
 

SOFTWARE TESTING
REVEALED

TRAINING BOOK
SECOND EDITION

BY INTERNATIONAL SOFTWARE TEST INSTITUTE™
www.test-institute.org

© COPYRIGHT INTERNATIONAL SOFTWARE TEST INSTITUTE™

http://www.test-institute.org

 

Dedication
To all of the International Software Test Institute™ students, thank you for inspiring us,
keeping us focused, and making sure we do our best to help you grow in your career with
your skills and knowhow. Without you, your engagement and your loyal support,
International Software Test Institute™ could not come where it is today.

 TABLE OF CONTENTS

WELCOME 6 ..

ABOUT INTERNATIONAL SOFTWARE TEST INSTITUTE™ 7 ...

Introduction To Software Testing 8 ..

What is Software Quality Assurance? 12 ...

What Is Software Testing? 18 ...

Fundamentals of Software Testing 21 ..

Software Testing Roles and Responsibilities 30 ...

Software Testing Methods 36 ..

Software Testing Levels 38 ..

Software Testing Types 43 ..

Manual Software Testing 49 ..

CLICKABLE

Automated Software Testing 51 ...

Waterfall Software Engineering Life Cycle 55 ...

Agile Software Engineering Life Cycle 59 ...

Software Project Management 62 ...

Software Testing Life Cycle And Software Testing Operations 64

Deliverables Of Software Testing Team 66 ..

What Is Software Risk And Software Risk Management? 71

Processes to Support Software Testing 75 ...

Thank you 80..

 6

WELCOME 
Hi! I’m Yeliz.

I love that you are taking your time to read your
Software Testing book. I want to briefly share with
you why we wanted to write this book for you and
how you can get the best use out of it.

Within the context of our Software Testing
certification program we made a thorough research
in Software Testing education space.

The conclusion was: We failed to find one single
textbook, we could sincerely recommend to our
students!

We talked to our successful students and found out
that, almost none of the Software Testing books in
the market could really help them make a smooth
entry to Software Testing. Significant number of
Software Testing books in the marketplace claim that
they cover all details of Software Testing, but what
they are not telling is that, they don't have
understandable, clear and logical content to help
their readers comprehend and most importantly love
Software Testing!

Therefore, we wrote for you Software Testing
Revealed and brought it for your service!

We are absolutely confident that Software Testing
Revealed will make you proficient in Software
Testing, so that you will have an outstanding
opportunity to love Software Testing and keep on
taking the tangible benefits of being a Software
Testing professional.

Take some coffee to enjoy and some paper to
take your notes, and spend some quiet time to
read your Software Testing book!

Afterwards you will have a great understanding
about Software Testing domain and be prepared to
pass your Software Testing certification exam. You
will be ready to deliver great products and services to
your clients and employers and to build your bright
career and future!

Yeliz Obergfell
Vice President - Student Experience

International Software Test Institute™ 

 7

ABOUT INTERNATIONAL SOFTWARE TEST INSTITUTE™ 
International Software Test Institute™ is an
independent institute which helps organisations and
professionals get accredited with worldwide
renowned and valid Software Testing certification
programs and prove their competence in Software
Testing domain. We empower professionals world-
wide to build their careers, and companies to create
and sell their outstanding products and services.

Your Accredited Software Tester, Accredited Software
Test Manager and Accredited Software Test
Automator Certification Programs have proven their
worldwide Acceptance and Reputation by being the
choice of more than 349'000 Software Testing
Practitioners in 143 Countries.

Software Testing is an open process which can be
combined with other Software Engineering Processes
and Frameworks, and yet before International
Software Test Institute™ was established, there used
to be no reasonable way for Software Testing
Professionals like yourself to obtain Software Testing
Certifications and to prove your competence in
Software Testing domain. Software Testing
Professionals had to pay expensive fees for the one

way profit-driven Software Testing Certification
Programs of other Certification Entities.

International Software Test Institute™ aims to
remove the barriers set in front of the Software
Testing Professionals in developed and emerging
markets by saving them from paying unreasonable
fees for Software Testing Classroom Trainings and
Software Testing Certification Examinations before
they certify their knowhow in Software Testing.

Moreover, feel free to check out "What makes Your
Certification Programs Best of the Industry?" section
on our www.test-institute.org web portal to read
why we perform and serve you far more better than
our competition.

International Software Test Institute™ provides 3
major online Software Testing Certification Programs
which are designed by our consortium of renowned
business and people Leaders, coaches, mentors,
experts and authorities from all major industries.
You can check your Software Testing Certification
Programs from this List of Software Testing
Certifications.  

http://www.test-institute.org
http://www.test-institute.org/About_International_Software_Test_Institute.php
http://www.test-institute.org/About_International_Software_Test_Institute.php

 8

Introduction To Software Testing

Software testing is nothing but an art of investigating
software to ensure that its quality under test is in line
with the requirement of the client. Software testing is
carried out in a systematic manner with the intent of
finding defects in a system. It is required for
evaluating the system. As the technology is advan-
cing we see that everything is getting digitalized. You
can access your bank online, you can shop from the
comfort of your home, and the options are endless.
Have you ever wondered what would happen if these
systems turn out to be defective?One small defect
can cause a lot of financial loss. It is for this reason
that software testing is now emerging as a very
powerful field in IT.

Although like other products software never suffers
from any kind of wear or tear or corrosion but yes,
design errors can definitely make your life difficult if
they go undetected. Regular testing ensures that the
software is developed as per the requirement of the
client. However, if the software is shipped with bugs
embedded in it, you never know when they can
create a problem and then it will be very difficult to
rectify defect because scanning hundreds and

thousands of lines of code and fixing a bug is not an
easy task. You never know that while fixing one bug
you may introduce another bug unknowingly in the
system.

Software Testing Methodology in Software

Engineering

Software testing is now a very significant and integral
part of software development. Ideally, it is best to
introduce software testing in every phase of software
development life cycle. Actually a majority of
software development time is now spent on testing.

 9

Introduction To Software Testing

So, to summarize we can say that:
 1 Software testing is required to check the

reliability of the software
 2 Software testing ensures that the system is

free from any bug that can cause any kind of
failure

 3 Software testing ensures that the product is in
line with the requirement of the client

 4 It is required to make sure that the final
product is user friendly

 5 At the end software is developed by a team of
human developers all having different
viewpoints and approach. Even the smartest

person has the tendency to make an error. It is
not possible to create software with zero
defects without incorporating software testing
in the development cycle.

 6 No matter how well the software design looks
on paper, once the development starts and
you start testing the product you will definitely
find lots of defects in the design.

You cannot achieve software quality without
software testing. Even if testers are not involved in
actual coding they should work closely with
developers to improve the quality of the code. For
best results it is important that software testing and
coding should go hand in hand.

Software Testing Overview
Defects arise in software due to many reasons. As a
matter of fact it is said that every software
application has some defects embedded in it but not
every defect is a threat to the system. There is a lot
that can be accomplished with the help of software
testing. Testing helps in evaluating the quality of
software.

There are many reasons why software testing has
gained so much of importance in the field of

 10

information technology. Firstly, testing helps in
reducing the overall cost of the software develop-
ment project. If testing is ignored in the initial
development stages to save a small amount of
money then it may turn out to be a very expensive
matter later because as you move on with develop-
ment process it becomes more and more difficult to
trace back defects and rectifying one defect some-
where can introduce another defect in some other
module.

The requirement is finalized after several discussions
with the client. Testing ensures that the software
behaves and looks exactly like what is mentioned in
the requirements specification document, so that
when software is delivered to the client there are no
arguments about the variation from the original
requirements. Software testing helps in strengthen-
ing the market reputation of a company. Well tested
software is of good quality and good quality means
better feedback and reviews.

In order to achieve best results it is important to
organize all your testing efforts and this is what this
Software Testing Training provided by International
Software Test Institute is all about. Software testing
cannot be fruitful without proper planning. To live up

to the expectations of the client it is important to
plan every step carefully. A lot of things need to be
considered in order plan your testing efforts.
Software testing should be planned keeping budget,
schedule and performance in mind in order to
achieve best results.

All testing activities require planning. It is important
to outline a test plan that will give in details about
how each activity will be carried out. Test plan is also
required to ensure that all aspects of the software
are covered thoroughly and there is no repetition of
testing process so that time and effort is not wasted.
The latest trend now is to involve the testing team in
specification writing process. It is important that the
testing team understands the requirements of the
client clearly as the entire development is based on
the requirement defined by the client.

Anything that is not in line with the requirement is a
defect. So, the testing team should have a clear idea
about what the final outcome of running software
should be like. As a matter of fact it is important to
start writing test cases in parallel to specification
writing. This will help the testers analyze whether all
the requirements are testable or not. When you write
test cases in parallel to specification writing process

 11

you will think critically about the specifications and
you will know if there is an issue with the
requirement or if there is something that cannot be
developed.

 12

What is Software Quality
Assurance?

When we talk about software quality, we are actually
talking about the evaluation of the software based
on certain attributes. A software quality is defined
based on the study of external and internal features
of the software. The external quality is defined based
on how software performs in real time scenario in
operational mode and how useful it is for its users.
The internal quality on the other hand focuses on
the intrinsic aspects that are dependent on the
quality of the code written. The user focuses more
on how the software works at the external level, but
the quality at external level can be maintained only if
the coder has written a meaningful good quality
code.

What Is Software Quality Assurance?
Presently there are two important approaches that
are used to determine the quality of the software:
 1 Defect Management Approach
 2 Quality Attributes approach

Software Quality

As mentioned before anything that is not in line with
the requirement of the client can be considered as a
defect. Many times the development team fails to
fully understand the requirement of the client which
eventually leads to design error. Besides that, the
error can be caused due to poor functional logic,
wrong coding or improper data handling. In order to
keep a track of defect a defect management
approach can be applied. In defect management,
categories of defects are defined based on severity.
The number of defects is counted and actions are
taken as per the severity defined. Control charts can
be created to measure the development process
capability.

 13

Defect Management Approach

Quality Attribute Approach on the other hand
focuses on six quality characteristics that are listed
below:

1. Functionality: refers to complete set of important
functions that are provided by the software
 • Suitability: whether the functions of the

software are appropriate
 • Accurateness: are the functions implemented

correctly?
 • Interoperability: how does the software

interact with other components of the system?

Quality Attributes Approach

 • Compliance: is the software in compliance with
the necessary laws and guidelines?

 • Security: Is the software able to handle data
related transaction securely?

2. Reliability: this refers to the capability of software
to perform under certain conditions for a defined
duration. This also defines the ability of the system
to withstand component failure.
 • Maturity: Frequency of failure of software

 14

 • Recoverability: this gives an idea of a system’s
ability to get back into full operation after
failure.

3. Usability: refers to the ease of use of a function.
 • Understandability: how easily the functions can

be understood
 • Learn ability: How much effort the users of

different level need to put in to understand the
functions.

4. Efficiency: generally depends on good architectu-
re and coding practices followed while developing
software.

5. Maintainability: also known as supportability. It is
greatly dependant on code readability and
complexity and refers to the ability to identify and fix
a fault in a software:
 • Analyzability: identification of the main cause

of failure.
 • Changeability: defines the effort that goes in

modification of code to remove a fault.
 • Stability: how stable a system is in its

performance when there are changes made to
it

 • Testability: how much effort goes in testing the
system.

