{ "cells": [ { "cell_type": "markdown", "metadata": { "id": "moGQn-psFggi" }, "source": [ "##### Copyright 2020 The TensorFlow Authors." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-07-19T09:16:00.339771Z", "iopub.status.busy": "2024-07-19T09:16:00.339375Z", "iopub.status.idle": "2024-07-19T09:16:00.343290Z", "shell.execute_reply": "2024-07-19T09:16:00.342700Z" }, "id": "cUGG66UTFwJ-" }, "outputs": [], "source": [ "#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n", "# you may not use this file except in compliance with the License.\n", "# You may obtain a copy of the License at\n", "#\n", "# https://www.apache.org/licenses/LICENSE-2.0\n", "#\n", "# Unless required by applicable law or agreed to in writing, software\n", "# distributed under the License is distributed on an \"AS IS\" BASIS,\n", "# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n", "# See the License for the specific language governing permissions and\n", "# limitations under the License." ] }, { "cell_type": "markdown", "metadata": { "id": "YpbnPF_MEv4h" }, "source": [ "# Model Remediation Case Study\n", "\n", "
\n", " \n", "\n", "\n", "\n", "
\n", " View on TensorFlow.org\n", "\n", " \n", " Run in Google Colab\n", "\n", " \n", " View source on GitHub\n", "\n", " Download notebook\n", "
" ] }, { "cell_type": "markdown", "metadata": { "id": "yMcQGRPHnjP9" }, "source": [ "In this notebook, we’ll train a text classifier to identify written content that could be considered toxic or harmful, and apply MinDiff to remediate some fairness concerns. In our workflow, we will:\n", "1. Evaluate our baseline model’s performance on text containing references to sensitive groups. \n", "2. Improve performance on any underperforming groups by training with MinDiff. \n", "3. Evaluate the new model’s performance on our chosen metric.\n", "\n", "Our purpose is to demonstrate usage of the MinDiff technique with a very minimal workflow, not to lay out a principled approach to fairness in machine learning. As such, our evaluation will only focus on one sensitive category and a single metric. We also don’t address potential shortcomings in the dataset, nor tune our configurations. In a production setting, you would want to approach each of these with rigor. For more information on evaluating for fairness, see [this guide](https://www.tensorflow.org/responsible_ai/fairness_indicators/guide/guidance).\n" ] }, { "cell_type": "markdown", "metadata": { "id": "_FCDIaf8wsll" }, "source": [ "## Setup\n", "\n", "We begin by installing Fairness Indicators and TensorFlow Model Remediation.\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-07-19T09:16:00.346955Z", "iopub.status.busy": "2024-07-19T09:16:00.346526Z", "iopub.status.idle": "2024-07-19T09:19:47.621611Z", "shell.execute_reply": "2024-07-19T09:19:47.620460Z" }, "id": "WoA7i_6ShG6Y" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-model-remediation\r\n", " Using cached tensorflow_model_remediation-0.1.7.1-py3-none-any.whl.metadata (4.8 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting dill (from tensorflow-model-remediation)\r\n", " Using cached dill-0.3.8-py3-none-any.whl.metadata (10 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting mock (from tensorflow-model-remediation)\r\n", " Using cached mock-5.1.0-py3-none-any.whl.metadata (3.0 kB)\r\n", "Requirement already satisfied: pandas in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-model-remediation) (2.2.2)\r\n", "Requirement already satisfied: tensorflow-hub in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-model-remediation) (0.16.1)\r\n", "Requirement already satisfied: tensorflow>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-model-remediation) (2.17.0)\r\n", "Requirement already satisfied: absl-py>=1.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (2.1.0)\r\n", "Requirement already satisfied: astunparse>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (1.6.3)\r\n", "Requirement already satisfied: flatbuffers>=24.3.25 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (24.3.25)\r\n", "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (0.6.0)\r\n", "Requirement already satisfied: google-pasta>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (0.2.0)\r\n", "Requirement already satisfied: h5py>=3.10.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (3.11.0)\r\n", "Requirement already satisfied: libclang>=13.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (18.1.1)\r\n", "Requirement already satisfied: ml-dtypes<0.5.0,>=0.3.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (0.4.0)\r\n", "Requirement already satisfied: opt-einsum>=2.3.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (3.3.0)\r\n", "Requirement already satisfied: packaging in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (24.1)\r\n", "Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (3.20.3)\r\n", "Requirement already satisfied: requests<3,>=2.21.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (2.32.3)\r\n", "Requirement already satisfied: setuptools in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (71.0.3)\r\n", "Requirement already satisfied: six>=1.12.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (1.16.0)\r\n", "Requirement already satisfied: termcolor>=1.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (2.4.0)\r\n", "Requirement already satisfied: typing-extensions>=3.6.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (4.12.2)\r\n", "Requirement already satisfied: wrapt>=1.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (1.16.0)\r\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (1.65.1)\r\n", "Requirement already satisfied: tensorboard<2.18,>=2.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (2.17.0)\r\n", "Requirement already satisfied: keras>=3.2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (3.4.1)\r\n", "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (0.37.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: numpy<2.0.0,>=1.23.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow>=2.0.0->tensorflow-model-remediation) (1.26.4)\r\n", "Requirement already satisfied: python-dateutil>=2.8.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas->tensorflow-model-remediation) (2.9.0.post0)\r\n", "Requirement already satisfied: pytz>=2020.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas->tensorflow-model-remediation) (2024.1)\r\n", "Requirement already satisfied: tzdata>=2022.7 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pandas->tensorflow-model-remediation) (2024.1)\r\n", "Requirement already satisfied: tf-keras>=2.14.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-hub->tensorflow-model-remediation) (2.17.0)\r\n", "Requirement already satisfied: wheel<1.0,>=0.23.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow>=2.0.0->tensorflow-model-remediation) (0.43.0)\r\n", "Requirement already satisfied: rich in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from keras>=3.2.0->tensorflow>=2.0.0->tensorflow-model-remediation) (13.7.1)\r\n", "Requirement already satisfied: namex in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from keras>=3.2.0->tensorflow>=2.0.0->tensorflow-model-remediation) (0.0.8)\r\n", "Requirement already satisfied: optree in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from keras>=3.2.0->tensorflow>=2.0.0->tensorflow-model-remediation) (0.12.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorflow>=2.0.0->tensorflow-model-remediation) (3.3.2)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorflow>=2.0.0->tensorflow-model-remediation) (3.7)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorflow>=2.0.0->tensorflow-model-remediation) (2.2.2)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorflow>=2.0.0->tensorflow-model-remediation) (2024.7.4)\r\n", "Requirement already satisfied: markdown>=2.6.8 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.18,>=2.17->tensorflow>=2.0.0->tensorflow-model-remediation) (3.6)\r\n", "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.18,>=2.17->tensorflow>=2.0.0->tensorflow-model-remediation) (0.7.2)\r\n", "Requirement already satisfied: werkzeug>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.18,>=2.17->tensorflow>=2.0.0->tensorflow-model-remediation) (3.0.3)\r\n", "Requirement already satisfied: importlib-metadata>=4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard<2.18,>=2.17->tensorflow>=2.0.0->tensorflow-model-remediation) (8.0.0)\r\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard<2.18,>=2.17->tensorflow>=2.0.0->tensorflow-model-remediation) (2.1.5)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: markdown-it-py>=2.2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from rich->keras>=3.2.0->tensorflow>=2.0.0->tensorflow-model-remediation) (3.0.0)\r\n", "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from rich->keras>=3.2.0->tensorflow>=2.0.0->tensorflow-model-remediation) (2.18.0)\r\n", "Requirement already satisfied: zipp>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.18,>=2.17->tensorflow>=2.0.0->tensorflow-model-remediation) (3.19.2)\r\n", "Requirement already satisfied: mdurl~=0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown-it-py>=2.2.0->rich->keras>=3.2.0->tensorflow>=2.0.0->tensorflow-model-remediation) (0.1.2)\r\n", "Using cached tensorflow_model_remediation-0.1.7.1-py3-none-any.whl (142 kB)\r\n", "Using cached dill-0.3.8-py3-none-any.whl (116 kB)\r\n", "Using cached mock-5.1.0-py3-none-any.whl (30 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: mock, dill, tensorflow-model-remediation\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed dill-0.3.8 mock-5.1.0 tensorflow-model-remediation-0.1.7.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting fairness-indicators\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading fairness_indicators-0.46.0-py3-none-any.whl.metadata (12 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow<2.16,>=2.15 (from fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow-2.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (4.2 kB)\r\n", "Requirement already satisfied: tensorflow-hub<1.0.0,>=0.16.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from fairness-indicators) (0.16.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-data-validation<2.0.0,>=1.15.1 (from fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow_data_validation-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (18 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-model-analysis<0.47,>=0.46 (from fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow_model_analysis-0.46.0-py3-none-any.whl.metadata (20 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting witwidget<2,>=1.4.4 (from fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading witwidget-1.8.1-py3-none-any.whl.metadata (1.4 kB)\r\n", "Requirement already satisfied: protobuf<5,>=3.20.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from fairness-indicators) (3.20.3)\r\n", "Requirement already satisfied: absl-py>=1.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (2.1.0)\r\n", "Requirement already satisfied: astunparse>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (1.6.3)\r\n", "Requirement already satisfied: flatbuffers>=23.5.26 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (24.3.25)\r\n", "Requirement already satisfied: gast!=0.5.0,!=0.5.1,!=0.5.2,>=0.2.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (0.6.0)\r\n", "Requirement already satisfied: google-pasta>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (0.2.0)\r\n", "Requirement already satisfied: h5py>=2.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (3.11.0)\r\n", "Requirement already satisfied: libclang>=13.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (18.1.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting ml-dtypes~=0.3.1 (from tensorflow<2.16,>=2.15->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading ml_dtypes-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (20 kB)\r\n", "Requirement already satisfied: numpy<2.0.0,>=1.23.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (1.26.4)\r\n", "Requirement already satisfied: opt-einsum>=2.3.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (3.3.0)\r\n", "Requirement already satisfied: packaging in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (24.1)\r\n", "Requirement already satisfied: setuptools in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (71.0.3)\r\n", "Requirement already satisfied: six>=1.12.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (1.16.0)\r\n", "Requirement already satisfied: termcolor>=1.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (2.4.0)\r\n", "Requirement already satisfied: typing-extensions>=3.6.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (4.12.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting wrapt<1.15,>=1.11.0 (from tensorflow<2.16,>=2.15->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading wrapt-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.7 kB)\r\n", "Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (0.37.1)\r\n", "Requirement already satisfied: grpcio<2.0,>=1.24.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.16,>=2.15->fairness-indicators) (1.65.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorboard<2.16,>=2.15 (from tensorflow<2.16,>=2.15->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorboard-2.15.2-py3-none-any.whl.metadata (1.7 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tensorflow-estimator<2.16,>=2.15.0 (from tensorflow<2.16,>=2.15->fairness-indicators)\r\n", " Downloading tensorflow_estimator-2.15.0-py2.py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting keras<2.16,>=2.15.0 (from tensorflow<2.16,>=2.15->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading keras-2.15.0-py3-none-any.whl.metadata (2.4 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting absl-py>=1.0.0 (from tensorflow<2.16,>=2.15->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading absl_py-1.4.0-py3-none-any.whl.metadata (2.3 kB)\r\n", "Requirement already satisfied: joblib>=1.2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (1.4.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pandas<2,>=1.0 (from tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pyarrow<11,>=10 (from tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pyarrow-10.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB)\r\n", "Collecting pyfarmhash<0.4,>=0.2.2 (from tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pyfarmhash-0.3.2.tar.gz (99 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25hRequirement already satisfied: tensorflow-metadata<1.16,>=1.15.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (1.15.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tfx-bsl<1.16,>=1.15.1 (from tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading tfx_bsl-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (11 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting apache-beam<3,>=2.47 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading apache_beam-2.57.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.6 kB)\r\n", "Requirement already satisfied: tf-keras>=2.14.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-hub<1.0.0,>=0.16.1->fairness-indicators) (2.17.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting ipython<8,>=7 (from tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading ipython-7.34.0-py3-none-any.whl.metadata (4.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting ipywidgets<8,>=7 (from tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading ipywidgets-7.8.2-py2.py3-none-any.whl.metadata (1.9 kB)\r\n", "Requirement already satisfied: pillow>=9.4.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (10.4.0)\r\n", "Collecting rouge-score<2,>=0.1.2 (from tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading rouge_score-0.1.2.tar.gz (17 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hCollecting sacrebleu<4,>=2.3 (from tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n", " Downloading sacrebleu-2.4.2-py3-none-any.whl.metadata (58 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: scipy<2,>=1.4.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.13.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-api-python-client>=1.7.8 (from witwidget<2,>=1.4.4->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_api_python_client-2.137.0-py2.py3-none-any.whl.metadata (6.7 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting oauth2client>=4.1.3 (from witwidget<2,>=1.4.4->fairness-indicators)\r\n", " Downloading oauth2client-4.1.3-py2.py3-none-any.whl.metadata (1.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting crcmod<2.0,>=1.7 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading crcmod-1.7.tar.gz (89 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25ldone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hCollecting orjson<4,>=3.9.7 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading orjson-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (50 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting dill<0.3.2,>=0.3.1.1 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading dill-0.3.1.1.tar.gz (151 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hCollecting cloudpickle~=2.2.1 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading cloudpickle-2.2.1-py3-none-any.whl.metadata (6.9 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting fastavro<2,>=0.23.6 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading fastavro-1.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.5 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting fasteners<1.0,>=0.3 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading fasteners-0.19-py3-none-any.whl.metadata (4.9 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting hdfs<3.0.0,>=2.1.0 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading hdfs-2.7.3.tar.gz (43 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hCollecting httplib2<0.23.0,>=0.8 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading httplib2-0.22.0-py3-none-any.whl.metadata (2.6 kB)\r\n", "Requirement already satisfied: jsonschema<5.0.0,>=4.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (4.23.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting jsonpickle<4.0.0,>=3.0.0 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading jsonpickle-3.2.2-py3-none-any.whl.metadata (7.2 kB)\r\n", "Collecting objsize<0.8.0,>=0.6.1 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading objsize-0.7.0-py3-none-any.whl.metadata (12 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pymongo<5.0.0,>=3.8.0 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pymongo-4.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (22 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting proto-plus<2,>=1.7.1 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading proto_plus-1.24.0-py3-none-any.whl.metadata (2.2 kB)\r\n", "Collecting pydot<2,>=1.2.0 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pydot-1.4.2-py2.py3-none-any.whl.metadata (8.0 kB)\r\n", "Requirement already satisfied: python-dateutil<3,>=2.8.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (2.9.0.post0)\r\n", "Requirement already satisfied: pytz>=2018.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (2024.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting redis<6,>=5.0.0 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading redis-5.0.7-py3-none-any.whl.metadata (9.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting regex>=2020.6.8 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (40 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting requests!=2.32.*,<3.0.0,>=2.24.0 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading requests-2.31.0-py3-none-any.whl.metadata (4.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting zstandard<1,>=0.18.0 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading zstandard-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.0 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pyarrow-hotfix<1 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pyarrow_hotfix-0.6-py3-none-any.whl.metadata (3.6 kB)\r\n", "Collecting js2py<1,>=0.74 (from apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading Js2Py-0.74-py3-none-any.whl.metadata (868 bytes)\r\n", "Requirement already satisfied: cachetools<6,>=3.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (5.4.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-api-core<3,>=2.0.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_api_core-2.19.1-py3-none-any.whl.metadata (2.7 kB)\r\n", "Collecting google-apitools<0.5.32,>=0.5.31 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google-apitools-0.5.31.tar.gz (173 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hCollecting google-auth<3,>=1.18.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_auth-2.32.0-py2.py3-none-any.whl.metadata (4.7 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-auth-httplib2<0.3.0,>=0.1.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_auth_httplib2-0.2.0-py2.py3-none-any.whl.metadata (2.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-datastore<3,>=2.0.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_datastore-2.19.0-py2.py3-none-any.whl.metadata (5.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-pubsub<3,>=2.1.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_pubsub-2.22.0-py2.py3-none-any.whl.metadata (9.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-pubsublite<2,>=1.2.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading google_cloud_pubsublite-1.11.0-py2.py3-none-any.whl.metadata (5.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-storage<3,>=2.16.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_storage-2.17.0-py2.py3-none-any.whl.metadata (6.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-bigquery<4,>=2.0.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_bigquery-3.25.0-py2.py3-none-any.whl.metadata (8.9 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-bigquery-storage<3,>=2.6.3 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_bigquery_storage-2.25.0-py2.py3-none-any.whl.metadata (5.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-core<3,>=2.0.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_core-2.4.1-py2.py3-none-any.whl.metadata (2.7 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-bigtable<3,>=2.19.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_bigtable-2.24.0-py2.py3-none-any.whl.metadata (5.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-spanner<4,>=3.0.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_spanner-3.47.0-py2.py3-none-any.whl.metadata (10 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-dlp<4,>=3.0.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_dlp-3.18.1-py2.py3-none-any.whl.metadata (5.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-language<3,>=2.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading google_cloud_language-2.13.4-py2.py3-none-any.whl.metadata (5.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-videointelligence<3,>=2.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading google_cloud_videointelligence-2.13.4-py2.py3-none-any.whl.metadata (5.7 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-vision<4,>=2 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_vision-3.7.3-py2.py3-none-any.whl.metadata (5.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-recommendations-ai<0.11.0,>=0.1.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_recommendations_ai-0.10.11-py2.py3-none-any.whl.metadata (5.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-aiplatform<2.0,>=1.26.0 (from apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_aiplatform-1.59.0-py2.py3-none-any.whl.metadata (31 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: wheel<1.0,>=0.23.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow<2.16,>=2.15->fairness-indicators) (0.43.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting uritemplate<5,>=3.0.1 (from google-api-python-client>=1.7.8->witwidget<2,>=1.4.4->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading uritemplate-4.1.1-py2.py3-none-any.whl.metadata (2.9 kB)\r\n", "Requirement already satisfied: jedi>=0.16 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.19.1)\r\n", "Requirement already satisfied: decorator in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (5.1.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pickleshare (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pickleshare-0.7.5-py2.py3-none-any.whl.metadata (1.5 kB)\r\n", "Requirement already satisfied: traitlets>=4.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (5.14.3)\r\n", "Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (3.0.47)\r\n", "Requirement already satisfied: pygments in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.18.0)\r\n", "Collecting backcall (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading backcall-0.2.0-py2.py3-none-any.whl.metadata (2.0 kB)\r\n", "Requirement already satisfied: matplotlib-inline in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.1.7)\r\n", "Requirement already satisfied: pexpect>4.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (4.9.0)\r\n", "Requirement already satisfied: comm>=0.1.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.2.2)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting ipython-genutils~=0.2.0 (from ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n", " Downloading ipython_genutils-0.2.0-py2.py3-none-any.whl.metadata (755 bytes)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting widgetsnbextension~=3.6.7 (from ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n", " Downloading widgetsnbextension-3.6.7-py2.py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting jupyterlab-widgets<3,>=1.0.0 (from ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n", " Downloading jupyterlab_widgets-1.1.8-py3-none-any.whl.metadata (3.7 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pyasn1>=0.1.7 (from oauth2client>=4.1.3->witwidget<2,>=1.4.4->fairness-indicators)\r\n", " Downloading pyasn1-0.6.0-py2.py3-none-any.whl.metadata (8.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pyasn1-modules>=0.0.5 (from oauth2client>=4.1.3->witwidget<2,>=1.4.4->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pyasn1_modules-0.4.0-py3-none-any.whl.metadata (3.4 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting rsa>=3.1.4 (from oauth2client>=4.1.3->witwidget<2,>=1.4.4->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading rsa-4.9-py3-none-any.whl.metadata (4.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting nltk (from rouge-score<2,>=0.1.2->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading nltk-3.8.1-py3-none-any.whl.metadata (2.8 kB)\r\n", "Collecting portalocker (from sacrebleu<4,>=2.3->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading portalocker-2.10.1-py3-none-any.whl.metadata (8.5 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tabulate>=0.8.9 (from sacrebleu<4,>=2.3->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tabulate-0.9.0-py3-none-any.whl.metadata (34 kB)\r\n", "Collecting colorama (from sacrebleu<4,>=2.3->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading colorama-0.4.6-py2.py3-none-any.whl.metadata (17 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting lxml (from sacrebleu<4,>=2.3->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators)\r\n", " Downloading lxml-5.2.2-cp39-cp39-manylinux_2_28_x86_64.whl.metadata (3.4 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-auth-oauthlib<2,>=0.5 (from tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_auth_oauthlib-1.2.1-py2.py3-none-any.whl.metadata (2.7 kB)\r\n", "Requirement already satisfied: markdown>=2.6.8 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators) (3.6)\r\n", "Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators) (0.7.2)\r\n", "Requirement already satisfied: werkzeug>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators) (3.0.3)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO: pip is looking at multiple versions of tf-keras to determine which version is compatible with other requirements. This could take a while.\r\n", "Collecting tf-keras>=2.14.1 (from tensorflow-hub<1.0.0,>=0.16.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tf_keras-2.16.0-py3-none-any.whl.metadata (1.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tf_keras-2.15.1-py3-none-any.whl.metadata (1.7 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-api-python-client>=1.7.8 (from witwidget<2,>=1.4.4->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_api_python_client-1.12.11-py2.py3-none-any.whl.metadata (4.2 kB)\r\n", "Collecting tensorflow-serving-api<3,>=2.13.0 (from tfx-bsl<1.16,>=1.15.1->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow_serving_api-2.16.1-py2.py3-none-any.whl.metadata (1.8 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting uritemplate<4dev,>=3.0.0 (from google-api-python-client>=1.7.8->witwidget<2,>=1.4.4->fairness-indicators)\r\n", " Downloading uritemplate-3.0.1-py2.py3-none-any.whl.metadata (4.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting googleapis-common-protos<2.0.dev0,>=1.56.2 (from google-api-core<3,>=2.0.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading googleapis_common_protos-1.63.2-py2.py3-none-any.whl.metadata (1.5 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators)\r\n", " Downloading requests_oauthlib-2.0.0-py2.py3-none-any.whl.metadata (11 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-cloud-resource-manager<3.0.0dev,>=1.3.3 (from google-cloud-aiplatform<2.0,>=1.26.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_cloud_resource_manager-1.12.4-py2.py3-none-any.whl.metadata (5.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting shapely<3.0.0dev (from google-cloud-aiplatform<2.0,>=1.26.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading shapely-2.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (7.0 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pydantic<3 (from google-cloud-aiplatform<2.0,>=1.26.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pydantic-2.8.2-py3-none-any.whl.metadata (125 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting docstring-parser<1 (from google-cloud-aiplatform<2.0,>=1.26.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading docstring_parser-0.16-py3-none-any.whl.metadata (3.0 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-resumable-media<3.0dev,>=0.6.0 (from google-cloud-bigquery<4,>=2.0.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading google_resumable_media-2.7.1-py2.py3-none-any.whl.metadata (2.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting grpc-google-iam-v1<1.0.0dev,>=0.12.4 (from google-cloud-bigtable<3,>=2.19.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpc_google_iam_v1-0.13.1-py2.py3-none-any.whl.metadata (3.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting grpcio-status>=1.33.2 (from google-cloud-pubsub<3,>=2.1.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.65.1-py3-none-any.whl.metadata (1.1 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: overrides<8.0.0,>=6.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-cloud-pubsublite<2,>=1.2.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (7.7.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting sqlparse>=0.4.4 (from google-cloud-spanner<4,>=3.0.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading sqlparse-0.5.1-py3-none-any.whl.metadata (3.9 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting grpc-interceptor>=0.15.4 (from google-cloud-spanner<4,>=3.0.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpc_interceptor-0.15.4-py3-none-any.whl.metadata (8.4 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting google-crc32c<2.0dev,>=1.0 (from google-cloud-storage<3,>=2.16.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading google_crc32c-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting docopt (from hdfs<3.0.0,>=2.1.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading docopt-0.6.2.tar.gz (25 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hRequirement already satisfied: pyparsing!=3.0.0,!=3.0.1,!=3.0.2,!=3.0.3,<4,>=2.4.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from httplib2<0.23.0,>=0.8->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (3.1.2)\r\n", "Requirement already satisfied: parso<0.9.0,>=0.8.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jedi>=0.16->ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.8.4)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting tzlocal>=1.2 (from js2py<1,>=0.74->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n", " Downloading tzlocal-5.2-py3-none-any.whl.metadata (7.8 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pyjsparser>=2.5.1 (from js2py<1,>=0.74->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pyjsparser-2.7.1.tar.gz (24 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Preparing metadata (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25hRequirement already satisfied: attrs>=22.2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema<5.0.0,>=4.0.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (23.2.0)\r\n", "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema<5.0.0,>=4.0.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (2023.12.1)\r\n", "Requirement already satisfied: referencing>=0.28.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema<5.0.0,>=4.0.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (0.35.1)\r\n", "Requirement already satisfied: rpds-py>=0.7.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema<5.0.0,>=4.0.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (0.19.0)\r\n", "Requirement already satisfied: importlib-metadata>=4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators) (8.0.0)\r\n", "Requirement already satisfied: ptyprocess>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from pexpect>4.3->ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.7.0)\r\n", "Requirement already satisfied: wcwidth in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.2.13)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting dnspython<3.0.0,>=1.16.0 (from pymongo<5.0.0,>=3.8.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading dnspython-2.6.1-py3-none-any.whl.metadata (5.8 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting async-timeout>=4.0.3 (from redis<6,>=5.0.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading async_timeout-4.0.3-py3-none-any.whl.metadata (4.2 kB)\r\n", "Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests!=2.32.*,<3.0.0,>=2.24.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (3.3.2)\r\n", "Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests!=2.32.*,<3.0.0,>=2.24.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (3.7)\r\n", "Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests!=2.32.*,<3.0.0,>=2.24.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (2.2.2)\r\n", "Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests!=2.32.