYXh9i7MspyNSfvu7r/GeDPnw88c4X6MCiasdUgqqsiFOU7yTSKFQSmNKj60sRkhkIIkUpL7k809PmS4yTs8WPFhvMy1qDi/tsdXeJ+5fJuxfYMYjvNRoFQCSdVUSRtBTgt3tXc6zJS/t9Njtn9I7hWQ7Ra8Kvv3GZVbdivAc5r+4z41vfI3f7F/hyV6OOGk4OntM+w7IIsHXFf/djz4gc27DWo4di6bhYmJQKiOUjk+PLmgiScEGweUdCLuBAHSupoi4pBXEDHZSorBGec80X9EOC4p5ARaiRNHai6g6Jd44GmMprcdZALGJ73UgIp4lGAkKW6G8IBAbGHsYCDw1OhL42pO4Cu8VMg4xtmRZVpQnlq1Bm7PxCpEIkBYpNNY3mLxmceFo7Qjm0xohLD7WVG2F0QbH5mFHB/JZlPDzZcOvsqIwJtKb2FovDLPFmNOzGbWVVKWhWBvqyiKcYafTJ0na3H18F+M3qWTF2jA/nxEEESqQjBdLJtPlJl0slBhTMZmNkUqitEYpTVH6zee/8zRlSS9N0Urz2eefU6xz+kFIP20hxQZzeXj1Bg9Oz0FIokAihcQLQyA8aajZ29mmKAu00OSlpfSOeWY4Gi2xIqIxmxsfnCWINN7Zzc4Fjk4aE8dqE3ri3OYwMw2tTkTmAibzmotlTiA3nz3tVkrT5BjjaYTks6MxTioO94csshk7+/scXLuF1CHeOepqYyupqpq/TG+zxmKEYzyZ0tQVcejpdUPyuuG9Tz5inq3w0tM4WC4Lnv1Xg/UE0iKt4PGDC/rDhMvbnleuDPiH//Auf/4XI2oE3nmU3bDyg1Dx1jdeZ3fvyoZHKzV1+eiLLLnn+jXSzavXGfbg3r2fsS5G9K4OefHmC0Sh4/jsCTo0HHQ7VJXCGLuh0pRz2q1L3Lh2jZ09SRSmxKGgymcU+ZLR2RMa69k/6PPCKy/Q626TJikSjaPCZDW1ifn446ccffaQ8emUwGuiOCVb1+AVOlCk7ZDxZExZWaROWKyWeJWQnTwlTiK0kjw5nrNcnJDXnnhri939LluDNjpwOAGN02jVotPa4snZOT/+5dss1zPCcPOgP98refnGNV5/7RXyouDhk6ecni/Js5IgjJFlTWM92bqhnYY0DVgrEVIgpME6z2pdMZquqeuCIE6ZLQqscyAd165eZzJZcXI2pawb8BbhJJoKJRwaT1HW1FVGsbZIBVGokdIjlcA1/79/h79u+tI30ntim6QzYWs7RWmHc4Z+tM0gjbmYLzY4urYgCRyHOwnr/P/N3p89W5ql533Yb631zXveZx5yHipr6uru6uoBaKAxcIBAizRBWg7TIh22ZSscYYfsK0cowr7x/+BrX0iibIUkygRAQQQaINBAj9XVXVNm5Xwyz3z2vPc3r8EX3wEYvHI7gmC3K/LJm7zIOLkz4/v2etf7Pu/vWZKVIdt3OvidmPziApFaXpw8Z6M/ZGdzwdl8gakswnkEQQBOE8UKqCmKEil9TGXwkJhQ0vYEv3Rtg71On+89PKRUEPdbTLEEYcQH331C7c6wccRgs00gFBXNgeAHimtXByipkZ5lscopdY3aiwjiZhy9u3mFL+0Muf/Hhzwap1ztDDjeecpn3/6Mx8/nHD674Ne/fo/dtYjhbYGXGd65ssUTO6XISl6/ss7NzYC01sgw4WSUIoVlaRy2dpej2SZIRUgQyjLYTljVS9r9mMPjC9Rei5avef1OD5dGjI9PUMrHlpbpsxTZE4ihxPMcQlpcIHFWEITNl5G19tLO0ozehZAo5V2mmTUx4sZYWm2/iRHOa5QUaO2jhEeRVozGK+IopNI1UeChK8BKqCyrqaa33YFORu2gCi217xBKQA2hJwgDRVZ8Dt/SV/o3FKgY5RT9dptFWnJ8NOVivKTbG7CcLHCVoxsFvP3Wm1xcTDgeT8ldja0FrhIcPD0hkAJjU1alJitralOxPVhrqOimwpMeSkh0WaIp8XyFJzw85eFHIVmecXJ6Rl2UdMKQzSMHgOMAAQAASURBVMGQQafHcpmyqg2TxQpjzOVl0sMBRjrWui0CT5CnK/Y3+5RpyeNHR2y3PI6LklVZo+3liwpoY6AC34fIh067gww8xssUIySdurFEBMJROYegYrnKMc7DakupHbXRdDotVosca6HUmm6vg/Ohcobb997C92OqqsI6h/Q8jLHM5/O/wncKHNY55rMpRbUksgnTxYznx4dMV6vGKhcoFvOM0fkMaLrnPpZ+FFM7Q5aVPHxwxJUNn2ubIe1+jKaJBxdOgJNY0wTWbG1t4fs+vhcyORmRV68ux6/0s2nYX8MjY/u9r1Kmx6AV1raoiorNzZtsbPZIIkG6HKF1SVlajPHZ3t2hqBTdzibd9ibGVOgiw+mSqkpxQlDbkEWqGE0yHnz0jIuLC4Y7GxAGHI3OOH12SCAFvhIMNob4XsBydEaVjehvJIhKMS4svV6HjY0NVtkSW65odxM2troIJVhGPlrM8WQAUcDufo+9nXWUVCzSmqJS3L1yhRdHx3z7z/+Uk9EpQRTgKUkYRDzRC7qtOfeu7TEejXn4+DmlsfQ2Nri+vckPf/xjyrpCG0tlPLLCUZauCT0STYiUVDBPU1bLBb1ejBMSY3IEDf86TGKcDJBBQF1rlPJwQlKXFUW+wpOCusmhIYo9jNMUmUbXlqr4/L3Lv/CF9A//xWP+p//pm+T5EonBVxGJ6lGaFXVtsbVm0K8YdB2Ti5LlyqO/3aO1McQJx/nhhLZNeOPuW9y8c4df+lXFf/O7/2+ePHuGc6IJ+5CCpBWBMDjn0LWltBYtHRvW48v9Db519S5//PATpp7Gs/Dum1/iz77/I0Ln8/pwjz/44SPotrk4uSDo+ZQ6w/MEUjnKLKfVkqxvbLBMM4TfYjwv2LmyRv9Om+VM41TG29evEqkFJ4dzLryMJy/GZC7BBW0eH0954409Fr0X9EyH3oaimkoq66MXBVd29vjMnjIazYhNSJrnGClBKIypL0enzf+psY5uL6bVlviBRJcSITogKozVlEvJclZT1U1MaUtFLM4L6tTQ2UyQoaa0NQZDbTRSSjxPNZ4pLwCal1HrmsViCUIDTfpgGAYkUdj8WT+gyCVWC/xQYS9j29thgHVQ1FUTZS58hHZkS0O85TNaOerLC4Gk8Wn7gUAqS9QSvOpIf74VehHtpIvC48OHTxmdLvCEd9nthfWra/zyN94Dar73X36IVpKN3XXQEt/6WF1jnCHXmqK2SOXT78QkSYCnDFI7BBJfhgjfUusCU5YU1QpnwVlHVVWY2qBqzcb6OrGnWK6W5NqxsoJ5mqGEJPADqrKiqAqiGJJWQuBgd32bwMt58fyU6bLgzvU1pk+fUaEwronaFjgkYHQTGLM2aOGUYpXlOAyVlvh+hK888AS2qLGmsYpYF1OWBl1LrKqRQtBuJ1S1xuSOLF0hbMbelSsMBhuEgU9xeZBy6YleLVfNmyQEypMgLYv5lNHknJNJgTE1o/mCyliwGs9FXJzP0LXBGQfG4ktohxG5MdS1YjbOefFyyb3rLcI4QjvVxItbg9B/uTCsKMuSKA5BC5bLlOpVIf1KP6PiKIb2BoN4k0nW4dnzI45Ox2SqYnh1wPbWLrHvUO2YTrcDIkDXhpPzUw4Oj5DuOUoIalswbPWJXZ8iV5xOpzw/njAdl6yWOct0SRAolosVfhwwGs1YLtIGdScbS5MnYGN7wK/9+tcQynAymvDTD++TRC2+8OZtFqsZs2xO0k3QrmI2nZHnOcIzDNcHtHttru0NmS8yFqsJ0u8Q+jH99oDf//a3GS0mFHXzPRaGIV4Y40TCy4sl2xsl+3v7+B8+x29Z/Dhkb+8KR+dnPH95iFGWtNRYGhur0xJnwVqHDCQy8InaEUJBEDnabUW/7xAu5+J8Tm84oEbghxF1UeNJj3KWczZZIq1BSEmcNKSUujZkWU1VOKx+Ze34d67Rcc7izGd93yeUPp1wjUj2GBcPeHj8kPZgiediTo8KJkuD8A17nQRtDZPRgl/68rd4/fY9hBAoFaFkyD/+B/+E/+qf/1M+/fQxpTFY4TAaJuMZRV5iTE0c+wyV4u9fu4cZZ/zws8fMVMXu1T7loiata8Y5FNOUW/fWGWy3eHiyYKOTEKmA0tQIoKpr0oXHsD8gTXP80CPLBVa06Q40KS9ptUOs51FnK7pSUq+1efhyDEFEkWZ0koCOl7DKckQiiVYeX317k35Xsf5c89nBmJPJAjdsOtBlXRAkClc3vSTjaOJJL9P/hHWE0kPoin67R0aF1ppFromHISaokcqBtFQO0mmGqcGrJbM8I9oI8Hs+xlVYB0Zbcm1QSlApc0n6ACmaNKUgkA1/1llWy5LlrMLzHXFSg1OEYUgUh2SFbdIRcbRaCr0yWKDWBlsLslRguxotwNaOUIDnCbyOBxLyQqPLVwfu511BEBH5CQ9++oTpYcpA9Nga9nnj7ZvMl0vaa+usDdvcf/iUqnJkZc3mWkQ7jomkw2/3WS6nZPkMqw3LNCWIhwhn2egGxKrN8alFBs0ltK40VZnjrMMah7MOVxtEXaO0pkqX5GhKK1hZj8IpytoQ+rKpS6XA8zwqXbBKM85HE9b7IV985yb3D56TWcfUFEzKgtw2/n9oClEhLIKmOK6BLC9wGAJfUdcWYxzaGPIyxTpBHIX0u4oyd6y3Oqwij9FsRZaVIAXWGawDXTl8X7C1s0ttKoQRSE+idXPprUtNccmcc4BwjtDzKauaD+9/ws6VDZSSVNoghcIPI6rSsJxnWG0RzhJHiq1hj/W1DR69OKHUTdf86eMp6VeuE3g5cQhZLVFCoaRp7HDOcT4aIzxJS4UYbV7djV/pZ5ZzjiTpIqwgFDtsdkJWi+e0Ew8vCEG2yYoUiDkb5ZR1Srqc8OLlI5arGQLNoBvTiftEZhO9UExGBR8/OeB0NCcQMUJY1vstOp0WZVZQLjJMWqNLR13VSOlwVrPR7/AP//5vYyh5cnDA2ckZnpS0k4g0nVGVRUP3qSWL5ZKy0kRxjJc4Ov2A9Y0ep+dTDk+mtNp9tjfa3L12l9lyQWetw57aY1VUOAS9zoA7V97gC3e+wA8/+gt+dP8pX3/7Ll9/7wuoR4cEcYuNrXU2ttdJ1vqowOPgyROKctTsGlmFMaLZ8QKCKMLzDZ4o2NoK2VhvEQSG84vDhgQkYjqDNYIkQQiJqaHf7zM+PsZkBaa2pGnV4Dm9JkjL8+BzWEf/4hfSt765xZP7x/ztv/UrrLU7RCRIN2e1GPPDH30HEZRMx4bKhThV0G2H7GwMcbpiNi74yi/fo9MZNLg3GeNLH9Ee8h//o/8D//S//s/5wYffp3ISAsjzORiD8nx2koBvtnZYy2vmuxHndsWda7f46YuXvHH3DherGYWyVMIxLUre+EKHw3LJ+TSjHim6axFBbFFBiK86WBNQlzVKwvpaj9PpiKutARNt6VpFGIU4IynqJY9ejAhbETd2Wtg6aJL/QsHcLVDWw000LynYWx8QJ5ouFcN+l6k4RHsOU4KqHNZarHVgJdpYLDR0DenR7voMexpblNy8cg2papST5OmCoiwoqyaa0FmHCppJs8IiakE10ohU4A89alVT4rAKjHA44/AVRL7CaYv3lzGITuEuCVbCWUonKFcGWdcIVRBFila7S+B7OFvQ6oaY0rBclBRGgxJ4vYCltRhpUJEgbgWAo64dxUojpM/aWps5k5/jE/tKf92SUnF8es4nnz1nd3CF2LbAlCwfz6jQxH0FRc6T+0+pCkuvNSDxuoQoWoEHruDq/nWMO0AvJgRhjzrTnL44Y7fbZWtrjfFoAtZQZDl5kYFrrF6ek+RZjmcMkYLtYZudtYRWf8jDswWr0lBZh+8phHNkRdZMV6oaJwzzZYHVsHNtm71rQz54/JDpMud4MmNZ15T6EsmJwFOqGdf6iiAKyasaJySiKW1xThBFLWoHBii1oaodsS9ZTxTba13OxoLZfIy2Nc7KJmXNWfLKsMiWhEmMwbLMsya1FHDOXpKKDH9ZwUrloZ2hrjXCayKPl8sMYxoSicQnXZZMxotLlq5je3vIb/3Wr/PBjz+isgY/9pFOMJ7W/N4fPOA/+O13+Q//wZD/x3/5Q0pbsbO3xRtv3uXwaMTDjz7jtdfu4LKSMi9w9lUl/Uo/m/q9PvlqgTSCIAkJ2pKt3T7tjQFTnbLMFrTDmuPjx5yNzlmtCnzlCMKKtTWffrtHy4uJ3S7VtEM+l5xfjKl0hfAcThgCJfE9j/nFnED7mNoitY/NK0pdEISC7Z0Bv/aNr2Dqmp/cf8DJxYiqrlDKJ69yZjPBdLbESJ/EhWzt3KLdiVkVU8aLC5JWl1VmmGaGZLBFGLZJggGbw12enT6n1WuR9CLGsxUaRTvq0Wl3efD4AU9fvsTzPO4fnPPevRsMD8958vIlo2Gf84tjZBBTLiy9wYDZbIWsShygfA+kI05CqkrT6cRIV+NLH+Pg9GxGWfrs7d9hMquJWhF+khDFUXOBrh1h5JEXgHXoCjJdEQQOIQSe//nE0/7CF9L/p//Ll+kkGb1+ShJcR1mPVZ7yB3/yu4xWZ0xHirqIKVKDq6HTCkgGID2FMx5J4mOcAefjyYBIhUQqYKe9w//uH/9vUP/PlE8fPybMa+qsJMtKrsVtfuPWFaILw7LT5mxgub13jSS0uBeGpAy4f/QYRI7vwVT4xKOSt64P+ImYM0uXrAdb9NuSVaHB1xS6YNBdw/Mkq9Sh8WCrx4W2vHg0ATekEytMpbm3N8Q4x71re5h6ijaKw+Ml7W2fZalRNmK+SLEmI2kn7G3EVMrHSIEKoF414xMhxKVdwjaH5F8mmirFYCMiaeWEbY+Ls6fcuXOLQbvNs+M5JtfoSmNtY8cQApQHCoGwAkqNLzzM2BG0PbxAYC4PYfxm89fUzYjWOonSimG7Q64XlMY0HmdjsTV4tvmMKnMsyxRwbGx1UKJieyukJwNemiWDtYgiqAiFI+mEKOuTrgqKUuOEoD/o0h+2MfUrj/TnXS+PD3ny9Jjz1ZJOL2ew2UXPM7LpCs/A6OMTOgMfN6rpqRZb23soFRJ4HmW25PD4CV7ksbW5SZanKBXgBwFZlvPxD55zvJaD1yJJLOWqwOiawBcoq8kWKTqv6LVi7uxvcffKFu1um4+fnzHLNUXdxAGHqkFE5mVJUdZYB2EMfhCRacPv/tF9Do+PyeuCTrdDkCTU2uJsk94phEAbjZKCuNVmmWfNZMnzGs+1cAghCaM2WQmV9qgsLLOcxJcM1xOsXiDsio1+iLGwyhyitlTWYq2g1Rk0P8s6lFQIIZoLwCXOMonjv0IMNn5KTdQJ6fbaCNF8RilFY3ehmRyVRU7oS3wJabbkz7//PuejOcu0IAg8lKcoSs1PP7rA1x/wf/yP/w5/9O37PHk5xpYlncTnb/6tX+UPv/0n2KpCWkeRlzg+nwfwK/3bVxzGWF2iqxV0NeudHslCcHI2prYVxUrTDiOu7F9lfW3IdLHk5csDPE+gnEdgNllLblBMAuqV4Xx0wcn4lKvXd+jmGZOLJYFV1MuaQdDn6v4eF+MxR5MR0lgUksD32FgbkCQhP3r/fZ6fjVBhQF6U4BzX9m6wtbHGZHofYxTn5xNKa1mr+1QuY/faLVYlvDg4odMdsrd7FV967Pe3Gc2nPD85ZFkt6SQhg26MJiCMYs4WJyyXKe++8y6tuM3B4SMulo5vfOmLHL74PZ48ecD52SlB3GW4ucXm1ibT6YI0G6GkwNYGaxuudFbAYNinWEFaVUxnBVJKfF8Qx4p7m1coZAx+hB8F2MoyPTlHepakragrh7MCa0AIR7fXwgsaGxekP+/H5N+qfuEL6fl4inAenqrQ6ozexoxPnv63PDv+lNG4xdmoRtKMJSpj2djdQvo+03HOrWtvMGit4wUBgZegtI8vJMJWHB+/5MOHP2JvOyGv+rx8MeV8CUMv4t/ff4316YLnpuKs3aMeJNzc6nF6NqXntykvHpIvL4hEB0KYCofM4LU3eog9KGaKYmG5st/j5GIGskAjSPOy6TyLilD4FGRsvDXgJx8+5MNHC37tm6/xxevXKOcLjl6OGJ+dsn91yPn5hLrMOK9WBMuYZy8nvLaxg/AF55MVn7w4oxhYzG0PhMS5ZuQrhENbEEo0TWEcyoEILZv7Pbo92NoeUhUe0hmePT/EBTF1nqIQjQ1EgLVNGqqSAiUg9Dy21vqcjGakaY0IvWaE7SCOBNJXON9DRR5Ceciypj6Zsd8PCKIYEfhcVCtqq8kry8oJamGxdROuU2YavxsQeIr+XshwvcVkkeJbQduvEE4wO64hF3SSFr3NFiK0BLEhnb7izX7edXR6wfHxiGtXrnP11g7pYsXBwQmLyYp337hHOZmyOlhxo7VPuGcog5hKKLACnCUtUrJVQVbkKAvKaLRI8QOPVtImXRQs0hXKH5PEEUkUoGrDje1N1GCAkoK7t24Qh4rFYsrp6ZRn50usFxOK5vBw2lx2dA21K/E8GPS7bKwPefFcU1vHw+cThoMAp6CqTbPoJyRONPG/QkCUxGRVhUU0EyVrcbqZDjkvQMqQqpIsc49lYdAuoraC8awi9mtq4wjDAE9qlLJYISmykvFkylC1kKLpentegPI9tK4wurok7l9y951ryDgOklaM8iRFXmJNM6OVSlJVFVEYEPkeOEenHZLmJY8eH1BpQaU1dV0SegLpHNJIHn424g9+/2NkZdiIQrzaUC5XKKn59d/8BrU2LGYZdW2aiPJXeqWfQQJIkoAX0zOE1LTikHbcZTv2WaYpVmiyVcWw12d9+xZbW45B9wZ5PmdxMSWfhIwmCmUkAoUfRQy2+9x6bZcnT4/Iphk92sSDmM21LVpxjJOwtBXTeonEEbV83nzrHv3BkE8fPUF4HotsiTU1iRdwff8qJ6NzrJRYK3ESzmcTvH7Mxs4elUuYTOfs7N0higKwHnVu2bi2zcuzF+BLhJZUec5g0KWygkW2wODR6ffodQd0oj7FZsXJ7ITtwRbf/NqX+cO/+FN0rVllU5zwaHdadNotZuEMrKCmuRR7ocfW3g6OiuWqIJCSJOlS1xUOyWQyYtDbxcPQ7rXw/ICzF2d8+sGnlHnVkMSEwY8USkp8zyeIJCgQ5vM3XfqFL6RLb8ykKpkeDXnzymuE3j5Xr6xxZXtApptEvekoxxnLWidhqzvEKz2Wo0Pe+PpvEIgAKonVmiQJWK5G/OSjH/DDn7xPmuesb8bMRpp4EOD7NbeCNv00gOEG1s/o3uiTdGLaYR8nFty6mvB2r6An1zg5hJNjw1yPaW/0qCN4+/pNrmzdZXR2zvHFAbv7m6xWBVWhqfKSJPLxgxLhDMYl3PhKi3e679ExPYwqUYEhVZK+6HP8ZMbBYUKvt86b7wyY6iXhuIvoBlTGsswFHz4Z8eB0RXKnT0+BUuB58q9Grp4U4HuoUNIeJISJT389YPuGj4ibF7HfbnE2LZiuNJMsQ1+U1LVDNgv1QLOoGIeKVifBGMvJxYy6tigEdarBgq8UO702yzRncp4hPIm2IEvLuzd2+Ordu3znBz/mS29tQTJEeR4//vQ5xwJGrsRY08SNC4f0IpaLnExbdG3J8go/AucUFoGKNcNBBy8OMZRUuoTaI0o+hwasV/o3tJgu6SjDwGmSVcFmb5Nse8mL0w8wA8Nw0OPxT1doGTAY9Bhbi77kIa+vbXBwFFGaEm1qojDh6vou3TghaXnUWvPycEIsAoI4Ig4DttfXODw44NbeHq3A4+XxS5arOZVp8eBwxHSlkWGbwBME1uJJH6Mb4oZvPGQJqIpuOwQjEIAzhjDuol0T6VtdWjqMawpXz5PEcYhUiqquQEoC2RTYCIuSEIeSOJB4fkheS5RyOCqcDJgVJbUVLLOSk1HKstAYLVESyjqj1VL0ejFZ3kRzZ1VKXRhwmkA19hkpJcKBde7SWiGIo4BWkpBmeTOxsg5nLaEKsLoklIIg8ZGuWZB0dYmoNGuRx529Ta7srPPp4xOyVKOE4s/+4gE48AW4SiNqR76cI6IAUxtsbTD15Y3+lV7pZ5BzmjSb8ejpp7TaPp12hyBoEbU6DNrrWGupshJT+hSpj1MB+1feo6pyjnlCZhfkM0OiPJJ2i6BOCUWHB/cPOL+YkKU1e2s77HQ3CMOQZZ4yTucEvRZe7mNNzb23rrOzP+DJw8e8ODpjkmVIH/pJxLe+9g201qyqnOHmgFVeE4cRshOysXcFaz0COeRXv/Z1Xp6+pNAZxaqk67XY7G+zLFLO8guEahPKhkUfKkk9S6lRmNryWXmfQbLJWn8N217naFRy7eot4vd/gHNQVzVnJ6fkecre3g69XkJZanqDHpUxBJHH2tY6pswYn/vNBDmtEEIjjCVTC5QsWY6nyCBA+Qkvnz6nSlOEEBhD03SLJHHkEQY+lbbU2iI/hzatX/hC+mLRYqC28K3l6PwR+2sHXFv/bf63v/MaJ6sLxqtDJqMVvhxwdWefOImZ1xnjNw5ptzKsmdANN1jlSz548gEfPfwpL86PeXG6QtQhD58ckC8yfuU3t+iJkvLDBT8cP2HztXd4/StfYZaPWE8ijkYZVeGRHnl8/1FJumN4584629eWjJeaJ2dTnhxo3MfnfNc+o92PGK8mWCFpBz6rtCROxuzvrXHl+hqe8hB4xMOI1eIZx48O6e0NGF7bY+vONYqzU4qV4Dt/8YROO+Sdr/RQLcGTD0/pRdusZMaj0YyDi4KFdWxr6MsmntQYe5nM1kSO/tbf+9v85m9/k80bLZbVFOdOmRQfoT2w2pCnFZVxrCrBxTTFjR1VZZsN3ssQIiVgbb3HeLokLUuMlQ0UyzlwTcfaOMPRxRxEg6Wra6itY63tYW3G//Dtv6AWivFoyetv7+InPt21Do8vJpTUtFoR3W5CGCmm8zmJr3DOoIuaKIRSW8pKkdWa7jBCY8ltifLAlz5hGKHcq470511FXrC3vYOpDffvP8GLTjmZT6g8+PMf3yd0AqqE05MZnXWJ127jrKV2Dt+PeW33Jk+ePcA6yVtv3YPcUM9LVBjS7/TYfH0Haxyz+Zwyr7i5uc7q/Izjk1M83yOKOzw/OqOVdJilFRUeoRQoHFJKwiCkcCVeEDcHYL9Dp+OzPF+Q1TOkF2JpUji1LTECujSdaOlJ6qoGofACn7wqqYxpdhQCD081+wpR6NFKfIIApGw8yYHvk+BRVhVFXrIQFXWlKY0gCCIsFlOXJLGi29vBScvx4RlREqNx5EWKNTmbgz5ZVjNfTgGHFKLpPisIQ588zajqmsbHLVFS4ip48NNPkEZjtMHg8JAMOzGJkvzNr73B3/rl1zm9WHF0OGIyTal1kwAbhz7dbptWEGJqwXKypL+zRhJGLE1KbQyvGtKv9LNqsZrx7OVjTs/O2Pc38D1FWdWkRYbW4AcJoZ8QBDFl7bBVjZUV3e46G9uaUf2CpwcPifoRrSRBLhWzyYLxYsE8K3BaUGGx0lHUBbNszvliwsrUOAxbWz1u3NjAkXJ8fszFdEFeazq9iLdee4PbN2/znR99n/l8ytbuBjYQFJ7P9pUr+GGP5UozzzNenhwhGzQ0nudzc+8a6SrlYjJGVzUOyCqDqJr3v9tpk5WGIIqJg5hOp8VguE673cWzNUFo+OJbX+Th8yOEAl1rFrMlYejz2uu3KUvDxsYOea2RvkQIQ5FCf9hlenF8OVVr4zB4UrG32efGjdd5cjqnqi35aoUS0BsMWC7mOFMw7LcxlaYuHGWpKeqaKPB/3o/Iv3X9whfSDz68oLt+xMYwxvYk37v/L9jZuEKgNLGXcXM9YW8joNQbaC0pbYGv2qwNrmNtTRQ6an3Oi+OH/PDj73MyzZjMDYtJTjqdkHiCr737Gne2Ff3I5/RLKYUNqLoBo0XNl2//ErU95vDiPr7zCYzj0XzCk2nGgwclf+M39onXz9mOM25e7VLNJU+eLPFjR6gF81OJGXoMNlrMlzOev7hgMVvxjS9cZ7w4YFYLui7C2JzZixnzgxnTecXXv3yXte2IX//WFVrtISf5c2KruHV1jecPZxwq+PQ0J9MCPIdXWRRgpMBJCUpw7fVr/Kf/1/+EL3/tXVAl54sHnL0cY/0XtDptauFYzqd4DFnNF5yf12TzJWLUR2hQrlk2FELQbiVUVpJmVeOPNK4ZM19eLnsdn1YgyQuNxWFriycgCQSvbXV4e7/DeB5wfFHz2fGS3D8mGig+Hl+QBopQ+PS7MVpXjE8KPBdQdyXtriToepjKokvJclIQt2J0rahsiacSfCmRXsl8uqTOP3+33Vf6N3VyPufZszGhl4ATzFdpM5kQPioakNfgixjRjTBB2AQRCYExjrqGu1du0c414+WcNdWhf23IT3/4IWlac3L6gtkipd/psbWxjnAV08mEJIn59LNH5KUmrzV7e/tshUMqfKyDWmsGgx64Zsk3ywsW6Rw/Com9AGEtn376GGlDhutr1EazmC/oDUKMazyIFrDGoCSEkU9eFhhAKIlzBofDC3yEbDzbnpQI6WFtkyBYVRqjHWmakRUFSlpaUYjnaXASJxx1pSjSnIvRBGss87MxZVlx5cYVkjhEhJbFaspqldFd7yCEwyEQDpQQtFpx8zmtbVjxUqJqx08/+BjfSXxPYi2YqtnN0NqgQ8nTozn/t//773M8XjBNK4raIAUoaUnCkN39PXY3tzg7u6B4kdNZ64AnyZYZxjjcK2zHK/2MOj055PD5M2IvphevoQTougZTIlBUeU5ZaHRg6LYHeKpJ6fSVT6fTx2wUXLtV06EFwpGtVsynGdO0wnghfgDnqxmz6RTpLLmpGKdzSl2ztdPl7Tev0W755EWJFR55pUFIWmFMv9vjo08fcPDimKDlEcYRYeDTW9um3RowHOyRRCV5lVKbDEyDv+wGba5uX6WoSoI4ZhisM56ds7i0qEkh6Pf6DHtdagOGmtHqglVWEHkxoRO4tmJ7Z4/9vR0+e/ISawS+H6C8EIvgnXe+RJ7XXGn3OZ9ekOZzWnHC9as7hDLD6YJuN0FKgUSyvXmFVR3iezmL2Yx0sQQEWV6gtUYph7WGxapkOikRQiGkRX4O9x1+4Qvp3XaPIFkSh20Ojp7hWHJ88TGv3b6K55fE1mvwUekpntelLDLyzLC9u88qtTgjUS5kd+8G/8HVm/zwxx/yL/77P8HOZ1xb20Qay/HDA3byLr2379K7t0s6ztB4TNOUlydTXru+zze/GHMymmHu3mLyh3OenR8wLnL++98748tf2eDKjYTcv6A79Nm8OiBNFYctj2dZxSJdEPXbrK+1GZ0tOZ4sePBixjutG2xs9+h+s2ZhP2X8QcHrmztsDgQvXp7Q3/PwlePs5Jhxf4UsLFe2Nnn82VOOzufU2qGUvDzoBEqBHyhs7Pjqt77Ef/J//l/S326xrM8wZsLZ/DEHp/e5cTckjALyVY0fhNQ2QJc9Lk4PCWSXk2cpurII5xCqKUKEEoxHE6x1zeKilM3h5pobc+AHJIlHpVfoQpL4IZ5f0Y8Vt/a3STqOqB9w5kaU1vLTdMpqUVGh8ZQkabWp6poiy9G1QOsapAMvJhQeRVbhfInwBXHXxylLFESsFiVlZukPEmqpqDA/70f2lf6aVZRQ1B5SSpTwmy1a2SEMW+SlD1ZRWAm+T1oaivmcLFviK0GkBLc39nj9+i2mRxes7p9zIE5JfB9TO/ygRdCSPH7xgixdsrW+ziLNyIqKpNWm0Evq0nB0PsX5HbwowZmautZUlSFJYvIiY75KWaWaQRBD7Tg4OuZiPEUSME9X4AzJeoKnokvihkZfIiRDL7hc8DMIpZBcbtMDZVUQ+IZu0ubq7gaeClgUGkdAFCrKagVYlO+DbbzFQeBTFE0HOU5alHlF5PmEoSIUHo8/e8rh8TH3XruGI8eLBCoM8UIFosFmNi1hge/7GK0JPA9PeARW8vEHH6EyjbSWYbuFto7PLk4RQUBWFlzMUl6OU4xz1LUBp5AoopZif7fPMOljasfDJy+5fu06WTEmT2c4FPP5jGYS/Pk7fF/pr0daF+zvbhJ4OwgnydPsMrFYNRdCL8DzIpwWlFmJizyiKMbZCiElvWEPv7Ysjqc8ePqA44tTiqqmspbA81nf6OKqgrP5CFNatLFoLIN+i2987YtcvbZJms85Pb+gKCuSJLwMNoIPP/mYVtjCVdDe7lP7IVG3gxd1SEsDszlSSqSwGGdI04I4bLHRGzBo9TjIT8jzgtFyymw5p6hrtHNEQYRzEiU8siqjNJowMIRxSK+zTsdr0esEPHxxys27dzm+mJDlJUL6FFXNbLakrgq0NmTFCt9TdFo9dGEZn8zIixQlDLN5Tafd5vreTUoX8HI0ASGYjiZkq4K60GAdSgJCkGUVurSXNE+LsI6y0D/vR+Tfun7hC+mXFzOubXU5mYwIlUD6CYvVGas6Q+qCrPCYrQSF8ymqFUnUJ2m1KMoxvqcwKLKsxbC7TuyF/PpXfoVfevOr/PinP+CD9z/h8PkzlvMU3enx9MWCdEMQt3uEkU/U0njtnI+ffMr6mqUdJuxsvsU/iTe5/tMf8N0f/4jjgzn/8v/1hN/4924zvAcjO+f4/BTh+dBxvP5rG9SLLZbzKVXpCCOfuhAcXky4OFnya3/ja/j7Pe799q/wvPUh3/+Dp7x14xZBF7K6ZmpyuutdCjkmXHiMLlbIxENlklh75LrxFVdFga9g/7V1vvWPfoX/8f/s18hYYT2J8kNG02d88ulPEdIRhRHSGvbWtlhkKQ8fz3h5NMX3LatxyeSsQWE5KS59kJbZYoWS/zrUxTlLFPmUtcYax3yeUq0EBjDaI4o89m/02Rhons2esoo82l6Af0cyep6zqgVeHOALRexLVmlT6Oi68UFLCcZBWTom0xW6dKjEMdhIIGg6cnVpCb0EbQzpQuB0QqheUTs+7xqP5iRJHw8PUwu67U2cn2CcpL6MrnfOXdIkFH4Q00JwcX7Cj85PUTrlV968AXPHUHUYGknpDJVQnOczQuvYXh9y6+o+88WS5y/GSN9jOBjQShI4OWOelSzTjH4QUGtLWVXY2RxH0xmutaPWliLPSaKAw5eneF6As1CVBUkoeefN1zmbnqA9hef5GNPE6QZRTH6Jo/Jkw3W1VjfpgUAQSdb7MVd3NrDWwzqLQyJU46t20uGynCzX5GWJEgJtajzn007alFlJGCha60OKsmA1y+lWFc8/fcRgo8dgb42i1CjfQwiJNbrxSFvH6OyC3c0unTDk5OCc+49fEnsJ22ub+KKmzBZce/0Nnp2PWdYaJzwMGq1BehLpNTYwnKPXjdjfXWP0ckY6GXN6seDFwTE7+z3efu8K58fn5KsUZ/3GQvZKr/Qz6OTimG7Xp91KiPyATq+NteIyDtzgrEQKH2PB1hov+ks/r8LzLE462oOA0WnKJLug028TLJe0pGFju8vbX7zH08ePSfMlelVhc42PJFIe50cTtjbWuXbtOp3eEOhQ5pbJdNH8/VbQSjrEUQeVJIhWD+m1kKpJD1xVGf5l86qoKrQ2lLZk+8Y6J5MTHhw84Gj8ksniAiea5ECjNVpp0jzDlx7tVoKsCnzfw/MkUjq8yOPp6SHTvGR3/yY3bo8xEjw/oN3qsr+zh6ccm90eJ+djvDBsIsN9n04nQZsIZyoUEAeK/f0bjOcZxoIuKnRe4KmAQmus1nhRk2xsjCMOA0I/Jisqal1j9atC+t+5ejttDp9UdIIuycAwX1YUteX04oLtrSHS6/Pp/ReUssIJRxiW9AYe++stumEXYS3r3RAlajwXg5Wsdzf5937t7/Ktr/wmx8dH3L//AJvnXASapO3TbzcvYDdQ1HLOUTphZCSr2adc315wZ/tt/hf/o3/Eb/3Kb/Lhhx/zP3z7u/zge8/5h6+9jZc8xG5o5qXEeZZFNsPzxtx4LWE1lcTthIvTEoFllM35iz97H/+b3+TqW9f40j9cY8EfcvToJduihzaSD+ZjtkRGvQ7pheDZRy84zUsqIYjDACtLjIUyq/A9wT/53/82b925i/FGBDYiCkLq8pA0/Yx0ecSX3vkqW31B4AKKckWqwcMnzwpWqwJp+oyPzhFWYkTjTbQOcKAcWLi8bYI2TXiD5ykCpVDWYGpD0KqJNizxbkhv6DPc62IqD7tSnEznrCqHcpaOdHhByDLLaZIPG1SO1SBU47N2QG1sQzOwDhVJVNQsWzlTs0oNUirGo5QqF7jiVUf68y4hBdPZgmijg/ITjIpwzmueH2tANMtpjiZYAAdBELOztcfx4XN+9NEDgsTw+s1tRo9PkXPNWtjDK2s6uWY6m0IgkRauXrnK4ekHBMoj8AOiTou43Wa0LKmcT5oXGGeotcG7tEE5K1BCkYSSwHOUeU6W5mht6MQhvSRibdBDOIunPLRrrBISQMAqy3BCglQIpXC26egoKQk8SSAddV6RrgparTWss0hPgQbl+Shdo3UFNNQe6Ql834PakecZzlom84xSG4QTbA02+OU3XmcwaPHDTz5kZS7Y2F8jjuMm5fDyl3WOapXTdh7lyZjpsyOub1ylri35qsSTOdQV33v/A3aHQx6/OKa0ECpFaRymdiRJRCuOydIV2zsbIBXzZUogPd64ucPxyZjVdM6Tz56idIiuwJMe2r26IL/Sz6bv/uB9wtij243p9zp0Oh2iOMH3AzzpIVEEfogSHr4KMKagyGuEqLBW4ClBnHhcu7NL5XKevTgnajcJvFs7MWEoeO3Nd7h+9wscHh5w8uwpUa3IlxXHL0bcu3cdU2nOjs7RlSYOQ4RQrIoasaqo9BgVKO7du4IKExABQkikkAilEVIihUfSauF7hrYMCAPJ9z75Lg8Pn5GVKXVd4wV+Q+LyJWEkUF6ACmKk8OgmXYrKUJma0WLEZDFhVS4pTYWoLbfu3GSerfAvO9lnowvKbMn2+oDdjX2OL0YID4wtyIsF1mqEq7h5dZ0ru7dZX9/m+WmGMYZ0PmfQTmjFEem8uGwW1Hi+RHoKFQgCqehvrKGUj64Nn37305/3Y/JvVb/whbRnLK2Jpag0M6C/bcmd5GhcE7RromDGaDFD+JLJbMHZ+XNkJNhYi9kZttjq9tgYbBFHe3TaW+xu7rEyOdQeG/0bbK2/yfWb76Gk4nhyxoPD9ynsjNoaknjIdDkm1yXp3GOZrjh68KecXpzwjXvfIGq1+PVvfZH3vvolPnv+CV48Q/hbfPz0fdaSjHGe421qTGHpdhy6yBjQIQljvFDw6IkhLTTf/d530NWYr7z9Jt/4R7/J+ZMnHH/4kM8+O+GFKZDDFkEZ8OnDCYtMkxlNVgsCJVHSoqTg2tUN/CBlVh+zqrdYCxvPeJbNeXn6E16ePmM1L7i7e4+qfsm8XGCc4uy0QOKzTKGYG1YvZhSZIZAKXJMo5kmFcxC1HVVpm4LFAbpBX8nIEYaGXiLprXtsbsUksU8WKUZ1xb5t8/KjKUsLo7BACQiURApYLTOk8DDaUskG6eNphVANrSPwNRaDU47BMCJJYtI053y8oj/wUHEJQtCLJEWqWZ69onZ83nX37i5Pn05YrpZ4AbQH/csQE3W5lNZYnRwNBN05ibUW5UXsX73J6elzvvOD+1TW8e67r7E6u+DFg5dEpcew3aUftTgdTxg/OWE1XNFttVBxzMHLl2zvbFJpR5ZVeKHCGgOy6SBZbYi8AD/2mAchSeQRBJrF9JxIQZDE/Novvcv47JQoClFSIEUz3RGiIXXgKYq6xmKbjpOUCNHYqTwJnrR0O61L3FVNuxsgpUW6hshhpEMgSOIYKWvKMqeq6saSYWqc1UgpEE4yX6T40uckP+cDJ7F1yXg5Qw68hs7hRzgsWAiFYK3T5Z0rNzh/cMC969dJBymHFxfkmWE6mvLluxu0QsXTBwfcvnmFzU6X0WxFOwyZpCWptkgjsFUD2bo4nzIZz1isKvwi59bmLv1bHSqTMn16ipAtrG6WJOUrascr/Yw6PZvhR5LJVNKOxoSeT+AH+L5P6IcgFO12l0F/wKC3hrAenU4HZyBd5YS+R9jq0F0bcvMNg04M8Y5CqGYZuKqXbG1vYmzAYNil344ZHZwgZY4xGu0sB4fHnI/n5GWTJVFqRWmhWFbMM8vV23u0NtYpXLODoLVp9iCcZbyYEgYxvXaXlhfwxpWbrLIVabWiNgXLZYo2BpfmOBz9fhecBCcpihoPj0E3oaxWFEVOKUus1ZRVhsAS+THtJGSWTjFGMV+kzMbz5lz2BXHUYndzk5fHT5lPDynzMe1QsLOxztXtLfZ2brGqA7Jixmw0oc5W5MspZZljjUaKxnstcNTGUesK37P4BPT6fTpJF3hVSP871cXzlOrxnHh/HStC5quai6khSy1lnfGFLwz4pW+9yZ9+58dE7T7hIubs/JggCHB2RK3HHM+PWC0fAD7Xtre5vned6/t3CVRIv7WL8ARxkHBv9wvsD3d4cPxjzhZnxLHhYrTEuZp0UdGXXU6LKU/OHzMaj3jt9lu8fesW0hPcurYLYo20qHnvzS0+fvJDLqaHuHZFWdfMccjAR2EIVUEQOK7fjJieSSbjMd/+sw+p8hXXXrvK5pUdbu2sk3xpjPrkA+bPT1k9ijk4rZoRpxAY7VjVJUEoaHUDfud//ut8f/x7RJFHJx4SqT5zfc40O+Bo/ICPP5zwd775HzJoDViWJYejc0argoul5NGTA47PpqzVezz84CHKNulNPk3KirWGuCUYtGMyqVllGs8TBImjv6FY3/DZHoTsDrvUBaRLxfhgybxTsgxLotojMgF526MmJfIlYRCQZhUIhXCieeGMpkWA1gY8Q+j7WGsQ0mGspT/sMD5f4HkBwvnMZ4b1nRA/bJYge21Ft+tx8XH1835sX+mvUdduX6WsBAdPpwS+wjqLbaByTXCHdYjL9CHnLrvEl91p6Ydsbl3h5fOCH7z/EHyfN+5d4c7f3OSH3/4+nz455O7mFfZ3t9G1YZUWxK0euYLC81hf3+DRwTEWn7IyGAxlpTHWXYabQOQH9No9smJF6Eu21vqsdds8fXHCZw8e0mvHdFoRnVbEaG7QWuP7XoObFBYpJcaCc4KqbuLAlQTfU7RbEXmhqbWkch5SBnRij8kqQ9c19eU4WLhmcmQvsTtCSHxf0YpjgjCkKGu0s2ityXE8eHZAiKAdKzZEi3Zm6bR8lG060ZvtNl974y1i3/HJQc6D6pDJYsHZxYj5PCeQCiUdnhdgCXj05JCvvP06snzJvVvXOJ5k/Oj+UxbFkjgJUCFMJ3PCIMBXHvu722xvX2G+XFHXIW/d2eX0Ys5HzyYY1VzYX+mVfhaVRYkUAUoGbK1v0glDkqRFq9Oh1e0gPI+k26PV6hL6SdMJdg5damoHvhIssxTnKpbpFC9wDIcJwihm6QrpCcp8QqBiru1cZXvY52D9BU8/O+D09IQHz4/JypSL0Yq8gMUyIy8NpXUgHF4gefOLX6AwBitUE5JGE7B0PpphAK1zWkHIVm+dbtLj8Yun9HpdhnWf2homkwXLxRIhJM4AViEHHqEfo4IIoTxaccR8tUTrmrIusE6jpCXPNZ3Ex+maoobQD9jY3CAKAnwFF7MRx8cv2dttsZpPWd8I2By0WGvHrPWv4HmbPH18wvHRKYEVbEUtynqMzssmwdhAVTpwDoHE98FZS5qv0BeaiRr/vB+Rf+v6hS+kR88LQlqczua83r5C5Wrm85zjo4rlqmZvP6TXkVy9MeS//u/u00q2uHXzBvPJlEIEnImCpFcwKyt0ZXFeyvHZC14cPuHtO3Ou7b+BlOCJHnHQZq11hXdvJSyrCcfj+1y4MXOdI0RJcTpFSY+TckEa1Iw+/A4vTz7l7btvsbe5BU4jpKAu2mwPX0PYkKyc89OjQ+gJLAXOr+n0fFq+Ighq2olA72+QLTQ/efAxj47P+cpXvsLuWpv+xga/8uvvUM6u8L3fPWDjZMnouEJnEmFAGKgQfO2X32D9RovqPIdK041bVNmSyeI5F/PP+OyjI379y/8R33rvH3E6+iNqqel11zmYvODTJye8OJyjbJtP/vQFYuTwPCA0SAum9gBHHAV4sSIKNL0rERt7Ab1+gsmhnMwZiBb+KuTl0zk//mhMVgs2vt7HDgxaRIQLy2w6RrcEnlBkaYnRAmOaEqjUYJ0hjCRJWzFPSxDNuN45gRQ+F+cZeV7S64VEUchqlVFXID2LsRZbNR3zV/p8a5k7br52lcPDMcvVChX2cVI2B5L8y+K5+bOuwR/jXLMgCwIlfba39nnx8gk//P59jFVcvb7Gza+8xbL6Mc+XFyxZsBUOGSQttAGRZVzrbDA+m3F0OiHuDdBWUzuHVIqyrvCUoqxKSltR1gWdbsh8coYtc9YGfVxdsSwKuolHEnlgNWVVgRL4viQMBFZCbe1fLfc1i37N1ClJWuSVxjiHr6AqBXlaomSIAiQOpZoABOdcY/mQzaW71poQSeB5dFo+VdHsIBjXJClKablzbZ+371xh2Gs3bOmiJsTDmoK9tQ1msxEn+ZRWEpEVNWVVs7U2JFApw/4a/V6CdRqDwFrJfJkThBH7u/us8iN8IakqQ+manxsoj72tLapVwbWrNxBeSGkXPD8a8fLwjDu3buBE82/BviqkX+lnUzeM2BlscePKNa5d22U47BImATL0cZ5HZQ1ZljGZjxH1lEiFdFs94k6Cr5qF3VIYlumErFxSVZp0VSCsh/AC4iTBOEMrUaAzwrDN+u4+ywoeHZ1w/MkBxhiqyqINWNPQrTxPEMQ+b7x1m95aj0mZ0+QBWzwZUhY17XavCWTSNZGSDNs9rPXwkg7F7Ihht4tzllY7YTFrk6Y5eV4yHk8o8oLlKmWxWNJJYjbW+oShjy5ywDbFumv2MIo8J11MuBjnIHyiOGHQ62NDj7pccfbyMb2kT6RyLiYZ6XSB3ljn7tUrnE5WTBdzYt9nTSZsBy1GcoLTAuGa4Ka6dJjKYLUh6HsEQePnrsoCzeev0fULX0gfP07ZvLeOiVes9T2i2NKOPGy1QogWBy9yXrsZcOtKl42uz+GLM9R0yLu336LdkRxMH1MwIg67nMynFMUCUzguJkseHJzRCr/NW6/d5ebOVa5upHSiIYaKsnTc3fkam8O7fPjox3z26CM+e3ofhiFTu6RuGaTyWKzmHJ5fcO/2dW7f2KbX7ZE4ge8NiKOc+SIhjrocHR1Sao/S1oggJM8rkBblZyzLiq2bmptXW7z/wzF//Mff5o0bG7z7hXeJ4zV6azG/+U+2+eJvLPn4B8f8q3/+kPOnJWQCFVi+8mtvQKyb2OxFSl6NOZ8ecjZ/yQc/fcqvfvE/4te++juUeUqvP+TxyYdM8inPnj3j5HBGNRMsDzTz85RQKVAW6xROKmS7ptMVbOzB5p5Fyi6ruWJ8nvH043NEalmPYiblGMwYQokLQ1a2pBcqXKg4K1LmaYrciImdoywN1kqMAWtEMx63DmGbotgJiVIC3288r85BXWvOT1OSlk9VGvxAoZSH1pYQibOSurIo6cPn8EV9pX8t5zTdbpfhoMXRWU2apnR6MZcQGaxoYGlCgMUhXBOCYpxDOInDw086dLoDRqMTHnzyDOV7bG13ufnGbVoCdJnz7PEpxckJr21eZas3JK1Knh6ekZWaUIBVkroyzcQmTJBKkuUZZW3IqxVrG2u8fDwhlAGubdgYtAjCLteu7WF1zWQ2pagqak9hdMVg0CZsxzx5foqHxAmFsw0Or5UkFGVNZQxOCqAhlnjKJ6s0SRRhnKNKq8t3plkSDnyPylmsaUgegad4543XePj0MS9PRqQrDaIpqMMkZmdzg04QEMYRJycHONd0yzpxhLMZX3vvbcKwxeko49NPP2ZtbZPvjj7l00dPCcUGa/0OceDhBW2en5zRb8d85wcfsMpqfE/hmYYAUpcNg3q1qllMU36aPqbfbqO8kLPxkrVei3lWY5oBHK92DV/pZ9WvfuM9tnt7hN2IZK2FC2FepywnK2bzBXmaEymP2I9xhSDZuEJn0Md6cHp+SppOiFsRF5MxaZmi64p2kpCmOc5IRBSCqcm9FE/44AnGoxkXowmrvCIrLFIFWGcQpiYJfNqdCBkJwiTknS9/gUxXzdQMQRSEtFt9TEtQ1hW1qfBtRSIE6/1NFquMk4sz0qoiCgTtJMYPA9qdNrq2WNsEoAgHnvRJkgjpBML5OFOSZSm2ud4ilSEKA5azBVYXTEdnGC3xvJByMEcpSZmNubKjKPMT5tNT9ta69NsDNtdvoV3MeDKiygpW4zmhr1lEgjwzmPpykbjZ9sBYKApDmBuCQOIJi/QFRn/+ml2/8IV0t9NiGZTcvbvOMFYcnS3Yam9y6juW04InTyfc2G2ze7XD3/ubb/DR9w0XH6Tc/28+4t13X+Ot3asUawmPxiPa7ZC0KFFBwMWyJLQZi8NTLmanfC/0uHfzHnevXufOrTeIgi2srViPt/nWm3+HL+39Cv8y+G/53e/9M9bXNkmXCw4mYwIV0U4c56P7PD0+5K3bO9zev8egu86qsAz6u0RHn1BNfPrDaxyPlpyeT5FIhuuOzE2wxpDPHXfuOWQoWE4Djl9Mefb7f8bv/O1foUNN3Oph/Jx3f/M6X3zvOn/+L17w/W8/5Mb1Xd7+8hW8uCaRPVbpinnxnFH6jE8ePmfY/SJffutvIigozQFH0+9QmIrjs1NMpWmpNrNJyemDMwgEJja02yHddclgXZIkMVUhWM0FDz/MKCYz6tQSCOjFgu31hF7S4uJiTtxNaCUtyhdjgrZPy9OMVwWHWU3vZo9lqiknNdb+Zfy4ajpnBqx2BFaQpQV+L8RPPIRoIO7O0XTVjMOEgrq2+EGzhKWUoqrqyy8Ni/I+fxvBr/RvamezTTuWoAylzqmWU/r9NQQOpEd5yTi2oqm+/tJd21DURMNeNoZOt8dkcsFktODwxQSpIuoiR5mMLJsxSVeU1KTnz/kbb32RbX9ItJhA2rBSkRKhQnCOsqzotjoIBUkYEIuEJIZBJyDyY1qxz/DGVbSz5HnJdD6j0jVONAEs1hpqXVHODdY2YQlOWAJf0molVLWlMhYhFVjbrP+JZlpTGzDO4isPiaMqywZRpxStVossT5ktUhyO0A8JreX1a/usrfW5f/8Zq1RjreXBwTOubPZ5++Z1rIMPPnxEpQ0CRxhJ8sqwzDJmqeYHHz5kPp4wXhTMVhnC83l6NGG0qLh6ZY/z6YKyyKm1ZZSn1HWFpyAJfJABlXbkK8uLpxfgBBN7hhQXKKlwRpOEirIsG7OOUpj61RLxK/1s6m2EdNd8LqYXPP7sIct8jqlznLN0kx53rt9hrd8jz0us9emvDVnplCIvOZ9e0OkErPKMorLMZznnJ6fcunWVuBMyW6zwlGRna5PI87C1AQrakSMOLa22TxhFgMIUBYmIuXv7On5HcjI5Zff6DVQcoMu8WXoMIoy2HJ+eYJ1ESoUnNHGiUCLiZDrmyeFLxqsptavQxtBtt5hPxmhr8P2AfrdLFMQ4JIEMkEik81gfDlmuxszSGaVp8JpGV5jAI8vzhuOOo6oLMJbVrCYMHJtrjrde66OUQe5v040Cep0dfP8mnz445F/+0fdYLZcI4DzpcxS0mS1KjHPYy8VpBzghMFayWmmCQBD4HkZr6leF9L971QODiQ2hL6ncijC25C8L+rrNJFihPM3h4Sm3dzZ4+/UOpw/GfPx8hJdF3H96zN5ZxF3Wee/GgO+vHuFkQM/FnC1rVllBq93nfJQRhYpl/jEfP/6U7ve/z9uvf4U716/z2sYdBtEGQqV869e+yd7dFr//R79LHLY5PhwzWmZU3Q5Oh1R1wXKx5OR4yhfvvcl6fwPhhbSuf5Vh7w4vDs+xhWT8JGU11yy2Am6/eYvt/YKLbMmzFxprNLmZ09/vY7KUP/jTf8nm2j6vv/42tnakZopD8Vv/5Et88+/eZWe4hZUV/XCfYafLbHZCbaaMzw+RacTf/7t/n35boCTkWUpeKj5+eshPPzlgNVZ8+uMZpy+XuMQSY+l1Q/ZudSjritFpxfy4oM4dBkvSCVCVgBD6w4iv3Vjn1mYPXyoODgRp5XCh5dff3GTsWx63KkIVUcWWSblE2oi6VAjlMMbgLNS1RdsG0t4yAVbXCOWonUE6SV5ZtHYNn8g0DMqkFTYPhzMIHWJdhXOaMPSx+tWB+3lXN/FJVwuSXozfrijzCu0KOlFDuqm1bvjHlyEeSkqMaXzDzjmccTgnCYIWgR9SljlHL07o99dotzqEfsj56ZTFqqI2NbtbG+y/eZU7N65zFDh++ifvY0sD0iKUbEJSlEQqRX/Qx0lDntckccDVq9tUacFrt25yMZrw/PiEk8mIs9GY4foaRlpmqxVpnpFmJctCU5vG041zKCFwDvKiQngK5UCqxsghpYeDhmPrLFVVEfgeUdiwtbWpCXwfZyOWKsdJjyyvmI+n9GKfq+t95JvXOL2YMZ1mFHnFdz/8KUkc4/sxL89Hzf+hc4RJRFEvyAs4ODnj5ckYYTTLfI7AsbO1RuRB7QSz1YqL0YR2HBFFIX4cMp3MkMLSbcesr+9wfj5hskxxWoCUGGepTU079sBBHAZ4nkJpi3YO5z5/h+8r/fXIyhWfPf8BUsYs5yvSfEEc+7x28y6v3X6HVthCeYpSW7JSM5nN8MMOi1XGcG2DLB0zHo8aNFyQUPk9vErQDmNMW7Ccr1hrtWl1Eypb44wj8i2bG202N1ocHFyQFxWxUnTXNtjaW2OSXtDvt9i7epVpniGUIvBatMIuF/mYVVFSlBWhUmwMQvI0Y+/KdT578ZiT8SlFXSEE+J4kCgJC3ydb5lSVBgtLlijpN0vHwmtIXHlGFDWhScI0y9f2MiXUCUhaMb1eG0eJqTWmrtnaCrmyH/LJ/ce0Ysdax8Mbtum2WjjX4yc//RHL5ZKqrDDWslqecmYUzvlYGsKPo/metdYCjroWLOYG5UmkctTV52+89AtfSGeqZrPXppU0G5955vizP31OUCbsfa3F0ekUCs217Qvu3Qu5/cU2f7GXk3+0gskad16/wfI0Y2Nrj9c2Ozz3niHyDH1WM1wXKK9iph01glVdY1XA4ZMnfPbkJW/cvsYvf+ErXN3eRvoW5bcY9Dr87b/xdV6ef8b+FZ+P3jccnpywmKWcnOY8fqb4uH3OTz865Mtv3+OdN99iu3ud3cE6UnoM1kKuXuvxnX91wHf//DO+/8Oa9765zVd/ZZPZbE4lwQ8d/cGCXtDi4sywnJ3w/ffn/L3f+jLKc8xXNeP5Sza2hhT6iHY4JJY1a2qD09VzHnx0Rlu9zv/67/8Ddtbu4UvLKP2Msqr55LMDHj06YvzC45OfnnFxnjXBJ85hHEyXBcVzjZ+ETCcFziqijqTf92lLx9QzbO1GvHtjg7c6Q8rTGZ4f8Oatq3zy+BDPEwy3OjybXVAajdSWViuhrjOiRFG3HLoGW1usaSKCrYVIeCgjmo6bpLG9KPFXY13bpDJQ15cRxMbhBz5pmpF0Jc5ZrHZUxSsv5eddWZ5zPk0hDnCBoUgLXhw/596NtwnDiLKqMa55pp1rOiNCNMuHxhqg6Zwo5dPt9hldFKSLJafHp1zZ32Nnf5fOvQ6PHz2gzFf8xte/yr0v3GO6WHA6nYKUaCuQQqCritpaotDH2MaLXOkKg8dkljKMWyQy4sXhCQ+ePGe6TJmuFhjheHF8zObOOkVRU1X15UKkgsvfSSmI45CirBocngXhSTzPw/d9pOc174touNXaWnzl005aVIs52lqmixW6rhBCNeQO60jrmlv720SdGHyFH3lE8YrpJKde5vzp+x/gq4i0romVwho4OR2xsz5kPqv55P5z0qym5Sl86dhd7/KtX/0yjz/7jCcvzhjNc2prGayvE3kwaMUUeU65yqmKAuEsN67toZ8dsMxLjLM4a/A9yf7OBuVqSRTIho99mQXziiP9Sj+r0mLEtRtdlosSoTySvIUUkigMEEJQW4lUMYvllMOTY5yzFKM5YRyzWkzJZ1OKdMX2lR1iEbJxfYOjs+dE/Yh2u8O0mnN6dkpdtZuYe+sTxS163Q5f+dI7xOEjDl4c4iufeZny4cNPQWp2ruxTCYUWjkDE3Ni9jbOSorbU1uH5Gd1QEpLT6Qzp9TaI4gl+5OPHEVVRkuUpi2XGxvqw2ZUIQqSUaGMIvZDIi+jGfXqtAZ70cbbE2pKsKqh1E5pUawsqpt9psxw4VFBQVzXUGdeudJlNj6hKRzeWxKHPxmCHONzjT7/7gPOLCcbYZrla+QgsSRyjtWKVlgBIIbCCy+9ciROSvLS4SU2/H+J7n79L8S98IR0Pfdb7km7XIy8L5jPN6VFNt8j4wtfXOTKOg5dz7j895MqNewy2av7u/+o2H/4Xz4hPYX5+jI0sH33ngnt/91fZf+cNlKio7B8yz46QoqAziJlOKoRUyAC0sChluf/kEUfHR3z5nTt0eh6dVkwSdah1DUIShJo4nrO7scsqs1h7hgkKVnXB4QRm3/mQjz865G9/86u8/uYd1gcbRLFibxOub7f5jW9t8N2/eMzpyYryJKLTCnn0pKA9cGSm5sl4jFESZ1Zsr8H7H/6Y/f11jAlJM0mSFcSBJYoixuMHdFozbl9d58b2FX7pzX9M4l1B2ATrzlnODZ+++AGnFyMOn1T85AfHZKnGR+CkxRgwotnpMaVhbS0g2tAI7QhjINKsTIS37rHeTnh39wrdSqN311jlKTOzZK5qjGc5SEseU5IKRSdMmnFSZSlkRn8jZHxaNEEvNN02acA3oNMKEQjs5dja2KYYsg50g6zGOUdZlXhVQzKoa00cd2j5AZPxkiB8hcn6vKvIDag2V65tsqwteXlIsVoyT+dsDtsopbC6sXc06LgmKEhYe7l46LC2uYgNBhssplOqumR0MabXHnCiJmystXjt9uskUvCl997j6cFzfvLBRzw/PAYpqLUmDhM8a9HWoWtNVVVo6xCy4bInnqIoK2xe8fjgiMPTc2pniaIQGXqU1sfYBvNY5CXSa4pzJRzGGUI/agJeao1DoLwG46eNRhuFkgpj7WWqYoV1DdnD83za7RbF3JDlJVqbS34uaFsxThcsi4Ld7X1y61iVJad6ynK+wBSGzDiMXTVTINm8o88Ojrmyt8/TZ0dcTFcIKdHOsrXR5xu/9A5JHIIx7G/0OJ6mgOTsbITvLGW/Q7vdY5FWlMZwenZKt9UmDnyWWfFXPmycYDwa04486rpGG4vjErX5Cn/3Sj+jRvMLHGNC1SHPQcqQ/b19lBeQlTXd2GeW5zw+eESWp0wullyM5oS+4MpwyI3Na8Q7MTMzYTRbMD2ak2cpYT9kq99HKo+XxycsVymDwRrK89HWEoQxw8EWWV4RxBHHxxeMR1P8QtLrJ+xcv0FWaQIZsNZdY5WmFFVFEkVY16LINKFXo5xgc7hLllWXuQ2KOGlRByHOCgbJkK3OBgJFZkukEIRCIpzE9wPiqIXyQlphm3YUMF6c46xD0vDtwyCh143Y27yCch0ePn+E7xsC1Sw839zvsrmxBbagHXcYDt7g2YHH0cmCuhJIFMIaEIJW0uLa3j6CkHl6n2pVXp7TDXUIHM42qY557jCmoNP+hS87/3/WL/y/aG0YcHMvIQgKaudTVYp0WaLmhsnjFVtvtzg8K3h2fMbZ6S22Njy2brS4+as9/I/7dFyfzSsdXOyzrCoS0cL5Ha5cv8tNcZX5/IxJOmE5zTF1je/5bG92mI1XaASl8PnTHz2i0/YYDhKSWCGlJYoVg16LN7/k+PgnY0ZjuLpxjcIuKdQCPLBG8+LiBf/ZP3/B65/d5stfeIOdzR5eErK3u8PObofbd6/z2adjImpkMuOPf+8pJg/YuRpx44tbzKoFfmDZ7FU8fznneDWiH68Tq3UkitUiZbbhyFZH3LnyBX7r9ntEao3p4hDjewSh4fnh9/nP/4s/5v0Pn3J4MmKxLHHOEnggbDPmLj3bHJpSIgJHXq8I2pJQ+QhfYJWl1g5bV2wm6zx59JJO16cmJ9UlqZRU1yIOFgUvj2d4m21qY5lPFwgpwXlYpwnbqokxtzXONh3DSPmoHHynQEmscmjj8BRIKVDS4RprKM7wVwsWSioAiqJGakcUh2Sr1c/5iX2lv24FQUCVZuSrlH6vTbfto5XA8zR5kTW+ee0Q0qGkwJOCJkyv6UpL2WywSU/RH6wxHw4YX5xhqpLj4yOSOCKJQjwBTvn8s9/7V1xcvGSyXFAHgqQdUiwriqIkDAICryGGlGVFXpYEngfW4vkhuigBy7CXkBc9wk4b6UkOTo7RzuLbBu2Y5SVRN8aTFmNFg6pLIpZFgUXgKe+SxtFMZ5zTCNGklPqBIbANyq4pSpuutUcTouR5IUI0wShJEOIFiicHR6wFQ4brAxZ+wfnplPksxZOK2AtAWASXU6PLz/fnP/wJs6yk0pok8Ll36zp7gzaesaTLJjb8S3d3ef/hKaauWFQVrShmNF/QDgPCIACpEc6ytbGOH8RMP/oEtKHdTqjqAuE0eakJlIfn+biqbjpbrxrSr/QzajmTRKLDKNWUpaHVDtAmZnO4hxe3WRWao+NDprMJq0XBg/vPKfOc6ztDrt55m7X2JgUpOMd8MWPQGfD69XvUsaXT6XJ6vuL4bMVkVrBTC3rdPsZJNtodDl4855NPP0X4HlErYEP1uXl9l8HGGtbzkdpju79PHHV5dHhAaQviMMAXmo1ezGgyQwkfY33yMqfIc8IgBOtw2nBt9ypfvP02tiqYLGZMJxcI4Wi324RhjHWOwuSY3FFXJatV05CyxuCMppVEhJ5AoPC8kCtXbnIxHZOXS2JR020pXrt+mySICMMeWRHwkw8XHJ0tSVdVE/ldG5RS1HVF4SkmqxVSlEhfNTz9huB/uSUMookybYAApWD2ObRf/sIX0q3IMegFOJWiKUHX7LccZmlY793ADaYcTp9yfFbwve8+4nf+/S+xu9WlfheeHR9RPzZkZcndd1/HF45uaPjzl09ZlZaWarG7/Sbr1ZJedMGTZw+xeU4UegwHXU5Ol5yenaK8kLTuMJ5PWe8odtYjjAw5O5mzMUh494ub7G9N+LM/fEzgbxMGCZt7MSflMUkfBp2YB0+f8+DhM67uD3n79Vt89Ytfw7oOwjluvd7DFnMg4H/y9wQf/KsLNvtr/Nl/9ynxfsRv/uYt3n3zGtf3c2bzikG8wXJa8PEnP2E0mXLQ6eNJycXFY/aH7+GLCw4OX7B3ZUI+zzldvqS1ZbFeidY1TirKyiGdIUCgnEcgamoHQlpaXY+kGyK9iPkkQ1mJsYbYOoRx1KJi5VfUpaCbdBi213hxds77owuWuaEdhEgjUHg4JVFKIrSjrpovtk6/xXhU4IwgcIIQoNQo52Mvz8xmn1lgjUMKiadAO4fFUdUWnAcIPE8hpaTINdYqoqAPTH5uz+sr/fXLItDViqLQ7G5uI6+saMcdTk8Fuq7wvBilBEp4aFuhlMK58q++2AGUkg1WUflsbu6ymE/RumS1mLKYzeh32hTa4iKPdJUyWWmOp2O6a23W2m1WeUllLGXV/Nww9LHOgRWEYYDRAlGWPH/ygt2tDa5e2aG2hqOLCafTKas8o782xFmLwbJKV3SGHWRVI3EEQdB0uYIAedmZda4hkEjniAOf0PfAaLAa5wziL4NhXLOQm7Ta1HVjj5BCEIQB7Vgw3Fpj/OKM08kFW54jPR9zd2cPmR+SlzVSOKywgMHZxvXY6/eonKVyFiUtO2s9vv7O22z34mYh6uUF80WOUgZrLL7vU+YltTEYK3HW0I4UYQnGCpy1eJ5P4PnEYcC92zfoJY6qzvjJxwfYqOHq4ppIZyHUz/WZe6X//9He9nvs7e2T5UsEKYN+h1ZniAwSLmYZBy+fspyNqcuMRw9eMhkv2BxEvHntDmvxBsoLEb6mKg3Cws2rN9ElPHz+FDWdcXI+Ic09DB4vTxccn+e0Wi0Oj8+wpmC1WrLMS9q9LhsbA9rDDkm/x6wSbHZ3ePPaO6RlydH4nNlkwmI+5ubeBp4ztKMOtVE8fPKcs/MJ83IBPsRRzKC/jnOKs8kETEFRFlRV3Xy/GUmkYvKqwNgZvgyIgphQKrSpMdYggE6rg5IegS/JqwrnLL1uhySvePvmHte3enRbbcpSMp+WfPrwMUfnKUfHcy5GY6pSU1WaMJBESYCQmtlyhEChPINUDqvdX/mk/+oL93Ki5ByYVx7pf/fyfcVwfUCaV5zNL+iriF9+bZtVr+CTDz5gt9ejFYLUCcfHCz57dMHt1zaJ+0OuvGeYpSvKScpHHz7g13/7V5nOakbLAo3EBRGWNoPuJm9c+Rp/5xvw8bMfsSiXIAPu3F6RF0vGRznlvCJQDfz84NmSyWyMM4ZIBijr8d7Xtvl7v/MO/9k//QuiymInBa3dfTy/RpsF2nOMZimjz045PkuRLub1O3tEcUgQdHFeB6c7tJOcv/G3tnjjtS/z/tNnPHoy5u7NPb505zavb+9TD5uX6pH4KX74Ge1+QXcQcH5SMn9xxD/74/+K5WRK3IoYnrTY3etgRUZ/D979jU3ujvc5fmnI8orZZMrkfEGR1tQ1qEDR34hoDRqebVVbUArlKZxxLEqHLxVnKbx5bY81DY9ejDlSU94/HJEKH6UirOeR1xaDRxhHWJvjBxIhJbWukdLR6cVk55oOAfU8QxqB8EH6Am010hMoIZCI5nPQ+KWFaBA7xkKsPKzQl+xojyLXGK/4eT+yr/TXrO5wnY0qxZ8tmR8fkV/MCboBm/09JguBReIp1/ik+ddMaWstQjQXL2ctxlm0FXT6a/SGG4zPjxHOMp9NcHt7BGGEkwrlJwzXdqhExtVbAzbXO6TpU0ZjKC873+VlAVyUJQhNO5CseR6zwlGeL1i/fpXj5BzrVayvJ+xFaxTGkFUVnV6L4bBP6PtIlxMGAV4QUFR1Ex0sm3cH3CVPOiCKQqq6QdcJQeMnpum8F1WFrpu+UJLE5FmG73sEvmKVzljb7DMbjXgxOUR5hjt7+7xzK2ItDLh/8JKVLhDKJyChXlYsJzVWV3zh7XscHJ3y8nnNnWtX6SQtnLWUec0nnz2m3/awMqDWNYHfwvgOrQ02CNjaWOcLd/aIlOTgeMz7959SOp9KW/pJmzJbcv3W9WZSVYfMVwVSCDylcEJi7OfPV/lKfz2S/gYqWaffHdAKDe3EIwgjJrMlP/nJRxwdnxL5HovZnNHFkjhQvH3rNrELGI2nJJ5iWRdMliVVLZksU05Ox3z85CkmENRGg/BQ2idfGMqyQJLT6yju3N5iMOxz/ugleTkDJdjc3yK8xG72O2vMVwsKXRGGPoFUtFshm902wlYEns/zowv+7Ds/YrkqGitYu8XGxhZ1Caf2gqfPnjLoRGxtr9OrSmTgEwcJRd7YuzJdASVFXdKJYvI6o6orAiUIwzZZbVB+iPIC6iqjmyT013rsb2+TVTn3Pzqkylas93rkWY5wBZ7nMKbCWIO1Dl0bfA9QBu0qhJB4viCKLylCtWuoSc7h/jIYC4cVAsHnb4/pF76QtlaTlwUGn2FnyNF0hDSCu1d3WdcFMo5JWWH9iuk85zs//IzexgaDzYTe1YSTnVNCs0a28Dg4XZCGIbUz+FGIVAHaChAhg2CXjbUuDw6eEsUJxhoqmTN6YYhnA+5imKxy/ujJI85VgfIUXelDbSnmJa1+xtc3A26+fYW4rNnyNvjen36ErEpe/6V9hruQFzmr0vBiPOf3/tX3yfUX2Rok3L1xi/W1fWrtcRb02e1eZzYtqHRGlVesd2/h+0OSYMDBxRl/8v0f8Cd/8fvcvN3FTwrOJnO8aJfJcsGT0wOwBl9DJgOM36XKHKcXFSejObWJcIGhFyt6awmbVwKqQrKYWISvKfQCFQlMZdB1hRRNdKnvS3Tk0BoeHJzhrSpudTsUgeAnJ8fMAVcZampk0mvGz9YSA9KTlLrG8x1BCGlaMljrYqcr+q7DQlsqKrTSqNBH/KWNwzqMaYqHWjssAqUkiMaTqo3CXY6MjLVIJUiSEMh+zk/tK/11yoqI/sY2KorZ3lIMO2ucn65YzDOE6DV+QCkx2iCEwPf9v7IHCCWbrq11aNus9SnPY7i2yWI6xeiKqtJo7UiSEGNAeh799jbDtZDp6gm+n/DGvX3uP5gxGudU2lJbjRCQFhVxHLG9sUE8W/Dezbuk6ZL0eIQtasqywO+EhO2A2AtoWcGNQZ+408I4y2yZ4hAY55owEhr7Fc4ghKXd6eAHHmlRUmmLthAnCXldk+UFVtcNS9s5tNZICZ1OC6sNnThE46PjJtp4cjJikWe0pwtEB67u7GKVZGVXWOlAS2anS1bTjLLQFGlKJ5S896XXuXvrFqui4uX5aYPEm6+wNuD+0zFC+jgLvlJUtaGqSrCOb379lzBFhhYP+dGD50wWC5z0iOuQs9GY+4/g7u3XGK75oJZIqS4nU1wuib7SK/1/V2Ul49kSX0GdSKx1ZKMZP/npfe4/eIKUglwpzo5HWA1vvv0GG71d2nGP3s4659WK8/mI0/MJ08mM2fRjJrOMyWKFVRLpCTwlCEKFF7TwAo+6zHHC52wCVa0QUpJnGZORRXo+eWWI4oRFmZLVhuVqRmmXrHU89oZ9pFmhjcUTHo8efkaaLSnLmlo7siyjyAvGkzFCCNaGfQa96/TaQ5ZlTY2mNhVK+Kz117mYnrHIFqycpQpjsiLFAZ70aEctRrM52tasxBJjK5ZFyZMnz/j44VOcK6nSKe+99RZFkdGOInwvYDE/Q6CbiPFAEfo+SoFUAs9zTRCTMUShT1k6KgvNQopoLJyimTAjxOW06/OlX/hCutvzccr8f9j7jyfbsiy9E/vtvY8+V7p2fzLihRYZGZnIysxCdaEKjWID1mQPmtKMQxonHNBIIyc0/gM0jmjkgJywjappPWAbG0BDdKFLogpVKSIzI0NHPP1c+/Urj96Kg/NQMMyKBhQyKvp94yfsuu97ztprre/7oa3EmohHxwY5ixgdJpw+vSJIW9QdhRMWH0guFxX3HzzjN2+8jtuOufU3X+bjfzTnq08fcfyZ53D/iDTTxNGIPMgYxRMOt4/Y39nm6eUDCtOgpcc0HtEO+PJffMTs53N+eO8IdVtR2w4fg4ocAk3bWsI4oWwKqrbgu9/+NvX5Ff/Rb/42f/t7f4MP/6vf5Wi8Q3w75vU3d/n06TnnxwuaquQXn3zEd996k0g9ZVMvyLJt4vAG/9v/xf+VOPHYg4Y0Tnj17jsMhkM+ffzH/OlPf8EvPvuK3d0JRjtu3JjypL5C6xpDQe0lurXkxKhgyGxueHR/w3xm6bCs2jmjPEcFnkAJ0jCkMw3R0KFCxyQdAZ7NxuCNIVSaIOzpTKrWlNrRBpIPVyue2ordKOalaMqO7TjVFaW1BN7ReAHCYI3ASwiDCOcdg2FK3RUksSAdRFw8uCK0Ehdaku2A4c2Mk80Gb3iOeO7HQUIKrPYI4QkjgZQS557vanWQ5DnQ0nXfvC/pC/3rmi36XGKtBeNhzOvvHDEcXvHpFxuarneUK6X6bsjzOCZ6hglCCpxzuOfFdhBFgGc6mXISRdRV0RsVvSRUEUkcUjct603NYJSyvXWTJ0+e4XTM6/fuEPozrpYbiq4D3+OJlcpQSvDF2Tm3o5zD6YTlcokqOsaDEfnhPogQ5wSh8VRrw3IxJxlEREGMBLR3KAFeqJ6M5ixpFpEkCUVZQSAxXlC2LcbCaDDEGsOmrnC454RBh3egZEggPG1ZsLm65uTpU7x1CBVwsVpx+/AW2lusMZw/O2fv5pQog1VZkaYhHsemKDg5ueDwcJsbh7u0TcPnz854+OV9VBAipGRdtvzywVkPhBEOKSBSijROiOKUH/3sYxaLGSeX1yAccShprWe5WaK2xnzy7IL7FwVtbcjThDffuNevq3hPEHzzulgv9Fcj7TzFpiYKIAwTjs+XfPrJF3z11ROqsmY8jqk7Q1VpXn35Hi/dusdmvmZre5daGToMJ6cnXFxeIbxERAYtHAaPMZpB3DfarmdLRpMd8mGCDyIWqw2X1xcoZVAC0lgxGmZk4xFV2xedm3oNoqA1G4Sr2BnEHE5z1mtD1UrOLy4pmgIRCKy3/b6xEzRVTZwkTKYT9vb2cQiSeEisNmizQUiIooAoDvHe4b3tL9+BwOKQQjLOB1TrFevZFZ2zFFlKliUY69AIvPWYpmZvMgDf9Kb+ICRLM+7eEGyWG6qiwvs+Ui+JA3Z2d8E3dLrkelHSdYY0UQg8TeNxVvTPXt83LXC+R5p/w/S1L6Rv3JpQdxtmiwZUzt/5j/8O/+z/8iFfXRfMC427aBnezhARJIOApq55+uQRXXGLdBTiRo63/7uv86zcMHp9jzYICa0kUxHbwy0ymRMRgoInV6cYFdN1HtN0dPOK5mTBTpJwf3aNHkjWzhL5kIPxgN1xwvXVhmrpSGJJHA7Ih1OSKOR//b/73xPWgvd2D7h9cIhKA26Ot/n2b7xDEir+8IN/wbPZgl9+dp9IJYioZVlU3Nl+m7dePeT84hmddOzu7LKzs83PP/4xj88f8OXTJ0z2JzhboeyIepagtOZ61hCFMZ22tK1DV5qumLO9M6JBslgVODpEDKuyptYh0nkCFIqAg8MUFXjaumW1bMnjAUp0CGkIQkFZ1ggvKW1LiABtKFtHaDtub0344cs7OKv585NzHnclxDFOSpy3ONPvSEZRSFV11JUlkjW7txLMwqCXLTt7ETdeGXNRVQgpUdI9z6Gkf5k6kKpfCdW6xx+DIAgjjIW20ahAkKYv3P3fdDk8QRSTDUYkIZRdxXArR0YFGNF3PujzlpWHJE1YbzZ4PIFSGA9e9MV2IAWTUY5uBGkU90kz+YhBkuE6AxaUkHgZsCxa9vZ3GI0EH/3iU0y74aU7rxNFMSezOZ0zNF1L03QsNiXLpmJ3MiW+sYfEs52EaNlxvCkoq7onLrp+ZcM4gzGOwXZO5y3W9qsi2treIxBGZGlG07b9BVJIojBEqYC2bRFCMp1MsViWmxVt1wMSIhWBF8RBgGobNqfXhDWMhhnBSHJ2ecWf/OIn7AxGDLMBd2/f4VtvvIZMLP/4j/6AomqRgcJ5wbpqsOczApUyzAYY44jSjKYu2Z2OOL28wNgEKRVdZxhkMRpP27SAZL6p+PDzB3RdSyAcW8OM1npEKEHAxarCu4ZAKLQzSCWRUhAg8C92pF/oLyljOkQsaVvNo4cznj55wpNHJ1RVh1QWZwVV0RJHkt3tCV5DNszRiWBZFTx69pRnJxfUdUUYhFRVS9NYnNf9mQwEtnWYzjC/mlGuC5QStF2BoybJAkbjjCAQ7N06wnqBVAHGGpypQXi0LpFmQyMUTRNTNQ1Xi4Ljs2ds74xRSY4/vWK9KsB6vDOUmzVaa+qyZnt7m9dfep3BYEi5qKm6krqu2WyWOGeIAoWg//40dY13hlGWcP74AVdXV6zLEuMkg/GU0XSKlAF4xyBPeOeVm5hy9RyDPiEMBtw8HHCwd0jb/D5PT+Z02jMYphwe3saYDXU1x1mB1iVK9WRigaBtHdY8N3vTJygp9827FH/tC2nlE6ajnPnmKdoK9nZGbO3HfPT7D/i1N3Yphy2BGvJkdkGSxKRZypOzNR9/OuP7v3abab7EjAT/o//53+PpsyVXhSdI94hkhDARk2nOzb19ltUpm25J4EK6rkEZw9ay5ndeO6S9TvjD86eY1PPWq/d4//13eP3WPe7duMF/8v/6P3D/sznLpWe1rJhMK4aTHBtbSqf5k/ljPvrjc773/hu8cW+HVbli/97L/PpbP+Dn9x/z+NljdLFiJ85preLs6gH/w//p3+ZHP/0Zv/vRB7z27iH/5IP/N56SL744IcuGVMWcV/Zv8Ht//yFvv7+FSCzCp0Te0VQVxiqaRhDFAz785JhkmBNkjvWsJrMJIoK6s1ivGaQRptJoKtIsom06LOCMJghCNkWNs4Y4CZnupAzHI6qiY3a5xBjDzFt+Mr+kbFvejgb89tEB/+XT+zzGYLQgCQNU4vqbqe+R31EgSBLYzFfcfG+X9WLNwSjl4klNpSRCBnRaIwT0qb/9aEhJCcqjgn5PVAYGj6NrLXkQ47oO87U/0S/0byrpLXjPZlNikxgXS6IwIowjbAnW+T6KXEkkjs7oPtdU9uZUYy0egRSSNApRCKIsZTgcsFrMybMM4QWms0gJKgoYpBlFC6u1IwiHqGDM00dP0I3njdffZr4saSvd56N3jkCETMZjfBxwWlc8rDacrzZUztNaibAJSaAIFHjvOJ+vODld8/b33iBMFLXpcM79xT53HMf9C9j0UXgSkMKD6PPfbWeI44jxcMx6s8JaiwpDpBR9Z9g61qcXHOYTVp3lYHeHcJDy512NE4CTlGWJtDWzixWffPYZbScZpSPOxQLnBE1nWVVLytryO//ebxCGCd966zX+5I/+iHSQY7oKLyVpIEmk4sbBHmVds1wVFE3D1WKNCCImWczOdETXmb57qBuOL+bg+9+JFGCNIYkiwkD2kYD+xQX5hf5ycm3FrFhzfb1gMV9wdX7VUwyFJ4sCTOdQMiAbhrTtkji8QzbIWbYts7Lm+HTG9fUGKSw26kFO1kGex2T5gKbtqOoKRIQ3HWXXoU1HmjjuvLRDkgaU5ZwwUMSBxJt+Mma1Z3e6hxCO2WxNkoRkccSmqPEIjk+POT45Jh6NSLOUe2+8TFU0XF8tKIoCbyGJFINRxmRrTNlsuFzMmK3nOPp82DQJAU9dFoRhgJTgnWaUpigrsMZQFgXFuqLrHOtliTMw2hqRxhG397bYynPiccLZ6SVlsabRa5aLktdefY3vfe+7nF/9AetNy8XlHOs/ZzSOkbIlHw65nW2xKSquruZYA1JI2sZjbG8S985jv4ERPF//skMIFquSLN/F1SPq8xU/fPse8qzgzVcO+eDpJ6RyzHiUoK3n4mKDdIIPP3rKD3/wNsPUsWln7AzeY3DvNveffcZ8bRgMDtjbnjCKc0IR8OzqBK8MbacxriVz8PCDEw7SAY+Wp+y/tcPe3zzi3qu32RqMmeYp+9Mx/63/4HtcX/8B1UZQFk0/hpWefJJyXSyRUjJIYe9uzs6dMZGq+PDJj1hWLaUNuPPqLUyr+eTpktPHX7GaWWotuHnviHe/dxeR1kRpwMmzChkqDC1xlPPTn85Jh1NErji/1DSFIBCabCoJkwiN4eLyisEop9WWNAsZ3trh/Nk1utTEgzFGwKYpSaKEq0VLXPeFqbMQByCtYGdvi7IsKcsaawOgI80FR3dyApmyWGvqquWj2Yx4T7G3sYRJjvAGhaRrPMJaRqMB17MNqZdkcUCWwApLzZp0VzJbdLTSUQtJbVrk88JHSrB9WhlhpMjzlMEwIkmh7Wq87bOCrXEYa1+4+/8bIO9DGqM5v9rg2WB1RxalrCuHFwHO+777TH/5atsGIQRSCeIwpGl6StggS/uViK4mjAIGwwFhFPRrQ94jvCJNBgShxDhNJBVlXaO0YjLZ4+YNh7AWoyu2JgOqpiQQAikDAqm4ffOQy8tLnl3PuVhuaK0iCjJSGYF3TNKIzeyMW0eHjJOYP/n5z6hWBdujbQKtMU5jPQSBRAWSpm0RMiBQCuH/YmKKE32+tO80YSAZpEPazuJxKCFQzqE3BeMoJsOxN7nDyekpr+wfsDOdMpyM+fLjB3z/W9/h5Nk5D09PKFpDU7W8/so9zh9dUVYd48GAq82STVHwz3/0Y959/XX2dncYjUYc7O5wsLPNg+NnTPIhWTrk5s2bzJZLfvbxp5zP5jw7PSeJFWqU9skipmMynbC52PRdLN8/f5I4ZZDGBFKSxCFaeOyLja0X+kvqyeNntI1mdnVNWTborkN4D4EnSRKquiKUvbF9Xay4WpyT2wErmVC0lqrUlGVHlinSKGY8HCFlQBhENI1mtamo245A9QV522m8M4yHQ3anQ5xvmQ6m3L59g8Fkn4qEZSvojOX6eoEShnqzIswCHl/OuHl0i+Wq5MuHT1iXJWHrmOykNF1NPhiyt7fHZl2xWq5BCPYODxgPRzg8m3JNUS7xWNIkwfkAsASBIgwDyrIgkLAznvDlZ19xfnLKYrXpwWa2X42cX5yxM83ZGU2QDh4/OeP20ZTDvX2q2vHg+JjSrHnw5CF7O4ccHWxTls/w3qN1Q9uClJ7p1g43ju7QVCU//smPMKbCC9kncbXgTQ9X+iZGwn/tC+kgLohSy+VFRVgo/uxP/5hDdrmzn7BZz8hFiq9b0kjirScMJW0Z8OT4mi8enHLv7hbDaETdPOTW3m8yjHNOrr9iWaxIxA0Op2/RmYdcrma0taDrHJKQZN2Qa7haLwjHih/89ssshh1KlCQyIk8s1lbsbO3z2pt3efLkDIJzkuE2Rq357f/gHZruFZI45MY0RCGZm1OSSKF2h0zcFuYafvKjB1ydLzHSkSvHjcMx+SSgTGvGwyGOmtnVmuOna5CGLG9QIqQVLeNbQ4rWMLsG6QKkURhgvJXTlAXzWUM7CrGiZHtrxGKxJh5kRJ3n6nLF+GBCMghZLUucyFmXFXGi+tNuNFa3tNYQRzFBGJBEoi8wBHifcD0vcSogHaeoPOLTcs3DRUcTxxjjEErhlSIMQppW0zYeawRKOKJA0nZ93J7vOqIgh5Girmqcd0Syz+ZFQBAIBoOMLEtI0hBjW4qiwfs+Gs9oh+4qkjQCXhTS33RpFxFHKXHY0OmO2iiquqPTfcKFFxbvfL+DLCXauucPb0GW5xRVjXHPzyfgcHTGoYQiDIJ+Dz8IEYSoMMQDum2JVICKc8qu6UeehwLf1ZTrOfs7+zR1QRiGKC+Yrwt2hwm1E1yta7QLyOIRiUxwDtJEEIiW2NQchYr9fMLnacr1+Yz923t9QS7AWkua53gB7nmKjX9O+7ReYEwPaLHOY5zFWBjkQ1qtqdqKQAqUtpiiYrmcE4xH1EVF0XQ8Pb1gsSg4vpxTNg2rouTuS3f45SefMZ7EvPX6IdY7dsYjtnK4c/cODy4Dnl6ccb2c8emXnr29HZAhTd0xnQ5IAsnu/hHTyTZCKoSYkMcR18sV2nQIFVM0gi+fPkFKWOsG4zx5GvcZ9kKShgGpkkzjgFL5fkLGN3Cx8oX+SvTwy6cgoG06jLF4PFJCrAKEEDRNjcoVTSeQSOZVQTSZUDaaotJY268iOAQ7e7f51re+ixSOpl5z/8v7VOUJprMY4RjkgjwPscaRJAFPnpwRRJLxJCGbt6zqgnVdUXYW7WExn4OouX1rzIMHM7Z3DhBXa376019wcTXHSxCtJxl1tMax3vTRerdv3uPb7/wa55fndF7jvScMA1SgiJMYZzuEhLqpwDvSKESKvgO9MxrTrFdslte0dYk3PdYc54kiwdYwZxDGmEqzqQSubfHmkrs399Da0LY1RVFxfVHQrHX/57MQ7QxRFJDECVu7exzevMvu7k28LVmsLnn48DHrTUerPWEEVkPbWjr3oiP971yBaDnam1CUFrsBM/c0foNMHdcby/KqZf/eFK0tMlVESYjTAu09P/7gI24f/Q55PKISx5wuPuDO1r9HGjhOggcMkiXGlZxdn1DqBqE13tQETvHww0+5fzajtQnf/o1b2ECThoatzHK0E5FkLRfLRyyXF7z93i3eev8m20OBsxUiynsjQLqPMR05hqqynF1VqDCkrg2PHx7z8P4pxdphtWA4Cdh6Y5vsRo52lsW6QesY38GXX1xS1IatYcpLRyOiKKKt52yqAtVN6NoaxQJRe8I0wHtPXXVIYs6PS15+fasvPIkp6pZpnhOEntNnC8ZbIXGU0HQNUnmUUD2gpW3I85y60lzP5n2erbOMJxFRHFJsGqQK6XSNtxbCADGKMZOEelUjjUFJkMoRhH3vLIwk3oFTEWVnSLIAYV1fAMiSdJxB54hEANYihCeKAkajAYHqx9Rt29A0Ndb2xsPhcIhNLGVRU9cNQn7tj/QL/Ruqbg27WcrN3QGr5TUSxVwbHH3Oed8C6Y2q4IlDRaN7cql1Fv88R7FpG5q2JQ4kSRSRxBlCBmhrab2mLDaUFyfk2YBhPiRCoaTAa+gcpNmIJEsoNwLXVuxMhn3WufBcrytOLy56U1PrGKQjpoMJWZgQxwH4gtn5OWkAQwG2MRwOR3w6O8e0hjCMkNYSPu+kt7qPthLK4lEo2QNLlAqQUmOsoWeXSSSSUT7E4RC6RbYNumsYjkaUXcf55QW7e9t0XcvhwQGPL86x1JRtyZ3BESqE3emY1+7dYlO1XBxfU6xaquWCsN0wzgNK49g0a/7pf/27iM6xvzVl9+AdJqMxkQdpDCJwFItLbh8Mee2Vfc6uZqzrBpQgRKAkNEajrcAY/xeTgLIqkVJxlCeYLuW0aWi/gXuVL/RXo3LTIAOB966f2vShxiRJTLUukcITxAF1rUkCCKIE7QVV09C2po9yUxIVKLZ3j5DhACkN3WbJZlNgtMU78N7ibMdwkKFkzHpT9MW795yeS46PC1ARrRF02j5vQjlef+sGxXrB9nSbvZ0DfvHLT5ivF3TGEKYZ+XCECkJ2pyPqztJpw/X1nP2tQ27cusOqmOO6Fm06mu5fUoL7dTalFM71F9K2qYkE5GFAud5w59YhkyzEtB2Xl0vWZcMozzna2WOcTeiMp+1qrLbMZgUv3bzFdDwiDS5ZzgrWS023cUwnOdNhzvW6oChq0sGQ7YObBNmI6/WGuphz4+ZdDvaP+PyzL7ieL1hvGrSBIAx6INY3TF/7qmOYbnN13eJIsSUMoyHloiKWijAcoCJJe9Vy8NKQU1+hn7vVjVecn8358vNn/M3vv4k1a9bNF3zy2PLy3g+5s+s5XTxkVlnO15eEgSHLW2LZEamA0Q93+M5/9CYiGBLnG5h0CBEwCFOyNGRRXiPDiN2DMUlXUjcdwifoRrC5rnn46IrVpqGuKvS6YLXuWKwaqtYQhCG6a8niCNN6btwa8ebb2wz3Q1Zdg7LbdHXBrGg5fnhFnKRMJoZBqIhkxuyyZDk3VI2AzDAcwCAT2FLgk44gqogSjyLi9MmC2XHOjZenrOs11hvm64rpzjbLxye0a03jWqJhzHCYIUPJetOirUfJkFDBaKRwSLrKc3FVsLMjnqd+QD5IiUNBZ1rKpmTjJEEesjeZUtQFzvcJCWkWE6cG70PCVIJoSSJPHsfM55o8DzBdR5YGdBtACKIkIMuT3hQWBLS1RihAQNNYVNB3HdrGo1SIo0KIF52rb7rariGOR2yPcg52Ir58dMFqVSJ9hLcG4WUPA/ACj0NKQagkXvSGVaUE0oJ7HimHsahYkmUD8tGYjan44LMPMLpfT8rTEYNswuHuAXEY4LVGSgFe0RrP1dU1eZ4wmkxoncNKQWdhox3GeKIwJVb9Dr8IArq