6. Portability: Ability of the system to adopt to
changes in its environment
 • Adaptability: how easily a system adapts to the

changes made in specifications
 • Installability: how easily a system can be

installed.
 • Conformance: this is same as compliance in

functionality.
 • Replaceability: how easy it is to replace a

component of the system in a given environ-
ment.

Cost of Software Quality
Cost of quality is important because when you
decide to conduct software testing for your product
you are actually going to invest your time, money
and effort in getting quality checks done. By
conducting an analysis of cost of software quality
you would know what the return on that investment
(ROI) is.

 15

Cost of Software Quality

Cost of quality is calculated by analyzing the
conformance costs and non conformance costs. A
conformance cost is related to:

 1 Prevention costs: amount spent on ensuring
that all quality assurance practices are followed
correctly. This includes tasks like training the
team, code reviews and any other QA related
activity etc.

 2 Appraisal costs: this is the amount of money
spent on planning all the test activities and
then carrying them out such as developing test
cases and then executing them.

The non conformance cost on the other hand is the
expense that arises due to:
 1 Internal failures: it is the expense that arises

when test cases are executed for the first time
at internal level and some of them fail. The
expenses arise when the programmer has to
rectify all the defects uncovered from his piece
of code at the time of unit or component
testing.

 2 External failures: it is the expense that occurs
when the defect is found by the customer
instead of the tester. These expenses are much
more than what arise at internal level,
especially if the customer gets unsatisfied or
escalates the software failure.

Cost of Software Failure
We know that a software failure is caused when:
 1 It displays lack of ability to keep up: this

generally happens when the software starts
aging. As it grows old the size increases
because the easiest way of adding a feature is
by adding new code without touching any part
of code written earlier. Over a period of time it
becomes bulky and it becomes difficult to
identify the sections of code that need to be
changed.

 16

 2 Performance drop is observed: Every
application generally slows down with age and
tends to occupy more and more computer
memory therefore it is better to switch to other
software.

 3 It doesn’t seem to be reliable: It is a known fact
that every time when changes are made to the
code of the software to fix an error, more
defects are introduced in the system.
Surprisingly, this is one of the major reasons
for increased failure rates and in order to save
situation it is always better to ditch the project
or give up bug fixing.

Software Testing VS Quality Assurance
In IT industry it is often observed that people
generally don’t differentiate between the software
quality assurance and software testing. Testers are
often looked upon as Software Quality Assurance
professionals because the objectives of software
testing as well as quality assurance are the same .i.e.
to ensure that the software is of top quality.
As the name suggests quality assurance processes
are carried out to assure the quality of the product is
in line with the requirement of the client. The quality
assurance professionals work on development and
implementation of all the necessary processes to

ensure that all the necessary procedures of software
development lifecycle are followed correctly. Quality
assurance is a proactive activity that is focused on:
 1 Defect Prevention
 2 Processes
 3 Continuous improvement of this processes

Software testing on the other hand is carried to
identify or uncover defect and errors in the software.
It involves actual rigorous testing of the software to
see if there are any defects or variations from the
client’s requirement that needs to be fixed. Software
testing is a part of quality control process and it
focuses only on product oriented activities. Software
testing is carried out during the testing phase and
only defects are identified and not corrected in this
process. Fixing defects is not a part of software
testing.

Quality Assurance VS Quality Control
Another subject that is closely related to quality
assurance is quality control. People often get
confused between the two but there is a huge
difference. While quality assurance is all about
preventive activities, quality control focuses on
corrective processes.

 17

Here is what you need to understand: software
testing is a subset of quality control and quality
control is a subset of quality assurance. The entire
focus of Quality assurance is on implementation of
processes and procedures that are required for the
verification of the software under development and
the requirements of the client.

Quality Assurance VS Quality Control

Quality control on the other hand deals with actual
activities that ensure that the product is being
developed as per the defined requirements. It deals
with all the actions that are important to control and
verify certain characteristics of the product including
testing. Examination and testing of the products is
the most important aspect of quality control.

Companies employ quality control team to identify if
there is any product or service that does not meet
the company’s standard of quality. If there is an issue
the quality control team has the authority to stop the
production of that product till the issue is resolved.

Importance of Audit and Inspection
Audit comprises of some very systematic processes
that define how the software testing is taking place in
the organization. The audit team examines all the
processes that are conducted at the time of testing.
IEEE defines audit as a review of documented
processes to ensure that the organization or a team
is following all the processes as per the defined
standards.
Inspection can be a formal or an informal review of
software requirement, designer or code. It is
conducted by a team or an individual person other
than the author to check if there are any violations or
deviations from the defined development standards.
The following processes are considered as part of
Inspection:
 1 Planning
 2 Overview Preparation
 3 Inspection Meeting
 4 Rework
 5 Follow up 

 18

What Is Software Testing?

So, finally we come to the main topic that is software
testing itself. You have already understood the
meaning of software testing and why it is important
while going through the previous sections. Here,
from this section onwards we will take an in-depth
look at the subject, but before we move on let’s just
revise the definition of software testing.
Software testing is nothing but the process of
assessing the functionality of software to ensure that
it is in line with the requirements of the customer.

Testing is broadly classified into:
 1 Dynamic Testing: carried out by executing the

program
 2 Static Testing: involves examination of code

and related documents.

Dynamic and static testing is often used together.

Black Box Testing
Black box testing focuses only on the functionality of
the software. The tester does not look into the
internal details of the software. Black box testing is

carried out at all levels of software testing – unit,
integration, system and acceptance.

Black Box Testing

The testing procedures for black box testing are very
simple. The tester only focuses on what the software
is supposed to do. The tester is not supposed to
focus on how the software is managing the function
internally. The test cases for black box testing are
created keeping only the specifications and
requirements in mind. No test case is created to
check the internal logic of the software. The tester
just feeds in valid and invalid inputs and checks the
output for these values.

 19

White Box Testing
Unlike black box testing, white box testing is carried
out in depth to the level of the source code. In this
form of testing the internal logic, its implementation
and working is examined and the test cases are
written to check the how the software is working at
the internal level. White box testing can be carried
out at the level of unit, integration and system level.
White box testing is often used to detect internal
design errors which are otherwise very difficult to
uncover however, this form of testing does not check
for missing requirements or specifications.

White Box Testing

Statement Coverage
Statement coverage is a form of testing in which
code is tested in such a way that each statement of

the code is executed at least once. The idea behind
this form of testing is to ensure that every statement
in every block of code is executed at least once and
the results are observed. This form of testing is also
referred to as line coverage or segment coverage
form of testing.

The point to be noted here is that every statement is
executed once which means that there may be some
conditions in some blocks that may not get tested in
this manner. Therefore there is a possibility that
some errors may go undetected in statement
coverage process.

Decision Coverage
Decision coverage or branch coverage deals with
testing of all true and false conditions of the code.
The reason why it is also called branch coverage is
because a branch is an outcome of decision. It is
considered to be a more effective form of testing
than simple statement coverage. A decision
statement can be:

 1 An IF statement
 2 A loop control statement such as do-while
 3 A statement that can have two or more

outcomes also known as CASE statement.

 20

The good thing about decision coverage is that you
are able to validate all branches in the code and it is
able to check the efficiency of the code in a better
manner than statement coverage approach.

Condition Coverage
Condition coverage testing is carried out to check
conditions which are generally Boolean expressions
and provide result in TRUE or FALSE. Condition
coverage may or may not cover the entire decision
coverage. In this process only those conditions that
return true or false are tested. The expressions that
returns a Boolean condition generally plays a very
important role in the final decision. This is the reason
why condition coverage testing is carried out.

Decision / Condition Coverage
As the name suggests decision/condition coverage
methodology includes testing all decisions and all the
logical conditions with all possible scenarios that can
generate a true or false outcome. It is considered to
be a very strong way of testing software.

Multiple Condition Coverage
Mult ip le condi t ion coverage or condi t ion
combination coverage is carried out to check output
for multiple combinations of conditions.

For example:

If (x=true OR y=true)
 Then
Print (“Hello”)
 Else
Print (“Bye”)

Here, in this case there are four possible condition
combinations:

Testcase1: x=true; y=true
Testcase2: x=true; y=false
Testcase3: x=false; y=true
Testcase4: x=false; y=false

Similarly, for 3 expressions there will be 8
combinations of conditions.

 21

Fundamentals of Software
Testing

Software testing is a vast subject. There are software
applications and system engineered for numerous
domains and industries, and for a tester, every
testing project is a new challenge because he has to
understand the client’s point of view and the domain
before moving on with testing activities. From project
to project, a tester may have to change the testing
methodologies as well. It is therefore very important
to keep the fundamentals right. Getting the
fundamentals right in the first place is biggest
prerequisite to become successful in software
testing.

Why Software Testing Is Necessary?
An error, defect or a bug can be caused by
developers. It is not intentional but considering the
complexity with which various software are being
developed these days, it is quite possible for a
developer to misunderstand and implement wrong
logic and produce wrong code.

Testing is necessary because it helps us in identifying
the faults in software. Once these defects have been

detected they can be easily rectified and quality of
the software can be improved. So, software testing is
necessary so that bug free applications can be
developed and delivered. When a company decides
to develop software for a client there are certain
legal, contractual and industry-specific requirements
based on the deal is made. A quality conscious
company will definitely include software testing in its
best practices.

It is difficult to say how much testing is enough but
the fact is that if testing is planned carefully and
good test cases are made then it is very much
possible to deliver high quality software.

Who Does The Software Testing?
There is often a debate on who should actually test
the software. People often question that why
developers are not allowed to test. Well, a developer
generally checks his code several times before he
submits it for testing and still in most cases it is
never error free because a developer is generally
blind to his own mistakes.

A tester on the other hand looks at software from
the point of view of the client. He is unbiased and his
focus is only on the specifications and the

 22

requirements. So, a tester is able to look into areas
that a developer may have ignored. So, the testing
should always be carried out by independent testers.
This approach does have some disadvantages. When
the development and testing teams are different
there is often a communication gap and sometimes,
developers become careless towards coding and do
not revise their code because they think that it is all a
tester’s job thereby increasing the burden on the
tester.

Many times developers share their work amongst
each other and test each other’s work. This is known
as buddy testing. Every development team should
have dedicated testers and every project generally
has at least one dedicated testing team. Some
companies believe in having separate teams for
different types of testing, this means different teams
for usability, performance, security and other forms
of testing. Some companies believe in outsourcing
software testing work which means they hire a firm
or independent testers or consultants to have a look
at and test their project.

What Has To Be Really Tested?
The tester should have a good understanding about
the project requirements. A fair idea about the real

t ime scenario where the software wil l be
implemented can help the tester understand how to
carry out testing for the project. It is very important
to know what has to be really tested in order to
devise a testing strategy.

What Has To Be Really Tested?

When Is The Software Testing Done?
The earlier the testing team starts testing the
software the easier it would be for the developers to
complete the project on time and this would also
save a lot of time, money and effort. Starting testing

 23

in the later stages of development can turn out to be
an expensive matter as it is very difficult to rectify
defects once the software has reached the final
stages of development.Dividing software develop-
ment into stages and then testing work done in every
stage before moving on to the next stage helps in
finishing the software development in time with
good results. This also helps in better integration of
different modules because you already know that
every module has been tested independently and is
working as per the given specifications.