*,<3.0.0,>=2.24.0->apache-beam<3,>=2.47->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators) (2024.7.4)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO: pip is looking at multiple versions of tensorflow-serving-api to determine which version is compatible with other requirements. This could take a while.\r\n", "Collecting tensorflow-serving-api<3,>=2.13.0 (from tfx-bsl<1.16,>=1.15.1->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading tensorflow_serving_api-2.15.1-py2.py3-none-any.whl.metadata (1.8 kB)\r\n", "Requirement already satisfied: MarkupSafe>=2.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators) (2.1.5)\r\n", "Requirement already satisfied: notebook>=4.4.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (7.2.1)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: click in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nltk->rouge-score<2,>=0.1.2->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (8.1.7)\r\n", "Requirement already satisfied: tqdm in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nltk->rouge-score<2,>=0.1.2->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (4.66.4)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO: pip is looking at multiple versions of grpcio-status to determine which version is compatible with other requirements. This could take a while.\r\n", "Collecting grpcio-status>=1.33.2 (from google-cloud-pubsub<3,>=2.1.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.64.1-py3-none-any.whl.metadata (1.1 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.64.0-py3-none-any.whl.metadata (1.1 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.63.0-py3-none-any.whl.metadata (1.1 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.62.2-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.62.1-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.62.0-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.60.1-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "INFO: pip is still looking at multiple versions of grpcio-status to determine which version is compatible with other requirements. This could take a while.\r\n", " Downloading grpcio_status-1.60.0-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.59.3-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.59.2-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.59.0-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.58.0-py3-none-any.whl.metadata (1.3 kB)\r\n", "INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.57.0-py3-none-any.whl.metadata (1.2 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.56.2-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.56.0-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.55.3-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.54.3-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.54.2-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.54.0-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.53.2-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.53.1-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.53.0-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.51.3-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.51.1-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.50.0-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.49.1-py3-none-any.whl.metadata (1.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading grpcio_status-1.48.2-py3-none-any.whl.metadata (1.2 kB)\r\n", "Requirement already satisfied: zipp>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators) (3.19.2)\r\n", "Requirement already satisfied: jupyter-server<3,>=2.4.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.14.2)\r\n", "Requirement already satisfied: jupyterlab-server<3,>=2.27.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.27.3)\r\n", "Requirement already satisfied: jupyterlab<4.3,>=4.2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (4.2.4)\r\n", "Requirement already satisfied: notebook-shim<0.3,>=0.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.2.4)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: tornado>=6.2.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (6.4.1)\r\n", "Collecting annotated-types>=0.4.0 (from pydantic<3->google-cloud-aiplatform<2.0,>=1.26.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading annotated_types-0.7.0-py3-none-any.whl.metadata (15 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting pydantic-core==2.20.1 (from pydantic<3->google-cloud-aiplatform<2.0,>=1.26.0->apache-beam[gcp]<3,>=2.47; python_version < \"3.11\"->tensorflow-data-validation<2.0.0,>=1.15.1->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (6.6 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Collecting oauthlib>=3.0.0 (from requests-oauthlib>=0.7.0->google-auth-oauthlib<2,>=0.5->tensorboard<2.16,>=2.15->tensorflow<2.16,>=2.15->fairness-indicators)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Downloading oauthlib-3.2.2-py3-none-any.whl.metadata (7.5 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: anyio>=3.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (4.4.0)\r\n", "Requirement already satisfied: argon2-cffi>=21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (23.1.0)\r\n", "Requirement already satisfied: jinja2>=3.0.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (3.1.4)\r\n", "Requirement already satisfied: jupyter-client>=7.4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (8.6.2)\r\n", "Requirement already satisfied: jupyter-core!=5.0.*,>=4.12 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (5.7.2)\r\n", "Requirement already satisfied: jupyter-events>=0.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.10.0)\r\n", "Requirement already satisfied: jupyter-server-terminals>=0.4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.5.3)\r\n", "Requirement already satisfied: nbconvert>=6.4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (7.16.4)\r\n", "Requirement already satisfied: nbformat>=5.3.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (5.10.4)\r\n", "Requirement already satisfied: prometheus-client>=0.9 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.20.0)\r\n", "Requirement already satisfied: pyzmq>=24 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (26.0.3)\r\n", "Requirement already satisfied: send2trash>=1.8.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.8.3)\r\n", "Requirement already satisfied: terminado>=0.8.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.18.1)\r\n", "Requirement already satisfied: websocket-client>=1.7 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.8.0)\r\n", "Requirement already satisfied: async-lru>=1.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.0.4)\r\n", "Requirement already satisfied: httpx>=0.25.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.27.0)\r\n", "Requirement already satisfied: ipykernel>=6.5.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (6.29.5)\r\n", "Requirement already satisfied: jupyter-lsp>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.2.5)\r\n", "Requirement already satisfied: tomli>=1.2.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.0.1)\r\n", "Requirement already satisfied: babel>=2.10 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyterlab-server<3,>=2.27.1->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.15.0)\r\n", "Requirement already satisfied: json5>=0.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyterlab-server<3,>=2.27.1->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.9.25)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: sniffio>=1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.3.1)\r\n", "Requirement already satisfied: exceptiongroup>=1.0.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.2.2)\r\n", "Requirement already satisfied: argon2-cffi-bindings in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (21.2.0)\r\n", "Requirement already satisfied: httpcore==1.* in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from httpx>=0.25.0->jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.0.5)\r\n", "Requirement already satisfied: h11<0.15,>=0.13 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from httpcore==1.*->httpx>=0.25.0->jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.14.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: debugpy>=1.6.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipykernel>=6.5.0->jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.8.2)\r\n", "Requirement already satisfied: nest-asyncio in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipykernel>=6.5.0->jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.6.0)\r\n", "Requirement already satisfied: psutil in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from ipykernel>=6.5.0->jupyterlab<4.3,>=4.2.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (6.0.0)\r\n", "Requirement already satisfied: platformdirs>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-core!=5.0.*,>=4.12->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (4.2.2)\r\n", "Requirement already satisfied: python-json-logger>=2.0.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.0.7)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: pyyaml>=5.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (6.0.1)\r\n", "Requirement already satisfied: rfc3339-validator in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.1.4)\r\n", "Requirement already satisfied: rfc3986-validator>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.1.1)\r\n", "Requirement already satisfied: beautifulsoup4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (4.12.3)\r\n", "Requirement already satisfied: bleach!=5.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (6.1.0)\r\n", "Requirement already satisfied: defusedxml in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.7.1)\r\n", "Requirement already satisfied: jupyterlab-pygments in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.3.0)\r\n", "Requirement already satisfied: mistune<4,>=2.0.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (3.0.2)\r\n", "Requirement already satisfied: nbclient>=0.5.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.10.0)\r\n", "Requirement already satisfied: pandocfilters>=1.4.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.5.1)\r\n", "Requirement already satisfied: tinycss2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.3.0)\r\n", "Requirement already satisfied: fastjsonschema>=2.15 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from nbformat>=5.3.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.20.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: webencodings in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from bleach!=5.0.0->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (0.5.1)\r\n", "Requirement already satisfied: fqdn in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.5.1)\r\n", "Requirement already satisfied: isoduration in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (20.11.0)\r\n", "Requirement already satisfied: jsonpointer>1.13 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (3.0.0)\r\n", "Requirement already satisfied: uri-template in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.3.0)\r\n", "Requirement already satisfied: webcolors>=24.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (24.6.0)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: cffi>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.16.0)\r\n", "Requirement already satisfied: soupsieve>1.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from beautifulsoup4->nbconvert>=6.4.4->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.5)\r\n", "Requirement already satisfied: pycparser in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.22)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: arrow>=0.15.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (1.3.0)\r\n", "Requirement already satisfied: types-python-dateutil>=2.8.10 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook>=4.4.1->widgetsnbextension~=3.6.7->ipywidgets<8,>=7->tensorflow-model-analysis<0.47,>=0.46->fairness-indicators) (2.9.0.20240316)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading fairness_indicators-0.46.0-py3-none-any.whl (24 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tensorflow-2.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (475.2 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tensorflow_data_validation-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (19.0 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tensorflow_model_analysis-0.46.0-py3-none-any.whl (1.9 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading witwidget-1.8.1-py3-none-any.whl (1.5 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading absl_py-1.4.0-py3-none-any.whl (126 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading apache_beam-2.57.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (14.9 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading ipython-7.34.0-py3-none-any.whl (793 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading ipywidgets-7.8.2-py2.py3-none-any.whl (124 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading keras-2.15.0-py3-none-any.whl (1.7 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading ml_dtypes-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.2 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading oauth2client-4.1.3-py2.py3-none-any.whl (98 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (12.2 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pyarrow-10.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (35.9 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading sacrebleu-2.4.2-py3-none-any.whl (106 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tensorboard-2.15.2-py3-none-any.whl (5.5 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tensorflow_estimator-2.15.0-py2.py3-none-any.whl (441 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tf_keras-2.15.1-py3-none-any.whl (1.7 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tfx_bsl-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (22.5 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_api_python_client-1.12.11-py2.py3-none-any.whl (62 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading wrapt-1.14.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (77 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading cloudpickle-2.2.1-py3-none-any.whl (25 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading fastavro-1.9.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading fasteners-0.19-py3-none-any.whl (18 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_api_core-2.19.1-py3-none-any.whl (139 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_auth-2.32.0-py2.py3-none-any.whl (195 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_auth_httplib2-0.2.0-py2.py3-none-any.whl (9.3 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_auth_oauthlib-1.2.1-py2.py3-none-any.whl (24 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_aiplatform-1.59.0-py2.py3-none-any.whl (5.1 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_bigquery-3.25.0-py2.py3-none-any.whl (239 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_bigquery_storage-2.25.0-py2.py3-none-any.whl (199 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_bigtable-2.24.0-py2.py3-none-any.whl (373 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_core-2.4.1-py2.py3-none-any.whl (29 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_datastore-2.19.0-py2.py3-none-any.whl (176 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_dlp-3.18.1-py2.py3-none-any.whl (180 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_language-2.13.4-py2.py3-none-any.whl (146 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_pubsub-2.22.0-py2.py3-none-any.whl (276 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_pubsublite-1.11.0-py2.py3-none-any.whl (303 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_recommendations_ai-0.10.11-py2.py3-none-any.whl (183 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_spanner-3.47.0-py2.py3-none-any.whl (384 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_storage-2.17.0-py2.py3-none-any.whl (126 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_videointelligence-2.13.4-py2.py3-none-any.whl (244 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_vision-3.7.3-py2.py3-none-any.whl (466 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading httplib2-0.22.0-py3-none-any.whl (96 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading ipython_genutils-0.2.0-py2.py3-none-any.whl (26 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading Js2Py-0.74-py3-none-any.whl (1.0 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading jsonpickle-3.2.2-py3-none-any.whl (41 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading jupyterlab_widgets-1.1.8-py3-none-any.whl (237 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading objsize-0.7.0-py3-none-any.whl (11 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading orjson-3.10.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (140 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading proto_plus-1.24.0-py3-none-any.whl (50 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pyarrow_hotfix-0.6-py3-none-any.whl (7.9 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pyasn1-0.6.0-py2.py3-none-any.whl (85 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pyasn1_modules-0.4.0-py3-none-any.whl (181 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pydot-1.4.2-py2.py3-none-any.whl (21 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pymongo-4.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (921 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading redis-5.0.7-py3-none-any.whl (252 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading regex-2024.5.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (774 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading requests-2.31.0-py3-none-any.whl (62 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading rsa-4.9-py3-none-any.whl (34 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tabulate-0.9.0-py3-none-any.whl (35 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tensorflow_serving_api-2.15.1-py2.py3-none-any.whl (26 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading uritemplate-3.0.1-py2.py3-none-any.whl (15 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading widgetsnbextension-3.6.7-py2.py3-none-any.whl (1.5 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading zstandard-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.4 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading backcall-0.2.0-py2.py3-none-any.whl (11 kB)\r\n", "Downloading colorama-0.4.6-py2.py3-none-any.whl (25 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading lxml-5.2.2-cp39-cp39-manylinux_2_28_x86_64.whl (5.0 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading nltk-3.8.1-py3-none-any.whl (1.5 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pickleshare-0.7.5-py2.py3-none-any.whl (6.9 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading portalocker-2.10.1-py3-none-any.whl (18 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading async_timeout-4.0.3-py3-none-any.whl (5.7 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading dnspython-2.6.1-py3-none-any.whl (307 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading docstring_parser-0.16-py3-none-any.whl (36 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_cloud_resource_manager-1.12.4-py2.py3-none-any.whl (339 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_crc32c-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (32 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading google_resumable_media-2.7.1-py2.py3-none-any.whl (81 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading googleapis_common_protos-1.63.2-py2.py3-none-any.whl (220 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading grpc_google_iam_v1-0.13.1-py2.py3-none-any.whl (24 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading grpc_interceptor-0.15.4-py3-none-any.whl (20 kB)\r\n", "Downloading grpcio_status-1.48.2-py3-none-any.whl (14 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pydantic-2.8.2-py3-none-any.whl (423 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading pydantic_core-2.20.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.1 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading requests_oauthlib-2.0.0-py2.py3-none-any.whl (24 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading shapely-2.0.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.5 MB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading sqlparse-0.5.1-py3-none-any.whl (44 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading tzlocal-5.2-py3-none-any.whl (17 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading annotated_types-0.7.0-py3-none-any.whl (13 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB)\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Building wheels for collected packages: pyfarmhash, rouge-score, crcmod, dill, google-apitools, hdfs, pyjsparser, docopt\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for pyfarmhash (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b|" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b/" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for pyfarmhash: filename=pyfarmhash-0.3.2-cp39-cp39-linux_x86_64.whl size=101503 sha256=d7b76372a8ab929b265e06683cb9e071074e8861f1f0f03bb9a32e85900c7176\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/de/2b/b1/c541160670d70f4b08c4786f4e155337d4baeaa3e01d9d1400\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for rouge-score (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for rouge-score: filename=rouge_score-0.1.2-py3-none-any.whl size=24934 sha256=f5e8a2d481a91183c66831ba35fd4148b1f22eb807b4db59a5d134e89a82cde8\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/9b/3d/39/09558097d3119ca0a4d462df68f22c6f3c1b345ac63a09b86e\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for crcmod (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for crcmod: filename=crcmod-1.7-cp39-cp39-linux_x86_64.whl size=36917 sha256=9c265b885106f9a14dabcda869355b0910d93d64c5368eb6520a6bf52b0c300e\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/4a/6c/a6/ffdd136310039bf226f2707a9a8e6857be7d70a3fc061f6b36\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for dill (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for dill: filename=dill-0.3.1.1-py3-none-any.whl size=78542 sha256=e220e00800b739c59522fa05187ad0f13735d6aed9d9d07af9bba35993f8d198\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/4f/0b/ce/75d96dd714b15e51cb66db631183ea3844e0c4a6d19741a149\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for google-apitools (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for google-apitools: filename=google_apitools-0.5.31-py3-none-any.whl size=131014 sha256=3d21fb973e4f4d3bbe2ccb9b59f60e4ce8bc49e0fee7ff54f9e0f8912854a250\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/6c/f8/60/b9e91899dbaf25b6314047d3daee379bdd8d61b1dc3fd5ec7f\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for hdfs (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \b\\\b \bdone\r\n", "\u001b[?25h Created wheel for hdfs: filename=hdfs-2.7.3-py3-none-any.whl size=34324 sha256=4245d86faf0e86f1302d4671f0a686f14545b8c1df7ae3d7721d684dd8fb1e0a\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/05/6f/21/aa8d233f90da3017b4ef7c61829589dc267402d376dd3efcf5\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for pyjsparser (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[?25h Created wheel for pyjsparser: filename=pyjsparser-2.7.1-py3-none-any.whl size=25983 sha256=ca9f3b52c43c845bf01f836a2ac20372be3d688eea85bb4ef52a4d5584fc9134\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/f0/70/61/f42dc45dcf0fbe8c495ce579b04730787081499bfb5b8bc60e\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Building wheel for docopt (setup.py) ... \u001b[?25l-" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b \bdone\r\n", "\u001b[?25h Created wheel for docopt: filename=docopt-0.6.2-py2.py3-none-any.whl size=13705 sha256=a7bb214bd3e852f3b78fd770855e81cbc7012a7ce445e38e0e590120b138a5ab\r\n", " Stored in directory: /home/kbuilder/.cache/pip/wheels/70/4a/46/1309fc853b8d395e60bafaf1b6df7845bdd82c95fd59dd8d2b\r\n", "Successfully built pyfarmhash rouge-score crcmod dill google-apitools hdfs pyjsparser docopt\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Installing collected packages: pyjsparser, pyfarmhash, pickleshare, ipython-genutils, docopt, crcmod, backcall, zstandard, wrapt, uritemplate, tzlocal, tensorflow-estimator, tabulate, sqlparse, shapely, requests, regex, pydot, pydantic-core, pyasn1, pyarrow-hotfix, pyarrow, proto-plus, portalocker, orjson, objsize, oauthlib, ml-dtypes, lxml, keras, jupyterlab-widgets, jsonpickle, httplib2, grpc-interceptor, googleapis-common-protos, google-crc32c, fasteners, fastavro, docstring-parser, dnspython, dill, colorama, cloudpickle, async-timeout, annotated-types, absl-py, sacrebleu, rsa, requests-oauthlib, redis, pymongo, pydantic, pyasn1-modules, pandas, nltk, js2py, ipython, hdfs, grpcio-status, google-resumable-media, rouge-score, oauth2client, grpc-google-iam-v1, google-auth, google-auth-oauthlib, google-auth-httplib2, google-apitools, google-api-core, apache-beam, tensorboard, google-cloud-core, google-api-python-client, tensorflow, google-cloud-vision, google-cloud-videointelligence, google-cloud-storage, google-cloud-spanner, google-cloud-resource-manager, google-cloud-recommendations-ai, google-cloud-pubsub, google-cloud-language, google-cloud-dlp, google-cloud-datastore, google-cloud-bigtable, google-cloud-bigquery-storage, google-cloud-bigquery, tf-keras, tensorflow-serving-api, google-cloud-pubsublite, google-cloud-aiplatform, tfx-bsl, tensorflow-data-validation, widgetsnbextension, ipywidgets, witwidget, tensorflow-model-analysis, fairness-indicators\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: wrapt\r\n", " Found existing installation: wrapt 1.16.0\r\n", " Uninstalling wrapt-1.16.0:\r\n", " Successfully uninstalled wrapt-1.16.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: requests\r\n", " Found existing installation: requests 2.32.3\r\n", " Uninstalling requests-2.32.3:\r\n", " Successfully uninstalled requests-2.32.3\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: pydot\r\n", " Found existing installation: pydot 3.0.1\r\n", " Uninstalling pydot-3.0.1:\r\n", " Successfully uninstalled pydot-3.0.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: ml-dtypes\r\n", " Found existing installation: ml-dtypes 0.4.0\r\n", " Uninstalling ml-dtypes-0.4.0:\r\n", " Successfully uninstalled ml-dtypes-0.4.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: keras\r\n", " Found existing installation: keras 3.4.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling keras-3.4.1:\r\n", " Successfully uninstalled keras-3.4.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: jupyterlab-widgets\r\n", " Found existing installation: jupyterlab_widgets 3.0.11\r\n", " Uninstalling jupyterlab_widgets-3.0.11:\r\n", " Successfully uninstalled jupyterlab_widgets-3.0.11\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: dill\r\n", " Found existing installation: dill 0.3.8\r\n", " Uninstalling dill-0.3.8:\r\n", " Successfully uninstalled dill-0.3.8\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: absl-py\r\n", " Found existing installation: absl-py 2.1.0\r\n", " Uninstalling absl-py-2.1.0:\r\n", " Successfully uninstalled absl-py-2.1.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: pandas\r\n", " Found existing installation: pandas 2.2.2\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling pandas-2.2.2:\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Successfully uninstalled pandas-2.2.2\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: ipython\r\n", " Found existing installation: ipython 8.18.1\r\n", " Uninstalling ipython-8.18.1:\r\n", " Successfully uninstalled ipython-8.18.1\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tensorboard\r\n", " Found existing installation: tensorboard 2.17.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling tensorboard-2.17.0:\r\n", " Successfully uninstalled tensorboard-2.17.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tensorflow\r\n", " Found existing installation: tensorflow 2.17.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling tensorflow-2.17.0:\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Successfully uninstalled tensorflow-2.17.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: tf-keras\r\n", " Found existing installation: tf_keras 2.17.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Uninstalling tf_keras-2.17.0:\r\n", " Successfully uninstalled tf_keras-2.17.0\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: widgetsnbextension\r\n", " Found existing installation: widgetsnbextension 4.0.11\r\n", " Uninstalling widgetsnbextension-4.0.11:\r\n", " Successfully uninstalled widgetsnbextension-4.0.11\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Attempting uninstall: ipywidgets\r\n", " Found existing installation: ipywidgets 8.1.3\r\n", " Uninstalling ipywidgets-8.1.3:\r\n", " Successfully uninstalled ipywidgets-8.1.3\r\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Successfully installed absl-py-1.4.0 annotated-types-0.7.0 apache-beam-2.57.0 async-timeout-4.0.3 backcall-0.2.0 cloudpickle-2.2.1 colorama-0.4.6 crcmod-1.7 dill-0.3.1.1 dnspython-2.6.1 docopt-0.6.2 docstring-parser-0.16 fairness-indicators-0.46.0 fastavro-1.9.5 fasteners-0.19 google-api-core-2.19.1 google-api-python-client-1.12.11 google-apitools-0.5.31 google-auth-2.32.0 google-auth-httplib2-0.2.0 google-auth-oauthlib-1.2.1 google-cloud-aiplatform-1.59.0 google-cloud-bigquery-3.25.0 google-cloud-bigquery-storage-2.25.0 google-cloud-bigtable-2.24.0 google-cloud-core-2.4.1 google-cloud-datastore-2.19.0 google-cloud-dlp-3.18.1 google-cloud-language-2.13.4 google-cloud-pubsub-2.22.0 google-cloud-pubsublite-1.11.0 google-cloud-recommendations-ai-0.10.11 google-cloud-resource-manager-1.12.4 google-cloud-spanner-3.47.0 google-cloud-storage-2.17.0 google-cloud-videointelligence-2.13.4 google-cloud-vision-3.7.3 google-crc32c-1.5.0 google-resumable-media-2.7.1 googleapis-common-protos-1.63.2 grpc-google-iam-v1-0.13.1 grpc-interceptor-0.15.4 grpcio-status-1.48.2 hdfs-2.7.3 httplib2-0.22.0 ipython-7.34.0 ipython-genutils-0.2.0 ipywidgets-7.8.2 js2py-0.74 jsonpickle-3.2.2 jupyterlab-widgets-1.1.8 keras-2.15.0 lxml-5.2.2 ml-dtypes-0.3.2 nltk-3.8.1 oauth2client-4.1.3 oauthlib-3.2.2 objsize-0.7.0 orjson-3.10.6 pandas-1.5.3 pickleshare-0.7.5 portalocker-2.10.1 proto-plus-1.24.0 pyarrow-10.0.1 pyarrow-hotfix-0.6 pyasn1-0.6.0 pyasn1-modules-0.4.0 pydantic-2.8.2 pydantic-core-2.20.1 pydot-1.4.2 pyfarmhash-0.3.2 pyjsparser-2.7.1 pymongo-4.8.0 redis-5.0.7 regex-2024.5.15 requests-2.31.0 requests-oauthlib-2.0.0 rouge-score-0.1.2 rsa-4.9 sacrebleu-2.4.2 shapely-2.0.5 sqlparse-0.5.1 tabulate-0.9.0 tensorboard-2.15.2 tensorflow-2.15.1 tensorflow-data-validation-1.15.1 tensorflow-estimator-2.15.0 tensorflow-model-analysis-0.46.0 tensorflow-serving-api-2.15.1 tf-keras-2.15.1 tfx-bsl-1.15.1 tzlocal-5.2 uritemplate-3.0.1 widgetsnbextension-3.6.7 witwidget-1.8.1 wrapt-1.14.1 zstandard-0.23.0\r\n" ] } ], "source": [ "#@title Installs\n", "!pip install --upgrade tensorflow-model-remediation\n", "!pip install --upgrade fairness-indicators\n" ] }, { "cell_type": "markdown", "metadata": { "id": "SlyU3HZpob8i" }, "source": [ "Import all necessary components, including MinDiff and Fairness Indicators for evaluation." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "cellView": "form", "execution": { "iopub.execute_input": "2024-07-19T09:19:47.626798Z", "iopub.status.busy": "2024-07-19T09:19:47.626495Z", "iopub.status.idle": "2024-07-19T09:19:51.451642Z", "shell.execute_reply": "2024-07-19T09:19:51.450946Z" }, "id": "JYLW8UIsIMrE" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "2024-07-19 09:19:48.131764: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", "2024-07-19 09:19:48.131805: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", "2024-07-19 09:19:48.133491: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n" ] } ], "source": [ "#@title Imports\n", "import copy\n", "import os\n", "import requests\n", "import tempfile\n", "import zipfile\n", "\n", "import tensorflow_model_remediation.min_diff as md\n", "from tensorflow_model_remediation.tools.tutorials_utils import min_diff_keras_utils\n", "\n", "from fairness_indicators.tutorial_utils import util as fi_util\n", "import numpy as np\n", "import tensorflow as tf\n", "import tensorflow_hub as hub\n", "from tensorflow_model_analysis.addons.fairness.view import widget_view" ] }, { "cell_type": "markdown", "metadata": { "id": "zPkyRv5_ozdC" }, "source": [ "We use a utility function to download the preprocessed data and prepare the labels to match the model’s output shape. The function also downloads the data as TFRecords to make later evaluation quicker. Alternatively, you may convert the Pandas DataFrame into TFRecords with any available utility conversion function.\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:19:51.456649Z", "iopub.status.busy": "2024-07-19T09:19:51.455787Z", "iopub.status.idle": "2024-07-19T09:20:11.674654Z", "shell.execute_reply": "2024-07-19T09:20:11.673858Z" }, "id": "-Hw5HdppwuBs" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://storage.googleapis.com/civil_comments_dataset/train_df_processed.csv\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 8192/345699197 [..............................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81920/345699197 [..............................] - ETA: 5:04" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 278528/345699197 [..............................] - ETA: 2:32" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 786432/345699197 [..............................] - ETA: 1:15" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 2351104/345699197 [..............................] - ETA: 32s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7200768/345699197 [..............................] - ETA: 12s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13172736/345699197 [>.............................] - ETA: 8s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 17547264/345699197 [>.............................] - ETA: 7s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19136512/345699197 [>.............................] - ETA: 8s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26320896/345699197 [=>............................] - ETA: 6s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 28442624/345699197 [=>............................] - ETA: 7s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36020224/345699197 [==>...........................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37888000/345699197 [==>...........................] - ETA: 6s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43040768/345699197 [==>...........................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 50339840/345699197 [===>..........................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57499648/345699197 [===>..........