6ZjTuCDJL00jOu5b19QonespnvSzI9kY0ViOV6o21QiCex+E5a0H1F+YoDBmkgoKaRndYa/E+oOs60igiVJJ6vkBhUUFMOpjw9OyYwTDFa83ucMLWzoQ/+dHPuVhc893ht2l1w87+LWbzBUVZ46Tg0fEx779xl++8+TJfXJ2x8ZKucVTLgiwWoFv+8T/9fba3pvzWr93lYHebZKA4Oor56UcVxxfXbMqKomrJ4pA8j0A6qnVNWRoaLaitR0hJgGd7OmQvjXCMWF5rpP/av6pe6GsijwHff2+kkAh8D0xylrquyIeqp+N2AlqBdL33wBjbT3dsH/MWxSHOGRbrOXEATdXQNBprHd45vPco4RmkvRs+GGa89PKbnF/M2WxqoiBgtakxTYduNNZ7RtMcKXt4UpIkOO1YzK6xukUKxWg8Zrq7y2g4wCNJ04j9/RHTwTZNW7Mu1zhh2BoM0LpF6w4hBGmSk8XJ83Uvh+4ahHXsTCZcn19z9+gmwzxjMRoyCEJOji/44v5DkjxgmCsOdncoi4rVeo2RFtc6ApHQ1pbDgwPy5Bkr3+Jx7O1tIUNJ+eUjqqbDmR7C0raattUokbC1e0gcSbb37nB+ccyHv/gFl1dLHJ6BjH7VR+Tfur72T6flZk1pIhwp8+NLVqclIQFHozHCaW4epqRGko53cd0xyd6QVdIgtKIqHD/+yaf84NvfRckJQahxYsmjxc8xOkYjaOsv6QLNwc4I5UaMx45Kb2j3t0kSiW4sgdxikAVY6zBWsqoslQ7YLEtCwLqW09Nzjp8uubqaczVbUzc9ECJMAtqmp6vh+m5aZCWYnGUp2NqTvPrumChNGCQZbdXROQvesLju8dqz6zU7eyF1Bz/96RWlqwiCiNFggtEbxpOAYr1BKoV3nqbtSLOQddORZynHD64YbEHLhsEgYX61IYwKxqOY9bJgmGcsLxqMNiTDiMEg4nrRcna9IAkCdidT1ss1k92Erh1SVi3eOZwzSAVRqJBSkCcjtIH5YgUDSZyGJHHGZlVQli3DcYa1iqrsUDJl0xSEk97Vu1q1pGlIEgswEqs9QaR6swSGVne0XR8I33W2H2spiRAhQlisK8mHok9aeKFvtFxdc3lywUW7AdtRbGq2VIAbJszmtnegS0mgBNZ1z0lcMdYajG4Qss8c7xHinkSF5GnKdDIlzwcsihnQcWNvi/2tXb748hGfPX5Mdetl7t15iclwgHYWbQ0qHbB7dIRymjSNQVs0ksaC833iR48MtxRNTVEtCGPBpq54+OSEomj44ukpnj4eK01iqtWKo7tHlF2LE2Ccw/meFNYTGftOmzMGby3GGHAeJSRWWKwzOByxCGg2axQK7QSXsxXZIOPWrbu0rWFnawvvDLd399kajji7mvHBR58QpzFRHlOtHFvbezw5XmKEIB5mvHrvFlf1nHLd4lzHcBDx6s42b95+iX/0Jz+ncp50NMZHMY8vL/j5Z5/y+YNnrMqOqjF01nLnKOdgb5+m3rCVbCGiAWfXKx4enyKlYpSmDNOURAkiBVkc0TQvLsgv9JdTGIEQrt/JdY4gECRZTFGsUSGEcYjWFpCMsxHjdEDR9PGV1lpQkjCKiMKQrq1pqg2LYs18dgUyIE4S2qZACMtoPGQyzZjPF0wmOxwc7eGlZDBsqYoSLxQ390fotmVWLAlyxcX8gjgJ2N8/oKpWtHWD1RAEIUEQk2ZD0jTjcjbDIRHANN/m9s3bnF6eUlYbgjDGmZbhMKczHUmcEIcxkQpo25JGr9gaD5BdizAtZbHA+Q5tHSpPGI6HvPbaHXb3RqhQEQY121uS/b0dijrk8vyKZbHh/OySttvwyt0DQqkQLmQ5Xz5fH4lpW02kFNV6yeL0FC8ibt64jRcJ2kvKboMIM7LBBH+5oWsbvPnmGR6+9oV05zR17RiHU3zr8FJxca556fYU5y4IpOfl125gx6COzzCmotOarXyLtmi4nG/48uE5d+8dYirwssa4C4LwkFAEDONdmrrF2BBda4bxgEBEVM7TtBukCBAyoqpBW8XDx8d8+sVXzOYbHJamrSg2ms2qAWkZDBIqI3HKY11/u7VJTKQMN7eGpGLIk/s1x5dLXnkn5Lf+3hFptkXTWmbzCmEzmrJls1zS1DVdJ4kjSZ6kPLs/B5UTjgKcd6R5RLEJqNuWMI7pGofpPGOZYWVLGLcc3gm4TntUcj5I8QiG0xirW+I0IG5j1kWNVAHlssF1hu0kJRtOOV0uWHeGdrYi6CxB3pJmMZIAKRRl2aE7R7XpgD52KAgDsoEkDFvwCevlmnwQ4AhpuqJf0alDwkBiraIobU887CwIGE9ilOzARXjnCMOYpmkxWiOUwxkPSMIgQWuHlhYVdASJIYwUl5ffvLHRC/3rOv3iPt1kzM5kRLmuGOcpo8mE08uaEEFlDViBeJ7VbK1DYUkChbMdUnqC0JPECu8sQZzg+0w8JvkE27XcvbuHsBqvO2IlGA8iXLfkwf2PefPNt8mGo/55JDzD8RZXZ0+wWKIsQ1iPsxbpPEpKlIBNtaYoih6ypGt0U2GNJookYQ7pMCDPYra3JjRNh+/WpJGidp5QBjhvnqO+IVD9HncQCpq2whgwVoPrM5fBEQchbVXy8Uef8d7tO4yH25yePuD4bM633nmVtt1wdV0wGY8JiLi9f8DVfM7PPv6I3/j+d5BBwLxY0RhLnCcgBdfFmmfnp3RVzThJGQyGDNOYXEn2piNuH+3x2dkl/+iP/oA7L73BTz/8iIvra4z3ZGmKUBqspmoNl/MlN3Z3cJ0nG045vrgGHEmSIZXEGI3KFOW6QnpB+6KQfqG/pLK4By4FCLxUJHlK29YI4ciy3ghsvCcQAS/fuMvheI9Pjh+hTQ8RC0LJ0dFN8B1Gd5iupVituL64RhtLFAWEAUghiEJF3bQYq8gHe1SVxuiWcrOmbTRdo7EyIAwUSRay0QVSSQ6ODhkPMx7df4pzBi8UUgZEcc5oNEUIS54PkEEEDkznkD5gPJjgfW/IPV9d47wjSUKkAPBoq2mbNQfjETuTCaZp2d0aEwaS5XzJ5fyCsl6ThBHJOGVVFlTVhl3bsbO1hZQSGQUko5R1t0ElAaGPeffN1/j+dzLOj1c8fPyQVbkhiWLCQNPVDbYqaZbXrKqOqihZFxWD4RBjS+bzS5ZF1UPVOk9Tdr/qI/JvXV/7QlrFQ1zTYUrDVjzBDWpmzPji8Sl7RzHbd7ZYbue8+sab7LiC45OPiCNJ09XM5hUHuxP+qz/6U/7Hh/99smiHojslS0ICDboNMLVA2AijalBwdnVFWS05OV+xKiu06dgUFaenl5xdbrBOU5Q11gm2toc4aSkKiwxihLIUHYRJjNMVaRCglELagL08ZycIuHtnn6vjR/z6b+3y+nsJWTpEBDXSaiIx5uTxiodPznDKs9lYIhUwyYecPblChjGdc3RVH1u3vC6oW0PXabq2ZjoaIaRnPl+QxRlN07K3u8uyLFivN4TREBFBmkcsFzXCewajfnWiLDtCESEdHD88Jxcp2/mAUS5YtBtUpmhajXcS3TlCpUiSkDQVdK3Ge4HW9jnCWDIYBWzWJUEoKeuWKA6JopCdLEaXBqMtQsXUTUMUB+gWukaA16iwR5HjFV2nkUICEt0ZdOfpOo/wHc4KjGoJIkOShKyXHbYNgBdd6W+ywqblpb0DdNsw2dtFBRG/+PmnGDnABmOcD/AqwFsDHrTvR7dxGDMaZOjlCiUFAovHEkdh/w97wSCf0HWGJw8vEb4hDvtovWEW8f63Xuf8/BLvW9qmII4TkBKtG3YPDsmzoKew1po0CdA6wrUWnGG9XlFUG7RuwGv2dnN0XfPa60e89d4W2wc5xjleu/caOMWff/AYsfKcr1Z4LxD/EkyEeI4N703B1hgECoXAyd4M7B1YYzk9Oefzz75kRyVMswTbdhhtWRcth3t7lEVJUWoi1ZCGKZPBiLaZ8+DBM1wH77z9LT755BO0A6RkvamQ4R6vv3Gbi7nFBAnOW9I0wStJ1zRcLVa03lP5mOtNQfd8zaZquz7RSDist9Rtx4OnJ3SNpmoeURnPdHubqqm5ur5CpRG/eHifwhrSbJe0+ZUeuRf6a6T/8Dd+i/VqzqOTU05XK1rdYIzpk3sI+qaNg3GS8erNu+xORoRPH+DaFhVExEHI4e4O5WaG9C31esY0ClDjEY+OjxFAFAmkVJTlhq4LiMIJbSuYXa2o1ms213McCuug1Q2hiplvVvhQMo0GjPMJTVH30LMwIJtOmGzts717g0BFbIolm7JmaytnOtnilZdeRzhJGic0bYKxlvlySetrUtcbC43o0G3LOIsZpwlPHnzJIB+wNd2iaTriJGJnd4vT0wukACXB1msUDbOLAmcqhsMx2jmkjBFBwPbBlAiFtoLd3QlVadkuhuwfbnO1qLheV1jjuHV4xA+/813+7Kc/5tHpGQ/WVyRZyu7BIWmakg+HCDHH9R7Hb5y+9oV0XSu2tvaxTyzzpzPQMN2OeXp5QRPdYu+lLdo24OFPTrmd3+IRX7IKHFWhCWPF1WJJpw1fPfqSt1+/gSSm1YbTq0+5uKg5PluhooSuK2jWnouzGY3tePJsgfOeJFd01mIBoy1pFhDlEUII6rYmyQNGE4VSAVVlCANFliriYMggHXHnxm1Onj6jvFpj0pBCbbj3Q8fdO2OGg5TZ5RW72/ts1h3nZwU/++CSlgArO0xr2RknnB+XlJuardsBbVUzSDKicMDZ2QYnPYMs5/qqomtKXnl9m7Io8T6grSXrdYdTkq7SWCORylKULXGc0lQVXdeQDlKsE1SFxVqJNb2bPl52vH1nj3eODlnaNV/Na6rOIJDEYUzXaqy1fW6vFCRphNMdm6VBt5BmAWkSUFYWZwTGabJBRJp6WqDpPM5JgiBDyJKq7Gif/7048XjvcM5Sli3Wgu16HHggIR9ErFYV3kOaRLSNRzfR83SGF4X0N1nDPOX6+orVes0Pfvg9Hj58gnUOaxo6o/DRCO89wvdUQ4HAIam1QZYNgyxHW4NpG6pqQzfIsV5hvSFKYvb2DkjimCSCQDnOry5xVUmaJ9x75S5fPXhClgyYbO8QJClGCaQKaUyLx/YmWyx5EqG9pqkMXVv35p/A8mvfv83v/M73+M/+n/+McrXEuC3KpkVFIefXV0RhjIwMwzxgXQaUrUNJge403jtwrl//QgKCUCmc8rTOgHOEQUBRlnz68ac4a5lOxgyjkNu3bnP/2Qm//OQLBvl7jEcDlss167VlPJgwzicsNyWLZcEk2/Ds8QlvvvEW/+Sf/jEIcChqI3jv7dtc//gxcTzmi68ecBUKxiIjTjKiIKIxmmenxwQqJg6gMwZnPV6IviuYJqRxQlu3VK2m7AxhklFUBa3uCCJFkMR8eP8J6Sjkte2b7LwIiH+hv6TeeeVb1JtrlqsNJ6sFQRD2JE8k1vZZxkJIdidb7Ix3meYZR9M9SnvFyvWxq6NBRmAjinoGVvLy7bdYBwnrxZzT5RwhHIHy/cXWeqDl+vQZSQyRcozSGCsDgjBBqJCibZFBhJLgjWVxecX4YI/pcMDdl+6QTPa4ffMtDg5u8eDZfa6uL3EOirJke7xPFKes1ku87RjnOcdXx2jX4J3BW4WVAm0NeRSxPd7h/ucfM4wcW4kgNDXLosKrgKZzZIMROMvWOKfeeJKg77AXqxnOOuIkJ41HnJ8vsGbJ0f4BC6vZFBUv3b7JfK5Ikpg4jUAI2k4zu1rwmz/4LW4eHvBHf/qP+erxYzZtycVJhQhSOt2vc/RNsW9e/t3X/umUqphVUSNLT+wko70pXTvj5sEWj56csD674L03dxkPt3hm10R3YjrTUZWaUCl057m8bvj5zx7w3utvkwSw1kuS6YCTT77i0y9WlMbitGZxVaI7TxgLZNxnt9al7YMPI3q3vAgZDVKs66jajqo1bA9ySDSjUDGSOwQi4NbhHt95931G2Yj/z5P/jPxggMorutDz0u1b7I7HLJdLnAx5dlJiqpSPPn3KdaHJRxlKKcKhY3c34eMnGqty6s5ysLvFZl2gnSHNFSJw2KZjMorwQrFaWbI8BmFIsojNpmYySJk3hvl8w/beiLqswFdkWYSSjjj2pNmA02cVzoIXgjxTtCvLV88uaTcjXr0xJokUjxrLXGjKck0ks38VH6YtZW0YZJIozvG+72AFqiEIgn5EqzwulMhQESWSqu0j/oIgJNoJWS0X4C2BFBjbkUQRjdekkaKqDFEuMI0g8IpJHFEHBVmuUNLSVQLhMoTqgPZXfWxf6K9QSaDYnk4QKuCnH/yS3e0pP/jOO9SFpWpDHswKFl3/vRUSAiFBKrQ1LIqaPI4Y5CmRlCShwtgOZIAIPFmQkMUZcRjjrMZ0NYOsI4lS2sbRtBWr1ZpQBcSRoukawkj2OF/vCIKQ2DvKpiEMFU3RsN6sqJsCKQx/5+/c4zd/8w7L2RWmrTjY32U4GlLUC1I8YaBI44DXX9nni4dzrB3z+OwK4Xs2GPQAF1AIKbGWPidXCIzWzyMKBM+ePOXq/Jzb+/tMBjmmbVgWJY+enSAkfPbFQ379195nf2eH/a0pV1czZpdzsiRlvljQth1YQVu1fOf9b/Hgq6d4BKcXG359nJPlEY0R6E5yenlFMSvQncE7Q6gEzkMYyj5GTMh+9xRDGARkccD+1hbT8ZSfffQx2hW0TUljDIPJiCRQhAJmVcV/++/9LUbJlObB/Fd34F7or5XKTcNm3VDWHflgACqkdCXGGazr/QWBDHjnjfcYDcZ0XccwGbOTd1TrJUIIYhUjIoU3DShF15QYbYhCSSA8TvaI+1BJIi+ZxjFpKGnqmjBJyPIhwTChMZ6qdhjnMJ2mcy1KaqQfMB2O2d89xJycY+KMfDDCWZAelAyYjreJohhnPVfXF7S6Jo8i4jhitVoAjigMCAKFNYZJ1idwNEVJmORI0TEajlBSsFovieKIedvRdJbRcEg+HBKHjsXsmKbzqCDEWEMqI7QWrBYNV1cLLs/X5FlEElgm4wFvvf0mFxcnKNFPoI11fP7gIf/5P/j7vPnKbe69dJtbt8ecnl/xyedPKeuaatVhmg6Bf76G8s3S176QljLFVA123pKoMcNkSqoW4FveeHnM2fmK2XzBonD8cn7J26/vEPkN2liauiNPhzSt4cv79/nks49481uvoawhFiGvv/oKP/7zP+F81rvd8f2hkIQMMklRNcRZRGcsRJ58lBKHijiHcTrAaI+Qgu08ZufWLnk44qMf3adtDMUClteOPA7IhwYdG+7cnmJ9v2+l2goVREiXsJwbHn71kMWmRYYhQrTgO4YDx2QITb3h4O6IdGRpm5ZQRiSJY2t3wOVFxfK6pNi0RElKkgpK37K9HRGEoDtHIFOiKCFJFEncGwO9k3StJs8SyqJkMFBMtkM265ZIxERCYlPHstCsT+ZoK3jrcER4teDozoAFJetiw3AQM8oT6rLBmYgkTEG0NG1FGEQEShJH/fs9ClPKssYYj9YtSRzTNBV5nuNxjMYZTV0xHGZczwq6uoHneZl5FqK1R3mwnSaNBKOBJIgjmkoC/ecS4hs4N3qhf01HN3fJ8pAo2ebLL5ccbO+zOrvgzu4tbt5+hfLPfsF6tsY/JxyGYYD1Hm3BWtg4jUMwHmSMphOMbvHeIpXoX3a6JU5CnFWMRiOm022aekNVlTx8fEw+GCIUCBxn5yfceukWoQ+w1iMDT6IUSafojKZqNqyKJdpYAunZ3skpy4Y/+7PPMU5z55VD9g622Q+GdG1BrDw3D3e5vL4mU45AG/IwpNYdeI9wDqQniiK07bDGorUgUIphnmM6zfXVNV99fh9vIFYR9x88QWJ49PQZ1vU48Wdnx/zxn3VM8pyt4YCmbViuVgy3csIo4vHxMYNhRqtrFusalKDVLVYIfBiSTyJWx0u2JjmXV+dctf3PO0nj5+PqEG398wmRw1rDKAuREqIwpm0N3jpeuX2Do7qmKCtqLOdlT1J1XiDiGJVF+MiRZN88p/8L/dXo4cP7LIslnRAMRhOEkFSbCiUESFBIxvmIH/zwNxFlwfXJJcvrJdJBKBReCtq6I7CCaZbRmIbTyyfoKkB4i+RfmpUFERG7gwnTwRDnLJkIyPMh0SShiTxNUdB0JUI6AmkQypHGDu8aNk3DdLhDnOS0raUuNsQqJpYhtw9uMxyOGY8mFGWBxxBIGA5HnJw9I4oDhEqQShAIySBK2N/awrY9gnxnfx9dbphtWrbGCWkWoQLY3Z6wKTSDdIBpNabzGBNQNx2DXDLd3gWZsty0VI1hs+moSsu1cCShJ4k+4+/81g+Ybu2iQsVwlCGDmCiKud4s+dknJeORYH8/4dVX3qCsPNeLNdOB4OPNM4zoW2/fNH3tC+mi8yQi5aunZ/jTOfPBmlXXkWZjTOcZZYYgSHnwaMXVuiA2RyQRhIlCG4/uwBlPUVd89fQhN+/dxBkQoWV/P+fXf+M2/8U//BihUvCQpzFCaLSxZElE0xmsdAwHCUnkiSNDGEfcurnPO/de58b+ATem21xsLhnHd/gbtzT/9Pf/kE1Z8fj0E+RgzL03Byyqmuk4JggShBqgvGdTdDz88oQnjxqGkyFR4hDGE4WGMLS89foB1awlSxUqNGw2FUmcMd0asbsXMZtf01aOzbLFGUlrJHYkGY1GrFdrgiAkzxM2646mMmjdIJRDKUWUxM/3uwT4EGNgNA7ptGYxa6mQhFFAuj2gSy2frTeUvmY7GdBdLNnaHdAJqKqK0XhAHHvyScbVZct0OyJMO6rC44nojCZKMop1Q1X1IfBCRARpgjGepq0ZDBKSKKWpaxaLDV0LYSARwhDFAqsFohXYWiOFpyyXZJHgeqERagfrDEK0Lwrp/wZod2eHJ6fHHBwccbi7y8kXT3nvtbe4e/MOn9x/wHpxiXTgZIq1Auv7FAv/vKPrnKOo234dxHkOdrfwOLzpO6pO9pmvnTXo1hMIgYozRtmAtwdT1sU1k0lG0TT9ioUUCC+IZUCgHGmiQMTMVy3OGdq2RQgwBv7g9+8zGkuyOEEFMeODfT749CnTseLujWF/0ew85bLl6ecXXFwZbrz+KvPyMcL3nyEIArx3FOUG7xOcVzSdJQiGtE3Dj/7spzz4/Cm6bfnZ9efsjobcu3XIzs4WLnAI33fkBA5jNbXpeHp8wsHuDodHezw6PeGyWlBWLcIYzi+uEcLTmYbr+RWXl0uObm4zzC2PvrpmOnyLq4sZz04ucUGI9g7rHSjBaGfKclVgQs9rt25R1RsmkxGbTU3ddnzvO9+hrUsurq44XVwze/iAUCkkgk1V83v//M95/ZU75G77V3zqXuivi64uz5CDmGw6phNQlzVCgJR9CRcoyf72FvlgRFEVOGOY5kMmcUh9DVdNjdOWw/EhUZhxsX5M4yrG2TZZuk3RbNjoPlEnCgImoyFRFGG0ZTqZMBmPYKB4trqkKDY41yKVJIw8k1HKcBhRVAuOZxe4bIfpzj77cc72ZI/ZbMM7r71HoxuW5ZIgDAiVBOHJ8yFlWbHYLPvngAqIw4BhmjJMc1bzOborGQ2HRDJEpkNUolg1Vd84GOYkaUgkW5pNjRUdw1HKjaO3WS7XFEVJPthmXRmKZk1ZtzSNJlQCvGO9KNDdYyaTMT/84a/xrb/xPfbnG4I4JQwihPd4a5DCkEQeme5w+5UQ9/gJ89mSyWRMULZY/aKQ/neuaDRCVxtuvbnL4LUbbO9MefxkyeefPOPs8Zw74wCdRZwulkwnQ379vW/xDz8+I4ghEQGy6Y0BrRb82Z9/xVtvvs/WTkqeDPA+5fvfD/j5x8c8PV4zGKQEocdaRV0Z6qIjySMmeUYWWiYiYjwc4zNBmgwwRhHJMSE563nJZC/h/bfeZzQd8enjf8HJ/BMuisfsTAckPiZPcqypefz0DN0O+eiX51zPSqI4ZbGqsN4Sp4rpOOeddw8oynNOTjbk45TKaIQKCUOJlxVV3VEWhrpw2K4fl7R1S9fFXF+vSFNJlGQsVzVl6YjjIav1HCFaRlsjnG/Z2YvRjcd2/RinKgVb0ynYkqKoniOJ+zigaBIyk1CUNbHT1LMrXDRkuDelvKpw0rFaXgEBs5lla3uIFzVVVVNXhp29nCiNabsO04VEcUBTG4y1RHGfS912DVkWk4QxV7agbRv29hKU9ETC0dSQj1KE1AyHkotTg9UhIheIUCAQqG/i3OiF/jU5L9me7OEaR6wl777+Lfa39/n9P/0zvjg+pgAIU5yLMUisMUgl4TkR0PVZcrSdZbbc4IQgTUKySCKkQ0TgOgeuz2QVQYgzDmssQinSfIxFEmcxt+9kfdyeN4QqYJJHjIYB41GEt5ov2w7vQ24eHVGWa05OrtE25eVvH7JZVITJmE7UXK0K9vZCpNU8eTzn9373l8zOa4bjPUylGQQRVVujVIhUEmt74pjHI0SEtZrrRcPTr4754pMvaRuN0z0T8LJdsFysGQ0T8lEM3pDEMfv5DqMsQwnJ/s4Wr73yMjcOj4jjiLIouby84N3f+HUGec7l1QUqlNy7e8TTR2fcemmfP/mTX7C/dYNYKd5563XW64J5URKFivL5qDgJPDd3Uu7deQ1nAh4+qXjnnTf5+//lP+Pqes5ysyIOJav1kto5AgSRlARC0uqW05NrRoMBuXvhe3ihv5xGeY4cJayrDaZt0VYTxhLnBM5K4jDkxvYewlqyLCdJEybjIa3RnK8WLGWLd57t0TaBT9Fdhx0vGSY7XF2vSKOEFo/BMZwMufnSbUb5ACUDsiRDxIrKVsjigiCQKBRt1yCkZpDHbE8SNpVgsbomnF8x2T5gU8+oq5IkHJFGCo/Cupa2KpFSkKU5bad5cvIIbRqkhCSKOdjaYzIYstksGQ7GPH0yp646RsMhSZqhrSeJBigVslw17GxvkSVjzrunLK8XtJ3AC99n7AcRVaNZLDeslhXrZUlV1EjRPjc3O8I4p9SC41nBYLKHSKd4IZCo3rEhwDkDwlNbQZhvcXg3JsivKY3EnV7Q1C8K6X/naq0mCB0/+Pe/zdZkH+Pgnvf8zbpmeXVNeXbJ2fGcG17za999nRsvZeye5Hz28BypIqIIQLK4bjCd4LPPn/B3/+73MRq6DpRv+A9/5zf5L/7x77GpWsIwwxlDGsdMhgOCAHbHGS8fblHc3/Dm4av8+eNPqSaW61XJrYOSOJlSdQt+8vGfkv5aysXqp9T2E+68MuXBE0vbKbbGW+i2IwgynLP88pdzTp46UCFh7jC1I1KWg50R7731bXb3Bjw+1XSupqHFaEFMRBhKtrdCmsYiRYoUNUkSMpnkdJ0BqYnjkNFwgG4EXedpG0OaBjirmF931G3By69OSVLPvNkgVUDXaeoKBA35IMS6mKbWSPqkDNt5RBDRqhAbR7QyoFo2zK7WbB1kbB2OCJ1mshvTOs/59YrRKEV0hiCI6TpDGErCWLJ8TllMswAhJEoFaONJwphAAl5w4/YOs9k5SIP1IALPZC+jrQS260EU+JA8TWikxwuLQpF97U/0C/2bajFfYFvDNNriO6+9h3CCf/bHv8cvHj5iaTQqjjk4HFJajaUHlxjtEEpibd+VDqXCGk1jLa01pLFkmIYM4j52Uak+pxwvGI2H1FVHsSnJ0oSAGKMNWreI5+ky4jl4b5APuXm0g/MNm6Lu6WlpRhSkrPUS5ySLecv9ry5BBtSdIUkGzGYdP/rgjIHyXD/9AulCXn7pde4/OscHa0bTlNlmThTkGO1ASYyxCDqk8HS6pdqUfPyLX2KrjkRKfBQRSkmeJKRRjNWa5XVNFHqSIKapatCGclPx3fe/TT4Ycno24/J8QRwmLFcbvnr8lPfeep2Hzx6z3Kx4882XefT4MX/wxz9ntlqzKRyCgLs3Ba/de4Vnx08QecZnD54RKs+dGzvsTidYC3/yo49YFiWzf/i7BFKSZRG1LjHOsbs34MatQ376889oa4tzDukF0loeffmQo539X+GJe6G/Tnrpzm3Wrubp+hopIQgEUvZrRgrF4XSHO/uHNOWaPEnotMbqjkBJJknGrCnxzqJURCwkqZiSCcHZyZzFegMeBL3R8OadO+zdvoXTlvV6xaa6Zr3YECYBYapIsohBMuLy8gyPIA4dW6O4v2xeaVQoqLoGIWF7ELI9yijaS9ZljbEtUgWkyZCqqji7OqdzFaHy5EnMJMtRxuA7zSjNaIOWJMlYr1a07TU7254gUHgnyNOYdVvRXc556eZN8lHKeg3Pjk+4mF1xsL+HUhnlpqFYFiwv5lSrEtN1fYMqkOwd7fPGt95n79YNKhuCkgSher4WS19sC48KApyzaKNBBHgZ0hpH1Wla/dxz9g3T177sSIKYsNWcPH7KctQyzHYZjyYcjvY52nqZ6qU1b5iK3/rvFASiBbHgtZen/PKLC5yKMbVhOE4pixalPL/45ae8+61XuH3jCKEk1Trk3Vdfx/52zS8++hLd5pjMk6SKPJO8+cotfuv730NozeXJF/z0dz9npxqguorOz7H+lDS4xY2DA/7s4jP+8Jf/gKp5RJpZyrLDdANq3xGJgmWrmV3DZ58vOH1WI6VAhR1eR3jjuXk45uWjI8bpiMgfEvsCE5xhwoI8HRHHAVkYMYwimnqFdgIvGxrTslpJtrcjolFI0dQ96U0qsmFI13isbUizmMtZS13XDPKUfCjYbEDSf971sqPTFWEckaaSYH9IsanwuN6EGEo2TYXvQEpBPA1JbULVaOYfX5IkMZE3qEFKIBOqyiClI8ocnXZIFRNFknysGOYp3nnoEpJ4wLpcsrEVgywnUJIkguFWRiAVVntmxZqrpiBxQ9q142Bf8Z3f2EVXCR9+MscJSew9lC9WO77pUlqwk23zys1XWVzP+ezRAy6bAjlIGNjwOUzBQ+AInGPdWKwXCKvgOdTEOY8xPXXTtF2f0YzFGUvTGrI4AicQTqBkv5+vtcVY99z4R19Ae4nrPEqBCBVSRggX0rYVgYyeExYtx88eoU2LtYauUTw9XvHmGwe4DobpGJtFXJ9qvnr2iHGWsbN7g7OLEiEzZpdLdqIRkZfouqOqDbrTuOoJzkIYRkRRyPX5FcurOapfVAH6NZaqrDGtJoszbhzeYXl9yfK6ZpoLsihmNAoY5EPqSiOCkP2DGxRtR9VqPv/qCft7h1g8KpBEQc7rr7/NJ//0d4nSmJdvvsrjJ89YLAsOtqfcuXGTwfYOQZAxGA8Z5AF10/DTX3zJvChBSAQB2+Mh4+mAsi442B7R1jVPn1zQ1gbX3xNIpGc8SYnDkKOD3V/hiXuhv06yzhMGEUkUoa1Giuc5EV4QByH3bt5GOZhdnDG8e4/RcIjpagQwGeZs64raGrwKUCpmkO5idUjXSEaTHeT8GdW8BTyd76h9Sz4eMR2maF1gV4a6qbi8vmQxXxOnMcNcMhzEHByMGOQBxlhC1UdwxpHCq4C608zWS6SogJggiEEorubX1HWBsy3DJGN7mOJtR1cuSQcDhA/Ikglaa8aTEU3Xcnl2RluXHB3uEamUrjVIFaMdXM6XKBmws7/HplhTlSW20dTthtV6SdtobFESAz6KEIFka2fKG++9y8HtlxgMR3S2o+tq5rMZs+srurZmPBohpcDolqapKTYFxli6rmM+X7Kcr+jKFuu+eZnwX/tCum5KQuMpLtd89cUpJskYZduM4ynTwTbxMOPwcJcs3kaiUcE+r70ccXj4jNmmpa09y9Wa4TCj3LScn1/y+WefcLQ9puuGjPJ9Oha8/947RAj++Z98yGzW4kXAO2/uYoo1x1894b3X3id9XeEbzf/3//YBJtvn4EaNs6fUbYn3I6zsWKwfMB1mxDJjU3RMUsd0NCQfhHz62TN+8eGS+bVAa0eUWKTyzOcFo60EG8X86c+/JP38MU673pEvNXt7U4Szzzu4sFq1GB1RFS1N06dzYAyCAGcD2tqRZyFhpKhNg5SGsmyJkxwpBAjBatXgUDRNw3Qy7r/QSYCUHq01XaMYjTMGQ8lqVVJX4OlQgUdKhTMeYw3CWVQoGU1imspy8aRklMJwFNGmDhN7EJYki6mbmiRJiRJJWa0JZAQuYLOpyYYpaRz34BUEbWuIoyFNVZJnMTdvTOhqwfK8ZrgdkKaS19/e5v6nG6AiJsAXGrOuf9VH9oX+irUVjXnt9qs8ffaMJ+cnPF1c8+TqmrLV3L5xRBIFrNdzjm7dxkiFu9pQdB7jASGwzmJdX2p6L8A6nAYXCCrdsXE1VRyhkEgnWa0qwiDGW0vblISBx1pHU3fcuXMTR4dzBiFCvIP1uqKqS3RrGSQJL9854tnJEyZbN3j09AlNpXHAaDhlfbVksnsT4xrWrebO3hGekOt5S916iqpFa8vl+ZpnF1esypqmMUgEz+Qp1vrnK00e22psY3G2T/iQQvQOeQHaWoq6oj3p2JtO0V3LR588YH9nzK9//32c9wRRSJIOmC03TCZ7VK3jqljw4Sf38V4SBSn3vzrhcnlN1znyOOPB/ccgIwbDKc4HzJYVKzNnsj1FSE9Ta+7ff8Z88Zy86j1lVfH6a6/w4NFjEB7hJINBztPjC66u1mRpyMFuyt/+W9/l6dWMDz99yqMnn/wKT9wL/XVSURYEeUQShtTe0e90CZQX7I0m5CohlJJIKoaDAc3WFrZrMKZjOB0TDnM+f/KYzlhkkAABeT5mT0gWzZrxeMCqSxnt7DKYjHChwkrFcDggCcfMF1csFgvaVpMPBoRhwM5ehLGeNAuQCm4c7nNdLFnOl2TDXQIpkTLsO7hCIYVA65aybtC6YZymZNMxgQpo6xXL1QxnGrQJEK0kDHOkjAijlMl0ius6rq/OOT09YW97m9s3bzEeDqkbgxABSRiSjwcMkoinz47pSsN6vmIxL0mjhGESETiJFxXTgz1effNNbtx9mSTJ0Nay2ay5ujrj5PgJ19czjNUMBzlBoNBdD5TTrcZZi7G2R7C3DqMN1r5Y7fh3LuehWLRcf3RGNJ1w/+kTivYhtoFcZVgUxhqcNUgJ09GQw5sZ+9s3uZzfxyMIAkFTtTjXU/Qur66YL5aMh1tYa/CBpG4t7737LT7/+EuOboz47P4VP/ngMfOX55RdQaM6vn3v+7z+3vf57f/JhP/z/+n3oMx5+b+3w6KY8eT8gk1dcLQX0uqWorTkWYbwNVenBZdBwmefL1EypizmCBQC33Pr5YogtZS2QQ5CZKRQoaRddZS1IYgcgyRgOko5fbagqiWtrmgrsMYxzBNCIXDegVZYHeBMQlE3OAvDUcJq3RKGEUoFNK1mtWrY3t1FheClxRhNEmdoU+OcJwxjNps+zUOpECk0YRQQBdA0FhEFVGWHlL0RQSpPPgoJrKRaNXRFw+AgYxANsGiasiEIBUp52rYhH+RURUOWjHpAQ1XhrEG3HWmS0mnNfNYRBeHzYhoEhnTgmA5SjKrJ0ynnz05Qtt8pWy7XiOab9yV9oX9dN/Zu8tVX99mYkt27+3zw9D7rtqHY1JR1TZZOwVsWswvyyZBBahGxYtNodNcn1jj3L6Pk6FPlrEB3YIzFYbGuIwRiGRLKEOtqslSSxZ6u67i4OGc2W3Hz1g5BJPHGIYTHPkd2e+/I4oS7N/ZpdMNLd2/y7PyUW7dvcH29oliXqCDhYHrAIMrY3s94bW+L2WzGlw/O6dqGOEoZDraIk4TONUiRcD1fMru+ZFMVON/hnqfiOefxz1HhQvp+1Cr6yZF8Xk0LB9oaruYLXrp9l87A5fU1F1dL3nrnXdabmo8+fcLFxQIvDd5GTMZ71I1ByZidrW2enl1zubykc540hnwY88lnTzjcO0SHgmg4RkQhbacJpMHqDmNagvC5W9/10V5lVXN2MePoxg0u5wWrukOo4Dk5LifNMqyK+fHPHrOqnxdDL/RCfwk5PIM8Y9TlrE2LkqCAvfGUd+/eIw8VN4+O2D06IkxiwiQBPEEYEScpMsk5u7piuZiTjMB66HC4qE/HiQi4O7jDjXtvsixKnj47oSy+YjzIyWO4vDqlLCu8kwxGU+q6JU12uPfKq4Sio2kK8mzKD/7Gq3zw8VOefPmQ/YNtdm9uE4gKbSXGBUgfEkuLFC2hj7m5c8C62HB9WdK2mr3tLUIlsa5/p0oVMkhyIhWxPd5GCMHp8WOaqkYpyb2XX0I4jZKiJzAaSZbucnAYMzs7RThHnkGeJAgvqTvD0wtPNhkxmG5jvWe+umZTLik2K64uzlgsrp//34LNek7Xdmhtqcum95TQT8Wc8zjrcM4RB+pXfEL+7etrX0h7q2gLz/zxhuQC4jjg6fICkUk2foauHMYIpJI47zk+PePBI8Wv/849xqOYuqvwXpEmMV63CByff/mIwWDC3/3tGwwSybxSlEYgRcC7777GvPyEbCvg4S+n3Lk94PHZU67Lmk1r+Nad7/Dtd7/P//J/M+L/8X/8J/z8T1vi3z7mwy9/giambfYoq4rRZIvrxYp62SJVwpPjkrZOGWWW97+9zYNHa9paUtcN6cAz3EpZVWta65FtRuAiqqYhinOawjEMc0zrCcMMjyeOIQ4b6toQBy1RoghDiZENceooqyXee5I4QnmPtQate8ywNh5tLecXaw5uJFjXF9lNJ5CEFJuS6VaC0YbNKmK6NWa5PKVrLUoqQhUSKIUQHm16SpTWmrbVBDJADUOMBTsr8Rc1470Ro+kYmVisaOgCQdsVJFmEcxtAgAhxVhCoBKP7bqE1kqoRKNmDaLzoEE6R5QqtO/7wd3/C2cMVMkrRoiIeWkg9rH/Vp/aF/ir16ZefU5kaGzqyeMTe/g6r8pSd2zd46c4trG5hPKLtWgLp6fSCt95/h8WmpSos62XNYt5g7b8qqAWSttVoY/B4nHEEgSKIPLYtGA0GbE1S6nKN0R03btzgzt1XsF700yMDtdUslxvCwGN0Q9u0HO3vsS5r7j97Rtt66rpkMd8ghKKoPLEaMcmmREIhheHs7Jo0n3BjHNN0jrru2JQt1lvyaMLW3T3eevV1irrk8dOnnJyd0XZtX0hb/iX+EAEI369tSSkRCLx3GGdx2vL09IzdrS2Mbvny4TOc/DGrdUsc5WTpgCQJKcsNSgk63VG3DYtlh3UtRQ0qigiCiL/92/8eo8khe1v7WO9o14Kma9Bdx+H+gKP9Q4xrKHRF3Vq8hUAoTp89YWs6wuoOgWOzWZBEgqPDCUGgmC0K/sE/+Sm1kYjQ9Ws5L/RCfwll6YBYJeyOp1xXaypgmGb8re//gKPJFt568mFG1zUYY4nTnLZuaIqaqtZEacLNg5uU5RoVSLSHum7Z6Jp1U7EqKlpnuPj5z1kXJUKC1R3zWDEcxAQqYGu8w2RrFxUlGGPIsogk3CdJJOOxpTOWet3gtObi2SnF/IzDwR1G2wrjNa0JKNqQ1dISRlNaYqq6pxF3XUcQREzHU5zRzJdLQhUSBhmTPMX4jFXZcvPWqzRNx+XlCfcfPaVuGgIhmeQDIhnjk5woyBhMxrSdZ/9wD91tSBKBc4667Ki85dHJMbXWTLa3UKHEeUPbNrS6JohC4jTD2Y7l/JKqaGhb+xe1Bt7jrEUI3xMh44D93T0+4PhXfEr+7eprX0gXTUO7rrneWNzpEpEq3njtJo/qE3RmSRMBBNSNw3eOLBO0XcvTpzO2bybYA83y1LJZ1zSNwPmQdtHx6MkZD5894tvvvsLOYJ/i8pJWwFvf/h6r1Yj58hk3JoobR0fMr1/m44+e8ctPP6ZYLnj37nd44+Zb/M/+Vyn/6X/6D/nxx2fsHW5T1Y7rVc35ec1hUxJ6hy5zzucrHh/PWMw1R3sjdm4EeN8SigjvWl55acS6LTm8N6RYd5wfe9quD3GPhcRZTdvV1GXK5dU12SAjlJK6dGRZiLUGRIDzHqkMw0lMnGaYTmPaBmcMw1FMVTQMs5i20RgPq0XN/tEAS4fW7rlRMaKuW7pW0zYOJQ2r1Ybt7YyL0w0OekqTgjRRjPIEaywtms57Gm3oGgNeMIwj0kT1xDJnSQchURIxTXKMtAQqwHuLMY7luqHxIc54sigAYXscue8L6n4HrEe0n12V5HmArpZMXoqJYkW3cNy4cZPOrHn6ZPGrPrYv9FeobHvA4mrV57sL0J3m9s0jxqMpwjlM13H78ICyrTidX1C0G8ZbIZ3U3DjaYna2wFQlnRGUjcb5vlOL793rOEckFMMkZGuUkqUTnh2foBAMBxO0bZBhglcRjVYEsqelGQll2yEXK0xXMp8vgIDReMLms6+QImY2v0JrRxJFGCN4drxEV544UGyKDSdXBaWGttjgRYD1ULQN1jqkEFRdhRR9jvQbr73D0f5NPv/8Ey6vZljrUVI+j8kD4xxeSGIP3jm89zhjEDKgqgvOLzsGWY4KE05Or5mMtxkNB4xGOd45kjjC6Jayov98QmBaT6AGtE1LsZF89MunhDJDW0FnPUVtKKuGSBiSSDC7esZrLx+xKVacXS/Z2T4gVSHX8xVlZ1gsN2Sp5G9+/w22t4b83h/9vM/87hzaO2QIgfAE8YuO9Av95VTXHZOJYms0Jb48QXrP63df4sbBbfa39oiDEO8cVa1xziNEgOksVVVjrMavJWEqydMEEQiEdZRVybPTY8q2ovY167ak7VrSNMR6j3OCNMqJ44yjwzscHRxxdHADi0MqifewXG/4xcdf0XQNs+sLlOqR4m1TobwAl/TNJFFSm2u8VYRBgjaCZm1J44Q0TvH0fo3lak0UCrTpcL6lKhu8iNjevknXSeQw5LVX3mSzWNCUG548OiYMJGZ3B984usbz0kv3GE/HdK0ljAfUMmBTVzRVQVO3bJqOplpRliWL5QX5KCPJ0ue7zwZjLMYauq5itVmhW4s1DrAIBUp4wtQTxwmSCElMknzty87/v/W1/0Smsxzs7yLuOR5++JDbO7vcPLjBxKY8bZ7QSE1tLZHxYCVhIJGtpzQFt7MDlpsNg0nGfLGESOIl6M7y1VcnxOrH3DjaZ5LtMMm2KOoZVWsJ1BGjZMpr39rH6IYsLLi1f8BgOuQnP/kZf/jHP+LX3ld8+7uv8R//D77Np49+SR4qbgzHHF9WdOMxASF1VfHgyYy66VHXSZqyXGkK0xHHY9quYH//iN1RjlhVyEISti2mWdA0LWEYPIeZeZCWJNPce23M9bxCuT6XOU4iukbT1BYSiTKSqtUs1iuyOCSLIoQIaWuNMR15nuN8wmLZ4oHVvGQwBothe3cL3WiGo4TZVYFSIXEsCAJPlkbs7g+5uiixFoz1CG/BanRnCSNFlimU8Yha07aOsmupOs10nCB9f+ExrcfpDvBUXYdzntE4Z5wLLq5NbwrLPUIouqZDBCFRGIMX5IOctiuwWtIaC4HExor5pkBsJF89OSch/lUe1xf6d6DGlBwdHPDw2TEf/vIrFouSre1doiDAWEPT1BjdEkpYr1eQhZxdLqk1PPj8Q67PZ7x24y75ZJtPnjwDFaDblv2dMZNByuXxnIOtA5R3TEdT2qYlz6c0XUC3ccgwI1AJUoZY49BaI4UhjiNaoymuFgjfj05nswVR2lA0lk1RUFWaIAoQKE7PLxnlE5bzkkhJtDN0LqTqGozruzfWGBwCIWUfUSUVXgkaD7psiJOcv/W3/n0+/MUHfPnlV3jv8Yg+5s97hAdtepqbEJI0TUmimNFoxCgfMRltkcQZCE8cx8RRSBhJvBOkWY7uOqRUxFFH29YkcUJrDE4I4ihgUzriWHA6m1PWNVZrcBoftNy+O+Xdt77N/S9O8RbO5gvuP3yCinM8Fmsa4sBx+3CXN157lT/98w84v1ywu7eH8725USjH4f6Il1864sd/9OhXffRe6K+B6rbk8uKSZKuPdtweDHn31TfAiN4An/XvozCQtE2HsY6mbam1xktPKB0CQRAowKMbDY0ldopaWIxuiALPZBxz+/aYs4sNReUZTVK2plvk6Zi93QOyNGPTVmyqmlDFVHXLF189pKxrhLAMhzGd7ogCzyAfcLVwrOuAKJBYb7CiptMd1ltUAG09Iwl2aRtN2TSoa8cwi7DGEgQSgWe+XOC9YDK5RehzxtmIv/mDiA9++kdsig1V11GUFaGTzC4WmKJhe3uLaBBSVRU2DEnyDKIIo0u2j1JUFDO7OMdS0FQV1mUY6yiKBu81cWpJUtje9dSlQXrPII8ZDFPAIyV4ryhXjvVCM5/PftVH5N+6vvaFtLSCJ58/pDwr+OEP3mVvOuHGndd4NbzHx2cJX5SPKCnplKG2HqlCxkEKraXqCsbZkJP5hnRLMFYxrhSITjK7Njx9dsGnn37J+++OSeIRnpY41FxctPzf/5N/ws39A1559Q6vv3ab1+7dwRLwg/f3eJwd8/kXn3K2+ZCZuWL34AbFao0NQkJiUqU5fnrBfF5StY6mrlGRpKtKAiRZFCNsycHhgJ998IwPij6mxmmHdY6tw5TOV6TpFN1qsiwkSQO2thPWVUUUB6wuW7rGobyjbTxd0xFEOU5LlquKKB3gwwhvPacnS+Io6veUvGE4iFBCUbeGetMxnQ4wkaHpKppa90TCMOz3pOoKIVWPE40DkjSibRq8E1gnaTuP7jxtp0FogkgRxQFRLDDa0DWW2axiMIyQyhJFkjhSGNPfZq1RfPbLBYOBYLLnMV5QbYaIyBEmEcY66roi8AIvJEEYAQFa1yRJ1O9iRgFqIrAOrp+Uv+oj+0J/xaqajslgxO2jQ87OL4kPdpFhyNXFCaPhkHEeszMZUVRl79wXlk5rPv7wPt2mIxaCUZTw8Ycfc1JsGE8nJHHI1jhma5BQXafMlxuauuHpyQrhJV4qVKxIlCAmRBHhrKctKy5PTwlDx53oBt52tG1DFEriaMBqPePk/lM2TUVVNVjnSVVAoCTr1Yrziyt2JttMRkPSLKMp11jbp4x0xlC3LdZ7hBAoASiFE32R7BHYziA3Jd/57ncxXcf9Bw+xzqOUAgTW9uZD70ApxXg44fBgn8lkTJ4MCMMUaz1R0EdZKdXvhcgwRKiANIvQ2qHCgDiNMNagghBt+p/puqrpllXf/XaOgI5hCt43vPzyPR4+OOfR/Wua1nJ77w6hjPnq8Vd89zuvcnk+YzHf8NYbb/Cf//0/4uxqSZgM+yxa7wmQhDLg1TtHfPf9e8Dv/YpP3gv9dVCgBKv1go0tENZxa/8GwyCjWxdcbxq6wZgoilBRhKifEw9VyHhnl840SGfw3mAaS9G2dJUmDVMOD3cpL1egHUEgiWMY5CF5HjGejDk4uMV0coMwSMnzAcZZzi4vuf/wMfu7h0Rhf/HGgxCKpu6oq4ZQKZI05qtHTzFOIWnJ85bDgxEqSOlaePWVW+TJFut1R1k1GC/pNEgVE6ug9zUFklAqri/PidWAyc4dtBUMxnvs7N9guf4c6zyrVcn+dMpkPMJVltnZJUEsObi1Sx5HeOdZbCourua0TQW2RUaSONQIqSGweCMIo4YsEwzGECce4RKcjomDgCRMMEZxebWhWLc0ZUdTOrRWf7FO903S176QzsIYI+Dd777Hwf5NlFJkWY5rHd+++X1umLucLs44LU+55Iw21sjQIULBxiy4tXfEbF4jBwlOeJyV6E6QZgFls+bzr37J3bu32I1isILWBmxv30SEIT/68Gf87OOPCFXE+996n3svv8rbb7zEm2+/yb23d/jxF79L4xQdCU46zuYti3lNVdas1zWnxxuiBOq6ZjQISEcgjGMUwVa0x6owbFYdETlxGtHUdZ+qIQVhEOK8Jh9kCNGhAjg/vyJMcsqNpliDNxJDRxyE1EZTdx3SSnQLDsdkqIgThUDRtQ68oth0TEcBobSMd6asyw268fhA4gR4IVFhyngSURUl2jrq2jGfVQSBYjjM6BpH1/WACq8UTti/MD1hLF1r8V4QhgFRJDHSUla6R5MOQna2MoQ0CNE/kA4PIlIkxbGl2GgG0wY5knRGIMIQIUOccwShAuFoO4+UCdq0GGMQOKT35DsJkQ3h+JsXr/NC/0qrSpNsGtquxTrw3nHn5hGT8ZC7tw4ZDBK0NlzMQ166+xKnm1NS79GrhljEZCoEH5NGIyZSkpqUcT6kvBaUlzXrlWdTVbTaEijf7/2HkkEQosIQLxS6NWA6MJqmWjPa36NtXL8PqEKCKEbKmO2dPc6uZuAEURCCkGxvbWN1i+kstnNMxlO2tsZo06KkIFY9OaZqKpq2Xz1RUhDFMR7o0UO9S1IGEovj/9fenwZrl6Z1nejvHtb4zHt853zfnGtOaqYRLYYusI8tSEt5qFYQNBQ9BgZhCBFGgH7QZtCIjjgacqKRCK0I2uacBhS0RAFRqgpqTCor5+HNzHfe8zOu8Z7Oh7UzmwKqqC6zyKzk+X3aez3refbae9/XWtd939f1/5/Mptx/zz0c7R1yMl8CoLUG7yEIZKSxzrNY1bB3wsHRjDzN2N09S/Ch08dWkjiOCUGQJAkeiZKCxjmsh+AF1glM3VA3NUVZEegmzFIExkPNvXdfYJB59vYP+Zn/7ed5w/1vpDYKGcfcuXPMmbMX6Q9yRkPHxnCX2fGEc7u7HE1LbJDksUZIgdIxxgSWK8PDn7rFjeuzV3PIrfkqYmNrk6auKGxNpmN2N7exbaBtLEE4rDnuyiNcYMsatNbcuHGTIATWNmANkVZEqivb0kpTmoKjxT5lU2CcIyCoGsHN2wVR0uPBB9/GZHwRKTOkAhXFHB7u8cgjn+PGnX1OTlZsbozRSnPp/A5RrDg4vMVokJLnA6SKqU6mFJXFeUdVCHqxonUts3nFxXMJWmbUjcN6wWA4JNHgg2A0GuFsQ904XAPLoyU366voKCfOJjgnuXjhPorlkpOTw+5vsyrZ7A0ROmAbg/GWZmUxdkppao6LFccnU1arEu8Meea4/54eeS+wPy1pTKDXUwwGGql9pxTkBd4FThYN1apkPmtZrRqkDGQ6YnNjm42NHYrC8JvsvdrD5BXlNZ9IiyC5sH2G8/kuJH28kBwvTihWFVEywB4OufnoDa4dW3bfuMPFBxtWyYqVb4kSRxWmXNzd5YlnX8TrgGgDAYnHomNBkIYXbz7LzvZZEp3TOqhdw9vedS/H1S2MsbTO8MjV3+bhpz7Cv//1hK999zv4lj/9TfSGu1waeDItcaMeq8WSpnVcffEm5dKjZYpp5mR9hRSGvKcRJiHMe/zmb1xn654dsBGtKmi9x8uWrTNjGl8RRxlprMhijVaOySSmqVuE9ljbUjcGIR3WBrR05D1NnCra1hMnMQjw3rAqCja3BhwdLhFCYOoWZ7sbxGq2xFpD6EmE0lSFwTYCU9cIAnEiwUiCh6q0aC3IMtjYHLC/PyPgaY3pmptk93iPo5jaNTgbcNYgJAQEURThvaCqDIcHBYNRIMsEeSRZTFv27lhYQSwEom7pRz1KHaiMp8EjJJSVR2uBc902tTMxkcppmhInHCslERtr1Y7XPTqmlYo7RzNu7R+TZhnuxgFaCQazFbNVyWcffQYRpUSpZmdyidl+wUa+jQgxwguefv4I62JG/R3iNKZctUxP5kghO3k8fNekJwUqkmRpTKIVwtMZONQGYRoGmeb82V1QMT4IjAvEOsIC1tSMJyMunb+L56+9wNKs6OU9Rr0hpmnYubDLmbMXGAwHHE9PsK6hdS0+WGKtqZr2VGlI0csz8iw/refuasMjJZC4U4WPiOGkx92XLzN/5IluFVp2NdPnzlwkTVNm0xl109Jaj60Nx0cLbt7ap9fvsTGZEEcxILHWkmUZ/X4Oskvc67rFGINWmq6VMSBlTJLEGFmQx4I//acf4r77z/NrH/4oz79wh7KqSNMbrFYVb3rTGxgOhzz+2GMEPN/0/jdy9sIGzz51i8VihpYQSUiTCCEk1nXGTbPZkv2Tguevnby6Y27NVw0XLt/HdHaMObiNRDGbzjleHqBR9PqD01IIhYw0q+WUJE2pi0WntuM9bdNAgNFgQJanCGVYNUc0bomOYaBTgtLk/R5Z3qPXHyHkhFUVUdcLBC11W3Pn9k0Ojo4QQhFEYLaYc/fdd7Ozu0tZFQz6CZG0NFZ0Gs8NFMUBpmmppOB4XhJHKc4KmrolzcB4TnuhFALBYrFkMh5wOJszO14Q+4Rq3jKb3ibtDXjgTdsotQFC8NA7/iTHe8/z5GMP471jMBiwuTOmLmtOZlOayuBax6pagGhJVQ1JS1W33STaWlIV0VeKWV3glGAx75SOnOv6KJwN1GWL77RGUbpbYYsSxdbOFpcv30uxaoDfepVHySvLaz6RjnWPrcEEQZ/WBZSr2Lt1k35/wmNPPsmv/oePcGIr+kLynvFFzmmFutLnYFhzpEoClsGm5V5zlps3V8zrAqU8aRxQSnPtxhLjbvLAPSt2x2dw1lKbE+69Z5dPPOYpK8h1xjCOyAcJl++9yJW7LrO3PCaEAU1pWZoFgZbWBPYP5pStpziVgZHKIYxn5GN6/RFmFvHi7xyTJhmN6lagYiXxTQPWk6fQNI62zUjjmLZt2T03plocM9rMWSxaXKWoFoa68ighUcEw7kXIILCuUxtIk0A/F52rWzBMNhWLeUUIMdZJ6tLQlJYs0ZTTinynM1CJZIZ1YG3DxsYAMzcodaoQ5gPOW9I04vyFLa69uE/XnfWSOJWkaS3GBlQkO71IKU5n/xYCJLGgNYbjGUxMxuqoQSwdykpwnjSW7PQz0lbhCoMYxsgk4GT3udYFdKSJVIyQFusakjyCoHDWYWr56g3WNX8keA9FURJFMdtbW6RZxtHxMZPRiOmiZrEqWNSC0HjMoqa+s6IyDmsFBNc5cXV6Fnhfo0vd7Vb5QKw1aRyRRrJTqNGaOI7xIeCMwRlLcIJgPVFw2NbBacmRd+C94Nq128SZZGsyYZKnPHDf/Wxtn+PO3j5SwqCfs7O1zXg4pGlqqrbiZHYMwiEkXcOgCCSRIopT0nxAv9fHOc/JdE7TtvSyhGGeMR7k1GVJcA6c5d6772K1XHDt5h2sF2xtbnPfvQ+Q5znz6ZSjo2PKuu5W34yhqWqU0jgHbXC0bcXx7BhjWsajMaPxiDzvIRCUTafaoaXqFEG8x9uKYV8ySAOPPfw5bl+/Q97f5czZJbduPs/B4SGjwQhTrxj1erzlzffy8U8/xaOP7jEajtjZ3eTmrWfZ2RjQ6/VpcZxM5xxPV5S1JQjVTZpff7vBa75CFLWjtpKd7fOsiiNs3aIjjUKhJMRpzGAwwEtJnqYQAmkc4bVGELCRJk8zmqalqRqizJHGmrEaspnukPVHRP0xIsmxPlA1DfuHK5R2JJFgc3PA9Zu3ePa5pymrkjjNSRKFs5aLFy+wWBWUdYXUEaCIYkWc5gzHQ7h9gPMeYwLT6ZKd3ZwoilBKkyQZiIKmrinLgtoG6uKYPE/Yv3PMwd4xkdW0y5qqrQlSMBzvcPHKm5guBSZEXLjrQVzbcPvGi5TGsDnQbG6fQcU5+8e3acycuq5p7YoL51J0KpjNJHuHFdNpy0DFPHDxAYK7yZ35ftfE7F7SrgepA4ORRAlPFAuk7NSHIjTOVhzcus6gN3p1B8hXgNd8Ip0TkUQDTCkRiWcwjji56bj5xNM88YnP0Q81Zan4k++9zAf/zDvQ8QCjA1ZWvLDYYyo9Nw5u8ODkPPObL1LqlsqVZP0IZ6CqDQcHJzz73FV2375DMJZIxox7Y7bzCXqUkqiYjewsZ+/fxUeeg2nBoupqAutVy/HxCXfu7LG3dwQiY7lwpEkG2pCmGUkisSLm8aeO6M0GNPs121d2mIqS2jZ4oJfEqFggIscgTplODbWU9PKGsqw5vOPxGIqiZnbcYlqB9wEVdSvH1giKomawGVOVFmti2rZByoaiUMSxQmmJ94668TQmIJXsapu9Y5LFWOFoqhKBYHPc6xoJkpjVosFbj4oUBIExhkhLtrcnHB9NkapL2KX0hCCQWgOBVOmXG4bwAmc8znTnOBdY1A15LyKOJD2lYGE52+uTecHVZ6fMQ6AQK+JJyuRczuCswHioDJS2RSUglSKJNTJYiAWNM6/2kF3zFaauGiKlUDrCuc6RbDLZQCrF4bzi4HBF4xOKusYG8FLhgsYLjxDdDslLE0CkwgmJkOCDxXiL9pCplDyJOttbAq1pCd6gTut2w2lCXvsASpNqjZAwL0pu3z7EC0t8b8IoGyOk4syZ81y+/ABx1JktlKslTVOwLAqKdkVZFygJvV5OmiYIKdja2qE3nFAbz/7BMU1raVtH8IFYaYZZj1RqRJRiaCmqhiiOeefb38pkY4urz9+hl/SxrWVydpPJcIJAcnR8jDGOREX0sh7eC5K4a0I0SYP3lul8znS2oKxber2SzfEEJSPKqqSxXSPnIFf0c03bnjAzHpiQpZaFP2ExL7l48TI3rr+Ity15GnH27DYHx3PuHC2ZFjUXL11GRzWLYsHFS2fYHE945oXnGWQRvUhRNx6lNULBadf1mjV/KAe3X6D1nvNnz5GblCwboIPCmJcm0QFjDUEpsiynWCzRWuOMRUpFGkfEUYS1LUJKtIoR9QBKqJaOyMakcZ9l5VjUFa2rkUoxGiXs7uwQJ5rJZMJw0GO+OGYyStkY50Q6YWsyZtzvc/vAM1/OWVY1g+EGQsV4FME5RPDYNlC4lmbUabjn2RgpE7zvSrZkgOXimPnsgNYYilWFbaBcLHCVwRjL8f4Rt29eZTjZIMtilEqZFwXZxkV2ZIwrKm4eH5GpJTIIRARZomlthJ1CqBvOX0ro547WCpyxlJWlqhyTQY/WRqAMKoqoXbeL54JFqU6/XohOO9otJaKNqIoabRec39p5tYfIK85rP5F2KXHcZ3m0JCwtfbHJ9M6UrYHm/X/qfp59/CpPvSh44xveyMX3/A9M7nsXwhUUzzzFi//ml/n4b36cm/MZPltw5o0XMUpya1WjUkXWSyiWLXVTcuvgRcr6TWwOzpGYHq3QfO3Xfx1ZqhkPJkzGZ7l683miTLO3d4BSGYui4XOfe6rThQ0a0ybUTYltAvZ0y3XUn+CsZe/WlDTepJiV5L0UrzwO01n5ioDxjv44Y16tGI/HbI4jzpzvo+Ip3pYkPcliURO8pq5rCBqQRJHqdJe9J0kVUaRYeYc1njTpY61DoChWJUJIAp7GOKIkpi4aJBAhMDODiCHrw7g/pC4My1VNJDO8B2vAeUtraiaTPl5CHEu2d4c4Z3C+RSlBpJPObU0IhADnHUIpIiXxztPWBi00MhY4HLYxKC9RHkbbA3r00aVFzGLaaYMG7GHN0bLh4Lpg9+KEeAj50FF7T5Lk2LYmjSMEnqT3Kg/YNV9xjHVUVUXb1iitUJFCBEXZWI5mK2alw3iHR+CFIFK6G/uCzrAkdCYBIQSc97jgEQHyNCaKJHGk0Ep2usiNwbnQ7fQIgVKKtqlwzqFVRBpnJElKpBVaKUzTsCoL6rbliaeukuiMuy4OMK7B1QFPj7aqqIolxjSsioKyWaGk7CQls4zJeEKapSRpSmM9x6slZVnhEUgh2djY4sLuFspb6qLh6HjO4dEBZbnsJrhbm6c1oS0nJydkWcp4OObM2TPcf/8DyOeuUhQFdV0SCGidkCQ5o6xPniWMBylH/YzlqqJuDaYqWThHlvUZRJqgwJmSXhox3oh55uoR0kdcuniFXr/Po088y+HxCfOZ5U0PXOTgYJ/ZYsn08Wd49sU9FmVBlI75N//+N7lwdsJb3nwfn3r4MwwHCUoazm4NyeIRv/3Y8zjjwctTU5k1a/5wHnzwDHVdMV8tqasSHacEoZFSI1UErlPaGU026fcHzI5PQEiiOEaKQJ4kBO8Yj4YgJK1xuDYijzaw9Yzp3pzVyrJyFU5BY1sab8kiRa93F8uiQGjFufPnWC6POLM94fy5HZzV9JOcqK+RwYF3TGczxkrTNA3OW5JUQega8qTudrnqqma5WDEYbSMlJFFEqiUHxZSmKtlftfSzMXdfuZ+Dm7dY7B2RSIVrLYf7e2zsXIeoTxL3OJ6e0JiWyeQs6bbAFwX1yZSD27fIB4LhsI8zhtB4mmJOuXQYs+L8GUFRehLlqc0JSeK4/+4xOnbYAHeOV9Q24IJCyK5/yjlJWQoWx5562RKJFXorpTGvP03413wi3fM9nBHMVids6Ij/8PO/xNmNLf7S3/5/sZzv87//f/4Vt46epJ41NEXO4f6c4XDC4y8e8uu//QjXby6pTGDZLrh69XOcvX+TN7z5Qdp0wcH0mF4/IulB7U9YLPe5dOYN6EZAPObN98BG/yy9NOf60TNIPMOsxzERzz5+nSeeeJ6qLXBWUdctcayYbKYc7TeYtuHs2RF1oblzOGNTbKDaBDl2eNFApkj7KUldkwiPTiTZMEKngrp0CBuw7RLrmy5ZyBtcLej1xli7wDkDBNrG46xHRY4k04QgUSoQRYG920u8hfz0eBRphGgRQoD0eOEJPkAtmT9bsfumESf1CStR4FqBVhEiCLI0ZlYWOOuJU0EIgra11HXT6VgTiCKFEFA3DQKQUiKlJBCQUuAxXSe+1lgTiFwgyzRt8PggWTYeq1dUosHrgDsjSGOJXwE+4IPAFZK9J6aovuDs3RkbuzHeW2ovqCtHnMTY9Yr06562qQlOkGUJ0nmWqxXGaeZlw8nKYJzAB7qyIh+6yaQM3aQV2Y1PJZGAQqK0RGtBEml8cDTGYhpDpCOMsTjriLXGCahNiwgepTSIgA+eJInppTlVVdLWppOs8pbZfMFjTz7NcLzBcDwi0FI1gbapUJEkSXOk9vR8gvVt14Q3GhOpCGcdZVFTVg3FYkmiFWmSUlChCQwGfdpVwdWbL/Dcc1cZjAakcU6aJQzGW1xJBjx79UVm8zlVXbK/f8DO7i79wYDZbIr3np2tMVmi2D86pprNWBxDFsecv7jD5YtXcMERxRHLWUlVW/b3Z5xMT6jrFcZWxMmAaGnRccLuaJMzOxscnsx54dZt2rbhTfdcYDIcMhhm/ObHPselu+5mVRTsbIwYDHusyornX9zjzW9+I295w4OU9T53X94gtAl7h0ddiYsM+AB5kr66g27NVw3nzk3IsrM88+xtTLnEO4PQnYEYIdCaBqRma2sH07Z4Y8nimOAdWgkirfBeoJRmVZSsVivK1Yq812OQD+gNBjSmRZeGOElYIVi4QL+XkWc9jHWcTPcpyxVZljAa9hgNxwQf4zwMkpSL5y8wXcxYzOcslgUqSpjNT/B4hPLEESglMI2hWhluXnuBrc0tRPCYpmVWzXHtEo1ltWqpbUIvHfLgAxs8ufgUSgkaWuaLgsOjI0YboKXn4rltFpVFSk3bGqJexuVzFxhv9ZlN79DahtpY0jQjeEFVlKTDlPPnFM4YZnNHv687aUDp0DpGyAHGjjma1tR1TRKBC4LDacXxYcXsJGCaQBJb7hzPODj59Ks9RF5xXvOJdLOwTCYx49EAubzDfWcVkV3x6Ec+yqNXX+DpF/YJ2vHI5x7h2/Zu8+LvfIzrzx/zwnNPM5sX1Hgamm711wdevHrA0WrJN3zHG/iad9/F0y8+TdlK5kXN1TvXuHR2zu7kATAtk6RHlmxS2in9eEAiR3zus8/x/PMvcvPGlDu3ZmztjAjOgxCgDSKKyAeKC+fOc3K04MbNQ7TKaY48feacv9BjLixveOd5nj68hjUDVsslW7s9dKqRMmVRVkQqoERMpAXG1gzzPtO6IARLFAeaMiCFQkqBSrp6ZO8k4NE6wnkgKCI9wPsWJSNm05K2kUC3jaOkwNmANwGzMPhCg4xppCfRGdYYosiT9QSChKo+7SiuSpRUxDqlbSxRpqnLijzO0bLFWEOWdDcmT8C2gTjNsNIipSSOJatlhTOerJchFJjIYL2hiRIqb5BpoD/MKPZb2rmjKT3CO/pJwijrIWeOrbMDnn9+n6iXEWKojCONUmD+6g7aNV9Rojihn0X0ewnDQY/PPnWVo5nBiIjWCgICIbryIWTo9C18wHqPlKpb/RWyW92JI8DjvCV42RkMGIsxgdaClhItFVkUYWx7atrSlTJ571FKIMVLzqoe6ywhhNPzPCezGZ/+7MO8/V3vYmtrE5ynN0pJoohIK3IT89JWsw+Ok+MFxaqEUy3o1ljatu0sj7OMKHiquuZob4+TwyNOpkek/YzhxphT/0LmiwVZknHPvXfzuUc/B9JTNguee3FGFCcYY7HeczRNePc738r+9A5pHHHvxcuc7B+wWrXsnj3D3fecw5rAY589YjabcvP2Haq6QWuBVIrjacXxas7u7oTNzQFJCnuHeyzLks1RnzNnzvD01essqzlx2qkTKD1nd3uDi+d3uX1wxGcff4b/85f+M2+45wzv+4a7ueeeHa4+vcez1+aksaZxDu8czq+VeNZ8abz43C16vSFt4dFCY7whCiAIRFIT9QZ4qdBRRFuXZHFEnKeYpqW1LY5u8laVNU3T4rxHKUXwgdZaJnFC3suRolOS2hgOWPqaQdbHe0skWnoJyGEPZ0ZMRiOwnn4+II4zrAukWtLvZZ1dto6ZL1fMTmZURYNSdM23AkRjUK3j4MYNbm1u0UrZubVWJeVqhRIC4T2rkynPPfEU99x9N1Ec4b1DoimXFc8++iyTrSMGw5w3vOVtjIdj9g9PaE1D3htQesnO5SuIyPPC1acJvluM0kLTljEy6fSgt7clvR4Ya/HEGNsn0ucYDq4QfIFt9pnVx6jWkMcpd4qb1POK0CoUAS0lnkBZvv4kal/zifR8v6S6dUh50vA9f/E7SK3hf/tf/9/M5isu3H0/N28fc/DYnGv7M/6/P/8r/M/f822o6BrHx7cYLBLE/AAbCSZ3bfPm+89w/v4dzt+3w2AnI84ati7v8MTjzzNdNjx78wa7kycZ5efw9ZLp/BpJb5Pj1R6feORTfObxR7BUzOcL4rxHf5hgqoaiqhlMesSpJI5zonGf61cPWOxXPLhziWavZDmd8+AbL9Df0MR3X6DtBcwty2peoDNJkoOU3XZs1kvIkx77d2acvdCjLBqGwwitYoqVJdKaEAzee6TyKKEgSMrCM9gEEbomhqpeEfUTAh4hBFKCcwalIrzx5FlEK1p8AN+THC9WyKFEBKjrluA9WZ7jWofoFvMIISJJOjk601iU1qRphK091dxBDFJ1wyqcKh9UqwbTdm5Mg0FEmnmyvqJcOWTryHoxsfQY46hKTxAR6SBg65ZBElMvHHoVyERMP07QQtB6z6ysKVtHs1jgY084TYrWvL7xIWCMpZcNOHdmg48//FlmK0uUjwCJFAIfPJ6ujMO5gDhtHJRCQugejF0TraO1tmvw8RApiRAKHyxYT5ZGjLOMpq0wxuCtBSCJE5I4QUeauq2QVWfBHUcaLQTWB7wIhGA42N/j0Uc/x5ve/GbGwwE6z/BKdCvc1jKfLVgs56zKirLsXEWFVJ2piut2cRrraa3BW0PbNDx/dMhiMe8mB1FE3dRIKdFCEkpHXTYMhyPOntmlsRUbmyP2D/eo64IgFBbPSWn4z7/1W9jguXJpm7zvKE8s3/yNX8fFe7ZAOP7zr3+aZd1wvJhRuwYTDN4remlMWzcM85w0Vigd6A177B+fUDaG3Dg+9/SL9PME6wRndydcv3mT56/fYlUUXDi7y6A3wHrH4dEChOMb338vk3HOlXt2yNKGey7u8PjVm90igVnvNK350rj14gl5r0brhEjlyMQSJxlYT1Mb+oMMryTL5QxragKOgDztnwgY62hqQ1mWXR9U0zBfLomimuA89ahiko/Z2NikaWsGgx6Z7hplIynojYcoWXP91pJIKSIdk8Y5o8H4dCIfCN6ileTM7jaNk+ztH1KXDd5ZtBLgAsOeZpDGVLHBYFnMZqhej0gpFnVF0xhirVEEIiEwsxP2nrNoHyjKhsa0CBz1quRwtWQ1zvAI7n7gLfT7CauVI4kSgoxY1AW98QYXzp/hKBi0k2gfU5maW9cXlLXl/LmYfpoAfZzvIaIMpS6S9+5CRS1ptstqc45ZLUB6jo4qTo6aTiksdA6P+XCIF/WrPURecV7zibQp5jz9O5+m2Gt58r77ePHGLZ6/VZCcPeZrv+UhXPwpKuuojeSXfuWj3PeWB3jjm+5m655dTnpL3v72ERffdh+Ts2NkqlCpQEYx/WyXPBrQSyPedrnkIw//NlevPcOTLzzFg/e9hdnB8+zvP854c5c7s+skg5Kv/boHaEzB/sE+q4VHBEMwgbRK2d4ZMxj0WBYNzz53DV3F3D95kPbWMZeC5HAcc3txQC4lu1nN4Z7jzp2KprWMzmRYI2maku3tHeazEuMa4jQiCI2xCbduVpQLQdtWxHECoiVOIvJcYl3XJOGCwRqJc4I0VbQ2EGgIwRHHio3NHqOxp1h6mtp2W+PBozJFlQVa2TCIMwKWvJ9TlRXLVUkapUidIIDlcolSCu+7xqdYgDUKpWKKeokvBSiHN46ysURJtz2LCAyHKVmukKrBe99to9eStq1JUo+QEtsKpOwaGwaTIdPpEsae8W7GOE3wVcv8pGJRGPb25oAiiSQjpfA1lOvn7eue/cNb5HHKm990F2U1Y7Ix4tk7t9BJH4nA43AhIE+T5yBAao1WCu8sSiqkEhhnCa57cPogiFRA0rlqKhmQARKpqMqSRbmi9QYZIEtitFboSOH9qUWuaRn1+uRpQiQkTeh0nrUWnNkaItslj37qY/RHG1SNI8sy8jRDCIl3AWNbjHfYU+UPeequJqWgsQZtPKnregqKVUVRFFjbghDY2hJHEVGWIYTAhwChK9va3tpmPjtE4dgYJcxVizEeTKCxgdZ0JS8Hh0vuuQBf856HeOGFAxpvOH95m6N5zd50hYgzhkOBNS2RVvTyHNcY4kSwOdjEmYj/8huPcLC/RApFVXuOfMWyrBnmKQ4H0iKjiJsHJ3z8c08hhWAwGHK0WFI5y/buBsfTJddvHvH//AvfyH/6T5/lxs3b9KKMBx94gBdeuP5qD701XwWcnBR4KxkMI3SkiKOkM2BJFUKUWEqiWOJ1hFMSEwJCGJyzEBR1WYOQIAVV3VDUFU1bE8eK4WhAL087p1AtsK3nZDFD9ROGu9sEAmVjmc6XeN+QZylJ0mc83iGc9svGcYq1JcvlAmsML167zWq5gGCJNCjVKVid29zkDXdfwga4urdisLNNnGfMppabdd1NtL0jSyISnXBmY7NrHg5Q1w1NXZP1M7KkM1Cq5hXHt2/jrGW0tUVvtAnSgRI0TaCtWkbDTcyoopqWJHEPqTOSYou9vX2ms5JUdgomk60hF+46i9I50+khUmiyJEIOBizKinq1RDuBFgIJWEKnr5+kJHZdI/1HzigTvO3NZ/j00VP8zqc+CjolzVIe/ewjvOWdDzHZ2SUa9KiXS6pQ84u//Sucedt3cea9l9FsYPqSWDnyZEiabJKlW/SSAaN4QL30PP3oYzzx1Ce4M7tJutmjtYbHn/ksD17e4LOP3+LJ557hnvvOcP+5i9Rlxp3D29i8RbHkrV9zhTikOOO5cW2fpz77HG0b8+Y33MNWvs1Hfu4RtpHc9dBlotUJN2YznBQczPeZhoyiaknzTo9yOQuMJ9s0taepPdlYcfHymLKsmM0cy5kHE6E1RBFo3ZVxOBeQQtAYS2+gsTbgXOc61nXOKtJEU5YNZVW+XFpRVYam1qxWhiSFoENnsGI9Ds9ssehW9oTsFAqaAEGjVcJyUaAjxWDYoyhqlgvHeDBkyZLYdGYVOoVBrBCRxCtJHKV4bzk5qQnendqGClrXkCSSwSilaRyz45I0UzQGKAxKp7jgMAIKuaA3UaQRKNPDO0mz9Nhlg/KOcZRBYYB1Nv16Zmd3l71bd3jyqWd521vuxRpDUa2QMmY4GON8QEhBrBXOWGzwaO8IUqBVJ49onKOrFhBIofHe4azrmhFFt6qdKEnwnlVRUhuDF4Eo6poQX7K+RQRaY2iMwTmHkoJemlDWBUmsuXhul93tCRfO7uCc52Of/hz7J6uX5ayu3HUPaZTgagNSgBeIAFpI0iSml2f08pjdrQxrCh5/8llklGJ9t8oTqQhnDG1dEccKHSUopWmNRQhJPx+Aa+kNJdNFQRAROso4PFri64Cz4I2nWDV86pFnuX7jiHPbmyTjTfwNz3B4D8NhRLAS31pc09DUFc57fGMIwZAKjS09ke9z/8X7qE1LUTYUdYNpHDfmc6Qesb2zyacevUrZCuZPPMNd589yz5VLXL15Ey8c48mA55+5zi/8wiO89c0XefvXXOGRR59md/sSX/fed/Kvf/E/vIqjbs1XC8cnJ+RpDKGHCArXOppQEaUa1Td4WTA8t43u9amsZnq4ojYNjVuxWhasFiVZ1Ed6waJaMpsvgMBoNGI4GKCUpmpKWuVIhjnWtIhUk+Qpq6rkZDbj+GRKqgObk022N892SakIFMs5ie4Ut+q6wVlDUxUEZwBHCB5rAqmM8a2mXkmMFCT9DXbOXsD7lmef+h3KokAEQSQVd188jysDpqqojTx1PW1BGgJdE6X1lmAMsm2oTvZZzg/ob+5w/uI9hKaHq5YsD+7g6wXVfI4tLZORJspSBqMtVtMFzoPzMTLpsVpWtHVNnqQcn+whhSTPMlQQjPMIEY0x7QUOjxc0jSfYrua7rirg9SdR+5pPpN9830Pk+i4e/q0XKLzl0l3nuHaw4Phozv6dKWfP3UU+GSKbgnd//Tt4x3//Bp4dHBHFEVr3GSQZ43yDYT4hT4Y0peOpJ57hU5/+FI8+9ijH8yOsqwi1ReSCt7zrjbzxyr2U9YLaFVTLwEd+6UVuPfMEbZlw131n2Lwnp4haVmZJppdIFNIr3njPW1guLPt719h5MMG7kofe+rUIUfOWu64wu/0IZ+86gxsW3Lo9w2O5eHmXxaqmKCxpDue2NogiwWpVU5VDirLkwqUxd9ScxVGnnCFkQGmBM2CMRwqJNYFiZemN8k7PMolomoBpPS3gnaatJHGsyMcJxbLBh0CWZXjviURg0EuIpKSmq/dM05jgPKZ1lEWLRhPHCcZ2AT89WZBkKdZ3yXu/n7E8LEh6gbOTPofTbvtJ91PqqiXgUbqzFUdp8lxirGGymSBUC8KhE89oI8IFS9sswUl8A9ZFVCJFevBBsygsYIjyiOFmj57wqEqTRB5efJUH7ZqvKFW5xHnHybTghWsHjMZbaPk8WjoGuaKoTWfpLSBoQd4bICWdNnOWMF91joHBd1rR0N3apZQ465F0tdESQdXUWCHwUiGlRyqFVF0cRZFC0tVLN8ZQNw2DKGZ7a0yWC4aDHqauqZdLHt3f464rd7NYdK6DhEBV16yWS7KRhLZCRzFaJQjRraQP+33iJCJSkkHW5/rhbdSprFQnOanw3gOdJOVquaTXD/TyPkmaYhqLd44sH2FNAT5CiwSFYnNjQnM469R1giKOI5SOWVYVz9++Tb6xxWjnCju7MSrEmMbTljWublmEOWkS0xQFPjjSNKIqV0SpJ1MG6x1hIJA6xgXJqlph7YpYD9na3OFkWYPwHB6fYJzFesHOzibj8YhI9RgON3jyydsM+yn/j299D/Uqppcnr9ZwW/NVxrndXYbDAVmanDa8d/rGce7xmcDqES7bJqhtkIqkbzD1lH6uOChuUOiS2s/pxRGtXuF0S7AalSqiNMZ6x6JYIAaKrN9HWknWT7DeUBc1i0VXfzxIcq7c9QYG4x2C8VTLY1bH+whXIdOM4WiMu3m9c+2VsnPuJaCFYhjlDPIJweWgYvqTMa3XNOWCk9kUZy3BA07Slg5hFd46ZOxRSpJlCY6cOFVMNocURUNZN0SRRPiA9y0nezc43r/Dme1Nzm2O8WZB8C2jSY9ooinLmtWqoPGGROd4rxjkA86eO894PObM7g6DwZidjXPgPaat8KYlT/tkSUotPfdW58n3Uw6mM9DQmhW9rP/qDpCvAK/5RPoj//G/cLR3i0Xh2dtfsn0hUBpL3dR89hMfJ54MURPFB/7n/5FLb7xM3s/JkpRe0ieSCb10gNaKolzx25/4CL/5G5/g0ceepKWkqKtuG8W67uEk4ImnHsOWKz7w7X+G8eYOv/FvH+bFT9dQVEiRcOu5PWzUkpxVbN2dct+bJxTW8/xTBYvZLRwl8XZMNs5439fucPDUMyAF125nzEu49pHnufutZ2lrS3+g6Q8ibt+a44WgqTzLmaFtKnABJSOcsbS1YzVv8UbivSLLNSquqSpLrhJ88KfbRl0JRdu0JGlEr68oV4am9cRxj/EkwtQGbwU6VgTvUGmE6HyWqY1hVVUMJgkOiY4gSE+qh7TFkoBGxZI072NtRRM62bugJdY3JFIyc5DuCIIUlIeOaDOmqbvtah0JoqhzQcyzDIIkzhPKpkbUAS0Ten1Dr6e6BrFM0BSeZdOCdSjhKGtBuXLEUQ7ExCmoJNCKQFAWHcfA66+ZYc3/xd2XL5DFMZPRBs5rbt6+wTBPedubH0BLycmsoG4tWqcgFUoKfDCkWUyaZixWBYSAEAAeKRSn34CU6CDoaU1VVyyqEk7LQ7TWRLEmiTS9Xk6kFXXZdCvZQtBax9I3ZP0+586MmQwzptMpcZRyMo+5tX9I2RiMUOBbpIoIWhJkQEpHP4+pW0GWpkRKkmpJ09YQYm7cOOD6jT2myxlSadLeAOc6xR5EZ3Lk8Ki6Jo2TU0fRAFLhZYR3PUbjSwgsN2/f7Mwosj6msbR0td2R7LZh8XB0dNKtjOU9bNutfMsoImSeNO91PRPjze7v6AMbE4d1Lc7U1OWK1WqJdRYVJBtJjur18C28503v5mA6587hPsfzY04WJQLFlYs7RFpTLBx/5lu+ib3b++wd3KDXl1T1Mf/5o7detfG25quLM7ubZFlKHCeEEBASkB4VSbzKiPNN0v5ljI/AeiYbCctFQhq33HO/Zz6fcXRyiPUnaN0w3oiol465PyIYD1YQIs94Y0DUU3jjUZmntRXz+RzbLLl8/iJXLt3LsL+FD1AUJ0wPryN9S1UFBCPyXo/NjRGTQYw1FYjAaJihZUbuB2wMJ/T6Y2yvh9Upd46OmR3dxHlQGrQUxFJSF5YoKPrJkGHWrZjXZcuyXSEjhfASrRWjUQ8VKVaVxVuBwGPbFcUc8os7bG9eIktS5tMTIqXZ2z/iZO8QFcXcdeE+pPeYtqE/2GJn5yJbox2SJMW2lqpccHh8gHUlYSOhPzlDUDHD3gB2NZfuucCsmHPj5jWSxL7aQ+QV5zWfSFdtgdSaWAtM1XLPlQeojeD2wW2Omhnveueb+JPv/kbEUNMfjBkNtvC+c9Nbrgqefv4GL77wNDdvvMgnP/kZZtNuFSXKPTLxeNEFWjISSC2IQsRqz/HzP/Nfed83vJWx3qBeXUU5Tp1xDSL2eBxl2VA1iqpOuH3zBLDoPCBaT2MVs8YTZTGxsDxxc59Z1XJ+c8hAdcLrvWFKVTVIJUizHt57qqpiPExJ0ojlco63fU4O50ihUZHEVoG2duRxQhkqmqZFKSB09ZQCTfBdw1TTliilyXKNMw39fsTSGY4O5/gQUBqiyIMA1wScA+sEq7mjt5mxmC+JtaRqa6RO8F5irCWOBVGsiJTiZF6S9zKU1qhUEA0Cw42Uw4OKtJdQ2ZbWOWRQRE7TlDU6kSzKFTYEVCyJNAgbXj5vWjqEtGT9GBVpts7HBAltZbGAjgRSe6Ko07KOIsViUREC5Fn8qo7XNV95tBTEkUZKycbmBg9EijTrIZ1FigjftkxPpogo4czZ80S6U/AQCIyxCE4bDUPXjBjoJqKnpcVopRDeUhYrrHfdpHTQx7RN1wwcaZBgvKFu6645qbUY7/G+G8fCGyIJ58+dp6gqHn3uBY5nq+4cOlMYoQQq0tgAxjtu3rpBf7DD9uY2kQg4Z6irEiElpjaczJas6jkByK2l39tARRHeWUIwmNZQixKbp8RJp70sZSBIsF5hbSddmedbICDLPE1VMl/NkLo7V6nOSfD27dv8uw//ewKCsqrpDQdsbo452tsjFBbfBnIdsbm5wWK5QmvJ5uYEpTVxFBMPJwyVwpTl6dY12AZSFXF5a5fzm2eZlQtuHR2wf3zAhTM7GON4+unr7G4GyrICYnCKfk9RtU+/yqNuzVcLSsdEUYy1FqUUadIpQ4kgEE6Tyg0yNaQqFxzPpxTVkvniENsuwdcYI6mbjLIB6wxSNMhUMQvHFNWKSAkG/Q1MPESJijrMMNWculJEus87Hno3Gxtn0DrDO4emZtSL8aMRq2KGVHB4tI/OMi5fvotYWZ557mmq0pOkgqa25ElKlmWoPKPNMhbLiqPDfYJpuHjxIge3FgxzhTIp42hMaCRZnCGDIBiLbQymNsSRJrjuOetlixWWxjYUq7oztVKSpmooypqt7TOMhiMOj6Y8/eyzTKcL2towHk6Ifcogy1mYKddfuMn+zSMevPwgg94YawymLanrTighTXs4r6mWIEKPyeYGm+fHHBy+SN3MiOPo1R4irziv+URaKcW5u69wMp8yPZ7yzLNXKc0SBoEr77mf9/yZryUaxAQhkSHm5PCIa3vXuXnnFjdu36SoSqb7Jzz37FVMa4iTCBECdQMiCyQpCA9aKwbRGGY5n3t0j9XB83zyPz7N7u6QqrSdE5po8YllYxSTjQW75zJUJLCLQLMyiCQQgkC3gpN5xSxOWB2dsJsKhJIksWJzoNka9tBLSdTvsVi2ZIOULE0xbY2SsCpW9Ieb2NpQl4KyCN3qsOhcmYRXxEKhvMQJjyN0s1QlMKZBSo2zAhXFDIYDpDe0InB8MmPYz6hriXEB0xqSGJbLhmDBW0GWpbSNIa6gP8hp2gapBR5PsAHwWN/p886nJVmWYmqDTAQewfh8jIgyqnZOkig8gtB2DpBKK2IkItcE5fHK4spO0F16aEuHLUB60W2Z6wrRg2QCIu4Gq7Oda1KWZaSppKwqylISQkQIgaJ8/dVfrfl8nIGzu2dxziNE6AxHBn1OpnOUSrBBcHgyZfPMNko5lJREKqIsa8SpHN5pp86pYZ5ACAl0u1KKQFNVpHFEnuToPMELQVEUKCCKok6WzVtMaHC+QaAQQtE6j/KOqvWsli23bzzBSbnizvEMYwPBg5TggwfnUEIipUagqMqK4RAipfCmoShX1G2DUJJ+nnPlyhUOjhVlvSAEh5YBUNTWnqqTeJxytG2LOjWh0VG30h6dNvdaazpnNKkJIZANOnfIoi1og0JIwWg4JssHIBJaY4iEgDiQbWnyVvLCndtoK+lvjJgfzThaLGmMZf9kAJHk1t4RSZQz7I8Z93rsbow5s71NT2SYtjhNTiLOjDbZnpyhuGLQMuOpp2a8cOOErc17eOANlxn0B9y5dY0nn3oC27xao23NVxtlUeOsIYo0g8GAJEmRqmsejKXCrQqm1fOs6pKD/VvcOtyjqEucswQB3nfPW51MEDJDCIeOFTqWSGkoq2NsO0XWS6zs0bYV/cEmZ8/czcVzb6CXT0BqQvCnUnKevDcieMdyueLkeMaLN28h04Td3V0u33U/2zs7HBw8z9HRHjdvzunnPZTWJMMRM+soqgprajbHY85sD/DlDfppjWr6nBns4mqBDN0CA8FzNNVE2iNUg1c1+TDpDKq8xxkJTUSqMuI0IcSB6WJOtL9HEBEizlhWNcWqIPaKntBoExAqEOmY1eFtjK5wTYNMA9KBaxyJ6J86Q6fURUNbB1Q0pDSOz372OermBBENmc2qV3uIvOK85hPp3c1z3P3QW7n6wgscH865cesab/3aB7j07v+Je97xJgiwOFxwsjxhWS65vn+L/fkxi/mSg/1DZrMld24dYVpPHCtk2j3E0kgipGCQxoziMWE54PpjU/ZevIm1geAkhwclR0cl+Bhkg4gs6ViRbmrSEfQHPYIQFEuLFhBUwImACoJFUZBfnPD0f7lOrDa4765tltNDzm5tE8cDhv2MFQ4pMnbO5hwfHZLnKUor8GDawGK5IBDjfI2rJTryZL2EWASaxhEriVFgjOtW1wQgDXGS0dSOUBu0cNimRSvNcBgxHKQsl0s8AtAYA8EJCCClZjarIQTKesGFrE+WK6qqYrCRs5w3DPsj6rLGtIqAxJy6JBZljY4k584optMKYz0u1LTaIwPkWqHrQKYipvs1fihhCM4GTNMlF1oLggr4NuBaQQB0ELTWIzNBoyDNIpTW1JWhaTx1ZXG2S4Kcd+Befx3Baz6fEDRaaorVojNdkZIoisjyHgfHc6rGgghcvnSePE9pypaqqDqzgAQGadStLp/qSiMAArhAJCT9JCZKM0xwzOuCqqypjaEuK85sbxIEFLUFWrxv8K5Ao1E6p/IQvO92TQhMRiOOF8uuOS+AEt3OESpCSHU6GVAkcc5oOGJnewMlBY1pMW0LeLyzxFoSogjhDJE03cp2aAhe0DQGHwTWetKkq9k21iBOV5cDHqlOW3yEREcJtnXoKCKJM7wr6aNppWH3zDls5cjTlK3du5BxhJeAqolTw2b/Ctefer6TCxSe++89R3Kwz63bJ9TFitHuiN0zQ6y1HM0Pef7WdTZ6KfffezfewNntTe6/+yKrVU3bdE1XUZwx24OPHB3Tui0ef26fK/e9kcOTGdfvHHGybLm1d/Qqjrg1X01UdQUhJpzKuEZxS5ZlSHHqcOos3jREbcVYelY4vG1ZVSXT1ZLGGoQU3W5pBv1eRL+vcKpFhpo4qRn1JZujkizLiOK72Nl+gOHwEkr2cCi88wTbEJxBKMmqbilrg1SC1WLO4cEetQ80TUW4cLHbmY42GYwVW03OKJ8AkqppKa3He08cxwz6OQQIDpTXbA23uHT2Er4V4B3eGKy3bBcTKndEOnJko5qsL4l1TCxyCg0rHGkywCnBrJmyWq5Ik4g8G6KjlLQ/oFxVbMRDdjd2GOUjUJJyNaUsKvqTDN866qIkjiNiHSNUDJFFa82d2wcsFgtsFHHj8Ii9/dtI7Uj6CVUZXu0h8orzmk+k967f5P63v52L997P/s0j2rrizO4Oddpy+PxtUhnR2ILD9pjn5rc4qlYcHSxxRnCwN2U2m4MI9EYRQgV07tA6oKUn9T2iasT1Rxv2r76IqzzQGTUYPFIF8ArhBUJDPILetsSKFmPBOM9qblkdOLwHZCCKA4LAqigYXxpSSbh+sGTUy4iD5caN29R39hjcFzMLDYtlS+trsixie2eDk+NDTG2BEUJ0TU29XoIxIKRHB2iKqltJkwF36teGABcCcRSxrFukVGgVURUObwQyU0QyZjZd0ba2k8gSgrYRaJVgbYuznV50kkY475gfV9x17wSlaiw1SguquqBpTacGksc0VUMiE5TXaBXRmIaiMEitscEhtYTWkyFxraU1DTqSNI5OoQCQCqwDEQJpLrCELlFw4JtA5EAZCYnC2sDSlnC6XZ/nUafvGzoVBS1ef0G65vNpTMuwl7M5mbAsC1Z1yWpVczSdU7eOoizY3d4C53js0acY9gdsjMacHB