How Often Do We Need To Test?
How often you need to test depends on how
important the quality is for you. Ideally, testing
should go hand in hand with development and a
tester should focus on discovering maximum
number of defects during the initial phases of
software development so that if the design of the
software requires any changes then it can be done
early as it will be very difficult and expensive to make
major changes in the project during the later stages
of development.

How Often Do We Need To Test?

What Are Software Testing Standards?
Software testing standards are of great importance
from the consumer’s as well as producer’s point of
view. A consumer invests in the software and if the
software is of good quality then at the end of the day
he is satisfied that he has purchased the right thing
for himself.

 24

All reputed companies ensure that the software
quality of product is governed by some sets of
standards that have been approved by the public. By
abiding by these standards a company gives
assurance about its products and it is able to give
guarantee to its customers only when it has followed
some standards and knows that the software will
behave in a certain manner. So, consumer knows
that he is buying the right thing if it is of right stan-
dard.

From a producer’s point of view standards help in
improving the quality of the final product. Once a
company has finalized the standard that it has to
follow then it becomes easier for them to work on
other software projects and whenever they start a
new project they do not need start everything from
scratch.There are many types of software testing
standards defined for evaluating quality of software
which can greatly improve the effectiveness of
software testing however it is believed that till now
no such standards have been made that can cover all
aspects of software testing.

Standards that emphasize on having testing as part
of larger requirement or standards supporting

software testing are the ones that can be of use for
software testing.

What Is Software Testability?
Software testability is used to measure how easily a
software system can be tested. Testability is
calculated in the early phases of software
development in order to find out how many
resources will be needed to finish of the testing
process. While testing helps in uncovering defects,
testability plays a significant role in identifying the
key areas where bugs remain hidden from a tester’s
view. When testability is high it means that testing is
easier and lower testability means that the testing
effort should be increased. Testability can be
determined by:

 1 Controllability: Testing process can be optimi-
zed only if we can control it.

 2 Observability: What you see is what can be
tested. Factors affecting the final outcome are
visible.

 3 Availability: In order to test a system we have
to get at it.

 4 Simplicity: When the design is self-consistent,
features are not very complex and coding
practices are simple then there is less to test.

 25

When the software is not simple anymore it
becomes difficult to test.

 5 Stability: If too many changes are made to the
design now and then there will be lot of
disruptions in software testing.

 6 Information: Efficiency of testing greatly
depends on how much information is available
for the software.

Here is what you need to know about testability:
 1 Higher testability means better tests and less

amount of bugs
 2 Lower testability means the tests are not of

great quality and there is a possibility of more
bugs in the system

Software Verification VS Software Validation
Verification and validation are two very important
terms in software testing. People often get confused
between the two however these two terms are
related to two different types of analysis. Validation
is helps in building the right system. While carrying
out validation we look at whether the system is in
line with customer’s requirement or not.

Verification on the other hand helps in ensuring if
the system is being developed in the right way. The

focus of verification is on the quality of software that
is being developed, whether it follows all the
standards or not, is it well engineered?

So while validation checks if the specifications have
been designed correctly to meet the customer’s
requirement, the verification checks if the software
has been developed as per the software quality
standards and norms of the software engineering
organization.

Software Verification VS Software Validation

Some theories suggest that verification is carried out
in every phase of software development lifecycle but
the same is not the case with validation. Validations
are crucial in the beginning and towards the end of

 26

the project, i.e. during the requirement analysis and
acceptance testing. This tactic is not fully correct and
almost impossible to follow. The actual fact is that
until today it has been observed that it is very
difficult to capture the entire set of client
requirements during the beginning of the project.
Software requirements often undergo several
changes even after the development has started.
Many times the changes are requested by the
development team itself. It is therefore important to
carry out validation and verification processes in
every phase of software development.

Today, testers usually consider verification and
validation also known as V&V as a powerful way of
looking at various aspects of the software.

Software Testing VS Software Debugging
This is another topic where people generally get
confused. Software testing and debugging may
sound like one and the same thing but that is not
actually the case. To start with, the process of
debugging starts when software testing gets over.
While software testing uncovers defects, debugging
removes defects from the system.

Once testing is completed the testers submits the
reports and the development team starts looking for
the root cause of the defects. In this process the
developer scans all the related modules and tries to
find out the problem in the code; once that is done it
is time to rectify the defect. So, debugging is the
process in which the cause of reported defects is
found out and then defects are rectified step by step.
Debugging is the process of resolving existing issues.

It not wise to rectify a defect till all possible reasons
behind it is fully known. If you start debugging
without complete knowledge about the defect then
there are chances that in the process of rectifying
one defect you may introduce some other in any of
the interrelated modules. Developers should avoid
experimentation at the time of debugging as this can
cause a lot of problems. Once a defect is fixed the
developer submits the work to the tester, who will
thoroughly test the entire module.
 1 Software testing uncovers defects and

debugging locates and corrects it.
 2 Software testing is a very important aspect of

sof tware development cyc le whereas
debugging is a result of testing activities.

 27

 3 Testing begins soon after development starts.
Debugging starts when testers start reporting
defects.

 4 Software testing involves verification and
validation (V&V) of the software whereas
debugging looks in to actual cause behind the
defect and corrects it.

What Is A Defect?
Defect is anything that is not in line with the software
requirement specifications. Defect generally exists
either in the code of the program or in its design.
This results in incorrect output at the time of
execution of the program.
 1 A piece of code is called buggy when it has too

many defects.
 2 Bug reports the details about the nature of the

bug.
 3 Bug tracking tools are employed to track bugs

in a system.
 4 There is a very interesting testing technique in

which defects are purposely injected into the
code and then the outcome is monitored to
check if the system works as expected in case
of certain issues.

What Is A Defect?

What Are Severity And Priority?
Severity defines how severe will be the impact of a
defect on the performance of the system. The
severity can be of one of the following types:
 1 Critical: Such a defect does not allow the

application to work properly due to system
failure or corruption of data. Critical defects do

 28

not allow the user to move any further and
puts them in a miserable position.

 2 Major: The major defects are little less severe
than critical defects. They can cause system to
fail, however in case of major defect there is
another possible way of achieving the desired
result and the user need not get trained for
this.

 3 Moderate: These defects do not cause the
system to fail but produce wrong or contradic-
tory output.

 4 Minor: Defects that do not cause system failure
or affect the usability of the system and can be
easily rectified are known as Minor defects.

 5 Cosmetic: Defects related to the outlook or
appearance of the system are called cosmetic
defect.

When a defect is reported, the test report mentions
priority along with the severity of the defect. Priority
actually tells the developer the order in which
defects should be resolved. It can be of the following
types:
 1 Low: the defect does not require immediate

attention and should be rectified after the
defects with higher priority have been resol-
ved.

 2 Medium: The defect should be resolved soon
after the defects with higher priority have been
resolved.

 3 High: The defect with high priority means that
it requires immediate attention and should be
resolved as soon as possible.

So, once you are provided with the report of severity
and priority of defects here is what you need to
know:

What Are Severity And Priority?

 29

 1 If a defect has high priority and high severity,
then it means that there is a problem in the
basic functionality of the system and the user
is not in a position to use the system. Such
defects should be rectified immediately.

 2 Defects having high priority and low severity
can be something like spelling mistake in the
company’s name or issues with logo. Such
defects are of low severity but must be
rectified immediately and should be conside-
red as high priority defect.

 3 High Severity and low priority defect means
that there is a major defect in some module
but the user would not be using it immediately
so the defect can be rectified a little later.

 4 Low priority and low severity defects are
generally cosmetic in nature and do not affect
the functionality of the system hence such
defects are rectified in the end.

 30

Software Testing Roles and
Responsibilities

In case of software testing every company defines its
own level of hierarchy, roles and responsibilities but
on a broader level, if you take a look you will always
find the following two levels in a software testing
team:

Test lead/manager: A test lead is responsible for:
 • Defining the testing activities for subordinates

– testers or test engineers.
 • All responsibilities of test planning.
 • To check if the team has all the necessary

resources to execute the testing activities.
 • To check if testing is going hand in hand with

the software development in all phases.
 • Prepare the status report of testing activities.
 • Required Interactions with customers.
 • Updating project manager regularly about the

progress of testing activities.

Test engineers/QA testers/QC testers are
responsible for:
 • To read all the documents and understand

what needs to be tested.

 • Based on the information procured in the
above step decide how it is to be tested.

 • Inform the test lead about what all resources
will be required for software testing.

 • Develop test cases and prioritize testing
activities.

 • Execute all the test case and report defects,
define severity and priority for each defect.

 • Carry out regression testing every time when
changes are made to the code to fix defects.

Overview Of Software Engineering Team
How a software application shapes up during the
development process entirely depends on the how
the software engineering team organizes work and
implements various methodologies. For an
application to develop properly, it is important that
all processes incorporated during the software
development are stable and sustainable. Many times
developers come under pressure as the delivery date
approaches closer this often affects the quality of the
software. Rushing through the processes to finish
the project on time will only produce a software
application which has no or minimal use for the
customers. Hence, work organization and planning is
important and sticking to the plan is very important.
The project manager should ensure that there are no

 31

obstacles in the development process and if at all
there is an issue it must be resolved with immediate
attention.

Overview Of Software Testing Team
How soon and how well you can achieve your testing
goals depends solely on the capabilities of the
testing team. Within the testing team itself it is
important to have the correct blend of testers who
can efficiently work together to achieve the common
testing goals. While forming a team for testing, it is
important to ensure that the members of the team
jointlyhave a combination of all the relevant domain
knowledge that is required to test the software
under development.

It is very important to ensure that the software
testing team has a proper structure. The hierarchy
and roles should be clearly defined and responsibili-
ties too should be well defined and properly
distributed amongst the team members. When the
team is well organized the work can be handled well.
If every team member knows what duties he or she
has to perform then they will be able to finish their
duties as required well within the time limit. It is
important to keep track of the testers’ performance.
It is very important to check what kind of defects the

tester is able to uncover and what kind of detects he
tends to miss. This will give you a fair idea about how
serious your team is about the work.

All the team members should work together to
prepare a document that clearly defines the roles
and responsibilities of all the team members. Once
the document is prepared the role of each member
should be communicated clearly to everyone. Once
the team members are clear about who is going to
handle which area of the project, then in case of any
issue it will be easy to determine who needs to be
contacted.

Each member of the team should be provided with
the necessary documents that provide information
on how the task would be organized, what approach
will be followed, how things are scheduled, how
many hours have been allocated to each member
and all details related to applicable standards and
quality processes.

Software Tester Role
A Software tester (software test engineer) should be
capable of designing test suites and should have the
ability to understand usability issues. Such a tester is
expected to have sound knowledge of software test

 32

design and test execution methodologies. It is very
important for a software tester to have great
communication skills so that he can interact with the
development team efficiently. The roles and
responsibilities for a usability software tester are as
follows:

 1 A Software Tester is responsible for designing
testing scenarios for usability testing.

 2 He is responsible for conducting the testing,
thereafter analyze the results and then submit
his observations to the development team.