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 62537728/345699197 [====>.........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67117056/345699197 [====>.........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 74858496/345699197 [=====>........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79552512/345699197 [=====>........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83894272/345699197 [======>.......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91865088/345699197 [======>.......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 93954048/345699197 [=======>......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100687872/345699197 [=======>......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "107175936/345699197 [========>.....................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113147904/345699197 [========>.....................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118669312/345699197 [=========>....................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125050880/345699197 [=========>....................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130514944/345699197 [==========>...................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134225920/345699197 [==========>...................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140779520/345699197 [===========>..................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148422656/345699197 [===========>..................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151003136/345699197 [============>.................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158433280/345699197 [============>.................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164200448/345699197 [=============>................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "171819008/345699197 [=============>................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "176087040/345699197 [==============>...............] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "182902784/345699197 [==============>...............] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "188751872/345699197 [===============>..............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "196075520/345699197 [================>.............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "200318976/345699197 [================>.............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "207970304/345699197 [=================>............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "213696512/345699197 [=================>............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "220692480/345699197 [==================>...........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "225214464/345699197 [==================>...........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "232595456/345699197 [===================>..........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "238247936/345699197 [===================>..........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "244154368/345699197 [====================>.........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "250454016/345699197 [====================>.........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "255549440/345699197 [=====================>........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "261070848/345699197 [=====================>........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "265895936/345699197 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "272957440/345699197 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "278413312/345699197 [=======================>......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "284876800/345699197 [=======================>......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "290160640/345699197 [========================>.....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "297254912/345699197 [========================>.....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "301867008/345699197 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "307716096/345699197 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "314621952/345699197 [==========================>...] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "319160320/345699197 [==========================>...] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "326639616/345699197 [===========================>..] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "331808768/345699197 [===========================>..] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "338100224/345699197 [============================>.] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "343482368/345699197 [============================>.] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "345699197/345699197 [==============================] - 4s 0us/step\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://storage.googleapis.com/civil_comments_dataset/validate_df_processed.csv\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 8192/229970098 [..............................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81920/229970098 [..............................] - ETA: 3:46" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 262144/229970098 [..............................] - ETA: 1:57" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 638976/229970098 [..............................] - ETA: 1:06" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 1654784/229970098 [..............................] - ETA: 32s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 4423680/229970098 [..............................] - ETA: 14s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 9863168/229970098 [>.............................] - ETA: 7s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12591104/229970098 [>.............................] - ETA: 6s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 15392768/229970098 [=>............................] - ETA: 6s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18022400/229970098 [=>............................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21471232/229970098 [=>............................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24190976/229970098 [==>...........................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 26689536/229970098 [==>...........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 29933568/229970098 [==>...........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 32473088/229970098 [===>..........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 35078144/229970098 [===>..........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37486592/229970098 [===>..........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 39837696/229970098 [====>.........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43073536/229970098 [====>.........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 46366720/229970098 [=====>........................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49807360/229970098 [=====>........................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54157312/229970098 [======>.......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 57573376/229970098 [======>.......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61153280/229970098 [======>.......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 64790528/229970098 [=======>......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 68198400/229970098 [=======>......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71000064/229970098 [========>.....................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 75505664/229970098 [========>.....................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81158144/229970098 [=========>....................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84811776/229970098 [==========>...................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 87662592/229970098 [==========>...................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91348992/229970098 [==========>...................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94461952/229970098 [===========>..................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97026048/229970098 [===========>..................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "101408768/229970098 [============>.................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106586112/229970098 [============>.................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109404160/229970098 [=============>................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "113074176/229970098 [=============>................] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115548160/229970098 [==============>...............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117137408/229970098 [==============>...............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120184832/229970098 [==============>...............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "125526016/229970098 [===============>..............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130482176/229970098 [================>.............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "134430720/229970098 [================>.............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139608064/229970098 [=================>............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142974976/229970098 [=================>............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "147857408/229970098 [==================>...........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "153174016/229970098 [==================>...........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "158089216/229970098 [===================>..........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "159391744/229970098 [===================>..........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162152448/229970098 [====================>.........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "164569088/229970098 [====================>.........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "167198720/229970098 [====================>.........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169943040/229970098 [=====================>........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173006848/229970098 [=====================>........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "177520640/229970098 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "179535872/229970098 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "182034432/229970098 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "185393152/229970098 [=======================>......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "190332928/229970098 [=======================>......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "195821568/229970098 [========================>.....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "200777728/229970098 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "205996032/229970098 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "210993152/229970098 [==========================>...] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "215629824/229970098 [===========================>..] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "219791360/229970098 [===========================>..] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "222945280/229970098 [============================>.] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "227688448/229970098 [============================>.] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "229970098/229970098 [==============================] - 4s 0us/step\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Downloading data from https://storage.googleapis.com/civil_comments_dataset/validate_tf_processed.tfrecord\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 8192/324941336 [..............................] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 81920/324941336 [..............................] - ETA: 5:16" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 262144/324941336 [..............................] - ETA: 2:42" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 688128/324941336 [..............................] - ETA: 1:26" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 1835008/324941336 [..............................] - ETA: 41s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 5029888/324941336 [..............................] - ETA: 18s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 10174464/324941336 [..............................] - ETA: 10s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 16556032/324941336 [>.............................] - ETA: 7s " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 21676032/324941336 [=>............................] - ETA: 6s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 27860992/324941336 [=>............................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 33153024/324941336 [==>...........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36462592/324941336 [==>...........................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43171840/324941336 [==>...........................] - ETA: 5s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 51011584/324941336 [===>..........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 56156160/324941336 [====>.........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61964288/324941336 [====>.........................] - ETA: 4s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67084288/324941336 [=====>........................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71901184/324941336 [=====>........................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79364096/324941336 [======>.......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84664320/324941336 [======>.......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90644480/324941336 [=======>......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96141312/324941336 [=======>......................] - ETA: 3s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100638720/324941336 [========>.....................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108199936/324941336 [========>.....................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112295936/324941336 [=========>....................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "117743616/324941336 [=========>....................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "123789312/324941336 [==========>...................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "129310720/324941336 [==========>...................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "135258112/324941336 [===========>..................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "140779520/324941336 [===========>..................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145874944/324941336 [============>.................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "152510464/324941336 [=============>................] - ETA: 2s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157360128/324941336 [=============>................] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162029568/324941336 [=============>................] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168173568/324941336 [==============>...............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "173506560/324941336 [===============>..............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174702592/324941336 [===============>..............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "182460416/324941336 [===============>..............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "190111744/324941336 [================>.............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "197763072/324941336 [=================>............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "205086720/324941336 [=================>............] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "209281024/324941336 [==================>...........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "216645632/324941336 [===================>..........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "220741632/324941336 [===================>..........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "227729408/324941336 [====================>.........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "232210432/324941336 [====================>.........] - ETA: 1s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "239419392/324941336 [=====================>........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "243671040/324941336 [=====================>........] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "250798080/324941336 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "255164416/324941336 [======================>.......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "262365184/324941336 [=======================>......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "266625024/324941336 [=======================>......] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "273891328/324941336 [========================>.....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "278069248/324941336 [========================>.....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "285458432/324941336 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "289529856/324941336 [=========================>....] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "296738816/324941336 [==========================>...] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "301031424/324941336 [==========================>...] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "307847168/324941336 [===========================>..] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "310386688/324941336 [===========================>..] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "315834368/324941336 [============================>.] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "322863104/324941336 [============================>.] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "324941336/324941336 [==============================] - 4s 0us/step\n" ] } ], "source": [ "# We use a helper utility to preprocessed data for convenience and speed.\n", "data_train, data_validate, validate_tfrecord_file, labels_train, labels_validate = min_diff_keras_utils.download_and_process_civil_comments_data()" ] }, { "cell_type": "markdown", "metadata": { "id": "LGum4JXSo-Qu" }, "source": [ "We define a few useful constants. We will train the model on the `’comment_text’` feature, with our target label as `’toxicity’`. Note that the batch size here is chosen arbitrarily, but in a production setting you would need to tune it for best performance." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:20:11.679054Z", "iopub.status.busy": "2024-07-19T09:20:11.678752Z", "iopub.status.idle": "2024-07-19T09:20:11.682231Z", "shell.execute_reply": "2024-07-19T09:20:11.681612Z" }, "id": "Ular7EPMU_Y1" }, "outputs": [], "source": [ "TEXT_FEATURE = 'comment_text'\n", "LABEL = 'toxicity'\n", "BATCH_SIZE = 512" ] }, { "cell_type": "markdown", "metadata": { "id": "tyRduaSapFqt" }, "source": [ "Set random seeds. (Note that this does not fully stabilize results.)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:20:11.685818Z", "iopub.status.busy": "2024-07-19T09:20:11.685153Z", "iopub.status.idle": "2024-07-19T09:20:11.688659Z", "shell.execute_reply": "2024-07-19T09:20:11.688052Z" }, "id": "taGEqZGB_FWN" }, "outputs": [], "source": [ "#@title Seeds\n", "np.random.seed(1)\n", "tf.random.set_seed(1)" ] }, { "cell_type": "markdown", "metadata": { "id": "D_r-uFyQpbkW" }, "source": [ "## Define and train the baseline model\n", "\n", "To reduce runtime, we use a pretrained model by default. It is a simple Keras sequential model with an initial embedding and convolution layers, outputting a toxicity prediction. If you prefer, you can change this and train from scratch using our utility function to create the model. (Note that since your environment is likely different from ours, you would need to customize the tuning and evaluation thresholds.)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:20:11.691896Z", "iopub.status.busy": "2024-07-19T09:20:11.691328Z", "iopub.status.idle": "2024-07-19T09:20:29.568594Z", "shell.execute_reply": "2024-07-19T09:20:29.567886Z" }, "id": "KcRceFceKyE_" }, "outputs": [], "source": [ "use_pretrained_model = True #@param {type:\"boolean\"}\n", "\n", "if use_pretrained_model:\n", " URL = 'https://storage.googleapis.com/civil_comments_model/baseline_model.zip'\n", " BASE_PATH = tempfile.mkdtemp()\n", " ZIP_PATH = os.path.join(BASE_PATH, 'baseline_model.zip')\n", " MODEL_PATH = os.path.join(BASE_PATH, 'tmp/baseline_model')\n", "\n", " r = requests.get(URL, allow_redirects=True)\n", " open(ZIP_PATH, 'wb').write(r.content)\n", "\n", " with zipfile.ZipFile(ZIP_PATH, 'r') as zip_ref:\n", " zip_ref.extractall(BASE_PATH)\n", " baseline_model = tf.keras.models.load_model(\n", " MODEL_PATH, custom_objects={'KerasLayer' : hub.KerasLayer})\n", "else:\n", " optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)\n", " loss = tf.keras.losses.BinaryCrossentropy()\n", "\n", " baseline_model = min_diff_keras_utils.create_keras_sequential_model()\n", " \n", " baseline_model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])\n", "\n", " baseline_model.fit(x=data_train[TEXT_FEATURE],\n", " y=labels_train,\n", " batch_size=BATCH_SIZE,\n", " epochs=20)" ] }, { "cell_type": "markdown", "metadata": { "id": "m8nsimBdp-lh" }, "source": [ "We save the model in order to evaluate using [Fairness Indicators](https://www.tensorflow.org/responsible_ai/fairness_indicators)." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:20:29.573239Z", "iopub.status.busy": "2024-07-19T09:20:29.572871Z", "iopub.status.idle": "2024-07-19T09:20:31.513029Z", "shell.execute_reply": "2024-07-19T09:20:31.512380Z" }, "id": "DRLTXwDfN6a7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/saved_models2j171elm/model_export_baseline/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/saved_models2j171elm/model_export_baseline/assets\n" ] } ], "source": [ "base_dir = tempfile.mkdtemp(prefix='saved_models')\n", "baseline_model_location = os.path.join(base_dir, 'model_export_baseline')\n", "baseline_model.save(baseline_model_location, save_format='tf')" ] }, { "cell_type": "markdown", "metadata": { "id": "7ZRoxj-iqNqm" }, "source": [ "Next we run Fairness Indicators. As a reminder, we’re just going to perform sliced evaluation for comments referencing one category, *religious groups*. In a production environment, we recommend taking a thoughtful approach to determining which categories and metrics to evaluate across. \n", "\n", "To compute model performance, the utility function makes a few convenient choices for metrics, slices, and classifier thresholds." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:20:31.517387Z", "iopub.status.busy": "2024-07-19T09:20:31.516841Z", "iopub.status.idle": "2024-07-19T09:29:14.334042Z", "shell.execute_reply": "2024-07-19T09:29:14.333281Z" }, "id": "4d6CZj2d-jrw" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:absl:Tensorflow version (2.15.1) found. Note that TFMA support for TF 2.0 is currently in beta\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features.\n" ] }, { "data": { "application/javascript": [ "\n", " if (typeof window.interactive_beam_jquery == 'undefined') {\n", " var jqueryScript = document.createElement('script');\n", " jqueryScript.src = 'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n", " jqueryScript.type = 'text/javascript';\n", " jqueryScript.onload = function() {\n", " var datatableScript = document.createElement('script');\n", " datatableScript.src = 'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n", " datatableScript.type = 'text/javascript';\n", " datatableScript.onload = function() {\n", " window.interactive_beam_jquery = jQuery.noConflict(true);\n", " window.interactive_beam_jquery(document).ready(function($){\n", " \n", " });\n", " }\n", " document.head.appendChild(datatableScript);\n", " };\n", " document.head.appendChild(jqueryScript);\n", " } else {\n", " window.interactive_beam_jquery(document).ready(function($){\n", " \n", " });\n", " }" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be.\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:112: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use eager execution and: \n", "`tf.data.TFRecordDataset(path)`\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_model_analysis/writers/metrics_plots_and_validations_writer.py:112: tf_record_iterator (from tensorflow.python.lib.io.tf_record) is deprecated and will be removed in a future version.\n", "Instructions for updating:\n", "Use eager execution and: \n", "`tf.data.TFRecordDataset(path)`\n" ] } ], "source": [ "# We use a helper utility to hide the evaluation logic for readability.\n", "base_dir = tempfile.mkdtemp(prefix='eval')\n", "eval_dir = os.path.join(base_dir, 'tfma_eval_result')\n", "eval_result = fi_util.get_eval_results(\n", " baseline_model_location, eval_dir, validate_tfrecord_file)" ] }, { "cell_type": "markdown", "metadata": { "id": "S1X0wtRXmHPX" }, "source": [ "### Render Evaluation Results" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:29:14.338030Z", "iopub.status.busy": "2024-07-19T09:29:14.337379Z", "iopub.status.idle": "2024-07-19T09:29:14.357286Z", "shell.execute_reply": "2024-07-19T09:29:14.356634Z" }, "id": "ynbJR3Qc-j0D" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "88972b92aec44535969b86414a4efeea", "version_major": 2, "version_minor": 0 }, "text/plain": [ "FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'accuracy': …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "widget_view.render_fairness_indicator(eval_result)" ] }, { "cell_type": "markdown", "metadata": { "id": "o2cYxsxNqT_P" }, "source": [ "Let’s look at the evaluation results. Try selecting the metric false positive rate (FPR) with threshold 0.450. We can see that the model does not perform as well for some religious groups as for others, displaying a much higher FPR. Note the wide confidence intervals on some groups because they have too few examples. This makes it difficult to say with certainty that there is a significant difference in performance for these slices. We may want to collect more examples to address this issue. We can, however, attempt to apply MinDiff for the two groups that we are confident are underperforming.\n", "\n", "We’ve chosen to focus on FPR, because a higher FPR means that comments referencing these identity groups are more likely to be incorrectly flagged as toxic than other comments. This could lead to inequitable outcomes for users engaging in dialogue about religion, but note that disparities in other metrics can lead to other types of harm." ] }, { "cell_type": "markdown", "metadata": { "id": "CRG6SHR8ryMV" }, "source": [ "## Define and Train the MinDiff Model\n", "\n", "Now, we’ll try to improve the FPR for underperforming religious groups. We’ll attempt to do so using [MinDiff](https://arxiv.org/abs/1910.11779), a remediation technique that seeks to balance error rates across slices of your data by penalizing disparities in performance during training. When we apply MinDiff, model performance may degrade slightly on other slices. As such, our goals with MinDiff will be:\n", "* Improved performance for underperforming groups\n", "* Limited degradation for other groups and overall performance\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "id": "opFCpJjadf7g" }, "source": [ "### Prepare your data\n", "\n", "To use MinDiff, we create two additional data splits:\n", "* A split for non-toxic examples referencing minority groups: In our case, this will include comments with references to our underperforming identity terms. We don’t include some of the groups because there are too few examples, leading to higher uncertainty with wide confidence interval ranges.\n", "* A split for non-toxic examples referencing the majority group.\n", "\n", "It’s important to have sufficient examples belonging to the underperforming classes. Based on your model architecture, data distribution, and MinDiff configuration, the amount of data needed can vary significantly. In past applications, we have seen MinDiff work well with 5,000 examples in each data split.\n", "\n", "In our case, the groups in the minority splits have example quantities of 9,688 and 3,906. Note the class imbalances in the dataset; in practice, this could be cause for concern, but we won’t seek to address them in this notebook since our intention is just to demonstrate MinDiff. \n", "\n", "We select only negative examples for these groups, so that MinDiff can optimize on getting these examples right. It may seem counterintuitive to carve out sets of ground truth *negative* examples if we’re primarily concerned with disparities in *false positive rate*, but remember that a false positive prediction is a ground truth negative example that’s incorrectly classified as positive, which is the issue we’re trying to address." ] }, { "cell_type": "markdown", "metadata": { "id": "1QilngDumRfI" }, "source": [ "#### Create MinDiff DataFrames" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:29:14.365056Z", "iopub.status.busy": "2024-07-19T09:29:14.364444Z", "iopub.status.idle": "2024-07-19T09:29:15.367203Z", "shell.execute_reply": "2024-07-19T09:29:15.366465Z" }, "id": "jj4dychpyrqM" }, "outputs": [], "source": [ "# Create masks for the sensitive and nonsensitive groups\n", "minority_mask = data_train.religion.apply(\n", " lambda x: any(religion in x for religion in ('jewish', 'muslim')))\n", "majority_mask = data_train.religion.apply(lambda x: x == \"['christian']\")\n", "\n", "# Select nontoxic examples, so MinDiff will be able to reduce sensitive FP rate.\n", "true_negative_mask = data_train['toxicity'] == 0\n", "\n", "data_train_main = copy.copy(data_train)\n", "data_train_sensitive = data_train[minority_mask & true_negative_mask]\n", "data_train_nonsensitive = data_train[majority_mask & true_negative_mask]" ] }, { "cell_type": "markdown", "metadata": { "id": "3lR_w3LHt6QK" }, "source": [ "We also need to convert our Pandas DataFrames into Tensorflow Datasets for MinDiff input. Note that unlike the Keras model API for Pandas DataFrames, using Datasets means that we need to provide the model’s input features and labels together in one Dataset. Here we provide the `'comment_text'` as an input feature and reshape the label to match the model's expected output. \n", "\n", "We batch the Dataset at this stage, too, since MinDiff requires batched Datasets. Note that we tune the batch size selection the same way it is tuned for the baseline model, taking into account training speed and hardware considerations while balancing with model performance. Here we have chosen the same batch size for all three datasets but this is not a requirement, although it’s good practice to have the two MinDiff batch sizes be equivalent." ] }, { "cell_type": "markdown", "metadata": { "id": "yA4Kw9tsmopa" }, "source": [ "#### Create MinDiff Datasets" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:29:15.371757Z", "iopub.status.busy": "2024-07-19T09:29:15.371071Z", "iopub.status.idle": "2024-07-19T09:29:15.632856Z", "shell.execute_reply": "2024-07-19T09:29:15.632132Z" }, "id": "C0DkFMTOuIQT" }, "outputs": [], "source": [ "# Convert the pandas DataFrames to Datasets.\n", "dataset_train_main = tf.data.Dataset.from_tensor_slices(\n", " (data_train_main['comment_text'].values, \n", " data_train_main.pop(LABEL).values.reshape(-1,1) * 1.0)).batch(BATCH_SIZE)\n", "dataset_train_sensitive = tf.data.Dataset.from_tensor_slices(\n", " (data_train_sensitive['comment_text'].values, \n", " data_train_sensitive.pop(LABEL).values.reshape(-1,1) * 1.0)).batch(BATCH_SIZE)\n", "dataset_train_nonsensitive = tf.data.Dataset.from_tensor_slices(\n", " (data_train_nonsensitive['comment_text'].values, \n", " data_train_nonsensitive.pop(LABEL).values.reshape(-1,1) * 1.0)).batch(BATCH_SIZE)" ] }, { "cell_type": "markdown", "metadata": { "id": "XRGvjZ8VuBvz" }, "source": [ "### Train and evaluate the model\n", "\n", "To train with MinDiff, simply take the original model and wrap it in a MinDiffModel with a corresponding `loss` and `loss_weight`. We are using 1.5 as the default `loss_weight`, but this is a parameter that needs to be tuned for your use case, since it depends on your model and product requirements. You can experiment with changing the value to see how it impacts the model, noting that increasing it pushes the performance of the minority and majority groups closer together but may come with more pronounced tradeoffs.\n", "\n", "Then we compile the model normally (using the regular non-MinDiff loss) and fit to train." ] }, { "cell_type": "markdown", "metadata": { "id": "eP_eTUpYm6U-" }, "source": [ "#### Train MinDiffModel" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:29:15.637652Z", "iopub.status.busy": "2024-07-19T09:29:15.637120Z", "iopub.status.idle": "2024-07-19T09:29:25.882838Z", "shell.execute_reply": "2024-07-19T09:29:25.882141Z" }, "id": "xutVGl9fyikP" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/saved_modelsi6zpos5k/model_export_min_diff/assets\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "INFO:tensorflow:Assets written to: /tmpfs/tmp/saved_modelsi6zpos5k/model_export_min_diff/assets\n" ] } ], "source": [ "use_pretrained_model = True #@param {type:\"boolean\"}\n", "\n", "base_dir = tempfile.mkdtemp(prefix='saved_models')\n", "min_diff_model_location = os.path.join(base_dir, 'model_export_min_diff')\n", "\n", "if use_pretrained_model:\n", " BASE_MIN_DIFF_PATH = tempfile.mkdtemp()\n", " MIN_DIFF_URL = 'https://storage.googleapis.com/civil_comments_model/min_diff_model.zip'\n", " ZIP_PATH = os.path.join(BASE_PATH, 'min_diff_model.zip')\n", " MIN_DIFF_MODEL_PATH = os.path.join(BASE_MIN_DIFF_PATH, 'tmp/min_diff_model')\n", " DIRPATH = '/tmp/min_diff_model'\n", "\n", " r = requests.get(MIN_DIFF_URL, allow_redirects=True)\n", " open(ZIP_PATH, 'wb').write(r.content)\n", "\n", " with zipfile.ZipFile(ZIP_PATH, 'r') as zip_ref:\n", " zip_ref.extractall(BASE_MIN_DIFF_PATH)\n", " min_diff_model = tf.keras.models.load_model(\n", " MIN_DIFF_MODEL_PATH, custom_objects={'KerasLayer' : hub.KerasLayer})\n", " \n", " min_diff_model.save(min_diff_model_location, save_format='tf')\n", "\n", "else:\n", " min_diff_weight = 1.5 #@param {type:\"number\"}\n", "\n", " # Create the dataset that will be passed to the MinDiffModel during training.\n", " dataset = md.keras.utils.input_utils.pack_min_diff_data(\n", " dataset_train_main, dataset_train_sensitive, dataset_train_nonsensitive)\n", "\n", " # Create the original model.\n", " original_model = min_diff_keras_utils.create_keras_sequential_model()\n", " \n", " # Wrap the original model in a MinDiffModel, passing in one of the MinDiff\n", " # losses and using the set loss_weight.