8zHA0Z9vtc3Bxz++iY2tSkSYK3AS00o8GQ8XAISvPCrRtMixLjPc5ZsjRhPB5hncU4A8GikOA9WeQQ2mMNWOHp5Tk7m2OyOKI/GXD40d/Ghy6Z1bor57DOUxUl42yIdY5er8doOKQuqs5R0XtC8ORZimkbCBAJhSWglKMxBYlOTi3MXTc11hLnOuvwJMnI0ow00acJu6YfR5RFhTMOvCeNE0b9IXEaU5gpoZiR+IjzowGpgqKtaJyjv9EnjxOWyxMuXrzCrVt3uD2bs3q+5v577iKZLvGuZXpwxGR7wDv/uzfzkY89xuYo44F7LjGfVTx74xo39q4z3JD08x6rpWPU30baQFt7rJSc373CvFjyv/+fv85qdYip5xTVgu3NXeDqqzzy1nw1MFssWJ2aleV5yqgsGQ6HnamKELSuMwYTUrDZGxLtBM6Oxyyrkmt7NynMiqVdUrkCJQVJkrAxiRkOYqTIiMSYKIpJoxFZchbjxty83aD3b2BtoDcYoJUm013vQxpFVFXF7HiPJGqIsu5nr+ZL7vgG5wqOT+aUlSGEQBInjGKHGMS0xlC3jtl8wWp2Qi8JHNw6YrUq6YmcfDQh+M5BWGkNIaBCYGtnjB6eIeovifLOUM3VCa6JiYJi2I8IQrJYzTianRCkIzhPGg8ZjTaYTCZUyyXeQWscrXFU5YrpfIrzhl6WkyRd3iAApTRB+K4mG8f+7VsoJMELisUC51wnF2g8dfX62156zSfSx3duMtu/RTboMd7ZQccJ81lFkIHldEE9O0TnjiKraFhweDxl79qcsrIYV5H1JC0eqRx5HMiiiEjk9OWYoxcNTz12SLFyCO9REpyzaCGJCIQQkMEjVEtQ0NvSJEPBxlZOnFr6o5xiVnNyfUoQgWQg2NyOmB96lrMCebElGUcsb7VcOzzh3CRnMMiIYk+duG411llSF9M2MD2u6eVjWjUHWlbLivl0TnbqmNSWBiUCSkhM8MhEYJuACyBPbTnryuFtIEoFcSwxTcB7QdO0BBeQQpNmnsZYnOm6/dM4xXjQUuGlRSuwFoqp4+ROTTqCOEmpfI1QkKSaLMvBpVSrFd57RPAIF6gr3cn8mJZICYQTREKSOs28bhFBEmWKlm7L3XiHUp2LW2gCXgZ01smPOecxJuBbCIUn6IAadvJ/XkpC8DhrkSqQxZrlwoJaJ9Kvd9rWUDYtq9WSqmlxAabzFXcOj1nWBiU6s5Mnn7nK4dGMS+c0G6MxcRIzm80YZBnboz6Jkrx47To7/Q0WyxKhY3SSMqtrDmZTTmZzrLUIIToVjWEfRFcG0knUCZRUlCawWCyRusV6SSQlSdwDHF5orly+wJVru1y7uY914lRDHZRUDPKMYCuOD+9w5e5LRFozb+YYZ2hti1CCui4xBJSASCcY12nGe2FBdsXdxjqiKJBmKUIK6rqmcaFrnsxzEF0DL0jiOKHRLcH5bqdqMGLQT7h/e5vnnr3Jhd0rbG3uUNWGtq556ulnKeqa977nISKVcOW+N9AfbfH8C88xrZZ8+vFn6UtBkiU0ixYZJBfPn+FPfh2cHK+IZMKNF/c6J0gtOTyZcjw/Zv9gTjAZb7jvXs6fOc/RcUNrYSPfYDzc5iDOuXPzKtauuHzhzKs76NZ81eCMI066pLJtWlbLgrKsiKIIHzzz5YrBcMDG5gbeefACnCDWmu3tET0Cma1BJuxuDunnOf0kIo96FCvBwf4cHcdMtUXKY6xdIKRi9/xdjLfO4L2idRXCmK6nKsuolwWr4wW2J16WjpPB4EzL4X6BirodWes0ZWF5obrKomzxqk+pUubTI+rVguPIEdoFzgaET8HrzmlYK4xzBAxBCJJezPZgAyMdUis0E1YF1JXDGI9KNGjB7GBOuerMpkzhUD5B3510k4edTarjgtq0qLKgcTW1KdFSksQp1ji0khhjSVRnYqW1oK5qvPFsjTYoW8NG3kfFEiMcZVVQF+WrPURecV7zibQIlv1b13nwPW+nn+cE7wk6JlKS2cl19p55EeMK5Fjix5IegeVyyaqyRJkg1ZJIBuKg2JQjNuQGh9cXPPP8Pkf7LW0jsUGgJfjT1UznOnc8KQQhSJxypCNFlGuSVII0XL5ylqIuoZZU84Zs4hhsd6UJUgaqZc30uCKKFVXwlKWjTgFXMbyYY2PBpD8imCVFVSBsxOzIsL01Znunh7HNaVOUoli2GOMYZj3QjsbUtISuYdCBUAoVhU4kXkCSxGgN1rZ4LwCBaU0n6aU8mzsxx0ee2iaEUBKlnqoIXSB6aGuL9xBpST2zpHnKrF6iTl3f2sYhQmdmUZWONI2JotCVoFiFUp1CBwF8G4idoFl112J9wBcGlQi06pqunOnKVTtpu9Na1Sggo04X31s6QRLjCSXIuLNPfUm4XgK+dqS/S3xhzeuXKM7p9cfMFiWLVQVKUbaW+apiVtZIAmXTEoLAmM6mezIaYI1F2ICynpM7B7RVzQDF6nCK1wleSfaOp6zqiqqtcdahpEJpSZpExGna7f8IgZKCLElxlcUFzbIWBGFJtCTPYwa9jOVyzp29gnNnt3nfe9/Bjeev0dSO33riefCS0WjMIE85OdijWM0gXKRuahyeuq1pTEuiY5q2RODJ4gTTtKRxSl0bqqYmjgAhEQTSvHMuM62hNZ7gLIlxJK0FobDWYaxHCk63ujuN2SROyLOEO7evg4gQKmG6WHW26sYQhYColvSkhywhJIJz2TnSYcp0eodECK4/+yLIQJIkVKXlF37xv0IUuP/KNkdHB9S2RGvY2dnm6gt72FDyJ/67N/D4557H+13e/o4zfO6JOxzcaXFeIXTKvWfv4ex4k7K9zd0X0ld51K35akEpTZ4l5FlKmveYzmeYxmCdw1nbLb5oifEeqRU+kSzKBXuL2xTuhCgL7G4O2R7ejXSaauk53jP4wQa4wCBIpBMYL+gNR6RbmyT9Ef3JNo0XzFbHCDujp2A0GhCcIwqKUbpJGwwqcsTZPrFtiCJP265IEkk+SonjDYTvMZsVHC72qd0xTvUQDhItsMZyducs++WCNOoRy4RYJ+gswYsWY7sHqfAKH1KUGKNFj2Bz+qkEV5ENIR7kFKbFXfMEF3Clp6pabtsD4iRl89wmu+fOMRUH6La7B1bzCussw+GIQW9EXRu0DsRxTGManKjoxwOWswWRjMELpAvsbmwyjDZZesPB/h2qdJ1I/5ETooTFcsmg3+OeB+7Gum4L/9pzT3JycA0fKoxpGYYJ9f6CwVDyhovbHJyUhEgiNIyynNgmFHdqnnzhBvWswTkQ9tTGWpz2HoXflYh1fXUE5RBZYHg+xqkGqTRxKrrmv9LhViAMXLo0pujPKEpPVVvwnheevY2MHJkGWzcE0aO/rTnxU27sSchisC1SRzRFoKlbVssVWd65HLZNTBxpmqrGO8lyUUHkUZFnEMfUZYuQilUICCnxzuGc6badsoi2NTgTcM6jtcRaR11VtE4iZYIxhihWNG2DiATOeJQUBBOIlaQvMsTC4/KAyiGOY5zrGkDLqujkBfM+q2JBFAnA0zaBLM9OGyU9wgZ2x9vYylAWcwICFbrV5CRSBBnwrqvYDl7iTktWuswZolRAUDStRQrAC5QX0HqiRBBEQEnBaNTvBO5F+yqN1DV/VAwGPYqyoG4MR9MFy7JiWVdUxnYykFJhrEfQlRAIH7BVw0BGpP0eYVVTONOVWkiFk4o6SIx1na6xbcE7hOjsyCMJk9GA0cYEqRTOGIqlpaxKTLHCeY9UMf7UZlgLSV0WaAQbkwlVbWlXJd/2De9mdTLj2dv7WNlje/cMQgTKckUIoBCslgsCgaKuqE2LzjRtVXcNgkJS1S27wzGLusZai7MBgiDPcwa9DO883nW1x1JIhJAUVUOe550jqet0pyMd0ct7bG5u4qwhUFCWXTPzcrmkLqeUjSEogfct73rbG1lNjzi7dQW8pi5LJpOcSxfeyJ3rt0n6A2hqdnoZx8cz9uYNaT9j4527fOf/9I38Hz/3X/n4J59FiEAvS6gbh6lLPvCdX8cv/B8f46O/GVH5mPlKEUV9xmlCnkTsbJ0jjvtsTtY7TWu+NOIoQkdd87lzln6/x3K5omoanIB43EOMevjhgKTfY3r8AneamxRM2T4zYGM8RrQSW6VUS8v0pMY7SJUglgEpInSk0UnEcHMM6ZDSBlYnRxweH7NaTdkaRGxdOAMEirIgCz3yNMGZkjyPSbLb7O3vY5clSebJQkCEQFVYsNBLd6jtAoXB+5pYSkKiSLKULMtJdEaiB51hmQv4sj1thoy7psA4Bg9a9vBtjJcRUU+SDIcQC9pguHPjmCROGaQDMm8QPuBsYHE8Z7jZJx9k5IOM+mRFEyRlWxInEVtbOyAiVqsCZwxJEqNiRW8sQPQ4PjjBtY62bXA+4K1huphxZz5lMZ9j6nUi/UdOur1N6wWz6YI4TanrmuOjO9x+8SmiMKPNW6IkompbtIsY+4xesWJbRVRGcnLccHiw4OigAKc7CZwQdSvbwne1tS9pTcLLMlhSgJQBp2Gym5BvglAwGEqyrOvgj3TO8e1DXA1RrAgIfNBIZYmUplgatLT4nmBVOQ7iJYMLOY2HoxcFaSPo55qycmg0401FElsgZ3bsKauGJBU4Z1AqxpmAUoJYaPpEnN8Y8+z+IYumgUwTnEMicM7inUQqRZJEtFVFpBOCc+R5Rll5rPMo7UmSmKpuSHuaumgQTpDriDSO0LVCNgo/s2S5ZrFqkapzgct7CVnUKXYo1SXpga5G+6UExLlAX8csj5aEuUcGSZTE2NYgodOxtBbrxOlNT9LUnp4C2e3MIbRAJYHQE7R1J9GnvADnSRCd8IIJlPMCHyCIzvFxzeuXqmk4ODzkhet3mBUlRVnTeEtVd/bX/TxHGE+uNRtZzvZoSE/FhOCALrbzQY8gBTLtsb+ocF7iESilSJIY4yxt2xKnMeNRnzNntsn6AypjKBeWQGBVlpSLJT5IpIpQQhKJ0JV8CMlo0CfKYj758Kd50+WLKN9NZJu6Yry7Q6w1wXmiKIEQsMZiQ01tPVXbEAi01tE4R9xpVDJfltRNRW8ScfnyLvMppKki73V68sZ4PKHbfdKSqqy65kZxKusnJD5IvAmEskIwY3trkzxP2bCbBFnRixLOn73Acy/c5LkXX+TKpXMcHp3gbIPB0ZJz8eIO0XDMfLGgPxhz130PUK/m3DXQ3HjWYvYMURLzG7/5GIeHJ/z33/R2pIcbN1fs7OwyGvW5/uIzfMf/eI5JmvHr/+m3kMMBVdBEOuet97+NK4MLjIYReZoT8/rTnl3zlSFJIpIkJU1ThADjLHGWMzy/RTYZsrJL6lBS2hkspty48zRZD65cvkJdG0RIsMHT+BKnLT5uEMSsXEEsY6I8R/VTVCKYNSsO92csa4v3lqPDQ4Jp2H7zA6RpwmI1x5SOKM6QXqG9ppyfsDhZYGzAetBeUixbgvUcnZwwP1kQJzlOQt02aC0ZDoek2YAkTijLiuA1zkiOjxeIsKCX5/QHfYxraX1FnidEOkIohbcKlCDOE1Q/70o0Vi1JknL54mWKdEWzLHDGYqzB1A3LwwVJGhOnESvVMqvmGFkxGe8wGm1ytHeCKVoiJWltg7KeybltlvOC5azGNZ7GOGrTMKuOOTjeZ1GU1E0nIfp64zWfSN/9tgdoSsNqUZE7w3J6xOELT0K9giCI4xjfWKypsa2jWSokMdoa9l6YcniyoHYBbzzOObwQKNE5kgm6BjcvRJdMi05aDbqmICcC8ZYm2xVEiWVjkjLMM/r9hKAjTuaBqvHY5NQNzSuU65JE4xzeG1oUelPjW0fVt9iJxlUWJRXWBBorUcGTZ5JBP6EsC2azstN8dR4RNJuTMYvFAi+7B3RrLUmc0TewnSbMmxZTWyLZPSzzXsqqtLQm0DZLeknaNQK6FhmDshBkQEe6M0FoGqSAiVSoEtqFI8QaHWuCFLgS0kVGSJdUtiLL0q6swxlC8MRZjq09PhQoHUjTiDLSlL4lIJgvDdpLnPPYumsUlFFENe8ejlGkMNbhErAt1IWgn3e7A14EvPSIQfe9c6FragjgCdjT56sUHqHB+nVtx+ud565dpagbptWK4/kSIboJsm8ciVSc6Q/ZzHv046TbYfGeqm6ompr+sE82yBhOBhRNw3RVUxiDISIEhw8OYx3eOQZ5zF2XL7K9OUbpCC8EWit86CaAxgaM77azulzVk8WKPItp2obZKtBOG4b9mO3tCeWqwnkY9TIEjjyJKIqG4XhCsZgxm89J+0NWraVuGtIk6WLGdp9fNDVlY0l7g84gJlIsVof00g2iSNMagzjVk0/jCEegNjVKabRVJLEieI8LARcEwbT45ZKiLIhjz3gzJuvDk48/wRvvfhvjYU5TFjzx2FNsbY44szEiDpqDO/t8/du/huu3btLMlyyWJY0LjDc3kdrwnne9lfDbv8O14xW10jz8xHVmq5r/4X0PcenFPR5/+pDVSnIyc3zyo9e4NDxL0zPcahpCEpivDrl18Ax33z1gNBnRSzKq+etvFWvNVwYfunj3qK6PJniiwYArb3k7MkuYzW4wL26xKI+4c3CbzUmPN933NvJYcfWF6wSZ4FRDsTrBu5ZWOsqiYX82xxoQOibJNHlPIYRgsXS0Bpq2pq0KtjdGDAcpVbukbSu0T2kqg/Khk8SrG+rlEpzHe2jrQCwz5nPB4WFJ00bIxhDlGU3ddvdLt64fAAARP0lEQVQlLxgQMxpvYJsKGSR12RBqQaQUWmmUrrvrtd19wGiNFgEfDCL3nBmO0L2M1eESKRTD3oiyrrAywquILM7Ik4TWtZ0qz6zB9QIykmAcaIfWkqZpKIqi29EPEqE9g0FCmma8ePWAtukUkDqpTwEEvLUI37kwC/maTzv/b/Oa/40eeMP9uBZOTqYsF3Nmx7dp6zmxDsTZEBM8zi2xbUscR5RFg7EtxIqzZ8+g05z9kzntouisrP1pbTEQfPeAcl1Z7ufhAZUo8rHGiAatE6rSkOiIjARrHKbpHr5nL/XpDXocl1Pa2lGtoJaWNJOEIIi1YCBizgw32E02KOZHxJEDaRGiIU9itIhYLQ1K5ThnSHNNHAXatmE+K2haC0HjnUNqsNawM9rCY9lfFpx4j/GhM3WpK+rKI3WClJ4s6wJS6whrulU7IRVta6jKCm8FzjhGSjNIElbGsChaIhGj4xglY6pZzeb5HgUVq6qm9hJ8gtaKWHf2vUqZbvLQmm6rWgsGvQE6wPTWjDSJCNJT2E4SyPmuLKNtHd53+r46FjTLgArQGyiECNgQ0AqSvoA6YE33z7ImEESnn62UwnlHXa23gF/v7B3dIOiEabGgdYYI6EUJG1s7XNjaYhAnBGNoneWkKChti4g0q7LkwiDh4vYZFssFVes4nM4JUY5zLSKoTi4+ODaHOffdc5HJ5piyMcyLgkVxhG0bbGtwrYUgkSpFidMafxw72xMund0Bb7n67HPEScTbHniAT3/6Mc7/yXei45h3PPRGPvbIE+SXLiBVgtCCrZ2ztG0NTdOVpQRQUtK2Bus9KjhMWeGDwKG5cfuEZRsoqpLjw4ILFy4ghe52cYJHxwLnHNa2hADOdittQgmkli/fBxvb4oOiqmpscFwYDlg2Ddfv3OEt976Bb37f13Hzzh7eWYaDlGGvx7ltwfXnX+CFGzc4d2aLbDzgtz77GNOTHHd2k8tXdvmz3/gu/n8f/gS3qhonYb9qOFwYvvFPvYtx7yn+yyevMl0u+djHnuCb738QdVGyvHWVS298gLIp2ZzkXLiUc/bsgFhkHDTruF7zpZEkKc46bt++1YkH9HIuXbyE0xFt25DlOTqeMF3cYJDnbIy3mS08pZb40GO1KLl9Z4/Dg0PquqFqLK1xONv1T0mliZNuFyhJU/AK03ps27C5MeKBB+5hOOlRrGaYKqB8SlGtsLVFnu5CdT3CCtsKnBFkSY+jwyXFyuERZHlCPhjQH0+QEvI8x3qB1BFnJiMWjSf3CbFKiLXuSlKDR0qNkg5Q3Ypw2xKExZqWXtknwbNcLEmSHGEls4MTXGWQUtHr9+j3enhr8XgMnQKSQxJlGZkILIo59aJBy5isl1M3S3Tq2Nja4uRwzvRwRZb08a4rE0ujhEznKC/RAoi7ycfrjddsIh06z2uee/YZzuxcAAInJ4ccHdyBtiFoQaI1Knhaa2laR1nWpFGPSGpmi4p53bIoG3xwpFmKq1pM26lluNMSDue7MgTotnyd674WAnqDmKBa4lgSrEBITRAJtQ0gJLdemLKaNzgtODha4CLJauawLZ1UlRIEK0jihKTVhEPDyXMF86LBWxiMFEkWsZw5FssK0HhXk6aatq0wjeu2Yh1Euo9xBqm6WqqyrDmqjkgiyShJmVUFlq7O2JuAaSy+DiglKVctBI9pHauiwjtBnEi8DyRJ1q1ahcAwHXBpsk1Ztjx29RrGWIKU2OAR3mP2KuJNhWsdOtbUtccrSVAOrCTrJfhgmZ+siGRKL4vwznNyvKRpLDLpVqWDFHQigQIhBNY4MKDk6d8+QFdG5eiNBFJ2RixKBaTszGCCBSe6hmutoGlcd7z9/PGz5vXDS//TN77tCnvHS164dcyw32czHzPSGVmQyMawrGoWVc3BakYrAmmeMuglZLrH9dt3yPOY1WrF489dR6d9zpy/SEBg25ogBZGWTEY5ri25fmNJaTxF2dC0bVdjHAKZ1gR7OgEMYF3LpJfineO3P/lJzmxusr29yV2XLlAVBTrJEFJzMJ0x2RhzYXeTF55/insfeJCyAZ2kWGtomprWeoQU+GBpnKExAZ0JkjTGuG71S6mUg6M5IXhmiyXVcw1ZktPv9xiO+wQPzjusc7SmIhaKJQVxGpEmMfiA8aHrS/AWXGA2azFXj9g7mLGceVKVo4SkqR1xrPFBUlU1u5sT7uztsVwW3MEx7OWE1vD8rWfo63v42HSfP/P2N7E7HnNUH+KShLTf4xOfe46nP/sM3/Dut1G0FS2OSrT0N3os2oKveehBPvPsVe574BL3P3iJtKeJUg1twHj3eWNgzZrfy0tjw1mHUpIkjkDE5Js7RPmQm7duEMeB5fIWx9ObFPUC08Lt68/jPJRlhW0b5rMpq8UK7zoJSneqL+tPm6iEszivaI0lSx3eAQ4unTvLhUvnSXtjDk8WtKspoZRoazG1QzrBYDA8VQGKaerOHCXv9agKxfFRTd2ETjkrSWmtI1IZPnSGLs51z2vnIJIJ/bSPEt1zXEiJdZ6maajqgqhNun6PuiGKJCSOo8MpgwkQJG3pWRwXLGcFOgjyLMOFQNk22LpBSMmqLpnbOclEo3UnRmDbFte25HJEVS8xviDpjZmerLhzfcFy3tKmp0930TV+4jSpyGml6xYsRPR5/6/XAyK8Rn+bmzdvcvHixVf7MtZ8lXLjxg0uXLjwal/GmleQ9T1hzTqu13wh1veHry5eT7H8mk2kvffcvn2bwWDwutwKWPOVIYROdeDcuXNIubYLfz2xvif88WUd12v+MNb3h68OXo+x/JpNpNesWbNmzZo1a9aseS3z+pgOrFmzZs2aNWvWrFnzR8w6kV6zZs2aNWvWrFmz5stgnUivWbNmzZo1a9asWfNlsE6k16xZs2bNmjVr1qz5Mlgn0q9z/tJf+kv8L//L//Iln390dMTOzg43b978Cl7VmjVrvhz+8l/+y3z7t3/7H3reOu7XrHl9sI751z7rRPp1zCOPPMKHP/xhfuAHfgAAYww//MM/zFve8hZ6vR7nzp3ju7/7u7l9+/bL79na2uK7v/u7+ft//++/Wpe9Zs2a/wZ+b9wD/IN/8A948MEH6fV6TCYTvvmbv5lPfOITL7++jvs1a756Wcf8q8s6kX4d80//6T/lO7/zO+n3+wCUZcnDDz/Mj/zIj/Dwww/zC7/wCzz99NP82T/7Zz/vfd/7vd/Lz/7sz3JycvJqXPaaNWv+G/i9cQ9w//3388/+2T/j0Ucf5aMf/SiXL1/m/e9/P4eHhy+fs477NWu+OlnH/KtMWPOK4pwLP/ETPxHuueeeEMdxuHjxYviH//Afvvz6xz72sfC2t70tJEkS3vGOd4Rf/MVfDED4nd/5nRBCCL/xG78RgPArv/Ir4aGHHgppmoZv+IZvCPv7++HDH/5wePDBB8NgMAjf9V3fFYqi+ILXYa0No9Eo/Lt/9+++6PV+8pOfDEC4du3a5x2/cuVK+Bf/4l98+X+INWv+GPHF4v6FF14IQPi5n/u58Cf+xJ8IaZqGd77zneHpp58On/zkJ8M73vGO0Ov1wrd+67eGg4ODlz/TWht+8Ad/MIxGo7CxsRH+7t/9u+G7v/u7w7d927d9wev4UuN+Pp8HIPzar/3a5x1fx/2aNV8a65hf8xLrRPoV5od+6IfCZDIJ//Jf/svw3HPPhY985CPhp3/6p0MI3UDe2NgIf/Ev/sXw+OOPhw9/+MPh/vvv/wMT6fe+973hox/9aHj44YfDvffeG/7Un/pT4f3vf394+OGHw2/+5m+Gzc3N8OM//uNf8DoefvjhAIS9vb0ver2/+qu/GoQQYT6ff97xv/AX/kL4nu/5nv+mv8WaNX9c+GJx/9JD9cEHHwy/8iu/Ep544onw3ve+N7zjHe8I73vf+z4vzr//+7//5c/8iZ/4iTCZTMLP//zPhyeeeCL8lb/yV8JgMPiiD9UvJe6bpgn/+B//4zAajcLh4eHnvbaO+zVrvjTWMb/mJdaJ9CvIYrEISZK8HEy/l5/6qZ8Km5uboaqql4/99E//9B+YSP/uWeOP/diPBSBcvXr15WN//a//9fAt3/ItX/BafvEXfzEopYL3/gueU1VVePvb3x4++MEP/r7XfvAHfzC8733v+4LvXbNmTccfFvcvPVR/96rPv/7X/zoA4dd//ddfPvZjP/Zj4YEHHnj5+7Nnz4af/MmffPl7Y0y4cOHCF32ofrG4/+Vf/uXQ6/WCECKcO3cufPKTn/x956zjfs2aP5x1zK/53axrpF9BnnzySZqm4Zu+6Zv+wNeffvpp3vrWt5Km6cvH3v3ud/+B5771rW99+evd3V3yPOfuu+/+vGMHBwdf8FqqqiJJEoQQf+Drxhg+8IEPEELgp37qp37f61mWUZblF/z8NWvWdPxhcf8SvzemAd7ylrd83rGXYno+n3Pnzh3e8573vPy61pp3vvOdX/RnfLG4/4Zv+AY++9nP8lu/9Vt867d+Kx/4wAd+3z1kHfdr1vzhrGN+ze9mnUi/gmRZ9op9VhRFL38thPi871865r3/gu/f2tqiLEvatv19r72URF+7do1f/dVfZTgc/r5zTk5O2N7e/m/4Ddas+ePBlxr3vzem/6BjXyymvxS+WNz3ej3uvfde3vve9/IzP/MzaK35mZ/5mc87Zx33a9b84axjfs3vZp1Iv4Lcd999ZFnGr//6r/+Brz/wwAM8+uijNE3z8rFPfepTX5FreeihhwB44oknPu/4S0n0s88+y6/92q+xubn5B77/scce42u+5mu+Ite2Zs3riT8s7r8cRqMRZ8+e/Ty5Kmstn/nMZ77o+75Q3P9BeO8/714E67hfs+ZLYR3za34360T6FSRNU374h3+YH/qhH+JDH/oQV69e5eMf//jLM8APfvCDeO/5a3/tr/Hkk0/yH//jf+Sf/JN/AvAFSzC+XLa3t3n729/ORz/60ZePGWP483/+z/PpT3+an/3Zn8U5x97eHnt7e583my3Lks985jO8//3vf0Wvac2a1yN/WNx/ufztv/23+fEf/3H+zb/5Nzz11FP8zb/5N5nNZl/0PX9Q3BdFwd/7e3+Pj3/841y7do3PfOYzfN/3fR+3bt3iO7/zO18+bx33a9Z8aaxjfs3vRr/aF/B640d+5EfQWvOjP/qj3L59m7Nnz/L93//9AAyHQ375l3+Zv/E3/gYPPfQQb3nLW/jRH/1RPvjBD35e3fQrxV/9q3+VD33oQ/ytv/W3ALh16xa/9Eu/BPxfs9iX+I3f+A3e9773AfBv/+2/5dKlS3z913/9K35Na9a8Hvlicf/l8nf+zt/hzp07fM/3fA9SSr7v+76PP/fn/hzz+fyLvu/3xr1Siqeeeop/9a/+FUdHR2xubvKud72Lj3zkI7zpTW96+X3ruF+z5ktnHfNrXkKEEMKrfRF/nPnZn/1Zvvd7v5f5fP6K1lhD14TwwAMP8HM/93N87dd+7Zf8vve+9738wA/8AB/84Adf0etZs2bNV5513K9Z88eLdcy/uqxXpP+I+dCHPsTdd9/N+fPneeSRR/jhH/5hPvCBD7ziSTR0DREf+tCHODo6+pLfc3R0xHd8x3fwXd/1Xa/49axZs+Yrzzru16z548U65l9d1ivSf8T85E/+JP/8n/9z9vb2OHv2LN/+7d/OP/pH/4g8z1/tS1uzZs2aNWvWrFnzf4N1Ir1mzZo1a9asWbNmzZfBWrVjzZo1a9asWbNmzZovg3UivWbNmjVr1qxZs2bNl8E6kV6zZs2aNWvWrFmz5stgnUivWbNmzZo1a9asWfNlsE6k16xZs2bNmjVr1qz5Mlgn0mvWrFmzZs2aNWvWfBmsE+k1a9asWbNmzZo1a74M1on0mjVr1qxZs2bNmjVfBv9/gaVWmIA+Vp4AAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "_ = tfds.show_examples(ds_train, ds_info)" ] }, { "cell_type": "markdown", "metadata": { "id": "-KW-n0lV4AZ-" }, "source": [ "## Add images to be used as Unknown examples from TFDS datasets\n", "\n", "Add additional unknown (negative) examples to the training dataset and assign a new unknown class label number to them. The goal is to have a model that, when used in practice (e.g. in the field), has the option of predicting \"Unknown\" when it sees something unexpected.\n", "\n", "Below you can see a list of datasets that will be used to sample the additional unknown imagery. It includes 3 completely different datasets to increase diversity. One of them is a beans leaf disease dataset, so that the model has exposure to diseased plants other than cassava.\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:06.184044Z", "iopub.status.busy": "2023-05-23T08:29:06.183786Z", "iopub.status.idle": "2023-05-23T08:29:06.187811Z", "shell.execute_reply": "2023-05-23T08:29:06.187238Z" }, "id": "SYDMjRhDkDnd" }, "outputs": [], "source": [ "UNKNOWN_TFDS_DATASETS = [{\n", " 'tfds_name': 'imagenet_v2/matched-frequency',\n", " 'train_split': 'test[:80%]',\n", " 'test_split': 'test[80%:]',\n", " 'num_examples_ratio_to_normal': 1.0,\n", "}, {\n", " 'tfds_name': 'oxford_flowers102',\n", " 'train_split': 'train',\n", " 'test_split': 'test',\n", " 'num_examples_ratio_to_normal': 1.0,\n", "}, {\n", " 'tfds_name': 'beans',\n", " 'train_split': 'train',\n", " 'test_split': 'test',\n", " 'num_examples_ratio_to_normal': 1.0,\n", "}]" ] }, { "cell_type": "markdown", "metadata": { "id": "XUM_d0evktGi" }, "source": [ "The UNKNOWN datasets are also loaded from TFDS." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:06.191052Z", "iopub.status.busy": "2023-05-23T08:29:06.190810Z", "iopub.status.idle": "2023-05-23T08:29:09.870778Z", "shell.execute_reply": "2023-05-23T08:29:09.870068Z" }, "id": "5DdWgBTe8uKR" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Added 16968 negative examples.Training dataset has now 22624 examples in total.\n" ] } ], "source": [ "# Load unknown datasets.\n", "weights = [\n", " spec['num_examples_ratio_to_normal'] for spec in UNKNOWN_TFDS_DATASETS\n", "]\n", "num_unknown_train_examples = sum(\n", " int(w * ds_train.cardinality().numpy()) for w in weights)\n", "ds_unknown_train = tf.data.Dataset.sample_from_datasets([\n", " tfds.load(\n", " name=spec['tfds_name'], split=spec['train_split'],\n", " as_supervised=True).repeat(-1) for spec in UNKNOWN_TFDS_DATASETS\n", "], weights).take(num_unknown_train_examples)\n", "ds_unknown_train = ds_unknown_train.apply(\n", " tf.data.experimental.assert_cardinality(num_unknown_train_examples))\n", "ds_unknown_tests = [\n", " tfds.load(\n", " name=spec['tfds_name'], split=spec['test_split'], as_supervised=True)\n", " for spec in UNKNOWN_TFDS_DATASETS\n", "]\n", "ds_unknown_test = ds_unknown_tests[0]\n", "for ds in ds_unknown_tests[1:]:\n", " ds_unknown_test = ds_unknown_test.concatenate(ds)\n", "\n", "# All examples from the unknown datasets will get a new class label number.\n", "num_normal_classes = len(ds_info.features['label'].names)\n", "unknown_label_value = tf.convert_to_tensor(num_normal_classes, tf.int64)\n", "ds_unknown_train = ds_unknown_train.map(lambda image, _:\n", " (image, unknown_label_value))\n", "ds_unknown_test = ds_unknown_test.map(lambda image, _:\n", " (image, unknown_label_value))\n", "\n", "# Merge the normal train dataset with the unknown train dataset.\n", "weights = [\n", " ds_train.cardinality().numpy(),\n", " ds_unknown_train.cardinality().numpy()\n", "]\n", "ds_train_with_unknown = tf.data.Dataset.sample_from_datasets(\n", " [ds_train, ds_unknown_train], [float(w) for w in weights])\n", "ds_train_with_unknown = ds_train_with_unknown.apply(\n", " tf.data.experimental.assert_cardinality(sum(weights)))\n", "\n", "print((f\"Added {ds_unknown_train.cardinality().numpy()} negative examples.\"\n", " f\"Training dataset has now {ds_train_with_unknown.cardinality().numpy()}\"\n", " ' examples in total.'))" ] }, { "cell_type": "markdown", "metadata": { "id": "am6eKbzt7raH" }, "source": [ "## Apply augmentations" ] }, { "cell_type": "markdown", "metadata": { "id": "sxIUP0Flk35V" }, "source": [ "For all the images, to make them more diverse, you'll apply some augmentation, like changes in:\n", "- Brightness\n", "- Contrast\n", "- Saturation\n", "- Hue\n", "- Crop\n", "\n", "These types of augmentations help make the model more robust to variations in image inputs.\n" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:09.874042Z", "iopub.status.busy": "2023-05-23T08:29:09.873804Z", "iopub.status.idle": "2023-05-23T08:29:09.879195Z", "shell.execute_reply": "2023-05-23T08:29:09.878648Z" }, "id": "q_BiOkXjqRju" }, "outputs": [], "source": [ "def random_crop_and_random_augmentations_fn(image):\n", " # preprocess_for_train does random crop and resize internally.\n", " image = image_preprocessing.preprocess_for_train(image)\n", " image = tf.image.random_brightness(image, 0.2)\n", " image = tf.image.random_contrast(image, 0.5, 2.0)\n", " image = tf.image.random_saturation(image, 0.75, 1.25)\n", " image = tf.image.random_hue(image, 0.1)\n", " return image\n", "\n", "\n", "def random_crop_fn(image):\n", " # preprocess_for_train does random crop and resize internally.\n", " image = image_preprocessing.preprocess_for_train(image)\n", " return image\n", "\n", "\n", "def resize_and_center_crop_fn(image):\n", " image = tf.image.resize(image, (256, 256))\n", " image = image[16:240, 16:240]\n", " return image\n", "\n", "\n", "no_augment_fn = lambda image: image\n", "\n", "train_augment_fn = lambda image, label: (\n", " random_crop_and_random_augmentations_fn(image), label)\n", "eval_augment_fn = lambda image, label: (resize_and_center_crop_fn(image), label)" ] }, { "cell_type": "markdown", "metadata": { "id": "RUfqE1c3l6my" }, "source": [ "To apply the augmentation, it uses the `map` method from the Dataset class." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:09.882362Z", "iopub.status.busy": "2023-05-23T08:29:09.881805Z", "iopub.status.idle": "2023-05-23T08:29:10.410167Z", "shell.execute_reply": "2023-05-23T08:29:10.409576Z" }, "id": "Uq-NCtaH_h8j" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Use default resize_bicubic.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Use default resize_bicubic.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Use customized resize method bilinear\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Use customized resize method bilinear\n" ] } ], "source": [ "ds_train_with_unknown = ds_train_with_unknown.map(train_augment_fn)\n", "ds_validation = ds_validation.map(eval_augment_fn)\n", "ds_test = ds_test.map(eval_augment_fn)\n", "ds_unknown_test = ds_unknown_test.map(eval_augment_fn)" ] }, { "cell_type": "markdown", "metadata": { "id": "DvnwolLiCqYX" }, "source": [ "## Wrap the data into Model Maker friendly format\n", "\n", "To use these dataset with Model Maker, they need to be in a ImageClassifierDataLoader class." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:10.413666Z", "iopub.status.busy": "2023-05-23T08:29:10.413434Z", "iopub.status.idle": "2023-05-23T08:29:10.417953Z", "shell.execute_reply": "2023-05-23T08:29:10.417324Z" }, "id": "OXPWEDFDRlVu" }, "outputs": [], "source": [ "label_names = ds_info.features['label'].names + ['UNKNOWN']\n", "\n", "train_data = ImageClassifierDataLoader(ds_train_with_unknown,\n", " ds_train_with_unknown.cardinality(),\n", " label_names)\n", "validation_data = ImageClassifierDataLoader(ds_validation,\n", " ds_validation.cardinality(),\n", " label_names)\n", "test_data = ImageClassifierDataLoader(ds_test, ds_test.cardinality(),\n", " label_names)\n", "unknown_test_data = ImageClassifierDataLoader(ds_unknown_test,\n", " ds_unknown_test.cardinality(),\n", " label_names)" ] }, { "cell_type": "markdown", "metadata": { "id": "j2iDwq2Njpb_" }, "source": [ "## Run training\n", "\n", "[TensorFlow Hub](https://tfhub.dev) has multiple models available for Transfer Learning.\n", "\n", "Here you can choose one and you can also keep experimenting with other ones to try to get better results.\n", "\n", "If you want even more models to try, you can add them from this [collection](https://tfhub.dev/google/collections/image/1).\n" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2023-05-23T08:29:10.420959Z", "iopub.status.busy": "2023-05-23T08:29:10.420725Z", "iopub.status.idle": "2023-05-23T08:29:10.424166Z", "shell.execute_reply": "2023-05-23T08:29:10.423649Z" }, "id": "5UhNpR0Ex_5-" }, "outputs": [], "source": [ "#@title Choose a base model\n", "\n", "model_name = 'mobilenet_v3_large_100_224' #@param ['cropnet_cassava', 'cropnet_concat', 'cropnet_imagenet', 'mobilenet_v3_large_100_224']\n", "\n", "map_model_name = {\n", " 'cropnet_cassava':\n", " 'https://tfhub.dev/google/cropnet/feature_vector/cassava_disease_V1/1',\n", " 'cropnet_concat':\n", " 'https://tfhub.dev/google/cropnet/feature_vector/concat/1',\n", " 'cropnet_imagenet':\n", " 'https://tfhub.dev/google/cropnet/feature_vector/imagenet/1',\n", " 'mobilenet_v3_large_100_224':\n", " 'https://tfhub.dev/google/imagenet/mobilenet_v3_large_100_224/feature_vector/5',\n", "}\n", "\n", "model_handle = map_model_name[model_name]" ] }, { "cell_type": "markdown", "metadata": { "id": "Y1ecXlQgR5Uk" }, "source": [ "To fine tune the model, you will use Model Maker. This makes the overall solution easier since after the training of the model, it'll also convert it to TFLite.\n", "\n", "Model Maker makes this conversion be the best one possible and with all the necessary information to easily deploy the model on-device later.\n", "\n", "The model spec is how you tell Model Maker which base model you'd like to use." ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:10.427255Z", "iopub.status.busy": "2023-05-23T08:29:10.427041Z", "iopub.status.idle": "2023-05-23T08:29:10.430021Z", "shell.execute_reply": "2023-05-23T08:29:10.429448Z" }, "id": "L8P-VTqJ8GaF" }, "outputs": [], "source": [ "image_model_spec = ModelSpec(uri=model_handle)" ] }, { "cell_type": "markdown", "metadata": { "id": "AnWN3kk6jCHf" }, "source": [ "One important detail here is setting `train_whole_model` which will make the base model fine tuned during training. This makes the process slower but the final model has a higher accuracy. Setting `shuffle` will make sure the model sees the data in a random shuffled order which is a best practice for model learning." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:29:10.433337Z", "iopub.status.busy": "2023-05-23T08:29:10.432778Z", "iopub.status.idle": "2023-05-23T08:37:39.770648Z", "shell.execute_reply": "2023-05-23T08:37:39.769827Z" }, "id": "KRbSDbnA6Xap" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Retraining the models...\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Retraining the models...\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Layer (type) Output Shape Param # \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " hub_keras_layer_v1v2 (HubKe (None, 1280) 4226432 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " rasLayerV1V2) \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dropout (Dropout) (None, 1280) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dense (Dense) (None, 6) 7686 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Total params: 4,234,118\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Trainable params: 4,209,718\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Non-trainable params: 24,400\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "None\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/176 [..............................] - ETA: 59:06 - loss: 2.1404 - accuracy: 0.2500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/176 [..............................] - ETA: 1:29 - loss: 1.9994 - accuracy: 0.3164 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/176 [..............................] - ETA: 1:28 - loss: 1.8040 - accuracy: 0.4505" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/176 [..............................] - ETA: 1:28 - loss: 1.6968 - accuracy: 0.5234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/176 [..............................] - ETA: 1:27 - loss: 1.6262 - accuracy: 0.5625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/176 [>.............................] - ETA: 1:27 - loss: 1.5605 - accuracy: 0.5977" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/176 [>.............................] - ETA: 1:26 - loss: 1.5055 - accuracy: 0.6295" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/176 [>.............................] - ETA: 1:26 - loss: 1.4640 - accuracy: 0.6611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/176 [>.............................] - ETA: 1:26 - loss: 1.4323 - accuracy: 0.6823" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/176 [>.............................] - ETA: 1:26 - loss: 1.3953 - accuracy: 0.7031" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/176 [>.............................] - ETA: 1:25 - loss: 1.3636 - accuracy: 0.7173" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/176 [=>............................] - ETA: 1:24 - loss: 1.3415 - accuracy: 0.7266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/176 [=>............................] - ETA: 1:24 - loss: 1.3209 - accuracy: 0.7374" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/176 [=>............................] - ETA: 1:23 - loss: 1.3052 - accuracy: 0.7422" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/176 [=>............................] - ETA: 1:23 - loss: 1.2808 - accuracy: 0.7542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/176 [=>............................] - ETA: 1:23 - loss: 1.2582 - accuracy: 0.7637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/176 [=>............................] - ETA: 1:22 - loss: 1.2393 - accuracy: 0.7721" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/176 [==>...........................] - ETA: 1:21 - loss: 1.2250 - accuracy: 0.7791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/176 [==>...........................] - ETA: 1:21 - loss: 1.2095 - accuracy: 0.7841" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/176 [==>...........................] - ETA: 1:20 - loss: 1.2008 - accuracy: 0.7883" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/176 [==>...........................] - ETA: 1:20 - loss: 1.1914 - accuracy: 0.7913" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/176 [==>...........................] - ETA: 1:19 - loss: 1.1808 - accuracy: 0.7951" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/176 [==>...........................] - ETA: 1:19 - loss: 1.1693 - accuracy: 0.8003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/176 [===>..........................] - ETA: 1:19 - loss: 1.1561 - accuracy: 0.8066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/176 [===>..........................] - ETA: 1:18 - loss: 1.1469 - accuracy: 0.8109" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/176 [===>..........................] - ETA: 1:18 - loss: 1.1397 - accuracy: 0.8149" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/176 [===>..........................] - ETA: 1:17 - loss: 1.1321 - accuracy: 0.8186" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/176 [===>..........................] - ETA: 1:17 - loss: 1.1275 - accuracy: 0.8203" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/176 [===>..........................] - ETA: 1:17 - loss: 1.1212 - accuracy: 0.8230" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/176 [====>.........................] - ETA: 1:16 - loss: 1.1163 - accuracy: 0.8245" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/176 [====>.........................] - ETA: 1:16 - loss: 1.1109 - accuracy: 0.8266" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/176 [====>.........................] - ETA: 1:15 - loss: 1.1048 - accuracy: 0.8291" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/176 [====>.........................] - ETA: 1:15 - loss: 1.0992 - accuracy: 0.8319" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/176 [====>.........................] - ETA: 1:14 - loss: 1.0907 - accuracy: 0.8362" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/176 [====>.........................] - ETA: 1:13 - loss: 1.0842 - accuracy: 0.8384" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/176 [=====>........................] - ETA: 1:13 - loss: 1.0792 - accuracy: 0.8403" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/176 [=====>........................] - ETA: 1:12 - loss: 1.0738 - accuracy: 0.8427" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/176 [=====>........................] - ETA: 1:12 - loss: 1.0674 - accuracy: 0.8450" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/176 [=====>........................] - ETA: 1:11 - loss: 1.0632 - accuracy: 0.8460" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/176 [=====>........................] - ETA: 1:11 - loss: 1.0580 - accuracy: 0.8486" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/176 [=====>........................] - ETA: 1:10 - loss: 1.0554 - accuracy: 0.8495" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/176 [======>.......................] - ETA: 1:10 - loss: 1.0507 - accuracy: 0.8516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/176 [======>.......................] - ETA: 1:09 - loss: 1.0470 - accuracy: 0.8528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/176 [======>.......................] - ETA: 1:09 - loss: 1.0421 - accuracy: 0.8549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/176 [======>.......................] - ETA: 1:08 - loss: 1.0378 - accuracy: 0.8568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/176 [======>.......................] - ETA: 1:08 - loss: 1.0349 - accuracy: 0.8580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/176 [=======>......................] - ETA: 1:07 - loss: 1.0305 - accuracy: 0.8597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/176 [=======>......................] - ETA: 1:07 - loss: 1.0274 - accuracy: 0.8605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/176 [=======>......................] - ETA: 1:06 - loss: 1.0247 - accuracy: 0.8619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/176 [=======>......................] - ETA: 1:06 - loss: 1.0207 - accuracy: 0.8636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/176 [=======>......................] - ETA: 1:05 - loss: 1.0174 - accuracy: 0.8652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/176 [=======>......................] - ETA: 1:05 - loss: 1.0155 - accuracy: 0.8655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/176 [========>.....................] - ETA: 1:04 - loss: 1.0123 - accuracy: 0.8667" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/176 [========>.....................] - ETA: 1:03 - loss: 1.0093 - accuracy: 0.8685" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/176 [========>.....................] - ETA: 1:03 - loss: 1.0071 - accuracy: 0.8690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/176 [========>.....................] - ETA: 1:02 - loss: 1.0045 - accuracy: 0.8700" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/176 [========>.....................] - ETA: 1:02 - loss: 1.0013 - accuracy: 0.8713" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/176 [========>.....................] - ETA: 1:01 - loss: 0.9981 - accuracy: 0.8723" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/176 [=========>....................] - ETA: 1:01 - loss: 0.9967 - accuracy: 0.8726" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/176 [=========>....................] - ETA: 1:00 - loss: 0.9939 - accuracy: 0.8733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/176 [=========>....................] - ETA: 1:00 - loss: 0.9919 - accuracy: 0.8741" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/176 [=========>....................] - ETA: 59s - loss: 0.9898 - accuracy: 0.8746 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/176 [=========>....................] - ETA: 59s - loss: 0.9894 - accuracy: 0.8746" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/176 [=========>....................] - ETA: 58s - loss: 0.9882 - accuracy: 0.8750" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/176 [==========>...................] - ETA: 58s - loss: 0.9859 - accuracy: 0.8757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/176 [==========>...................] - ETA: 57s - loss: 0.9832 - accuracy: 0.8765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/176 [==========>...................] - ETA: 57s - loss: 0.9817 - accuracy: 0.8772" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/176 [==========>...................] - ETA: 56s - loss: 0.9802 - accuracy: 0.8780" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/176 [==========>...................] - ETA: 56s - loss: 0.9783 - accuracy: 0.8787" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/176 [==========>...................] - ETA: 55s - loss: 0.9769 - accuracy: 0.8791" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/176 [===========>..................] - ETA: 55s - loss: 0.9750 - accuracy: 0.8801" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/176 [===========>..................] - ETA: 54s - loss: 0.9737 - accuracy: 0.8804" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/176 [===========>..................] - ETA: 53s - loss: 0.9715 - accuracy: 0.8813" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/176 [===========>..................] - ETA: 53s - loss: 0.9701 - accuracy: 0.8819" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/176 [===========>..................] - ETA: 52s - loss: 0.9700 - accuracy: 0.8817" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/176 [===========>..................] - ETA: 52s - loss: 0.9677 - accuracy: 0.8829" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/176 [============>.................] - ETA: 51s - loss: 0.9664 - accuracy: 0.8835" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/176 [============>.................] - ETA: 51s - loss: 0.9640 - accuracy: 0.8846" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/176 [============>.................] - ETA: 50s - loss: 0.9634 - accuracy: 0.8849" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/176 [============>.................] - ETA: 50s - loss: 0.9616 - accuracy: 0.8857" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/176 [============>.................] - ETA: 49s - loss: 0.9608 - accuracy: 0.8863" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/176 [============>.................] - ETA: 49s - loss: 0.9590 - accuracy: 0.8872" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/176 [=============>................] - ETA: 48s - loss: 0.9577 - accuracy: 0.8877" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/176 [=============>................] - ETA: 48s - loss: 0.9569 - accuracy: 0.8878" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/176 [=============>................] - ETA: 47s - loss: 0.9554 - accuracy: 0.8886" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/176 [=============>................] - ETA: 47s - loss: 0.9538 - accuracy: 0.8892" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/176 [=============>................] - ETA: 46s - loss: 0.9534 - accuracy: 0.8890" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/176 [==============>...............] - ETA: 46s - loss: 0.9521 - accuracy: 0.8895" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/176 [==============>...............] - ETA: 45s - loss: 0.9500 - accuracy: 0.8904" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/176 [==============>...............] - ETA: 45s - loss: 0.9492 - accuracy: 0.8908" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/176 [==============>...............] - ETA: 44s - loss: 0.9485 - accuracy: 0.8909" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/176 [==============>...............] - ETA: 43s - loss: 0.9476 - accuracy: 0.8911" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/176 [==============>...............] - ETA: 43s - loss: 0.9467 - accuracy: 0.8915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/176 [===============>..............] - ETA: 42s - loss: 0.9455 - accuracy: 0.8920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/176 [===============>..............] - ETA: 42s - loss: 0.9442 - accuracy: 0.8925" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/176 [===============>..............] - ETA: 41s - loss: 0.9434 - accuracy: 0.8929" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/176 [===============>..............] - ETA: 41s - loss: 0.9421 - accuracy: 0.8933" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/176 [===============>..............] - ETA: 40s - loss: 0.9406 - accuracy: 0.8940" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/176 [===============>..............] - ETA: 40s - loss: 0.9399 - accuracy: 0.8942" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/176 [================>.............] - ETA: 39s - loss: 0.9388 - accuracy: 0.8945" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/176 [================>.............] - ETA: 39s - loss: 0.9378 - accuracy: 0.8950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/176 [================>.............] - ETA: 38s - loss: 0.9378 - accuracy: 0.8950" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/176 [================>.............] - ETA: 38s - loss: 0.9363 - accuracy: 0.8957" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/176 [================>.............] - ETA: 37s - loss: 0.9351 - accuracy: 0.8963" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/176 [================>.............] - ETA: 37s - loss: 0.9337 - accuracy: 0.8969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/176 [=================>............] - ETA: 36s - loss: 0.9326 - accuracy: 0.8973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/176 [=================>............] - ETA: 36s - loss: 0.9324 - accuracy: 0.8973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/176 [=================>............] - ETA: 35s - loss: 0.9316 - accuracy: 0.8976" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/176 [=================>............] - ETA: 35s - loss: 0.9304 - accuracy: 0.8982" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/176 [=================>............] - ETA: 34s - loss: 0.9295 - accuracy: 0.8985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/176 [=================>............] - ETA: 34s - loss: 0.9292 - accuracy: 0.8986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/176 [==================>...........] - ETA: 33s - loss: 0.9285 - accuracy: 0.8987" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/176 [==================>...........] - ETA: 32s - loss: 0.9279 - accuracy: 0.8989" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/176 [==================>...........] - ETA: 32s - loss: 0.9267 - accuracy: 0.8995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/176 [==================>...........] - ETA: 31s - loss: 0.9255 - accuracy: 0.8999" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/176 [==================>...........] - ETA: 31s - loss: 0.9245 - accuracy: 0.9003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/176 [==================>...........] - ETA: 30s - loss: 0.9236 - accuracy: 0.9006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/176 [===================>..........] - ETA: 30s - loss: 0.9226 - accuracy: 0.9010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/176 [===================>..........] - ETA: 29s - loss: 0.9217 - accuracy: 0.9014" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/176 [===================>..........] - ETA: 29s - loss: 0.9207 - accuracy: 0.9017" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/176 [===================>..........] - ETA: 28s - loss: 0.9195 - accuracy: 0.9022" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/176 [===================>..........] - ETA: 28s - loss: 0.9187 - accuracy: 0.9025" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/176 [===================>..........] - ETA: 27s - loss: 0.9176 - accuracy: 0.9030" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/176 [====================>.........] - ETA: 27s - loss: 0.9170 - accuracy: 0.9034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/176 [====================>.........] - ETA: 26s - loss: 0.9160 - accuracy: 