 3 He may have to interact with the clients to
better understand the product requirements
or in case the design requires any kind of
modifications.

 4 Software Testers are often responsible for
creating test-product documentation and also
has to participate in testing related walk
through.

A software tester has different sets of roles and
responsibilities. He should have in depth knowledge
about software testing. He should have a good
understanding about the system which means
technical (GUI or non-GUI human interactions) as
well as functional product aspects. In order to create

test cases it is important that the software tester is
aware of various testing techniques and which
approach is best for a particular system. He should
know what are various phases of software testing
and how testing should be carried out in each phase.

The responsibilities of the software tester include:
 1 Creation of test designs, test processes, test

cases and test data.
 2 Carry out testing as per the defined procedu-

res.
 3 Participate in walkthroughs of testing procedu-

res.
 4 Prepare all reports related to software testing

carried out.
 5 Ensure that all tested related work is carried

out as per the defined standards and procedu-
res.

Software Test Manager Role
Managing or leading a test team is not an easy job.
The company expects the test manager to know
testing methodologies in detail. A test manager has
to take very important decisions regarding the
testing environment that is required, how
information flow would be managed and how testing
procedure would go hand in hand with development.

 33

He should have sound knowledge about both
manual as well as automated testing so that he can
decide how both the methodologies can be put
together to test the software. A test manager should
have sound knowledge about the business area and
the client’s requirement, based on that he should be
able to design a test strategy, test goal and
objectives. He should be good at project planning,
task and people coordination, and he should be
familiar with various types of testing tools. Many
people get confused between the roles and
responsibilities of a test manager and test lead.For a
clarification, a test lead is supposed to have a rich
technical experience which includes, programming,
handling database technologies and various
operating systems, whereas he may not be as strong
as Software Test Manager regarding test project
management and coordination. The responsibilities
of the test manager are as follows:

 1 Since the test manager represents the team he
is responsible for all interdepartmental
meetings.

 2 Interaction with the customers whenever
required.

 3 A test manager is responsible for recruiting
software testing staff. He has to supervise all

testing activities carried out by the team and
identify team members who require more
training.

 4 Schedule testing activities, create budget for
testing and prepare test effort estimations.

 5 Selection of right test tools after interacting
with the vendors. Integration of testing and
development activities.

 6 Carry out continuous test process improve-
ment with the help of metrics.

 7 Check the quality of requirements, how well
they are defined.

 8 Trace test procedures with the help of test
traceability matrix.

Software Test Automator Role
Software test automator or an automated test
engineer should have very good understanding of
what he needs to test- GUI designs, load or stress
testing. He should be proficient in automation of
software testing, and he should be able to design
test suites accordingly. A software test automator
should be comfortable using various kinds of
automation tools and should be capable of
upgrading their skills with changing trends. He
should also have programming skills so that he is
able to write test scripts without any issues. The

 34

responsibilities of a tester at this position are as
follows:

 1 He should be able to understand the
requirement and design test procedures and
test cases for automated software testing.

 2 Design automated test scripts that are
reusable.

 3 Ensure that all automated testing related
activities are carried out as per the standards
defined by the company.

Interactions between Software Test Team And
Business Teams
If at all a customer has any issues related to testing
activities and operational matters of the project then
it is the software testing manager who is responsible
for communicating the details to the client regarding
how things are being managed. The software testing
manager not only answers the queries of the
customers but also ensures that the project is
completed on time as per the requirement of the
customer.

Interactions between Software Test Team And
Development Teams
In order to produce good software applications, it is
important that software testing and software
development teams work together with good
understanding. For this it is important that the
testers and developers are comfortable with each
other’s role and understand well that they have a
common goal and it is wise to listen each other. A
good communication skill is very important both for
testers and developers.

Before getting started with testing work it is
important to discuss the basic guidelines and
expectations so that there is no confusion in later
stages. Criticism should be taken in a positive sense.
It is important to understand that developers and
testers have a common goal of producing high
quality software. A tester is not discovering bugs to
show someone down, the idea is to learn from
mistakes and avoid repeating them in future. A
culture of constructive criticism can be of great help.

Interactions between Software Test Team And
Release Management Teams
The release management teams are responsible for
moving the software from development into

 35

production. This team is responsible for planning the
releases for hardware, software and testing. It is also
responsible for development of software develop-
ment procedures and for coordinating interactions
and training of releases. Software testing is
considered to be a very important aspect of software
engineering life cycle but it does not get over with
development. Testing and verification is a very
important part of release management exercise.

Interactions between Software Test Manager And
Software Project Manager
The job of a software test manager is not an easy
one. He has to recruit testing team and take
responsibility for getting them trained. A software
manager has to perform ongoing analysis of various
testing processes and ensure that the testing team is
carrying out all the processes correctly. This job is of
great responsibility as the software testing manager
is the one who selects, introduces and implement
various tools for testing. A software test manager is
responsible for finalizing templates for testing
documents, test reports and other procedures.

Since a software tester manager has to deal with all
the details of various testing activities, it is very
important for him to be in constant touch with the

project manager and provide necessary support in
project planning and scheduling so that the project
can be successfully completed in time within the
specified financial budget limits. 

 36

Software Testing Methods

We have discussed black box and white box testing
techniques in section 3. Here we take a look at some
more testing methodologies:
 • Grey Box Testing
 • Incremental Testing
 • Thread Testing

Grey Box Testing
When black box testing methodologies and white
box testing methodologies are used in a combination
for software testing then it is called gray or grey box
testing. This form of testing will look into logical as
well as functional aspects of the software. In this
form of testing the tester has little and not in-depth
knowledge about what the code is supposed to do.
Ideally, the tester should know about the internal
data structures and algorithms.

Grey box testing is carried out when there is a need
to test both sides of the software(functional and
internal in one go). The tester should be able to write
test cases that can test the software thoroughly with
the help of data that can check all possible internal
logic as well.

Grey box testing is a very intelligent form of testing
where the tester is expected to know the
functionality, architecture of the software, how data
would flow and how exceptions would be handled.
For big size projects it is always better to incorporate
automation testing to check functionality and the
user interface of the application as this would save a
lot of time and the tester will not feel too stressed.

Incremental Testing
Incremental testing comes into picture once the
tester has completed unit testing. This form of
testing is used in integration of testing where there is
need to check how various independent modules
interact amongst themselves. In this form of testing
the developers are asked to integrate the modules
systematically using stubs or drivers. This form of
integration testing methodology is referred to as
incremental testing. Incremental testing can be
classified into three types:

 1 Top down integration: In this case the
integration of the modules is done from top to
bottom. All those modules that are unavailable
are replaced by stubs.

 2 Bottom up integration: In this case the
integration of the modules is done from

 37

bottom to up. All the modules that are not
available are replace by drivers.

 3 Functional incremental: this form of testing
takes place as per the functional specification
documents. The integration of the modules
and their testing takes place as per the defined
functional specification.

The main advantage of incremental testing is that it
can help in uncovering defects very early in time. The
disadvantage is that development of stubs and
drivers can take time.

Thread Testing
Thread testing methodology is used in testing
applications based on client server architecture. A
thread is the smallest unit of work that can be
carried out by the system. During the initial stages of
integration of a system it is very important to know if
the system will be able to carry out the required
functional tasks as per the requirement. It is very
important to check if the software will be able to
carry out all transactions as per the requirement. The
ideal way of carrying out thread testing is to
integrate threads incrementally first at subsystem
level and then at the system level and then tested.

 38

Software Testing Levels

Software testing has various levels. However, on
broader scale software testing can be categorized
into (1) Functionaltesting and (2) Non-functional
testing. These topics will be discussed in detail.

Overview of Software Testing Levels
Here we will understand various levels of testing,
namely:
 • Unit Testing
 • Integration Testing
 • System Testing
 • Acceptance Testing

Unit Testing
The smallest independent and testable part of the
source code is referred to as a unit. It is the first step
in software testing environment and is generally
conducted by the developers or their team mates.
This form of testing is rarely performed by software
testers. In order to perform integration testing it is
important to first complete the unit testing for all the
units. In order to perform unit testing it is important
to have well defined unit test plan and unit test
cases.

Overview of Software Testing Levels

There are several benefits of unit testing. First of all,
you get the confidence for going ahead with the
integration testing only when you are sure that all
units are working correctly. When you start unit
testing in parallel to development it may look like a
slow process as many defects are uncovered during
this stage and several changes are made to the code.
However, with time the code is refined and number
of defects begins to reduce. So, the foundation of the
software is strong and in the later stages the

 39

software development is carried out at a much faster
pace thereby saving a lot of time.

Unit Testing

If unit testing is carried out properly then it would
also result in a lot of cost saving as the cost of fixing
a defect in the final stages of software development
are much higher than fixing them in the initial stages.
Unit testing is carried on the smallest testable
component of the project so the number of test
cases and test data are less, and it is not always
possible to check all the scenarios for functional and
information flow of software application. So, there
are many test cases that can be tested only after the

unit has been merged with other units to form a
bigger component.

Integration Testing
Once the unit testing phase is over, it is time to move
on to integration testing. During integration testing
the tester checks how one or more units interact
with each other and produce output for various
scenarios. This form of testing is carried out a
software testing engineer.

In this form of testing a lot of defects related to
functional, requirement and performance levels are
uncovered. Unit testing confirms that various units
are able to perform as per the requirement
individually but integration testing confirms whether
these independent units are able to perform as per
expectations when integrated together. Integration
testing can be broadly classified into:
 1 Big bang
 2 Top down and
 3 Bottom up approach

As the name suggests, big bang form of testing all
the modules are combined to form a complete
system and then tested for bugs.

 40

Integration Testing

Top down is systematic approach where the top level
modules are first tested and then one by one the sub
modules are added and tested. The Bottom up
approach is just the opposite of top down. In this
case the lower most modules are tested first and
step by step the higher level modules are added and
tested. Generally the bottom up approach is followed
first in software testing followed by top-down testing.

Top down and Bottom up Integration Testing

In Top down approach integration testing stubs can
be used as handles in case of modules or sub
programs that are not available or not ready. These
are dummy modules used at low levels. In similar
way in case of bottom up approach is a main
program is not available then calling program
referred to as driver can be used as a replacement to
complete testing process.

System Testing
Once the integration testing phase gets successfully
completed it is time to move on to system testing
where the system as a whole with all components
well integrated is ready for further testing. This is
where the software is not only tested for performan-
ce but also for adherence to quality standards. As the
system is tested as a whole to see if it is in complian-
ce with the functional and technical specifications
and the quality standards defined by the organizati-
on, it is important that this form of testing is carried
out by a highly skilled testing team. For this form of
testing it is very important to create a scenario
similar to the real time scenario where the system
will be deployed.

 41

System Testing

System testing is purely black box testing. The
system is checked as per the requirement
specifications. The testing is carried out from the
user’s point of view. This type of testing is carried out
to check the behavior of the application, software
design and expectation of the end user. System
testing validates and verifies both Application
architecture and business requirements of the client.

Acceptance Testing
Once the system has been thoroughly tested via unit,
integration and system testing it is time for the
quality assurance team to come and have a look at
the system and test it for quality with the help of
predefined test scenarios and test cases. The

software is tested for accuracy. The acceptance
testing looks at the system from various angles: right
from cosmetic looks to internal functioning. This
form of test is very crucial because there are legal as
well as contractual requirements associated with the
software for it to be accepted by the client.