\n", " min_diff_loss = md.losses.MMDLoss()\n", " min_diff_model = md.keras.MinDiffModel(original_model,\n", " min_diff_loss,\n", " min_diff_weight)\n", "\n", " # Compile the model normally after wrapping the original model. Note that\n", " # this means we use the baseline's model's loss here.\n", " optimizer = tf.keras.optimizers.Adam(learning_rate=0.001)\n", " loss = tf.keras.losses.BinaryCrossentropy()\n", " min_diff_model.compile(optimizer=optimizer, loss=loss, metrics=['accuracy'])\n", "\n", " min_diff_model.fit(dataset, epochs=20)\n", "\n", " min_diff_model.save_original_model(min_diff_model_location, save_format='tf')" ] }, { "cell_type": "markdown", "metadata": { "id": "doJhbIKVwQdp" }, "source": [ "Next we evaluate the results. " ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:29:25.887584Z", "iopub.status.busy": "2024-07-19T09:29:25.886922Z", "iopub.status.idle": "2024-07-19T09:37:47.786534Z", "shell.execute_reply": "2024-07-19T09:37:47.785664Z" }, "id": "0CBdOQCH5IR6" }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "WARNING:absl:Tensorflow version (2.15.1) found. Note that TFMA support for TF 2.0 is currently in beta\n" ] } ], "source": [ "min_diff_eval_subdir = os.path.join(base_dir, 'tfma_eval_result')\n", "min_diff_eval_result = fi_util.get_eval_results(\n", " min_diff_model_location,\n", " min_diff_eval_subdir,\n", " validate_tfrecord_file,\n", " slice_selection='religion')" ] }, { "cell_type": "markdown", "metadata": { "id": "JObiq-mVwUzL" }, "source": [ "To ensure we evaluate a new model correctly, we need to select a threshold the same way that we would the baseline model. In a production setting, this would mean ensuring that evaluation metrics meet launch standards. In our case, we will pick the threshold that results in a similar overall FPR to the baseline model. This threshold may be different from the one you selected for the baseline model. Try selecting false positive rate with threshold 0.400. (Note that the subgroups with very low quantity examples have very wide confidence range intervals and don’t have predictable results.) " ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "execution": { "iopub.execute_input": "2024-07-19T09:37:47.791121Z", "iopub.status.busy": "2024-07-19T09:37:47.790846Z", "iopub.status.idle": "2024-07-19T09:37:47.806062Z", "shell.execute_reply": "2024-07-19T09:37:47.805405Z" }, "id": "A3_PEjYBO3Dq" }, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "de0e9b637e034835a901de1caa1fcbed", "version_major": 2, "version_minor": 0 }, "text/plain": [ "FairnessIndicatorViewer(slicingMetrics=[{'sliceValue': 'Overall', 'slice': 'Overall', 'metrics': {'accuracy': …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "widget_view.render_fairness_indicator(min_diff_eval_result)" ] }, { "cell_type": "markdown", "metadata": { "id": "sVRurkbZwYMj" }, "source": [ "Reviewing these results, you may notice that the FPRs for our target groups have improved. The gap between our lowest performing group and the majority group has improved from .024 to .006. Given the improvements we’ve observed and the continued strong performance for the majority group, we’ve satisfied both of our goals. Depending on the product, further improvements may be necessary, but this approach has gotten our model one step closer to performing equitably for all users." ] } ], "metadata": { "colab": { "collapsed_sections": [], "name": "min_diff_keras.ipynb", "provenance": [], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "state": { "3b5c7409e69f4cc39681b4eb65b634c5": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "88972b92aec44535969b86414a4efeea": { "model_module": "tensorflow_model_analysis", "model_module_version": "0.46.0", "model_name": "FairnessIndicatorModel", "state": { "_dom_classes": [], "_model_module": "tensorflow_model_analysis", "_model_module_version": "0.46.0", "_model_name": "FairnessIndicatorModel", "_view_count": null, "_view_module": "tensorflow_model_analysis", "_view_module_version": "0.46.0", "_view_name": "FairnessIndicatorView", "evalName": "", "evalNameCompare": "", "js_events": [], "layout": "IPY_MODEL_3b5c7409e69f4cc39681b4eb65b634c5", "slicingMetrics": [ { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7916632597466121, "upperBound": 0.7955818151604456, "value": 0.7936224743972262 } }, "example_count": { "doubleValue": 721950.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.4963198646762778, "upperBound": 0.508845088048845, "value": 0.50258242023459 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.4863579235809003, "upperBound": 0.5002303176573045, "value": 0.4932941297843805 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.4755528987664636, "upperBound": 0.4916472089813904, "value": 0.48360022087244614 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.465055722557109, "upperBound": 0.4808339096586112, "value": 0.47294494162271083 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.4545948226943026, "upperBound": 0.4710787740856254, "value": 0.4628367619896822 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.44219820521105585, "upperBound": 0.4573987332329044, "value": 0.44979834430057314 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.4383885200501699, "upperBound": 0.4524078188119348, "value": 0.44539804675939626 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.42715941898479526, "upperBound": 0.4409330441332223, "value": 0.43404592240696754 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.41507484724900723, "upperBound": 0.4298511813705339, "value": 0.422462648119526 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.8192593370195388, "upperBound": 0.8247575267720234, "value": 0.8220084289070057 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.8274936933310938, "upperBound": 0.8331736853813455, "value": 0.8303337018101423 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.8352745922606607, "upperBound": 0.8416633571089499, "value": 0.8384689788586431 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.8432646733204443, "upperBound": 0.8495292963322238, "value": 0.8463969877020865 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.8510917008619685, "upperBound": 0.8575582766910681, "value": 0.85432499654553 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.8626740958313095, "upperBound": 0.868706312185112, "value": 0.865690203122841 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.8674322874574354, "upperBound": 0.8736205987677448, "value": 0.8705264612408457 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.8734836373851431, "upperBound": 0.8795907709662347, "value": 0.8765372391875086 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.8808119279506524, "upperBound": 0.8868403905315038, "value": 0.8838261710653585 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.0671890010802722, "upperBound": 0.06854619474585538, "value": 0.0678675989293145 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.06773493637929051, "upperBound": 0.06911522600809022, "value": 0.06842508298176393 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.06827384985345476, "upperBound": 0.06966658695952853, "value": 0.06897022050466015 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.06880356432400593, "upperBound": 0.07019685227361898, "value": 0.0695002106152945 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.06933223404025546, "upperBound": 0.07073733901988047, "value": 0.07003478942979034 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.07010196536447898, "upperBound": 0.07151655672735803, "value": 0.07080926284618765 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.07041752709570358, "upperBound": 0.07186813032503302, "value": 0.0711428305247913 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.07081295487589219, "upperBound": 0.07227619556018587, "value": 0.07154457790559973 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.07131716049747189, "upperBound": 0.07276198961413435, "value": 0.07203957742037212 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.01539779450216285, "upperBound": 0.015961106643121583, "value": 0.0156794477557548 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.014112672492153646, "upperBound": 0.014689206273517197, "value": 0.014400937273173568 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.012849740287634004, "upperBound": 0.013527638527488036, "value": 0.01318868646224554 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.011705304645736749, "upperBound": 0.012328889884439639, "value": 0.012017094995286528 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.010660734607681414, "upperBound": 0.011226044228223153, "value": 0.010943387134178847 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.009332052453618357, "upperBound": 0.009813983861997893, "value": 0.009573016652260208 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.008830737599209175, "upperBound": 0.009300320809082158, "value": 0.009065527803461766 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.008058247508838193, "upperBound": 0.008452459820450087, "value": 0.00825535272733844 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.00721998284083081, "upperBound": 0.00759809008823257, "value": 0.007409036012131543 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9709252838625962, "upperBound": 0.9716829239512527, "value": 0.971304106932613 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9727725145553655, "upperBound": 0.9735229291322879, "value": 0.9731477249116974 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9744685988227888, "upperBound": 0.9753617138524815, "value": 0.9749151603296627 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9761939188522741, "upperBound": 0.9770632248942104, "value": 0.976628575386107 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9778386814295567, "upperBound": 0.9786652233939804, "value": 0.9782519565066833 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9800383502460381, "upperBound": 0.9808093496286858, "value": 0.9804238520673176 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.980876921730722, "upperBound": 0.9816800385071651, "value": 0.9812784818893275 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.982138763243456, "upperBound": 0.9828726596648762, "value": 0.982505713692084 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9835094627365902, "upperBound": 0.9842279121499923, "value": 0.98386868896738 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.02831707604874723, "upperBound": 0.029074716137403773, "value": 0.02869589306738694 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.02647707086771205, "upperBound": 0.02722748544463439, "value": 0.026852275088302513 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.024638286147518427, "upperBound": 0.02553140117721098, "value": 0.02508483967033728 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.022936775105789425, "upperBound": 0.023806081147725644, "value": 0.023371424613892928 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.021334776606019446, "upperBound": 0.022161318570443612, "value": 0.021748043493316712 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.019190650371314264, "upperBound": 0.01996164975396161, "value": 0.01957614793268232 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.01831996149283538, "upperBound": 0.019123078269277748, "value": 0.018721518110672485 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.017127340335123812, "upperBound": 0.017861236756544042, "value": 0.017494286307916062 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.015772087850007714, "upperBound": 0.016490537263409884, "value": 0.01613131103261999 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.4911549119511553, "upperBound": 0.5036801353237225, "value": 0.49741757976541007 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.49976968234269525, "upperBound": 0.5136420764190998, "value": 0.5067058702156195 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.5083527910186095, "upperBound": 0.5244471012335364, "value": 0.5163997791275539 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.5191660903413888, "upperBound": 0.534944277442891, "value": 0.5270550583772892 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.5289212259143748, "upperBound": 0.5454051773056973, "value": 0.5371632380103178 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.5426012667670956, "upperBound": 0.5578017947889442, "value": 0.5502016556994269 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.5475921811880653, "upperBound": 0.5616114799498302, "value": 0.5546019532406037 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.5590669558667777, "upperBound": 0.5728405810152047, "value": 0.5659540775930325 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.570148818629466, "upperBound": 0.584925152750993, "value": 0.577537351880474 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.17524247322797662, "upperBound": 0.18074066298046118, "value": 0.17799157109299432 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.1668263146186546, "upperBound": 0.1725063066689062, "value": 0.16966629818985768 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.15833664289105026, "upperBound": 0.16472540773933936, "value": 0.16153102114135692 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.1504707036677762, "upperBound": 0.15673532667955548, "value": 0.1536030122979135 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.14244172330893187, "upperBound": 0.14890829913803152, "value": 0.1456750034544701 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.1312936878148875, "upperBound": 0.13732590416869048, "value": 0.13430979687715905 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.12637940123225516, "upperBound": 0.1325677125425645, "value": 0.12947353875915435 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.12040922903376537, "upperBound": 0.12651636261485655, "value": 0.12346276081249137 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.1131596094684965, "upperBound": 0.11918807204934738, "value": 0.11617382893464143 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9840388933568781, "upperBound": 0.9846022054978371, "value": 0.9843205522442452 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9853107937264828, "upperBound": 0.9858873275078462, "value": 0.9855990627268264 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9864723614725119, "upperBound": 0.9871502597123658, "value": 0.9868113135377544 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9876711101155604, "upperBound": 0.9882946953542635, "value": 0.9879829050047134 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9887739557717768, "upperBound": 0.9893392653923186, "value": 0.9890566128658211 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9901860161380018, "upperBound": 0.9906679475463818, "value": 0.9904269833477398 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9906996791909177, "upperBound": 0.9911692624007908, "value": 0.9909344721965382 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9915475401795497, "upperBound": 0.991941752491162, "value": 0.9917446472726615 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9924019099117672, "upperBound": 0.9927800171591691, "value": 0.9925909639878685 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.17524247322797662, "upperBound": 0.18074066298046118, "value": 0.17799157109299432 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.1668263146186546, "upperBound": 0.1725063066689062, "value": 0.16966629818985768 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.15833664289105026, "upperBound": 0.16472540773933936, "value": 0.16153102114135692 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.1504707036677762, "upperBound": 0.15673532667955548, "value": 0.1536030122979135 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.14244172330893187, "upperBound": 0.14890829913803152, "value": 0.1456750034544701 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.1312936878148875, "upperBound": 0.13732590416869048, "value": 0.13430979687715905 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.12637940123225516, "upperBound": 0.1325677125425645, "value": 0.12947353875915435 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.12040922903376537, "upperBound": 0.12651636261485655, "value": 0.12346276081249137 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.1131596094684965, "upperBound": 0.11918807204934738, "value": 0.11617382893464143 } } }, "slice": "Overall", "sliceValue": "Overall" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7138955253038639, "upperBound": 0.7387764058470738, "value": 0.7263361238651004 } }, "example_count": { "doubleValue": 8436.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.41768459204433966, "upperBound": 0.4866101488163424, "value": 0.4521410579345088 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.4145516935522646, "upperBound": 0.488598053884179, "value": 0.451568894952251 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.3959020563459898, "upperBound": 0.47669180013907014, "value": 0.4362818590704648 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.3875180154858759, "upperBound": 0.47615566450663177, "value": 0.4318181818181818 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.3784832836949393, "upperBound": 0.47005554485489437, "value": 0.42424242424242425 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.3687057434113893, "upperBound": 0.4629902750683331, "value": 0.4158215010141988 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.35930757656748363, "upperBound": 0.4528389229492243, "value": 0.4060475161987041 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.3555261046769302, "upperBound": 0.44923727201658853, "value": 0.4023529411764706 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.3597420994733457, "upperBound": 0.44130108078417607, "value": 0.4005037783375315 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.7472244119424597, "upperBound": 0.7946361144280681, "value": 0.7709320695102686 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.7661315108115437, "upperBound": 0.8104851254921398, "value": 0.7883096366508688 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.7778170323315403, "upperBound": 0.8261827152796017, "value": 0.8020010531858873 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.7902496566423393, "upperBound": 0.8411339831845529, "value": 0.8156924697209057 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.8037135046181862, "upperBound": 0.8561056879306974, "value": 0.8299104791995787 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.8248977968670029, "upperBound": 0.871780568330215, "value": 0.8483412322274881 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.83271322516903, "upperBound": 0.8776577713347417, "value": 0.8551869404949973 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.8456473651429774, "upperBound": 0.8868419462367207, "value": 0.866245392311743 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.8556915958088132, "upperBound": 0.8936461053338536, "value": 0.8746708794102159 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.17963722172181676, "upperBound": 0.20350724469908146, "value": 0.19157288667887987 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.18251335080394077, "upperBound": 0.20616521467836413, "value": 0.19433986758405816 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.18400359940499936, "upperBound": 0.20806615359171884, "value": 0.19603552580769726 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.18595529205177092, "upperBound": 0.2102071373376901, "value": 0.19808184143222507 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.18780951735868912, "upperBound": 0.21244307298641385, "value": 0.20012698412698413 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.1903105543415027, "upperBound": 0.21532828353120145, "value": 0.20282009316379201 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.1914043562944103, "upperBound": 0.2159691949054037, "value": 0.20368744512730466 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.19336680379676746, "upperBound": 0.21731720424666373, "value": 0.20534265385095493 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.194489379530961, "upperBound": 0.21874458119923187, "value": 0.20661773852469212 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.04899495302051357, "upperBound": 0.06084235317102955, "value": 0.05491815817653358 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.04492405372709993, "upperBound": 0.05634657643995772, "value": 0.05063484778950589 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.03972278458379907, "upperBound": 0.04930956899828589, "value": 0.0445158329508949 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.03572121804794063, "upperBound": 0.04566238989306059, "value": 0.04069144867676304 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.03206661982204661, "upperBound": 0.04075017493290583, "value": 0.03640813828973535 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.027554416795080906, "upperBound": 0.03516615841782837, "value": 0.03135995104788129 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.02512731447519485, "upperBound": 0.03239179829268107, "value": 0.028759369741471624 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.023042719648318236, "upperBound": 0.02927511358346195, "value": 0.026158788435061954 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.021087220703763718, "upperBound": 0.02755925172329534, "value": 0.02432308398347866 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.8977938142485167, "upperBound": 0.9139646249146951, "value": 0.9058795637743006 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.905631462714042, "upperBound": 0.920588877850826, "value": 0.9131104788999526 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9138525659313149, "upperBound": 0.9280152169188655, "value": 0.9209340919867236 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.919486364540124, "upperBound": 0.934472585746334, "value": 0.9269796111901375 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9261630854534315, "upperBound": 0.9408353866291601, "value": 0.9334992887624467 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9353709037353233, "upperBound": 0.9477487815546508, "value": 0.9415599810336652 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9390164833310556, "upperBound": 0.9512157839034684, "value": 0.9451161688003793 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9440948136667623, "upperBound": 0.9551464519245382, "value": 0.9496206733048839 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.947281119070566, "upperBound": 0.9585981365095494, "value": 0.9529397818871503 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.08603537508530501, "upperBound": 0.10220618575148338, "value": 0.09412043622569938 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.07941112214917402, "upperBound": 0.09436853728595833, "value": 0.08688952110004741 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.0719847830811345, "upperBound": 0.08614743406868476, "value": 0.07906590801327644 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.06552741425366598, "upperBound": 0.08051363545987608, "value": 0.07302038880986249 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.05916461337083983, "upperBound": 0.07383691454656849, "value": 0.06650071123755334 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.052251218445349405, "upperBound": 0.06462909626467676, "value": 0.05844001896633476 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.048784216096531594, "upperBound": 0.06098351666894457, "value": 0.054883831199620675 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.04485354807546199, "upperBound": 0.0559051863332381, "value": 0.05037932669511617 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.041401863490450594, "upperBound": 0.05271888092943415, "value": 0.04706021811284969 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.5133898511836574, "upperBound": 0.5823154079556603, "value": 0.5478589420654912 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.5114019461158212, "upperBound": 0.5854483064477352, "value": 0.548431105047749 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.5233081998609298, "upperBound": 0.60409794365401, "value": 0.5637181409295352 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.5238443354933682, "upperBound": 0.6124819845141243, "value": 0.5681818181818182 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.5299444551451057, "upperBound": 0.6215167163050604, "value": 0.5757575757575758 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.5370097249316668, "upperBound": 0.6312942565886106, "value": 0.5841784989858012 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.5471610770507757, "upperBound": 0.6406924234325165, "value": 0.593952483801296 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.5507627279834114, "upperBound": 0.6444738953230699, "value": 0.5976470588235294 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.558698919215824, "upperBound": 0.6402579005266542, "value": 0.5994962216624685 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.20536388557193178, "upperBound": 0.2527755880575402, "value": 0.22906793048973143 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.18951487450786023, "upperBound": 0.2338684891884559, "value": 0.21169036334913113 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.17381728472039834, "upperBound": 0.2221829676684596, "value": 0.1979989468141127 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.15886601681544701, "upperBound": 0.20975034335766077, "value": 0.18430753027909427 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.14389431206930264, "upperBound": 0.19628649538181364, "value": 0.17008952080042128 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.128219431669785, "upperBound": 0.17510220313299696, "value": 0.15165876777251186 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.1223422286652586, "upperBound": 0.16728677483097007, "value": 0.14481305950500264 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.1131580537632794, "upperBound": 0.15435263485702272, "value": 0.13375460768825698 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.10635389466614659, "upperBound": 0.144308404191187, "value": 0.1253291205897841 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9391576468289706, "upperBound": 0.951005046979486, "value": 0.9450818418234664 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9436534235600423, "upperBound": 0.9550759462729, "value": 0.9493651522104941 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.950690431001714, "upperBound": 0.9602772154162008, "value": 0.9554841670491051 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9543376101069396, "upperBound": 0.9642787819520595, "value": 0.959308551323237 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9592498250670942, "upperBound": 0.9679333801779535, "value": 0.9635918617102647 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9648338415821718, "upperBound": 0.9724455832049193, "value": 0.9686400489521187 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9676082017073188, "upperBound": 0.9748726855248052, "value": 0.9712406302585284 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9707248864165382, "upperBound": 0.9769572803516821, "value": 0.9738412115649381 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9724407482767048, "upperBound": 0.9789127792962362, "value": 0.9756769160165213 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.20536388557193178, "upperBound": 0.2527755880575402, "value": 0.22906793048973143 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.18951487450786023, "upperBound": 0.2338684891884559, "value": 0.21169036334913113 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.17381728472039834, "upperBound": 0.2221829676684596, "value": 0.1979989468141127 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.15886601681544701, "upperBound": 0.20975034335766077, "value": 0.18430753027909427 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.14389431206930264, "upperBound": 0.19628649538181364, "value": 0.17008952080042128 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.128219431669785, "upperBound": 0.17510220313299696, "value": 0.15165876777251186 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.1223422286652586, "upperBound": 0.16728677483097007, "value": 0.14481305950500264 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.1131580537632794, "upperBound": 0.15435263485702272, "value": 0.13375460768825698 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.10635389466614659, "upperBound": 0.144308404191187, "value": 0.1253291205897841 } } }, "slice": "religion:muslim", "sliceValue": "muslim" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.8002613266080761, "upperBound": 0.8289154692181747, "value": 0.8145889771490287 } }, "example_count": { "doubleValue": 16172.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.4783807161890599, "upperBound": 0.5404898405117385, "value": 0.5094339622641509 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.46392625679428734, "upperBound": 0.5342191565518196, "value": 0.49906542056074765 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.45888583337217115, "upperBound": 0.534912010078889, "value": 0.4968944099378882 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.448697957691406, "upperBound": 0.5266983880467367, "value": 0.48769574944071586 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.42022232216903144, "upperBound": 0.5036477122066955, "value": 0.4619289340101523 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.40339243799259245, "upperBound": 0.4907484707473793, "value": 0.4470588235294118 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.3930988106468059, "upperBound": 0.47027827186124266, "value": 0.43167701863354035 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.3767324676082144, "upperBound": 0.4554607732860107, "value": 0.4160839160839161 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.3659046426715885, "upperBound": 0.4603719493338666, "value": 0.41312741312741313 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.7858436245597641, "upperBound": 0.8239774554439826, "value": 0.8049113233287858 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.7962898237198227, "upperBound": 0.8380890469205288, "value": 0.8171896316507503 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.8143695308253989, "upperBound": 0.8541157955223426, "value": 0.8342428376534788 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.8248732404250635, "upperBound": 0.862712559094846, "value": 0.8437926330150068 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.8365763464490261, "upperBound": 0.8742018725109748, "value": 0.8553888130968622 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.8543074150453464, "upperBound": 0.8892142112966895, "value": 0.8717598908594816 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.8585584853489555, "upperBound": 0.8917839906905182, "value": 0.8751705320600273 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.8688092843646242, "upperBound": 0.9033603391225038, "value": 0.8860845839017736 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.8787174703985396, "upperBound": 0.9139161458306415, "value": 0.8963165075034106 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.0720218772939201, "upperBound": 0.07936760274943916, "value": 0.07569439989736353 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.07298096201188209, "upperBound": 0.08024598301461353, "value": 0.07661316109228113 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.07433567678587866, "upperBound": 0.08157037252078722, "value": 0.07795270571738161 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.07509936967945277, "upperBound": 0.08223040786947111, "value": 0.07866454689984102 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.07595099493210293, "upperBound": 0.0830051379518698, "value": 0.07947775383445303 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.07738987321690069, "upperBound": 0.08405587633977535, "value": 0.08072258716523496 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.07760793333599558, "upperBound": 0.08428538127727497, "value": 0.08094637223974764 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.078318096095139, "upperBound": 0.0852226786224697, "value": 0.08177011204834446 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.07911071575399456, "upperBound": 0.0860378153841922, "value": 0.0825739961038145 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.018253246051958077, "upperBound": 0.02213860067659027, "value": 0.020195838433292534 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.016367716899530992, "upperBound": 0.019944170925041273, "value": 0.018155854753161976 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.014415152776088347, "upperBound": 0.018224868678681463, "value": 0.016319869441044473 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.01294388745303383, "upperBound": 0.016704094568845418, "value": 0.014823881408948728 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.01077375961858758, "upperBound": 0.013978120841444583, "value": 0.012375900992792057 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.00901186022551594, "upperBound": 0.011660017277320005, "value": 0.0103359173126615 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.008285300351691222, "upperBound": 0.010618571137332332, "value": 0.009451924384604923 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.006927412112915863, "upperBound": 0.009256523757804272, "value": 0.008091935264517883 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.006015225863718591, "upperBound": 0.008536698357961293, "value": 0.00727594179246566 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9610864568069181, "upperBound": 0.966813204058324, "value": 0.9639500371011624 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9640248484983238, "upperBound": 0.9698109346768977, "value": 0.9669181301014098 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9672195051458935, "upperBound": 0.9730470536568706, "value": 0.9701335641850112 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9694963779737423, "upperBound": 0.9752224232522245, "value": 0.9723596339351966 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9730032627993259, "upperBound": 0.9782701458839325, "value": 0.9756369032896364 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9766074259206605, "upperBound": 0.981344148675539, "value": 0.9789760079149147 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9777854241794984, "upperBound": 0.982392235840195, "value": 0.9800890427900074 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9799215907540186, "upperBound": 0.9847081613382409, "value": 0.9823151125401929 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9815506176432959, "upperBound": 0.9864182515633683, "value": 0.9839846648528321 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.03318679594167618, "upperBound": 0.03891354319308215, "value": 0.036049962898837495 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.030189065323102164, "upperBound": 0.03597515150167609, "value": 0.033081869898590154 