0.9037" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/176 [====================>.........] - ETA: 26s - loss: 0.9147 - accuracy: 0.9042" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/176 [====================>.........] - ETA: 25s - loss: 0.9140 - accuracy: 0.9044" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/176 [====================>.........] - ETA: 25s - loss: 0.9129 - accuracy: 0.9048" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/176 [====================>.........] - ETA: 24s - loss: 0.9121 - accuracy: 0.9051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/176 [=====================>........] - ETA: 24s - loss: 0.9112 - accuracy: 0.9055" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/176 [=====================>........] - ETA: 23s - loss: 0.9103 - accuracy: 0.9059" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/176 [=====================>........] - ETA: 23s - loss: 0.9100 - accuracy: 0.9060" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/176 [=====================>........] - ETA: 22s - loss: 0.9089 - accuracy: 0.9065" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/176 [=====================>........] - ETA: 21s - loss: 0.9083 - accuracy: 0.9066" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/176 [======================>.......] - ETA: 21s - loss: 0.9084 - accuracy: 0.9064" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/176 [======================>.......] - ETA: 20s - loss: 0.9077 - accuracy: 0.9068" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/176 [======================>.......] - ETA: 20s - loss: 0.9071 - accuracy: 0.9070" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/176 [======================>.......] - ETA: 19s - loss: 0.9061 - accuracy: 0.9074" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/176 [======================>.......] - ETA: 19s - loss: 0.9053 - accuracy: 0.9078" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/176 [======================>.......] - ETA: 18s - loss: 0.9049 - accuracy: 0.9080" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/176 [=======================>......] - ETA: 18s - loss: 0.9040 - accuracy: 0.9084" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/176 [=======================>......] - ETA: 17s - loss: 0.9032 - accuracy: 0.9087" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/176 [=======================>......] - ETA: 17s - loss: 0.9024 - accuracy: 0.9090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/176 [=======================>......] - ETA: 16s - loss: 0.9020 - accuracy: 0.9092" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/176 [=======================>......] - ETA: 16s - loss: 0.9014 - accuracy: 0.9094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/176 [=======================>......] - ETA: 15s - loss: 0.9009 - accuracy: 0.9097" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/176 [========================>.....] - ETA: 15s - loss: 0.9001 - accuracy: 0.9100" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/176 [========================>.....] - ETA: 14s - loss: 0.8996 - accuracy: 0.9102" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/176 [========================>.....] - ETA: 14s - loss: 0.8992 - accuracy: 0.9103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/176 [========================>.....] - ETA: 13s - loss: 0.8982 - accuracy: 0.9107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/176 [========================>.....] - ETA: 13s - loss: 0.8977 - accuracy: 0.9110" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/176 [========================>.....] - ETA: 12s - loss: 0.8970 - accuracy: 0.9114" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/176 [=========================>....] - ETA: 12s - loss: 0.8962 - accuracy: 0.9118" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/176 [=========================>....] - ETA: 11s - loss: 0.8954 - accuracy: 0.9120" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/176 [=========================>....] - ETA: 10s - loss: 0.8948 - accuracy: 0.9122" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/176 [=========================>....] - ETA: 10s - loss: 0.8946 - accuracy: 0.9124" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/176 [=========================>....] - ETA: 9s - loss: 0.8937 - accuracy: 0.9127 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/176 [=========================>....] - ETA: 9s - loss: 0.8931 - accuracy: 0.9130" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/176 [==========================>...] - ETA: 8s - loss: 0.8927 - accuracy: 0.9132" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/176 [==========================>...] - ETA: 8s - loss: 0.8927 - accuracy: 0.9132" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/176 [==========================>...] - ETA: 7s - loss: 0.8923 - accuracy: 0.9133" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/176 [==========================>...] - ETA: 7s - loss: 0.8914 - accuracy: 0.9138" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/176 [==========================>...] - ETA: 6s - loss: 0.8909 - accuracy: 0.9139" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/176 [==========================>...] - ETA: 6s - loss: 0.8902 - accuracy: 0.9142" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/176 [===========================>..] - ETA: 5s - loss: 0.8898 - accuracy: 0.9143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/176 [===========================>..] - ETA: 5s - loss: 0.8897 - accuracy: 0.9143" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/176 [===========================>..] - ETA: 4s - loss: 0.8889 - accuracy: 0.9146" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/176 [===========================>..] - ETA: 4s - loss: 0.8884 - accuracy: 0.9148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/176 [===========================>..] - ETA: 3s - loss: 0.8877 - accuracy: 0.9151" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/176 [===========================>..] - ETA: 3s - loss: 0.8873 - accuracy: 0.9152" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/176 [============================>.] - ETA: 2s - loss: 0.8870 - accuracy: 0.9153" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/176 [============================>.] - ETA: 2s - loss: 0.8865 - accuracy: 0.9155" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/176 [============================>.] - ETA: 1s - loss: 0.8862 - accuracy: 0.9156" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/176 [============================>.] - ETA: 1s - loss: 0.8860 - accuracy: 0.9157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/176 [============================>.] - ETA: 0s - loss: 0.8857 - accuracy: 0.9158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - ETA: 0s - loss: 0.8857 - accuracy: 0.9158" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - 115s 543ms/step - loss: 0.8857 - accuracy: 0.9158 - val_loss: 1.1192 - val_accuracy: 0.8020\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/176 [..............................] - ETA: 10:29 - loss: 0.7684 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/176 [..............................] - ETA: 1:32 - loss: 0.7700 - accuracy: 0.9609 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/176 [..............................] - ETA: 1:32 - loss: 0.7738 - accuracy: 0.9557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/176 [..............................] - ETA: 1:31 - loss: 0.8116 - accuracy: 0.9375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/176 [..............................] - ETA: 1:30 - loss: 0.8027 - accuracy: 0.9406" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/176 [>.............................] - ETA: 1:29 - loss: 0.8012 - accuracy: 0.9453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/176 [>.............................] - ETA: 1:28 - loss: 0.8061 - accuracy: 0.9453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/176 [>.............................] - ETA: 1:28 - loss: 0.8017 - accuracy: 0.9473" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/176 [>.............................] - ETA: 1:27 - loss: 0.8032 - accuracy: 0.9462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/176 [>.............................] - ETA: 1:27 - loss: 0.8080 - accuracy: 0.9453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/176 [>.............................] - ETA: 1:26 - loss: 0.8063 - accuracy: 0.9474" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/176 [=>............................] - ETA: 1:25 - loss: 0.8019 - accuracy: 0.9492" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/176 [=>............................] - ETA: 1:25 - loss: 0.7992 - accuracy: 0.9507" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/176 [=>............................] - ETA: 1:24 - loss: 0.7990 - accuracy: 0.9503" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/176 [=>............................] - ETA: 1:24 - loss: 0.7960 - accuracy: 0.9516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/176 [=>............................] - ETA: 1:24 - loss: 0.7971 - accuracy: 0.9507" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/176 [=>............................] - ETA: 1:23 - loss: 0.7968 - accuracy: 0.9513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/176 [==>...........................] - ETA: 1:22 - loss: 0.7999 - accuracy: 0.9505" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/176 [==>...........................] - ETA: 1:22 - loss: 0.7973 - accuracy: 0.9519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/176 [==>...........................] - ETA: 1:22 - loss: 0.7965 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/176 [==>...........................] - ETA: 1:21 - loss: 0.7953 - accuracy: 0.9524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/176 [==>...........................] - ETA: 1:20 - loss: 0.7954 - accuracy: 0.9528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/176 [==>...........................] - ETA: 1:20 - loss: 0.7952 - accuracy: 0.9528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/176 [===>..........................] - ETA: 1:19 - loss: 0.7936 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/176 [===>..........................] - ETA: 1:19 - loss: 0.7959 - accuracy: 0.9519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/176 [===>..........................] - ETA: 1:18 - loss: 0.7944 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/176 [===>..........................] - ETA: 1:18 - loss: 0.7935 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/176 [===>..........................] - ETA: 1:17 - loss: 0.7944 - accuracy: 0.9534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/176 [===>..........................] - ETA: 1:17 - loss: 0.7949 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/176 [====>.........................] - ETA: 1:16 - loss: 0.7985 - accuracy: 0.9516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/176 [====>.........................] - ETA: 1:16 - loss: 0.8009 - accuracy: 0.9501" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/176 [====>.........................] - ETA: 1:15 - loss: 0.8003 - accuracy: 0.9504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/176 [====>.........................] - ETA: 1:15 - loss: 0.8006 - accuracy: 0.9505" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/176 [====>.........................] - ETA: 1:14 - loss: 0.7992 - accuracy: 0.9513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/176 [====>.........................] - ETA: 1:14 - loss: 0.7991 - accuracy: 0.9513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/176 [=====>........................] - ETA: 1:13 - loss: 0.7989 - accuracy: 0.9512" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/176 [=====>........................] - ETA: 1:12 - loss: 0.8015 - accuracy: 0.9502" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/176 [=====>........................] - ETA: 1:12 - loss: 0.8017 - accuracy: 0.9494" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/176 [=====>........................] - ETA: 1:11 - loss: 0.8017 - accuracy: 0.9489" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/176 [=====>........................] - ETA: 1:11 - loss: 0.8007 - accuracy: 0.9494" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/176 [=====>........................] - ETA: 1:10 - loss: 0.8000 - accuracy: 0.9501" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/176 [======>.......................] - ETA: 1:10 - loss: 0.8004 - accuracy: 0.9492" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/176 [======>.......................] - ETA: 1:09 - loss: 0.7991 - accuracy: 0.9500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/176 [======>.......................] - ETA: 1:09 - loss: 0.7990 - accuracy: 0.9501" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/176 [======>.......................] - ETA: 1:08 - loss: 0.7982 - accuracy: 0.9505" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/176 [======>.......................] - ETA: 1:08 - loss: 0.7986 - accuracy: 0.9506" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/176 [=======>......................] - ETA: 1:07 - loss: 0.7981 - accuracy: 0.9506" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/176 [=======>......................] - ETA: 1:07 - loss: 0.7977 - accuracy: 0.9508" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/176 [=======>......................] - ETA: 1:06 - loss: 0.7973 - accuracy: 0.9511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/176 [=======>......................] - ETA: 1:06 - loss: 0.7975 - accuracy: 0.9511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/176 [=======>......................] - ETA: 1:05 - loss: 0.7968 - accuracy: 0.9514" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/176 [=======>......................] - ETA: 1:05 - loss: 0.7967 - accuracy: 0.9518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/176 [========>.....................] - ETA: 1:04 - loss: 0.7974 - accuracy: 0.9517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/176 [========>.....................] - ETA: 1:04 - loss: 0.7968 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/176 [========>.....................] - ETA: 1:03 - loss: 0.7973 - accuracy: 0.9516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/176 [========>.....................] - ETA: 1:03 - loss: 0.7970 - accuracy: 0.9515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/176 [========>.....................] - ETA: 1:02 - loss: 0.7968 - accuracy: 0.9515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/176 [========>.....................] - ETA: 1:02 - loss: 0.7954 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/176 [=========>....................] - ETA: 1:01 - loss: 0.7950 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/176 [=========>....................] - ETA: 1:01 - loss: 0.7953 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/176 [=========>....................] - ETA: 1:00 - loss: 0.7949 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/176 [=========>....................] - ETA: 59s - loss: 0.7944 - accuracy: 0.9531 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/176 [=========>....................] - ETA: 59s - loss: 0.7945 - accuracy: 0.9530" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/176 [=========>....................] - ETA: 58s - loss: 0.7944 - accuracy: 0.9529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/176 [==========>...................] - ETA: 58s - loss: 0.7950 - accuracy: 0.9528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/176 [==========>...................] - ETA: 57s - loss: 0.7950 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/176 [==========>...................] - ETA: 57s - loss: 0.7948 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/176 [==========>...................] - ETA: 56s - loss: 0.7939 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/176 [==========>...................] - ETA: 56s - loss: 0.7941 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/176 [==========>...................] - ETA: 55s - loss: 0.7942 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/176 [===========>..................] - ETA: 55s - loss: 0.7941 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/176 [===========>..................] - ETA: 54s - loss: 0.7948 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/176 [===========>..................] - ETA: 54s - loss: 0.7948 - accuracy: 0.9524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/176 [===========>..................] - ETA: 53s - loss: 0.7947 - accuracy: 0.9524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/176 [===========>..................] - ETA: 53s - loss: 0.7944 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/176 [===========>..................] - ETA: 52s - loss: 0.7943 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/176 [============>.................] - ETA: 52s - loss: 0.7953 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/176 [============>.................] - ETA: 51s - loss: 0.7956 - accuracy: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/176 [============>.................] - ETA: 50s - loss: 0.7963 - accuracy: 0.9515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/176 [============>.................] - ETA: 50s - loss: 0.7964 - accuracy: 0.9515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/176 [============>.................] - ETA: 49s - loss: 0.7960 - accuracy: 0.9517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/176 [============>.................] - ETA: 49s - loss: 0.7956 - accuracy: 0.9517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/176 [=============>................] - ETA: 48s - loss: 0.7951 - accuracy: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/176 [=============>................] - ETA: 48s - loss: 0.7949 - accuracy: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/176 [=============>................] - ETA: 47s - loss: 0.7946 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/176 [=============>................] - ETA: 47s - loss: 0.7944 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/176 [=============>................] - ETA: 46s - loss: 0.7945 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/176 [==============>...............] - ETA: 46s - loss: 0.7949 - accuracy: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/176 [==============>...............] - ETA: 45s - loss: 0.7944 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/176 [==============>...............] - ETA: 45s - loss: 0.7942 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/176 [==============>...............] - ETA: 44s - loss: 0.7946 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/176 [==============>...............] - ETA: 44s - loss: 0.7947 - accuracy: 0.9519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/176 [==============>...............] - ETA: 43s - loss: 0.7941 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/176 [===============>..............] - ETA: 43s - loss: 0.7943 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/176 [===============>..............] - ETA: 42s - loss: 0.7938 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/176 [===============>..............] - ETA: 42s - loss: 0.7935 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/176 [===============>..............] - ETA: 41s - loss: 0.7938 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/176 [===============>..............] - ETA: 40s - loss: 0.7941 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/176 [===============>..............] - ETA: 40s - loss: 0.7937 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/176 [================>.............] - ETA: 39s - loss: 0.7938 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/176 [================>.............] - ETA: 39s - loss: 0.7938 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/176 [================>.............] - ETA: 38s - loss: 0.7938 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/176 [================>.............] - ETA: 38s - loss: 0.7932 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/176 [================>.............] - ETA: 37s - loss: 0.7942 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/176 [================>.............] - ETA: 37s - loss: 0.7945 - accuracy: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/176 [=================>............] - ETA: 36s - loss: 0.7943 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/176 [=================>............] - ETA: 36s - loss: 0.7944 - accuracy: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/176 [=================>............] - ETA: 35s - loss: 0.7947 - accuracy: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/176 [=================>............] - ETA: 35s - loss: 0.7944 - accuracy: 0.9520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/176 [=================>............] - ETA: 34s - loss: 0.7944 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/176 [=================>............] - ETA: 34s - loss: 0.7943 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/176 [==================>...........] - ETA: 33s - loss: 0.7942 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/176 [==================>...........] - ETA: 33s - loss: 0.7937 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/176 [==================>...........] - ETA: 32s - loss: 0.7937 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/176 [==================>...........] - ETA: 31s - loss: 0.7934 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/176 [==================>...........] - ETA: 31s - loss: 0.7931 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/176 [==================>...........] - ETA: 30s - loss: 0.7926 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/176 [===================>..........] - ETA: 30s - loss: 0.7929 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/176 [===================>..........] - ETA: 29s - loss: 0.7925 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/176 [===================>..........] - ETA: 29s - loss: 0.7925 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/176 [===================>..........] - ETA: 28s - loss: 0.7923 - accuracy: 0.9528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/176 [===================>..........] - ETA: 28s - loss: 0.7919 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/176 [===================>..........] - ETA: 27s - loss: 0.7926 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/176 [====================>.........] - ETA: 27s - loss: 0.7926 - accuracy: 0.9529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/176 [====================>.........] - ETA: 26s - loss: 0.7923 - accuracy: 0.9530" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/176 [====================>.........] - ETA: 26s - loss: 0.7920 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/176 [====================>.........] - ETA: 25s - loss: 0.7918 - accuracy: 0.9532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/176 [====================>.........] - ETA: 25s - loss: 0.7918 - accuracy: 0.9532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/176 [====================>.........] - ETA: 24s - loss: 0.7914 - accuracy: 0.9535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/176 [=====================>........] - ETA: 24s - loss: 0.7916 - accuracy: 0.9534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/176 [=====================>........] - ETA: 23s - loss: 0.7915 - accuracy: 0.9534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/176 [=====================>........] - ETA: 23s - loss: 0.7917 - accuracy: 0.9532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/176 [=====================>........] - ETA: 22s - loss: 0.7913 - accuracy: 0.9535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/176 [=====================>........] - ETA: 22s - loss: 0.7909 - accuracy: 0.9537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/176 [======================>.......] - ETA: 21s - loss: 0.7908 - accuracy: 0.9537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/176 [======================>.......] - ETA: 20s - loss: 0.7906 - accuracy: 0.9538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/176 [======================>.......] - ETA: 20s - loss: 0.7907 - accuracy: 0.9537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/176 [======================>.......] - ETA: 19s - loss: 0.7904 - accuracy: 0.9540" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/176 [======================>.......] - ETA: 19s - loss: 0.7901 - accuracy: 0.9541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/176 [======================>.......] - ETA: 18s - loss: 0.7898 - accuracy: 0.9542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/176 [=======================>......] - ETA: 18s - loss: 0.7897 - accuracy: 0.9543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/176 [=======================>......] - ETA: 17s - loss: 0.7899 - accuracy: 0.9542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/176 [=======================>......] - ETA: 17s - loss: 0.7898 - accuracy: 0.9543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/176 [=======================>......] - ETA: 16s - loss: 0.7896 - accuracy: 0.9544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/176 [=======================>......] - ETA: 16s - loss: 0.7896 - accuracy: 0.9545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/176 [=======================>......] - ETA: 15s - loss: 0.7898 - accuracy: 0.9544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/176 [========================>.....] - ETA: 15s - loss: 0.7899 - accuracy: 0.9544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/176 [========================>.....] - ETA: 14s - loss: 0.7898 - accuracy: 0.9545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/176 [========================>.....] - ETA: 14s - loss: 0.7896 - accuracy: 0.9546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/176 [========================>.....] - ETA: 13s - loss: 0.7893 - accuracy: 0.9547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/176 [========================>.....] - ETA: 13s - loss: 0.7895 - accuracy: 0.9546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/176 [========================>.....] - ETA: 12s - loss: 0.7893 - accuracy: 0.9546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/176 [=========================>....] - ETA: 12s - loss: 0.7893 - accuracy: 0.9546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/176 [=========================>....] - ETA: 11s - loss: 0.7894 - accuracy: 0.9546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/176 [=========================>....] - ETA: 11s - loss: 0.7892 - accuracy: 0.9548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/176 [=========================>....] - ETA: 10s - loss: 0.7891 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/176 [=========================>....] - ETA: 9s - loss: 0.7890 - accuracy: 0.9550 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/176 [=========================>....] - ETA: 9s - loss: 0.7888 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/176 [==========================>...] - ETA: 8s - loss: 0.7889 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/176 [==========================>...] - ETA: 8s - loss: 0.7889 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/176 [==========================>...] - ETA: 7s - loss: 0.7890 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/176 [==========================>...] - ETA: 7s - loss: 0.7886 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/176 [==========================>...] - ETA: 6s - loss: 0.7886 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/176 [==========================>...] - ETA: 6s - loss: 0.7885 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/176 [===========================>..] - ETA: 5s - loss: 0.7884 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/176 [===========================>..] - ETA: 5s - loss: 0.7887 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/176 [===========================>..] - ETA: 4s - loss: 0.7886 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/176 [===========================>..] - ETA: 4s - loss: 0.7886 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/176 [===========================>..] - ETA: 3s - loss: 0.7887 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/176 [===========================>..] - ETA: 3s - loss: 0.7887 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/176 [============================>.] - ETA: 2s - loss: 0.7886 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/176 [============================>.] - ETA: 2s - loss: 0.7884 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/176 [============================>.] - ETA: 1s - loss: 0.7885 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/176 [============================>.] - ETA: 1s - loss: 0.7888 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/176 [============================>.] - ETA: 0s - loss: 0.7892 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - ETA: 0s - loss: 0.7895 - accuracy: 0.9548" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - 97s 536ms/step - loss: 0.7895 - accuracy: 0.9548 - val_loss: 1.0854 - val_accuracy: 0.8200\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/176 [..............................] - ETA: 8:34 - loss: 0.7545 - accuracy: 0.9688" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/176 [..............................] - ETA: 1:29 - loss: 0.7580 - accuracy: 0.9648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/176 [..............................] - ETA: 1:29 - loss: 0.7643 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/176 [..............................] - ETA: 1:29 - loss: 0.7705 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/176 [..............................] - ETA: 1:29 - loss: 0.7865 - accuracy: 0.9547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/176 [>.............................] - ETA: 1:29 - loss: 0.7869 - accuracy: 0.9557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/176 [>.............................] - ETA: 1:29 - loss: 0.7909 - accuracy: 0.9542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/176 [>.............................] - ETA: 1:28 - loss: 0.7908 - accuracy: 0.9541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/176 [>.............................] - ETA: 1:28 - loss: 0.7868 - accuracy: 0.9557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/176 [>.............................] - ETA: 1:27 - loss: 0.7849 - accuracy: 0.9570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/176 [>.............................] - ETA: 1:27 - loss: 0.7857 - accuracy: 0.9560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/176 [=>............................] - ETA: 1:26 - loss: 0.7875 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/176 [=>............................] - ETA: 1:25 - loss: 0.7880 - accuracy: 0.9549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/176 [=>............................] - ETA: 1:25 - loss: 0.7889 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/176 [=>............................] - ETA: 1:24 - loss: 0.7906 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/176 [=>............................] - ETA: 1:24 - loss: 0.7894 - accuracy: 0.9526" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/176 [=>............................] - ETA: 1:23 - loss: 0.7875 - accuracy: 0.9536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/176 [==>...........................] - ETA: 1:23 - loss: 0.7857 - accuracy: 0.9540" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/176 [==>...........................] - ETA: 1:22 - loss: 0.7862 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/176 [==>...........................] - ETA: 1:22 - loss: 0.7854 - accuracy: 0.9535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/176 [==>...........................] - ETA: 1:21 - loss: 0.7849 - accuracy: 0.9542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/176 [==>...........................] - ETA: 1:21 - loss: 0.7838 - accuracy: 0.9549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/176 [==>...........................] - ETA: 1:20 - loss: 0.7837 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/176 [===>..........................] - ETA: 1:19 - loss: 0.7864 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/176 [===>..........................] - ETA: 1:19 - loss: 0.7879 - accuracy: 0.9528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/176 [===>..........................] - ETA: 1:18 - loss: 0.7897 - accuracy: 0.9513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/176 [===>..........................] - ETA: 1:18 - loss: 0.7887 - accuracy: 0.9523" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/176 [===>..........................] - ETA: 1:17 - loss: 0.7892 - accuracy: 0.9517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/176 [===>..........................] - ETA: 1:17 - loss: 0.7893 - accuracy: 0.9512" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/176 [====>.........................] - ETA: 1:16 - loss: 0.7886 - accuracy: 0.9516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/176 [====>.........................] - ETA: 1:16 - loss: 0.7873 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/176 [====>.........................] - ETA: 1:15 - loss: 0.7861 - accuracy: 0.9529" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/176 [====>.........................] - ETA: 1:15 - loss: 0.7868 - accuracy: 0.9524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/176 [====>.........................] - ETA: 1:14 - loss: 0.7874 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/176 [====>.........................] - ETA: 1:14 - loss: 0.7883 - accuracy: 0.9513" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/176 [=====>........................] - ETA: 1:13 - loss: 0.7885 - accuracy: 0.9514" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/176 [=====>........................] - ETA: 1:13 - loss: 0.7895 - accuracy: 0.9512" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/176 [=====>........................] - ETA: 1:12 - loss: 0.7895 - accuracy: 0.9515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/176 [=====>........................] - ETA: 1:12 - loss: 0.7892 - accuracy: 0.9517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/176 [=====>........................] - ETA: 1:11 - loss: 0.7893 - accuracy: 0.9518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/176 [=====>........................] - ETA: 1:11 - loss: 0.7898 - accuracy: 0.9510" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/176 [======>.......................] - ETA: 1:10 - loss: 0.7897 - accuracy: 0.9511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/176 [======>.......................] - ETA: 1:09 - loss: 0.7893 - accuracy: 0.9511" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/176 [======>.......................] - ETA: 1:09 - loss: 0.7897 - accuracy: 0.9508" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/176 [======>.......................] - ETA: 1:08 - loss: 0.7883 - accuracy: 0.9517" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/176 [======>.......................] - ETA: 1:08 - loss: 0.7881 - accuracy: 0.9518" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/176 [=======>......................] - ETA: 1:07 - loss: 0.7873 - accuracy: 0.9521" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/176 [=======>......................] - ETA: 1:07 - loss: 0.7883 - accuracy: 0.9515" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/176 [=======>......................] - ETA: 1:06 - loss: 0.7872 - accuracy: 0.9522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/176 [=======>......................] - ETA: 1:06 - loss: 0.7865 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/176 [=======>......................] - ETA: 1:05 - loss: 0.7865 - accuracy: 0.9524" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/176 [=======>......................] - ETA: 1:05 - loss: 0.7858 - accuracy: 0.9527" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/176 [========>.....................] - ETA: 1:04 - loss: 0.7860 - accuracy: 0.9525" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/176 [========>.....................] - ETA: 1:04 - loss: 0.7858 - accuracy: 0.9528" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/176 [========>.....................] - ETA: 1:03 - loss: 0.7849 - accuracy: 0.9533" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/176 [========>.....................] - ETA: 1:03 - loss: 0.7843 - accuracy: 0.9537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/176 [========>.....................] - ETA: 1:02 - loss: 0.7851 - accuracy: 0.9534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/176 [========>.....................] - ETA: 1:02 - loss: 0.7846 - accuracy: 0.9538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/176 [=========>....................] - ETA: 1:01 - loss: 0.7843 - accuracy: 0.9537" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/176 [=========>....................] - ETA: 1:00 - loss: 0.7848 - accuracy: 0.9536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/176 [=========>....................] - ETA: 1:00 - loss: 0.7852 - accuracy: 0.9535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/176 [=========>....................] - ETA: 59s - loss: 0.7850 - accuracy: 0.9535 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/176 [=========>....................] - ETA: 59s - loss: 0.7849 - accuracy: 0.9534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/176 [=========>....................] - ETA: 58s - loss: 0.7849 - accuracy: 0.9534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/176 [==========>...................] - ETA: 58s - loss: 0.7848 - accuracy: 0.9534" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/176 [==========>...................] - ETA: 57s - loss: 0.7852 - accuracy: 0.9530" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/176 [==========>...................] - ETA: 57s - loss: 0.7853 - accuracy: 0.9532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/176 [==========>...................] - ETA: 56s - loss: 0.7854 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/176 [==========>...................] - ETA: 56s - loss: 0.7852 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/176 [==========>...................] - ETA: 55s - loss: 0.7849 - accuracy: 0.9535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/176 [===========>..................] - ETA: 55s - loss: 0.7849 - accuracy: 0.9535" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/176 [===========>..................] - ETA: 54s - loss: 0.7854 - accuracy: 0.9532" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/176 [===========>..................] - ETA: 54s - loss: 0.7849 - accuracy: 0.9536" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/176 [===========>..................] - ETA: 53s - loss: 0.7845 - accuracy: 0.9538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/176 [===========>..................] - ETA: 53s - loss: 0.7839 - accuracy: 0.9542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/176 [===========>..................] - ETA: 52s - loss: 0.7841 - accuracy: 0.9541" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/176 [============>.................] - ETA: 52s - loss: 0.7838 - accuracy: 0.9542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/176 [============>.................] - ETA: 51s - loss: 0.7845 - accuracy: 0.9538" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/176 [============>.................] - ETA: 51s - loss: 0.7844 - accuracy: 0.9539" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/176 [============>.................] - ETA: 50s - loss: 0.7841 - accuracy: 0.9542" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/176 [============>.................] - ETA: 50s - loss: 0.7838 - accuracy: 0.9543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/176 [============>.................] - ETA: 49s - loss: 0.7832 - accuracy: 0.9545" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/176 [=============>................] - ETA: 48s - loss: 0.7828 - accuracy: 0.9546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/176 [=============>................] - ETA: 48s - loss: 0.7829 - accuracy: 0.9546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/176 [=============>................] - ETA: 47s - loss: 0.7829 - accuracy: 0.9547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/176 [=============>................] - ETA: 47s - loss: 0.7830 - accuracy: 0.9547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/176 [=============>................] - ETA: 46s - loss: 0.7831 - accuracy: 0.9547" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/176 [==============>...............] - ETA: 46s - loss: 0.7826 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/176 [==============>...............] - ETA: 45s - loss: 0.7830 - accuracy: 0.9549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/176 [==============>...............] - ETA: 45s - loss: 0.7826 - accuracy: 0.9549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/176 [==============>...............] - ETA: 44s - loss: 0.7825 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/176 [==============>...............] - ETA: 44s - loss: 0.7830 - accuracy: 0.9546" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/176 [==============>...............] - ETA: 43s - loss: 0.7823 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/176 [===============>..............] - ETA: 43s - loss: 0.7820 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/176 [===============>..............] - ETA: 42s - loss: 0.7819 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/176 [===============>..............] - ETA: 42s - loss: 0.7825 - accuracy: 0.9549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/176 [===============>..............] - ETA: 41s - loss: 0.7820 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/176 [===============>..............] - ETA: 41s - loss: 0.7823 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/176 [===============>..............] - ETA: 40s - loss: 0.7821 - accuracy: 0.9549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/176 [================>.............] - ETA: 39s - loss: 0.7818 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/176 [================>.............] - ETA: 39s - loss: 0.7821 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/176 [================>.............] - ETA: 38s - loss: 0.7822 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/176 [================>.............] - ETA: 38s - loss: 0.7823 - accuracy: 0.9549" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/176 [================>.............] - ETA: 37s - loss: 0.7821 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/176 [================>.............] - ETA: 37s - loss: 0.7822 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/176 [=================>............] - ETA: 36s - loss: 0.7822 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/176 [=================>............] - ETA: 36s - loss: 0.7823 - accuracy: 0.9550" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/176 [=================>............] - ETA: 35s - loss: 0.7822 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/176 [=================>............] - ETA: 35s - loss: 0.7822 - accuracy: 0.9551" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/176 [=================>............] - ETA: 34s - loss: 0.7823 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/176 [=================>............] - ETA: 34s - loss: 0.7822 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/176 [==================>...........] - ETA: 33s - loss: 0.7819 - accuracy: 0.9554" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/176 [==================>...........] - ETA: 33s - loss: 0.7819 - accuracy: 0.9553" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/176 [==================>...........] - ETA: 32s - loss: 0.7818 - accuracy: 0.9552" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/176 [==================>...........] - ETA: 32s - loss: 0.7817 - accuracy: 0.9553" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/176 [==================>...........] - ETA: 31s - loss: 0.7812 - accuracy: 0.9556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/176 [==================>...........] - ETA: 31s - loss: 0.7809 - accuracy: 0.9557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/176 [===================>..........] - ETA: 30s - loss: 0.7805 - accuracy: 0.9558" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/176 [===================>..........] - ETA: 29s - loss: 0.7804 - accuracy: 0.9559" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/176 [===================>..........] - ETA: 29s - loss: 0.7804 - accuracy: 0.9560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/176 [===================>..........] - ETA: 28s - loss: 0.7800 - accuracy: 0.9562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/176 [===================>..........] - ETA: 28s - loss: 0.7801 - accuracy: 0.9561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/176 [===================>..........] - ETA: 27s - loss: 0.7809 - accuracy: 0.9557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/176 [====================>.........] - ETA: 27s - loss: 0.7807 - accuracy: 0.9557" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/176 [====================>.........] - ETA: 26s - loss: 0.7805 - accuracy: 0.9556" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/176 [====================>.........] - ETA: 26s - loss: 0.7800 - accuracy: 0.9559" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/176 [====================>.........] - ETA: 25s - loss: 0.7797 - accuracy: 0.9561" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/176 [====================>.........] - ETA: 25s - loss: 0.7794 - accuracy: 0.9562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/176 [====================>.........] - ETA: 24s - loss: 0.7795 - accuracy: 0.9562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/176 [=====================>........] - ETA: 24s - loss: 0.7792 - accuracy: 0.9564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/176 [=====================>........] - ETA: 23s - loss: 0.7794 - accuracy: 0.9564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/176 [=====================>........] - ETA: 23s - loss: 0.7790 - accuracy: 0.9566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/176 [=====================>........] - ETA: 22s - loss: 0.7791 - accuracy: 0.9565" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/176 [=====================>........] - ETA: 22s - loss: 0.7791 - accuracy: 0.9566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/176 [======================>.......] - ETA: 21s - loss: 0.7790 - accuracy: 0.9567" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/176 [======================>.......] - ETA: 21s - loss: 0.7788 - accuracy: 0.9567" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/176 [======================>.......] - ETA: 20s - loss: 0.7786 - accuracy: 0.9569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/176 [======================>.......] - ETA: 19s - loss: 0.7781 - accuracy: 0.9571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/176 [======================>.......] - ETA: 19s - loss: 0.7782 - accuracy: 0.9569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/176 [======================>.......] - ETA: 18s - loss: 0.7778 - accuracy: 0.9571" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/176 [=======================>......] - ETA: 18s - loss: 0.7776 - accuracy: 0.9573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/176 [=======================>......] - ETA: 17s - loss: 0.7774 - accuracy: 0.9575" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/176 [=======================>......] - ETA: 17s - loss: 0.7772 - accuracy: 0.9575" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/176 [=======================>......] - ETA: 16s - loss: 0.7768 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/176 [=======================>......] - ETA: 16s - loss: 0.7765 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/176 [=======================>......] - ETA: 15s - loss: 0.7765 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/176 [========================>.....] - ETA: 15s - loss: 0.7762 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/176 [========================>.....] - ETA: 14s - loss: 0.7761 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/176 [========================>.....] - ETA: 14s - loss: 0.7760 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/176 [========================>.....] - ETA: 13s - loss: 0.7760 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/176 [========================>.....] - ETA: 13s - loss: 0.7762 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/176 [========================>.....] - ETA: 12s - loss: 0.7760 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/176 [=========================>....] - ETA: 12s - loss: 0.7758 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/176 [=========================>....] - ETA: 11s - loss: 0.7760 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/176 [=========================>....] - ETA: 11s - loss: 0.7762 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/176 [=========================>....] - ETA: 10s - loss: 0.7763 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/176 [=========================>....] - ETA: 9s - loss: 0.7761 - accuracy: 0.9579 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/176 [=========================>....] - ETA: 9s - loss: 0.7762 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/176 [==========================>...] - ETA: 8s - loss: 0.7759 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/176 [==========================>...] - ETA: 8s - loss: 0.7762 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/176 [==========================>...] - ETA: 7s - loss: 0.7760 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/176 [==========================>...] - ETA: 7s - loss: 0.7759 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/176 [==========================>...] - ETA: 6s - loss: 0.7761 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/176 [==========================>...] - ETA: 6s - loss: 0.7761 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/176 [===========================>..] - ETA: 5s - loss: 0.7761 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/176 [===========================>..] - ETA: 5s - loss: 0.7759 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/176 [===========================>..] - ETA: 4s - loss: 0.7762 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/176 [===========================>..] - ETA: 4s - loss: 0.7761 - accuracy: 0.9576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/176 [===========================>..] - ETA: 3s - loss: 0.7760 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/176 [===========================>..] - ETA: 3s - loss: 0.7763 - accuracy: 0.9575" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/176 [============================>.] - ETA: 2s - loss: 0.7760 - accuracy: 0.9576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/176 [============================>.] - ETA: 2s - loss: 0.7758 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/176 [============================>.] - ETA: 1s - loss: 0.7759 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/176 [============================>.] - ETA: 1s - loss: 0.7758 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/176 [============================>.] - ETA: 0s - loss: 0.7755 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - ETA: 0s - loss: 0.7752 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - 97s 538ms/step - loss: 0.7752 - accuracy: 0.9581 - val_loss: 1.0308 - val_accuracy: 0.8401\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 4/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/176 [..............................] - ETA: 9:12 - loss: 0.7818 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/176 [..............................] - ETA: 1:32 - loss: 0.7753 - accuracy: 0.9570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/176 [..............................] - ETA: 1:30 - loss: 0.7625 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/176 [..............................] - ETA: 1:30 - loss: 0.7699 - accuracy: 0.9570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/176 [..............................] - ETA: 1:29 - loss: 0.7605 - accuracy: 0.9625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/176 [>.............................] - ETA: 1:28 - loss: 0.7657 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/176 [>.............................] - ETA: 1:28 - loss: 0.7684 - accuracy: 0.9598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/176 [>.............................] - ETA: 1:27 - loss: 0.7664 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/176 [>.............................] - ETA: 1:27 - loss: 0.7666 - accuracy: 0.9601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/176 [>.............................] - ETA: 1:27 - loss: 0.7703 - accuracy: 0.9594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/176 [>.............................] - ETA: 1:26 - loss: 0.7675 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/176 [=>............................] - ETA: 1:25 - loss: 0.7711 - accuracy: 0.9596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/176 [=>............................] - ETA: 1:25 - loss: 0.7750 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/176 [=>............................] - ETA: 1:24 - loss: 0.7752 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/176 [=>............................] - ETA: 1:24 - loss: 0.7738 - accuracy: 0.9589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/176 [=>............................] - ETA: 1:23 - loss: 0.7702 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/176 [=>............................] - ETA: 1:23 - loss: 0.7683 - accuracy: 0.9614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/176 [==>...........................] - ETA: 1:22 - loss: 0.7694 - accuracy: 0.9614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/176 [==>...........................] - ETA: 1:21 - loss: 0.7716 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/176 [==>...........................] - ETA: 1:21 - loss: 0.7774 - accuracy: 0.9586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/176 [==>...........................] - ETA: 1:20 - loss: 0.7757 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/176 [==>...........................] - ETA: 1:20 - loss: 0.7779 - accuracy: 0.9574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/176 [==>...........................] - ETA: 1:19 - loss: 0.7764 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/176 [===>..........................] - ETA: 1:19 - loss: 0.7745 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/176 [===>..........................] - ETA: 1:18 - loss: 0.7797 - accuracy: 0.9563" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/176 [===>..........................] - ETA: 1:18 - loss: 0.7781 - accuracy: 0.9573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/176 [===>..........................] - ETA: 1:17 - loss: 0.7771 - accuracy: 0.9575" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/176 [===>..........................] - ETA: 1:17 - loss: 0.7754 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/176 [===>..........................] - ETA: 1:16 - loss: 0.7746 - accuracy: 0.9588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/176 [====>.........................] - ETA: 1:16 - loss: 0.7740 - accuracy: 0.9586" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/176 [====>.........................] - ETA: 1:15 - loss: 0.7721 - accuracy: 0.9594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/176 [====>.........................] - ETA: 1:15 - loss: 0.7729 - accuracy: 0.9592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/176 [====>.........................] - ETA: 1:14 - loss: 0.7726 - accuracy: 0.9595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/176 [====>.........................] - ETA: 1:14 - loss: 0.7738 - accuracy: 0.9584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/176 [====>.........................] - ETA: 1:13 - loss: 0.7750 - accuracy: 0.9574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/176 [=====>........................] - ETA: 1:13 - loss: 0.7765 - accuracy: 0.9566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/176 [=====>........................] - ETA: 1:12 - loss: 0.7761 - accuracy: 0.9567" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/176 [=====>........................] - ETA: 1:12 - loss: 0.7756 - accuracy: 0.9568" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/176 [=====>........................] - ETA: 1:11 - loss: 0.7753 - accuracy: 0.9573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/176 [=====>........................] - ETA: 1:11 - loss: 0.7750 - accuracy: 0.9570" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/176 [=====>........................] - ETA: 1:10 - loss: 0.7739 - accuracy: 0.9573" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/176 [======>.......................] - ETA: 1:10 - loss: 0.7733 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/176 [======>.......................] - ETA: 1:09 - loss: 0.7738 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/176 [======>.......................] - ETA: 1:09 - loss: 0.7734 - accuracy: 0.9576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/176 [======>.......................] - ETA: 1:08 - loss: 0.7731 - accuracy: 0.9576" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/176 [======>.......................] - ETA: 1:08 - loss: 0.7721 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/176 [=======>......................] - ETA: 1:07 - loss: 0.7720 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/176 [=======>......................] - ETA: 1:07 - loss: 0.7716 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/176 [=======>......................] - ETA: 1:06 - loss: 0.7707 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/176 [=======>......................] - ETA: 1:06 - loss: 0.7702 - accuracy: 0.9588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/176 [=======>......................] - ETA: 1:05 - loss: 0.7705 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/176 [=======>......................] - ETA: 1:04 - loss: 0.7698 - accuracy: 0.9591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/176 [========>.....................] - ETA: 1:04 - loss: 0.7700 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/176 [========>.....................] - ETA: 1:03 - loss: 0.7695 - accuracy: 0.9588" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/176 [========>.....................] - ETA: 1:03 - loss: 0.7688 - accuracy: 0.9589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/176 [========>.....................] - ETA: 1:02 - loss: 0.7686 - accuracy: 0.9593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/176 [========>.....................] - ETA: 1:02 - loss: 0.7687 - accuracy: 0.9590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/176 [========>.....................] - ETA: 1:01 - loss: 0.7685 - accuracy: 0.9591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/176 [=========>....................] - ETA: 1:01 - loss: 0.7689 - accuracy: 0.9591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/176 [=========>....................] - ETA: 1:00 - loss: 0.7690 - accuracy: 0.9592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/176 [=========>....................] - ETA: 1:00 - loss: 0.7688 - accuracy: 0.9593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/176 [=========>....................] - ETA: 59s - loss: 0.7684 - accuracy: 0.9590 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/176 [=========>....................] - ETA: 59s - loss: 0.7682 - accuracy: 0.9590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/176 [=========>....................] - ETA: 58s - loss: 0.7690 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/176 [==========>...................] - ETA: 58s - loss: 0.7690 - accuracy: 0.9584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/176 [==========>...................] - ETA: 57s - loss: 0.7683 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/176 [==========>...................] - ETA: 57s - loss: 0.7690 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/176 [==========>...................] - ETA: 56s - loss: 0.7692 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/176 [==========>...................] - ETA: 56s - loss: 0.7691 - accuracy: 0.9584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/176 [==========>...................] - ETA: 55s - loss: 0.7692 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/176 [===========>..................] - ETA: 54s - loss: 0.7690 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/176 [===========>..................] - ETA: 54s - loss: 0.7691 - accuracy: 0.9584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/176 [===========>..................] - ETA: 53s - loss: 0.7694 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/176 [===========>..................] - ETA: 53s - loss: 0.7691 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/176 [===========>..................] - ETA: 52s - loss: 0.7688 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/176 [===========>..................] - ETA: 52s - loss: 0.7698 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/176 [============>.................] - ETA: 51s - loss: 0.7697 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/176 [============>.................] - ETA: 51s - loss: 0.7691 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/176 [============>.................] - ETA: 50s - loss: 0.7690 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/176 [============>.................] - ETA: 50s - loss: 0.7691 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/176 [============>.................] - ETA: 49s - loss: 0.7692 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/176 [============>.................] - ETA: 49s - loss: 0.7692 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/176 [=============>................] - ETA: 48s - loss: 0.7687 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/176 [=============>................] - ETA: 48s - loss: 0.7682 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/176 [=============>................] - ETA: 47s - loss: 0.7689 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/176 [=============>................] - ETA: 47s - loss: 0.7684 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/176 [=============>................] - ETA: 46s - loss: 0.7684 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/176 [==============>...............] - ETA: 46s - loss: 0.7682 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/176 [==============>...............] - ETA: 45s - loss: 0.7677 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/176 [==============>...............] - ETA: 44s - loss: 0.7679 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/176 [==============>...............] - ETA: 44s - loss: 0.7679 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/176 [==============>...............] - ETA: 43s - loss: 0.7688 - accuracy: 0.9577" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/176 [==============>...............] - ETA: 43s - loss: 0.7693 - accuracy: 0.9574" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/176 [===============>..............] - ETA: 42s - loss: 0.7689 - accuracy: 0.9578" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/176 [===============>..............] - ETA: 42s - loss: 0.7686 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/176 [===============>..............] - ETA: 41s - loss: 0.7687 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/176 [===============>..............] - ETA: 41s - loss: 0.7689 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/176 [===============>..............] - ETA: 40s - loss: 0.7689 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/176 [===============>..............] - ETA: 40s - loss: 0.7683 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/176 [================>.............] - ETA: 39s - loss: 0.7681 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/176 [================>.............] - ETA: 39s - loss: 0.7682 - accuracy: 0.9584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/176 [================>.............] - ETA: 38s - loss: 0.7687 - accuracy: 0.9582" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/176 [================>.............] - ETA: 38s - loss: 0.7685 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/176 [================>.............] - ETA: 37s - loss: 0.7683 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/176 [================>.............] - ETA: 37s - loss: 0.7687 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/176 [=================>............] - ETA: 36s - loss: 0.7692 - accuracy: 0.9581" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/176 [=================>............] - ETA: 36s - loss: 0.7694 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/176 [=================>............] - ETA: 35s - loss: 0.7696 - accuracy: 0.9579" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/176 [=================>............] - ETA: 35s - loss: 0.7694 - accuracy: 0.9580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/176 [=================>............] - ETA: 34s - loss: 0.7689 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/176 [=================>............] - ETA: 33s - loss: 0.7686 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/176 [==================>...........] - ETA: 33s - loss: 0.7688 - accuracy: 0.9584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/176 [==================>...........] - ETA: 32s - loss: 0.7687 - accuracy: 0.9584" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/176 [==================>...........] - ETA: 32s - loss: 0.7685 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/176 [==================>...........] - ETA: 31s - loss: 0.7683 - accuracy: 0.9585" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/176 [==================>...........] - ETA: 31s - loss: 0.7680 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/176 [==================>...........] - ETA: 30s - loss: 0.7676 - accuracy: 0.9590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/176 [===================>..........] - ETA: 30s - loss: 0.7676 - accuracy: 0.9590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/176 [===================>..........] - ETA: 29s - loss: 0.7673 - accuracy: 0.9592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/176 [===================>..........] - ETA: 29s - loss: 0.7672 - accuracy: 0.9592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/176 [===================>..........] - ETA: 28s - loss: 0.7669 - accuracy: 0.9593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/176 [===================>..........] - ETA: 28s - loss: 0.7673 - accuracy: 0.9593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/176 [===================>..........] - ETA: 27s - loss: 0.7679 - accuracy: 0.9590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/176 [====================>.........] - ETA: 27s - loss: 0.7680 - accuracy: 0.9589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/176 [====================>.........] - ETA: 26s - loss: 0.7677 - accuracy: 0.9591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/176 [====================>.........] - ETA: 26s - loss: 0.7677 - accuracy: 0.9590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/176 [====================>.........] - ETA: 25s - loss: 0.7675 - accuracy: 0.9591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/176 [====================>.........] - ETA: 25s - loss: 0.7675 - accuracy: 0.9591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/176 [====================>.........] - ETA: 24s - loss: 0.7677 - accuracy: 0.9589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/176 [=====================>........] - ETA: 24s - loss: 0.7677 - accuracy: 0.9589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/176 [=====================>........] - ETA: 23s - loss: 0.7675 - accuracy: 0.9590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/176 [=====================>........] - ETA: 22s - loss: 0.7672 - accuracy: 0.9592" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/176 [=====================>........] - ETA: 22s - loss: 0.7670 - accuracy: 0.9593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/176 [=====================>........] - ETA: 21s - loss: 0.7670 - accuracy: 0.9594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/176 [======================>.......] - ETA: 21s - loss: 0.7668 - accuracy: 0.9595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/176 [======================>.......] - ETA: 20s - loss: 0.7665 - accuracy: 0.9596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/176 [======================>.......] - ETA: 20s - loss: 0.7665 - accuracy: 0.9595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/176 [======================>.......] - ETA: 19s - loss: 0.7664 - accuracy: 0.9595" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/176 [======================>.......] - ETA: 19s - loss: 0.7668 - accuracy: 0.9593" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/176 [======================>.......] - ETA: 18s - loss: 0.7665 - accuracy: 0.9594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/176 [=======================>......] - ETA: 18s - loss: 0.7661 - accuracy: 0.9596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/176 [=======================>......] - ETA: 17s - loss: 0.7658 - accuracy: 0.9597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/176 [=======================>......] - ETA: 17s - loss: 0.7658 - accuracy: 0.9597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/176 [=======================>......] - ETA: 16s - loss: 0.7658 - accuracy: 0.9598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/176 [=======================>......] - ETA: 16s - loss: 0.7655 - accuracy: 0.9600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/176 [=======================>......] - ETA: 15s - loss: 0.7653 - accuracy: 0.9600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/176 [========================>.....] - ETA: 15s - loss: 0.7655 - accuracy: 0.9600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/176 [========================>.....] - ETA: 14s - loss: 0.7659 - accuracy: 0.9597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/176 [========================>.....] - ETA: 14s - loss: 0.7660 - accuracy: 0.9596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/176 [========================>.....] - ETA: 13s - loss: 0.7660 - accuracy: 0.9597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/176 [========================>.....] - ETA: 13s - loss: 0.7657 - accuracy: 0.9599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/176 [========================>.....] - ETA: 12s - loss: 0.7653 - accuracy: 0.9601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/176 [=========================>....] - ETA: 12s - loss: 0.7653 - accuracy: 0.9601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/176 [=========================>....] - ETA: 11s - loss: 0.7655 - accuracy: 0.9599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/176 [=========================>....] - ETA: 10s - loss: 0.7652 - accuracy: 0.9600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/176 [=========================>....] - ETA: 10s - loss: 0.7654 - accuracy: 0.9599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/176 [=========================>....] - ETA: 9s - loss: 0.7652 - accuracy: 0.9601 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/176 [=========================>....] - ETA: 9s - loss: 0.7653 - accuracy: 0.9601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/176 [==========================>...] - ETA: 8s - loss: 0.7651 - accuracy: 0.9602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/176 [==========================>...] - ETA: 8s - loss: 0.7649 - accuracy: 0.9603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/176 [==========================>...] - ETA: 7s - loss: 0.7647 - accuracy: 0.9604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/176 [==========================>...] - ETA: 7s - loss: 0.7646 - accuracy: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/176 [==========================>...] - ETA: 6s - loss: 0.7648 - accuracy: 0.9604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/176 [==========================>...] - ETA: 6s - loss: 0.7646 - accuracy: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/176 [===========================>..] - ETA: 5s - loss: 0.7647 - accuracy: 0.9604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/176 [===========================>..] - ETA: 5s - loss: 0.7645 - accuracy: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/176 [===========================>..] - ETA: 4s - loss: 0.7648 - accuracy: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/176 [===========================>..] - ETA: 4s - loss: 0.7650 - accuracy: 0.9602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/176 [===========================>..] - ETA: 3s - loss: 0.7651 - accuracy: 0.9603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/176 [===========================>..] - ETA: 3s - loss: 0.7650 - accuracy: 0.9603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/176 [============================>.] - ETA: 2s - loss: 0.7648 - accuracy: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/176 [============================>.] - ETA: 2s - loss: 0.7648 - accuracy: 0.9606" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/176 [============================>.] - ETA: 1s - loss: 0.7648 - accuracy: 0.9606" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/176 [============================>.] - ETA: 1s - loss: 0.7646 - accuracy: 0.9607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/176 [============================>.] - ETA: 0s - loss: 0.7643 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - ETA: 0s - loss: 0.7641 - accuracy: 0.9611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - 96s 532ms/step - loss: 0.7641 - accuracy: 0.9611 - val_loss: 1.0311 - val_accuracy: 0.8380\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 5/5\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/176 [..............................] - ETA: 8:21 - loss: 0.7734 - accuracy: 0.9531" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2/176 [..............................] - ETA: 1:32 - loss: 0.7832 - accuracy: 0.9453" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 3/176 [..............................] - ETA: 1:30 - loss: 0.7795 - accuracy: 0.9479" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/176 [..............................] - ETA: 1:29 - loss: 0.7998 - accuracy: 0.9414" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5/176 [..............................] - ETA: 1:28 - loss: 0.7867 - accuracy: 0.9516" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/176 [>.............................] - ETA: 1:28 - loss: 0.7750 - accuracy: 0.9583" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/176 [>.............................] - ETA: 1:27 - loss: 0.7711 - accuracy: 0.9598" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 8/176 [>.............................] - ETA: 1:27 - loss: 0.7705 - accuracy: 0.9590" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9/176 [>.............................] - ETA: 1:26 - loss: 0.7736 - accuracy: 0.9566" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/176 [>.............................] - ETA: 1:25 - loss: 0.7770 - accuracy: 0.9555" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 11/176 [>.............................] - ETA: 1:25 - loss: 0.7767 - accuracy: 0.9560" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/176 [=>............................] - ETA: 1:24 - loss: 0.7754 - accuracy: 0.9564" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/176 [=>............................] - ETA: 1:24 - loss: 0.7702 - accuracy: 0.9591" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 14/176 [=>............................] - ETA: 1:23 - loss: 0.7681 - accuracy: 0.9587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15/176 [=>............................] - ETA: 1:23 - loss: 0.7694 - accuracy: 0.9589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/176 [=>............................] - ETA: 1:23 - loss: 0.7665 - accuracy: 0.9600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17/176 [=>............................] - ETA: 1:22 - loss: 0.7673 - accuracy: 0.9600" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/176 [==>...........................] - ETA: 1:22 - loss: 0.7661 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/176 [==>...........................] - ETA: 1:21 - loss: 0.7663 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 20/176 [==>...........................] - ETA: 1:21 - loss: 0.7649 - accuracy: 0.9617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21/176 [==>...........................] - ETA: 1:20 - loss: 0.7641 - accuracy: 0.9621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/176 [==>...........................] - ETA: 1:20 - loss: 0.7668 - accuracy: 0.9616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 23/176 [==>...........................] - ETA: 1:19 - loss: 0.7687 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/176 [===>..........................] - ETA: 1:19 - loss: 0.7677 - accuracy: 0.9616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/176 [===>..........................] - ETA: 1:18 - loss: 0.7674 - accuracy: 0.9613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26/176 [===>..........................] - ETA: 1:18 - loss: 0.7656 - accuracy: 0.9621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27/176 [===>..........................] - ETA: 1:17 - loss: 0.7654 - accuracy: 0.9630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/176 [===>..........................] - ETA: 1:17 - loss: 0.7661 - accuracy: 0.9621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29/176 [===>..........................] - ETA: 1:17 - loss: 0.7673 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/176 [====>.........................] - ETA: 1:16 - loss: 0.7671 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/176 [====>.........................] - ETA: 1:16 - loss: 0.7681 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32/176 [====>.........................] - ETA: 1:15 - loss: 0.7676 - accuracy: 0.9612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/176 [====>.........................] - ETA: 1:14 - loss: 0.7679 - accuracy: 0.9614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 34/176 [====>.........................] - ETA: 1:14 - loss: 0.7678 - accuracy: 0.9616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/176 [====>.........................] - ETA: 1:13 - loss: 0.7673 - accuracy: 0.9616" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/176 [=====>........................] - ETA: 1:13 - loss: 0.7673 - accuracy: 0.9612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/176 [=====>........................] - ETA: 1:12 - loss: 0.7683 - accuracy: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/176 [=====>........................] - ETA: 1:12 - loss: 0.7681 - accuracy: 0.9607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39/176 [=====>........................] - ETA: 1:11 - loss: 0.7682 - accuracy: 0.9605" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/176 [=====>........................] - ETA: 1:11 - loss: 0.7672 - accuracy: 0.9609" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 41/176 [=====>........................] - ETA: 1:10 - loss: 0.7670 - accuracy: 0.9611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/176 [======>.......................] - ETA: 1:10 - loss: 0.7668 - accuracy: 0.9611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/176 [======>.......................] - ETA: 1:09 - loss: 0.7681 - accuracy: 0.9608" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 44/176 [======>.......................] - ETA: 1:09 - loss: 0.7677 - accuracy: 0.9611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 45/176 [======>.......................] - ETA: 1:08 - loss: 0.7676 - accuracy: 0.9613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/176 [======>.......................] - ETA: 1:08 - loss: 0.7666 - accuracy: 0.9614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 47/176 [=======>......................] - ETA: 1:07 - loss: 0.7657 - accuracy: 0.9619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/176 [=======>......................] - ETA: 1:07 - loss: 0.7659 - accuracy: 0.9619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/176 [=======>......................] - ETA: 1:06 - loss: 0.7657 - accuracy: 0.9617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50/176 [=======>......................] - ETA: 1:06 - loss: 0.7647 - accuracy: 0.9622" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/176 [=======>......................] - ETA: 1:05 - loss: 0.7642 - accuracy: 0.9625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/176 [=======>......................] - ETA: 1:05 - loss: 0.7635 - accuracy: 0.9627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 53/176 [========>.....................] - ETA: 1:04 - loss: 0.7632 - accuracy: 0.9630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/176 [========>.....................] - ETA: 