Acceptance testing can be of following types:
 1 User Acceptance testing: This form of testing is

carried out by the actual user before the
software is accepted. It can be performed at
the user’s site or in the software organization
where the software was developed.

 2 Operation Acceptance testing: this form of
testing is done to ensure that all the processes
and procedures are in place so that the system
can be used easily and also be maintained
easily.

 3 Contract and regulation acceptance testing: is
carried out to ensure that the software is in
line with all the necessary government, legal
and safety standards.

 4 Alpha testing: is carried to ensure that the
product is of good quality and also to prepare
the system for beta testing. This form of
testing is performed towards the end of
software development where the system can

 42

be tested as a whole. This can be a long
process as the testers are looking into quality
as well as engineering aspects of the
developed software. This form of testing is
carried out by test engineers and other team
members and the product is tested from the
point of view of a customer.

 5 Beta testing: Once the alpha testing is over,
beta testing follows in order to improve the
quality of the product and see that the product
is as per the requirement of the customer. This
form of testing is done a couple of days or
weeks before the launch of the product. Beta
testing can take a few days but may not take as
much time as alpha testing as chances of
defect detection are pretty low during this
time. It is carried in the real world scenario
with the people who are actually going to use
the product.

Acceptance Testing

 43

Software Testing Types

Software Testing Types

Functional Testing
Functional testing is a kind of black box testing where
test cases are prepared keeping the specifications in
mind. This form of testing is done to check if the
system is in compl iance with the c l ient ’s
requirements. Basically in case of functional testing
the following checks are important:
 1 The tester needs to be very clear about the

functionality that the application is supposed
to perform.

 2 In order to test the application it is very
important to have the right set of data(valid
and invalid inputs)

 3 The output of application for the test data
provided should be checked as per the
functional specification defined.

 4 The test cases must cover all possible test
scenarios.

 5 The actual result for a given input should be
recorded and checked against the expected
output.

Types of functional testing include:
 1 Unit Testing
 2 Integration Testing
 3 System Testing
 4 Regression Testing
 5 Acceptance Testing

Non-Functional Testing
In a software system there are many requirements
such as performance, security, user interface etc.
that are non-functional in nature however it is very
important to test these attributes. Software testing
carried out to test non-functional attributes of a
system is called non-functional testing. The types of
non-functional testing methodologies are as follows:
 1 Performance Testing
 2 Usability Testing
 3 Security Testing

 44

 4 Portability Testing

Usability Testing
Usability testing is a process in which the testers test
the product to check how easy it would be for the
user to use the user interface or in other words the
software is tested for its user friendliness. It is a form
of black box testing. The software is tested for three
things:(1) How convenient the software will be for the
user? (2) Will the user be able to use it?(3) Will the
user be able to learn it?

Usability has following aspects associated with it:
 • How easily the users can adapt to the system

the first time they try to use the system.
 • How efficient the system is for the user?The

efficiency of the system greatly depends on the
speed with which the users are able to
accomplish their tasks.

 • How easy or difficult it is for the users to work
on a system when they get to use it after a long
period of time.

 • Do the users encounter errors? If yes, then
how easily they are able to come out of the
issue?

 • Are you able to provide satisfaction to your
users?

Usability testing assures the end user that the
software is of good quality and easy to use. This type
of testing very essential in order to satisfy the
customers and it needs to be planned well. If
planned properly, this activity can be highly
beneficial and economical. Since the software is used
in a random manner in this type of testing, many
times it uncovers defects that have escaped the
normal testing procedures.

Graphical User Interface Testing
The form of testing carried out to test if the graphical
user interface of an application is working in the
right manner is called GUI or Graphical User
Interface testing. The GUI is not only checked for
proper functionality but also for its adherence to the
defined quality standards. The following are some of
the most important things that need to be checked
during GUI testing:

 • Layout
 • Colors
 • Fonts
 • Font size
 • Labels
 • Test box functions
 • How the text is formatted

 45

 • Captions
 • Buttons
 • Lists
 • Icons
 • Links
 • Content
 • Short cut keys
 • Hour glass while the system is processing data

This form of testing can be manual or automatic
whatever is convenient for the tester. The GUI testing
is sometimes conducted by third party organizations
and not by the development or testing team of the
company.

Non-Graphical User Interface Testing
Graphical user interface is the look and feel of an
application. Testing anything other than the look and
feel of an application such as command lines
interfaces, batch processes and various events which
trigger certain use cases in a software application
come under non graphical user interface testing.

Portability Testing
Portability testing is carried out to test how the
change of environment changes the performance of
the software. For instance, how the software works

on different operating systems or if it is a web-based
application, it would be checked for performance on
different web browsers. This form of testing is
important if the customer intends to use the
software application for more than one platform.

This form of testing is a subset of system testing.
Here the software may be installed in more than one
environment or its executables may be created and
run on different platforms. In order to carry out
portability testing without any issues it is important
to keep all portability requirements in mind while
designing and developing the software. This type of
testing is performed after integration testing. It is
important to have the right testing environment to
carry out portability testing.

Security, Authentication And Authorization
Testing
A software application is tested for any kind of
security flaws in security testing. Authentication and
authorization are considered to be two very
important aspects of software testing. It is crucial to
carry out this form of testing to ensure that the
software is secure and capable of storing confidential
customer information when necessary.

 46

Authentication is a process where the person trying
to access the software is asked for a username and a
password. A wrong combination of the two
parameters indicate that the person is not what he is
claiming to be and is not allowed to go any further.
This is an authentication check which ensures that
the login credentials of an authorized software
application use are checked.

Authorization on the other hand is all about
privileges to use certain restricted features of a
software application. Just because you have cleared
the authentication process does not mean you have
been authorized to access all the data, features and
use cases on the software application. For example,
in case of social media sites once you feed in the
right username and password, you can only access
the details of your account and not any other
account besides that.

Besides authentication and authorization, security
testing also deals with confidentiality, integrity,
availability, non-repudiation, software data security,
SQL insertion flaws, cross-site scripting attacks and
other security related concern which is a complete
different subject matter expertise by itself.

Data And Database Integrity Testing
In data integrity testing we need to check if the data
stored in the database is accurate and produces
results as per the expectations. Some checks are very
important for data integrity testing such as whether
it is possible to retrieve blank information from the
database or not, is data validated properly before
getting saved in data base, can the data stored in
database be updated, are you able to run tests for all
kind of data files etc. In other words data integrity
testing is carried out to ensure that the data is
accurate and consistent over its entire life cycle.

Database integrity on the other hand deals with
testing of all the necessary methods and processes
that are important for accessing the database and
managing the data within. It is also about how all the
access methods functions and data are processed.
The data should not get corrupted and should not
get deleted, updated or created unknowingly, and
there should be test cases to make these validations.

Fault Tolerance And Failover Testing
Fault tolerance testing is carried out to check how an
application would react if any fault occurs in real
time scenario. In this type of testing various
scenarios are considered such as connection error

 47

with network, connection problem with application
server, not being able to connect to a database etc.

Failover testing on the other hand is carried out to
test the ability of software to recover from
unexpected severe problems such as hardware
failure or a crash. This form of testing explains how
well the system will restore to its original state in
case of any kind of failure.

Configuration and Deployment Testing
Configuration testing is carried out to verify how a
system performs for various types of system
configurations. There are several reasons for carrying
out configuration testing. It can help you determine
the reaction time of the system in the test
environment and the optimal configuration required
for the system to perform as expected. Configuration
testing also plays a very important role in scenarios
where there is a need to migrate a software from
one platform to the other. It helps in verifying
whether the system is compatible with the new
environment as required by the hardware
specifications.

Once the system has been deployed, it is important
to conduct certain checks to ensure that it is going to

work properly. This includes checking the system for
its performance issues such as low speed or chances
of crashes, how the application is working in real
time scenario, is the software employed correctly in
the correct folder etc. All this is part of Deployment
testing.

Regression Testing
Once a defect is detected in the system it is
immediately sent for fixing. However, once the defect
is fixed it is important to carry out intense testing in
order to check that changes made in the code has
not affected any other area of the system.
Regression testing is carried out to ensure that bug
fixing has not caused any functionality or business
logic violation. Regression testing helps in minimizing
gaps in testing process. It ensures that the
application has no defects before it is sent for next
testing phase.

Performance Testing
Subjects such as network delay, data rendering,
database transaction processing, load balancing
between servers are generally uncovered during
performance testing. In other words, rather than
finding defects in the actual software, performance
testing focuses on testing performance issues. It is

 48

important to conduct performance testing in any
software for which it is important to have stability,
scalability and speed which means good response
time and data rendering.

Load Testing And Performance Benchmarking
The process of load testing is also very interesting;
here the behavior of the software is tested under
maximum load. Load testing is carried out to check
how the software performs or behaves under peak
load conditions. There are several tools available for
load testing such as JMeter, Load Runner, Silk
Performer and so on. These tools are used for
automated load testing of the software where
several virtual users can be created and then a script
is executed to check how the software behaves when
multiple users try to access the system concurrently.  

The tester can control the number of virtual users
and see how the system behaves.

Stress Testing
In stress testing the software is intentionally
subjected to abnormal conditions and then its
performance is monitored. In stress testing the
software is tested by applying load that is much
beyond the acceptable limit and the resources are
withdrawn to find out the point at which it would fail
to perform. There are many ways of creating
abnormal conditions for stress testing, the database
can be turned off and on, and network ports can be
shut or restarted randomly. The most common way
of performing stress testing is by starting processes
that would consume a lot of resources.

Sofware Testing Types Summary 

 49

Manual Software Testing

Manual testing is the oldest and the most thorough
way of conducting software testing. Although many
organizations have now started incorporating
automation testing in testing projects, automation
testing can never completely replace manual testing.
The process of manual testing is greatly dependent
on the skills and dedication of the tester.

Manual Software Testing

Manual Software Testing Overview
In order to perform manual testing the tester has to
be absolutely clear about the testing processes.
There is a lot expected from the tester. He needs to
understand the functionality of the program because
the entire testing activity can be carried out in the
right manner only if he has understood the
requirement properly. The tester will have to create a
test environment and then prepare the test cases
accordingly. The process of executing the test cases
and verifying the results is also done manually.

The tester has to manually record which tests have
passed and which have failed create a detailed
report for analysis. Manual testing is of great help
when incorporated in the initial stages of software
testing.

Manual testing can be incorporate for both big and
small projects and wherever there are budgeting
issues or the company cannot afford to invest in
automation testing tools, manual testing proves to
be of great help. Manual testing is still sometimes
considered to be more reliable than automation
testing although it takes longer automated software
testing.

 50

Manual Software Testing Strategy
The strategy for software testing is defined in the test
plan. The test plan document defines:

 1 The testing environment in which the software
will betested

 2 The purpose of conducting testing
 3 The scope and objective of the testing team
 4 How testing activities are schedules
 5 The approach for carrying out manual testing
 6 Milestones
 7 Roles and responsibilities of various members

of the test team
 8 Tools and Testing Methodology Trainings -if any

required-
 9 What type of tests need to be performed
 10 How defects would be tracked

 51

Automated Software Testing

Automation testing is a process in which a testing
tool which is also another software application is
used to test the system. Test scripts are created and
executed and then the results of these tests are
compared with expected results. It is always wise to
automate repetitive but essential testing processes
as it saves a lot of time.