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.026952946343129475, "upperBound": 0.03278049485410634, "value": 0.029866435814988868 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.02477757674777498, "upperBound": 0.03050362202625759, "value": 0.027640366064803364 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0217298541160676, "upperBound": 0.02699673720067404, "value": 0.02436309671036359 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.01865585132446091, "upperBound": 0.023392574079339465, "value": 0.021023992085085333 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.017607764159804796, "upperBound": 0.022214575820501434, "value": 0.01991095720999258 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.015291838661759174, "upperBound": 0.02007840924598123, "value": 0.017684887459807074 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.013581748436631964, "upperBound": 0.018449382356703993, "value": 0.016015335147167943 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.45951015948826146, "upperBound": 0.5216192838109401, "value": 0.49056603773584906 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.46578084344818027, "upperBound": 0.5360737432057128, "value": 0.5009345794392523 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.46508798992111094, "upperBound": 0.5411141666278286, "value": 0.5031055900621118 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.4733016119532633, "upperBound": 0.551302042308594, "value": 0.5123042505592841 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.49635228779330465, "upperBound": 0.5797776778309685, "value": 0.5380710659898477 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.509251529252621, "upperBound": 0.5966075620074072, "value": 0.5529411764705883 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.5297217281387573, "upperBound": 0.6069011893531943, "value": 0.5683229813664596 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.5445392267139889, "upperBound": 0.6232675323917859, "value": 0.583916083916084 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.5396280506661336, "upperBound": 0.6340953573284115, "value": 0.5868725868725869 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.1760225445560175, "upperBound": 0.2141563754402359, "value": 0.19508867667121418 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.16191095307947104, "upperBound": 0.2037101762801771, "value": 0.18281036834924966 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.1458842044776573, "upperBound": 0.1856304691746011, "value": 0.16575716234652116 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.13728744090515432, "upperBound": 0.17512675957493667, "value": 0.15620736698499318 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.12579812748902514, "upperBound": 0.16342365355097377, "value": 0.1446111869031378 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.11078578870331053, "upperBound": 0.1456925849546539, "value": 0.12824010914051842 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.10821600930948194, "upperBound": 0.14144151465104438, "value": 0.12482946793997271 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.09663966087749624, "upperBound": 0.13119071563537535, "value": 0.11391541609822646 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.08608385416935849, "upperBound": 0.1212825296014603, "value": 0.10368349249658936 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9778613993234094, "upperBound": 0.9817467539480419, "value": 0.9798041615667075 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9800558290749589, "upperBound": 0.983632283100469, "value": 0.981844145246838 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9817751313213183, "upperBound": 0.9855848472239117, "value": 0.9836801305589555 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9832959054311544, "upperBound": 0.9870561125469665, "value": 0.9851761185910513 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9860218791585554, "upperBound": 0.9892262403814124, "value": 0.9876240990072079 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9883399827226799, "upperBound": 0.9909881397744841, "value": 0.9896640826873385 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9893814288626678, "upperBound": 0.9917146996483085, "value": 0.990548075615395 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9907434762421958, "upperBound": 0.9930725878870843, "value": 0.9919080647354821 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9914633016420388, "upperBound": 0.9939847741362816, "value": 0.9927240582075343 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.1760225445560175, "upperBound": 0.2141563754402359, "value": 0.19508867667121418 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.16191095307947104, "upperBound": 0.2037101762801771, "value": 0.18281036834924966 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.1458842044776573, "upperBound": 0.1856304691746011, "value": 0.16575716234652116 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.13728744090515432, "upperBound": 0.17512675957493667, "value": 0.15620736698499318 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.12579812748902514, "upperBound": 0.16342365355097377, "value": 0.1446111869031378 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.11078578870331053, "upperBound": 0.1456925849546539, "value": 0.12824010914051842 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.10821600930948194, "upperBound": 0.14144151465104438, "value": 0.12482946793997271 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.09663966087749624, "upperBound": 0.13119071563537535, "value": 0.11391541609822646 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.08608385416935849, "upperBound": 0.1212825296014603, "value": 0.10368349249658936 } } }, "slice": "religion:christian", "sliceValue": "christian" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.723580952287136, "upperBound": 0.7712838691831497, "value": 0.747431411686431 } }, "example_count": { "doubleValue": 3015.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.3987972632023776, "upperBound": 0.5364327047775099, "value": 0.4675925925925926 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.3774501561339672, "upperBound": 0.52417172129096, "value": 0.45077720207253885 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.3539844547284153, "upperBound": 0.503244251568267, "value": 0.42857142857142855 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.3368683705306989, "upperBound": 0.4808317581443297, "value": 0.4088050314465409 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.3256667756808867, "upperBound": 0.460637047413825, "value": 0.3931034482758621 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.3023598574792469, "upperBound": 0.47899022308571926, "value": 0.390625 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.29541383553607825, "upperBound": 0.4713986855060607, "value": 0.38333333333333336 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.27611926220034555, "upperBound": 0.4561964393350866, "value": 0.36607142857142855 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.257249046486836, "upperBound": 0.45453620904412173, "value": 0.3557692307692308 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.7367845655760584, "upperBound": 0.8122535733692849, "value": 0.7745098039215687 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.7542025258459397, "upperBound": 0.830128014374415, "value": 0.792156862745098 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.765120650181439, "upperBound": 0.8427427968292657, "value": 0.803921568627451 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.7788723102871971, "upperBound": 0.852520607988061, "value": 0.8156862745098039 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.791513064186816, "upperBound": 0.8634032446960229, "value": 0.8274509803921568 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.8101024439099057, "upperBound": 0.884030606682313, "value": 0.8470588235294118 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.817077757042845, "upperBound": 0.8927447337263993, "value": 0.8549019607843137 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.822529522455699, "upperBound": 0.8990516624553164, "value": 0.8607843137254902 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.8284222108390691, "upperBound": 0.9088394024023734, "value": 0.8686274509803922 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.1286192101764739, "upperBound": 0.15362745977126416, "value": 0.1411218292247231 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.13057870318912523, "upperBound": 0.15574562875567055, "value": 0.14316087880935507 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.13158663750188693, "upperBound": 0.15714878960758605, "value": 0.1443661971830986 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.13286469448051133, "upperBound": 0.15845507343109463, "value": 0.14565826330532214 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.13361602339298112, "upperBound": 0.16046405347295917, "value": 0.1470383275261324 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.1361312499309725, "upperBound": 0.16314449620125834, "value": 0.1496363006581226 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.1371227946343537, "upperBound": 0.16408952626648884, "value": 0.15060449050086355 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.13756263011958667, "upperBound": 0.16488570955859064, "value": 0.15122287289011369 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.13804868552371036, "upperBound": 0.1663163093868001, "value": 0.15218138096873926 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.03313103084886327, "upperBound": 0.04750863676022702, "value": 0.04031936127744511 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.02847205650545983, "upperBound": 0.040989633708866303, "value": 0.03473053892215569 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.024293661793870797, "upperBound": 0.035586064315158386, "value": 0.029940119760479042 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.020960537506234743, "upperBound": 0.030934996778486212, "value": 0.02594810379241517 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.018459509489249844, "upperBound": 0.02704870650393554, "value": 0.022754491017964073 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.015085334633290658, "upperBound": 0.024833235842339065, "value": 0.01996007984031936 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.013955869962845938, "upperBound": 0.02276927945469759, "value": 0.018363273453093812 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.012412594283336397, "upperBound": 0.02032035889321083, "value": 0.016367265469061875 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.011097553997479581, "upperBound": 0.01844240722999656, "value": 0.014770459081836327 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9188936201484533, "upperBound": 0.9378223530276447, "value": 0.9283582089552239 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9272477975085798, "upperBound": 0.9447250899557074, "value": 0.9359867330016584 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9332643594642465, "upperBound": 0.950650581855931, "value": 0.9419568822553898 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9389600712826441, "upperBound": 0.9555688707989703, "value": 0.9472636815920398 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9440670890365574, "upperBound": 0.9597492982151634, "value": 0.9519071310116086 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9498502793570888, "upperBound": 0.9652435248608638, "value": 0.9575456053067993 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9523568901735926, "upperBound": 0.9680438292517564, "value": 0.9601990049751243 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.955273677676467, "upperBound": 0.970433251939494, "value": 0.9628524046434495 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9581156239105267, "upperBound": 0.9728972979746592, "value": 0.9655058043117745 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.06217764697235528, "upperBound": 0.08110637985154631, "value": 0.07164179104477612 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.05527491004429261, "upperBound": 0.07275220249142011, "value": 0.06401326699834163 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.04934941814406928, "upperBound": 0.06673564053575365, "value": 0.05804311774461028 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.04443112920102982, "upperBound": 0.06103992871735567, "value": 0.0527363184079602 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.04025070178483632, "upperBound": 0.05593291096344223, "value": 0.04809286898839138 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.03475647513913629, "upperBound": 0.050149720642911046, "value": 0.04245439469320066 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.031956170748243515, "upperBound": 0.04764310982640721, "value": 0.03980099502487562 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.029566748060505972, "upperBound": 0.04472632232353293, "value": 0.03714759535655058 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.02710270202534105, "upperBound": 0.0418843760894729, "value": 0.03449419568822554 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.4635672952224901, "upperBound": 0.6012027367976225, "value": 0.5324074074074074 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.47582827870903976, "upperBound": 0.6225498438660328, "value": 0.5492227979274611 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.496755748431733, "upperBound": 0.6460155452715849, "value": 0.5714285714285714 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.5191682418556702, "upperBound": 0.6631316294693013, "value": 0.5911949685534591 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.5393629525861751, "upperBound": 0.6743332243191132, "value": 0.6068965517241379 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.5210097769142806, "upperBound": 0.6976401425207531, "value": 0.609375 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.5286013144939397, "upperBound": 0.7045861644639217, "value": 0.6166666666666667 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.5438035606649139, "upperBound": 0.7238807377996543, "value": 0.6339285714285714 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.5454637909558783, "upperBound": 0.7427509535131639, "value": 0.6442307692307693 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.1877464266307152, "upperBound": 0.2632154344239416, "value": 0.22549019607843138 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.1698719856255852, "upperBound": 0.2457974741540604, "value": 0.20784313725490197 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.15725720317073447, "upperBound": 0.23487934981856082, "value": 0.19607843137254902 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.1474793920119389, "upperBound": 0.22112768971280286, "value": 0.1843137254901961 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.13659675530397672, "upperBound": 0.20848693581318392, "value": 0.17254901960784313 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.11596939331768712, "upperBound": 0.18989755609009423, "value": 0.15294117647058825 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.10725526627360041, "upperBound": 0.1829222429571549, "value": 0.1450980392156863 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.10094833754468402, "upperBound": 0.17747047754430062, "value": 0.1392156862745098 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.09116059759762651, "upperBound": 0.17157778916093103, "value": 0.13137254901960785 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9524913632397729, "upperBound": 0.966868969151137, "value": 0.9596806387225549 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9590103662911336, "upperBound": 0.9715279434945405, "value": 0.9652694610778443 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9644139356848417, "upperBound": 0.9757063382061294, "value": 0.9700598802395209 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9690650032215137, "upperBound": 0.9790394624937654, "value": 0.9740518962075848 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9729512934960646, "upperBound": 0.98154049051075, "value": 0.9772455089820359 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.975166764157661, "upperBound": 0.9849146653667095, "value": 0.9800399201596807 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9772307205453026, "upperBound": 0.9860441300371541, "value": 0.9816367265469061 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9796796411067891, "upperBound": 0.9875874057166637, "value": 0.9836327345309381 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9815575927700034, "upperBound": 0.9889024460025205, "value": 0.9852295409181637 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.1877464266307152, "upperBound": 0.2632154344239416, "value": 0.22549019607843138 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.1698719856255852, "upperBound": 0.2457974741540604, "value": 0.20784313725490197 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.15725720317073447, "upperBound": 0.23487934981856082, "value": 0.19607843137254902 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.1474793920119389, "upperBound": 0.22112768971280286, "value": 0.1843137254901961 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.13659675530397672, "upperBound": 0.20848693581318392, "value": 0.17254901960784313 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.11596939331768712, "upperBound": 0.18989755609009423, "value": 0.15294117647058825 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.10725526627360041, "upperBound": 0.1829222429571549, "value": 0.1450980392156863 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.10094833754468402, "upperBound": 0.17747047754430062, "value": 0.1392156862745098 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.09116059759762651, "upperBound": 0.17157778916093103, "value": 0.13137254901960785 } } }, "slice": "religion:jewish", "sliceValue": "jewish" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7285679101553432, "upperBound": 0.9087725211892049, "value": 0.8187695924764891 } }, "example_count": { "doubleValue": 138.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": -0.2561640169782696, "upperBound": 0.6561640169782698, "value": 0.2 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": -0.2561640169782696, "upperBound": 0.6561640169782698, "value": 0.2 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.6908995446638296, "upperBound": 0.9461259736774782, "value": 0.8181818181818182 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.6908995446638296, "upperBound": 0.9461259736774782, "value": 0.8181818181818182 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.6908995446638296, "upperBound": 0.9461259736774782, "value": 0.8181818181818182 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.7287390823737594, "upperBound": 0.9989642669085372, "value": 0.8636363636363636 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.7287390823737594, "upperBound": 0.9989642669085372, "value": 0.8636363636363636 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.7826583452208713, "upperBound": 1.035722835002414, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.7826583452208713, "upperBound": 1.035722835002414, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.7826583452208713, "upperBound": 1.035722835002414, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.7826583452208713, "upperBound": 1.035722835002414, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.07754094813636753, "upperBound": 0.1932116980003497, "value": 0.13533834586466165 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.07754094813636753, "upperBound": 0.1932116980003497, "value": 0.13533834586466165 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.07720123341813795, "upperBound": 0.19152682321218067, "value": 0.13432835820895522 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.07778607846313601, "upperBound": 0.20376242684189694, "value": 0.14074074074074075 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.07778607846313601, "upperBound": 0.20376242684189694, "value": 0.14074074074074075 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.07993441009790565, "upperBound": 0.2142376470767529, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.07993441009790565, "upperBound": 0.2142376470767529, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.07993441009790565, "upperBound": 0.2142376470767529, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.07993441009790565, "upperBound": 0.2142376470767529, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": -0.00953584614767224, "upperBound": 0.026793613491701226, "value": 0.008620689655172414 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": -0.00953584614767224, "upperBound": 0.026793613491701226, "value": 0.008620689655172414 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9350759824292768, "upperBound": 0.9924785641477506, "value": 0.9637681159420289 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9350759824292768, "upperBound": 0.9924785641477506, "value": 0.9637681159420289 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9446794451941365, "upperBound": 0.9973795722918006, "value": 0.9710144927536232 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9546147563703262, "upperBound": 1.0019429490034706, "value": 0.9782608695652174 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9546147563703262, "upperBound": 1.0019429490034706, "value": 0.9782608695652174 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9651821526328792, "upperBound": 1.0058624056089536, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9651821526328792, "upperBound": 1.0058624056089536, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9651821526328792, "upperBound": 1.0058624056089536, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9651821526328792, "upperBound": 1.0058624056089536, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.007521435852249101, "upperBound": 0.06492401757072311, "value": 0.036231884057971016 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.007521435852249101, "upperBound": 0.06492401757072311, "value": 0.036231884057971016 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.0026204277081993757, "upperBound": 0.05532055480586326, "value": 0.028985507246376812 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.001942949003470567, "upperBound": 0.04538524362967382, "value": 0.021739130434782608 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.001942949003470567, "upperBound": 0.04538524362967382, "value": 0.021739130434782608 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.005862405608953448, "upperBound": 0.03481784736712097, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.005862405608953448, "upperBound": 0.03481784736712097, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.005862405608953448, "upperBound": 0.03481784736712097, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.005862405608953448, "upperBound": 0.03481784736712097, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.34383598302173046, "upperBound": 1.25616401697827, "value": 0.8 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.34383598302173046, "upperBound": 1.25616401697827, "value": 0.8 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.05387402632252164, "upperBound": 0.3091004553361706, "value": 0.18181818181818182 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.05387402632252164, "upperBound": 0.3091004553361706, "value": 0.18181818181818182 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.05387402632252164, "upperBound": 0.3091004553361706, "value": 0.18181818181818182 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.0010357330914629037, "upperBound": 0.2712609176262404, "value": 0.13636363636363635 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.0010357330914629037, "upperBound": 0.2712609176262404, "value": 0.13636363636363635 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": -0.03572283500241402, "upperBound": 0.21734165477912853, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": -0.03572283500241402, "upperBound": 0.21734165477912853, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": -0.03572283500241402, "upperBound": 0.21734165477912853, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": -0.03572283500241402, "upperBound": 0.21734165477912853, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9732063865082985, "upperBound": 1.009535846147672, "value": 0.9913793103448276 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9732063865082985, "upperBound": 1.009535846147672, "value": 0.9913793103448276 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.05387402632252164, "upperBound": 0.3091004553361706, "value": 0.18181818181818182 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.05387402632252164, "upperBound": 0.3091004553361706, "value": 0.18181818181818182 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.05387402632252164, "upperBound": 0.3091004553361706, "value": 0.18181818181818182 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.0010357330914629037, "upperBound": 0.2712609176262404, "value": 0.13636363636363635 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0010357330914629037, "upperBound": 0.2712609176262404, "value": 0.13636363636363635 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.03572283500241402, "upperBound": 0.21734165477912853, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.03572283500241402, "upperBound": 0.21734165477912853, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.03572283500241402, "upperBound": 0.21734165477912853, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.03572283500241402, "upperBound": 0.21734165477912853, "value": 0.09090909090909091 } } }, "slice": "religion:other_religion", "sliceValue": "other_religion" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7441683209035564, "upperBound": 0.8433629407345317, "value": 0.7937895437895437 } }, "example_count": { "doubleValue": 545.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.27348432533733014, "upperBound": 0.6550573922043875, "value": 0.4642857142857143 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.3391867566415423, "upperBound": 0.7007282631213034, "value": 0.52 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.291513419358009, "upperBound": 0.6648925659610196, "value": 0.4782608695652174 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.291513419358009, "upperBound": 0.6648925659610196, "value": 0.4782608695652174 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.23118462360023673, "upperBound": 0.6688858958356079, "value": 0.45 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.23118462360023673, "upperBound": 0.6688858958356079, "value": 0.45 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.23118462360023673, "upperBound": 0.6688858958356079, "value": 0.45 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.17039718018091393, "upperBound": 0.671725282839382, "value": 0.42105263157894735 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.18323324438190924, "upperBound": 0.758237343853385, "value": 0.47058823529411764 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.7235158137963938, "upperBound": 0.8868830982183832, "value": 0.8051948051948052 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.7712667168474338, "upperBound": 0.9170498658305725, "value": 0.8441558441558441 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.7712667168474338, "upperBound": 0.9170498658305725, "value": 0.8441558441558441 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.7712667168474338, "upperBound": 0.9170498658305725, "value": 0.8441558441558441 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.7799294238990924, "upperBound": 0.934340332498035, "value": 0.8571428571428571 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.7799294238990924, "upperBound": 0.934340332498035, "value": 0.8571428571428571 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.7799294238990924, "upperBound": 0.934340332498035, "value": 0.8571428571428571 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.7799294238990924, "upperBound": 0.934340332498035, "value": 0.8571428571428571 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.808812843635322, "upperBound": 0.9574945091211179, "value": 0.8831168831168831 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.08818643114499274, "upperBound": 0.15166901759902301, "value": 0.11992263056092843 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.09279592766531213, "upperBound": 0.1572126043590109, "value": 0.125 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.09239148726838364, "upperBound": 0.15665942935346966, "value": 0.12452107279693486 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.09239148726838364, "upperBound": 0.15665942935346966, "value": 0.12452107279693486 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.09335600871807179, "upperBound": 0.15807700943103611, "value": 0.12571428571428572 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.09335600871807179, "upperBound": 0.15807700943103611, "value": 0.12571428571428572 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.09335600871807179, "upperBound": 0.15807700943103611, "value": 0.12571428571428572 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.09313656300739558, "upperBound": 0.15781883388729068, "value": 0.12547528517110265 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.09753856476649318, "upperBound": 0.16004477240868814, "value": 0.12878787878787878 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.013168069572493106, "upperBound": 0.04238703355566385, "value": 0.027777777777777776 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.013168069572493106, "upperBound": 0.04238703355566385, "value": 0.027777777777777776 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.009950536417439928, "upperBound": 0.037058082872423896, "value": 0.023504273504273504 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.009950536417439928, "upperBound": 0.037058082872423896, "value": 0.023504273504273504 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.007371603078519315, "upperBound": 0.031087978746902244, "value": 0.019230769230769232 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.007371603078519315, "upperBound": 0.031087978746902244, "value": 0.019230769230769232 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.007371603078519315, "upperBound": 0.031087978746902244, "value": 0.019230769230769232 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.005241776826876697, "upperBound": 0.028945576462058066, "value": 0.017094017094017096 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.005241776826876697, "upperBound": 0.028945576462058066, "value": 0.017094017094017096 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9321065033146072, "upperBound": 0.9651476686163585, "value": 0.9486238532110092 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9368559000950745, "upperBound": 0.9714066460038917, "value": 0.9541284403669725 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9409141686883606, "upperBound": 0.974687686730459, "value": 0.9577981651376147 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9409141686883606, "upperBound": 0.974687686730459, "value": 0.9577981651376147 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9481845569175819, "upperBound": 0.9784238024807518, "value": 0.963302752293578 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9481845569175819, "upperBound": 0.9784238024807518, "value": 0.963302752293578 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9481845569175819, "upperBound": 0.9784238024807518, "value": 0.963302752293578 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9514959996203073, "upperBound": 0.9787806936877194, "value": 0.9651376146788991 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9554555105489333, "upperBound": 0.982162668283918, "value": 0.9688073394495413 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.03485233138364163, "upperBound": 0.06789349668539302, "value": 0.05137614678899083 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.028593353996108663, "upperBound": 0.06314409990492531, "value": 0.045871559633027525 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.025312313269541014, "upperBound": 0.059085831311639456, "value": 0.04220183486238532 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.025312313269541014, "upperBound": 0.059085831311639456, "value": 0.04220183486238532 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.021576197519248306, "upperBound": 0.0518154430824181, "value": 0.03669724770642202 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.021576197519248306, "upperBound": 0.0518154430824181, "value": 0.03669724770642202 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.021576197519248306, "upperBound": 0.0518154430824181, "value": 0.03669724770642202 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.021219306312280386, "upperBound": 0.04850400037969277, "value": 0.03486238532110092 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.01783733171608186, "upperBound": 0.04454448945106672, "value": 0.031192660550458717 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.3449426077956125, "upperBound": 0.7265156746626699, "value": 0.5357142857142857 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.29927173687869624, "upperBound": 0.6608132433584579, "value": 0.48 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.33510743403898036, "upperBound": 0.7084865806419909, "value": 0.5217391304347826 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.33510743403898036, "upperBound": 0.7084865806419909, "value": 0.5217391304347826 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.33111410416439213, "upperBound": 0.7688153763997634, "value": 0.55 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.33111410416439213, "upperBound": 0.7688153763997634, "value": 0.55 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.33111410416439213, "upperBound": 0.7688153763997634, "value": 0.55 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.3282747171606176, "upperBound": 0.8296028198190862, "value": 0.5789473684210527 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.24176265614661502, "upperBound": 0.8167667556180909, "value": 0.5294117647058824 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.11311690178161685, "upperBound": 0.27648418620360604, "value": 0.19480519480519481 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.08295013416942738, "upperBound": 0.22873328315256652, "value": 0.15584415584415584 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.08295013416942738, "upperBound": 0.22873328315256652, "value": 0.15584415584415584 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.08295013416942738, "upperBound": 0.22873328315256652, "value": 0.15584415584415584 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.06565966750196496, "upperBound": 0.22007057610090702, "value": 0.14285714285714285 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.06565966750196496, "upperBound": 0.22007057610090702, "value": 0.14285714285714285 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.06565966750196496, "upperBound": 0.22007057610090702, "value": 0.14285714285714285 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.06565966750196496, "upperBound": 0.22007057610090702, "value": 0.14285714285714285 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.04250549087888242, "upperBound": 0.19118715636467795, "value": 0.11688311688311688 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.957612966444336, "upperBound": 0.9868319304275068, "value": 0.9722222222222222 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.957612966444336, "upperBound": 0.9868319304275068, "value": 0.9722222222222222 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9629419171275759, "upperBound": 0.9900494635825603, "value": 0.9764957264957265 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9629419171275759, "upperBound": 0.9900494635825603, "value": 0.9764957264957265 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9689120212530977, "upperBound": 0.9926283969214811, "value": 0.9807692307692307 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9689120212530977, "upperBound": 0.9926283969214811, "value": 0.9807692307692307 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9689120212530977, "upperBound": 0.9926283969214811, "value": 0.9807692307692307 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9710544235379421, "upperBound": 0.9947582231731231, "value": 0.9829059829059829 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9710544235379421, "upperBound": 0.9947582231731231, "value": 0.9829059829059829 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.11311690178161685, "upperBound": 0.27648418620360604, "value": 0.19480519480519481 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.08295013416942738, "upperBound": 0.22873328315256652, "value": 0.15584415584415584 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.08295013416942738, "upperBound": 0.22873328315256652, "value": 0.15584415584415584 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.08295013416942738, "upperBound": 0.22873328315256652, "value": 0.15584415584415584 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.06565966750196496, "upperBound": 0.22007057610090702, "value": 0.14285714285714285 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.06565966750196496, "upperBound": 0.22007057610090702, "value": 0.14285714285714285 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.06565966750196496, "upperBound": 0.22007057610090702, "value": 0.14285714285714285 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.06565966750196496, "upperBound": 0.22007057610090702, "value": 0.14285714285714285 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.04250549087888242, "upperBound": 0.19118715636467795, "value": 0.11688311688311688 } } }, "slice": "religion:atheist", "sliceValue": "atheist" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.6143238184245766, "upperBound": 0.8375728604442824, "value": 0.7257575757575757 } }, "example_count": { "doubleValue": 218.