1:04 - loss: 0.7630 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/176 [========>.....................] - ETA: 1:03 - loss: 0.7636 - accuracy: 0.9625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56/176 [========>.....................] - ETA: 1:03 - loss: 0.7629 - accuracy: 0.9625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57/176 [========>.....................] - ETA: 1:02 - loss: 0.7626 - accuracy: 0.9623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/176 [========>.....................] - ETA: 1:01 - loss: 0.7631 - accuracy: 0.9619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/176 [=========>....................] - ETA: 1:01 - loss: 0.7632 - accuracy: 0.9619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/176 [=========>....................] - ETA: 1:00 - loss: 0.7629 - accuracy: 0.9617" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/176 [=========>....................] - ETA: 1:00 - loss: 0.7630 - accuracy: 0.9618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62/176 [=========>....................] - ETA: 59s - loss: 0.7624 - accuracy: 0.9621 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/176 [=========>....................] - ETA: 59s - loss: 0.7627 - accuracy: 0.9619" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64/176 [=========>....................] - ETA: 58s - loss: 0.7625 - accuracy: 0.9620" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/176 [==========>...................] - ETA: 58s - loss: 0.7620 - accuracy: 0.9621" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/176 [==========>...................] - ETA: 57s - loss: 0.7618 - accuracy: 0.9624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/176 [==========>...................] - ETA: 57s - loss: 0.7608 - accuracy: 0.9629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68/176 [==========>...................] - ETA: 56s - loss: 0.7608 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/176 [==========>...................] - ETA: 56s - loss: 0.7610 - accuracy: 0.9627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 70/176 [==========>...................] - ETA: 55s - loss: 0.7607 - accuracy: 0.9627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/176 [===========>..................] - ETA: 55s - loss: 0.7613 - accuracy: 0.9623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/176 [===========>..................] - ETA: 54s - loss: 0.7610 - accuracy: 0.9623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/176 [===========>..................] - ETA: 54s - loss: 0.7615 - accuracy: 0.9623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74/176 [===========>..................] - ETA: 53s - loss: 0.7612 - accuracy: 0.9624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/176 [===========>..................] - ETA: 52s - loss: 0.7619 - accuracy: 0.9624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 76/176 [===========>..................] - ETA: 52s - loss: 0.7617 - accuracy: 0.9626" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/176 [============>.................] - ETA: 51s - loss: 0.7610 - accuracy: 0.9629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/176 [============>.................] - ETA: 51s - loss: 0.7609 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/176 [============>.................] - ETA: 50s - loss: 0.7616 - accuracy: 0.9624" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 80/176 [============>.................] - ETA: 50s - loss: 0.7612 - accuracy: 0.9627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/176 [============>.................] - ETA: 49s - loss: 0.7610 - accuracy: 0.9629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 82/176 [============>.................] - ETA: 49s - loss: 0.7616 - accuracy: 0.9625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/176 [=============>................] - ETA: 48s - loss: 0.7615 - accuracy: 0.9623" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/176 [=============>................] - ETA: 48s - loss: 0.7613 - accuracy: 0.9625" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/176 [=============>................] - ETA: 47s - loss: 0.7607 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 86/176 [=============>................] - ETA: 47s - loss: 0.7606 - accuracy: 0.9629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/176 [=============>................] - ETA: 46s - loss: 0.7603 - accuracy: 0.9629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 88/176 [==============>...............] - ETA: 46s - loss: 0.7601 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/176 [==============>...............] - ETA: 45s - loss: 0.7600 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/176 [==============>...............] - ETA: 45s - loss: 0.7597 - accuracy: 0.9633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/176 [==============>...............] - ETA: 44s - loss: 0.7602 - accuracy: 0.9632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 92/176 [==============>...............] - ETA: 44s - loss: 0.7599 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/176 [==============>...............] - ETA: 43s - loss: 0.7595 - accuracy: 0.9632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/176 [===============>..............] - ETA: 43s - loss: 0.7593 - accuracy: 0.9633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 95/176 [===============>..............] - ETA: 42s - loss: 0.7600 - accuracy: 0.9632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/176 [===============>..............] - ETA: 41s - loss: 0.7601 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/176 [===============>..............] - ETA: 41s - loss: 0.7601 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 98/176 [===============>..............] - ETA: 40s - loss: 0.7597 - accuracy: 0.9633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/176 [===============>..............] - ETA: 40s - loss: 0.7603 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/176 [================>.............] - ETA: 39s - loss: 0.7601 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101/176 [================>.............] - ETA: 39s - loss: 0.7599 - accuracy: 0.9633" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/176 [================>.............] - ETA: 38s - loss: 0.7600 - accuracy: 0.9631" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/176 [================>.............] - ETA: 38s - loss: 0.7604 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "104/176 [================>.............] - ETA: 37s - loss: 0.7604 - accuracy: 0.9630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/176 [================>.............] - ETA: 37s - loss: 0.7606 - accuracy: 0.9627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/176 [=================>............] - ETA: 36s - loss: 0.7607 - accuracy: 0.9627" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107/176 [=================>............] - ETA: 36s - loss: 0.7604 - accuracy: 0.9628" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/176 [=================>............] - ETA: 35s - loss: 0.7602 - accuracy: 0.9629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/176 [=================>............] - ETA: 35s - loss: 0.7600 - accuracy: 0.9630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "110/176 [=================>............] - ETA: 34s - loss: 0.7602 - accuracy: 0.9630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/176 [=================>............] - ETA: 34s - loss: 0.7599 - accuracy: 0.9630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/176 [==================>...........] - ETA: 33s - loss: 0.7597 - accuracy: 0.9632" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113/176 [==================>...........] - ETA: 33s - loss: 0.7594 - accuracy: 0.9634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/176 [==================>...........] - ETA: 32s - loss: 0.7590 - accuracy: 0.9636" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/176 [==================>...........] - ETA: 31s - loss: 0.7590 - accuracy: 0.9637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "116/176 [==================>...........] - ETA: 31s - loss: 0.7587 - accuracy: 0.9638" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/176 [==================>...........] - ETA: 30s - loss: 0.7589 - accuracy: 0.9637" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/176 [===================>..........] - ETA: 30s - loss: 0.7584 - accuracy: 0.9639" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "119/176 [===================>..........] - ETA: 29s - loss: 0.7581 - accuracy: 0.9641" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/176 [===================>..........] - ETA: 29s - loss: 0.7578 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/176 [===================>..........] - ETA: 28s - loss: 0.7576 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "122/176 [===================>..........] - ETA: 28s - loss: 0.7575 - accuracy: 0.9644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/176 [===================>..........] - ETA: 27s - loss: 0.7572 - accuracy: 0.9644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/176 [====================>.........] - ETA: 27s - loss: 0.7569 - accuracy: 0.9646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125/176 [====================>.........] - ETA: 26s - loss: 0.7566 - accuracy: 0.9647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/176 [====================>.........] - ETA: 26s - loss: 0.7571 - accuracy: 0.9644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/176 [====================>.........] - ETA: 25s - loss: 0.7569 - accuracy: 0.9646" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "128/176 [====================>.........] - ETA: 25s - loss: 0.7575 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/176 [====================>.........] - ETA: 24s - loss: 0.7573 - accuracy: 0.9643" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/176 [=====================>........] - ETA: 24s - loss: 0.7572 - accuracy: 0.9645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "131/176 [=====================>........] - ETA: 23s - loss: 0.7575 - accuracy: 0.9644" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/176 [=====================>........] - ETA: 23s - loss: 0.7573 - accuracy: 0.9645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/176 [=====================>........] - ETA: 22s - loss: 0.7569 - accuracy: 0.9647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134/176 [=====================>........] - ETA: 22s - loss: 0.7566 - accuracy: 0.9648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/176 [======================>.......] - ETA: 21s - loss: 0.7565 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/176 [======================>.......] - ETA: 20s - loss: 0.7566 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "137/176 [======================>.......] - ETA: 20s - loss: 0.7566 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/176 [======================>.......] - ETA: 19s - loss: 0.7567 - accuracy: 0.9648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/176 [======================>.......] - ETA: 19s - loss: 0.7565 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140/176 [======================>.......] - ETA: 18s - loss: 0.7562 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/176 [=======================>......] - ETA: 18s - loss: 0.7559 - accuracy: 0.9651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/176 [=======================>......] - ETA: 17s - loss: 0.7559 - accuracy: 0.9651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "143/176 [=======================>......] - ETA: 17s - loss: 0.7559 - accuracy: 0.9651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/176 [=======================>......] - ETA: 16s - loss: 0.7555 - accuracy: 0.9653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/176 [=======================>......] - ETA: 16s - loss: 0.7556 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "146/176 [=======================>......] - ETA: 15s - loss: 0.7555 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/176 [========================>.....] - ETA: 15s - loss: 0.7553 - accuracy: 0.9654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/176 [========================>.....] - ETA: 14s - loss: 0.7552 - accuracy: 0.9654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "149/176 [========================>.....] - ETA: 14s - loss: 0.7552 - accuracy: 0.9654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/176 [========================>.....] - ETA: 13s - loss: 0.7551 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/176 [========================>.....] - ETA: 13s - loss: 0.7550 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152/176 [========================>.....] - ETA: 12s - loss: 0.7549 - accuracy: 0.9656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/176 [=========================>....] - ETA: 12s - loss: 0.7550 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/176 [=========================>....] - ETA: 11s - loss: 0.7548 - accuracy: 0.9656" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "155/176 [=========================>....] - ETA: 11s - loss: 0.7549 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/176 [=========================>....] - ETA: 10s - loss: 0.7551 - accuracy: 0.9655" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/176 [=========================>....] - ETA: 9s - loss: 0.7549 - accuracy: 0.9656 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158/176 [=========================>....] - ETA: 9s - loss: 0.7555 - accuracy: 0.9654" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/176 [==========================>...] - ETA: 9s - loss: 0.7558 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/176 [==========================>...] - ETA: 8s - loss: 0.7559 - accuracy: 0.9651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/176 [==========================>...] - ETA: 8s - loss: 0.7556 - accuracy: 0.9653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/176 [==========================>...] - ETA: 7s - loss: 0.7555 - accuracy: 0.9653" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/176 [==========================>...] - ETA: 7s - loss: 0.7559 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164/176 [==========================>...] - ETA: 6s - loss: 0.7560 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/176 [===========================>..] - ETA: 6s - loss: 0.7561 - accuracy: 0.9648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/176 [===========================>..] - ETA: 5s - loss: 0.7560 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167/176 [===========================>..] - ETA: 4s - loss: 0.7562 - accuracy: 0.9647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/176 [===========================>..] - ETA: 4s - loss: 0.7562 - accuracy: 0.9648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/176 [===========================>..] - ETA: 3s - loss: 0.7560 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "170/176 [===========================>..] - ETA: 3s - loss: 0.7560 - accuracy: 0.9648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/176 [============================>.] - ETA: 2s - loss: 0.7562 - accuracy: 0.9648" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/176 [============================>.] - ETA: 2s - loss: 0.7560 - accuracy: 0.9649" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173/176 [============================>.] - ETA: 1s - loss: 0.7558 - accuracy: 0.9650" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/176 [============================>.] - ETA: 1s - loss: 0.7558 - accuracy: 0.9651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/176 [============================>.] - ETA: 0s - loss: 0.7556 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - ETA: 0s - loss: 0.7556 - accuracy: 0.9652" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176/176 [==============================] - 100s 557ms/step - loss: 0.7556 - accuracy: 0.9652 - val_loss: 0.9882 - val_accuracy: 0.8555\n" ] } ], "source": [ "model = image_classifier.create(\n", " train_data,\n", " model_spec=image_model_spec,\n", " batch_size=128,\n", " learning_rate=0.03,\n", " epochs=5,\n", " shuffle=True,\n", " train_whole_model=True,\n", " validation_data=validation_data)" ] }, { "cell_type": "markdown", "metadata": { "id": "buFDW0izBqIQ" }, "source": [ "## Evaluate model on test split" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:37:39.774895Z", "iopub.status.busy": "2023-05-23T08:37:39.774261Z", "iopub.status.idle": "2023-05-23T08:37:42.890302Z", "shell.execute_reply": "2023-05-23T08:37:42.889571Z" }, "id": "OYIZ1rlV7lxm" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/59 [..............................] - ETA: 1:27 - loss: 0.9291 - accuracy: 0.9062" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/59 [=>............................] - ETA: 1s - loss: 1.0331 - accuracy: 0.8359 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/59 [==>...........................] - ETA: 1s - loss: 1.0604 - accuracy: 0.8214" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "10/59 [====>.........................] - ETA: 1s - loss: 1.0393 - accuracy: 0.8375" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "13/59 [=====>........................] - ETA: 1s - loss: 1.0243 - accuracy: 0.8413" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "16/59 [=======>......................] - ETA: 0s - loss: 1.0133 - accuracy: 0.8398" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "18/59 [========>.....................] - ETA: 0s - loss: 1.0134 - accuracy: 0.8420" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "20/59 [=========>....................] - ETA: 0s - loss: 1.0091 - accuracy: 0.8484" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "22/59 [==========>...................] - ETA: 0s - loss: 0.9977 - accuracy: 0.8509" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "24/59 [===========>..................] - ETA: 0s - loss: 1.0118 - accuracy: 0.8464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/59 [============>.................] - ETA: 0s - loss: 1.0111 - accuracy: 0.8462" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "28/59 [=============>................] - ETA: 0s - loss: 1.0031 - accuracy: 0.8504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "30/59 [==============>...............] - ETA: 0s - loss: 0.9929 - accuracy: 0.8562" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "32/59 [===============>..............] - ETA: 0s - loss: 0.9887 - accuracy: 0.8604" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "34/59 [================>.............] - ETA: 0s - loss: 0.9856 - accuracy: 0.8603" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "36/59 [=================>............] - ETA: 0s - loss: 0.9856 - accuracy: 0.8602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "38/59 [==================>...........] - ETA: 0s - loss: 0.9774 - accuracy: 0.8651" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "40/59 [===================>..........] - ETA: 0s - loss: 0.9883 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "42/59 [====================>.........] - ETA: 0s - loss: 0.9917 - accuracy: 0.8601" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "44/59 [=====================>........] - ETA: 0s - loss: 0.9928 - accuracy: 0.8587" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "46/59 [======================>.......] - ETA: 0s - loss: 0.9891 - accuracy: 0.8607" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "49/59 [=======================>......] - ETA: 0s - loss: 0.9831 - accuracy: 0.8622" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "52/59 [=========================>....] - ETA: 0s - loss: 0.9818 - accuracy: 0.8630" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "55/59 [==========================>...] - ETA: 0s - loss: 0.9874 - accuracy: 0.8614" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "58/59 [============================>.] - ETA: 0s - loss: 0.9840 - accuracy: 0.8610" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "59/59 [==============================] - ETA: 0s - loss: 0.9846 - accuracy: 0.8599" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "59/59 [==============================] - 3s 27ms/step - loss: 0.9846 - accuracy: 0.8599\n" ] }, { "data": { "text/plain": [ "[0.9845712780952454, 0.8599469661712646]" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.evaluate(test_data)" ] }, { "cell_type": "markdown", "metadata": { "id": "YJaReZ_OVU71" }, "source": [ "To have an even better understanding of the fine tuned model, it's good to analyse the confusion matrix. This will show how often one class is predicted as another." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:37:42.893552Z", "iopub.status.busy": "2023-05-23T08:37:42.893241Z", "iopub.status.idle": "2023-05-23T08:37:42.898406Z", "shell.execute_reply": "2023-05-23T08:37:42.897754Z" }, "id": "o9_vs1nNKOLF" }, "outputs": [], "source": [ "def predict_class_label_number(dataset):\n", " \"\"\"Runs inference and returns predictions as class label numbers.\"\"\"\n", " rev_label_names = {l: i for i, l in enumerate(label_names)}\n", " return [\n", " rev_label_names[o[0][0]]\n", " for o in model.predict_top_k(dataset, batch_size=128)\n", " ]\n", "\n", "def show_confusion_matrix(cm, labels):\n", " plt.figure(figsize=(10, 8))\n", " sns.heatmap(cm, xticklabels=labels, yticklabels=labels, \n", " annot=True, fmt='g')\n", " plt.xlabel('Prediction')\n", " plt.ylabel('Label')\n", " plt.show()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:37:42.901728Z", "iopub.status.busy": "2023-05-23T08:37:42.901206Z", "iopub.status.idle": "2023-05-23T08:37:48.244173Z", "shell.execute_reply": "2023-05-23T08:37:48.243563Z" }, "id": "7BWZCKerCNF_" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxQAAAKnCAYAAAAfqgv+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHGklEQVR4nOzdd1yV9fvH8fdBEFEEHAhqztzmnpQjDTM1zTTTMjNnuco9vuUuUXOUZVp9zVGZKzNHmUqapubArbgxXIALcbHv3x/+PHG+inJOyn2Q17PH/XhwPvfnnPuCO/Bc5/oMi2EYhgAAAADAAS5mBwAAAAAg4yKhAAAAAOAwEgoAAAAADiOhAAAAAOAwEgoAAAAADiOhAAAAAOAwEgoAAAAADiOhAAAAAOAwEgoAAAAADnM1O4BHoXjeKmaHgPu4lRhndghIxaVbMWaHgFS4WPj8x5klJieZHQKQ4STGnzU7hFQlXDxp2rXd8hY37dqO4l8oAAAAAA57LCsUAAAAgMOoOtqFCgUAAAAAh5FQAAAAAHAYQ54AAACAlIxksyPIUKhQAAAAAHAYFQoAAAAgpWQqFPagQgEAAADAYVQoAAAAgBQM5lDYhQoFAAAAAIeRUAAAAABwGEOeAAAAgJSYlG0XKhQAAAAAHEaFAgAAAEiJSdl2oUIBAAAAwGEkFAAAAAAcxpAnAAAAIKXkJLMjyFCoUAAAAABwGBUKAAAAICUmZduFCgUAAAAAh1GhAAAAAFJiYzu7UKEAAAAA4DASCgAAAAAOY8gTAAAAkILBpGy7UKEAAAAA4DAqFAAAAEBKTMq2CxUKAAAAAA4joQAAAAAyoKSkJA0fPlzFihWTh4eHnnzySY0dO1aGYVj7GIahESNGKH/+/PLw8FBgYKCOHTtm8zqXL19W+/bt5eXlJR8fH3Xp0kXXr19PcxwkFAAAAEBKRrJ5hx0mTJigGTNm6PPPP1doaKgmTJigiRMn6rPPPrP2mThxoqZNm6aZM2dq27ZtypEjhxo3bqzY2Fhrn/bt2+vgwYNau3atVq5cqY0bN6p79+5pjsNipExhHhPF81YxOwTcx63EOLNDQCou3YoxOwSkwsXC5z/OLDE5yewQgAwnMf6s2SGkKu7on6Zd271UnTT3ffHFF+Xn56dZs2ZZ21q3bi0PDw999913MgxDBQoU0IABAzRw4EBJ0tWrV+Xn56c5c+aoXbt2Cg0NVbly5bRjxw5Vr15dkrR69Wo1bdpUZ86cUYECBR4YB/9CAQAAACklJ5l32OHpp59WcHCwjh49Kknau3ev/vzzTzVp0kSSFBYWpoiICAUGBlqf4+3trVq1amnr1q2SpK1bt8rHx8eaTEhSYGCgXFxctG3btjTFwSpPAAAAgJOIi4tTXJztaA53d3e5u7vf1Xfo0KGKiYlRmTJllCVLFiUlJemjjz5S+/btJUkRERGSJD8/P5vn+fn5Wc9FREQoX758NuddXV2VO3dua58HoUIBAAAApGTiHIqgoCB5e3vbHEFBQfcMc9GiRfr+++81f/587dq1S3PnztWkSZM0d+7cdP1xUaEAAAAAnMSwYcPUv39/m7Z7VSckadCgQRo6dKjatWsnSapQoYL+/vtvBQUFqWPHjvL395ckRUZGKn/+/NbnRUZGqnLlypIkf39/RUVF2bxuYmKiLl++bH3+g1ChAAAAAJyEu7u7vLy8bI7UEoqbN2/KxcX27XyWLFmU/P8b8xUrVkz+/v4KDg62no+JidG2bdsUEBAgSQoICFB0dLRCQkKsfX7//XclJyerVq1aaYqZCgUAAACQUgbZKbt58+b66KOPVLhwYZUvX167d+/WlClT1LlzZ0mSxWJR37599eGHH6pkyZIqVqyYhg8frgIFCqhly5aSpLJly+qFF15Qt27dNHPmTCUkJKh3795q165dmlZ4kkgoAAAAgAzps88+0/Dhw9WzZ09FRUWpQIECevvttzVixAhrn8GDB+vGjRvq3r27oqOjVadOHa1evVrZsmWz9vn+++/Vu3dvPffcc3JxcVHr1q01bdq0NMfBPhRId+xD4bzYh8J5sQ+Fc2MfCsB+Tr0PxYG1pl3b/alGpl3bUfwLBQAAAMBhJBQAAAAAHOYUcyiSkpL0008/KTQ0VNLtySEtW7aUq6tThAcAAIDMJINMynYWpr9jP3jwoFq0aKGIiAiVLl1akjRhwgT5+vpqxYoVeuqpp0yOEAAAAEBqTE8ounbtqvLly2vnzp3KlSuXJOnKlSt666231L17d23ZssXkCAEAAJCZGAYLLdjD9IRiz549NsmEJOXKlUsfffSRatSoYWJkAAAAAB7E9EnZpUqVUmRk5F3tUVFRKlGihAkRpb+Nu1bp5MXddx2jJwyVJM3/+eu7zn046X2To848BgztpfPRh2yOTdtXWs//uHLOXecnTBlpYsSZ19EjWxUfd+au49NPPzQ7tEypTp2a+vHHb3Ty5A7FxoarefPnbc5//fVkxcaG2xzLl88zKdrMrW6dWlr20xyFnwpRYvxZtWjR2OyQ8P+GDO6trVtW6cqlIzp3Zq9+XDJLpUo9aXZYjz8j2bwjAzKlQhET889a90FBQXr33Xc1atQo1a5dW5L0119/acyYMZowYYIZ4aW7lo3ekEuWf3K70mVK6NulM/XL8n/WQP5h3o+aOn6G9XHszdh0jTGzO3zomF5t2cX6OCkx0eb8d3MWaeK4z62Pb926lW6x4R9PP9NMWbJksT4uX760Vv+6QD/+uMrEqDKv7Nmza//+Q5o7d6EWLfr6nn1++229uncfaH0cFxefXuEhhRw5smvfvkOaPWeBflw8y+xwkEK9urU1Y8Zc7QzZI1dXV304Zqh+XTVfFSo9q5s3+bcGzsGUhMLHx0cWi8X62DAMvfrqq9a2O3vtNW/eXElJj/8YtsuXrtg87vFuJ506Ga5tm0OsbbE3Y3Ux6lJ6h4b/l5iUpAtRF1M9f+tW7H3PI31cvHjZ5vGgQb10/MQpbdy41aSIMrc1azZozZoN9+0TFxevyMgL6RMQUrX6t/Va/dt6s8PAPTRr/obN485d+yri3H5Vq1pRm/7cZlJUgC1TEor16/mjlRo3N1e91KapvpnxnU17i1ea6qU2TXUh6pJ+/22jPpv8tWJvUaVIL8WLF9bu0A2Ki4tTyPa9Gjdmqs6eOW8936rNi2r9anNFRV7U2tUbNPXjGbrF/TGVm5ubXn+tlT799CuzQ8F91KtXW+HhuxQdfVUbNmzRqFEf6/LlaLPDApyWt7eXJOnylWhzA3ncsWysXUxJKOrXr2/GZTOERk0byMs7p5YsWGFtW/7jrzp7+ryiIi6oTPmSGjziPRUvUUQ93hp4n1fCw7J75z691/N9nTgeJj8/X/Uf0lPLfv1Wzwa00I3rN/XT4lU6c/qcIiKiVK58ab0/qr+eLFlUXTq8Z3bomdpLLRrLx8dL875dbHYoSMWaNRu0bNlqnToVruLFi2jMmCH6+ed5ql+/pZL5xxy4i8Vi0ZRJo7V583YdPHjE7HAAK9NXeZJuLxM7a9Ys68Z25cqVU6dOnZQ7d+4HPjcuLk5xcXE2bYaRLIvF9PnmDnm1fUv9EbxZURH/DAFYMG+p9esjoccVFXlR3//0lQoXfULhp86YEWam8vu6TdavQw8e1a6Qfdqxb51avPyCfvh2qb6b+88b1sOHjiky8oKWLJ+tIkUL6e9Tp80IGZLe6tROv/22XufP373oA5zD4sX/fHBy8OARHThwWKGhf6p+/QCtX7/ZxMgA5/TZtHEqX7606jd42exQHn8ZdHK0WUx/171x40YVLVpU06ZN05UrV3TlyhVNmzZNxYoV08aNGx/4/KCgIHl7e9sc0bcy5huIAk/k1zP1a2nhd8vu229PyH5JUpFihdIhKvyvmKvXdPLEKRUrVuSe53ft3CdJKla8cHqGhRQKFy6o5xrW1TezfzA7FNghLCxcFy5c0pNPFjU7FMDpfPrJh2rWNFCBz7fR2bPnH/wEIB2ZnlD06tVLbdu2VVhYmJYuXaqlS5fq5MmTateunXr16vXA5w8bNkxXr161OXw8/NIh8oevzestdOniZa1fs+m+/co9dXtH8QuRTAI2Q/Yc2VWkWOFUJ5I+VaGMJDHR1EQd32yrqKiL+uWXYLNDgR0KFvRXnjy5dP58lNmhAE7l008+VMuXXlCjxq/qFJVvOCHThzwdP35cS5YssVnqMUuWLOrfv7/mzXvweuTu7u5yd3e3acuIw50sFoteee0lLV2w0mZlq8JFn1CL1k20Yd2funI5WmXKl9IHYwdo25YQHT50zMSIM48RYwdp7er1On36nPz982ngsN5KTkrSsiWrVKRoIbVq00zBazbq8pVolStfWqPHDdHWzTsUevCo2aFnShaLRW+++aq++25JplglzpnlyJHdptpQtGghVaxYTleuROvy5Wi9/35fLVv2qyIjL6h48SL66KP/6MSJU1q79g/zgs6kcuTIrhIlilkfFytaWJUqldfly1d0+vQ5EyPDZ9PG6bV2LdWqdWddu3Zdfn6+kqSrV68pNpbFPx6ZZP79sIfpCUXVqlUVGhqq0qVL27SHhoaqUqVKJkWV/p6pX0sFC+XX4vnLbNoT4hP0TP1a6vT268qe3UPnz0Vq9cpgTZ/8X3MCzYTyF/DTF/+dpFy5fXTp4mVt/2uXmgW+pkuXrsg9m7vqPhugrj3eVPbsHjp3NkKrlq/VJ5Nmmh12pvXcc3VVpMgTmjN3gdmhZHrVqlXUmjWLrI8//vj2ho/ffrtYffr8RxUqlNUbb7wiHx8vnT8fqXXrNmn06EmKj2cvivRWvVolBa9bYn08edIoSdLceYvUpWs/k6KCJPV4p6Mk6ffgH23aO3fpp3nfLrrXU4B0ZzHubPqQjvbt22f9OjQ0VIMHD1afPn1sNrabPn26xo8fr7Zt29r9+sXzVnloseLhu5UY9+BOMMWlWzEP7gRTuGTAymtmksinmYDdEuPPmh1CqmK3m7dCYLaabUy7tqNMSShcXFxksVj0oEtbLBaHhiyQUDg3EgrnRULhvEgonBsJBWA/Eop7y4gJhSlDnsLCwsy4LAAAAPBg7IVjF1MSiiJF/lluMygoSH5+furcubNNn2+++UYXLlzQkCFD0js8AAAAAGlkeg39yy+/VJkyZe5qL1++vGbOZGIrAAAA4MxMX+UpIiJC+fPnv6vd19dX58+zcQsAAADSGTtl28X0CkWhQoW0efPmu9o3b96sAgUKmBARAAAAgLQyvULRrVs39e3bVwkJCWrYsKEkKTg4WIMHD9aAAQNMjg4AAACZDpOy7WJ6QjFo0CBdunRJPXv2tG5mlC1bNg0ZMkTDhg0zOToAAAAA92PKPhT3cv36dYWGhsrDw0MlS5aUu7u7w6/FPhTOjX0onBf7UDgv9qFwbuxDAdjPqfeh2Py9adfO9kx7067tKNMrFHd4enqqRo0aZocBAACAzI4hT3bhIy8AAAAADnOaCgUAAADgDAyDYYz2oEIBAAAAwGEkFAAAAAAcxpAnAAAAICUmZduFCgUAAAAAh1GhAAAAAFIyqFDYgwoFAAAAAIdRoQAAAABSYg6FXahQAAAAAHAYCQUAAAAAhzHkCQAAAEiJSdl2oUIBAAAAwGFUKAAAAICUmJRtFyoUAAAAABxGQgEAAADAYQx5AgAAAFJiUrZdqFAAAAAAcBgVCgAAACAlJmXbhQoFAAAAAIdRoQAAAABSokJhFyoUAAAAABxGQgEAAADAYQx5AgAAAFJi2Vi7UKEAAAAA4DAqFAAAAEBKTMq2CxUKAAAAAA4joQAAAADgMIY8AQAAACkxKdsuVCgAAAAAOIwKBQAAAJASk7LtQoUCAAAAgMOoUAAAAAApMYfCLlQoAAAAADiMhAIAAACAw0goAAAAgJSSk8077FC0aFFZLJa7jl69ekmSYmNj1atXL+XJk0eenp5q3bq1IiMjbV4jPDxczZo1U/bs2ZUvXz4NGjRIiYmJdsXxWM6hOHPtgtkh4D62+1c1OwSkIiBur9khAACANNqxY4eSkpKsjw8cOKBGjRqpTZs2kqR+/fpp1apVWrx4sby9vdW7d2+1atVKmzdvliQlJSWpWbNm8vf315YtW3T+/Hm9+eabcnNz07hx49Ich8UwDOPhfmvmy+r+hNkh4D5IKJxXQBQJBeCIhCT7Ps0DICXGnzU7hFTdWjTGtGt7vDrC4ef27dtXK1eu1LFjxxQTEyNfX1/Nnz9fr7zyiiTp8OHDKlu2rLZu3aratWvr119/1Ysvvqhz587Jz89PkjRz5kwNGTJEFy5cUNasWdN0XYY8AQAAAE4iLi5OMTExNkdcXNwDnxcfH6/vvvtOnTt3lsViUUhIiBISEhQYGGjtU6ZMGRUuXFhbt26VJG3dulUVKlSwJhOS1LhxY8XExOjgwYNpjpmEAgAAAHASQUFB8vb2tjmCgoIe+Lxly5YpOjpab731liQpIiJCWbNmlY+Pj00/Pz8/RUREWPukTCbunL9zLq0eyzkUAAAAgMNMnBEwbNgw9e/f36bN3d39gc+bNWuWmjRpogIFCjyq0FJFQgEAAAA4CXd39zQlECn9/fffWrdunZYuXWpt8/f3V3x8vKKjo22qFJGRkfL397f22b59u81r3VkF6k6ftGDIEwAAAJBSBlk29o7Zs2crX758atasmbWtWrVqcnNzU3BwsLXtyJEjCg8PV0BAgCQpICBA+/fvV1RUlLXP2rVr5eXlpXLlyqX5+lQoAAAAgAwqOTlZs2fPVseOHeXq+s9be29vb3Xp0kX9+/dX7ty55eXlpT59+iggIEC1a9eWJD3//PMqV66cOnTooIkTJyoiIkIffPCBevXqZVeVhIQCAAAASMnBSoEZ1q1bp/DwcHXu3Pmuc1OnTpWLi4tat26tuLg4NW7cWF988YX1fJYsWbRy5Ur16NFDAQEBypEjhzp27KgxY+xbNpd9KJDu2IfCebEPBeAY9qEA7OfU+1B8P9y0a3u0H2vatR3FHAoAAAAADmPIEwAAAJCSkXGGPDkDKhQAAAAAHEaFAgAAAEgpA03KdgZUKAAAAAA4jIQCAAAAgMMY8gQAAACk9PjtqvBIUaEAAAAA4DAqFAAAAEBKTMq2CxUKAAAAAA6jQgEAAACkRIXCLlQoAAAAADiMhAIAAACAwxjyBAAAAKRkMOTJHlQoAAAAADiMCgUAAACQgpHMxnb2oEIBAAAAwGEkFAAAAAAcxpAnAAAAICX2obALFQoAAAAADqNCAQAAAKTEsrF2oUIBAAAAwGFUKAAAAICUWDbWLlQoAAAAADiMhAIAAACAwxjyBAAAAKTEsrF2oUIBAAAAwGFUKAAAAICUqFDYxZSEYt++fWnuW7FixUcYCQAAAIB/w5SEonLlyrJYLDIMQxaL5b59k5KS0ikqAAAAAPYyJaEICwuzfr17924NHDhQgwYNUkBAgCRp69atmjx5siZOnGhGeAAAAMjMDPahsIcpCUWRIkWsX7dp00bTpk1T06ZNrW0VK1ZUoUKFNHz4cLVs2dKECAEAAACkhemTsvfv369ixYrd1V6sWDEdOnTIhIgAAACQqTEp2y6mLxtbtmxZBQUFKT4+3toWHx+voKAglS1b1sTIAAAAADyI6RWKmTNnqnnz5nriiSesKzrt27dPFotFK1asMDk6AAAAAPdjekJRs2ZNnTx5Ut9//70OHz4sSWrbtq1ef/115ciRw+ToAAAAkOkkMynbHqYPeZKkHDlyqHv37poyZYqmTJmibt26ZfpkwtMzhyZNGqVjR//S1ejj+mPDMlWrVsnssDKdfD1aq/Lfy1VwRFdr2xPjeqrsxi9V8chiPbXrWxX7+n25P1nQ5nmV/15+1+HTvG56h//Ye+aZmlqyZJZOntyuW7f+VvPmz9ucz5Eju6ZOHaPjx//S5ctHtGvXOnXt2t6kaDOfB92ffPny6quvJunkye26dOmwfv55rp58sqg5wUKS1OOdjjp+9C9djzmhLX+uUI3qlc0OCf+PewNnZnpCMXfuXK1atcr6ePDgwfLx8dHTTz+tv//+28TIzPXlzI8V+Fxdder8nqpWC9S6dRu1+tcfVKCAv9mhZRoeFUsoT/sXdOtQmE37rf0nFD5wmg4/10sn3hwpWaQnvx0judj+OoUP+EQHqr9pPa6u+Ss9w88UcuTIrv37Q9W37/B7np8wYbgaNaqvTp36qnLl5/T557M0deoYNWsWmM6RZk4Puj+LFn2tYsUKq02brqpdu6nCw8/ql1++V/bsHukcKSSpTZsWmvTxSI39cIpq1HpBe/cd0i+rvpevbx6zQ8v0uDcmMJLNOzIg0xOKcePGycPj9j8eW7du1eeff66JEycqb9686tevn8nRmSNbtmx6+eWmGvafj/Tnn9t04sQpjf1wik6cOKW3u3cwO7xMwSV7NhX5dIBOD/lcSVev25y79MNvurH9oOLPROnWgZM6P+l7ZS3oq6xP5LPplxRzQ4kXoq2HEZeQnt9CprBmzQaNHj1Jy5f/ds/ztWtX03ff/ahNm/5SePgZffPND9q3L1TV+WQvXdzv/pQoUUy1alXVu+++r5CQfTp27KTeffd9ZcuWTa+++pIJ0aLfe93031nzNXfeIoWGHlPPXkN18+YtdXqrndmhZXrcGzg70xOK06dPq0SJEpKkZcuW6ZVXXlH37t0VFBSkTZs2mRydOVxds8jV1VWxsXE27bduxerpp2uaFFXm8sTYdxTz+05d37z3vv1cPNyVu81ziguPUML5izbnCo59R0/t/k4lf56k3K/yibgZ/vorRC++GKgCBfwkSfXqBahkyWJat26jyZHB3T2rJNn8nTMMQ/Hx8Xr66epmhZVpubm5qWrVigr+/Z9/dw3DUPDvf6p27WomRgbujUmSDfOODMj0hMLT01OXLl2SJK1Zs0aNGjWSdPtT+lu3bpkZmmmuX7+hrVt36j/D+ip/fj+5uLjo9ddaqXbtasqfP9+DXwD/ik/zuvJ4qrjOT5yXap88HZqowqGFqnh4sbyeraYT7UfISEi0nj8/+Xv93WuiTrwxQld/3aInxr6jvG+9mB7hI4X+/UcqNPSYTpzYrpiY41q+fK769h2uzZu3mx1apnfkyAmFh5/R2LFD5OPjJTc3Nw0Y8I6eeKKA/P35O5fe8ubNLVdXV0VF2n4wEhV1Qf5+viZFBYl7g4zB9FWeGjVqpK5du6pKlSo6evSodcfsgwcPqmjRog98flxcnOLibD/JNwxDFovlUYSbbjp1fk9ffTlZf58KUWJionbvPqCFC39W1aoVzA7tseaWP68KjuymE2+MuO8QpSvL/tC1TXvkli+38nVvqaJfDNax1kOsz4mcttDa99bBk3LJnk353n5ZF+esfOTfA/7Rs+dbqlmzilq37qzw8LOqU6eWPvlkrM6fj9T69ZvNDi9TS0xMVLt2b2vGjIk6f36/EhMT9fvvf2r16vUZ/u83AGQ2picU06dP1wcffKDTp0/rxx9/VJ48tycYhYSE6LXXXnvg84OCgjR69GibNheXnMri6vVI4k0vJ0/+rcBGryh7dg95eeVURESUvv/uC50MCzc7tMda9gpPys3XR6VXTbW2WVyzKEet8srbsZn2lmwtJScr+dpNxV+7qfhT53Vq9xE9tW++vBsHKHr5vYfS3NxzVP7vtZMlq6uM+MR79sHDlS2bu0aPHqS2bd/W6tW/S5IOHDisihXLqW/f7iQUTmD37gOqXbupvLxyKmtWN128eFkbNy5TSMh+s0PLdC5evKzExETl88tr054vn68iIi+YFBUk7o1ZDHbKtovpCYWPj48+//zzu9r/N0lIzbBhw9S/f3+btjx5H58dtm/evKWbN2/Jx8dbjRrV17D/jDM7pMfatc37dLhRb5u2wpPeU+yJM4qa8aN0rz8wFsliscgla+q/Th7liikx+hrJRDpyc3NT1qxZlfw/9ywpKUkuLqaP9kQKMTHXJElPPllUVatW1OjRk02OKPNJSEjQrl371LBBHeskeovFooYN6uiLGbNNji5z494gIzA9oZCkK1euaNasWQoNDZUklS1bVp07d1bu3Lkf+Fx3d3e5u7vbtD0O5fJGjerLYrHo6NETevLJohof9IGOHDmhuXMXPvjJcFjyjVuKPWpbBUq+GaukK9cUezRcWQv5yad5XV3buFuJl6/KLX9e+fVoreTYOMWsD5EkeT1XQ66+Prq564iS4xKUs25l5evVRhe++smMb+mxliNHdpt9C4oWLaSKFcvpypVonT59Ths3btW4cf/RrVuxCg8/q7p1a6l9+9YaMmSseUFnIg+6P61aNdWFC5d1+vRZPfVUGU2aNFIrVqxRcHDmXJDDbFM//VqzZ01VyK592rFjt97t0005cnhoDv/umI57Y4IMOjnaLKYnFBs3blTz5s3l7e2t6tVvr+zx2WefaezYsVqxYoXq1atncoTm8PbKqbEfDtUTBfPr8uVo/bTsV40YMUGJiXzCbabkuAR51iwn384tlMU7hxIvRuv69oM61mqIEi9dlSQZiUnK+2YzuQ/vIlksij91XufGztKlH9aYHP3jp2rVilqz5p9/UCdOHCFJ+vbbxerefaDefLOPxowZrDlzPlWuXD4KDz+jUaM+1tdff2dWyJnKg+6Pv38+TZgwXPny5b09rPP7pQoKmmZWuJne4sXL5Zs3t0aNGCh/f1/t3XtQzV58Q1FRFx/8ZDxS3Bs4O4thGKamYBUqVFBAQIBmzJihLFmySLo9JKFnz57asmWL9u+3fyxtVvcnHnaYeIi2+1c1OwSkIiDq/svkAri3hCQ+7AHslRh/1uwQUnXjozdNu3aO91NfZdJZmV6hOH78uJYsWWJNJiQpS5Ys6t+/v+bNy3g/UAAAAGRwGXTHarOYPjOxatWq1rkTKYWGhqpSpUomRAQAAAAgrUypUOzbt8/69bvvvqv33ntPx48fV+3atSVJf/31l6ZPn67x48ebER4AAAAyMyZl28WUORQuLi6yWCx60KUtFouSkpLsfn3mUDg35lA4L+ZQAI5hDgVgP6eeQzGmvWnXzjHie9Ou7ShTKhRhYWFmXBYAAAB4MDa2s4spCUWRIkWsXwcFBcnPz0+dO3e26fPNN9/owoULGjJkSHqHBwAAACCNTJ+U/eWXX6pMmTJ3tZcvX14zZ840ISIAAAAAaWX6srERERHKnz//Xe2+vr46f/68CREBAAAgU2NStl1Mr1AUKlRImzdvvqt98+bNKlCggAkRAQAAAEgr0ysU3bp1U9++fZWQkKCGDRtKkoKDgzV48GANGDDA5OgAAACQ6bCxnV1MTygGDRqkS5cuqWfPnoqPj5ckZcuWTUOGDNGwYcNMjg4AAADA/ZieUFgsFk2YMEHDhw9XaGioPDw8VLJkSbm7u5sdGgAAAIAHMD2huMPT01M1atQwOwwAAABkdkzKtovpk7IBAAAAZFxOU6EAAAAAnIHBTtl2oUIBAAAAZFBnz57VG2+8oTx58sjDw0MVKlTQzp07recNw9CIESOUP39+eXh4KDAwUMeOHbN5jcuXL6t9+/by8vKSj4+PunTpouvXr6c5BhIKAAAAIKVkw7zDDleuXNEzzzwjNzc3/frrrzp06JAmT56sXLlyWftMnDhR06ZN08yZM7Vt2zblyJFDjRs3VmxsrLVP+/btdfDgQa1du1YrV67Uxo0b1b179zTHYTEM47GbdZLV/QmzQ8B9bPevanYISEVA1F6zQwAypISkRLNDADKcxPizZoeQqutDWpl2bc8JS9Pcd+jQodq8ebM2bdp0z/OGYahAgQIaMGCABg4cKEm6evWq/Pz8NGfOHLVr106hoaEqV66cduzYoerVq0uSVq9eraZNm+rMmTNp2miaCgUAAADgJOLi4hQTE2NzxMXF3bPv8uXLVb16dbVp00b58uVTlSpV9PXXX1vPh4WFKSIiQoGBgdY2b29v1apVS1u3bpUkbd26VT4+PtZkQpICAwPl4uKibdu2pSlmEgoAAAAgJROHPAUFBcnb29vmCAoKumeYJ0+e1IwZM1SyZEn99ttv6tGjh959913NnTtXkhQRESFJ8vPzs3men5+f9VxERITy5ctnc97V1VW5c+e29nkQVnkCAAAAnMSwYcPUv39/m7bUNnxOTk5W9erVNW7cOElSlSpVdODAAc2cOVMdO3Z85LHeQYUCAAAASMlINu1wd3eXl5eXzZFaQpE/f36VK1fOpq1s2bIKDw+XJPn7+0uSIiMjbfpERkZaz/n7+ysqKsrmfGJioi5fvmzt8yAkFAAAAEAG9Mwzz+jIkSM2bUePHlWRIkUkScWKFZO/v7+Cg4Ot52NiYrRt2zYFBARIkgICAhQdHa2QkBBrn99//13JycmqVatWmuJgyBMAAACQAfXr109PP/20xo0bp1dffVXbt2/XV199pa+++kqSZLFY1LdvX3344YcqWbKkihUrpuHDh6tAgQJq2bKlpNsVjRdeeEHdunXTzJkzlZCQoN69e6tdu3ZpWuFJIqEAAAAAbNm5H4RZatSooZ9++knDhg3TmDFjVKxYMX3yySdq3769tc/gwYN148YNde/eXdHR0apTp45Wr16tbNmyWft8//336t27t5577jm5uLiodevWmjZtWprjYB8KpDv2oXBe7EMBOIZ9KAD7OfU+FP1bmHZtzynLTbu2o6hQAAAAACkYGaRC4SyYlA0AAADAYVQoAAAAgJSoUNiFCgUAAAAAh5FQAAAAAHAYQ54AAACAlJKTzY4gQ6FCAQAAAMBhVCgAAACAlJiUbRcqFAAAAAAcRkIBAAAAwGEMeQIAAABSYsiTXahQAAAAAHAYFQoAAAAgBcOgQmEPKhQAAAAAHEaFAgAAAEiJORR2oUIBAAAAwGEkFAAAAAAcxpAnAAAAICWGPNmFCgUAAAAAh1GhAAAAAFIwqFDY5bFMKFg72LnVitxtdghIxev+Nc0OAalYenGP2SHgPhKSEs0OAQBMw5AnAAAAAA57LCsUAAAAgMMY8mQXKhQAAAAAHEaFAgAAAEgp2ewAMhYqFAAAAAAcRoUCAAAASIFlY+1DhQIAAACAw0goAAAAADiMIU8AAABASgx5sgsVCgAAAAAOo0IBAAAApMSysXahQgEAAADAYSQUAAAAABzGkCcAAAAgBfahsA8VCgAAAAAOo0IBAAAApMSkbLtQoQAAAADgMBIKAAAAAA5jyBMAAACQApOy7UOFAgAAAIDDqFAAAAAAKTEp2y5UKAAAAAA4jAoFAAAAkIJBhcIuVCgAAAAAOIyEAgAAAIDDGPIEAAAApMSQJ7tQoQAAAADgMCoUAAAAQApMyrYPFQoAAAAADiOhAAAAAOAwhjwBAAAAKTHkyS5UKAAAAAA4jAoFAAAAkAKTsu1DhQIAAACAw6hQAAAAAClQobAPFQoAAAAADiOhAAAAAOAwhjwBAAAAKTDkyT5UKAAAAAA4zPQKRWxsrD777DOtX79eUVFRSk62TQl37dplUmQAAADIlAyL2RFkKKYnFF26dNGaNWv0yiuvqGbNmrJYuIEAAABARmF6QrFy5Ur98ssveuaZZ8wOBQAAAMgwRo0apdGjR9u0lS5dWocPH5Z0eyTQgAEDtGDBAsXFxalx48b64osv5OfnZ+0fHh6uHj16aP369fL09FTHjh0VFBQkV9e0pwmmJxQFCxZUzpw5zQ4DAAAAkJSxJmWXL19e69atsz5OmQj069dPq1at0uLFi+Xt7a3evXurVatW2rx5syQpKSlJzZo1k7+/v7Zs2aLz58/rzTfflJubm8aNG5fmGEyflD158mQNGTJEf//9t9mhAAAAABmKq6ur/P39rUfevHklSVevXtWsWbM0ZcoUNWzYUNWqVdPs2bO1ZcsW/fXXX5KkNWvW6NChQ/ruu+9UuXJlNWnSRGPHjtX06dMVHx+f5hhMTyiqV6+u2NhYFS9eXDlz5lTu3LltDgAAACA9GckW0464uDjFxMTYHHFxcanGeuzYMRUoUEDFixdX+/btFR4eLkkKCQlRQkKCAgMDrX3LlCmjwoULa+vWrZKkrVu3qkKFCjZDoBo3bqyYmBgdPHgwzT8v0xOK1157TWfPntW4ceP02WefaerUqTZHZlaggL/mzpmmiPMHFHP1uHbvWqdqVSuaHVamU6dOLS398RuFndypuNjTatG88V19RowYoFNhOxV95Zh+/WW+SjxZNP0Dfcw16/myRvw8QV8c+E6f7vxGfb4aIv/iBWz6uLq76Y0xXfXZ7jmacfA79ZoxSF55vW36FKv4pAZ9P1LT983T53vnasC84SpUtkh6fiuZQpeur2vzX6t0+twenT63R2uDFyuwUX1JUq5c3po4aaR27lqriAsHdSB0kyZ8PEJeXp4mR40e73TU8aN/6XrMCW35c4VqVK9sdkiZ3pDBvbV1yypduXRE587s1Y9LZqlUqSfNDguPUFBQkLy9vW2OoKCge/atVauW5syZo9WrV2vGjBkKCwtT3bp1de3aNUVERChr1qzy8fGxeY6fn58iIiIkSRERETbJxJ3zd86llelzKLZs2aKtW7eqUqVKZofiVHx8vPXHhmX6448tat78DV24eEklShTTleirZoeW6eTI7qF9+0M1Z+4iLV709V3nBwzooV49O6lr1/4KOxWuUSMHaeXK71Sp8nP3/UQB9ildq7yCv12tsL3HlcXVRa0HtdeAeSP0fqP3FH/r9s/5teGdVKlBVX3Rc5JuXrupN8Z0Ve+ZgzXulfclSe7Zs6n/3OHavW6Hvh3+tVyyZFHLfm01YN5wDQh4W0mJSWZ+i4+Vs2cjNGrExzpx4pQsFun19q31w8KZqvtMC1ksFuXPn08fvB+kI4ePq1Dhgpr6yVjlz59Pb77R2+zQM602bVpo0scj1bPXUG3fsVvv9umqX1Z9r3JP1dOFC5fMDi/Tqle3tmbMmKudIXvk6uqqD8cM1a+r5qtCpWd18+Yts8N7bJk5h2LYsGHq37+/TZu7u/s9+zZp0sT6dcWKFVWrVi0VKVJEixYtkoeHxyONMyXTE4oyZcro1i1+If7XoEE9debMOXXt9s//UKdOnTYxoszrtzUb9NuaDame79O7i8aP/0wrVq6RJHXu0lenw3epRYvGWrx4eTpF+fib0vFDm8ezBn6uabtmq2iFJ3V0+yF55Myueq821JfvfaLQrQdu9xk0XUHB01S8Skmd3H1M+Z8sKM9cObVsygJdPn/7DdLyTxdp7G9Tlaegr6L+TvunMbi/1b/+bvN47OjJ6tLlddWoUVnfzlusDu17Wc+FhYVr7JjJ+uq/k5UlSxYlJZHYmaHfe93031nzNXfeIklSz15D1bTJc+r0VjtN/Hi6ydFlXs2av2HzuHPXvoo4t1/VqlbUpj+3mRQVHiV3d/dUE4gH8fHxUalSpXT8+HE1atRI8fHxio6OtqlSREZGyt/fX5Lk7++v7du327xGZGSk9VxamT7kafz48RowYIA2bNigS5cu3TVmLLN68cXnFRKyTz/88KXOntmrHdt/U5fOr5sdFv5HsWKFlT+/n4J/32Rti4m5pu079qh2raomRvb488iZXZJ0I/qaJKnoU8XlmtVNBzfvs/aJOHFWF89cUImqpW8/PnlW1y7HqG7b55TFzVVu7llVt+1zOnvstC6eiUr/byKTcHFxUetXXlT2HB7avn33Pft4eeXUtWvXSSZM4ubmpqpVK9r8LTMMQ8G//6natauZGBn+l7e3lyTp8pVocwOBU7p+/bpOnDih/Pnzq1q1anJzc1NwcLD1/JEjRxQeHq6AgABJUkBAgPbv36+oqH/+DVy7dq28vLxUrly5NF/X9ArFCy+8IEl67rnnbNoNw5DFYnngPy5xcXF3DSu589yMrHixwnr77Q765NOvNWHCNFWvVllTp45RfEKCvv12sdnh4f/5+flKkqKiLtq0R0VekJ9fPjNCyhQsFoteG9FJR3eE6uzR25U7b18fJcQl6FbMTZu+MRej5e3rI0mKvRGrCe1GqM9XQ9SizyuSpMhTEZr85lglJ2WgNQIziHLlS2lt8BJly+au69dvqv1rPXXk8PG7+uXOk0uDhvTWnNkLTYgSkpQ3b265uroqKvJ//pZFXVCZ0ozXdxYWi0VTJo3W5s3bdfDgEbPDeawZGWSn7IEDB6p58+YqUqSIzp07p5EjRypLlix67bXX5O3trS5duqh///7KnTu3vLy81KdPHwUEBKh27dqSpOeff17lypVThw4dNHHiREVEROiDDz5Qr1697KqSmJ5QrF+//l89Pygo6K4NPSwunsqSxetfva7ZXFxcFBKyT8OHj5ck7dlzUOXLl1b3bh1IKJDpvTG2m54oXdg6NyKt3NyzqtPEnjoeclhfvjtVliwueqHbS+r7zX80psUQJcSlfYk8PNixo2Gq+3RzeXnl1EstX9DMryaq6Quv2yQVOXN6avGS/+rI4eMK+uhTE6MFnN9n08apfPnSqt/gZbNDgZM4c+aMXnvtNV26dEm+vr6qU6eO/vrrL/n63v7Ac+rUqberxK1b22xsd0eWLFm0cuVK9ejRQwEBAcqRI4c6duyoMWPG2BWH6QlF/fr1/9Xz7zVxJXeeMv/qNZ3B+fNRCg09atN2+PBxvfxyU5Miwr1ERl6QJOXLl1cREf+UC/P5+Wrf3rQvt4a0e2N0V1VuWE1Brw7XlYjL1varF6Ll5u4mD6/sNlUKr7w+unohWpJU+6W6ylswnz56+T8yDEOS9OV7n2j63rmq8nwNbV+xOV2/l8ddQkKCTp68vcfQnj0HVLVaRfXo+Zb6vvuBJMnTM4d+/Gm2rl+/ofavvaPExEQzw83ULl68rMTEROXzy2vTni+fryL+/+8czPXpJx+qWdNANXiulc6ePW92OI+9jLKx3YIFC+57Plu2bJo+fbqmT099HlSRIkX0yy+//Ks4TE8o9u3bd892i8WibNmyqXDhwvctudxr4kpGH+4kSVu27rhrWbiSJYsrPPysSRHhXsLCwnX+fKQaNqijffsOSbr9iWvNGpX11Vffmhzd4+eN0V1VtXFNTWg38q45D6cOnFRifILKPV1RIatvb9jjX7yA8j7hq+O7bg8NyOqRVYZhWJMJSTKSk2UYhlweg78bzs7FxUVZs2aVdPv3ZOmy2YqLj1e7V7srjuqQqRISErRr1z41bFBHy5f/Jun2v6UNG9TRFzNmmxwdPv3kQ7V86QU916gNC7TAKZmeUFSuXPm+CYCbm5vatm2rL7/8UtmyZUvHyMw17dOvtXHjzxoypI+WLFmhGjUqq2vX9urRc7DZoWU6OXJk15Mp9pUoWrSQKlYspytXonX69Dl99vksDR3aR8ePhyns1GmNGjlQ589HWv9RxsPRYWw31X6prqZ1G69bN27J6//nRdyKuamEuHjdunZTGxf9rnYfvKUbV6/r1rWbemN0Fx0POayTu49Jkg7+uU9t//OmOoztpnVzfpHFxUXNerys5KRk68pQeDhGjhqotWv/0JnT5+SZM4fatGmhOnVrqdVLbylnTk/99PMceWT3UPeuA5Qzp6dy5ry9B8XFi5eVnJxBPhp8zEz99GvNnjVVIbv2aceO3Xq3TzflyOGhOXOZ22Kmz6aN02vtWqpV6866du26de7e1avXFBsba3J0wG0WI+VHdSb4+eefNWTIEA0aNEg1a9aUJG3fvl2TJ0/WyJEjlZiYqKFDh6pt27aaNGlSml7TLWvBRxlyumnaNFAffThUJUoUU9ip0/r0k68065v5Zof1r7m4mL64mF3q1auttWvunrcy79vF6vb/y/qOGDFAXTq/Lh8fL23ZskPvvvu+jh0PS+9Q/7XX/WuaHUKqZp/68Z7t/x34uTYvuT0Xy9XdTe3e76haLerILaubDmzco3nDv1bM/w95kqRydSrqpfde1ROlCys5OVnhB8P046T51qTDWS29uMfsEOzy+fQg1Xv2afn7+yom5roOHjisT6Z8qfXrN6tO3Vpa9eu9/5ZVKFcvQ1Zib8Q/Hm/sevZ4SwP695C/v6/27j2ovv1GaPuOe6/MhfSRGH/v34fOXfpp3reL0jmahyu1780ZnK7x3IM7PSKFdgQ/uJOTMT2hqFmzpsaOHavGjW13H/7tt980fPhwbd++XcuWLdOAAQN04sSJNL3m45JQPK4yWkKRmThzQpHZZbSEIrN5XBIKID2RUNxbRkwoTB/ytH//fhUpUuSu9iJFimj//v2Sbg+LOn+eCUgAAAB49Mz9uD3jMf2j4jJlymj8+PGKj/9nQl5CQoLGjx+vMmVur9Z09uxZ+fn5mRUiAAAAgFSYXqGYPn26WrRooSeeeEIVK1aUdLtqkZSUpJUrV0qSTp48qZ49e5oZJgAAADIJI5mV/+xhekLx9NNPKywsTN9//72OHr2970KbNm30+uuvK2fOnJKkDh06mBkiAAAAgFSYnlAEBQXJz89P77zzjk37N998owsXLmjIkCEmRQYAAADgQUyfQ/Hll19a50qkVL58ec2cOdOEiAAAAJCZGckW046MyPSEIiIiQvnz57+r3dfXl5WdAAAAACdnekJRqFAhbd68+a72zZs3q0CBAiZEBAAAgMzMMMw7MiLT51B069ZNffv2VUJCgho2bChJCg4O1uDBgzVgwACTowMAAABwP6YnFIMGDdKlS5fUs2dP614U2bJl05AhQzRs2DCTowMAAABwP6YnFBaLRRMmTNDw4cMVGhoqDw8PlSxZUu7u7maHBgAAgEwoo06ONovpCcUdnp6eqlGjhtlhAAAAALCD0yQUAAAAgDMwDCoU9jB9lScAAAAAGRcVCgAAACAFI9nsCDIWKhQAAAAAHEZCAQAAAMBhDHkCAAAAUkhmUrZdqFAAAAAAcBgVCgAAACAFlo21DxUKAAAAAA4joQAAAADgMIY8AQAAACkYyQx5sgcVCgAAAAAOo0IBAAAApGAYZkeQsVChAAAAAOAwKhQAAABACsyhsA8VCgAAAAAOI6EAAAAA4DCGPAEAAAApJLNTtl2oUAAAAABwWJorFMuXL0/zi7Zo0cKhYAAAAACzGVQo7JLmhKJly5Zp6mexWJSUlORoPAAAAAAykDQnFMnJyY8yDgAAAAAZ0L+elB0bG6ts2bI9jFgAAAAA07FTtn0cmpSdlJSksWPHqmDBgvL09NTJkyclScOHD9esWbMeaoAAAAAAnJdDCcVHH32kOXPmaOLEicqaNau1/amnntJ///vfhxYcAAAAkN6SDYtpR0bkUEIxb948ffXVV2rfvr2yZMliba9UqZIOHz780IIDAAAA4NwcSijOnj2rEiVK3NWenJyshISEfx0UAAAAgIzBoYSiXLly2rRp013tS5YsUZUqVf51UAAAAIBZDMNi2pERObTK04gRI9SxY0edPXtWycnJWrp0qY4cOaJ58+Zp5cqVDztGAAAAAE7KoQrFSy+9pBUrVmjdunXKkSOHRowYodDQUK1YsUKNGjV62DECAAAA6cYwzDsyIof3oahbt67Wrl37MGMBAAAAkMH8q43tdu7cqdDQUEm351VUq1btoQQFAAAAmCWjLt9qFocSijNnzui1117T5s2b5ePjI0mKjo7W008/rQULFuiJJ554mDECAAAAcFIOzaHo2rWrEhISFBoaqsuXL+vy5csKDQ1VcnKyunbt+rBjBAAAAOCkLIZh//QPDw8Pbdmy5a4lYkNCQlS3bl3dvHnzoQXoCNesBU29Pu4vm2vWB3eCKRKTk8wOAam4dmaD2SHgPjwK1DU7BCDDSYw/a3YIqdpR8GXTrl3j7E+mXdtRDlUoChUqdM8N7JKSklSgQIF/HRQAAACAjMGhhOLjjz9Wnz59tHPnTmvbzp079d5772nSpEkPLTgAAAAgvSUbFtOOjCjNk7Jz5coli+Wfb/LGjRuqVauWXF1vv0RiYqJcXV3VuXNntWzZ8qEHCgAAAMD5pDmh+OSTTx5hGAAAAAAyojQnFB07dnyUcQAAAABOIYNuWG2af7WxnSTFxsYqPj7eps3Ly+vfviwAAACADMChhOLGjRsaMmSIFi1apEuXLt11PimJpScBAACQMWXUydFmcWiVp8GDB+v333/XjBkz5O7urv/+978aPXq0ChQooHnz5j3sGAEAAAA4KYcqFCtWrNC8efP07LPPqlOnTqpbt65KlCihIkWK6Pvvv1f79u0fdpwAAABAujCoUNjFoQrF5cuXVbx4cUm350tcvnxZklSnTh1t3Ljx4UUHAAAAwKk5lFAUL15cYWFhkqQyZcpo0aJFkm5XLry9vR9edAAAAACcmkMJRadOnbR3715J0tChQzV9+nRly5ZN/fr10+DBgx9qgAAAAEB6SjbxcNT48eNlsVjUt29fa1tsbKx69eqlPHnyyNPTU61bt1ZkZKTN88LDw9WsWTNlz55d+fLl06BBg5SYmGjXtR2aQ9GvXz/r14GBgTp8+LBCQkKUN29efffdd468JAAAAAAH7NixQ19++aUqVqxo096vXz+tWrVKixcvlre3t3r37q1WrVpp8+bNkm6vzNqsWTP5+/try5YtOn/+vN588025ublp3Lhxab6+QxWK/1WkSBG1atVK3t7emjVr1sN4SQAAAMAUhiymHfa6fv262rdvr6+//lq5cuWytl+9elWzZs3SlClT1LBhQ1WrVk2zZ8/Wli1b9Ndff0mS1qxZo0OHDum7775T5cqV1aRJE40dO1bTp0+/a5+5+3koCQUAAACAfy8uLk4xMTE2R1xcXKr9e/XqpWbNmikwMNCmPSQkRAkJCTbtZcqUUeHChbV161ZJ0tatW1WhQgX5+flZ+zRu3FgxMTE6ePBgmmMmoQAAAACcRFBQkLy9vW2OoKCge/ZdsGCBdu3adc/zERERypo1q3x8fGza/fz8FBERYe2TMpm4c/7OubRyaA4FAAAA8LhKNsy79rBhw9S/f3+bNnd397v6nT59Wu+9957Wrl2rbNmypVd492RXQtGqVav7no+Ojv43sQAAAACZmru7+z0TiP8VEhKiqKgoVa1a1dqWlJSkjRs36vPPP9dvv/2m+Ph4RUdH21QpIiMj5e/vL0ny9/fX9u3bbV73zipQd/qkhV0JxYP2mPD29tabb75pz0sCAAAATiXZgcnR6e25557T/v37bdo6deqkMmXKaMiQISpUqJDc3NwUHBys1q1bS5KOHDmi8PBwBQQESJICAgL00UcfKSoqSvny5ZMkrV27Vl5eXipXrlyaY7EroZg9e7Y93QEAAAA8Ajlz5tRTTz1l05YjRw7lyZPH2t6lSxf1799fuXPnlpeXl/r06aOAgADVrl1bkvT888+rXLly6tChgyZOnKiIiAh98MEH6tWrV5qqJHcwhwIAAABIwZHlW53R1KlT5eLiotatWysuLk6NGzfWF198YT2fJUsWrVy5Uj169FBAQIBy5Mihjh07asyYMXZdx2IYhonTTh4N16wFzQ4B95HNNavZISAViclJZoeAVFw7s8HsEHAfHgXqmh0CkOEkxp81O4RUBfu1Ne3az0UuNO3ajmLZWAAAAAAOY8gTAAAAkEKy2QFkMFQoAAAAADiMCgUAAACQwuMyKTu9UKEAAAAA4DASCgAAAAAOY8gTAAAAkAKTsu1DhQIAAACAw6hQAAAAAClQobAPFQoAAAAADqNCAQAAAKTAsrH2oUIBAAAAwGEkFAAAAAAcxpAnAAAAIIVkRjzZhQoFAAAAAIdRoQAAAABSSGZStl1MSShatWqV5r5Lly59hJEAAAAA+DdMGfLk7e1tPby8vBQcHKydO3daz4eEhCg4OFje3t5mhAcAAAAgjUypUMyePdv69ZAhQ/Tqq69q5syZypIliyQpKSlJPXv2lJeXlxnhAQAAIBMzzA4ggzF9UvY333yjgQMHWpMJScqSJYv69++vb775xsTIAAAAADyI6QlFYmKiDh8+fFf74cOHlZycbEJEAAAAyMySTTwyItNXeerUqZO6dOmiEydOqGbNmpKkbdu2afz48erUqZPJ0QEAAAC4H9MrFJMmTdLgwYM1efJk1atXT/Xq1dOUKVM0aNAgffzxx2aHZ6oe73TU8aN/6XrMCW35c4VqVK9sdkiZ0oCBPfTHpmU6H7lfYad26IeFX6pkyeKp9l+6bLau3wzTi80bpWOUmVOdOjX144/f6OTJHYqNDVfz5s/bnP/668mKjQ23OZYvn2dStI+3pKQkffbVPDV+5S1Va/CSXmjTSTNnz5dh3Hsk8uiJn+mpZ5ro24U/2bQ/37qjnnqmic3x328Xpce3kKkNGdxbW7es0pVLR3TuzF79uGSWSpV60uywkALvCdJXssVi2pERmV6hcHFx0eDBgzV48GDFxMRIEpOxJbVp00KTPh6pnr2GavuO3Xq3T1f9sup7lXuqni5cuGR2eJlKnbq19NWX32pXyD5lcXXVqNED9fOKeapetZFu3rxl07dX786pvoHCw5c9e3bt339Ic+cu1KJFX9+zz2+/rVf37gOtj+Pi4tMrvExl1neLtXDZKn30wQCVKFZEBw8f1QcfTZWnZw690eYlm77r/tisfQcPK1/ePPd8rd5dO+iVFi9YH2fPnv2Rxg6pXt3amjFjrnaG7JGrq6s+HDNUv66arwqVnr3r7xzSH+8J4OxMTyhSIpH4R7/3uum/s+Zr7rzbn8z17DVUTZs8p05vtdPEj6ebHF3m8vJLb9k8fqf7IJ0KD1GVKhW0efN2a3uFimX17ntdVbdOC50M25HOUWZOa9Zs0Jo1G+7bJy4uXpGRF9InoExsz4FQNahbW/Wfvj10tWB+P/2y9g/tP3TEpl/khYsKmjpDX075SD0Hjbjna+XI7qG8eXI/8pjxj2bN37B53LlrX0Wc269qVStq05/bTIoKd/CeAM7O9CFPly5dUq9evVSuXDnlzZtXuXPntjkyIzc3N1WtWlHBv2+ythmGoeDf/1Tt2tVMjAyS5OWVU5J05Uq0tc3DI5tmz/5U/fuNVFTkRZMiw73Uq1db4eG7tG/fek2b9pFy5/YxO6THUuWnymrbzj06FX5GknT42Ent2ndQdWtXt/ZJTk7WsDGT9Nbrr6hE8SKpvtZ/v1usZ5q8qlfe6qVvvl+ixMSkRx4/bHl73/6A73KKv3MwB+8JzGGYeGREplcoOnTooOPHj6tLly7y8/OTJYOOHXuY8ubNLVdX17vemEZFXVCZ0oxpNZPFYtGEj4dry5YdOnToqLV9wsTh+mvbLq1audbE6PC/1qzZoGXLVuvUqXAVL15EY8YM0c8/z1P9+i1ZRe4h69rhVd24eVPNX++uLC4uSkpO1rvdO+rFxg2tfWZ9t1hZsrjcNQQqpfZtXlLZUiXk7ZVTe/Yf0qdfztHFS5c1+N3u6fFtQLf/zk2ZNFqbN2/XwYNHHvwEPFK8J0BGYHpCsWnTJv3555+qVKmSQ8+Pi4tTXFycTZthGCQmeCSmfjJG5cqVVqPANta2ps0CVa9+gJ4JeNHEyHAvixevsH598OARHThwWKGhf6p+/QCtX7/ZxMgeP6t/36iVa9ZrwqjBKlGsiA4fO6kJn36pfHlz66WmjXTw8DF9t/hnLf7ms/v+fe7YrpX169IlisnNzVVjJn6mvu+8paxZs6bHt5LpfTZtnMqXL636DV42OxTANHzkZB/ThzyVKVNGt245PuErKChI3t7eNoeRfO0hRpj+Ll68rMTEROXzy2vTni+fryIYC26ayVNG64UmDdX0hdd07myEtb1+/QAVL15EZ8/vVXTMMUXHHJMkfT9/hn5d/YNZ4eIewsLCdeHCJT35ZFGzQ3nsTJ4+S13feFVNA59VqSeLqcULz+nNti9bV2jatfeALl+JVqPWb6pSvWaqVK+ZzkVE6ePP/6vnW3dM9XUrliujxKQknT0flV7fSqb26ScfqlnTQAU+30Znz543OxyI9wTIGEyvUHzxxRcaOnSoRowYoaeeekpubm425x80UXvYsGHq37+/TVuuPGUeepzpKSEhQbt27VPDBnW0fPlvkm6XoBs2qKMvZsw2ObrMafKU0Wre4nk1afya/v77jO25yTM0d85Cm7btO3/T0MEf6pdf1qVnmHiAggX9lSdPLp3nzelDFxsbJ4uLbeXBxcVFyf+/6lnzF55T7RpVbM6/3e8DNX+hoVo2tV3uN6XDx07IxcVFuXN5P/ygYePTTz5Uy5de0HON2ujUqdNmh4P/x3sCZASmJxQ+Pj6KiYlRw4YNbdrvDFtKSrr/ZDx3d3e5u7vbtD0Ow52mfvq1Zs+aqpBd+7Rjx26926ebcuTw0Jy5Cx/8ZDxUUz8ZozavvqR2r3bXtevXrZ8SxVy9ptjYOEVFXrznROzTZ87elXzg4cqRI7tNtaFo0UKqWLGcrlyJ1uXL0Xr//b5atuxXRUZeUPHiRfTRR//RiROntHbtH+YF/Zh69pla+nruAuX3y6cSxYoo9OhxzVu4VC83u50s+Hh7ycfb9gMiV9csyps7l4oVeULS7ZWi9h88rBpVKylHdg/tPRCqidO+0ovPN5D3/y+GgEfjs2nj9Fq7lmrVurOuXbsuPz9fSdLVq9cUGxtrcnTgPUH6S874byXTlekJRfv27eXm5qb58+czKTuFxYuXyzdvbo0aMVD+/r7au/egmr34hqKiWEEovXXr3kGStHrNApv2t7sP1Pff/WhGSPh/1apV1Jo1/2x69vHHIyVJ3367WH36/EcVKpTVG2+8Ih8fL50/H6l16zZp9OhJio9nL4qH7T/9euizr+fpw0nTdflKtHzz5labl5qqR6fX0/waWd3c9Ou6P/TFN98rPj5BBQv4qUPbl9WxHWP5H7Ue79wedvZ7sO3ftM5d+mkeGwuajvcEcHYWw+RduLJnz67du3erdOnSD+01XbMWfGivhYcvmysTK51VYjLLczqra2c2mB0C7sOjQF2zQwAynMT4s2aHkKrvC7zx4E6PSPtz35l2bUeZPim7evXqOn2asZoAAABARmT6kKc+ffrovffe06BBg1ShQoW7JmVXrFjRpMgAAACQGWXUDebMYnpC0bZtW0lS586drW0WiyXNk7IBAAAAmMf0hCIsLMzsEAAAAAA4yPSE4s7qTikrFJL0zTff6MKFCxoyZIhJkQEAACAzYtlY+5g+KfvLL79UmTJ3b0RXvnx5zZw504SIAAAAAKSV6RWKiIgI5c+f/652X19fnT9/3oSIAAAAkJklmx1ABmN6haJQoULavHnzXe2bN29WgQIFTIgIAAAAQFqZXqHo1q2b+vbtq4SEBDVs2FCSFBwcrMGDB2vAgAEmRwcAAADgfkxPKAYNGqRLly6pZ8+eio+PlyRly5ZNQ4YM0bBhw0yODgAAAJkN+1DYx/SEwmKxaMKECRo+fLhCQ0Pl4eGhkiVLyt3d3ezQAAAAADyA6QnFHZ6enqpRo4bZYQAAACCTY9lY+5g+KRsAAABAxkVCAQAAAMBhTjPkCQAAAHAG7ENhHyoUAAAAABxGhQIAAABIgQqFfahQAAAAAHAYFQoAAAAgBYNlY+1ChQIAAACAw0goAAAAADiMIU8AAABACkzKtg8VCgAAAAAOo0IBAAAApECFwj5UKAAAAAA4jIQCAAAAgMMY8gQAAACkYJgdQAZDhQIAAACAw6hQAAAAACkks1O2XahQAAAAABnQjBkzVLFiRXl5ecnLy0sBAQH69ddfredjY2PVq1cv5cmTR56enmrdurUiIyNtXiM8PFzNmjVT9uzZlS9fPg0aNEiJiYl2xUFCAQAAAKSQbOJhjyeeeELjx49XSEiIdu7cqYYNG+qll17SwYMHJUn9+vXTihUrtHjxYv3xxx86d+6cWrVqZX1+UlKSmjVrpvj4eG3ZskVz587VnDlzNGLECLvisBiG8djNO3HNWtDsEHAf2Vyzmh0CUpGYnGR2CEjFtTMbzA4B9+FRoK7ZIQAZTmL8WbNDSNXUwm+Ydu1+4d/9q+fnzp1bH3/8sV555RX5+vpq/vz5euWVVyRJhw8fVtmyZbV161bVrl1bv/76q1588UWdO3dOfn5+kqSZM2dqyJAhunDhgrJmTdt7NioUAAAAgJOIi4tTTEyMzREXF/fA5yUlJWnBggW6ceOGAgICFBISooSEBAUGBlr7lClTRoULF9bWrVslSVu3blWFChWsyYQkNW7cWDExMdYqR1qQUAAAAAApmDnkKSgoSN7e3jZHUFBQqrHu379fnp6ecnd31zvvvKOffvpJ5cqVU0REhLJmzSofHx+b/n5+foqIiJAkRURE2CQTd87fOZdWrPIEAAAAOIlhw4apf//+Nm3u7u6p9i9durT27Nmjq1evasmSJerYsaP++OOPRx2mDRIKAAAAIAUzJxi7u7vfN4H4X1mzZlWJEiUkSdWqVdOOHTv06aefqm3btoqPj1d0dLRNlSIyMlL+/v6SJH9/f23fvt3m9e6sAnWnT1ow5AkAAAB4TCQnJysuLk7VqlWTm5ubgoODreeOHDmi8PBwBQQESJICAgK0f/9+RUVFWfusXbtWXl5eKleuXJqvSYUCAAAAyICGDRumJk2aqHDhwrp27Zrmz5+vDRs26LfffpO3t7e6dOmi/v37K3fu3PLy8lKfPn0UEBCg2rVrS5Kef/55lStXTh06dNDEiRMVERGhDz74QL169bKrSkJCAQAAAKSQUXbKjoqK0ptvvqnz58/L29tbFStW1G+//aZGjRpJkqZOnSoXFxe1bt1acXFxaty4sb744gvr87NkyaKVK1eqR48eCggIUI4cOdSxY0eNGTPGrjjYhwLpjn0onBf7UDgv9qFwbuxDAdjPmfehmFjEvH0oBv/97/ahMAMVCgAAACAFe3eszuyYlA0AAADAYVQoAAAAgBQeu/kAjxgVCgAAAAAOI6EAAAAA4DCGPAEAAAApJDPoyS4kFACsklg21mnlfOJZs0PAffjl8DE7BKQi8ka02SEAjz0SCgAAACAFlo21D3MoAAAAADiMhAIAAACAwxjyBAAAAKTAlGz7UKEAAAAA4DAqFAAAAEAKTMq2DxUKAAAAAA6jQgEAAACkkGwxO4KMhQoFAAAAAIeRUAAAAABwGEOeAAAAgBSSWTjWLlQoAAAAADiMCgUAAACQAvUJ+1ChAAAAAOAwEgoAAAAADmPIEwAAAJACO2XbhwoFAAAAAIdRoQAAAABSYNlY+1ChAAAAAOAwKhQAAABACtQn7EOFAgAAAIDDSCgAAAAAOIwhTwAAAEAKLBtrHyoUAAAAABxGhQIAAABIgWVj7UOFAgAAAIDDSCgAAAAAOIwhTwAAAEAKDHiyj1NUKDp27KiNGzeaHQYAAAAAOzlFQnH16lUFBgaqZMmSGjdunM6ePWt2SAAAAMikkk08MiKnSCiWLVums2fPqkePHlq4cKGKFi2qJk2aaMmSJUpISDA7PAAAAACpcIqEQpJ8fX3Vv39/7d27V9u2bVOJEiXUoUMHFShQQP369dOxY8fMDhEAAACZgGHifxmR0yQUd5w/f15r167V2rVrlSVLFjVt2lT79+9XuXLlNHXqVLPDAwAAAJCCUyQUCQkJ+vHHH/Xiiy+qSJEiWrx4sfr27atz585p7ty5WrdunRYtWqQxY8aYHSoAAACAFJxi2dj8+fMrOTlZr732mrZv367KlSvf1adBgwby8fFJ99gAAACQuWTUydFmcYqEYurUqWrTpo2yZcuWah8fHx+FhYWlY1QAAAAAHsQpEooOHTqYHQIAAAAgSUrOoJOjzeIUCcWNGzc0fvx4BQcHKyoqSsnJtoWmkydPmhQZAAAAgPtxioSia9eu+uOPP9ShQwflz59fFovF7JAAAAAApIFTJBS//vqrVq1apWeeecbsUAAAAJDJMeDJPk6xbGyuXLmUO3dus8MAAAAAYCenSCjGjh2rESNG6ObNm2aHAgAAgEwuWYZpR0Zk2pCnKlWq2MyVOH78uPz8/FS0aFG5ubnZ9N21a1d6hwcAAAAgDUxLKFq2bGnWpQEAAAA8JKYlFCNHjjTr0gAAAECq2CnbPk4xh6J48eK6dOnSXe3R0dEqXry4CRGZb8jg3tq6ZZWuXDqic2f26scls1Sq1JNmh5UpDRjYQ39sWqbzkfsVdmqHflj4pUqWtP3/8tfVP+j6zTCb49NpH5oUceZWoIC/5s6ZpojzBxRz9bh271qnalUrmh1WplSnTk39+OM3Onlyh2Jjw9W8+fOp9v3ss3GKjQ1X795d0jHCzKv/kJ46e+WgzfHHthXW87758mrazCDtPvyHjp3ZodUbFqtp80YmRowe73TU8aN/6XrMCW35c4VqVK9sdkiAlVMsG3vq1CklJSXd1R4XF6czZ86YEJH56tWtrRkz5mpnyB65urrqwzFD9euq+apQ6VndvHnL7PAylTp1a+mrL7/VrpB9yuLqqlGjB+rnFfNUvWojm3sx+5sfNHbsFOvjWzdjzQg3U/Px8dYfG5bpjz+2qHnzN3Th4iWVKFFMV6Kvmh1appQ9e3bt339Ic+cu1KJFX6far0WLxqpZs4rOno1Ix+hwOPSY2rXsan2cmJho/frTGePk5e2lTq/31uVLV/TyK800c/ZkNWnwqg7uP2xGuJlamzYtNOnjkerZa6i279itd/t01S+rvle5p+rpwoW7P5DFv2dk0MnRZjE1oVi+fLn1699++03e3t7Wx0lJSQoODlaxYsXMCM10zZq/YfO4c9e+iji3X9WqVtSmP7eZFFXm9PJLb9k8fqf7IJ0KD1GVKhW0efN2a/vNm7cUFXkxnaNDSoMG9dSZM+fUtVt/a9upU6dNjChzW7Nmg9as2XDfPgUK+GnKlDFq3ryDli2bnT6BQZKUlJikC1H3/ptVvWYVDRs4Rnt27ZckfTr5S3Xr+aYqVi5PQmGCfu91039nzdfceYskST17DVXTJs+p01vtNPHj6SZHB5icUNyZmG2xWNSxY0ebc25ubipatKgmT55sQmTOx9vbS5J0+Uq0uYFAXl45JUlX/udetG37ktq1a6nIyAv65ZdgTRj/mW7dokqRnl588XmtXfOHfvjhS9WrW1vnzkVo5sy5mvXNfLNDwz1YLBZ9880nmjr1S4WGHjU7nEynWPHCCjm0XnFxcQrZsVdBYz7RuTPnJUk7t+9Wi5dfUPBvG3X1aoyav/yC3N2zauufO0yOOvNxc3NT1aoVNX7i59Y2wzAU/Pufql27momRPd6YQ2EfUxOK5OTbt6tYsWLasWOH8ubNa2Y4TstisWjKpNHavHm7Dh48YnY4mZrFYtGEj4dry5YdOnTonzdAixYtV3j4WUWcj1T5p8po7IdDVKpUcb3+Wg8To818ihcrrLff7qBPPv1aEyZMU/VqlTV16hjFJyTo228Xmx0e/sfAgT2VmJik6dO/MTuUTGd3yD716/W+Thw/pXx+vuo/pId++mWeGj79km5cv6l3Og3QjG8m62DYFiUkJOjWrVh16fCeToWFmx16ppM3b265urreVQGPirqgMqWZWwnn4BRzKMLCwhx+blxcnOLi4mzaDMOw2eMio/ts2jiVL19a9Ru8bHYomd7UT8aoXLnSahTYxqZ99jc/WL8+ePCIIiOitOrX+SpWrLDC+Ac43bi4uCgkZJ+GDx8vSdqz56DKly+t7t06kFA4mSpVKqhXr04KCGhmdiiZ0vp1f1q/Dj14VLt37tO2/WvVvOULWvDdUg16v4+8vHOq7UuddflytBo3baiZsyerVdM3dfjQMRMjB+CMTEsopk2blua+7777bqrngoKCNHr0aJs2i4unLFm8HI7NmXz6yYdq1jRQDZ5rpbNnz5sdTqY2ecpovdCkoRo3aqtzD5g8umPHHklS8SeLklCko/Pno+4aOnP48HG9/HJTkyJCap55pqby5curY8e2WttcXV01YcIH6tOns0qXfsbE6DKfmJhrOnn8bxUtXlhFihZS5+7t1SCghY4ePiFJOnTgiGoFVNNbXV/T0P5jTI42c7l48bISExOVz892FEe+fL6KiLxgUlSPPyZl28e0hGLq1Klp6mexWO6bUAwbNkz9+/e3acuVp8y/is1ZfPrJh2r50gt6rlEbJpaabPKU0Wre4nk1afya/v77wSuPVaxYTpIUERH1qENDClu27rhreeWSJYsrPPysSREhNfPn/6jff99k07ZixXeaP3+p5v3/xFOkn+w5sqtIsUL6ceFyeWTPJklKTrZ9Q5WUlCyLxSlWm89UEhIStGvXPjVsUEfLl/8m6fZ7o4YN6uiLGSxkAOdgWkLxb4Y5peTu7i53d3ebtsdhuNNn08bptXYt1ap1Z127dl1+fr6SpKtXryk2lom+6WnqJ2PU5tWX1O7V7rp2/br1U6KYq9cUGxunYsUK69W2L+m339br8qUreqpCWY2f8IH+3LRNBw+wGkp6mvbp19q48WcNGdJHS5asUI0aldW1a3v16DnY7NAypRw5suvJJ4taHxctWkgVK5bTlSvROn36nC5fjrbpn5iYoMjICzp27GT6BpoJDR8zUGtXb9CZ0+fknz+fBgztpeSkJC378RfFXL2msBN/a8LUkRo7fJKuXI7WC80aql6DAHVs19Ps0DOlqZ9+rdmzpipk1z7t2LFb7/bpphw5PDRn7kKzQ3tsMSnbPhbDMB67mo5r1oJmh/CvJcbf+xPVzl36ad63GfvTu2yuWc0OwS7Xb947+X27+0B9/92PKlgwv2Z9M1Vly5VSjhzZdebMOa1YvkYTJ3yua9eup3O0/05cYrzZIfxrTZsG6qMPh6pEiWIKO3Van37y1WOxylMWlyxmh2C3evVqa82au/9effvtYnXrNuCu9iNHNuuzz77R55/PSo/wHqo8HjnNDsEuX8z6WLUCqitXbh9dvnhZ27ft0oSx0/T3/1fDixUvrGEj+6tm7SrKkSO7ToWd1szPZ+vHhSse8MrOJ/JGtNkhPBQ9e7ylAf17yN/fV3v3HlTffiO0fcdus8P6V1J7r+MMOhZtbdq155760bRrO8ppEoozZ85o+fLlCg8PV3y87ZuaKVOmpPKse3scEorHWUZLKDKTxyGheFxlxIQiM8loCUVm8rgkFI8jEop7syehCAoK0tKlS3X48GF5eHjo6aef1oQJE1S6dGlrn9jYWA0YMEALFixQXFycGjdurC+++EJ+fn7WPuHh4erRo4fWr18vT09PdezYUUFBQXJ1TdtgJqdY5Sk4OFgtWrRQ8eLFdfjwYT311FM6deqUDMNQ1apVzQ4PAAAAmUiyc3ze/kB//PGHevXqpRo1aigxMVH/+c9/9Pzzz+vQoUPKkSOHJKlfv35atWqVFi9eLG9vb/Xu3VutWrXS5s2bJd3eTLpZs2by9/fXli1bdP78eb355ptyc3PTuHHj0hSHU1QoatasqSZNmmj06NHKmTOn9u7dq3z58ql9+/Z64YUX1KOHfWv5U6FwblQonBcVCudFhcK5UaFwXlQonJczVyg6FGll2rW//Xupw8+9cOGC8uXLpz/++EP16tXT1atX5evrq/nz5+uVV16RJB0+fFhly5bV1q1bVbt2bf3666968cUXde7cOWvVYubMmRoyZIguXLigrFkf/L7NKZZrCA0N1Ztvvinp9rKBt27dkqenp8aMGaMJEyaYHB0AAAAyE8PEIy4uTjExMTbH/+65lpqrV69KknLnzi1JCgkJUUJCggIDA619ypQpo8KFC2vr1tvLdm/dulUVKlSwGQLVuHFjxcTE6ODBg2m6rlMkFDly5LDOm8ifP79OnDhhPXfx4sXUngYAAAA8VoKCguTt7W1zBAUFPfB5ycnJ6tu3r5555hk99dRTkqSIiAhlzZpVPj4+Nn39/PwUERFh7ZMymbhz/s65tHCKORS1a9fWn3/+qbJly6pp06YaMGCA9u/fr6VLl6p27dpmhwcAAIBMJNnEje3utcfa/26RcC+9evXSgQMH9Oeffz6q0FLlFAnFlClTdP367eU1R48erevXr2vhwoUqWbKk3Ss8AQAAABnVvfZYe5DevXtr5cqV2rhxo5544glru7+/v+Lj4xUdHW1TpYiMjJS/v7+1z/bt221eLzIy0nouLZwioShevLj16xw5cmjmzJkmRgMAAAA4P8Mw1KdPH/3000/asGGDihUrZnO+WrVqcnNzU3BwsFq3vr0U7pEjRxQeHq6AgABJUkBAgD766CNFRUUpX758kqS1a9fKy8tL5cqVS1McTpFQSFJ0dLSWLFmiEydOaNCgQcqdO7d27dolPz8/FSzIqk0AAABIH4aJQ57s0atXL82fP18///yzcubMaZ3z4O3tLQ8PD3l7e6tLly7q37+/cufOLS8vL/Xp00cBAQHWaQXPP/+8ypUrpw4dOmjixImKiIjQBx98oF69eqW5UuIUCcW+ffsUGBgob29vnTp1St26dVPu3Lm1dOlShYeHa968eWaHCAAAADiVGTNmSJKeffZZm/bZs2frrbfekiRNnTpVLi4uat26tc3GdndkyZJFK1euVI8ePRQQEKAcOXKoY8eOGjNmTJrjcIp9KAIDA1W1alVNnDjRug9F8eLFtWXLFr3++us6deqUXa/HPhTOjX0onBf7UDgv9qFwbuxD4bzYh8J5OfM+FG2LtDTt2gv/XmbatR3lFMvG7tixQ2+//fZd7QULFkzzclUAAAAA0p9TJBTu7u6KiYm5q/3o0aPy9fU1ISIAAAAAaeEUCUWLFi00ZswYJSQkSJIsFovCw8M1ZMgQ64x0AAAAID0kyzDtyIicIqGYPHmyrl+/rnz58unWrVuqX7++SpQoIU9PT3300UdmhwcAAAAgFU6xypO3t7fWrl2rzZs3a+/evbp+/bqqVq2qwMBAs0MDAABAJpNRlo11Fk6RUEhScHCwgoODFRUVpeTkZB0+fFjz58+XJH3zzTcmRwcAAADgXpwioRg9erTGjBmj6tWrK3/+/LJYLGaHBAAAgEwq2ewAMhinSChmzpypOXPmqEOHDmaHAgAAAMAOTjEpOz4+Xk8//bTZYQAAAACwk1MkFF27drXOlwAAAADMZBiGaUdGZNqQp/79+1u/Tk5O1ldffaV169apYsWKcnNzs+k7ZcqU9A4PAAAAQBqYllDs3r3b5nHlypUlSQcOHLBpZ4I2AAAA0lNG3WDOLKYlFOvXrzfr0gAAAAAeEqeYQwEAAAAgY3KKZWMBAAAAZ8E+FPahQgEAAADAYVQoAAAAgBQMJmXbhQoFAAAAAIdRoQAAAABSYNlY+1ChAAAAAOAwEgoAAAAADmPIEwAAAJCCYTDkyR5UKAAAAAA4jAoFAAAAkAIb29mHCgUAAAAAh5FQAAAAAHAYQ54AAACAFNgp2z5UKAAAAAA4jAoFAAAAkAI7ZduHCgUAAAAAh1GhAAAAAFJgYzv7UKEAAAAA4DASCgAAAAAOY8gTAAAAkAKTsu1DhQIAAACAw6hQAAAAACmwsZ19SCiQ7mIT480OAchwEpOTzA4B9xF5I9rsEADANAx5AgAAAOAwKhQAAABACsnsQ2EXKhQAAAAAHEaFAgAAAEiB+oR9qFAAAAAAcBgVCgAAACAFNrazDxUKAAAAAA4joQAAAADgMIY8AQAAACkw5Mk+VCgAAAAAOIwKBQAAAJCCwcZ2dqFCAQAAAMBhJBQAAAAAHMaQJwAAACAFJmXbhwoFAAAAAIdRoQAAAABSMKhQ2IUKBQAAAACHmVqhGDNmTJr6jRgx4hFHAgAAAMARFsPEhXarVKmS6jmLxaIjR44oNjZWSUlJdr2ua9aC/zY0AAAAPEKJ8WfNDiFV1fPXNe3aO89vMu3ajjK1QrF79+57tu/Zs0dDhw7VgQMH1K1bt3SOCgAAAEBaOdUcirCwML3xxhuqUaOGvL29dfDgQc2cOdPssAAAAJCJJMsw7ciInCKhuHjxovr06aMyZcro/Pnz2rJlixYuXKiSJUuaHRoAAACA+zB1yNONGzc0adIkTZkyRSVKlNCKFSv0/PPPmxkSAAAAMjkTpxhnSKYmFE8++aSuXbumPn366LXXXpPFYtG+ffvu6lexYkUTogMAAADwIKau8uTi8s+IK4vFYpMN3nlssVhY5QkAAOAx48yrPFXxf8a0a++O2GzatR1l6hyKsLAw63Hy5Ml7Pj558qSZIQIAACCTySiTsjdu3KjmzZurQIECslgsWrZsmc15wzA0YsQI5c+fXx4eHgoMDNSxY8ds+ly+fFnt27eXl5eXfHx81KVLF12/ft2uOEwd8lSkSBEzLw8AAABkWDdu3FClSpXUuXNntWrV6q7zEydO1LRp0zR37lwVK1ZMw4cPV+PGjXXo0CFly5ZNktS+fXudP39ea9euVUJCgjp16qTu3btr/vz5aY7D1CFPRYoUUcOGDdWgQQM1aNBAhQoVeiivy5AnAAAA5+bMQ54q+geYdu19EVsdep7FYtFPP/2kli1bSrpdnShQoIAGDBiggQMHSpKuXr0qPz8/zZkzR+3atVNoaKjKlSunHTt2qHr16pKk1atXq2nTpjpz5owKFCiQpmubOuSpU6dOCgsL09tvv62iRYuqRIkS6tatm3744QdFRESYGRoAAACQ7uLi4hQTE2NzxMXF2f06YWFhioiIUGBgoLXN29tbtWrV0tatt5OWrVu3ysfHx5pMSFJgYKBcXFy0bdu2NF/L1IRi1KhR2rBhg6Kjo7V27Vq1b99eR48eVadOnVSwYEGVLVtWvXr1MjNEAAAAIN0EBQXJ29vb5ggKCrL7de58OO/n52fT7ufnZz0XERGhfPny2Zx3dXVV7ty57fpw39Q5FHe4u7urYcOGatiwoSTpypUrmjx5sj777DPNnDlT06dPNzlCAAAAZBbJJu5DMWzYMPXv39+mzd3d3aRo0sYpEor4+Hht3bpVGzZs0IYNG7Rt2zYVLFhQr7zyiurXr292eAAAAEC6cHd3fygJhL+/vyQpMjJS+fPnt7ZHRkaqcuXK1j5RUVE2z0tMTNTly5etz08LUxOKMWPGWBOIIkWKqF69eurevbu+//77NE8CAQAAAB4mw87lW51RsWLF5O/vr+DgYGsCERMTo23btqlHjx6SpICAAEVHRyskJETVqlWTJP3+++9KTk5WrVq10nwtUxOKUaNGqXDhwpo8ebLatGmjPHnymBkOAAAAkGFcv35dx48ftz4OCwvTnj17lDt3bhUuXFh9+/bVhx9+qJIlS1qXjS1QoIB1JaiyZcvqhRdeULdu3TRz5kwlJCSod+/eateunV0f7pu6bOxvv/2m9evXa8OGDdq9e7dKlSqlZ599VvXr11f9+vXl6+vr0OuybCwAAIBzc+ZlY8vmq2natUOjtqe574YNG9SgQYO72jt27Kg5c+bIMAyNHDlSX331laKjo1WnTh198cUXKlWqlLXv5cuX1bt3b61YsUIuLi5q3bq1pk2bJk9PzzTHYWpCkdK1a9e0adMm/fHHH1q/fr327t2rEiVKqEGDBvr888/tei0SCgAAAOdGQnFv9iQUzsJpEoo7kpKStH37di1fvlxffPGFrl+/rqSkJLteg4QCAADAuZFQ3FtGTChMX+UpOTlZO3futA592rx5s27cuKEnnnhCL7/88j3LOAAAAMCj8jhMyk5PpiYUTZo00ZYtW3Tt2jUVKFBADRo00NSpU9WgQQMVL17czNAAAAAApIGpCYWPj48+/vhjNWjQQCVLljQzFAAAAECSuRvbZUSmJhQ//PCDmZcHAAAA8C+5mB1AYmKiPv74Y1WtWlWenp7y9PRU1apVNWnSJCUkJJgdHgAAAID7MLVCcevWLTVq1Ehbt25VYGCg6tWrJ0kKDQ3VkCFDtHz5cq1Zs0bZsmUzM0wAAABkIkzKto+pCcX48eN1+vRp7d69WxUrVrQ5t3fvXrVo0ULjx4/XqFGjzAkQAAAAwH2ZOuRpwYIFmjJlyl3JhCRVqlRJkyZN0vz5802IDAAAAJlVsmGYdmREpiYUf//9t2rWTH3jkNq1ays8PDwdI3IuPd7pqONH/9L1mBPa8ucK1ahe2eyQkAL3x3lxb5wX98a5cX+cF/cGzszUhMLLy0tRUVGpno+IiFDOnDnTMSLn0aZNC036eKTGfjhFNWq9oL37DumXVd/L1zeP2aFB3B9nxr1xXtwb58b9cV7cm/RnmPhfRmQxDPNqK23btlViYqJ+/PHHe55v3bq1smTJokWLFtn1uq5ZCz6M8Ey15c8V2rFzr97r+4EkyWKx6NTJHZr+xWxN/Hi6ydGB++O8uDfOi3vj3Lg/zutxvTeJ8WfNDiFVxfNWMe3aJy/uNu3ajjK1QjFy5EitWbNGtWvX1qJFi7Rv3z7t3btXCxYsUK1atbRmzRqNHDnSzBBN4ebmpqpVKyr4903WNsMwFPz7n6pdu5qJkUHi/jgz7o3z4t44N+6P8+LeICMwdZWncuXKae3aterSpYvatWsni8Ui6fYvSpkyZbRmzRqVL1/+vq8RFxenuLg4mzbDMKyvlRHlzZtbrq6uioq8aNMeFXVBZUo/aVJUuIP747y4N86Le+PcuD/Oi3tjDsNINjuEDMXUhEK6PfH64MGD2rNnj44ePSpJKlWqlCpXrpym5wcFBWn06NE2bRYXT1myeD3sUAEAAAD8D9MTijsqV66c5iQipWHDhql///42bbnylHlIUZnj4sXLSkxMVD6/vDbt+fL5KiLygklR4Q7uj/Pi3jgv7o1z4/44L+6NOZIz6ORos5iaUIwZMyZN/UaMGJHqOXd3d7m7u9u0ZeThTpKUkJCgXbv2qWGDOlq+/DdJt7+nhg3q6IsZs02ODtwf58W9cV7cG+fG/XFe3BtkBKYmFD/99FOq5ywWi44cOaLY2Nj7JhSPq6mffq3Zs6YqZNc+7dixW+/26aYcOTw0Z+5Cs0ODuD/OjHvjvLg3zo3747y4N3B2piYUu3ffe1msPXv2aOjQoTpw4IC6deuWzlE5h8WLl8s3b26NGjFQ/v6+2rv3oJq9+Iaioi4++Ml45Lg/zot747y4N86N++O8uDfpz8RdFTIkU/eh+F9hYWEaPny4Fi5cqFatWunDDz9UyZIl7X6dx2EfCgAAgMeZM+9DUTh3BdOuHX55v2nXdpSp+1DccfHiRfXp00dlypTR+fPntWXLFi1cuNChZAIAAAD4N5JlmHZkRKYOebpx44YmTZqkKVOmqESJElqxYoWef/55M0MCAAAAYAdTE4onn3xS165dU58+ffTaa6/JYrFo3759d/WrWLGiCdEBAAAgM3KiGQEZgqlzKFxc/hlxZbFYbG7enccWi0VJSUl2vS5zKAAAAJybM8+hKJirvGnXPnvloGnXdpSpFYqwsDAzLw8AAADgXzI1oXBzc1OBAgXu22fBggUqUqRIOkUEAACAzC6ZIU92MXWVp+eff17R0dGpnl+wYIHefPPN9AsIAAAAgF1MTSh8fX3VpEkT3bx5865zixYtUocOHfTRRx+ZEBkAAAAyK8PE/zIiUxOKFStWKCEhQS1btlRCQoK1ffHixerQoYM+/PBDDRo0yMQIAQAAANyPqQmFp6enfv31V50+fVqvv/66DMPQkiVL1L59e40cOVJDhgwxMzwAAAAAD2DqsrF3nD59WnXq1FHJkiW1adMmDR8+XB988IHDr8eysQAAAM7NmZeN9fMuY9q1I68eNu3ajjI1oUi5id3hw4f15ptv6qWXXtL7779v08/eje1IKAAAAJwbCcW9kVDYycXFxWYDuzuh/O/XbGwHAADweHHmhMLXu7Rp175w9Yhp13YUG9sBAAAAcJipCQUb1gEAAMDZOMEU4wzF1IQiPDw8Tf0KFy78iCMBAAAA4AhTE4qiRYvKYrHc1X5nToV0ew5FYmJieocGAAAAIA1MTSh27959z3bDMLRgwQJNmzZNnp6e6RwVAAAAMrNkhjzZxdSEolKlSne1rVu3TkOHDtXRo0c1ePBgDRgwwITIAAAAAKSFqQlFSrt27dKQIUO0adMmde3aVb/88ovy5ctndlgAAADIZJiUbR8XswM4ceKE2rZtq5o1a8rX11eHDh3S559/TjIBAAAAZACmJhQ9e/ZUuXLldPXqVe3cuVPz589X8eLFzQwJAAAAgB1M3yk7W7ZsKlPm/tub79q1y67XZadsAAAA5+bMO2V7ez5p2rWvXj9h2rUdZeocihEjRtxz2VgAAAAAGYOpFYpHhQoFAACAc3PmCoVXDvOG4MfcOGnatR1laoUiV65c96xQeHt7q1SpUho4cKAaNWpkQmQAAAAA0sLUhOKTTz65Z3t0dLRCQkL04osvasmSJWrevHn6BgYAAIBMi43t7OPUQ56mTJmiJUuWaMuWLXY9jyFPAAAAzs2Zhzx5Zi9m2rWv3wwz7dqOMn0fivt58cUXdfjwYbPDAAAAAJAKp9kp+17i4uKUNWtWs8MAAABAJmLIaQfwOCWnrlDMmjVLlStXNjsMAAAAAKkwtULRv3//e7ZfvXpVu3bt0tGjR7Vx48Z0jgoAAACZGZOy7WNqQrF79+57tnt5ealRo0ZaunSpihUzb1IMAAAAgPtz6lWeHMUqTwAAAM7NmVd58vAoYtq1b93627RrO8qpJ2UDAAAA6e0x/Lz9kXLqSdkAAAAAnBsVCgAAACAFlo21DxUKAAAAAA4joQAAAADgMIY8AQAAACkwKds+VCgAAAAAOIyEAgAAAEjBMAzTDntNnz5dRYsWVbZs2VSrVi1t3779EfxE7o+EAgAAAMiAFi5cqP79+2vkyJHatWuXKlWqpMaNGysqKipd42CnbAAAAKQ7Z94p28z3kvb8XGrVqqUaNWro888/lyQlJyerUKFC6tOnj4YOHfqoQrwLFQoAAAAgg4mPj1dISIgCAwOtbS4uLgoMDNTWrVvTNRZWeQIAAACcRFxcnOLi4mza3N3d5e7ubtN28eJFJSUlyc/Pz6bdz89Phw8ffuRxpvRYJhTOXEKzV1xcnIKCgjRs2LC7/keCubg3zo3747y4N86Le+PcuD/px8z3kqNGjdLo0aNt2kaOHKlRo0aZE1AaPJZzKB4nMTEx8vb21tWrV+Xl5WV2OEiBe+PcuD/Oi3vjvLg3zo37kzmktUIRHx+v7Nmza8mSJWrZsqW1vWPHjoqOjtbPP/+cHuFKYg4FAAAA4DTc3d3l5eVlc9yrIpU1a1ZVq1ZNwcHB1rbk5GQFBwcrICAgPUN+PIc8AQAAAI+7/v37q2PHjqpevbpq1qypTz75RDdu3FCnTp3SNQ4SCgAAACADatu2rS5cuKARI0YoIiJClStX1urVq++aqP2okVA4OXd3d40cOZLJV06Ie+PcuD/Oi3vjvLg3zo37g3vp3bu3evfubWoMTMoGAAAA4DAmZQMAAABwGAkFAAAAAIeRUAAAAABwGAmFkzl16pQsFov27NmTap8NGzbIYrEoOjo63eLKrNJyP5zhNYHH3VtvvWWzcVNm9eyzz6pv376P9BpFixbVJ598ct8+o0aNUuXKlR9pHAAyDhIKAACQKovFomXLlpkdhilSS+DmzJkjHx8fSbeTK4vFonfeecemz549e2SxWHTq1ClJ9/4w6dq1a2rQoIHKlSunM2fOWPvky5dP165ds3m9ypUra9SoUTZtBw8e1KuvvipfX1+5u7urVKlSGjFihG7evGnt065dO73wwgs2z1u9erUsFstdrzdq1CgVLlzYJt60xoLMjYQCAADgX8iWLZtmzZqlY8eOpfk5Fy5cUIMGDXTjxg1t2rRJTzzxhPXctWvXNGnSpPs+/6+//lKtWrUUHx+vVatW6ejRo/roo480Z84cNWrUSPHx8ZKkBg0aaPPmzUpMTLQ+d/369SpUqJA2bNhg85rr169XgwYNbNrSEgtAQmGS5ORkTZw4USVKlJC7u7sKFy6sjz76yHr+8OHDevrpp5UtWzY99dRT+uOPP+56jc2bN6tixYrKli2bateurQMHDqTnt/BY+Tf348qVK2rfvr18fX3l4eGhkiVLavbs2dbz27dvV5UqVZQtWzZVr15du3fvTtfv7XFwv/uzZcsWVa5c2frzXbZsmc2ngHeGCP7222+qUqWKPDw81LBhQ0VFRenXX39V2bJl5eXlpddff93mUz2kXWr3584nnIsWLVLdunXl4eGhGjVq6OjRo9qxY4eqV68uT09PNWnSRBcuXLC+XlJSkvr37y8fHx/lyZNHgwcPFiuc/yM5OVmDBw9W7ty55e/vb/NJcXR0tLp27SpfX195eXmpYcOG2rt3r/X8iRMn9NJLL8nPz0+enp6qUaOG1q1bl+q1ihYtKkl6+eWXZbFYrI/v+Pbbb1W0aFF5e3urXbt21k+y582bpzx58iguLs6mf8uWLdWhQ4d/9wNwQqVLl1aDBg30/vvvp6n/6dOnVbduXXl7e+v3339Xnjx5bM736dNHU6ZMUVRU1D2fbxiGunTporJly2rp0qWqWbOmihQpojZt2mjFihXaunWrpk6dKul2QnH9+nXt3LnT+vwNGzZo6NCh2rZtm2JjYyVJsbGx2rZt210JxYNiASRJBkwxePBgI1euXMacOXOM48ePG5s2bTK+/vprIywszJBkPPHEE8aSJUuMQ4cOGV27djVy5sxpXLx40TAMw1i/fr0hyShbtqyxZs0aY9++fcaLL75oFC1a1IiPjzf5O8uY/s396NWrl1G5cmVjx44dRlhYmLF27Vpj+fLlhmEYxrVr1wxfX1/j9ddfNw4cOGCsWLHCKF68uCHJ2L17t4nfccaS2v25evWqkTt3buONN94wDh48aPzyyy9GqVKlbH6+d35fateubfz555/Grl27jBIlShj169c3nn/+eWPXrl3Gxo0bjTx58hjjx4839xvNoB70+1OmTBlj9erVxqFDh4zatWsb1apVM5599lmb+/HOO+9YX2/ChAlGrly5jB9//NE4dOiQ0aVLFyNnzpzGSy+9ZN436STq169veHl5GaNGjTKOHj1qzJ0717BYLMaaNWsMwzCMwMBAo3nz5saOHTuMo0ePGgMGDDDy5MljXLp0yTAMw9izZ48xc+ZMY//+/cbRo0eNDz74wMiWLZvx999/W69RpEgRY+rUqYZhGEZUVJQhyZg9e7Zx/vx5IyoqyjAMwxg5cqTh6elptGrVyti/f7+xceNGw9/f3/jPf/5jGIZh3Lx50/D29jYWLVpkfd3IyEjD1dXV+P3339PjR/VQ1K9f33jvvffuap89e7bh7e1tGMbtn0WlSpWMkJAQw8XFxdixY4dhGIaxe/duQ5IRFhZmGIZh/X1YsGCBUahQIePll182YmNjbV73Tp9du3YZlStXNnr16mU9V6lSJWPkyJGGYRjGrl27DEnG/Pnz7xl3o0aNjEqVKlkfFyhQwBg3bpxhGIYRExNjuLq6GlFRUUaZMmWs9yM4ONiQZJw6dcquWADDMAwSChPExMQY7u7uxtdff33XuTu/wCnf2CQkJBhPPPGEMWHCBMMw/nmDtGDBAmufS5cuGR4eHsbChQsf/TfwmPm396N58+ZGp06d7vnaX375pZEnTx7j1q1b1rYZM2aQUNjhfvdnxowZd/18v/7663smFOvWrbP2CQoKMiQZJ06csLa9/fbbRuPGjR/dN/KYSsvvz3//+19r2w8//GBIMoKDg61tQUFBRunSpa2P8+fPb0ycONH6+M7vHAnF7Te4derUsWmrUaOGMWTIEGPTpk2Gl5fXXW9Sn3zySePLL79M9TXLly9vfPbZZ9bHKRMKwzAMScZPP/1k85yRI0ca2bNnN2JiYqxtgwYNMmrVqmV93KNHD6NJkybWx5MnTzaKFy9uJCcnp+l7dQb2JBSGYRjt2rUzGjZsaBhG6glF1qxZjQYNGhiJiYl3ve6dPrt37zZWr15tuLm5GcePHzcMw/ZN/IIFC+7778i7775reHh4WB+3b9/eeP755w3DMIxVq1YZ5cqVMwzDMLp3726MGDHCMAzDGD58uFGsWDG7YwEMwzAY8mSC0NBQxcXF6bnnnku1T0BAgPVrV1dXVa9eXaGhoan2yZ07t0qXLn1XHzzYv70fPXr00IIFC1S5cmUNHjxYW7ZssXntO8PS7vVaeLD73Z8jR47c9fOtWbPmPV+nYsWK1q/9/PyUPXt2FS9e3KaNkr790vL7878/e0mqUKGCTdudn/3Vq1d1/vx51apVy3r+zu8cbkv585Sk/PnzKyoqSnv37tX169eVJ08eeXp6Wo+wsDCdOHFCknT9+nUNHDhQZcuWlY+Pjzw9PRUaGqrw8HC74yhatKhy5sx5Vxx3dOvWTWvWrNHZs2cl3Z7I/NZbb8lisTjybWcIH374oTZt2qQ1a9ak2qdFixbatGmTli5det/Xaty4serUqaPhw4en2sdI41DAZ599Vps3b1ZCQoI2bNigZ599VpJUv3596zyKDRs23DXcyZ5YkLmRUJjAw8PD7BCQwr+9H02aNNHff/+tfv366dy5c3ruuec0cODAhxQdHtbvi5ubm/Vri8Vi8/hOW3Jy8kO5VmaSlvvzvz/7e7Xxs0+71P7fvX79uvLnz689e/bYHEeOHNGgQYMkSQMHDtRPP/2kcePGadOmTdqzZ48qVKhgncD7MOK4o0qVKqpUqZLmzZunkJAQHTx4UG+99Zb937CJvLy8dPXq1bvao6Oj5e3tfVf7k08+qW7dumno0KGpvtl///33NWLECL3++utatGjRfa8/fvx4LVy48K65d6VKlZKkVD9EDA0NtfaRZJ38vWPHDq1fv17169eXdDuh2LZtmy5fvqxt27apYcOGdscCSCQUpihZsqQ8PDwUHBycap+//vrL+nViYqJCQkJUtmzZVPtcuXJFR48evasPHuxh3A9fX1917NhR3333nT755BN99dVXkqSyZctq37591klv//taeLD73Z/SpUtr//79NhM/d+zYkZ7hZXpp+f2xh7e3t/Lnz69t27ZZ2+78zuH+qlatqoiICLm6uqpEiRI2R968eSXdXszjrbfe0ssvv6wKFSrI39/fuqxpatzc3JSUlORQTF27dtWcOXM0e/ZsBQYGqlChQg69jllKly6tXbt23dW+a9cumzfsKY0YMUJHjx7VggULUn3d4cOHa9SoUWrfvr0WLlyYar+aNWuqVatWGjp0qE175cqVVaZMGU2dOvWuZHzv3r1at26dXnvtNWvbk08+qUKFCmn58uXas2ePNaEoWLCgChYsqMmTJys+Pj7VCsX9YgEkydXsADKjbNmyaciQIRo8eLCyZs2qZ555RhcuXNDBgwetwwamT5+ukiVLqmzZspo6daquXLmizp0727zOmDFjlCdPHvn5+en9999X3rx52fjJAf/2fowYMULVqlVT+fLlFRcXp5UrV1qTjddff13vv/++unXrpmHDhunUqVMsv2en+92fOz/f7t27a+jQoQoPD7f+fB/nYRXOJC2/P/Z67733NH78eJUsWVJlypTRlClT2MgzDQIDAxUQEKCWLVtq4sSJKlWqlM6dO6dVq1bp5ZdfVvXq1VWyZEktXbpUzZs3l8Vi0fDhwx9YHSpatKiCg4P1zDPPyN3dXbly5UpzTK+//roGDhyor7/+WvPmzfu332K669Gjhz7//HO9++676tq1q9zd3bVq1Sr98MMPWrFixT2f4+fnp/79++vjjz++72u///77ypIli9q3b6/k5GSbBCCljz76SOXLl5er6z9v2SwWi2bNmqVGjRqpdevWGjZsmPz9/bVt2zYNGDBAAQEBd+2f0aBBA33xxRcqUaKEdeihdLtK8dlnn6lUqVIqUKDAfWO+VyyARIXCNMOHD9eAAQM0YsQIlS1bVm3btrUZezp+/HiNHz9elSpV0p9//qnly5dbP2FK2ee9995TtWrVFBERoRUrVihr1qzp/a08Fv7N/ciaNauGDRumihUrql69esqSJYv1kylPT0+tWLFC+/fvV5UqVfT+++9rwoQJpnyPGVlq98fLy0srVqzQnj17VLlyZetQAkk28yrwaD3o98deAwYMUIcOHdSxY0cFBAQoZ86cevnllx9ixI8ni8WiX375RfXq1VOnTp1UqlQptWvXTn///bf1DeSUKVOUK1cuPf3002revLkaN26sqlWr3vd1J0+erLVr16pQoUKqUqWKXTF5e3urdevW8vT0zJAfeBUvXlwbN27U4cOHFRgYqFq1amnRokVavHjxXZvFpTRw4EB5eno+8PWHDh2qcePGqUOHDpo/f/49+5QqVUqdO3e2qXRL0tNPP62//vpLWbJkUZMmTVSiRAkNGzZMHTt21Nq1a+Xu7m7Tv0GDBrp27Zp1/sQd9evXt26w9yCpxQJYjLTO6AH+r717CYnq7+M4/jnkBW85alkqatiEWbgog7BNSVIWwZCkiy46FS5SK6jI3EQZQUFBuUgDS6mGQKhERBARJi9EUNCszCySCpSkTLBQR2eeVfM88/fy+D8olrxfMIuZ3znf35nfYpgP53v4AX8Bh8Oho0ePanh4mOeVgD/Azp07tXHjRlVWVi72pQBYINyzAvBXe/DggVJSUpSQkCCXy6WysjLl5+cTJoBFNjQ0JKfTKafTqTt37iz25QBYQAQKAH+1gYEBXbx4UQMDA4qLi1NeXp7fLucAFsemTZs0NDSk69evKzU1dbEvB8ACouUJAAAAgGk8lA0AAADANAIFAAAAANMIFAAAAABMI1AAAAAAMI1AAQB/CLvd7rf5144dO6bsdvtvzUcNAABmQ6AAgP/DbrfLMAwZhqGgoCBZrVZVVFRoYmJiQed9+vSprly5MqdjnU6nDMPQjx8/TNcAAMAM9qEAgDnIyclRbW2txsbG1NzcrJKSEgUGBqq8vNzvuPHxcQUFBc3LnNHR0X9EDQAAZsMdCgCYg+DgYK1evVrJyck6ceKEsrOz1djY6GtTunr1quLj430beH3+/Fn5+fmyWCyKjo6WzWZTX1+fr97k5KTOnDkji8WimJgYnT9/Xv/cFuif7UpjY2MqKytTYmKigoODZbVade/ePfX19SkrK0uSFBUVJcMwZLfbp60xNDSkgoICRUVFKTQ0VHv27FFvb69vvK6uThaLRS0tLUpLS1N4eLhycnLU398/vwsKAFgyCBQAYEJISIjGx8clSW1tberp6VFra6uamprkdru1e/duRUREqKOjQ11dXb4/5r/PuXnzpurq6nT//n11dnbq+/fvevbs2axzFhQU6PHjx6qsrFR3d7fu3r2r8PBwJSYm6smTJ5Kknp4e9ff36/bt29PWsNvtevXqlRobG/XixQt5vV7t3btXbrfbd8yvX79048YNPXz4UO3t7fr06ZPOnTs3H8sGAFiCaHkCgH/B6/Wqra1NLS0tOnnypAYHBxUWFqaamhpfq9OjR4/k8XhUU1MjwzAkSbW1tbJYLHI6ndq1a5du3bql8vJy5ebmSpKqq6vV0tIy47zv3r1TfX29WltblZ2dLUlKSUnxjf9ubYqNjZXFYpm2Rm9vrxobG9XV1aVt27ZJkhwOhxITE9XQ0KC8vDxJktvtVnV1tdauXStJKi0tVUVFhdklAwAscQQKAJiDpqYmhYeHy+12y+Px6ODBg7p06ZJKSkqUnp7u99yEy+XS+/fvFRER4VdjdHRUHz580PDwsPr7+7V161bfWEBAgLZs2TKl7em3N2/eaNmyZdq+fbvp79Dd3a2AgAC/eWNiYpSamqru7m7fZ6Ghob4wIUlxcXH6+vWr6XkBAEsbgQIA5iArK0tVVVUKCgpSfHy8AgL++/MZFhbmd+zIyIgyMjLkcDim1Fm5cqWp+UNCQkydZ0ZgYKDfe8MwZgw6AADwDAUAzEFYWJisVquSkpL8wsR0Nm/erN7eXsXGxspqtfq9IiMjFRkZqbi4OL18+dJ3zsTEhF6/fj1jzfT0dHk8Hj1//nza8d93SCYnJ2eskZaWpomJCb95v337pp6eHm3YsGHW7wQAwEwIFAAwzw4dOqQVK1bIZrOpo6NDHz9+lNPp1KlTp/TlyxdJ0unTp3Xt2jU1NDTo7du3Ki4unrKHxP9as2aNCgsLdezYMTU0NPhq1tfXS5KSk5NlGIaampo0ODiokZGRKTXWrVsnm82moqIidXZ2yuVy6fDhw0pISJDNZluQtQAALH0ECgCYZ6GhoWpvb1dSUpJyc3OVlpam48ePa3R0VMuXL5cknT17VkeOHFFhYaEyMzMVERGh/fv3z1q3qqpKBw4cUHFxsdavX6+ioiL9/PlTkpSQkKDLly/rwoULWrVqlUpLS6etUVtbq4yMDO3bt0+ZmZnyer1qbm6e0uYEAMBcGV4aYwEAAACYxB0KAAAAAKYRKAAAAACYRqAAAAAAYBqBAgAAAIBpBAoAAAAAphEoAAAAAJhGoAAAAABgGoECAAAAgGkECgAAAACmESgAAAAAmEagAAAAAGAagQIAAACAaf8BThaoBqlk5iIAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "confusion_mtx = tf.math.confusion_matrix(\n", " list(ds_test.map(lambda x, y: y)),\n", " predict_class_label_number(test_data),\n", " num_classes=len(label_names))\n", "\n", "show_confusion_matrix(confusion_mtx, label_names)" ] }, { "cell_type": "markdown", "metadata": { "id": "ksu9BFULBvmj" }, "source": [ "## Evaluate model on unknown test data\n", "\n", "In this evaluation we expect the model to have accuracy of almost 1. All images the model is tested on are not related to the normal dataset and hence we expect the model to predict the \"Unknown\" class label." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:37:48.247519Z", "iopub.status.busy": "2023-05-23T08:37:48.247223Z", "iopub.status.idle": "2023-05-23T08:37:58.696532Z", "shell.execute_reply": "2023-05-23T08:37:58.695894Z" }, "id": "f5wvZwliZcJP" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/259 [..............................] - ETA: 5:23 - loss: 0.6751 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4/259 [..............................] - ETA: 6s - loss: 0.6781 - accuracy: 1.0000 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/259 [..............................] - ETA: 5s - loss: 0.6782 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10/259 [>.............................] - ETA: 5s - loss: 0.6780 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/259 [>.............................] - ETA: 5s - loss: 0.6780 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16/259 [>.............................] - ETA: 5s - loss: 0.6786 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/259 [=>............................] - ETA: 5s - loss: 0.6787 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 22/259 [=>............................] - ETA: 5s - loss: 0.6784 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/259 [=>............................] - ETA: 5s - loss: 0.6781 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28/259 [==>...........................] - ETA: 5s - loss: 0.6782 - accuracy: 1.0000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/259 [==>...........................] - ETA: 5s - loss: 0.6794 - accuracy: 0.9990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33/259 [==>...........................] - ETA: 5s - loss: 0.6792 - accuracy: 0.9991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35/259 [===>..........................] - ETA: 5s - loss: 0.6791 - accuracy: 0.9991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 38/259 [===>..........................] - ETA: 5s - loss: 0.6788 - accuracy: 0.9992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 40/259 [===>..........................] - ETA: 5s - loss: 0.6792 - accuracy: 0.9992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/259 [===>..........................] - ETA: 5s - loss: 0.6791 - accuracy: 0.9993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46/259 [====>.........................] - ETA: 5s - loss: 0.6793 - accuracy: 0.9993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/259 [====>.........................] - ETA: 5s - loss: 0.6796 - accuracy: 0.9993" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51/259 [====>.........................] - ETA: 5s - loss: 0.6794 - accuracy: 0.9994" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 52/259 [=====>........................] - ETA: 6s - loss: 0.6793 - accuracy: 0.9994" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/259 [=====>........................] - ETA: 6s - loss: 0.6793 - accuracy: 0.9994" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 58/259 [=====>........................] - ETA: 6s - loss: 0.6793 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/259 [======>.......................] - ETA: 6s - loss: 0.6793 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 63/259 [======>.......................] - ETA: 8s - loss: 0.6793 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/259 [======>.......................] - ETA: 8s - loss: 0.6791 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 69/259 [======>.......................] - ETA: 8s - loss: 0.6790 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/259 [=======>......................] - ETA: 7s - loss: 0.6788 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75/259 [=======>......................] - ETA: 7s - loss: 0.6787 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/259 [========>.....................] - ETA: 7s - loss: 0.6787 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81/259 [========>.....................] - ETA: 7s - loss: 0.6787 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/259 [========>.....................] - ETA: 6s - loss: 0.6786 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87/259 [=========>....................] - ETA: 6s - loss: 0.6784 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/259 [=========>....................] - ETA: 6s - loss: 0.6784 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93/259 [=========>....................] - ETA: 6s - loss: 0.6783 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/259 [==========>...................] - ETA: 6s - loss: 0.6783 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 99/259 [==========>...................] - ETA: 5s - loss: 0.6783 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/259 [==========>...................] - ETA: 5s - loss: 0.6782 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "105/259 [===========>..................] - ETA: 5s - loss: 0.6785 - accuracy: 0.9994" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/259 [===========>..................] - ETA: 5s - loss: 0.6784 - accuracy: 0.9994" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "111/259 [===========>..................] - ETA: 5s - loss: 0.6783 - accuracy: 0.9994" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/259 [============>.................] - ETA: 5s - loss: 0.6783 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117/259 [============>.................] - ETA: 4s - loss: 0.6782 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/259 [============>.................] - ETA: 4s - loss: 0.6782 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123/259 [=============>................] - ETA: 4s - loss: 0.6781 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/259 [=============>................] - ETA: 4s - loss: 0.6781 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129/259 [=============>................] - ETA: 4s - loss: 0.6780 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/259 [==============>...............] - ETA: 4s - loss: 0.6779 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135/259 [==============>...............] - ETA: 4s - loss: 0.6779 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/259 [==============>...............] - ETA: 3s - loss: 0.6779 - accuracy: 0.9995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "141/259 [===============>..............] - ETA: 3s - loss: 0.6779 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/259 [===============>..............] - ETA: 3s - loss: 0.6779 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147/259 [================>.............] - ETA: 3s - loss: 0.6778 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/259 [================>.............] - ETA: 3s - loss: 0.6778 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153/259 [================>.............] - ETA: 3s - loss: 0.6778 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/259 [=================>............] - ETA: 3s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159/259 [=================>............] - ETA: 3s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "161/259 [=================>............] - ETA: 3s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/259 [=================>............] - ETA: 3s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "165/259 [==================>...........] - ETA: 3s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/259 [==================>...........] - ETA: 3s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171/259 [==================>...........] - ETA: 3s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/259 [===================>..........] - ETA: 3s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "177/259 [===================>..........] - ETA: 3s - loss: 0.6775 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/259 [===================>..........] - ETA: 3s - loss: 0.6775 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/259 [====================>.........] - ETA: 2s - loss: 0.6775 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "186/259 [====================>.........] - ETA: 2s - loss: 0.6775 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "189/259 [====================>.........] - ETA: 2s - loss: 0.6775 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/259 [=====================>........] - ETA: 2s - loss: 0.6775 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "195/259 [=====================>........] - ETA: 2s - loss: 0.6775 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "198/259 [=====================>........] - ETA: 2s - loss: 0.6774 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "201/259 [======================>.......] - ETA: 2s - loss: 0.6774 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "204/259 [======================>.......] - ETA: 2s - loss: 0.6774 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "207/259 [======================>.......] - ETA: 1s - loss: 0.6774 - accuracy: 0.9997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "210/259 [=======================>......] - ETA: 1s - loss: 0.6778 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "213/259 [=======================>......] - ETA: 1s - loss: 0.6778 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "216/259 [========================>.....] - ETA: 1s - loss: 0.6778 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "219/259 [========================>.....] - ETA: 1s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "222/259 [========================>.....] - ETA: 1s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "225/259 [=========================>....] - ETA: 1s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228/259 [=========================>....] - ETA: 1s - loss: 0.6777 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "231/259 [=========================>....] - ETA: 0s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "234/259 [==========================>...] - ETA: 0s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "237/259 [==========================>...] - ETA: 0s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "240/259 [==========================>...] - ETA: 0s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "243/259 [===========================>..] - ETA: 0s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "246/259 [===========================>..] - ETA: 0s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "249/259 [===========================>..] - ETA: 0s - loss: 0.6776 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "252/259 [============================>.] - ETA: 0s - loss: 0.6775 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "255/259 [============================>.] - ETA: 0s - loss: 0.6775 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "258/259 [============================>.] - ETA: 0s - loss: 0.6775 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "259/259 [==============================] - ETA: 0s - loss: 0.6775 - accuracy: 0.9996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "259/259 [==============================] - 10s 36ms/step - loss: 0.6775 - accuracy: 0.9996\n" ] }, { "data": { "text/plain": [ "[0.6774877309799194, 0.9996375441551208]" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.evaluate(unknown_test_data)" ] }, { "cell_type": "markdown", "metadata": { "id": "jm47Odo5Vaiq" }, "source": [ "Print the confusion matrix." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:37:58.699835Z", "iopub.status.busy": "2023-05-23T08:37:58.699585Z", "iopub.status.idle": "2023-05-23T08:38:09.835905Z", "shell.execute_reply": "2023-05-23T08:38:09.835192Z" }, "id": "E_gEX3oWH1YT" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAx0AAAKnCAYAAADjvyA0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByrElEQVR4nO3dd3gV1dr38d+GFAIhCSWF0JGOQGhCbBiMRAQVQY4oIkrxEQGlhxwlIJZQFBSlWBDkCAcRkUOxgEF6KNLFAKIgCiShhQBC2p73D97ss/ehJbA3M4Tvx2uul6xZM3PvrJPnzZ17rVk2wzAMAQAAAICHFDE7AAAAAACFG0kHAAAAAI8i6QAAAADgUSQdAAAAADyKpAMAAACAR5F0AAAAAPAokg4AAAAAHkXSAQAAAMCjSDoAAAAAeJSX2QF4gpdPebNDAAAAwBXkZB0yO4TLyj72u2nP9i5bzbRnexKVDgAAAAAeVSgrHQAAAMA1s+eaHUGhQ6UDAAAAgEeRdAAAAADwKKZXAQAAAM4Mu9kRFDpUOgAAAAB4FJUOAAAAwJmdSoe7UekAAAAA4FFUOgAAAAAnBms63I5KBwAAAACPIukAAAAA4FFMrwIAAACcsZDc7ah0AAAAAPAoKh0AAACAMxaSux2VDgAAAAAeRdIBAAAA3IRyc3M1fPhwVa1aVX5+frrtttv0+uuvyzAMRx/DMBQfH69y5crJz89P0dHR+vXXX13uc+LECXXp0kUBAQEKCgpSjx49dObMGZc+O3bs0D333KNixYqpYsWKGjt2bIFiJekAAAAAnNlzzTsKYMyYMZoyZYo++OADJScna8yYMRo7dqzef/99R5+xY8dq4sSJmjp1qjZs2KASJUooJiZG58+fd/Tp0qWLdu3apWXLlmnx4sVatWqVnn/+ecf5jIwMtW7dWpUrV9bmzZs1btw4jRw5Uh999FG+Y7UZzqlQIeHlU97sEAAAAHAFOVmHzA7hsrL+2GLas30qN85333bt2ik0NFTTpk1ztHXs2FF+fn76/PPPZRiGwsPDNWjQIA0ePFiSdOrUKYWGhmrGjBnq3LmzkpOTVbduXW3atElNmzaVJH333Xd66KGH9Ndffyk8PFxTpkzRK6+8opSUFPn4+EiShg0bpgULFmj37t35ipVKBwAAAODMsJt2ZGZmKiMjw+XIzMy8ZJh33nmnEhMTtXfvXknS9u3btWbNGrVp00aStH//fqWkpCg6OtpxTWBgoJo3b66kpCRJUlJSkoKCghwJhyRFR0erSJEi2rBhg6PPvffe60g4JCkmJkZ79uzRyZMn8/UtJekAAAAALCIhIUGBgYEuR0JCwiX7Dhs2TJ07d1bt2rXl7e2tRo0aqX///urSpYskKSUlRZIUGhrqcl1oaKjjXEpKikJCQlzOe3l5qXTp0i59LnUP52dcDa/MBQAAAJyZuDlgXFycBg4c6NLm6+t7yb5z587VrFmzNHv2bNWrV0/btm1T//79FR4erm7dut2IcPONpAMAAACwCF9f38smGf9ryJAhjmqHJNWvX19//PGHEhIS1K1bN4WFhUmSUlNTVa5cOcd1qampioiIkCSFhYUpLS3N5b45OTk6ceKE4/qwsDClpqa69Mn7Oq/P1TC9CgAAALgJ/f333ypSxPXX+aJFi8r+/ys1VatWVVhYmBITEx3nMzIytGHDBkVGRkqSIiMjlZ6ers2bNzv6LF++XHa7Xc2bN3f0WbVqlbKzsx19li1bplq1aqlUqVL5ipWkAwAAAHBiGHbTjoJ4+OGH9eabb2rJkiU6cOCAvv76a40fP16PPfaYJMlms6l///564403tHDhQu3cuVPPPPOMwsPD1b59e0lSnTp19OCDD6pXr17auHGj1q5dq759+6pz584KDw+XJD311FPy8fFRjx49tGvXLn3xxRd67733LpoGdiW8MhcAAAA3nJVfmZv523rTnu17W4t89z19+rSGDx+ur7/+WmlpaQoPD9eTTz6p+Ph4x5umDMPQiBEj9NFHHyk9PV133323Jk+erJo1azruc+LECfXt21eLFi1SkSJF1LFjR02cOFH+/v6OPjt27FCfPn20adMmlS1bVv369VNsbGy+YyXpAAAAwA1n6aTj13WmPdu3xp2mPduTmF4FAAAAwKNIOgAAAAB4FK/MBQAAAJwVcEE3ro5KBwAAAACPotIBAAAAOLPnmh1BoUOlAwAAAIBHUekAAAAAnLGmw+2odAAAAADwKJIOAAAAAB7F9CoAAADAmZ3pVe5GpQMAAACAR1HpAAAAAJyxkNztqHQAAAAA8CiSDgAAAAAeZYnpVbm5ufr666+VnJwsSapTp47at28vLy9LhAcAAIBbCQvJ3c703+p37dqlRx55RCkpKapVq5YkacyYMQoODtaiRYt0++23mxwhAAAAgOthetLRs2dP1atXTz/99JNKlSolSTp58qSeffZZPf/881q3bp3JEQIAAOBWYhi5ZodQ6JiedGzbts0l4ZCkUqVK6c0331SzZs1MjAwAAACAO5i+kLxmzZpKTU29qD0tLU3Vq1c3ISLr6P1CN+3bu15nMn7TujWL1KxphNkhwQnjY12MjXUxNtbG+FgXY3ODGXbzjkLKlKQjIyPDcSQkJOill17SvHnz9Ndff+mvv/7SvHnz1L9/f40ZM8aM8CyhU6dH9Pa4EXr9jfFq1vxBbd/xi75ZMkvBwWXMDg1ifKyMsbEuxsbaGB/rYmxQGNgMwzBu9EOLFCkim83m+DovhLw2569zcws+p87Lp7wbojTXujWLtOmn7Xq5/6uSLnwvDvy+SZMmT9fYcZNMjg6Mj3UxNtbF2Fgb42NdhXVscrIOmR3CZZ3ftti0ZxeLaGfasz3JlDUdP/74oxmPvWl4e3urceMGGj32A0ebYRhKXL5GLVo0MTEySIyPlTE21sXYWBvjY12MjUl4Za7bmZJ0tGzZ0ozH3jTKli0tLy8vpaUec2lPSzuq2rVuMykq5GF8rIuxsS7GxtoYH+tibFBYmP72KunCK3KnTZvm2Bywbt26eu6551S6dOmrXpuZmanMzEyXNsMwXKZvAQAAAPlWiBd0m8X0t1etWrVKVapU0cSJE3Xy5EmdPHlSEydOVNWqVbVq1aqrXp+QkKDAwECXw7CfvgGRe86xYyeUk5OjkNCyLu0hIcFKST1qUlTIw/hYF2NjXYyNtTE+1sXYoLAwPeno06ePnnjiCe3fv1/z58/X/Pnz9fvvv6tz587q06fPVa+Pi4vTqVOnXA5bkZI3IHLPyc7O1pYtO9Qq6m5Hm81mU6uou7V+/WYTI4PE+FgZY2NdjI21MT7WxdigsDB9etW+ffs0b948FS1a1NFWtGhRDRw4UDNnzrzq9b6+vvL19XVpKwxTqya897GmT5ugzVt2aNOmrXqpXy+VKOGnGZ99YXZoEONjZYyNdTE21sb4WBdjYwI7O5K7m+lJR+PGjZWcnKxatWq5tCcnJ6thw4YmRWW+L79cqOCypTUyfrDCwoK1ffsutW33tNLSjl39Yngc42NdjI11MTbWxvhYF2ODwsCUfTp27Njh+HdycrKGDh2qfv36qUWLFpKk9evXa9KkSRo9erSeeOKJAt+/MOzTAQAAUJhZep+OjV+a9uxid3Qy7dmeZOrmgFd79K28OSAAAEBhRtJxaYU16TBletX+/fvNeCwAAABwdWwO6HamJB2VK1d2/DshIUGhoaHq3r27S59PP/1UR48eVWxs7I0ODwAAAIAbmf7K3A8//FC1a9e+qL1evXqaOnWqCREBAAAAcCfT316VkpKicuXKXdQeHBysI0eOmBARAAAAbmnsSO52plc6KlasqLVr117UvnbtWoWHh5sQEQAAAAB3Mr3S0atXL/Xv31/Z2dlq1aqVJCkxMVFDhw7VoEGDTI4OAAAAtxwWkrud6UnHkCFDdPz4cb344ovKysqSJBUrVkyxsbGKi4szOToAAAAA18uUfTou5cyZM0pOTpafn59q1KghX1/fa74X+3QAAABYm6X36Vg7y7RnF7uri2nP9iTTKx15/P391axZM7PDAAAAwK2O6VVuZ/pCcgAAAACFm2UqHQAAAIAVGEau2SEUOlQ6AAAAAHgUSQcAAAAAj2J6FQAAAOCMheRuR6UDAAAAgEdR6QAAAACcGVQ63I1KBwAAAACPotIBAAAAOGNNh9tR6QAAAADgUSQdAAAAADyK6VUAAACAMxaSux2VDgAAAAAeRaUDAAAAcMZCcrej0gEAAADAo0g6AAAAAHgU06sAAAAAZywkdzsqHQAAAAA8ikoHAAAA4IyF5G5HpQMAAACAR1HpAAAAAJxR6XA7Kh0AAAAAPIqkAwAAAIBHMb0KAAAAcMYrc92OSgcAAABwE6pSpYpsNttFR58+fSRJ58+fV58+fVSmTBn5+/urY8eOSk1NdbnHwYMH1bZtWxUvXlwhISEaMmSIcnJyXPqsWLFCjRs3lq+vr6pXr64ZM2YUOFaSDgAAAMCZ3W7eUQCbNm3SkSNHHMeyZcskSZ06dZIkDRgwQIsWLdKXX36plStX6vDhw+rQoYPj+tzcXLVt21ZZWVlat26dPvvsM82YMUPx8fGOPvv371fbtm0VFRWlbdu2qX///urZs6e+//77AsVqMwzDKNAVNwEvn/JmhwAAAIAryMk6ZHYIl3Vu4dumPdvvkcHXfG3//v21ePFi/frrr8rIyFBwcLBmz56txx9/XJK0e/du1alTR0lJSWrRooW+/fZbtWvXTocPH1ZoaKgkaerUqYqNjdXRo0fl4+Oj2NhYLVmyRD///LPjOZ07d1Z6erq+++67fMdGpQMAAAC4yWVlZenzzz9X9+7dZbPZtHnzZmVnZys6OtrRp3bt2qpUqZKSkpIkSUlJSapfv74j4ZCkmJgYZWRkaNeuXY4+zvfI65N3j/xiITkAAADgzMSF5JmZmcrMzHRp8/X1la+v7xWvW7BggdLT0/Xss89KklJSUuTj46OgoCCXfqGhoUpJSXH0cU448s7nnbtSn4yMDJ07d05+fn75+lxUOgAAAACLSEhIUGBgoMuRkJBw1eumTZumNm3aKDw8/AZEWXBUOgAAAABnJu5IHhcXp4EDB7q0Xa3K8ccff+iHH37Q/PnzHW1hYWHKyspSenq6S7UjNTVVYWFhjj4bN250uVfe262c+/zvG69SU1MVEBCQ7yqHRKUDAAAAsAxfX18FBAS4HFdLOqZPn66QkBC1bdvW0dakSRN5e3srMTHR0bZnzx4dPHhQkZGRkqTIyEjt3LlTaWlpjj7Lli1TQECA6tat6+jjfI+8Pnn3yC8qHQAAAICzm2hzQLvdrunTp6tbt27y8vrvr/aBgYHq0aOHBg4cqNKlSysgIED9+vVTZGSkWrRoIUlq3bq16tatq65du2rs2LFKSUnRq6++qj59+jgSnRdeeEEffPCBhg4dqu7du2v58uWaO3eulixZUqA4SToAAACAm9QPP/yggwcPqnv37hedmzBhgooUKaKOHTsqMzNTMTExmjx5suN80aJFtXjxYvXu3VuRkZEqUaKEunXrplGjRjn6VK1aVUuWLNGAAQP03nvvqUKFCvrkk08UExNToDjZpwMAAAA3nKX36Zj/lmnP9uvwT9Oe7UlUOgAAAABnJi4kL6xYSA4AAADAo6h0AAAAAM6odLgdlQ4AAAAAHkXSAQAAAMCjmF4FAAAAOCt8L3c1HZUOAAAAAB5FpQMAAABwxkJyt6PSAQAAAMCjqHQAAAAAzqh0uB2VDgAAAAAeRdIBAAAAwKOYXgUAAAA4M5he5W5UOgAAAAB4FJUOAAAAwBkLyd2OSgcAAAAAjyLpAAAAAOBRTK8CAAAAnBmG2REUOlQ6AAAAAHgUlQ4AAADAGQvJ3Y5KBwAAAACPotIBAAAAOKPS4XZUOgAAAAB4FEkHAAAAAI9iehUAAADgzGB6lbtR6QAAAADgUVQ6AAAAACeGnc0B3Y1KBwAAAACPIukAAAAA4FFMrwIAAACcsU+H21HpAAAAAOBRVDoAAAAAZ7wy1+2odAAAAADwKCodAAAAgDNemet2VDoAAAAAeBRJBwAAAACPYnoVAAAA4IxX5rodlQ4AAAAAHkWlAwAAAHBGpcPtTEk6duzYke++DRo08GAkAAAAADzNlKQjIiJCNptNhmHIZrNdsW9ubu4NigoAAACAJ5iSdOzfv9/x761bt2rw4MEaMmSIIiMjJUlJSUl65513NHbsWDPCAwAAwK3MYJ8OdzMl6ahcubLj3506ddLEiRP10EMPOdoaNGigihUravjw4Wrfvr0JEQIAAABwF9MXku/cuVNVq1a9qL1q1ar65ZdfTIgIAAAAtzQWkrud6a/MrVOnjhISEpSVleVoy8rKUkJCgurUqWNiZAAAAADcwfRKx9SpU/Xwww+rQoUKjjdV7dixQzabTYsWLTI5OgAAAADXy/Sk44477tDvv/+uWbNmaffu3ZKkJ554Qk899ZRKlChhcnQAAAC45dhZSO5upk+vkqQSJUro+eef1/jx4zV+/Hj16tWLhENS7xe6ad/e9TqT8ZvWrVmkZk0jzA4JThgf62JsrIuxsTbGx7oYG9zsTE86PvvsMy1ZssTx9dChQxUUFKQ777xTf/zxh4mRmatTp0f09rgRev2N8WrW/EFt3/GLvlkyS8HBZcwODWJ8rIyxsS7GxtoYH+tibExg2M07CimbYZj7IuJatWppypQpatWqlZKSknT//ffr3Xff1eLFi+Xl5aX58+cX+J5ePuU9EOmNtW7NIm36abte7v+qJMlms+nA75s0afJ0jR03yeTowPhYF2NjXYyNtTE+1lVYxyYn65DZIVzW3+O6m/bs4kM+Ne3ZnmR6pePPP/9U9erVJUkLFizQ448/rueff14JCQlavXq1ydGZw9vbW40bN1Di8v9+fsMwlLh8jVq0aGJiZJAYHytjbKyLsbE2xse6GBuT2A3zjkLK9KTD399fx48flyQtXbpUDzzwgCSpWLFiOnfunJmhmaZs2dLy8vJSWuoxl/a0tKMKCw02KSrkYXysi7GxLsbG2hgf62JsUFiY/vaqBx54QD179lSjRo20d+9ex87ku3btUpUqVa56fWZmpjIzM13aDMOQzWbzRLgAAAAACsj0SsekSZMUGRmpo0eP6quvvlKZMhcWRW3evFlPPvnkVa9PSEhQYGCgy2HYT3s6bI86duyEcnJyFBJa1qU9JCRYKalHTYoKeRgf62JsrIuxsTbGx7oYG3MYdrtpR2FletIRFBSkDz74QP/5z3/04IMPOtpfe+01vfLKK1e9Pi4uTqdOnXI5bEVKejJkj8vOztaWLTvUKupuR5vNZlOrqLu1fv1mEyODxPhYGWNjXYyNtTE+1sXYoLAwfXqVJJ08eVLTpk1TcnKyJKlOnTrq3r27SpcufdVrfX195evr69JWGKZWTXjvY02fNkGbt+zQpk1b9VK/XipRwk8zPvvC7NAgxsfKGBvrYmysjfGxLsbGBIV4QbdZTE86Vq1apYcffliBgYFq2rSpJOn999/X66+/rkWLFunee+81OUJzfPnlQgWXLa2R8YMVFhas7dt3qW27p5WWduzqF8PjGB/rYmysi7GxNsbHuhgbFAam79NRv359RUZGasqUKSpatKgkKTc3Vy+++KLWrVunnTt3FviehWGfDgAAgMLMyvt0nH3zGdOeXeKVmaY925NMr3Ts27dP8+bNcyQcklS0aFENHDhQM2cWzm86AAAALKwQ7wxuFtMXkjdu3NixlsNZcnKyGjZsaEJEAAAAANzJlErHjh07HP9+6aWX9PLLL2vfvn1q0aKFJGn9+vWaNGmSRo8ebUZ4AAAAuJWxkNztTFnTUaRIEdlsNl3t0TabTbm5uQW+P2s6AAAArM3SazpGdTHt2SXiZ5n2bE8ypdKxf/9+Mx4LAAAAXF0h3qTPLKYkHZUrV3b8OyEhQaGhoerevbtLn08//VRHjx5VbGzsjQ4PAAAAgBuZvpD8ww8/VO3atS9qr1evnqZOnWpCRAAAAMDN4dChQ3r66adVpkwZ+fn5qX79+vrpp58c5w3DUHx8vMqVKyc/Pz9FR0fr119/dbnHiRMn1KVLFwUEBCgoKEg9evTQmTNnXPrs2LFD99xzj4oVK6aKFStq7NixBYrT9KQjJSVF5cqVu6g9ODhYR44cMSEiAAAA3NLshnlHAZw8eVJ33XWXvL299e233+qXX37RO++8o1KlSjn6jB07VhMnTtTUqVO1YcMGlShRQjExMTp//ryjT5cuXbRr1y4tW7ZMixcv1qpVq/T88887zmdkZKh169aqXLmyNm/erHHjxmnkyJH66KOP8h2r6ft0VKxYUWvXrlXVqlVd2teuXavw8HCTogIAAACsbcyYMapYsaKmT5/uaHP+ndowDL377rt69dVX9eijj0qSZs6cqdDQUC1YsECdO3dWcnKyvvvuO23atElNmzaVJL3//vt66KGH9Pbbbys8PFyzZs1SVlaWPv30U/n4+KhevXratm2bxo8f75KcXInplY5evXqpf//+mj59uv744w/98ccf+vTTTzVgwAD16tXL7PAAAABwqzHsph2ZmZnKyMhwOTIzMy8Z5sKFC9W0aVN16tRJISEhatSokT7++GPH+f379yslJUXR0dGOtsDAQDVv3lxJSUmSpKSkJAUFBTkSDkmKjo5WkSJFtGHDBkefe++9Vz4+Po4+MTEx2rNnj06ePJmvb6npSceQIUPUo0cPvfjii6pWrZqqVaumfv366aWXXlJcXJzZ4QEAAAA3TEJCggIDA12OhISES/b9/fffNWXKFNWoUUPff/+9evfurZdeekmfffaZpAvLGCQpNDTU5brQ0FDHuZSUFIWEhLic9/LyUunSpV36XOoezs+4GtOnV9lsNo0ZM0bDhw9XcnKy/Pz8VKNGDfn6+podGgAAAHBDxcXFaeDAgS5tl/u92G63q2nTpnrrrbckSY0aNdLPP/+sqVOnqlu3bh6PtSBMTzry+Pv7q1mzZmaHAQAAgFudiTuS+/r65vuP7+XKlVPdunVd2urUqaOvvvpKkhQWFiZJSk1NdXlxU2pqqiIiIhx90tLSXO6Rk5OjEydOOK4PCwtTamqqS5+8r/P6XI3p06sAAAAAFNxdd92lPXv2uLTt3bvXsSde1apVFRYWpsTERMf5jIwMbdiwQZGRkZKkyMhIpaena/PmzY4+y5cvl91uV/PmzR19Vq1apezsbEefZcuWqVatWi5vyroSkg4AAADAiWG3m3YUxIABA7R+/Xq99dZb2rdvn2bPnq2PPvpIffr0kXRhGUP//v31xhtvaOHChdq5c6eeeeYZhYeHq3379pIuVEYefPBB9erVSxs3btTatWvVt29fde7c2fEm2aeeeko+Pj7q0aOHdu3apS+++ELvvffeRdPArsQy06sAAAAA5F+zZs309ddfKy4uTqNGjVLVqlX17rvvqkuXLo4+Q4cO1dmzZ/X8888rPT1dd999t7777jsVK1bM0WfWrFnq27ev7r//fhUpUkQdO3bUxIkTHecDAwO1dOlS9enTR02aNFHZsmUVHx+f79flSpLNMAzzJq15iJdPebNDAAAAwBXkZB0yO4TLOhPbwbRn+4+Zb9qzPYnpVQAAAAA8iqQDAAAAgEexpgMAAABwZuIrcwsrKh0AAAAAPIpKBwAAAODMKNira3F1VDoAAAAAeBRJBwAAAACPYnoVAAAA4IyF5G5HpQMAAACAR1HpAAAAAJwYVDrcjkoHAAAAAI+i0gEAAAA4o9LhdlQ6AAAAAHgUSQcAAAAAj2J6FQAAAODMzo7k7kalAwAAAIBHUekAAAAAnLGQ3O2odAAAAADwKJIOAAAAAB7F9CoAAADAGdOr3I5KBwAAAACPotIBAAAAODEMKh3uRqUDAAAAgEdR6QAAAACcsabD7ah0AAAAAPAokg4AAAAAHsX0KgAAAMAZ06vcjkoHAAAAAI+i0gEAAAA4Mah0uB2VDgAAAAAeRdIBAAAAwKOYXgUAAAA4Y3qV21HpAAAAAOBRVDoAAAAAZ3azAyh8qHQAAAAA8CgqHQAAAIATXpnrflQ6AAAAAHgUSQcAAAAAj2J6FQAAAOCM6VVuR6UDAAAAgEdR6QAAAACc8cpct6PSAQAAAMCjSDoAAAAAeBTTqwAAAAAn7NPhflQ6AAAAAHgUlQ4AAADAGQvJ3Y5KBwAAAACPIukAAAAA4FFMrwIAAACcsJDc/ah0AAAAAPAoKh0AAACAMxaSux2VDgAAAAAeRaUDAAAAcGJQ6XA7Kh0AAAAAPIqkAwAAAIBHMb0KAAAAcMb0Krej0gEAAADAo6h0AAAAAE5YSO5+VDoAAAAAeBRJBwAAAACPYnoVAAAA4IzpVW5HpQMAAACAR1HpAAAAAJywkNz9qHQAAAAAN6GRI0fKZrO5HLVr13acP3/+vPr06aMyZcrI399fHTt2VGpqqss9Dh48qLZt26p48eIKCQnRkCFDlJOT49JnxYoVaty4sXx9fVW9enXNmDGjwLGSdAAAAABODLt5R0HVq1dPR44ccRxr1qxxnBswYIAWLVqkL7/8UitXrtThw4fVoUMHx/nc3Fy1bdtWWVlZWrdunT777DPNmDFD8fHxjj779+9X27ZtFRUVpW3btql///7q2bOnvv/++wLFaTMMwyj4x7M2L5/yZocAAACAK8jJOmR2CJeVdn9L054dkrgy331HjhypBQsWaNu2bRedO3XqlIKDgzV79mw9/vjjkqTdu3erTp06SkpKUosWLfTtt9+qXbt2Onz4sEJDQyVJU6dOVWxsrI4ePSofHx/FxsZqyZIl+vnnnx337ty5s9LT0/Xdd9/lO1YqHQAAAIBFZGZmKiMjw+XIzMy8bP9ff/1V4eHhqlatmrp06aKDBw9KkjZv3qzs7GxFR0c7+tauXVuVKlVSUlKSJCkpKUn169d3JBySFBMTo4yMDO3atcvRx/keeX3y7pFfJB0AAACAEzOnVyUkJCgwMNDlSEhIuGSczZs314wZM/Tdd99pypQp2r9/v+655x6dPn1aKSkp8vHxUVBQkMs1oaGhSklJkSSlpKS4JBx55/POXalPRkaGzp07l+/vKW+vAgAAACwiLi5OAwcOdGnz9fW9ZN82bdo4/t2gQQM1b95clStX1ty5c+Xn5+fROAvK9KTj/Pnzev/99/Xjjz8qLS1NdrvrCpotW7aYFBkAAABuSYbNtEf7+vpeNsm4mqCgINWsWVP79u3TAw88oKysLKWnp7tUO1JTUxUWFiZJCgsL08aNG13ukfd2K+c+//vGq9TUVAUEBBQosTE96ejRo4eWLl2qxx9/XHfccYdsNvMGGQAAALhZnTlzRr/99pu6du2qJk2ayNvbW4mJierYsaMkac+ePTp48KAiIyMlSZGRkXrzzTeVlpamkJAQSdKyZcsUEBCgunXrOvp88803Ls9ZtmyZ4x75ZfrbqwIDA/XNN9/orrvucts9eXsVAACAtVn57VWp991n2rNDV6zId9/Bgwfr4YcfVuXKlXX48GGNGDFC27Zt0y+//KLg4GD17t1b33zzjWbMmKGAgAD169dPkrRu3TpJF16ZGxERofDwcI0dO1YpKSnq2rWrevbsqbfeekvShVfm3n777erTp4+6d++u5cuX66WXXtKSJUsUExOT71hNr3SUL19eJUuWNDsMAAAAQNLNsyP5X3/9pSeffFLHjx9XcHCw7r77bq1fv17BwcGSpAkTJqhIkSLq2LGjMjMzFRMTo8mTJzuuL1q0qBYvXqzevXsrMjJSJUqUULdu3TRq1ChHn6pVq2rJkiUaMGCA3nvvPVWoUEGffPJJgRIOyQKVjm+//VYTJ07U1KlTVblyZbfck0oHAACAtVm50pFy732mPTts1QrTnu1Jplc6mjZtqvPnz6tatWoqXry4vL29Xc6fOHHCpMgAAABwKzLsrDF2N9P36XjyySd16NAhvfXWW3r//fc1YcIEl+NW1vuFbtq3d73OZPymdWsWqVnTCLNDghPGx7oYG+tibKyN8bEuxgY3O9OnVxUvXlxJSUlq2LCh2+5ZGKZXder0iGZ8+q5e7DNMGzdt1Uv9eurxju1U9/Z7dfTocbPDu+UxPtbF2FgXY2NtjI91FdaxsfL0qsN3Rpn27PB1P5r2bE8yPelo3LixJk+erBYtWrjtnoUh6Vi3ZpE2/bRdL/d/VZJks9l04PdNmjR5usaOm2RydGB8rIuxsS7GxtoYH+sqrGND0nFphTXpMH161ejRozVo0CCtWLFCx48fV0ZGhstxK/L29lbjxg2UuHy1o80wDCUuX6MWLZqYGBkkxsfKGBvrYmysjfGxLsYGhYXpC8kffPBBSdL999/v0m4Yhmw2m3Jzc694fWZmpjIzMy957c2qbNnS8vLyUlrqMZf2tLSjql3rNpOiQh7Gx7oYG+tibKyN8bEuxsYchok7khdWpicdP/54fSWkhIQEvfbaay5ttiL+shUNuK77AgAAAHAP05OOli1bXtf1cXFxGjhwoEtbqTK1r+ueZjt27IRycnIUElrWpT0kJFgpqUdNigp5GB/rYmysi7GxNsbHuhgbc9wsmwPeTExf07Fjx45LHjt37tSvv/560dSp/+Xr66uAgACX42aeWiVJ2dnZ2rJlh1pF3e1os9lsahV1t9av32xiZJAYHytjbKyLsbE2xse6GBsUFqZXOiIiIq6YJHh7e+uJJ57Qhx9+qGLFit3AyMw14b2PNX3aBG3eskObNm3VS/16qUQJP8347AuzQ4MYHytjbKyLsbE2xse6GBsUBqYnHV9//bViY2M1ZMgQ3XHHHZKkjRs36p133tGIESOUk5OjYcOG6dVXX9Xbb79tcrQ3zpdfLlRw2dIaGT9YYWHB2r59l9q2e1ppaceufjE8jvGxLsbGuhgba2N8rIuxufHYkdz9TN+n44477tDrr7+umJgYl/bvv/9ew4cP18aNG7VgwQINGjRIv/32W77uWRj26QAAACjMrLxPx5/N7r96Jw+puCnRtGd7kumVjp07d6py5coXtVeuXFk7d+6UdGEK1pEjR250aAAAALgFmfsn+cLJ9IXktWvX1ujRo5WVleVoy87O1ujRo1W79oW3UB06dEihoaFmhQgAAADgOphe6Zg0aZIeeeQRVahQQQ0aNJB0ofqRm5urxYsXS5J+//13vfjii2aGCQAAgFsEazrcz/Q1HZJ0+vRpzZo1S3v37pUk1apVS0899ZRKlix5TfdjTQcAAIC1WXlNxx+No017duUtP5j2bE8yvdKRkJCg0NBQvfDCCy7tn376qY4eParY2FiTIgMAAADgDqav6fjwww8dazec1atXT1OnTjUhIgAAANzKDLvNtKOwMj3pSElJUbly5S5qDw4O5o1VAAAAQCFgetJRsWJFrV279qL2tWvXKjw83ISIAAAAcCszDPOOwsr0NR29evVS//79lZ2drVatWkmSEhMTNXToUA0aNMjk6AAAAABcL9OTjiFDhuj48eN68cUXHXt1FCtWTLGxsYqLizM5OgAAAADXyxKvzJWkM2fOKDk5WX5+fqpRo4Z8fX2v+V68MhcAAMDarPzK3N/rtzbt2dV2LjXt2Z5keqUjj7+/v5o1a2Z2GAAAAADczDJJBwAAAGAFhlF4X11rFtPfXgUAAACgcKPSAQAAADgx7GZHUPhQ6QAAAADgUSQdAAAAADyK6VUAAACAEzsLyd2OSgcAAAAAj6LSAQAAADjhlbnuR6UDAAAAgEeRdAAAAADwKKZXAQAAAE4MO9Or3I1KBwAAAACPotIBAAAAODEMsyMofKh0AAAAAPAoKh0AAACAE9Z0uB+VDgAAAAAeRdIBAAAAwKOYXgUAAAA4sbMjudtR6QAAAADgUfmudCxcuDDfN33kkUeuKRgAAADAbAaVDrfLd9LRvn37fPWz2WzKzc291ngAAAAAFDL5Tjrsdrsn4wAAAABQSF33QvLz58+rWLFi7ogFAAAAMB07krvfNS0kz83N1euvv67y5cvL399fv//+uyRp+PDhmjZtmlsDBAAAAHBzu6ak480339SMGTM0duxY+fj4ONpvv/12ffLJJ24LDgAAALjR7IbNtKOwuqakY+bMmfroo4/UpUsXFS1a1NHesGFD7d69223BAQAAALj5XVPScejQIVWvXv2idrvdruzs7OsOCgAAAEDhcU1JR926dbV69eqL2ufNm6dGjRpdd1AAAACAWQzDZtpRWF3T26vi4+PVrVs3HTp0SHa7XfPnz9eePXs0c+ZMLV682N0xAgAAALiJXVOl49FHH9WiRYv0ww8/qESJEoqPj1dycrIWLVqkBx54wN0xAgAAADeMYZh3FFbXvE/HPffco2XLlrkzFgAAAACF0HVtDvjTTz8pOTlZ0oV1Hk2aNHFLUAAAAIBZCvOra81yTUnHX3/9pSeffFJr165VUFCQJCk9PV133nmn5syZowoVKrgzRgAAAAA3sWta09GzZ09lZ2crOTlZJ06c0IkTJ5ScnCy73a6ePXu6O0YAAAAAN7FrqnSsXLlS69atU61atRxttWrV0vvvv6977rnHbcEBAAAAN1phfnWtWa6p0lGxYsVLbgKYm5ur8PDw6w4KAAAAQOFxTUnHuHHj1K9fP/3000+Otp9++kkvv/yy3n77bbcFBwAAANxodsNm2lFY2Qwjf28ELlWqlGy2/34jzp49q5ycHHl5XZihlffvEiVK6MSJE56JNp+8fMqb+nwAAABcWU7WIbNDuKwN4R1Me3bzw/NNe7Yn5XtNx7vvvuvBMAAAAAAUVvlOOrp16+bJOAAAAABLKMQbg5vmmtZ0ODt//rwyMjJcDgAAAAA3zujRo2Wz2dS/f39H2/nz59WnTx+VKVNG/v7+6tixo1JTU12uO3jwoNq2bavixYsrJCREQ4YMUU5OjkufFStWqHHjxvL19VX16tU1Y8aMAsd3TUnH2bNn1bdvX4WEhKhEiRIqVaqUywEAAADcrG62heSbNm3Shx9+qAYNGri0DxgwQIsWLdKXX36plStX6vDhw+rQ4b/rVXJzc9W2bVtlZWVp3bp1+uyzzzRjxgzFx8c7+uzfv19t27ZVVFSUtm3bpv79+6tnz576/vvvCxTjNSUdQ4cO1fLlyzVlyhT5+vrqk08+0Wuvvabw8HDNnDnzWm4JAAAAoIDOnDmjLl266OOPP3b54/+pU6c0bdo0jR8/Xq1atVKTJk00ffp0rVu3TuvXr5ckLV26VL/88os+//xzRUREqE2bNnr99dc1adIkZWVlSZKmTp2qqlWr6p133lGdOnXUt29fPf7445owYUKB4rympGPRokWaPHmyOnbsKC8vL91zzz169dVX9dZbb2nWrFnXcksAAADAEgzDZtqRmZl50dKFzMzMy8bap08ftW3bVtHR0S7tmzdvVnZ2tkt77dq1ValSJSUlJUmSkpKSVL9+fYWGhjr6xMTEKCMjQ7t27XL0+d97x8TEOO6RX9eUdJw4cULVqlWTJAUEBDhekXv33Xdr1apV13JLAAAA4JaXkJCgwMBAlyMhIeGSfefMmaMtW7Zc8nxKSop8fHwUFBTk0h4aGqqUlBRHH+eEI+983rkr9cnIyNC5c+fy/bmuKemoVq2a9u/fL+lCxjR37lxJFyoggYGB13JLAAAA4JYXFxenU6dOuRxxcXEX9fvzzz/18ssva9asWSpWrJgJkRbMNSUdzz33nLZv3y5JGjZsmCZNmqRixYppwIABGjp0qFsDBAAAAG4ku4mHr6+vAgICXA5fX9+LYty8ebPS0tLUuHFjeXl5ycvLSytXrtTEiRPl5eWl0NBQZWVlKT093eW61NRUhYWFSZLCwsIueptV3tdX6xMQECA/P798f0/zvU+HswEDBjj+HR0drd27d2vz5s0qW7asPv/882u5JQAAAIB8uv/++7Vz506Xtueee061a9dWbGysKlasKG9vbyUmJqpjx46SpD179ujgwYOKjIyUJEVGRurNN99UWlqaQkJCJEnLli1TQECA6tat6+jzzTffuDxn2bJljnvkl80wDLftf7J9+3Y1btxYubm57rrlNfHyKW/q8wEAAHBlOVmHzA7hslaFdTLt2femfHnN1953332KiIjQu+++K0nq3bu3vvnmG82YMUMBAQHq16+fJGndunWSLrwyNyIiQuHh4Ro7dqxSUlLUtWtX9ezZU2+99ZakC6/Mvf3229WnTx91795dy5cv10svvaQlS5YoJiYm37FdU6UDAAAAgLVNmDBBRYoUUceOHZWZmamYmBhNnjzZcb5o0aJavHixevfurcjISJUoUULdunXTqFGjHH2qVq2qJUuWaMCAAXrvvfdUoUIFffLJJwVKOCQqHQAAADABlY5Lu55Kh5VR6QAAAACc2N32J3nkKVDS4bxt+qX87+p4AAAAAChQ0nG1PTgCAwP1zDPPXFdAAAAAgJnsspkdQqFToKRj+vTpnooDAAAAQCHFmg4AAADAiUGlw+2uaUdyAAAAAMgvkg4AAAAAHsX0KgAAAMCJ3ewACiEqHQAAAAA8ikoHAAAA4ISF5O5HpQMAAACAR5F0AAAAAPAoplcBAAAATlhI7n5UOgAAAAB4FJUOAAAAwAmVDvej0gEAAADAo6h0AAAAAE54Za77UekAAAAA4FEkHQAAAAA8iulVAAAAgBM7s6vcjkoHAAAAAI+i0gEAAAA4sbOQ3O1MSTo6dOiQ777z58/3YCQAAAAAPM2U6VWBgYGOIyAgQImJifrpp58c5zdv3qzExEQFBgaaER4AAAAANzKl0jF9+nTHv2NjY/WPf/xDU6dOVdGiRSVJubm5evHFFxUQEGBGeAAAALiFGWYHUAjZDMMw9fsaHBysNWvWqFatWi7te/bs0Z133qnjx48X+J5ePuXdFR4AAAA8ICfrkNkhXNaCsKdMe3b7lNmmPduTTH97VU5Ojnbv3n1R++7du2W3202ICAAAALcyu4lHYWX626uee+459ejRQ7/99pvuuOMOSdKGDRs0evRoPffccyZHBwAAAOB6mV7pePvttzV06FC98847uvfee3Xvvfdq/PjxGjJkiMaNG2d2eKbq/UI37du7XmcyftO6NYvUrGmE2SHBCeNjXYyNdTE21sb4WBdjc2PZbTbTjsLK9KSjSJEiGjp0qA4dOqT09HSlp6fr0KFDGjp0qGNh+a2oU6dH9Pa4EXr9jfFq1vxBbd/xi75ZMkvBwWXMDg1ifKyMsbEuxsbaGB/rYmxQGJi+kNwTCsNC8nVrFmnTT9v1cv9XJUk2m00Hft+kSZOna+y4SSZHB8bHuhgb62JsrI3xsa7COjZWXkg+r1wX0579+JFZpj3bk0yvdBw/flx9+vRR3bp1VbZsWZUuXdrluBV5e3urceMGSly+2tFmGIYSl69RixZNTIwMEuNjZYyNdTE21sb4WBdjYw7DxKOwMn0hedeuXbVv3z716NFDoaGhshXiuWz5VbZsaXl5eSkt9ZhLe1raUdWudZtJUSEP42NdjI11MTbWxvhYF2ODwsL0pGP16tVas2aNGjZseE3XZ2ZmKjMz06XNMAySFwAAAFyTwvzqWrOYPr2qdu3aOnfu3DVfn5CQoMDAQJfDsJ92Y4Q33rFjJ5STk6OQ0LIu7SEhwUpJPWpSVMjD+FgXY2NdjI21MT7WxdigsDA96Zg8ebJeeeUVrVy5UsePH1dGRobLcTVxcXE6deqUy2ErUvIGRO452dnZ2rJlh1pF3e1os9lsahV1t9av32xiZJAYHytjbKyLsbE2xse6GBsUFqZPrwoKClJGRoZatWrl0p43RSo3N/eK1/v6+srX19elrTBMrZrw3seaPm2CNm/ZoU2btuqlfr1UooSfZnz2hdmhQYyPlTE21sXYWBvjY12MzY1nv/l/lbQc05OOLl26yNvbW7Nnz2YhuZMvv1yo4LKlNTJ+sMLCgrV9+y61bfe00tKOXf1ieBzjY12MjXUxNtbG+FgXY4PCwPR9OooXL66tW7eqVq1abrtnYdinAwAAoDCz8j4ds8KfNu3ZXQ5/btqzPcn0NR1NmzbVn3/+aXYYAAAAADzE9OlV/fr108svv6whQ4aofv368vb2djnfoEEDkyIDAADAragwb9JnFtOnVxUpcnGxxWaz5Xsh+aUwvQoAAMDarDy96nMTp1c9XUinV5le6di/f7/ZIQAAAADwINOTjry3VnXv3t2l/dNPP9XRo0cVGxtrUmQAAAC4FfHKXPczfSH5hx9+qNq1a1/UXq9ePU2dOtWEiAAAAAC4k+mVjpSUFJUrV+6i9uDgYB05csSEiAAAAHArs5sdQCFkeqWjYsWKWrt27UXta9euVXh4uAkRAQAAAHAn0ysdvXr1Uv/+/ZWdna1WrVpJkhITEzV06FANGjTI5OgAAAAAXC/Tk44hQ4bo+PHjevHFF5WVlSVJKlasmGJjYxUXF2dydAAAALjVsE+H+5m+T0eeM2fOKDk5WX5+fqpRo4Z8fX2v+V7s0wEAAGBtVt6nY3p58/bpeO4Q+3R4lL+/v5o1a2Z2GAAAALjF8cpc9zN9ITkAAACAwo2kAwAAAIBHWWZ6FQAAAGAF7NPhflQ6AAAAAHgUlQ4AAADACZUO96PSAQAAAMCjqHQAAAAATgxemet2VDoAAAAAeBRJBwAAAACPYnoVAAAA4ISF5O5HpQMAAACAR1HpAAAAAJxQ6XA/Kh0AAADATWjKlClq0KCBAgICFBAQoMjISH377beO8+fPn1efPn1UpkwZ+fv7q2PHjkpNTXW5x8GDB9W2bVsVL15cISEhGjJkiHJyclz6rFixQo0bN5avr6+qV6+uGTNmFDhWkg4AAADgJlShQgWNHj1amzdv1k8//aRWrVrp0Ucf1a5duyRJAwYM0KJFi/Tll19q5cqVOnz4sDp06OC4Pjc3V23btlVWVpbWrVunzz77TDNmzFB8fLyjz/79+9W2bVtFRUVp27Zt6t+/v3r27Knvv/++QLHaDMMw3POxrcPLp7zZIQAAAOAKcrIOmR3CZb1f8WnTnt3vz8+v6/rSpUtr3LhxevzxxxUcHKzZs2fr8ccflyTt3r1bderUUVJSklq0aKFvv/1W7dq10+HDhxUaGipJmjp1qmJjY3X06FH5+PgoNjZWS5Ys0c8//+x4RufOnZWenq7vvvsu33FR6QAAAAAsIjMzUxkZGS5HZmbmVa/Lzc3VnDlzdPbsWUVGRmrz5s3Kzs5WdHS0o0/t2rVVqVIlJSUlSZKSkpJUv359R8IhSTExMcrIyHBUS5KSklzukdcn7x75RdIBAAAAOLHbzDsSEhIUGBjociQkJFw21p07d8rf31++vr564YUX9PXXX6tu3bpKSUmRj4+PgoKCXPqHhoYqJSVFkpSSkuKScOSdzzt3pT4ZGRk6d+5cvr+nvL0KAAAAsIi4uDgNHDjQpc3X1/ey/WvVqqVt27bp1KlTmjdvnrp166aVK1d6OswCI+kAAAAAnJj5ylxfX98rJhn/y8fHR9WrV5ckNWnSRJs2bdJ7772nJ554QllZWUpPT3epdqSmpiosLEySFBYWpo0bN7rcL+/tVs59/veNV6mpqQoICJCfn1++42R6FQAAAFBI2O12ZWZmqkmTJvL29lZiYqLj3J49e3Tw4EFFRkZKkiIjI7Vz506lpaU5+ixbtkwBAQGqW7euo4/zPfL65N0jv6h0AAAAADehuLg4tWnTRpUqVdLp06c1e/ZsrVixQt9//70CAwPVo0cPDRw4UKVLl1ZAQID69eunyMhItWjRQpLUunVr1a1bV127dtXYsWOVkpKiV199VX369HFUW1544QV98MEHGjp0qLp3767ly5dr7ty5WrJkSYFiJekAAAAAnNwsO5KnpaXpmWee0ZEjRxQYGKgGDRro+++/1wMPPCBJmjBhgooUKaKOHTsqMzNTMTExmjx5suP6okWLavHixerdu7ciIyNVokQJdevWTaNGjXL0qVq1qpYsWaIBAwbovffeU4UKFfTJJ58oJiamQLGyTwcAAABuOCvv0/FOJfP26Rh08Pr26bAqKh0AAACAk0L3F3kLYCE5AAAAAI8i6QAAAADgUUyvAgAAAJzYbWZHUPhQ6QAAAADgUVQ6AAAAACc3yytzbyZUOgAAAAB4FJUOAAAAwAmvzHU/Kh0AAAAAPIqkAwAAAIBHMb0KAAAAcGJngpXbUekAAAAA4FFUOgAAAAAnvDLX/ah0AAAAAPAokg4AAAAAHsX0KgAAAMAJy8jdj0oHAAAAAI+i0gEAAAA4YSG5+1HpAAAAAOBRVDoAAAAAJ3ab2REUPlQ6AAAAAHgUSQcAAAAAj2J6FQAAAODEzktz3Y5KBwAAAACPotIBAAAAOKHO4X5UOgAAAAB4FEkHAAAAAI9iehUAAADghB3J3Y9KBwAAAACPotIBAAAAOOGVue5HpQMAAACAR1HpAAAAAJxQ53A/Kh0AAAAAPIqkAwAAAIBHMb0KAAAAcMIrc92PSgcAAAAAj6LSAQAAADjhlbnuR6UDAAAAgEeRdAAAAADwKKZXAQAAAE6YXOV+lqh0dOvWTatWrTI7DAAAAAAeYImk49SpU4qOjlaNGjX01ltv6dChQ2aHBAAAgFuU3cSjsLJE0rFgwQIdOnRIvXv31hdffKEqVaqoTZs2mjdvnrKzs80ODwAAAMB1sETSIUnBwcEaOHCgtm/frg0bNqh69erq2rWrwsPDNWDAAP36669mhwgAAIBbgGHif4WVZZKOPEeOHNGyZcu0bNkyFS1aVA899JB27typunXrasKECWaHBwAAAKCALJF0ZGdn66uvvlK7du1UuXJlffnll+rfv78OHz6szz77TD/88IPmzp2rUaNGmR0qAAAAgAKyxCtzy5UrJ7vdrieffFIbN25URETERX2ioqIUFBR0w2MDAADAraUwL+g2iyWSjgkTJqhTp04qVqzYZfsEBQVp//79NzAqAAAAAO5giaSja9euZocAAAAASJLshXhBt1kskXScPXtWo0ePVmJiotLS0mS3uxa1fv/9d5MiAwAAAHC9LJF09OzZUytXrlTXrl1Vrlw52Ww2s0MCAAAA4CaWSDq+/fZbLVmyRHfddZfZoQAAAOAWx+Qq97PEK3NLlSql0qVLmx0GAAAAAA+wRNLx+uuvKz4+Xn///bfZoQAAAOAWZ5dh2lFYmTa9qlGjRi5rN/bt26fQ0FBVqVJF3t7eLn23bNlyo8MDAAAA4CamJR3t27c369EAAAAAbiDTko4RI0aY9WgAAADgstiR3P0ssaajWrVqOn78+EXt6enpqlatmgkRWUPvF7pp3971OpPxm9atWaRmTSPMDglOGB/rYmysi7GxNsbHuhgb3OwskXQcOHBAubm5F7VnZmbqr7/+MiEi83Xq9IjeHjdCr78xXs2aP6jtO37RN0tmKTi4jNmhQYyPlTE21sXYWBvjY12MzY1nmPhfYWUzDMO0T7dw4UJJF9Z3fPbZZwoMDHScy83NVWJiopYtW6Y9e/YU6L5ePuXdGqcZ1q1ZpE0/bdfL/V+VJNlsNh34fZMmTZ6useMmmRwdGB/rYmysi7GxNsbHugrr2ORkHTI7hMvqWeVx0579yYF5pj3bk0zdHDBvMbnNZlO3bt1cznl7e6tKlSp65513TIjMXN7e3mrcuIFGj/3A0WYYhhKXr1GLFk1MjAwS42NljI11MTbWxvhYF2NjDtZ0uJ+p06vsdrvsdrsqVaqktLQ0x9d2u12ZmZnas2eP2rVrZ2aIpihbtrS8vLyUlnrMpT0t7ajCQoNNigp5GB/rYmysi7GxNsbHuhgbFBamVjry7N+//5qvzczMVGZmpkubYRgue4AAAAAAMI9pScfEiRPz3fell1667LmEhAS99tprLm22Iv6yFQ245tjMduzYCeXk5CgktKxLe0hIsFJSj5oUFfIwPtbF2FgXY2NtjI91MTbmKMwLus1i2vSqCRMm5Ot49913r3ifuLg4nTp1yuWwFSl5Yz6Eh2RnZ2vLlh1qFXW3o81ms6lV1N1av36ziZFBYnysjLGxLsbG2hgf62JscCUJCQlq1qyZSpYsqZCQELVv3/6iFzCdP39effr0UZkyZeTv76+OHTsqNTXVpc/BgwfVtm1bFS9eXCEhIRoyZIhycnJc+qxYsUKNGzeWr6+vqlevrhkzZhQoVtMqHdczpcqZr6+vfH19XdoKw9SqCe99rOnTJmjzlh3atGmrXurXSyVK+GnGZ1+YHRrE+FgZY2NdjI21MT7WxdjceDfLQvKVK1eqT58+atasmXJycvTPf/5TrVu31i+//KISJUpIkgYMGKAlS5boyy+/VGBgoPr27asOHTpo7dq1ki68MbZt27YKCwvTunXrdOTIET3zzDPy9vbWW2+9JenC7+1t27bVCy+8oFmzZikxMVE9e/ZUuXLlFBMTk69YTX1lrqcUhlfmStKLvZ/VoIG9FRYWrO3bd6n/gHht3LTV7LDw/zE+1sXYWBdjY22Mj3UVxrGx8itzu1XpaNqzPzvw1TVfe/ToUYWEhGjlypW69957derUKQUHB2v27Nl6/PELrwHevXu36tSpo6SkJLVo0ULffvut2rVrp8OHDys0NFSSNHXqVMXGxuro0aPy8fFRbGyslixZop9//tnxrM6dOys9PV3fffddvmKzTNLx119/aeHChTp48KCysrJczo0fP75A9yosSQcAAEBhRdJxaR/tmX3RS5IuNbPnUvbt26caNWpo586duv3227V8+XLdf//9OnnypIKCghz9KleurP79+2vAgAGKj4/XwoULtW3bNsf5/fv3q1q1atqyZYsaNWqke++9V40bN3ZZ9jB9+nT1799fp06dytfnssTbqxITE/XII4+oWrVq2r17t26//XYdOHBAhmGocePGZocHAACAW4jdxL/JX+olSSNGjNDIkSOveJ3dblf//v1111136fbbb5ckpaSkyMfHxyXhkKTQ0FClpKQ4+uRVOJzP5527Up+MjAydO3dOfn5+V/1cpu7TkScuLk6DBw/Wzp07VaxYMX311Vf6888/1bJlS3Xq1Mns8AAAAIAb4lIvSYqLi7vqdX369NHPP/+sOXPm3IAoC84SSUdycrKeeeYZSZKXl5fOnTsnf39/jRo1SmPGjDE5OgAAANxKDBMPX19fBQQEuBxXm1rVt29fLV68WD/++KMqVKjgaA8LC1NWVpbS09Nd+qempiosLMzR53/fZpX39dX6BAQE5KvKIVkk6ShRooRjHUe5cuX022+/Oc4dO3bscpcBAAAAtyzDMNS3b199/fXXWr58uapWrepyvkmTJvL29lZiYqKjbc+ePTp48KAiIyMlSZGRkdq5c6fS0tIcfZYtW6aAgADVrVvX0cf5Hnl98u6RH5ZY09GiRQutWbNGderU0UMPPaRBgwZp586dmj9/vlq0aGF2eAAAALiF2G+SzQH79Omj2bNn6z//+Y9KlizpWIMRGBgoPz8/BQYGqkePHho4cKBKly6tgIAA9evXT5GRkY7fsVu3bq26deuqa9euGjt2rFJSUvTqq6+qT58+jgrLCy+8oA8++EBDhw5V9+7dtXz5cs2dO1dLlizJd6yWeHvV77//rjNnzqhBgwY6e/asBg0apHXr1qlGjRoaP368KleuXKD78fYqAAAAa7Py26ueqvyYac+e/cfX+e57ub3ppk+frmeffVbShc0BBw0apH//+9/KzMxUTEyMJk+e7Jg6JUl//PGHevfurRUrVqhEiRLq1q2bRo8eLS+v/9YnVqxYoQEDBuiXX35RhQoVNHz4cMcz8hWrFZIOdyPpAAAAsDaSjksrSNJxM7HEmg5JSk9P1yeffKK4uDidOHFCkrRlyxYdOmTd/0ECAACg8DFM/K+wssSajh07dig6OlqBgYE6cOCAevXqpdKlS2v+/Pk6ePCgZs6caXaIAAAAAK6RJSodAwcO1LPPPqtff/1VxYoVc7Q/9NBDWrVqlYmRAQAA4FZjN/EorCyRdGzatEn/93//d1F7+fLlHavwAQAAANycLJF0+Pr6KiMj46L2vXv3Kjg42ISIAAAAALiLJZKORx55RKNGjVJ2drakC6//OnjwoGJjY9WxY0eTowMAAMCtxC7DtKOwskTS8c477+jMmTMKCQnRuXPn1LJlS1WvXl3+/v568803zQ4PAAAAwHWwxNurAgMDtWzZMq1du1bbt2/XmTNn1LhxY0VHR5sdGgAAAG4xhfnVtWaxRNIhSYmJiUpMTFRaWprsdrt2796t2bNnS5I+/fRTk6MDAAAAcK0skXS89tprGjVqlJo2bapy5cpddkt3AAAAwNMK86trzWKJpGPq1KmaMWOGunbtanYoAAAAANzMEgvJs7KydOedd5odBgAAAAAPsETS0bNnT8f6DQAAAMBMhmGYdhRWpk2vGjhwoOPfdrtdH330kX744Qc1aNBA3t7eLn3Hjx9/o8MDAAAA4CamJR1bt251+ToiIkKS9PPPP7u0s6gcAAAAN1Jh3qTPLKYlHT/++KNZjwYAAABwA1liTQcAAACAwssSr8wFAAAArIJ9OtyPSgcAAAAAj6LSAQAAADgxWEjudlQ6AAAAAHgUlQ4AAADACa/MdT8qHQAAAAA8iqQDAAAAgEcxvQoAAABwYhhMr3I3Kh0AAAAAPIpKBwAAAOCEzQHdj0oHAAAAAI8i6QAAAADgUUyvAgAAAJywI7n7UekAAAAA4FFUOgAAAAAn7EjuflQ6AAAAAHgUlQ4AAADACZsDuh+VDgAAAAAeRdIBAAAAwKOYXgUAAAA4YSG5+1HpAAAAAOBRVDoAAAAAJ2wO6H4kHQAAoNA6d3i12SEAENOrAAAAAHgYlQ4AAADAiZ19OtyOSgcAAAAAj6LSAQAAADihzuF+VDoAAAAAeBSVDgAAAMAJmwO6H5UOAAAAAB5F0gEAAADAo5heBQAAADhhepX7UekAAAAA4FFUOgAAAAAnBpsDuh2VDgAAAAAeRdIBAAAAwKOYXgUAAAA4YSG5+1HpAAAAAOBRVDoAAAAAJwaVDrej0gEAAADAo0ytdIwaNSpf/eLj4z0cCQAAAABPMTXp+Prrry97zmazac+ePTp//jxJBwAAAG4Y9ulwP1OTjq1bt16yfdu2bRo2bJh+/vln9erV6wZHBQAAAMCdLLWmY//+/Xr66afVrFkzBQYGateuXZo6darZYQEAAOAWYpdh2lFYWSLpOHbsmPr166fatWvryJEjWrdunb744gvVqFHD7NAAAAAAXCdTp1edPXtWb7/9tsaPH6/q1atr0aJFat26tZkhAQAA4BbHmg73M7XScdttt2ns2LHq3bu3Pv30U4WFhWnHjh0XHQAAAABcrVq1Sg8//LDCw8Nls9m0YMECl/OGYSg+Pl7lypWTn5+foqOj9euvv7r0OXHihLp06aKAgAAFBQWpR48eOnPmjEufHTt26J577lGxYsVUsWJFjR07tsCxmpp0pKWl6dy5cxo7dqwaN26siIgIx9GoUSPH/wsAAADA1dmzZ9WwYUNNmjTpkufHjh2riRMnaurUqdqwYYNKlCihmJgYnT9/3tGnS5cu2rVrl5YtW6bFixdr1apVev755x3nMzIy1Lp1a1WuXFmbN2/WuHHjNHLkSH300UcFitVmmFg/+uOPP/LVr3LlygW6r5dP+WsJBwAAFDLnDq82OwRchnfZamaHcFkNw+407dnbU9Zd03U2m01ff/212rdvL+lClSM8PFyDBg3S4MGDJUmnTp1SaGioZsyYoc6dOys5OVl169bVpk2b1LRpU0nSd999p4ceekh//fWXwsPDNWXKFL3yyitKSUmRj4+PJGnYsGFasGCBdu/ene/4TF3TUdBkAgAAACjMMjMzlZmZ6dLm6+srX1/fAt1n//79SklJUXR0tKMtMDBQzZs3V1JSkjp37qykpCQFBQU5Eg5Jio6OVpEiRbRhwwY99thjSkpK0r333utIOCQpJiZGY8aM0cmTJ1WqVKl8xWPq9KrKlSvrueee08yZM/Xnn3+aGQoAAAAgSTJM/C8hIUGBgYEuR0JCQoE/Q0pKiiQpNDTUpT00NNRxLiUlRSEhIS7nvby8VLp0aZc+l7qH8zPyw9RKx3PPPacVK1Zozpw5ysrKUtWqVRUVFaVWrVopKipKYWFhZoYHAAAA3FBxcXEaOHCgS1tBqxxWZGrSMXLkSEkXykhr167VypUrtWLFCv3rX/9Sdna2atasqVatWl12cQwAAABQmFzLVKpLyfvjfWpqqsqVK+doT01NVUREhKNPWlqay3U5OTk6ceKE4/qwsDClpqa69Mn7uiAFAktsDujr66tWrVrptdde08qVK3XkyBHFxcXp8OHD7EgOAACAG8puGKYd7lK1alWFhYUpMTHR0ZaRkaENGzYoMjJSkhQZGan09HRt3rzZ0Wf58uWy2+1q3ry5o8+qVauUnZ3t6LNs2TLVqlUr3+s5JJMrHXmysrKUlJSkFStWaMWKFdqwYYPKly+vxx9/XC1btjQ7PAAAAMByzpw5o3379jm+3r9/v7Zt26bSpUurUqVK6t+/v9544w3VqFFDVatW1fDhwxUeHu54w1WdOnX04IMPqlevXpo6daqys7PVt29fde7cWeHh4ZKkp556Sq+99pp69Oih2NhY/fzzz3rvvfc0YcKEAsVq6itzR40a5UgyKleurHvvvVctW7ZUy5YtHR/0WvDKXAAAIPHKXCuz8itz64U2N+3Zu1I35LvvihUrFBUVdVF7t27dNGPGDBmGoREjRuijjz5Senq67r77bk2ePFk1a9Z09D1x4oT69u2rRYsWqUiRIurYsaMmTpwof39/R58dO3aoT58+2rRpk8qWLat+/fopNja2QJ/L1KSjSJEiqlSpkoYNG6ZOnTqpTJkybrkvSQcAAJBIOqyMpOPSCpJ03ExMXdPx7bffqnPnzpoxY4bCw8NVv3599evXT/PmzdPRo0fNDA0AAAC3qMKwpsNqTK10ODt9+rRWr16tlStX6scff9T27dtVvXp1RUVF6YMPPijQvah0AAAAiUqHlVm50lEn5A7Tnp2cttG0Z3uSZZKOPLm5udq4caMWLlyoyZMn68yZM8rNzS3QPUg6AACARNJhZSQdl1ZYkw7T315lt9v1008/6ccff9SKFSu0du1anT17VhUqVNBjjz12ycUxAAAAgKcYstTf5AsFU5OONm3aaN26dTp9+rTCw8MVFRWlCRMmKCoqStWqWTf7BQAAAJB/piYdQUFBGjdunKKiolSjRg0zQwEAAAAkqVAv6DaLqUnHv//9bzMfDwAAAOAGMPWVuZKUk5OjcePGqXHjxvL395e/v78aN26st99+22W7dQAAAAA3J1MrHefOndMDDzygpKQkRUdH695775UkJScnKzY2VgsXLtTSpUtVrFgxM8MEAADALYSF5O5natIxevRo/fnnn9q6dasaNGjgcm779u165JFHNHr0aI0cOdKcAAEAAABcN1OnV82ZM0fjx4+/KOGQpIYNG+rtt9/W7NmzTYgMAAAAtyp2JHc/U5OOP/74Q3fccfnNV1q0aKGDBw/ewIispfcL3bRv73qdyfhN69YsUrOmEWaHBEmxQ/sqad0SnTy+R4f/2q6v5k1TzZq3mR0WnPCzY0333N1cC76eoYMHNisn65AeeSTG7JDwP/jZ8azc3Fy9/9FMxTz+rJpEPaoHOz2nqdNnK2+f5uycHI2fPE2Pde2tZve3V9QjXRT3+ttKO3rccY+NW3bo9rvaXPLYmbznomce/Ouw7ojuoMiYx2/Y5wQuxdSkIyAgQGlpaZc9n5KSopIlS97AiKyjU6dH9Pa4EXr9jfFq1vxBbd/xi75ZMkvBwWXMDu2Wd+89LTRlyme6656H9eBDT8rby1vfLpmt4sX9zA4N4mfHykqUKK4dO35Rv5dfMTsUXAI/O5437fMv9cWCJfrnwBe1cPZHGvhid306a55mzVsoSTp/PlO/7PlN//fsk5r76Qd6961XdeDgX+ob+5rjHo3q19GKhbNcjo4PP6gK4WG6vXZNl+dl5+RoyIjRatKw3g39nIWBYeJ/hZXNMMyr4zzxxBPKycnRV199dcnzHTt2VNGiRTV37twC3dfLp7w7wjPVujWLtOmn7Xq5/6uSJJvNpgO/b9KkydM1dtwkk6ODs7JlSyvl8E5Fteqg1Ws2mB3OLY+fnZtDTtYhdXi8uxYu/N7sUPD/FdafnXOHV5sdgsOLQ0aoTOkgvR43wNHW/59vyNfXR2NGDL3kNTuT9+jJnv217KvPVC4s5KLz2Tk5uv/Rp/XU44/oheeecjk3fvI0pR07oRZNIjRm4odK+n6eez/QdfIua92NoKuVbWTas38/ttW0Z3uSqZWOESNGaOnSpWrRooXmzp2rHTt2aPv27ZozZ46aN2+upUuXasSIEWaGaApvb281btxAicv/+38oDcNQ4vI1atGiiYmR4VICAwMkSSdOppsbCPjZAa4RPzs3RsTtdbThp206cPAvSdLuX3/Xlh27dE+Lppe95syZv2Wz2VSyZIlLnl+xer3SM06rfdsHXNo3bN6mpT+u0auDXnTfBwCug6lvr6pbt66WLVumHj16qHPnzrLZbJIu/B+62rVra+nSpapX78olwczMTGVmZrq0GYbhuNfNqGzZ0vLy8lJa6jGX9rS0o6pdi7UDVmKz2TT+7de0du1G7dp18Vxa3Fj87ADXhp+dG6Nn13/o7N9/6+GnnlfRIkWUa7frpee7qV1Mq0v2z8zM0oQpn+qh6JbyL3HppGP+4u911x2NFRYS7GhLP5WhV94cr9HxQy57Ha7MMOxmh1DomJp0SBcWi+/atUvbtm3T3r17JUk1a9ZUREREvq5PSEjQa6+95tJmK+IvW9EAd4cKXOT9iW+pXr1aahn1mNmhAAAs7rvlq7R46Y8aM3KoqletrN2//q4x732okLKl9ehDrpWK7JwcDRr+lgzD0PAhfS95v5S0o1q7cYveGRXn0j5i9Htq+8B9ahpR32OfBSgo05OOPBEREflONJzFxcVp4MCBLm2lytR2U1TmOHbshHJychQSWtalPSQkWCmpR02KCv/rvXffUNuHohV1fwcdOnTE7HAgfnaAa8XPzo3xzqRp6vn0P/RQ9H2SpJq3VdWRlDR98q+5LklHXsJxODVNn04cfdlqxYIlyxQUUFL33dPCpX3jlu1asXa9Zvz7wppZw5Dsdrsa3ttWI4a+pA7teHPc1dgL8YJus5iadIwaNSpf/eLj4y97ztfXV76+vi5tN/PUKknKzs7Wli071CrqbsciS5vNplZRd2vylOkmRwfpQsLR/tEHdf8DnXTgwJ9mh4P/j58d4Nrws3NjnD+fKVsR199RihQp4rI3Q17CcfDPw/r0/dEKCrz0zA3DMLTgm2V6uM398vZy/XXu8w/Hy27/7/Sg5auT9OnnX+rzD8crpCxvI4M5TE06vv7668ues9ls2rNnj86fP3/FpKOwmvDex5o+bYI2b9mhTZu26qV+vVSihJ9mfPaF2aHd8t6f+Jae7NxeHTp21+nTZxQaemEe7alTp3X+/HmTowM/O9ZVokRxVa9e1fF11SqV1LBhPZ04cVJ//nnYxMgg8bNzI9x3V3N9/NkclQsNUfWqlZW8d59mfjFfj7VtLelCwjHwlTf1y959mjT2Ndntdh07fkKSFBhQUt7e3o57bdi8TX8dTlHHhx+86Dm3Vank8vWu5F9VpEgR1ahWxXMfDrgKU5OOrVsv/Uqwbdu2adiwYfr555/Vq1evGxyVNXz55UIFly2tkfGDFRYWrO3bd6ltu6eVlnbs6hfDo3q/0E2StDzR9VXP3XsM0Mx/Fez1znA/fnasq2mThkr84b+v7Hzn7ZGSpM9mzlWPngMucxVuFH52PO+fA3rr/Y9n6o23J+nEyXQFly2tTo8+pN7//1W3aUeP68c16yVJjz/bx+XaT98fozsaN3B8PX/xUkXUr6tqlSveuA9wCzFxR4lCy9R9Ov7X/v37NXz4cH3xxRfq0KGD3njjDdWoUaPA9ykM+3QAAIDrZ6V9OuDKyvt0VCpt3iL8gyd2mvZsTzJ1n448x44dU79+/VS7dm0dOXJE69at0xdffHFNCQcAAABwPewyTDsKK1OnV509e1Zvv/22xo8fr+rVq2vRokVq3bq1mSEBAAAAcDNTk47bbrtNp0+fVr9+/fTkk0/KZrNpx44dF/Vr0KDBJa4GAAAA3M9Cqw8KDVPXdBQp8t/ZXTabzWWA87622WzKzc0t0H1Z0wEAACTWdFiZldd0lC9Vz7RnHzq5y7Rne5KplY79+/eb+XgAAAAAN4CpSYe3t7fCw8Ov2GfOnDmqXLnyDYoIAAAAtzo706vcztS3V7Vu3Vrp6emXPT9nzhw988wzNy4gAAAAAG5natIRHBysNm3a6O+//77o3Ny5c9W1a1e9+eabJkQGAACAW5Vh4n+FlalJx6JFi5Sdna327dsrOzvb0f7ll1+qa9eueuONNzRkyBATIwQAAABwvUxNOvz9/fXtt9/qzz//1FNPPSXDMDRv3jx16dJFI0aMUGxsrJnhAQAAAHADUxeSSxemWC1dulR33323HnjgAa1evVrx8fH65z//aXZoAAAAuAWxT4f7mZp0OG8EOG7cOD3zzDNq3769HnnkEZdzbA4IAAAA3LxM3xzQeRPAvFD+999sDggAAK4FmwNal5U3BwwOrGXas4+e2mPasz2JzQEBAAAAeJSpSQeb/gEAAMBqWNPhfqYmHQcPHsxXv0qVKnk4EgAAAACeYmrSUaVKFdlstova89Z4SBfWdOTk5Nzo0AAAAAC4ialJx9atWy/ZbhiG5syZo4kTJ8rf3/8GRwUAAIBbmZ3pVW5natLRsGHDi9p++OEHDRs2THv37tXQoUM1aNAgEyIDAAAA4C6mbw6YZ8uWLYqNjdXq1avVs2dPffPNNwoJCTE7LAAAANxiWEjufkXMDuC3337TE088oTvuuEPBwcH65Zdf9MEHH5BwAAAAAIWEqUnHiy++qLp16+rUqVP66aefNHv2bFWrZt2NYgAAAAAUnOk7khcrVky1a9e+Yr8tW7YU6L7sSA4AACR2JLcyK+9IHuh/m2nPPnXmN9Oe7UmmrumIj4+/5CtzAQAAABQeplY6PIVKBwAAkKh0WJmVKx0BJcyLLePs76Y925NMrXSUKlXqkpWOwMBA1axZU4MHD9YDDzxgQmQAAAAA3MXUpOPdd9+9ZHt6ero2b96sdu3aad68eXr44YdvbGAAAAC4ZbE5oPuZmnR069btiucjIiKUkJBA0gEAAADcxEzfp+NK2rVrp927d5sdBgAAAIDrYJkdyS8lMzNTPj4+ZocBAACAW4ghple5m6UrHdOmTVNERITZYQAAAAC4DqZWOgYOHHjJ9lOnTmnLli3au3evVq1adYOjAgAAwK2MheTuZ2rSsXXr1ku2BwQE6IEHHtD8+fNVtWrVGxwVAAAAAHcyNen48ccfzXw8AAAAgBvA0gvJAQAAgBvNYHqV21l6ITkAAACAmx+VDgAAAMAJr8x1PyodAAAAADyKpAMAAACARzG9CgAAAHDCQnL3o9IBAAAAwKNIOgAAAAAnhmGYdhTUpEmTVKVKFRUrVkzNmzfXxo0bPfAduX4kHQAAAMBN6IsvvtDAgQM1YsQIbdmyRQ0bNlRMTIzS0tLMDu0iNqMQTlrz8ilvdggAAMACzh1ebXYIuAzvstXMDuGyzPxdMifrUL77Nm/eXM2aNdMHH3wgSbLb7apYsaL69eunYcOGeSrEa0KlAwAAALjJZGVlafPmzYqOjna0FSlSRNHR0UpKSjIxskvj7VUAAACARWRmZiozM9OlzdfXV76+vi5tx44dU25urkJDQ13aQ0NDtXv3bo/HWVCFMukoSFnK6jIzM5WQkKC4uLiL/scGczE21sb4WBdjY12MjbUxPjeOmb9Ljhw5Uq+99ppL24gRIzRy5EhzAnKTQrmmozDJyMhQYGCgTp06pYCAALPDgRPGxtoYH+tibKyLsbE2xufWkN9KR1ZWlooXL6558+apffv2jvZu3bopPT1d//nPf25EuPnGmg4AAADAInx9fRUQEOByXKqy5ePjoyZNmigxMdHRZrfblZiYqMjIyBsZcr4UyulVAAAAQGE3cOBAdevWTU2bNtUdd9yhd999V2fPntVzzz1ndmgXIekAAAAAbkJPPPGEjh49qvj4eKWkpCgiIkLffffdRYvLrYCkw+J8fX01YsQIFoxZEGNjbYyPdTE21sXYWBvjg0vp27ev+vbta3YYV8VCcgAAAAAexUJyAAAAAB5F0gEAAADAo0g6AAAAAHgUSYfFHDhwQDabTdu2bbtsnxUrVshmsyk9Pf2GxXWrys94WOGeQGH37LPPumx+dau677771L9/f48+o0qVKnr33Xev2GfkyJGKiIjwaBwACheSDgAAcFk2m00LFiwwOwxTXC7JmzFjhoKCgiRdSMBsNpteeOEFlz7btm2TzWbTgQMHJF36D06nT59WVFSU6tatq7/++svRJyQkRKdPn3a5X0REhEaOHOnStmvXLv3jH/9QcHCwfH19VbNmTcXHx+vvv/929OncubMefPBBl+u+++472Wy2i+43cuRIVapUySXe/MYCXA1JBwAAwHUoVqyYpk2bpl9//TXf1xw9elRRUVE6e/asVq9erQoVKjjOnT59Wm+//fYVr1+/fr2aN2+urKwsLVmyRHv37tWbb76pGTNm6IEHHlBWVpYkKSoqSmvXrlVOTo7j2h9//FEVK1bUihUrXO75448/KioqyqUtP7EA+UHSYRK73a6xY8eqevXq8vX1VaVKlfTmm286zu/evVt33nmnihUrpttvv10rV6686B5r165VgwYNVKxYMbVo0UI///zzjfwIhcr1jMfJkyfVpUsXBQcHy8/PTzVq1ND06dMd5zdu3KhGjRqpWLFiatq0qbZu3XpDP1thcKXxWbdunSIiIhzf3wULFrj8NTFvOuL333+vRo0ayc/PT61atVJaWpq+/fZb1alTRwEBAXrqqadc/jqI/Lvc+OT9pXTu3Lm655575Ofnp2bNmmnv3r3atGmTmjZtKn9/f7Vp00ZHjx513C83N1cDBw5UUFCQypQpo6FDh4q3u/+X3W7X0KFDVbp0aYWFhbn8xTk9PV09e/ZUcHCwAgIC1KpVK23fvt1x/rffftOjjz6q0NBQ+fv7q1mzZvrhhx8u+6wqVapIkh577DHZbDbH13n+9a9/qUqVKgoMDFTnzp0dfxGfOXOmypQpo8zMTJf+7du3V9euXa/vG2BBtWrVUlRUlF555ZV89f/zzz91zz33KDAwUMuXL1eZMmVczvfr10/jx49XWlraJa83DEM9evRQnTp1NH/+fN1xxx2qXLmyOnXqpEWLFikpKUkTJkyQdCHpOHPmjH766SfH9StWrNCwYcO0YcMGnT9/XpJ0/vx5bdiw4aKk42qxAPlmwBRDhw41SpUqZcyYMcPYt2+fsXr1auPjjz829u/fb0gyKlSoYMybN8/45ZdfjJ49exolS5Y0jh07ZhiGYfz444+GJKNOnTrG0qVLjR07dhjt2rUzqlSpYmRlZZn8yW5O1zMeffr0MSIiIoxNmzYZ+/fvN5YtW2YsXLjQMAzDOH36tBEcHGw89dRTxs8//2wsWrTIqFatmiHJ2Lp1q4mf+OZyufE5deqUUbp0aePpp582du3aZXzzzTdGzZo1Xb6/eT8vLVq0MNasWWNs2bLFqF69utGyZUujdevWxpYtW4xVq1YZZcqUMUaPHm3uB71JXe3np3bt2sZ3331n/PLLL0aLFi2MJk2aGPfdd5/LeLzwwguO+40ZM8YoVaqU8dVXXxm//PKL0aNHD6NkyZLGo48+at6HtIiWLVsaAQEBxsiRI429e/can332mWGz2YylS5cahmEY0dHRxsMPP2xs2rTJ2Lt3rzFo0CCjTJkyxvHjxw3DMIxt27YZU6dONXbu3Gns3bvXePXVV41ixYoZf/zxh+MZlStXNiZMmGAYhmGkpaUZkozp06cbR44cMdLS0gzDMIwRI0YY/v7+RocOHYydO3caq1atMsLCwox//vOfhmEYxt9//20EBgYac+fOddw3NTXV8PLyMpYvX34jvlVu0bJlS+Pll1++qH369OlGYGCgYRgXvhcNGzY0Nm/ebBQpUsTYtGmTYRiGsXXrVkOSsX//fsMwDMfPw5w5c4yKFSsajz32mHH+/HmX++b12bJlixEREWH06dPHca5hw4bGiBEjDMMwjC1bthiSjNmzZ18y7gceeMBo2LCh4+vw8HDjrbfeMgzDMDIyMgwvLy8jLS3NqF27tmM8EhMTDUnGgQMHChQLkF8kHSbIyMgwfH19jY8//viic3k/5M6//GRnZxsVKlQwxowZYxjGf3+JmjNnjqPP8ePHDT8/P+OLL77w/AcoZK53PB5++GHjueeeu+S9P/zwQ6NMmTLGuXPnHG1Tpkwh6SiAK43PlClTLvr+fvzxx5dMOn744QdHn4SEBEOS8dtvvzna/u///s+IiYnx3AcppPLz8/PJJ5842v79738bkozExERHW0JCglGrVi3H1+XKlTPGjh3r+DrvZ46k48IvwXfffbdLW7NmzYzY2Fhj9erVRkBAwEW/yN52223Ghx9+eNl71qtXz3j//fcdXzsnHYZhGJKMr7/+2uWaESNGGMWLFzcyMjIcbUOGDDGaN2/u+Lp3795GmzZtHF+/8847RrVq1Qy73Z6vz2oFBUk6DMMwOnfubLRq1cowjMsnHT4+PkZUVJSRk5Nz0X3z+mzdutX47rvvDG9vb2Pfvn2GYbj+oj9nzpwr/v8jL730kuHn5+f4ukuXLkbr1q0NwzCMJUuWGHXr1jUMwzCef/55Iz4+3jAMwxg+fLhRtWrVAscC5BfTq0yQnJyszMxM3X///ZftExkZ6fi3l5eXmjZtquTk5Mv2KV26tGrVqnVRH1zd9Y5H7969NWfOHEVERGjo0KFat26dy73zpsBd6l64uiuNz549ey76/t5xxx2XvE+DBg0c/w4NDVXx4sVVrVo1lzamDxRcfn5+/vd7L0n169d3acv73p86dUpHjhxR8+bNHefzfuZwgfP3U5LKlSuntLQ0bd++XWfOnFGZMmXk7+/vOPbv36/ffvtNknTmzBkNHjxYderUUVBQkPz9/ZWcnKyDBw8WOI4qVaqoZMmSF8WRp1evXlq6dKkOHTok6cLi62effVY2m+1aPvZN4Y033tDq1au1dOnSy/Z55JFHtHr1as2fP/+K94qJidHdd9+t4cOHX7aPkc9ph/fdd5/Wrl2r7OxsrVixQvfdd58kqWXLlo51HStWrLhoalVBYgGuhqTDBH5+fmaHACfXOx5t2rTRH3/8oQEDBujw4cO6//77NXjwYDdFB3f9vHh7ezv+bbPZXL7Oa7Pb7W551q0kP+Pzv9/7S7Xxvc+/y/1v98yZMypXrpy2bdvmcuzZs0dDhgyRJA0ePFhff/213nrrLa1evVrbtm1T/fr1HYuO3RFHnkaNGqlhw4aaOXOmNm/erF27dunZZ58t+Ac2UUBAgE6dOnVRe3p6ugIDAy9qv+2229SrVy8NGzbssgnBK6+8ovj4eD311FOaO3fuFZ8/evRoffHFFxetBaxZs6YkXfYPjcnJyY4+khwL1jdt2qQff/xRLVu2lHQh6diwYYNOnDihDRs2qFWrVgWOBcgvkg4T1KhRQ35+fkpMTLxsn/Xr1zv+nZOTo82bN6tOnTqX7XPy5Ent3bv3oj64OneMR3BwsLp166bPP/9c7777rj766CNJUp06dbRjxw7HQr3/vReu7krjU6tWLe3cudNlseqmTZtuZHi3vPz8/BREYGCgypUrpw0bNjja8n7mcGWNGzdWSkqKvLy8VL16dZejbNmyki68gOTZZ5/VY489pvr16yssLMzxStfL8fb2Vm5u7jXF1LNnT82YMUPTp09XdHS0KlaseE33MUutWrW0ZcuWi9q3bNni8ku9s/j4eO3du1dz5sy57H2HDx+ukSNHqkuXLvriiy8u2++OO+5Qhw4dNGzYMJf2iIgI1a5dWxMmTLgoYd++fbt++OEHPfnkk4622267TRUrVtTChQu1bds2R9JRvnx5lS9fXu+8846ysrIuW+m4UixAfnmZHcCtqFixYoqNjdXQoUPl4+Oju+66S0ePHtWuXbscUxQmTZqkGjVqqE6dOpowYYJOnjyp7t27u9xn1KhRKlOmjEJDQ/XKK6+obNmybJ51Da53POLj49WkSRPVq1dPmZmZWrx4sSMheeqpp/TKK6+oV69eiouL04EDB3j1YAFdaXzyvr/PP/+8hg0bpoMHDzq+v4V5CoeV5Ofnp6BefvlljR49WjVq1FDt2rU1fvx4NkPNh+joaEVGRqp9+/YaO3asatasqcOHD2vJkiV67LHH1LRpU9WoUUPz58/Xww8/LJvNpuHDh1+1ylSlShUlJibqrrvukq+vr0qVKpXvmJ566ikNHjxYH3/8sWbOnHm9H/GG6927tz744AO99NJL6tmzp3x9fbVkyRL9+9//1qJFiy55TWhoqAYOHKhx48Zd8d6vvPKKihYtqi5dushut7skCc7efPNN1atXT15e//2VzWazadq0aXrggQfUsWNHxcXFKSwsTBs2bNCgQYMUGRl50f4iUVFRmjx5sqpXr+6Y5ihdqHa8//77qlmzpsLDw68Y86ViAfKLSodJhg8frkGDBik+Pl516tTRE0884TIXdvTo0Ro9erQaNmyoNWvWaOHChY6/VDn3efnll9WkSROlpKRo0aJF8vHxudEfpVC4nvHw8fFRXFycGjRooHvvvVdFixZ1/IXL399fixYt0s6dO9WoUSO98sorGjNmjCmf8WZ2ufEJCAjQokWLtG3bNkVERDimLUhyWecBz7raz09BDRo0SF27dlW3bt0UGRmpkiVL6rHHHnNjxIWTzWbTN998o3vvvVfPPfecatasqc6dO+uPP/5w/JI5fvx4lSpVSnfeeacefvhhxcTEqHHjxle87zvvvKNly5apYsWKatSoUYFiCgwMVMeOHeXv739T/lGsWrVqWrVqlXbv3q3o6Gg1b95cc+fO1ZdffnnRhnvOBg8eLH9//6vef9iwYXrrrbfUtWtXzZ49+5J9atasqe7du7tUzCXpzjvv1Pr161W0aFG1adNG1atXV1xcnLp166Zly5bJ19fXpX9UVJROnz7tWM+Rp2XLlo5NCq/mcrEA+WEz8rsKCQBuArNmzdJzzz2nU6dOsX4KsID7779f9erV08SJE80OBYCJqI8BuKnNnDlT1apVU/ny5bV9+3bFxsbqH//4BwkHYLKTJ09qxYoVWrFihSZPnmx2OABMRtIB4KaWkpKi+Ph4paSkqFy5curUqZPLbvIAzNGoUSOdPHlSY8aMUa1atcwOB4DJmF4FAAAAwKNYSA4AAADAo0g6AAAAAHgUSQcAAAAAjyLpAAAAAOBRJB0AYBHPPvusywZq991330W7CheUO+4BAMD1IukAgKt49tlnZbPZZLPZ5OPjo+rVq2vUqFHKycnx6HPnz5+v119/PV99V6xYIZvNpvT09Gu+BwAAnsI+HQCQDw8++KCmT5+uzMxMffPNN+rTp4+8vb0VFxfn0i8rK0s+Pj5ueWbp0qUtcQ8AAK4XlQ4AyAdfX1+FhYWpcuXK6t27t6Kjo7Vw4ULHlKg333xT4eHhjk3Q/vzzT/3jH/9QUFCQSpcurUcffVQHDhxw3C83N1cDBw5UUFCQypQpo6FDh+p/t03636lRmZmZio2NVcWKFeXr66vq1atr2rRpOnDggKKioiRJpUqVks1m07PPPnvJe5w8eVLPPPOMSpUqpeLFi6tNmzb69ddfHednzJihoKAgff/996pTp478/f314IMP6siRI+79hgIAbikkHQBwDfz8/JSVlSVJSkxM1J49e7Rs2TItXrxY2dnZiomJUcmSJbV69WqtXbvW8ct73jXvvPOOZsyYoU8//VRr1qzRiRMn9PXXX1/xmc8884z+/e9/a+LEiUpOTtaHH34of39/VaxYUV999ZUkac+ePTpy5Ijee++9S97j2Wef1U8//aSFCxcqKSlJhmHooYceUnZ2tqPP33//rbffflv/+te/tGrVKh08eFCDBw92x7cNAHCLYnoVABSAYRhKTEzU999/r379+uno0aMqUaKEPvnkE8e0qs8//1x2u12ffPKJbDabJGn69OkKCgrSihUr1Lp1a7377ruKi4tThw4dJElTp07V999/f9nn7t27V3PnztWyZcsUHR0tSapWrZrjfN40qpCQEAUFBV3yHr/++qsWLlyotWvX6s4775QkzZo1SxUrVtSCBQvUqVMnSVJ2dramTp2q2267TZLUt29fjRo16lq/ZQAAkHQAQH4sXrxY/v7+ys7Olt1u11NPPaWRI0eqT58+ql+/vss6ju3bt2vfvn0qWbKkyz3Onz+v3377TadOndKRI0fUvHlzxzkvLy81bdr0oilWebZt26aiRYuqZcuW1/wZkpOT5eXl5fLcMmXKqFatWkpOTna0FS9e3JFwSFK5cuWUlpZ2zc8FAICkAwDyISoqSlOmTJGPj4/Cw8Pl5fXf//NZokQJl75nzpxRkyZNNGvWrIvuExwcfE3P9/Pzu6brroW3t7fL1zab7bLJEAAA+cGaDgDIhxIlSqh69eqqVKmSS8JxKY0bN9avv/6qkJAQVa9e3eUIDAxUYGCgypUrpw0bNjiuycnJ0ebNmy97z/r168tut2vlypWXPJ9XacnNzb3sPerUqaOcnByX5x4/flx79uxR3bp1r/iZAAC4HiQdAOBmXbp0UdmyZfXoo49q9erV2r9/v1asWKGXXnpJf/31lyTp5Zdf1ujRo7VgwQLt3r1bL7744kV7bDirUqWKunXrpu7du2vBggWOe86dO1eSVLlyZdlsNi1evFhHjx7VmTNnLrpHjRo19Oijj6pXr15as2aNtm/frqefflrly5fXo48+6pHvBQAAEkkHALhd8eLFtWrVKlWqVEkdOnRQnTp11KNHD50/f14BAQGSpEGDBqlr167q1q2bIiMjVbJkST322GNXvO+UKVP0+OOP68UXX1Tt2rXVq1cvnT17VpJUvnx5vfbaaxo2bJhCQ0PVt2/fS95j+vTpatKkidq1a6fIyEgZhqFvvvnmoilVAAC4k81goi4AAAAAD6LSAQAAAMCjSDoAAAAAeBRJBwAAAACPIukAAAAA4FEkHQAAAAA8iqQDAAAAgEeRdAAAAADwKJIOAAAAAB5F0gEAAADAo0g6AAAAAHgUSQcAAAAAjyLpAAAAAOBR/w8fFL6KX45JWQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "unknown_confusion_mtx = tf.math.confusion_matrix(\n", " list(ds_unknown_test.map(lambda x, y: y)),\n", " predict_class_label_number(unknown_test_data),\n", " num_classes=len(label_names))\n", "\n", "show_confusion_matrix(unknown_confusion_mtx, label_names)" ] }, { "cell_type": "markdown", "metadata": { "id": "o2agDx2fCHyd" }, "source": [ "## Export the model as TFLite and SavedModel\n", "\n", "Now we can export the trained models in TFLite and SavedModel formats for deploying on-device and using for inference in TensorFlow." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:38:09.839224Z", "iopub.status.busy": "2023-05-23T08:38:09.838968Z", "iopub.status.idle": "2023-05-23T08:39:07.931960Z", "shell.execute_reply": "2023-05-23T08:39:07.931208Z" }, "id": "bAFvBmMr7owW" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2023-05-23 08:38:12.127020: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpni9u88b8/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpni9u88b8/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/lite/python/convert.py:746: UserWarning: Statistics for quantized inputs were expected, but not specified; continuing anyway.\n", " warnings.warn(\"Statistics for quantized inputs were expected, but not \"\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "2023-05-23 08:38:21.118896: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:357] Ignored output_format.\n", "2023-05-23 08:38:21.118942: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:360] Ignored drop_control_dependency.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Label file is inside the TFLite model with metadata.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "fully_quantize: 0, inference_type: 6, input_inference_type: 3, output_inference_type: 3\n", "INFO:tensorflow:Label file is inside the TFLite model with metadata.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Saving labels in /tmpfs/tmp/tmp0m8qtdb7/labels.txt\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Saving labels in /tmpfs/tmp/tmp0m8qtdb7/labels.txt\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:TensorFlow Lite model exported successfully: ./cassava_model_mobilenet_v3_large_100_224.tflite\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:TensorFlow Lite model exported successfully: ./cassava_model_mobilenet_v3_large_100_224.tflite\n" ] } ], "source": [ "tflite_filename = f'{TFLITE_NAME_PREFIX}_model_{model_name}.tflite'\n", "model.export(export_dir='.', tflite_filename=tflite_filename)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "execution": { "iopub.execute_input": "2023-05-23T08:39:07.935677Z", "iopub.status.busy": "2023-05-23T08:39:07.935065Z", "iopub.status.idle": "2023-05-23T08:39:14.202362Z", "shell.execute_reply": "2023-05-23T08:39:14.201618Z" }, "id": "Pz0-6To2C4yM" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: ./saved_model/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: ./saved_model/assets\n" ] } ], "source": [ "# Export saved model version.\n", "model.export(export_dir='.', export_format=ExportFormat.SAVED_MODEL)" ] }, { "cell_type": "markdown", "metadata": { "id": "4V4GdQqxjEU7" }, "source": [ "## Next steps\n", "\n", "The model that you've just trained can be used on mobile devices and even deployed in the field!\n", "\n", "**To download the model, click the folder icon for the Files menu on the left side of the colab, and choose the download option.**\n", "\n", "The same technique used here could be applied to other plant diseases tasks that might be more suitable for your use case or any other type of image classification task. If you want to follow up and deploy on an Android app, you can continue on this [Android quickstart guide](https://www.tensorflow.org/lite/android/quickstart)." ] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [ "3XX46cTrh6iD", "xDuDGUAxyHtA" ], "name": "CropNet: Fine tuning models for plant disease detection", "private_outputs": true, "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.16" } }, "nbformat": 4, "nbformat_minor": 0 }