Automated Software Testing

Software Test Automation Overview
Automated software testing is carried out with the
help of automation testing tools. Automation testing
tool is a software application itself with the help of
which a tester can write testing scripts and then use
this software to test the actual system under testing.
Automation tools are used to automate certain
sections of manual testing. The biggest advantage of
automation testing is that it saves a lot of time and
software application can be thoroughly tested in a
short span of time. Automation testing tools are
available to perform regression, load and stress
testing. However, automation testing cannot
completely replace manual testing. Beside time,
automation testing saves money and effort and
helps in improving the accuracy of software.

All aspects of software cannot be covered via
automation testing. However, automation testing is
of great help in testing GUI aspects, database
connectivity etc. It is best to go for automation
testing when you are working on large and complex
projects where there is a necessity to test certain
areas frequently. Automation testing is also good for
testing those applications which will be eventually
used by several concurrent users. This form of

 52

testing helps in saving a lot of time so the team gets
more time to focus on the quality of the software.
In order to perform automation testing, you need to
know the following details:

 1 Which sections of the software require
automation testing

 2 Which tools will be ideal for this purpose
 3 The process of writing test scripts and

executing them
 4 You should be able to identify potential bug

and know how to create result reports.

It is good to include automation testing to improve
the quality of the software but automation testing is
not the only way of achieving quality and in no way it
should be considered a replacement for inspections
and walkthrough procedures. Many organizations
still consider that automation testing is the last way
of detecting defects that may have gone unnoticed.

Software Test Automation Strategy
There is no doubt that automation testing makes life
a lot more easier but just having the right tools is not
sufficient to achieve success in automation testing. It
is very important to develop a strategy for
automation testing that would clearly define which

sections of the software require testing, how this task
would be carried out, how and where the scripts will
be maintained, how the project would benefit from
this activity and how much money would be saved in
this process. The more specific you are in defining
the strategy; the more successful you will be in
achieving your testing goals.

While defining the strategy it is important to break
down your aim into smaller goals and check if you
are able to achieve what you require with the help of
an automation test tool. If the project is too big and
you try to test complex areas in the first go then
there are chances of making mistakes. So, it is wise
to start small initially and then gradually grow.

Automation testing can be carried out in unit testing,
integration and system level testing. It is always
better to uncover maximum defects in early stages
of software development hence it is better to plan
automation testing as early as it is possible.

Software Test Automation And Its Return Of
Investment (ROI)
ROI for Software Test Automation is calculated to
know how the company would benefit by
incorporating this methodology in its testing

 53

processes. It gives a fair idea about the cost saving,
scope of improvement in efficiency and software
quality.

ROI = (Gain- invested amount) / invested amount
The most commonly used methods for calculation of
ROI for automation testing are:

 • Simple ROI calculation to know how the
company would benefit from cost saving. This
calculation is of great importance when a
company wants to know how it would benefit
on monetary basis by incorporating automati-
on testing. The cost of investment would
include the amount spent on acquiring the
license, hardware, and training for staff,
development of scripts, their maintenance and
analysis.

 • Efficiency ROI calculation tells about the
benefits in terms of increased efficiency. Unlike
simple ROI, this calculation only looks at time
investment gains. When a company already
has the automation testing tools and has been
using it for quite some time, there is no need
for it to know about Simple ROI calculations
because it is not going to make any fresh
monetary investment in this case.

 • Risk Reduction ROI calculation indicates
reduction in risk and scope of improvement of
quality. Automation testing saves time and
provides team with more time to carry out
analysis and carry out ad hoc and exploratory
testing this leads to thorough coverage thereby
reducing the chances of failure.

Test Cases to Automate
It is difficult and not wise to automate all testing. So,
one must clearly determine which test cases should
be automated. You must first look at those sections
of the software that require repeated testing. Test
cases that have to be executed repeatedly and
require a lot of data for execution should be
automated. Besides, repetitive tests, you should also
focus on automating:

 1 Test cases that require multiple data sets for
execution and are difficult to conduct manu-
ally.

 2 Load and stress tests that are difficult to con-
duct manually.

 3 Tests that are executed to check the perfor-
mance of software on multiple platforms.

 4 GUI testing.

 54

Test Cases Not To Automate
There are certain test cases that are not preferred to
be automated. Such as:
 1 Test cases that would be executed only once or

quite infrequently.
 2 Ad hoc or exploratory testing cannot be

conducted with the help of automation testing.
 3 Test cases that require only manual execution

or a human opinion.

How Do We Want Automat?
Automation of a test case begins with defining what
you want to test. Always go for those test cases that
are independent and stable. It is always better to
execute smaller independent test cases rather than
few big and complex ones. Large scripts are difficult
to maintain and can be difficult to execute if any
major changes have been made to the software. If a
test script requires a change then it is always easier
to make changes to a shorter script than a longer
one.

Before automating a test case it is better to execute
the test case manually. Since automated test cases
are those that one needs to use for repetitive testing
therefore before designing such a test case it is
better to execute it manually and note down all the

steps that you would like to record or put down in
your test script. This will help you design all the
conditions required for through testing of a function.
Ensure that you have taken care of all validations in
your test scripts. If you are planning to test database
transactions, then you need to make sure that
database has the necessary data required for testing.
Before executing the test case it is important to
understand how the automated software tool has
been designed. This is important because once you
start testing you don’t want to get interrupted by
unknown issues.

Software Test Automation Tools
Automation tools have a very positive impact on the
efficiency and productivity of software. It is
important to use software test automation tools in
order to simplify testing. Certain manual testing
processes can be very time consuming. With the help
of automation tools you can accomplish more in less
time. However, never depend completely on
automation tools. You must clearly define what
needs to be tested manually and where there is a
need to implement automation testing tools. Most
well reputed automation testing tools come with
their prices, but it is worth deploying them in
projects as they are of great help. 

 55

Waterfall Software Engineering
Life Cycle

The waterfall model is a linear and sequential model
defined for software engineering life cycle. It is a
classic and very popular model that distinctly defines
various phases and the goals that each phase has to
achieve. It is called a waterfall model because just
like a waterfall once the course of life cycle has
started there is no looking back.The water will flow
from the top to bottom and not reverse its course. In
similar fashion in this life cycle the course of
software development cannot be reversed.
In waterfall model the approach is very strict and
well defined but there is not much of scope for
revision. Testing is a phase and does not go hand in
hand with development. So, it is not possible to
detect defects early in development stage.

Waterfall Software Engineering Life Cycle

The sequences of phases in waterfall model are as
follows:
 1 Requirement and gathering: The requirement

of the client is captured and all the necessary
documentation is done.

 2 System Design: based on the requirement
gathered the system is designed; this helps in
defining in creating the system architecture
and also helps in defining the hardware and
software requirement of the system.

 3 Implementation: Based on the system design
the coding begins. The program is divided into
small independent units that are later
integrated to form the complete system. Once
the units are ready they are tested as per the
defined specifications.

 4 Integration testing: Once the units have been
tested they are integrated into a system and
then the entire system is tested in one go for
defects.

 5 Deployment: The system is ready for
deployment once the defects uncovered during
integration testing have been fixed. After the
testing of the integrated system, the defects
are fixed and testing is done again to verify is
all defects have been closed. The system is

 56

now ready for market release and can be
deployed in the customer’s environment.

 6 Maintenance: If any defect or issue arises after
the software has been delivered to the
customer then patches or new version of the
software is released to deal with the problem.

All phases mentioned above are cascaded with each
other and one phase can start only after the previous
phase has been closed successfully.

Waterfall model can be used in situations where the
requirements are well defined and clear, the product
is stable and there are enough of resources available
for each phase. Waterfall model should be practically
implemented only in small and easily manageable
projects. It should not be used in projects in which
the requirements are at moderate to high risk.

Requirements Specification and Analysis
The development of a software application depends
only one thing and that is how well the requirements
are captured and documented. This process of
identifying and then documenting the requirements
for software development is called Requirement
specification and analysis.

The client, the management team and the technical
support team of the company discuss the
requirement of the software in complete detail.
These requirements are analyzed, discussed several
times and then documented till they are clear and
complete.

User Requirement Specification

The requirements can be documented in the format
defined by the company such as description in word
docs, flow charts, drawings etc. The outcome of the
entire exercise is a detailed document that describes
what the customer wants. This is necessary so that
one is able to understand the requirement of the
client properly. In present day we say that defect is
anything that is not in line with the requirement of

 57

the customer. If we capture the requirement
incorrectly we will start the project on the wrong
foot.

User Requirement Specification
This document defines what a user wants and what
his expectations from the software are. This
document gives a clear picture about the business
needs of a client. This document is written by the
end users. These requirements are tested in the user
acceptance testing. This document is not technical in
nature. It talks about the business need of the user
and forms the foundation for planning the next steps
in capturing the requirements and system design.

Software Requirement Specification
The software requirement specification defines how
the user wants the software to function. The purpose
of this document is as follows:
 • The customer and the supplier agree on this

requirement. It describes the functionality of
the software in complete detail.

 • The software design is prepared on the basis of
SRS document.

 • Clear cut SRS document simplifies develop-
ment and testing process.

 • It helps in scheduling activities and estimating
costs.

 • SRS serves as a foundation for validation and
verification.

Software Requirement Specification

Software Design
Software Design can be of the following types:
 • High Level Software Design
 • Detailed Software Level Design

 58

Software Design

High Level Software Design
High level software design provides a clear picture
about the database design and the function
architecture of the system. High level Software
design serves as a guide for the development team.
Whenever there is any doubt regarding the design
flow, the developers refer to High Level Design (HLD)
document. In order to create this document it is
important that the Software Requirements
Specification (SRS) document should be absolutely
clear.

Detailed Software Level Design
Detailed software level design or Low Level Design
(LLD) involves breaking the high level design in
smaller sections and writing down the logic that
would serve as program specification. LLD provides

detailed information about the system and it cannot
be created till the HLD is ready.

Software Design Processes
Software design Processes can be classified as:
 • Top Down Design Approach
 • Bottom Up Design Approach

Top Down Design Approach
Top-down approach is a very systematic approach in
which first the outline of the system is devised
without defining details of any subsystem. Once the
outline for the system is ready it is time to move
down step by step to every subsystem. Every sub
system is defined in complete detail till the
specification reaches the base elements.

Bottom Up Design Approach
Bottom up design approach is exactly the opposite of
top down approach. In this case the first step
involves defining the base elements in complete
detail and then linking these elements to form
various sub systems which are further linked
together till the time the complete system is formed.
This approach can be compared to planting a tree
where at the beginning all that we have in hand in a
seed but as we start working on it a tree is formed. 

 59

Agile Software Engineering Life
Cycle

The agile methodology believes that every project
must be handled in a different manner.

Requirements of a project vary from client to client
and therefore it is not wise to stick to just one
method of software development. In software
engineering life cycle all projects are divided into
small time frames, with each time frame focusing on
delivery of certain sections for release.