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.39536639807160356, "upperBound": 0.9379669352617295, "value": 0.6666666666666666 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.2200406159989427, "upperBound": 0.8912689078105809, "value": 0.5555555555555556 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.194058156027422, "upperBound": 0.9492751773059112, "value": 0.5714285714285714 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.09199449965888834, "upperBound": 0.9080055003411116, "value": 0.5 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.09199449965888834, "upperBound": 0.9080055003411116, "value": 0.5 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": -0.042773901702433725, "upperBound": 0.8411072350357673, "value": 0.4 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": -0.042773901702433725, "upperBound": 0.8411072350357673, "value": 0.4 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": -0.042773901702433725, "upperBound": 0.8411072350357673, "value": 0.4 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": -0.042773901702433725, "upperBound": 0.8411072350357673, "value": 0.4 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.6264716332369262, "upperBound": 0.9734333375233082, "value": 0.8 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.6264716332369262, "upperBound": 0.9734333375233082, "value": 0.8 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.6640101043881318, "upperBound": 1.035251591518301, "value": 0.85 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.6640101043881318, "upperBound": 1.035251591518301, "value": 0.85 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.6640101043881318, "upperBound": 1.035251591518301, "value": 0.85 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.6640101043881318, "upperBound": 1.035251591518301, "value": 0.85 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.6640101043881318, "upperBound": 1.035251591518301, "value": 0.85 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.6640101043881318, "upperBound": 1.035251591518301, "value": 0.85 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.6640101043881318, "upperBound": 1.035251591518301, "value": 0.85 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.039249386412145135, "upperBound": 0.1160445365704962, "value": 0.07766990291262135 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.03925067099139621, "upperBound": 0.11380789625830581, "value": 0.07655502392344497 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.03785413799467204, "upperBound": 0.12322045196050965, "value": 0.08056872037914692 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.03745357721140765, "upperBound": 0.12286427278101442, "value": 0.08018867924528301 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.03745357721140765, "upperBound": 0.12286427278101442, "value": 0.08018867924528301 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.0373977401731094, "upperBound": 0.12216697772357174, "value": 0.07981220657276995 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.0373977401731094, "upperBound": 0.12216697772357174, "value": 0.07981220657276995 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.0373977401731094, "upperBound": 0.12216697772357174, "value": 0.07981220657276995 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.0373977401731094, "upperBound": 0.12216697772357174, "value": 0.07981220657276995 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.013282103262478626, "upperBound": 0.06751172810471807, "value": 0.04040404040404041 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.0047398170621527555, "upperBound": 0.04575957884032676, "value": 0.025252525252525252 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.0014344266633226667, "upperBound": 0.03895642236946635, "value": 0.020202020202020204 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.0019149092409657814, "upperBound": 0.03221143615513116, "value": 0.015151515151515152 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.0019149092409657814, "upperBound": 0.03221143615513116, "value": 0.015151515151515152 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.0045344214155947915, "upperBound": 0.024742533758027683, "value": 0.010101010101010102 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.0045344214155947915, "upperBound": 0.024742533758027683, "value": 0.010101010101010102 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.0045344214155947915, "upperBound": 0.024742533758027683, "value": 0.010101010101010102 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.0045344214155947915, "upperBound": 0.024742533758027683, "value": 0.010101010101010102 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9130944959610575, "upperBound": 0.9768099856331637, "value": 0.944954128440367 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9322059184358903, "upperBound": 0.9852056278240212, "value": 0.9587155963302753 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9422466989271564, "upperBound": 0.9935146804496525, "value": 0.9678899082568807 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9474315956391165, "upperBound": 0.9975012279070691, "value": 0.9724770642201835 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9474315956391165, "upperBound": 0.9975012279070691, "value": 0.9724770642201835 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9525387291831472, "upperBound": 1.0015558309726527, "value": 0.9770642201834863 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9525387291831472, "upperBound": 1.0015558309726527, "value": 0.9770642201834863 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9525387291831472, "upperBound": 1.0015558309726527, "value": 0.9770642201834863 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9525387291831472, "upperBound": 1.0015558309726527, "value": 0.9770642201834863 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.023190014366836147, "upperBound": 0.08690550403894304, "value": 0.05504587155963303 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.014794372175978544, "upperBound": 0.06779408156411029, "value": 0.04128440366972477 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.00648531955034759, "upperBound": 0.05775330107284346, "value": 0.03211009174311927 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.002498772092931152, "upperBound": 0.052568404360883315, "value": 0.027522935779816515 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.002498772092931152, "upperBound": 0.052568404360883315, "value": 0.027522935779816515 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.0015558309726530217, "upperBound": 0.04746127081685309, "value": 0.022935779816513763 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.0015558309726530217, "upperBound": 0.04746127081685309, "value": 0.022935779816513763 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.0015558309726530217, "upperBound": 0.04746127081685309, "value": 0.022935779816513763 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.0015558309726530217, "upperBound": 0.04746127081685309, "value": 0.022935779816513763 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.062033064738270305, "upperBound": 0.6046336019283962, "value": 0.3333333333333333 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.10873109218941907, "upperBound": 0.7799593840010575, "value": 0.4444444444444444 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.05072482269408879, "upperBound": 0.8059418439725781, "value": 0.42857142857142855 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.09199449965888834, "upperBound": 0.9080055003411116, "value": 0.5 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.09199449965888834, "upperBound": 0.9080055003411116, "value": 0.5 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.1588927649642327, "upperBound": 1.0427739017024338, "value": 0.6 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.1588927649642327, "upperBound": 1.0427739017024338, "value": 0.6 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.1588927649642327, "upperBound": 1.0427739017024338, "value": 0.6 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.1588927649642327, "upperBound": 1.0427739017024338, "value": 0.6 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.026566662476692038, "upperBound": 0.3735283667630741, "value": 0.2 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.026566662476692038, "upperBound": 0.3735283667630741, "value": 0.2 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9324882718952819, "upperBound": 0.9867178967375213, "value": 0.9595959595959596 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9542404211596731, "upperBound": 0.9952601829378471, "value": 0.9747474747474747 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.961043577630534, "upperBound": 0.9985655733366773, "value": 0.9797979797979798 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9677885638448692, "upperBound": 1.0019149092409658, "value": 0.9848484848484849 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9677885638448692, "upperBound": 1.0019149092409658, "value": 0.9848484848484849 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9752574662419724, "upperBound": 1.0045344214155947, "value": 0.98989898989899 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9752574662419724, "upperBound": 1.0045344214155947, "value": 0.98989898989899 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9752574662419724, "upperBound": 1.0045344214155947, "value": 0.98989898989899 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9752574662419724, "upperBound": 1.0045344214155947, "value": 0.98989898989899 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.026566662476692038, "upperBound": 0.3735283667630741, "value": 0.2 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.026566662476692038, "upperBound": 0.3735283667630741, "value": 0.2 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.03525159151830101, "upperBound": 0.3359898956118682, "value": 0.15 } } }, "slice": "religion:hindu", "sliceValue": "hindu" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7345257926336435, "upperBound": 0.9222467596147708, "value": 0.8283918788269417 } }, "example_count": { "doubleValue": 243.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.2714821791149228, "upperBound": 0.7942470916143479, "value": 0.5333333333333333 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.22185028995432465, "upperBound": 0.7007837426797081, "value": 0.46153846153846156 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.19812366871138615, "upperBound": 0.7091743110865936, "value": 0.45454545454545453 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.06969598176652592, "upperBound": 0.7274865579160139, "value": 0.4 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.11001827827483024, "upperBound": 0.7758944201378684, "value": 0.4444444444444444 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.08556417948052653, "upperBound": 0.6632453443289973, "value": 0.375 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.08556417948052653, "upperBound": 0.6632453443289973, "value": 0.375 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": -0.014533279718643932, "upperBound": 0.5831047082900724, "value": 0.2857142857142857 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.02415512280426818, "upperBound": 0.6391782105290651, "value": 0.3333333333333333 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.5622914008851065, "upperBound": 0.9544951344186703, "value": 0.7586206896551724 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.5622914008851065, "upperBound": 0.9544951344186703, "value": 0.7586206896551724 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.6348822105356009, "upperBound": 0.9509173768501933, "value": 0.7931034482758621 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.6348822105356009, "upperBound": 0.9509173768501933, "value": 0.7931034482758621 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.6715551017750003, "upperBound": 0.9831150875503616, "value": 0.8275862068965517 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.6715551017750003, "upperBound": 0.9831150875503616, "value": 0.8275862068965517 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.6715551017750003, "upperBound": 0.9831150875503616, "value": 0.8275862068965517 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.6715551017750003, "upperBound": 0.9831150875503616, "value": 0.8275862068965517 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.7187227564137592, "upperBound": 1.0049604849936205, "value": 0.8620689655172413 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.057188271063492606, "upperBound": 0.13572672272914715, "value": 0.09649122807017543 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.057005375128555906, "upperBound": 0.1342305076137319, "value": 0.09565217391304348 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.06228752784195435, "upperBound": 0.13592471393455383, "value": 0.09913793103448276 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.06194065717249306, "upperBound": 0.13542157874773786, "value": 0.09871244635193133 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.06372849186447743, "upperBound": 0.14133612008896454, "value": 0.10256410256410256 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.06332293538998968, "upperBound": 0.14087064956921685, "value": 0.10212765957446808 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.06332293538998968, "upperBound": 0.14087064956921685, "value": 0.10212765957446808 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.06284271872789399, "upperBound": 0.14048666975111723, "value": 0.1016949152542373 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.06688544982133787, "upperBound": 0.14402436512352573, "value": 0.10548523206751055 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.005171826668975678, "upperBound": 0.0695791000181886, "value": 0.037383177570093455 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.0029196707352063464, "upperBound": 0.053160804467967115, "value": 0.028037383177570093 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.00040808525266645274, "upperBound": 0.047129040556607736, "value": 0.02336448598130841 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.0040649206478243945, "upperBound": 0.04144063632671474, "value": 0.018691588785046728 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.0040649206478243945, "upperBound": 0.04144063632671474, "value": 0.018691588785046728 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.0019625898953578545, "upperBound": 0.030000529007060846, "value": 0.014018691588785047 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.0019625898953578545, "upperBound": 0.030000529007060846, "value": 0.014018691588785047 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.004012217301321992, "upperBound": 0.022697672161072338, "value": 0.009345794392523364 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.004012217301321992, "upperBound": 0.022697672161072338, "value": 0.009345794392523364 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.8959780773258325, "upperBound": 0.9805680177300974, "value": 0.9382716049382716 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9078694076162348, "upperBound": 0.9851161208524848, "value": 0.9465020576131687 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9206004040541862, "upperBound": 0.9888588640029015, "value": 0.9547325102880658 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9269045658247366, "upperBound": 0.9907842018793167, "value": 0.9588477366255144 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9310397728543383, "upperBound": 0.994880393110692, "value": 0.9629629629629629 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9405241887846166, "upperBound": 0.9936196801739797, "value": 0.9670781893004116 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9405241887846166, "upperBound": 0.9936196801739797, "value": 0.9670781893004116 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9453515257088708, "upperBound": 0.9970311736920482, "value": 0.9711934156378601 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9498914145930053, "upperBound": 1.0007207844548793, "value": 0.9753086419753086 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.01943198226990247, "upperBound": 0.10402192267416732, "value": 0.06172839506172839 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.014883879147515572, "upperBound": 0.09213059238376517, "value": 0.053497942386831275 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.011141135997098574, "upperBound": 0.07939959594581394, "value": 0.04526748971193416 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.009215798120683356, "upperBound": 0.07309543417526376, "value": 0.0411522633744856 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.00511960688930789, "upperBound": 0.06896022714566204, "value": 0.037037037037037035 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.006380319826020046, "upperBound": 0.05947581121538322, "value": 0.03292181069958848 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.006380319826020046, "upperBound": 0.05947581121538322, "value": 0.03292181069958848 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.002968826307951807, "upperBound": 0.054648474291129026, "value": 0.02880658436213992 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.0007207844548793099, "upperBound": 0.05010858540699475, "value": 0.024691358024691357 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.20575290838565202, "upperBound": 0.7285178208850773, "value": 0.4666666666666667 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.2992162573202918, "upperBound": 0.7781497100456755, "value": 0.5384615384615384 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.2908256889134062, "upperBound": 0.8018763312886137, "value": 0.5454545454545454 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.27251344208398603, "upperBound": 0.9303040182334736, "value": 0.6 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.2241055798621317, "upperBound": 0.8899817217251698, "value": 0.5555555555555556 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.33675465567100266, "upperBound": 0.9144358205194736, "value": 0.625 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.33675465567100266, "upperBound": 0.9144358205194736, "value": 0.625 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.416895291709927, "upperBound": 1.014533279718644, "value": 0.7142857142857143 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.3608217894709348, "upperBound": 0.9758448771957317, "value": 0.6666666666666666 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.04550486558132996, "upperBound": 0.43770859911489324, "value": 0.2413793103448276 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.04550486558132996, "upperBound": 0.43770859911489324, "value": 0.2413793103448276 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.04908262314980641, "upperBound": 0.3651177894643993, "value": 0.20689655172413793 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.04908262314980641, "upperBound": 0.3651177894643993, "value": 0.20689655172413793 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.016884912449638634, "upperBound": 0.3284448982249996, "value": 0.1724137931034483 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.016884912449638634, "upperBound": 0.3284448982249996, "value": 0.1724137931034483 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.016884912449638634, "upperBound": 0.3284448982249996, "value": 0.1724137931034483 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.016884912449638634, "upperBound": 0.3284448982249996, "value": 0.1724137931034483 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": -0.004960484993620257, "upperBound": 0.28127724358624084, "value": 0.13793103448275862 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9304208999818111, "upperBound": 0.9948281733310242, "value": 0.9626168224299065 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.946839195532033, "upperBound": 0.9970803292647934, "value": 0.9719626168224299 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9528709594433926, "upperBound": 1.0004080852526664, "value": 0.9766355140186916 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9585593636732849, "upperBound": 1.0040649206478243, "value": 0.9813084112149533 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9585593636732849, "upperBound": 1.0040649206478243, "value": 0.9813084112149533 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9699994709929395, "upperBound": 1.0019625898953577, "value": 0.985981308411215 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9699994709929395, "upperBound": 1.0019625898953577, "value": 0.985981308411215 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9773023278389277, "upperBound": 1.0040122173013222, "value": 0.9906542056074766 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9773023278389277, "upperBound": 1.0040122173013222, "value": 0.9906542056074766 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.04550486558132996, "upperBound": 0.43770859911489324, "value": 0.2413793103448276 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.04550486558132996, "upperBound": 0.43770859911489324, "value": 0.2413793103448276 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.04908262314980641, "upperBound": 0.3651177894643993, "value": 0.20689655172413793 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.04908262314980641, "upperBound": 0.3651177894643993, "value": 0.20689655172413793 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.016884912449638634, "upperBound": 0.3284448982249996, "value": 0.1724137931034483 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.016884912449638634, "upperBound": 0.3284448982249996, "value": 0.1724137931034483 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.016884912449638634, "upperBound": 0.3284448982249996, "value": 0.1724137931034483 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.016884912449638634, "upperBound": 0.3284448982249996, "value": 0.1724137931034483 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.004960484993620257, "upperBound": 0.28127724358624084, "value": 0.13793103448275862 } } }, "slice": "religion:buddhist", "sliceValue": "buddhist" } ], "slicingMetricsCompare": [] } }, "c5ba0d11de314572bc6b482487b5980a": { "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "model_name": "LayoutModel", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "de0e9b637e034835a901de1caa1fcbed": { "model_module": "tensorflow_model_analysis", "model_module_version": "0.46.0", "model_name": "FairnessIndicatorModel", "state": { "_dom_classes": [], "_model_module": "tensorflow_model_analysis", "_model_module_version": "0.46.0", "_model_name": "FairnessIndicatorModel", "_view_count": null, "_view_module": "tensorflow_model_analysis", "_view_module_version": "0.46.0", "_view_name": "FairnessIndicatorView", "evalName": "", "evalNameCompare": "", "js_events": [], "layout": "IPY_MODEL_c5ba0d11de314572bc6b482487b5980a", "slicingMetrics": [ { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7797951604713586, "upperBound": 0.7841776661306442, "value": 0.7819864957775187 } }, "example_count": { "doubleValue": 721950.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.469204478219344, "upperBound": 0.4902122071143054, "value": 0.4797083682818246 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.46087203103036245, "upperBound": 0.4813806135956741, "value": 0.4711262798634812 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.4523040942513333, "upperBound": 0.47452529828670315, "value": 0.4634146341463415 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.44223719448521764, "upperBound": 0.46490629176362436, "value": 0.45357197491203916 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.43537868875193325, "upperBound": 0.45879218447550335, "value": 0.4470854555744199 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.42253930874982143, "upperBound": 0.44519968351765876, "value": 0.4338698390482855 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.416718014091682, "upperBound": 0.4405794115739155, "value": 0.4286491880613263 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.40743547840098326, "upperBound": 0.4326258531452144, "value": 0.4200310559006211 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.40179452919702724, "upperBound": 0.42849201527161523, "value": 0.4151436031331593 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.8579297130442171, "upperBound": 0.8635020192723147, "value": 0.8607157662014647 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.8633140451253758, "upperBound": 0.869033753200865, "value": 0.8661738289346415 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.8687461930596738, "upperBound": 0.8743795992627192, "value": 0.8715628022661324 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.873998203711224, "upperBound": 0.8792146478587922, "value": 0.8766063285891944 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.8792312112061028, "upperBound": 0.8845178116865055, "value": 0.8818743954677353 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.8857965827809283, "upperBound": 0.8906302603699957, "value": 0.8882133480724057 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.8887206491847511, "upperBound": 0.8937169432141977, "value": 0.8912187370457372 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.8944007157182627, "upperBound": 0.8991602460275137, "value": 0.8967804338814426 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9008127159001432, "upperBound": 0.9057370604681837, "value": 0.903274837639906 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.06999938566482607, "upperBound": 0.07107762565403843, "value": 0.0705385086863774 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.07033916778247597, "upperBound": 0.071462040367519, "value": 0.07090060794570903 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.07071559202242951, "upperBound": 0.07180825375489912, "value": 0.07126192641634138 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.0710613945435932, "upperBound": 0.07212866179075114, "value": 0.07159503213538052 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.07143268202183159, "upperBound": 0.07247477101028457, "value": 0.07195373044092218 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.07182691681443802, "upperBound": 0.0729238050794493, "value": 0.0723753655783527 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.07201323271852736, "upperBound": 0.0731437150796129, "value": 0.07257847852170476 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.07238369818041275, "upperBound": 0.07353153659940058, "value": 0.07295762218856004 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.07283176469242322, "upperBound": 0.07398977380977878, "value": 0.07341077381996841 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.010896487521765868, "upperBound": 0.01149627426771937, "value": 0.011196378607763827 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.010115337202414677, "upperBound": 0.010672132462561289, "value": 0.010393733039782908 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.00939640266459494, "upperBound": 0.00994540060188509, "value": 0.009670900258111539 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.008643444334215093, "upperBound": 0.00921655191391212, "value": 0.008929996656898385 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.008062494113737178, "upperBound": 0.008592780411503702, "value": 0.008327636005505576 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.00721290586767475, "upperBound": 0.007725639494657512, "value": 0.007469272077270824 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.006852027666840751, "upperBound": 0.00737874419276581, "value": 0.0071153851945775495 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0062752476911990766, "upperBound": 0.006759837421153395, "value": 0.006517542248070187 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.005748357820687211, "upperBound": 0.0062235620331710035, "value": 0.005985958973216033 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.978238097535757, "upperBound": 0.9788254128617815, "value": 0.978531754276612 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9794051815753317, "upperBound": 0.9800102920088576, "value": 0.9797077359927973 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9805222883901044, "upperBound": 0.9810872441628105, "value": 0.9808047648729137 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.98158488450229, "upperBound": 0.9821965424008411, "value": 0.9818907126532308 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9825772407989113, "upperBound": 0.9831572302985261, "value": 0.9828672345730314 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9838731055057536, "upperBound": 0.9844571134907995, "value": 0.9841651083870074 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9844329544552144, "upperBound": 0.9850303070164665, "value": 0.9847316296142392 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9854774839781942, "upperBound": 0.9859776055960484, "value": 0.9857275434586883 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9864818415732923, "upperBound": 0.9869927777899392, "value": 0.9867373086778862 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.021174587138218424, "upperBound": 0.021761902464242894, "value": 0.021468245723388048 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.019989707991142792, "upperBound": 0.020594818424668416, "value": 0.020292264007202715 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.018912755837189488, "upperBound": 0.019477711609895573, "value": 0.019195235127086364 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.01780345759915906, "upperBound": 0.01841511549771001, "value": 0.018109287346769167 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.016842769701474043, "upperBound": 0.017422759201088763, "value": 0.01713276542696863 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.015542886509200434, "upperBound": 0.016126894494246296, "value": 0.01583489161299259 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.014969692983533482, "upperBound": 0.015567045544785532, "value": 0.015268370385760786 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.014022394403951326, "upperBound": 0.014522516021805812, "value": 0.014272456541311726 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.013007222210060693, "upperBound": 0.013518158426707692, "value": 0.01326269132211372 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.5097877928856946, "upperBound": 0.5307955217806559, "value": 0.5202916317181754 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.5186193864043258, "upperBound": 0.5391279689696378, "value": 0.5288737201365188 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.525474701713297, "upperBound": 0.5476959057486668, "value": 0.5365853658536586 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.5350937082363757, "upperBound": 0.5577628055147822, "value": 0.5464280250879608 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.5412078155244968, "upperBound": 0.5646213112480667, "value": 0.5529145444255801 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.5548003164823412, "upperBound": 0.5774606912501785, "value": 0.5661301609517145 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.5594205884260846, "upperBound": 0.5832819859083178, "value": 0.5713508119386737 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.5673741468547855, "upperBound": 0.592564521599017, "value": 0.5799689440993789 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.5715079847283848, "upperBound": 0.5982054708029727, "value": 0.5848563968668408 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.13649798072768524, "upperBound": 0.1420702869557828, "value": 0.1392842337985353 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.1309662467991349, "upperBound": 0.136685954874624, "value": 0.13382617106535857 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.12562040073728087, "upperBound": 0.13125380694032618, "value": 0.12843719773386764 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.12078535214120772, "upperBound": 0.1260017962887755, "value": 0.12339367141080558 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.11548218831349455, "upperBound": 0.12076878879389749, "value": 0.11812560453226476 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.10936973963000388, "upperBound": 0.11420341721907179, "value": 0.11178665192759431 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.10628305678580222, "upperBound": 0.11127935081524873, "value": 0.10878126295426281 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.10083975397248619, "upperBound": 0.10559928428173719, "value": 0.10321956611855741 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.09426293953181616, "upperBound": 0.09918728409985669, "value": 0.09672516236009396 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9885037257322807, "upperBound": 0.989103512478234, "value": 0.9888036213922362 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9893278675374388, "upperBound": 0.9898846627975855, "value": 0.9896062669602171 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.990054599398115, "upperBound": 0.9906035973354052, "value": 0.9903290997418884 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9907834480860876, "upperBound": 0.9913565556657847, "value": 0.9910700033431016 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9914072195884964, "upperBound": 0.991937505886263, "value": 0.9916723639944944 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9922743605053423, "upperBound": 0.9927870941323251, "value": 0.9925307279227292 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.992621255807234, "upperBound": 0.9931479723331591, "value": 0.9928846148054224 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9932401625788467, "upperBound": 0.9937247523088009, "value": 0.9934824577519298 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9937764379668292, "upperBound": 0.9942516421793124, "value": 0.9940140410267839 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.13649798072768524, "upperBound": 0.1420702869557828, "value": 0.1392842337985353 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.1309662467991349, "upperBound": 0.136685954874624, "value": 0.13382617106535857 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.12562040073728087, "upperBound": 0.13125380694032618, "value": 0.12843719773386764 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.12078535214120772, "upperBound": 0.1260017962887755, "value": 0.12339367141080558 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.11548218831349455, "upperBound": 0.12076878879389749, "value": 0.11812560453226476 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.10936973963000388, "upperBound": 0.11420341721907179, "value": 0.11178665192759431 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.10628305678580222, "upperBound": 0.11127935081524873, "value": 0.10878126295426281 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.10083975397248619, "upperBound": 0.10559928428173719, "value": 0.10321956611855741 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.09426293953181616, "upperBound": 0.09918728409985669, "value": 0.09672516236009396 } } }, "slice": "Overall", "sliceValue": "Overall" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7526103353874609, "upperBound": 0.7790221153761607, "value": 0.7658157179490176 } }, "example_count": { "doubleValue": 16172.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.36581965644790865, "upperBound": 0.4892958875436613, "value": 0.427536231884058 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.3569614831502954, "upperBound": 0.47446359896778645, "value": 0.41568627450980394 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.328229189975096, "upperBound": 0.45106253539589913, "value": 0.38961038961038963 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.33522117500326387, "upperBound": 0.4590980358424439, "value": 0.39712918660287083 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.3354998697352214, "upperBound": 0.458346804344929, "value": 0.39690721649484534 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.3124270575485783, "upperBound": 0.4532843369698449, "value": 0.38285714285714284 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.3061231872111799, "upperBound": 0.45576419133573765, "value": 0.38095238095238093 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.28667522982681576, "upperBound": 0.45012394065121236, "value": 0.3684210526315789 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.2730550901314166, "upperBound": 0.44636881705785514, "value": 0.3597122302158273 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.8749764684382255, "upperBound": 0.909472266558293, "value": 0.8922237380627558 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.8823261443739079, "upperBound": 0.9143987846490669, "value": 0.8983628922237381 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.8877054325198835, "upperBound": 0.919933360467296, "value": 0.9038199181446112 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.899368511208557, "upperBound": 0.9287383620622485, "value": 0.9140518417462483 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9066950503194309, "upperBound": 0.9336905601588452, "value": 0.9201909959072305 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.913113347868541, "upperBound": 0.9395489265199842, "value": 0.9263301500682128 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9161922982944698, "upperBound": 0.9419269751092142, "value": 0.9290586630286494 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9213649586729523, "upperBound": 0.947672621948468, "value": 0.9345156889495225 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.924957472142162, "upperBound": 0.9536289520903954, "value": 0.9392905866302865 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.07629600348703965, "upperBound": 0.08827352197578649, "value": 0.08228485153497735 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.0766262067454812, "upperBound": 0.08885708420054841, "value": 0.08274172268643588 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.0769280320307762, "upperBound": 0.08930987548789804, "value": 0.08311900131735776 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.07792332998704592, "upperBound": 0.08996485306205713, "value": 0.08394412077930213 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.07839952198006768, "upperBound": 0.0904576320553369, "value": 0.08442858931030167 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.07879386064106093, "upperBound": 0.090987870179268, "value": 0.0848909170469463 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.07898184567644138, "upperBound": 0.09122552463033105, "value": 0.08510372406898276 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.07958822366625595, "upperBound": 0.09144791081236256, "value": 0.08551810237203496 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.07988768035590124, "upperBound": 0.09188292316683253, "value": 0.08588536144202583 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.006703281966192791, "upperBound": 0.009344683334355074, "value": 0.008023935808513532 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.006127195848503183, "upperBound": 0.008288807470243601, "value": 0.007207942336461309 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.005186638835221536, "upperBound": 0.007053362398633568, "value": 0.006119951040391677 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.0046604267573102185, "upperBound": 0.006627540829716503, "value": 0.005643954848361213 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.004186552120928038, "upperBound": 0.006285438812376538, "value": 0.005235958112335101 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.003441259971995898, "upperBound": 0.005670673815323977, "value": 0.004555963552291582 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.0032043890787065337, "upperBound": 0.005499595375880334, "value": 0.004351965184278526 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0026054357299215136, "upperBound": 0.005010565268828492, "value": 0.00380796953624371 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.002287180016210257, "upperBound": 0.0045128658692408395, "value": 0.003399972800217598 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9808706129612795, "upperBound": 0.9849961651947597, "value": 0.9829334652485778 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9824680959602088, "upperBound": 0.9859957783494191, "value": 0.984232005936186 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9840960720043396, "upperBound": 0.9873359893207897, "value": 0.9857160524363097 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9853168946620134, "upperBound": 0.9888359750091786, "value": 0.9870764283947564 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.986202992808038, "upperBound": 0.9898049569719403, "value": 0.9880039574573337 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.987414714976693, "upperBound": 0.9909429665425866, "value": 0.9891788276032649 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9878772914662501, "upperBound": 0.9913460666201122, "value": 0.9896116744991343 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9886680972140104, "upperBound": 0.9925339647200974, "value": 0.9906010388325501 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9894739133079704, "upperBound": 0.9933357885104968, "value": 0.9914048973534504 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.015003834805240193, "upperBound": 0.019129387038719973, "value": 0.01706653475142221 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.01400422165058071, "upperBound": 0.01753190403979121, "value": 0.015767994063814 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.012664010679210436, "upperBound": 0.015903927995660243, "value": 0.014283947563690329 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.011164024990821489, "upperBound": 0.014683105337986481, "value": 0.012923571605243631 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0101950430280597, "upperBound": 0.013797007191962076, "value": 0.011996042542666337 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.009057033457413374, "upperBound": 0.012585285023307118, "value": 0.010821172396735098 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.00865393337988802, "upperBound": 0.012122708533749558, "value": 0.010388325500865693 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0074660352799024565, "upperBound": 0.011331902785989814, "value": 0.009398961167449914 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.006664211489503419, "upperBound": 0.010526086692029946, "value": 0.008595102646549592 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.5107041124563386, "upperBound": 0.6341803435520913, "value": 0.572463768115942 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.5255364010322136, "upperBound": 0.6430385168497047, "value": 0.5843137254901961 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.5489374646041006, "upperBound": 0.6717708100249044, "value": 0.6103896103896104 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.5409019641575561, "upperBound": 0.6647788249967361, "value": 0.6028708133971292 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.5416531956550709, "upperBound": 0.6645001302647785, "value": 0.6030927835051546 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.5467156630301552, "upperBound": 0.6875729424514218, "value": 0.6171428571428571 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.5442358086642625, "upperBound": 0.69387681278882, "value": 0.6190476190476191 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.5498760593487875, "upperBound": 0.7133247701731842, "value": 0.631578947368421 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.553631182942145, "upperBound": 0.7269449098685836, "value": 0.6402877697841727 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.09052773344170702, "upperBound": 0.12502353156177487, "value": 0.1077762619372442 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.08560121535093328, "upperBound": 0.11767385562609219, "value": 0.10163710777626193 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.08006663953270399, "upperBound": 0.11229456748011682, "value": 0.09618008185538882 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.07126163793775167, "upperBound": 0.10063148879144329, "value": 0.08594815825375171 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.06630943984115473, "upperBound": 0.09330494968056893, "value": 0.07980900409276943 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.06045107348001564, "upperBound": 0.08688665213145899, "value": 0.07366984993178717 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.05807302489078558, "upperBound": 0.08380770170552998, "value": 0.07094133697135062 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.052327378051531544, "upperBound": 0.07863504132704753, "value": 0.06548431105047749 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.046371047909604515, "upperBound": 0.07504252785783784, "value": 0.06070941336971351 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9906553166656451, "upperBound": 0.993296718033807, "value": 0.9919760641914864 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9917111925297564, "upperBound": 0.9938728041514964, "value": 0.9927920576635387 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9929466376013661, "upperBound": 0.9948133611647784, "value": 0.9938800489596084 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9933724591702835, "upperBound": 0.9953395732426897, "value": 0.9943560451516388 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9937145611876234, "upperBound": 0.995813447879072, "value": 0.9947640418876649 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.994329326184676, "upperBound": 0.9965587400280038, "value": 0.9954440364477084 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9945004046241196, "upperBound": 0.9967956109212933, "value": 0.9956480348157215 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9949894347311712, "upperBound": 0.9973945642700781, "value": 0.9961920304637563 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.995487134130759, "upperBound": 0.9977128199837897, "value": 0.9966000271997824 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.09052773344170702, "upperBound": 0.12502353156177487, "value": 0.1077762619372442 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.08560121535093328, "upperBound": 0.11767385562609219, "value": 0.10163710777626193 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.08006663953270399, "upperBound": 0.11229456748011682, "value": 0.09618008185538882 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.07126163793775167, "upperBound": 0.10063148879144329, "value": 0.08594815825375171 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.06630943984115473, "upperBound": 0.09330494968056893, "value": 0.07980900409276943 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.06045107348001564, "upperBound": 0.08688665213145899, "value": 0.07366984993178717 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.05807302489078558, "upperBound": 0.08380770170552998, "value": 0.07094133697135062 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.052327378051531544, "upperBound": 0.07863504132704753, "value": 0.06548431105047749 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.046371047909604515, "upperBound": 0.07504252785783784, "value": 0.06070941336971351 } } }, "slice": "religion:christian", "sliceValue": "christian" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.698991537626898, "upperBound": 0.7232982457035595, "value": 0.7111476189774205 } }, "example_count": { "doubleValue": 8436.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.3043797402715789, "upperBound": 0.4184836202293347, "value": 0.3614457831325301 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.2932766038525642, "upperBound": 0.411007465487603, "value": 0.3521739130434783 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.29028473378198144, "upperBound": 0.41606622537067256, "value": 0.3532110091743119 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.28473792414127397, "upperBound": 0.4204992993480404, "value": 0.3526570048309179 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.25880306797008357, "upperBound": 0.4112309593911583, "value": 0.33505154639175255 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.23473163649145298, "upperBound": 0.38740863355183697, "value": 0.3111111111111111 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.23302835110309478, "upperBound": 0.39781253656484133, "value": 0.31547619047619047 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.20792070351750652, "upperBound": 0.3794892398587673, "value": 0.29375 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.20002448217250396, "upperBound": 0.39298293841176296, "value": 0.296551724137931 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9044230223398905, "upperBound": 0.928121064745756, "value": 0.9162717219589257 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9107249230069621, "upperBound": 0.9323497588296081, "value": 0.9215376513954713 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9157225650507771, "upperBound": 0.9357783615735916, "value": 0.9257503949447078 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9194838301107863, "upperBound": 0.9393896683304349, "value": 0.9294365455502897 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9218964137349984, "upperBound": 0.9422429970857241, "value": 0.9320695102685624 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9251069760444783, "upperBound": 0.9442987806783569, "value": 0.9347024749868352 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9302154797470575, "upperBound": 0.9486687124686358, "value": 0.9394418114797262 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9311423444887145, "upperBound": 0.9498480160513308, "value": 0.9404949973670352 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.93627423338558, "upperBound": 0.9563001464075092, "value": 0.9462875197472354 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.2031817769895906, "upperBound": 0.22188374526831867, "value": 0.21253206302674973 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.2038351090670135, "upperBound": 0.222683333991034, "value": 0.21325859127467706 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.2045586376293381, "upperBound": 0.22328403528618865, "value": 0.21392066196154783 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.20524166583924358, "upperBound": 0.22373034271963455, "value": 0.21448535666545146 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.20549774280388847, "upperBound": 0.22401086978632037, "value": 0.21475370055811696 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.20574483827668363, "upperBound": 0.22424677823168734, "value": 0.21499515503875968 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.20660379842358154, "upperBound": 0.22494071854275635, "value": 0.21577164973391388 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.20668995884815997, "upperBound": 0.224920646735172, "value": 0.21580473658772353 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.20750000329730584, "upperBound": 0.22598305896421716, "value": 0.21674104450609094 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.010714925596105505, "upperBound": 0.01682071511305493, "value": 0.013767783386874713 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.009297794819478043, "upperBound": 0.015484304634573922, "value": 0.012391005048187242 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.008747022194922034, "upperBound": 0.014811147128834135, "value": 0.011779103564326144 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.008134247276099429, "upperBound": 0.014200116366684275, "value": 0.011167202080465045 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.007086152644774334, "upperBound": 0.012800189335919587, "value": 0.009943399112742848 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.0058972526570128195, "upperBound": 0.011235569356121597, "value": 0.008566620774055378 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.005351296498878605, "upperBound": 0.010863797867538367, "value": 0.008107694661159553 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.004631052655726978, "upperBound": 0.009748332334675393, "value": 0.007189842435367906 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.004021736054012624, "upperBound": 0.009133775673470639, "value": 0.006577940951506807 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9666126407674804, "upperBound": 0.974354819887113, "value": 0.9704836415362731 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9689213260475386, "upperBound": 0.9765504783848923, "value": 0.9727358937885253 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9706188092666905, "upperBound": 0.9776981418373041, "value": 0.974158368895211 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9719692059710255, "upperBound": 0.9789555097001174, "value": 0.9754623044096729 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.973884171399588, "upperBound": 0.9801228675183866, "value": 0.9770033191085823 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9756605938032811, "upperBound": 0.981665638911693, "value": 0.9786628733997155 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9770301828535622, "upperBound": 0.9831407401558588, "value": 0.9800853485064012 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9782137545858496, "upperBound": 0.9838536774504363, "value": 0.9810336652441916 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9799442309395492, "upperBound": 0.9856793120732785, "value": 0.9828117591275486 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.025645180112887064, "upperBound": 0.0333873592325195, "value": 0.029516358463726886 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.023449521615107494, "upperBound": 0.031078673952461368, "value": 0.027264106211474633 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.022301858162695982, "upperBound": 0.029381190733308978, "value": 0.025841631104789 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.021044490299882486, "upperBound": 0.02803079402897466, "value": 0.02453769559032717 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.019877132481613376, "upperBound": 0.02611582860041201, "value": 0.022996680891417733 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.01833436108830704, "upperBound": 0.02433940619671888, "value": 0.021337126600284494 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.01685925984414109, "upperBound": 0.022969817146437952, "value": 0.01991465149359886 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.016146322549563375, "upperBound": 0.02178624541415009, "value": 0.01896633475580844 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.014320687926721405, "upperBound": 0.02005576906045064, "value": 0.0171882408724514 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.5815163797706651, "upperBound": 0.6956202597284211, "value": 0.6385542168674698 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.5889925345123969, "upperBound": 0.7067233961474358, "value": 0.6478260869565218 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.5839337746293273, "upperBound": 0.7097152662180185, "value": 0.6467889908256881 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.5795007006519597, "upperBound": 0.7152620758587263, "value": 0.6473429951690821 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.5887690406088415, "upperBound": 0.7411969320299161, "value": 0.6649484536082474 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.6125913664481628, "upperBound": 0.7652683635085473, "value": 0.6888888888888889 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.6021874634351587, "upperBound": 0.766971648896905, "value": 0.6845238095238095 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.6205107601412326, "upperBound": 0.7920792964824933, "value": 0.70625 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.6070170615882369, "upperBound": 0.7999755178274961, "value": 0.7034482758620689 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.07187893525424395, "upperBound": 0.0955769776601093, "value": 0.08372827804107424 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.06765024117039167, "upperBound": 0.08927507699303802, "value": 0.0784623486045287 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.06422163842640834, "upperBound": 0.08427743494922287, "value": 0.07424960505529225 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.060610331669565046, "upperBound": 0.08051616988921377, "value": 0.07056345444971038 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.05775700291427566, "upperBound": 0.07810358626500152, "value": 0.0679304897314376 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.055701219321643174, "upperBound": 0.07489302395552161, "value": 0.06529752501316483 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.051331287531364345, "upperBound": 0.06978452025294245, "value": 0.06055818852027383 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.050151983948669085, "upperBound": 0.06885765551128568, "value": 0.05950500263296472 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.04369985359249096, "upperBound": 0.06372576661442006, "value": 0.053712480252764615 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9831792848869448, "upperBound": 0.9892850744038949, "value": 0.9862322166131253 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9845156953654262, "upperBound": 0.9907022051805221, "value": 0.9876089949518128 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9851888528711661, "upperBound": 0.991252977805078, "value": 0.9882208964356739 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9857998836333156, "upperBound": 0.9918657527239007, "value": 0.9888327979195349 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9871998106640807, "upperBound": 0.9929138473552257, "value": 0.9900566008872571 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9887644306438786, "upperBound": 0.9941027473429874, "value": 0.9914333792259447 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9891362021324617, "upperBound": 0.9946487035011213, "value": 0.9918923053388404 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9902516676653247, "upperBound": 0.9953689473442727, "value": 0.9928101575646321 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9908662243265293, "upperBound": 0.9959782639459874, "value": 0.9934220590484932 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.07187893525424395, "upperBound": 0.0955769776601093, "value": 0.08372827804107424 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.06765024117039167, "upperBound": 0.08927507699303802, "value": 0.0784623486045287 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.06422163842640834, "upperBound": 0.08427743494922287, "value": 0.07424960505529225 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.060610331669565046, "upperBound": 0.08051616988921377, "value": 0.07056345444971038 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.05775700291427566, "upperBound": 0.07810358626500152, "value": 0.0679304897314376 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.055701219321643174, "upperBound": 0.07489302395552161, "value": 0.06529752501316483 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.051331287531364345, "upperBound": 0.06978452025294245, "value": 0.06055818852027383 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.050151983948669085, "upperBound": 0.06885765551128568, "value": 0.05950500263296472 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.04369985359249096, "upperBound": 0.06372576661442006, "value": 0.053712480252764615 } } }, "slice": "religion:muslim", "sliceValue": "muslim" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.6813364902101924, "upperBound": 0.7349013359274488, "value": 0.7081257093655825 } }, "example_count": { "doubleValue": 3015.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.2528612979396553, "upperBound": 0.504101369843711, "value": 0.3783783783783784 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.23685203086112158, "upperBound": 0.5061843399138902, "value": 0.37142857142857144 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.23719226619441142, "upperBound": 0.5014139896561869, "value": 0.36923076923076925 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.24689144847156952, "upperBound": 0.5328512464738476, "value": 0.3898305084745763 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.2531776084570353, "upperBound": 0.5539295515865698, "value": 0.40350877192982454 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.20426737552079466, "upperBound": 0.5409016544100183, "value": 0.37254901960784315 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.21013641035366512, "upperBound": 0.5499491488861493, "value": 0.38 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.18352524213433102, "upperBound": 0.5606093424799234, "value": 0.37209302325581395 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.15405040322753957, "upperBound": 0.5288183030911024, "value": 0.34146341463414637 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.8796449769217708, "upperBound": 0.9399835034962664, "value": 0.9098039215686274 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.8844756854917382, "upperBound": 0.9429977433965469, "value": 0.9137254901960784 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.891629182801894, "upperBound": 0.9476112480262698, "value": 0.9196078431372549 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9035503477489257, "upperBound": 0.9552930568744984, "value": 0.9294117647058824 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9083906369199911, "upperBound": 0.9582964451223693, "value": 0.9333333333333333 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9138292712271455, "upperBound": 0.9606984812837999, "value": 0.9372549019607843 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9158229672555297, "upperBound": 0.96262810625927, "value": 0.9392156862745098 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9248530317293111, "upperBound": 0.9692832665744164, "value": 0.9470588235294117 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9248530317293111, "upperBound": 0.9692832665744164, "value": 0.9470588235294117 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.14892322572949956, "upperBound": 0.1666149822007852, "value": 0.15776946616797008 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.1493959845766103, "upperBound": 0.16707219129883655, "value": 0.15823429541595926 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.15022269245098716, "upperBound": 0.1677433602058763, "value": 0.15898305084745762 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.1511842889461013, "upperBound": 0.1695191772038483, "value": 0.16035182679296348 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.15187355205512196, "upperBound": 0.16996533054805255, "value": 0.16091954022988506 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.15191060749646149, "upperBound": 0.1706264280860703, "value": 0.1612685560053981 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.152345671172013, "upperBound": 0.17075718496779282, "value": 0.1615514333895447 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.15319515800634706, "upperBound": 0.17183855089837544, "value": 0.16251682368775236 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.15309930227533844, "upperBound": 0.17171580993731603, "value": 0.16240753194351043 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.007103556910270241, "upperBound": 0.015251768702304574, "value": 0.011177644710578843 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.006197356613773901, "upperBound": 0.014560989212522395, "value": 0.010379241516966068 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.005463746284754044, "upperBound": 0.013698008807819961, "value": 0.009580838323353293 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.004944821241501458, "upperBound": 0.013418531932961055, "value": 0.009181636726546906 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.004944821241501458, "upperBound": 0.013418531932961055, "value": 0.009181636726546906 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.003655801092190267, "upperBound": 0.011514104480673915, "value": 0.007584830339321357 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.003655801092190267, "upperBound": 0.011514104480673915, "value": 0.007584830339321357 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.002402102689950089, "upperBound": 0.010373093888394615, "value": 0.006387225548902195 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.0018973415524016811, "upperBound": 0.009281033825074805, "value": 0.005588822355289421 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9690156145474331, "upperBound": 0.9818962861128129, "value": 0.9754560530679933 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9705408036365822, "upperBound": 0.9830249826708387, "value": 0.9767827529021559 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9720302713412261, "upperBound": 0.9848524881511513, "value": 0.978441127694859 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9743470683287773, "upperBound": 0.9865156909495741, "value": 0.9804311774461029 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9752675585880402, "upperBound": 0.9869218153227961, "value": 0.981094527363184 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9780735220624326, "upperBound": 0.9880959492587433, "value": 0.9830845771144279 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9783062522441909, "upperBound": 0.988526611767312, "value": 0.9834162520729685 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9804933454309577, "upperBound": 0.9909826077572432, "value": 0.9857379767827529 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9812338656273066, "upperBound": 0.9915687995631356, "value": 0.9864013266998342 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.018103713887187158, "upperBound": 0.030984385452567084, "value": 0.024543946932006632 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.01697501732916144, "upperBound": 0.029459196363417674, "value": 0.02321724709784411 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.015147511848848317, "upperBound": 0.02796972865877388, "value": 0.02155887230514096 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.013484309050425906, "upperBound": 0.025652931671222984, "value": 0.01956882255389718 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.013078184677203803, "upperBound": 0.024732441411959464, "value": 0.01890547263681592 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.01190405074125659, "upperBound": 0.021926477937567447, "value": 0.01691542288557214 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.011473388232687998, "upperBound": 0.02169374775580876, "value": 0.01658374792703151 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.009017392242756697, "upperBound": 0.019506654569042325, "value": 0.014262023217247097 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.008431200436864367, "upperBound": 0.01876613437269362, "value": 0.013598673300165837 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.49589863015628877, "upperBound": 0.7471387020603449, "value": 0.6216216216216216 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.4938156600861099, "upperBound": 0.7631479691388783, "value": 0.6285714285714286 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.4985860103438131, "upperBound": 0.7628077338055883, "value": 0.6307692307692307 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.46714875352615226, "upperBound": 0.7531085515284306, "value": 0.6101694915254238 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.44607044841343035, "upperBound": 0.7468223915429648, "value": 0.5964912280701754 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.4590983455899814, "upperBound": 0.7957326244792057, "value": 0.6274509803921569 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.45005085111385057, "upperBound": 0.7898635896463349, "value": 0.62 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.43939065752007667, "upperBound": 0.8164747578656689, "value": 0.627906976744186 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.47118169690889744, "upperBound": 0.8459495967724605, "value": 0.6585365853658537 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.06001649650373374, "upperBound": 0.1203550230782293, "value": 0.09019607843137255 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.05700225660345344, "upperBound": 0.11552431450826171, "value": 0.08627450980392157 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.05238875197373014, "upperBound": 0.10837081719810601, "value": 0.0803921568627451 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.04470694312550175, "upperBound": 0.09644965225107438, "value": 0.07058823529411765 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.0417035548776308, "upperBound": 0.09160936308000914, "value": 0.06666666666666667 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.03930151871620015, "upperBound": 0.08617072877285452, "value": 0.06274509803921569 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.03737189374072991, "upperBound": 0.0841770327444703, "value": 0.060784313725490195 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.030716733425583818, "upperBound": 0.07514696827068895, "value": 0.052941176470588235 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.030716733425583818, "upperBound": 0.07514696827068895, "value": 0.052941176470588235 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9847482312976956, "upperBound": 0.9928964430897296, "value": 0.9888223552894212 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9854390107874778, "upperBound": 0.9938026433862264, "value": 0.9896207584830339 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.98630199119218, "upperBound": 0.9945362537152462, "value": 0.9904191616766467 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.986581468067039, "upperBound": 0.9950551787584986, "value": 0.9908183632734531 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.986581468067039, "upperBound": 0.9950551787584986, "value": 0.9908183632734531 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.988485895519326, "upperBound": 0.9963441989078096, "value": 0.9924151696606787 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.988485895519326, "upperBound": 0.9963441989078096, "value": 0.9924151696606787 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9896269061116055, "upperBound": 0.9975978973100498, "value": 0.9936127744510979 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9907189661749254, "upperBound": 0.998102658447598, "value": 0.9944111776447105 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.06001649650373374, "upperBound": 0.1203550230782293, "value": 0.09019607843137255 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.05700225660345344, "upperBound": 0.11552431450826171, "value": 0.08627450980392157 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.05238875197373014, "upperBound": 0.10837081719810601, "value": 0.0803921568627451 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.04470694312550175, "upperBound": 0.09644965225107438, "value": 0.07058823529411765 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0417035548776308, "upperBound": 0.09160936308000914, "value": 0.06666666666666667 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.03930151871620015, "upperBound": 0.08617072877285452, "value": 0.06274509803921569 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.03737189374072991, "upperBound": 0.0841770327444703, "value": 0.060784313725490195 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.030716733425583818, "upperBound": 0.07514696827068895, "value": 0.052941176470588235 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.030716733425583818, "upperBound": 0.07514696827068895, "value": 0.052941176470588235 } } }, "slice": "religion:jewish", "sliceValue": "jewish" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7005991278115193, "upperBound": 0.8082954601891787, "value": 0.7544400044400045 } }, "example_count": { "doubleValue": 545.