Agile Software Engineering Life Cycle

This process combines iterative and incremental
approach that helps in fast development of the
project. The project is broken into incremental builds
and then every build undergoes iterations that can
last for 2-3 weeks. In every iteration cross functional
teams work together on various aspects of the
project right from requirement analysis to acceptan-
ce testing. At the end of each iteration the outcome
is shown to the customer.

Overview Of Agile Software Engineering Life Cycle
Agile software engineering life cycle is different from
other software development approach because it is
adaptive in nature as compared to others that are
predictive. Predictive planning requires in depth
planning which consumes lot of time and effort and
even a small change in the requirement after the
development has started affects the development
process. Predictive methods are dependent
completely on requirement analysis and planning at
the beginning of the project.

Agile methodology does not require detailed
planning, development begins keeping the features
and characteristics of the software in mind and the
team changes the course of development
dynamically whenever a change in requirement is

 60

requested. This approach focuses more on customer
interaction and less on documentation so that the
development team is sure that it is on the right path.

Although agile software development follows a very
realistic approach it is not ideal for complex projects
and there is always a risk of sustainability,
maintainability and extensibility. This process has
minimum resource requirements and ideal for
projects where requirement undergo changes
frequently. Since the documentation is less and the
focus is completely on customer interaction, the
entire project depends on how well the customer is
able to communicate his requirements. Agile
methodology enables concurrent development; the
rules are nominal that can be easily employed.

Continuous Software Integration and Continue
Software Testing
In traditional way of software development, the
developers work on individual pieces of code for
several days and once the individual units are
completed they move on to integration of units.
Since in every iteration this methodology believes in
making the project focus on development of high
quality code, continuous integration should be
followed. The concept of continuous integration

requires a lot of discipline and theories may vary
from company to company. For example some
companies believe that at the end of the day a
developer must ensure that nothing is left
unintegrated. In such a scenario the developer needs
to plan all his tasks properly. Although, this may
seem like a difficult task, the biggest benefit of this
approach is that the customer can walk in anytime
and see how the product is being developed and can
give his feedback on what is presented to him.

Testing and Role Of Testing In Agile Software
Engineering Life Cycle
Traditional ways of software development does not
utilize a tester to his complete potential. As a matter
of fact testers started working only after the
functional requirement has been developed
completely. In an agile environment the tester is a
very important member of the team and he is
involved in every phase of every iteration, be it
planning or requirement analysis.

In this methodology testing is as important as
development and the product is subjected to
continuous test ing. The tester is working
continuously in agile methodology and so, by the
end of the project the number of defects in the

 61

system are very less in number because a majority of
them have been uncovered in initial phases of
software development.

 62

Software Project Management
Software Project management includes all the
necessary information and tools that are required to
manage the process of software development
projects. In order to execute a software development
project plan properly, the manager drafts a plan that
describes how the development will be carried out.

The plan also focuses on how the quality standards
will be maintained during the development process.
The manager also defines how the development
team will be organized, how risk management will be
carried out.

Project Planning
Software Project Planning is required in order to
control and monitor the complex processes involved
in software development. Project planning is done to
ensure that the project is completed well in time, the
end product is of good quality and the project gets
completed well in time. In order to go ahead with
project planning it is important to take into account
the project complexity, its size and level of structural
uncertainty. A software project plan comprises of:

 • Scope: defines the problem and what needs to
be done to resolve it.

 • Estimation: defines the effort and time that will
go in completing the project.

 • Risk: Defines the obstruction that the team
may face during software development and
how that can be tackled.

 • Schedule: Allocation of resources so that the
project can finish in time.

 • Control Strategy: defines how to go about
quality control.

Project Staffing
In order to conduct project staffing it is important to
define various roles, skills required for each role, how
staffing will be scheduled and how staffing will be
done for each role. For every role it is necessary to
define the skills and competency requirements, the
experience level, availability and salary expectations.

Project Coordination and Al ignment of
Stakeholders
It is the responsibility of the IT project coordinator to
align the internal team members with the external
stakeholders. This is done by coordinating various
project phases and schedules, tracking progress and
making arrangements for order supplies and

 63

support services. The project manager monitors the
project coordination activities.

 64

Software Testing Life Cycle And
Software Testing Operations

Software testing life cycle has the following phases:
 1 Requirement study: where the requirement of

the client is understood and functional
documentation is done.

 2 Test plan: Considering the requirement of the
project, testing activities are planned and test
plan document is prepared.

 3 Test Case Design: Testing scenarios are
identified and test cases are designed
accordingly.

 4 Requirement and test cases are mapped and
requirement traceability matrix is prepared.

 5 Execution of test cases: tests should be
executed and bugs should be reported.

 6 Once the defects are fixed, retesting and
regression testing must be carried out.

 7 Test reports should be prepared.
 8 Testing activity is completed.

Requirements Study
In this process:
 • Requirement traceability matrix is prepared.
 • Module wise priorities and approach is set.

 • Area that require automation testing and the
ones that require manual testing are identified.

Test Case Design And Development
This process involves:
 • Preparation of test cases and test scripts(if

automated testing is involved)
 • Preparation of data for testing

Test Execution
Test Execution consists of:
 • Execution of test cases
 • Use a bug tracking tool to log bugs
 • Document test results
 • Use the RTM to map defects to the require-

ment
 • Track the bug’s status

Test Closure
Test Closure consists of:
 • Test metrics is prepared considering test

coverage, cost, time, quality etc.
 • Preparation of test closure report.
 • Defect distribution by type and severity is

calculated.
 • Casual analysis and resolution(CAR) is prepa-

red.

 65

Test Process Analysis
Test process analysis is required before getting
started with software testing. Documents that
provide information to start off with testing are
called test basis documents. These include SRS,
system design, architecture, interface etc. With the
help of these documents the testers understand the
system and look for test conditions or possibilities
that will be part of the test case. Once the test
conditions have been identified they are prioritized
and test cases are created.

 66

Deliverables Of Software Testing
Team
Test Deliverables are documents that are given to the
stakeholders when the software is being developed.
In this section we will discuss the following test
deliverables:

Deliverables Of Software Testing Team

 • Software Testing Strategy
 • Software Testing Plan
 • Software Test Scenarios and Test Cases
 • Software Test Metrics
 • Product Metrics
 • Process Metrics

 • Software Test Documentations
 • Software Testing Reports
 • Daily Test Status Reports
 • Incident Reports
 • Final (Test Project Closure) Test Status Report

Software Testing Strategy
A software testing strategy is a roadmap for testing
activities in a project. Testing can be a very difficult if
it is not broken down into smaller well defined
processes. A test strategy helps in defining the
testing process and on the basis of which the testing
team evaluates the time, effort and resources
required for the entire process. A good strategy is
the one that allows good planning, management and
tracking of processes.

Software Testing Plan
A test plan defines the overall strategy for testing
software. I t explains the required test ing
environment and what level of testing will be
conducted. The test plan imparts information on
how test results will be analyzed and which metrics
will be used for the purpose. Exit criteria for each
phase are defined and estimate of test effort and
cost are mentioned in the plan.

 67

Software Testing Plan

Software Test Scenarios and Test Cases
Test Scenario is a hypothetical case made to help the
tester test the software in a well-defined manner.
Test cases on the other hand are very simple and
straight forward that explain what needs to be done.
They are generally one line statements and you need
to feed in an input and check the expected output
for every input. Test scenarios can be complex and
compelling like a story. It is a situation given to a
tester to evaluate the software.

The concept of test scenarios came into existence in
the year 2003 after it was observed that
maintenance of test cases with step by step
description, input data and expected results was a

very complicated process. Then the industry has
come up with something that was easy to use.

Software Test Scenarios and Test Cases

Test cases on the other hand are very direct. They tell
what the tester should do and how the software
needs to be tested.

Software Test Scenarios and Test Cases

 68

Software Test Metrics
As the name suggests software metrics is nothing
but the standards of measurement defined to
evaluate software. Any unit used to measure any
attribute of software is called a metrics. Software test
metrics is used to measure the quality of software.
These metrics give a fair idea about the readiness of
a system while it is still under development. Now you
may ask why do we need a software test metrics?

Well, the answer is very simple- we can only improve
those things that we can measure, because anything
that is measurable is controllable. Decisions of every
phase of software development are taken only after
referring to the software test metrics of the previous
phase. Software test metrics can be of two types:
 1 Direct measure/Base Metrics: this data is raw

and is gathered by a test analyst. Base metrics
provides the information regarding the status
of the project such as how many test cases
have been created, how many have been
executed and so on.

 2 Indirect measure/Calculated Metrics: Raw data
collected from base metrics when converted to
more useful information that gives accurate
information about the project such as % of

project completion, % of test coverage and son
on are referred to as calculated metrics.

Product Metrics
Product metrics plays a very important role in
defining product quality improvement initiatives.
Constant evaluation of the product helps the team
decide if there is a need for any type of correction in
any characteristic of the product well in time.
Product metrics measures the characteristics of a
product:
 • Size
 • Complexity
 • Design aspects
 • Performance
 • Quality

Process Metrics
Process Metrics measure the processes so that if
there is any scope of improvement that can be done.
Process metrics can help in saving a lot of time and
effort. Every process is designed keeping some target
in mind and process metrics helps in assessing how
far the team has been successful in achieving it.
Process metrics play a very important role in tracking
software testing activities. Software testing is a very
important aspect of software development and

 69

efficiency and effectiveness of a project can improve
significantly by monitoring testing activities. From the
point of view of software development process
metrics can be used to measure:
 • Software Development
 • Software Maintenance
 • Software Testing

Software Test Documentations
Software testing documents that prepared during or
before testing to keep a track of all the testing
activities are called software test documents. The
important software testing documents include:
 • Test Plan
 • Test Scenario
 • Test Case
 • Traceability Matrix

Software Testing Reports
In this section we will discuss the following reports:
 • Daily Test Status Reports
 • Incident Reports
 • Final (Test Project Closure) Test Status Report

Daily Test Status Reports
Daily test status report helps in maintaining
transparency within the test team and with the

project and program stakeholders. At any point of
time the project manager can have a look at how
many defects are reported on daily basis, how many
test cases are run and how much work was done by
each tester. A daily status report has information
regarding:
 1 How many test cases were planned for the

day?
 2 How many of them were executed?
 3 How many defects have benn reported by the

testing team?
 4 How many of the defects were critical?
 5 Location: Where the more detailed test reports

can be viewed (Defect and Test Execution
Sheet)?

Incident Reports
Incident reports help in coordinating testing and
development activities. Incident management
involves:
 • Comparison of actual and expected results
 • What was the cause of deviation in cases

where tests failed? – faulty test automation,
poor test case, actual failure of software?

 70

Incident report needs to be prepared for actual
failure. An incident report should provide the
following details:

 • Identification
 • What is the ID for each report?
 • What is the test object?
 • Version of Software Application under Test
 • Details of test environment - hardware and

software
 • Name of the developer who needs to assess

and resolve the incident
 • When was the failure observed?
 • Classification
 • Status
 • Severity
 • Priority
 • Requirement
 • Cause
 • Problem Description
 • Description of the problem
 • Details of the test case
 • Tester's comments
 • Developer's comment after change
 • Any references

Final (Test Project Closure) Test Status Report
Test project closure report is created when the exit
criterion of the project is reached or when the entire
testing activity has been completed. This report is
created by the test lead and later reviewed by all the
stakeholders and clients. This report has all the
details of the test cases that have been successfully
executed and if there is any outstanding defect that
the team plans to resolve post project deployment
then that is also mentioned in this report.