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.3649210373613505, "upperBound": 0.8349690725287591, "value": 0.6 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.3649210373613505, "upperBound": 0.8349690725287591, "value": 0.6 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.4089357436201034, "upperBound": 0.8768701171857574, "value": 0.6428571428571429 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.4089357436201034, "upperBound": 0.8768701171857574, "value": 0.6428571428571429 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.39536639807160356, "upperBound": 0.9379669352617295, "value": 0.6666666666666666 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.3262862092516143, "upperBound": 0.874269346303941, "value": 0.6 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.3262862092516143, "upperBound": 0.874269346303941, "value": 0.6 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.3262862092516143, "upperBound": 0.874269346303941, "value": 0.6 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.22004061599894265, "upperBound": 0.891268907810581, "value": 0.5555555555555556 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.8657850416214014, "upperBound": 0.9783566873592794, "value": 0.922077922077922 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.8657850416214014, "upperBound": 0.9783566873592794, "value": 0.922077922077922 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.8827918743846173, "upperBound": 0.9873515299225257, "value": 0.935064935064935 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.8827918743846173, "upperBound": 0.9873515299225257, "value": 0.935064935064935 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.900400755047432, "upperBound": 0.9957443245861728, "value": 0.948051948051948 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.900400755047432, "upperBound": 0.9957443245861728, "value": 0.948051948051948 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.900400755047432, "upperBound": 0.9957443245861728, "value": 0.948051948051948 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.900400755047432, "upperBound": 0.9957443245861728, "value": 0.948051948051948 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.900400755047432, "upperBound": 0.9957443245861728, "value": 0.948051948051948 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.10744688283922887, "upperBound": 0.1604854592829964, "value": 0.1339622641509434 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.10744688283922887, "upperBound": 0.1604854592829964, "value": 0.1339622641509434 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.11007343780784895, "upperBound": 0.16112006242665694, "value": 0.13559322033898305 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.11007343780784895, "upperBound": 0.16112006242665694, "value": 0.13559322033898305 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.11156238421375657, "upperBound": 0.1623682432288825, "value": 0.13696060037523453 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.11127903318237949, "upperBound": 0.161626947046458, "value": 0.13644859813084112 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.11127903318237949, "upperBound": 0.161626947046458, "value": 0.13644859813084112 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.11127903318237949, "upperBound": 0.161626947046458, "value": 0.13644859813084112 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.11111764195108226, "upperBound": 0.16127851996791492, "value": 0.13619402985074627 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.006469817576176895, "upperBound": 0.03200405288008237, "value": 0.019230769230769232 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.006469817576176895, "upperBound": 0.03200405288008237, "value": 0.019230769230769232 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.006469817576176895, "upperBound": 0.03200405288008237, "value": 0.019230769230769232 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.006469817576176895, "upperBound": 0.03200405288008237, "value": 0.019230769230769232 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0047252588112337655, "upperBound": 0.029471518612016703, "value": 0.017094017094017096 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.0030297257271027413, "upperBound": 0.022619866240613982, "value": 0.01282051282051282 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.0030297257271027413, "upperBound": 0.022619866240613982, "value": 0.01282051282051282 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0030297257271027413, "upperBound": 0.022619866240613982, "value": 0.01282051282051282 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.0016338191459504148, "upperBound": 0.019738189236788446, "value": 0.010683760683760684 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9582396880929576, "upperBound": 0.9867033566482513, "value": 0.9724770642201835 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9582396880929576, "upperBound": 0.9867033566482513, "value": 0.9724770642201835 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9597568415042893, "upperBound": 0.9888544046087989, "value": 0.9743119266055046 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9597568415042893, "upperBound": 0.9888544046087989, "value": 0.9743119266055046 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9646805581391444, "upperBound": 0.9912760018845073, "value": 0.9779816513761468 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9694803816519655, "upperBound": 0.993815222615912, "value": 0.981651376146789 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9694803816519655, "upperBound": 0.993815222615912, "value": 0.981651376146789 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9694803816519655, "upperBound": 0.993815222615912, "value": 0.981651376146789 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9728859642879935, "upperBound": 0.9940822969351659, "value": 0.9834862385321101 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.013296643351748707, "upperBound": 0.04176031190704256, "value": 0.027522935779816515 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.013296643351748707, "upperBound": 0.04176031190704256, "value": 0.027522935779816515 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.011145595391201416, "upperBound": 0.04024315849571075, "value": 0.025688073394495414 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.011145595391201416, "upperBound": 0.04024315849571075, "value": 0.025688073394495414 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.00872399811549254, "upperBound": 0.03531944186085548, "value": 0.022018348623853212 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.006184777384088154, "upperBound": 0.030519618348034662, "value": 0.01834862385321101 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.006184777384088154, "upperBound": 0.030519618348034662, "value": 0.01834862385321101 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.006184777384088154, "upperBound": 0.030519618348034662, "value": 0.01834862385321101 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.005917703064834008, "upperBound": 0.027114035712006747, "value": 0.01651376146788991 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 0.1650309274712413, "upperBound": 0.635078962638649, "value": 0.4 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 0.1650309274712413, "upperBound": 0.635078962638649, "value": 0.4 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 0.1231298828142422, "upperBound": 0.5910642563798969, "value": 0.35714285714285715 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 0.1231298828142422, "upperBound": 0.5910642563798969, "value": 0.35714285714285715 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 0.062033064738270305, "upperBound": 0.6046336019283962, "value": 0.3333333333333333 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 0.1257306536960589, "upperBound": 0.6737137907483859, "value": 0.4 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 0.1257306536960589, "upperBound": 0.6737137907483859, "value": 0.4 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 0.1257306536960589, "upperBound": 0.6737137907483859, "value": 0.4 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 0.10873109218941895, "upperBound": 0.7799593840010572, "value": 0.4444444444444444 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": 0.021643312640720357, "upperBound": 0.1342149583785984, "value": 0.07792207792207792 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": 0.021643312640720357, "upperBound": 0.1342149583785984, "value": 0.07792207792207792 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": 0.01264847007747407, "upperBound": 0.11720812561538288, "value": 0.06493506493506493 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": 0.01264847007747407, "upperBound": 0.11720812561538288, "value": 0.06493506493506493 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9679959471199178, "upperBound": 0.9935301824238232, "value": 0.9807692307692307 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9679959471199178, "upperBound": 0.9935301824238232, "value": 0.9807692307692307 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9679959471199178, "upperBound": 0.9935301824238232, "value": 0.9807692307692307 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9679959471199178, "upperBound": 0.9935301824238232, "value": 0.9807692307692307 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9705284813879835, "upperBound": 0.9952747411887661, "value": 0.9829059829059829 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9773801337593861, "upperBound": 0.9969702742728974, "value": 0.9871794871794872 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9773801337593861, "upperBound": 0.9969702742728974, "value": 0.9871794871794872 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9773801337593861, "upperBound": 0.9969702742728974, "value": 0.9871794871794872 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9802618107632118, "upperBound": 0.9983661808540493, "value": 0.9893162393162394 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.021643312640720357, "upperBound": 0.1342149583785984, "value": 0.07792207792207792 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.021643312640720357, "upperBound": 0.1342149583785984, "value": 0.07792207792207792 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.01264847007747407, "upperBound": 0.11720812561538288, "value": 0.06493506493506493 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.01264847007747407, "upperBound": 0.11720812561538288, "value": 0.06493506493506493 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.004255675413827119, "upperBound": 0.099599244952568, "value": 0.05194805194805195 } } }, "slice": "religion:atheist", "sliceValue": "atheist" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.5671703079973114, "upperBound": 0.797199630263518, "value": 0.6821969696969699 } }, "example_count": { "doubleValue": 218.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": -0.9425172802630517, "upperBound": 1.9425172802630517, "value": 0.5 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": -0.9425172802630517, "upperBound": 1.9425172802630517, "value": 0.5 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": -0.9425172802630517, "upperBound": 1.9425172802630517, "value": 0.5 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": -0.9425172802630517, "upperBound": 1.9425172802630517, "value": 0.5 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": 1.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": "NaN" } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": "NaN" } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": "NaN" } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": "NaN" } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.8433975848679567, "upperBound": 1.056684974471568, "value": 0.95 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.8433975848679567, "upperBound": 1.056684974471568, "value": 0.95 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.8433975848679567, "upperBound": 1.056684974471568, "value": 0.95 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.8433975848679567, "upperBound": 1.056684974471568, "value": 0.95 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.052577727030225944, "upperBound": 0.12337510426368015, "value": 0.08796296296296297 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.052577727030225944, "upperBound": 0.12337510426368015, "value": 0.08796296296296297 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.052577727030225944, "upperBound": 0.12337510426368015, "value": 0.08796296296296297 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.052577727030225944, "upperBound": 0.12337510426368015, "value": 0.08796296296296297 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.055852696198463156, "upperBound": 0.12850439156946242, "value": 0.09216589861751152 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.055877581151165895, "upperBound": 0.12763049720879915, "value": 0.09174311926605505 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.055877581151165895, "upperBound": 0.12763049720879915, "value": 0.09174311926605505 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.055877581151165895, "upperBound": 0.12763049720879915, "value": 0.09174311926605505 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.055877581151165895, "upperBound": 0.12763049720879915, "value": 0.09174311926605505 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": -0.005569420199088093, "upperBound": 0.01567996562566676, "value": 0.005050505050505051 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": -0.005569420199088093, "upperBound": 0.01567996562566676, "value": 0.005050505050505051 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.005569420199088093, "upperBound": 0.01567996562566676, "value": 0.005050505050505051 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.005569420199088093, "upperBound": 0.01567996562566676, "value": 0.005050505050505051 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.005569420199088093, "upperBound": 0.01567996562566676, "value": 0.005050505050505051 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9775428192674914, "upperBound": 1.0041045964454884, "value": 0.9908256880733946 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9775428192674914, "upperBound": 1.0041045964454884, "value": 0.9908256880733946 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9775428192674914, "upperBound": 1.0041045964454884, "value": 0.9908256880733946 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9775428192674914, "upperBound": 1.0041045964454884, "value": 0.9908256880733946 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.985767712398469, "upperBound": 1.005052477634381, "value": 0.9954128440366973 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": -0.00410459644548828, "upperBound": 0.022457180732508544, "value": 0.009174311926605505 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": -0.00410459644548828, "upperBound": 0.022457180732508544, "value": 0.009174311926605505 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.00410459644548828, "upperBound": 0.022457180732508544, "value": 0.009174311926605505 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.00410459644548828, "upperBound": 0.022457180732508544, "value": 0.009174311926605505 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.005052477634381043, "upperBound": 0.01423228760153095, "value": 0.0045871559633027525 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": -0.9425172802630517, "upperBound": 1.9425172802630517, "value": 0.5 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": -0.9425172802630517, "upperBound": 1.9425172802630517, "value": 0.5 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": -0.9425172802630517, "upperBound": 1.9425172802630517, "value": 0.5 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": -0.9425172802630517, "upperBound": 1.9425172802630517, "value": 0.5 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": 0.0 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": "NaN" } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": "NaN" } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": "NaN" } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": "NaN" } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": -0.056684974471568325, "upperBound": 0.15660241513204304, "value": 0.05 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": -0.056684974471568325, "upperBound": 0.15660241513204304, "value": 0.05 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": -0.056684974471568325, "upperBound": 0.15660241513204304, "value": 0.05 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": -0.056684974471568325, "upperBound": 0.15660241513204304, "value": 0.05 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9843200343743331, "upperBound": 1.005569420199088, "value": 0.9949494949494949 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9843200343743331, "upperBound": 1.005569420199088, "value": 0.9949494949494949 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9843200343743331, "upperBound": 1.005569420199088, "value": 0.9949494949494949 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9843200343743331, "upperBound": 1.005569420199088, "value": 0.9949494949494949 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9843200343743331, "upperBound": 1.005569420199088, "value": 0.9949494949494949 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": -0.056684974471568325, "upperBound": 0.15660241513204304, "value": 0.05 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": -0.056684974471568325, "upperBound": 0.15660241513204304, "value": 0.05 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.056684974471568325, "upperBound": 0.15660241513204304, "value": 0.05 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.056684974471568325, "upperBound": 0.15660241513204304, "value": 0.05 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } } }, "slice": "religion:hindu", "sliceValue": "hindu" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.5544230991004662, "upperBound": 0.8016680167161103, "value": 0.6780956112852664 } }, "example_count": { "doubleValue": 138.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.7836674170799884, "upperBound": 1.0347638884565804, "value": 0.9090909090909091 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.09157302339165083, "upperBound": 0.20250321387266165, "value": 0.14705882352941177 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9645244883547686, "upperBound": 1.006483880560576, "value": 0.9855072463768116 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.006483880560576295, "upperBound": 0.03547551164523126, "value": 0.014492753623188406 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.034763888456580364, "upperBound": 0.21633258292001167, "value": 0.09090909090909091 } } }, "slice": "religion:other_religion", "sliceValue": "other_religion" }, { "metrics": { "accuracy": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "auc": { "boundedValue": { "lowerBound": 0.7001188173707207, "upperBound": 0.8703523258274064, "value": 0.7852078633580406 } }, "example_count": { "doubleValue": 243.0 }, "fairness_indicators_metrics/false_discovery_rate@0.4000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4125": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4250": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4375": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4500": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.4875": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": 0.0 } }, "fairness_indicators_metrics/false_discovery_rate@0.5000": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": 0.0 } }, "fairness_indicators_metrics/false_negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.7768699178456813, "upperBound": 1.0160773966533574, "value": 0.896551724137931 } }, "fairness_indicators_metrics/false_negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.7768699178456813, "upperBound": 1.0160773966533574, "value": 0.896551724137931 } }, "fairness_indicators_metrics/false_negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.8302541920988559, "upperBound": 1.0317140759038947, "value": 0.9310344827586207 } }, "fairness_indicators_metrics/false_negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.8302541920988559, "upperBound": 1.0317140759038947, "value": 0.9310344827586207 } }, "fairness_indicators_metrics/false_negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.8302541920988559, "upperBound": 1.0317140759038947, "value": 0.9310344827586207 } }, "fairness_indicators_metrics/false_negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.8302541920988559, "upperBound": 1.0317140759038947, "value": 0.9310344827586207 } }, "fairness_indicators_metrics/false_negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.8302541920988559, "upperBound": 1.0317140759038947, "value": 0.9310344827586207 } }, "fairness_indicators_metrics/false_negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.8917219160079988, "upperBound": 1.0391248553560135, "value": 0.9655172413793104 } }, "fairness_indicators_metrics/false_negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.8917219160079988, "upperBound": 1.0391248553560135, "value": 0.9655172413793104 } }, "fairness_indicators_metrics/false_omission_rate@0.4000": { "boundedValue": { "lowerBound": 0.06613288843674422, "upperBound": 0.15052081573685883, "value": 0.10833333333333334 } }, "fairness_indicators_metrics/false_omission_rate@0.4125": { "boundedValue": { "lowerBound": 0.06613288843674422, "upperBound": 0.15052081573685883, "value": 0.10833333333333334 } }, "fairness_indicators_metrics/false_omission_rate@0.4250": { "boundedValue": { "lowerBound": 0.0704337686443717, "upperBound": 0.15361578445715623, "value": 0.11203319502074689 } }, "fairness_indicators_metrics/false_omission_rate@0.4375": { "boundedValue": { "lowerBound": 0.0704337686443717, "upperBound": 0.15361578445715623, "value": 0.11203319502074689 } }, "fairness_indicators_metrics/false_omission_rate@0.4500": { "boundedValue": { "lowerBound": 0.0704337686443717, "upperBound": 0.15361578445715623, "value": 0.11203319502074689 } }, "fairness_indicators_metrics/false_omission_rate@0.4675": { "boundedValue": { "lowerBound": 0.0704337686443717, "upperBound": 0.15361578445715623, "value": 0.11203319502074689 } }, "fairness_indicators_metrics/false_omission_rate@0.4750": { "boundedValue": { "lowerBound": 0.0704337686443717, "upperBound": 0.15361578445715623, "value": 0.11203319502074689 } }, "fairness_indicators_metrics/false_omission_rate@0.4875": { "boundedValue": { "lowerBound": 0.07291070766562549, "upperBound": 0.1584734210391969, "value": 0.11570247933884298 } }, "fairness_indicators_metrics/false_omission_rate@0.5000": { "boundedValue": { "lowerBound": 0.07291070766562549, "upperBound": 0.1584734210391969, "value": 0.11570247933884298 } }, "fairness_indicators_metrics/false_positive_rate@0.4000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4125": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4250": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4375": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4500": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4675": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4750": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.4875": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/false_positive_rate@0.5000": { "boundedValue": { "lowerBound": 0.0, "upperBound": 0.0, "value": 0.0 } }, "fairness_indicators_metrics/negative_rate@0.4000": { "boundedValue": { "lowerBound": 0.9736320094551186, "upperBound": 1.00167829526612, "value": 0.9876543209876543 } }, "fairness_indicators_metrics/negative_rate@0.4125": { "boundedValue": { "lowerBound": 0.9736320094551186, "upperBound": 1.00167829526612, "value": 0.9876543209876543 } }, "fairness_indicators_metrics/negative_rate@0.4250": { "boundedValue": { "lowerBound": 0.9798493857853189, "upperBound": 1.0036857805787922, "value": 0.9917695473251029 } }, "fairness_indicators_metrics/negative_rate@0.4375": { "boundedValue": { "lowerBound": 0.9798493857853189, "upperBound": 1.0036857805787922, "value": 0.9917695473251029 } }, "fairness_indicators_metrics/negative_rate@0.4500": { "boundedValue": { "lowerBound": 0.9798493857853189, "upperBound": 1.0036857805787922, "value": 0.9917695473251029 } }, "fairness_indicators_metrics/negative_rate@0.4675": { "boundedValue": { "lowerBound": 0.9798493857853189, "upperBound": 1.0036857805787922, "value": 0.9917695473251029 } }, "fairness_indicators_metrics/negative_rate@0.4750": { "boundedValue": { "lowerBound": 0.9798493857853189, "upperBound": 1.0036857805787922, "value": 0.9917695473251029 } }, "fairness_indicators_metrics/negative_rate@0.4875": { "boundedValue": { "lowerBound": 0.9872423635434671, "upperBound": 1.0045195966066498, "value": 0.9958847736625515 } }, "fairness_indicators_metrics/negative_rate@0.5000": { "boundedValue": { "lowerBound": 0.9872423635434671, "upperBound": 1.0045195966066498, "value": 0.9958847736625515 } }, "fairness_indicators_metrics/positive_rate@0.4000": { "boundedValue": { "lowerBound": -0.0016782952661200008, "upperBound": 0.02636799054488142, "value": 0.012345679012345678 } }, "fairness_indicators_metrics/positive_rate@0.4125": { "boundedValue": { "lowerBound": -0.0016782952661200008, "upperBound": 0.02636799054488142, "value": 0.012345679012345678 } }, "fairness_indicators_metrics/positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.003685780578792054, "upperBound": 0.020150614214680992, "value": 0.00823045267489712 } }, "fairness_indicators_metrics/positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.003685780578792054, "upperBound": 0.020150614214680992, "value": 0.00823045267489712 } }, "fairness_indicators_metrics/positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.003685780578792054, "upperBound": 0.020150614214680992, "value": 0.00823045267489712 } }, "fairness_indicators_metrics/positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.003685780578792054, "upperBound": 0.020150614214680992, "value": 0.00823045267489712 } }, "fairness_indicators_metrics/positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.003685780578792054, "upperBound": 0.020150614214680992, "value": 0.00823045267489712 } }, "fairness_indicators_metrics/positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.004519596606649851, "upperBound": 0.012757636456533139, "value": 0.00411522633744856 } }, "fairness_indicators_metrics/positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.004519596606649851, "upperBound": 0.012757636456533139, "value": 0.00411522633744856 } }, "fairness_indicators_metrics/precision@0.4000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4125": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4250": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4375": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4500": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/precision@0.4875": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": 1.0 } }, "fairness_indicators_metrics/precision@0.5000": { "boundedValue": { "lowerBound": "NaN", "upperBound": "NaN", "value": 1.0 } }, "fairness_indicators_metrics/recall@0.4000": { "boundedValue": { "lowerBound": -0.016077396653357334, "upperBound": 0.22313008215431873, "value": 0.10344827586206896 } }, "fairness_indicators_metrics/recall@0.4125": { "boundedValue": { "lowerBound": -0.016077396653357334, "upperBound": 0.22313008215431873, "value": 0.10344827586206896 } }, "fairness_indicators_metrics/recall@0.4250": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/recall@0.4375": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/recall@0.4500": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/recall@0.4675": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/recall@0.4750": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/recall@0.4875": { "boundedValue": { "lowerBound": -0.039124855356013746, "upperBound": 0.10827808399200099, "value": 0.034482758620689655 } }, "fairness_indicators_metrics/recall@0.5000": { "boundedValue": { "lowerBound": -0.039124855356013746, "upperBound": 0.10827808399200099, "value": 0.034482758620689655 } }, "fairness_indicators_metrics/true_negative_rate@0.4000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4125": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4250": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4375": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4500": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4675": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4750": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.4875": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_negative_rate@0.5000": { "boundedValue": { "lowerBound": 1.0, "upperBound": 1.0, "value": 1.0 } }, "fairness_indicators_metrics/true_positive_rate@0.4000": { "boundedValue": { "lowerBound": -0.016077396653357334, "upperBound": 0.22313008215431873, "value": 0.10344827586206896 } }, "fairness_indicators_metrics/true_positive_rate@0.4125": { "boundedValue": { "lowerBound": -0.016077396653357334, "upperBound": 0.22313008215431873, "value": 0.10344827586206896 } }, "fairness_indicators_metrics/true_positive_rate@0.4250": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/true_positive_rate@0.4375": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/true_positive_rate@0.4500": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/true_positive_rate@0.4675": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/true_positive_rate@0.4750": { "boundedValue": { "lowerBound": -0.0317140759038947, "upperBound": 0.16974580790114396, "value": 0.06896551724137931 } }, "fairness_indicators_metrics/true_positive_rate@0.4875": { "boundedValue": { "lowerBound": -0.039124855356013746, "upperBound": 0.10827808399200099, "value": 0.034482758620689655 } }, "fairness_indicators_metrics/true_positive_rate@0.5000": { "boundedValue": { "lowerBound": -0.039124855356013746, "upperBound": 0.10827808399200099, "value": 0.034482758620689655 } } }, "slice": "religion:buddhist", "sliceValue": "buddhist" } ], "slicingMetricsCompare": [] } } }, "version_major": 2, "version_minor": 0 } } }, "nbformat": 4, "nbformat_minor": 0 }