 71

What Is Software Risk And
Software Risk Management?

Risk is an expectation of loss, a potential problem
that may or may not occur in the future. It is
generally caused due to lack of information, control
or time.A possibility of suffering from loss in
software development process is called a software
risk. Loss can be anything, increase in production
cost, development of poor quality software, not
being able to complete the project on time. Software
risk exists because the future is uncertain and there
are many known and unknown things that cannot be
incorporated in the project plan. A software risk can
be of two types (a) internal risks that are within the
control of the project manager and (2) external risks
that are beyond the control of project manager. Risk
management is carried out to:

 1 Identify the risk
 2 Reduce the impact of risk
 3 Reduce the probability or likelihood of risk
 4 Risk monitoring

A project manager has to deal with risks arising from
three possible cases:

 1 Known knowns are software risks that are
actually facts known to the team as well as to
the entire project. For example not having
enough number of developers can delay the
project delivery. Such risks are described and
included in the Project Management Plan.

 2 Known unknowns are risks that the project
team is aware of but it is unknown that such
risk exists in the project or not. For example if
the communication with the client is not of
good level then it is not possible to capture the
requirement properly. This is a fact known to
the project team however whether the client
has communicated all the information properly
or not is unknown to the project.

 3 Unknown Unknowns are those kind of risks
about which the organization has no idea. Such
risks are generally related to technology such
as working with technologies or tools that you
have no idea about because your client wants
you to work that way suddenly exposes you to
absolutely unknown unknown risks.

Software risk management is all about risk quantifi-
cation of risk. This includes:
 1 Giving a precise description of risk event that

can occur in the project

 72

 2 Defining risk probability that would explain
what are the chances for that risk to occur

 3 Defining How much loss a particular risk can
cause

 4 Defining the liability potential of risk

Risk Management comprises of following processes:
 1 Software Risk Identification
 2 Software Risk Analysis
 3 Software Risk Planning
 4 Software Risk Monitoring

These Processes are defined below.

Software Risk Identification
In order to identify the risks that your project may be
subjected to, it is important to first study the
problems faced by previous projects. Study the
project plan properly and check for all the possible
areas that are vulnerable to some or the other type
of risks. The best ways of analyzing a project plan is
by converting it to a flowchart and examine all
essential areas. It is important to conduct few
brainstorming sessions to identify the known
unknowns that can affect the project. Any decision
taken related to technical, operational, political, legal,

social, internal or external factors should be
evaluated properly.

Software Risk Identification

In this phase of Risk management you have to define
processes that are important for risk identification.
All the details of the risk such as unique Id, date on
which it was identified, description and so on should
be clearly mentioned.

Software Risk Analysis
Software Risk analysisis a very important aspect of
risk management. In this phase the risk is identified
and then categorized. After the categorization of risk,
the level, likelihood (percentage) and impact of the
risk is analyzed. Likelihood is defined in percentage

 73

after examining what are the chances of risk to occur
due to various technical conditions. These technical
conditions can be:
 1 Complexity of the technology
 2 Technical knowledge possessed by the testing

team
 3 Conflicts within the team
 4 Teams being distributed over a large

geographical area
 5 Usage of poor quality testing tools

With impact we mean the consequence of a risk in
case it happens. It is important to know about the
impact because it is necessary to know how a
business can get affected:
 1 What will be the loss to the customer
 2 How would the business suffer
 3 Loss of reputation or harm to society
 4 Monetary losses
 5 Legal actions against the company
 6 Cancellation of business license

Level of risk is identified with the help of:
Qualitative Risk Analysis: Here you define risk as:
 • High
 • Low
 • Medium

Quantitative Risk Analysis: can be used for
software risk analysis but is considered inappropria-
te because risk level is defined in % which does not
give a very clear picture.

Software Risk Planning
Software risk planning is all about:
 1 Defining preventive measure that would lower

down the likelihood or probability of various
risks.

 2 Define measures that would reduce the impact
in case a risk happens.

 3 Constant monitoring of processes to identify
risks as early as possible.

Software Risk Planning

 74

Software Risk Monitoring

Software risk monitoring is integrated into project
activities and regular checks are conducted on top
risks. Software risk monitoring comprises of:

 • Tracking of risk plans for any major changes in
actual plan, attribute, etc.

 • Preparation of status reports for project
management.

 • Review risks and risks whose impact or
likelihood has reached the lowest possible level
should be closed.

 • Regularly search for new risks

 75

Processes to Support Software
Testing

This section focuses on some very important
processes that are very essential for keeping a track
of how software testing is progressing. In this section
you will learn about:
 • Defect Management Life Cycle And How it

works
 • Traceability Matrix
 • Software Testing Estimation Techniques
 • Configuration Management
 • Change Management

What Is Defect Management Life Cycle And How
Does It Work?
Software is developed by humans and it is unfair to
expect a software of millions lines of code to be
defect free. Defects are induced due to many
reasons:
 1 The requirements are not communicated

clearly
 2 P r o g r a m m i n g e r r o r s c a u s e d d u r i n g

development
 3 Complex system design
 4 Poor quality or incomplete documentation

 5 Difficulty in managing changes in software
designsystem.

What Is Defect Management Life Cycle And How

Does It Work?

Defect lifecycle is defined to manage defects in the
system. It is in fact the journey of a bug in the system
right from the time is was found to the time it is
closed. The stages of a defect life cycle are given
below:

 1 New: When a defect is discovered it is given the
status ‘New’.

 2 Opened: When a new found defect goes for
review it has a status ‘Open’

 3 Duplicate: If the defect has already been
reported before, then it is called ‘Duplicate’

 76

 4 Assigned: This status indicates that the bug has
been assigned to a developer for fixing.

 5 Re-tested: Once the defect is fixed the tester
conducts testing to check if the defect has
been closed or not.

 6 Reopened/closed: if the defect is fixed it is
assigned the status ‘closed’ or else it is
‘reopened’.

What Is Traceability Matrix?
Traceability matrix is a tool that is used to connect
and trace the requirements of the project (business,
application, security related) to the implementation
and testing processes. This helps in analyzing how
much of the project requirements have been
completed.

A traceability matrix is of great use in complex
software development projects. With the help of this
tool you can trace how things are working in any
section of the project. This matrix is created in a
worksheet document that comprises of a rows and
columns. One set of values are set against the row
and other set of values is set against the columns. If
there is any kind of relationship between any value
of the column and any value of the row then an

identification mark is place in the cell where that
column and row intersect.

So, if we place the various requirements of the
project against the column on the left and various
testing processes on the top of row. Then we can
easily map which testing processes have been
completed for which all requirements. This would
give an accurate idea about how much percentage of
requirements has got completed.

W h a t A re S o f t w a re Te s t i n g E s t i m a t i o n
Techniques?
Different software project belong to different
domains so software estimation techniques may vary
a bit from project to project. Also it is very difficult to
get the estimation right in the first go. However,
software estimation techniques are very important
for a company. It plays a very important role in the
SDLC. Estimation techniques provide an estimate of
time that may be required to finish a particular task.

Estimation is done to get a rough idea about how
much effort it would take to complete a particular
task. The estimation could also mean cost. Many
factors such as past experience, assumptions,
documents, calculated risks etc. help in determining

 77

the estimate for a software development cycle. This
estimate helps an organization in bidding for a
project. Software estimation is required so that the
chances of overshooting the budget while testing or
delay in completion of project can be avoided.
 1 Delphi software estimation technique is the

most widely used techniques for estimation.It
provides a way of achieving an agreement
within a team without any conflict. Each one
from the team provides an anonymous and
individual estimate which is assessed by the
coordinator. If the assessment is within the
acceptable range then a decision can be taken
or else the process is repeated again.

 2 Work Breakdown Structure is used is big
projects where first the project is broken into
smaller components in a hierarchy and then
the estimation process is carried out to
evaluate task scheduling and detailed cost
estimation of the project.

 3 Three point estimation technique is also used
for big projects where the project is first
broken into smaller sub sections and the for
each sub section first the optimistic estimate is
done assuming that nothing will go wrong and
all conditions are fine(A). The second approach
is of most likely estimate where one assumes

that there is a possibility for problems to arise
but eventually everything will be fine(B). The
third approach is the pessimistic estimate
where everything will go wrong(C). So, the
estimate formula is defined as: A+(4*B)+C/6

 4 Functional point method suggests that: (Total
effort Estimate) =(Total number of function
points) * (estimate of every functional point).
The above mentioned formula clarifies that
more weightage is given to every function
point. The function points are categorized as
complex, medium and simple and then an
estimate is done.

What Is Configuration Management?
Configuration management is required to maintain
consistency in the performance of a system.
Configuration Management involves:
 • All configuration items are labeled with unique

identifiers
 • Identification of all documents that describe

configuration item
 • Related configuration items should be grouped

into baselines
 • After every revision it is important to label the

configuration items and baselines.

 78

Development of software is a complex process
where following issues are very common:
 1 Many times developers tend to overwrite each

other’s modifications
 2 If versions are not maintained properly then

integration process can be very difficult.
 3 Sometimes there are compatibility issues

between the versions of the compiler and
development tools.

 4 Confusion over which test cases belong to
current version of software.

All these problems can be handled with the help of
configuration management that defines:
 • Version management: maintaining the record

of various versions of object under test
corresponding version of configured item.

 • Configuration identification: helps in uniquely
defining the system, every revised version of
the system and components of each revised
version.

 • Documentation of incident status and change
request: These documents impart information
on various incidents and the change requested
and their present status.

 • Configuration audits: ensure that the details of
all components of the software are well

documented and all configurations are easy to
identify.

What Is Configuration Management?

What Is Change Management?
As the name suggests change management is all
about dealing with change in the way we work.
Change management is required at various levels
right from company’s level to individual level. Change
management deals with:
 1 Adapting to change: Many times it becomes

extremely important to implement structured
processes to bring about a positive change in
the business. In present times of recession or
slowdown of economy companies have to
implement stable mechanisms that would help

 79

staff members deal with pressure in difficult
conditions.

 2 Controlling change: deal with the new changes
in the business environment. No matter what
new changes you make to the environment it is

important to monitor changes and track the
details of the system.

 3 Effecting Change: generating profit from the
positive changes. 

What Is Change Management?  

 80

Thank you
I would like to thank you again for taking the time to
read Software Testing Revealed. We hope that you
enjoyed reading this book as much as we had
enjoyed while we were writing it. It is our biggest
pleasure if we by any means manage to help you
build a strong Software Testing foundation.

We know that it's a very complex, overwhelming
and overcrowded world with all Software Testing
certifications out there in the market.

And yet we managed to build our Software Testing
certification programs more concrete, attractive,
helpful, useful and simpler than our competition did.
This is why we believe our valuable students choose
International Software Test Institute™ over bureauc-
ratic, complex, expensive and half-baked solutions of
our competitors.

Our one-of-a-kind industry leading registration,
examination and certification process is very simple,
quick and completely online. Click on this link to find
out all details: Software Testing Certification

Yeliz Obergfell, International Software Test Institute™

http://www.test-institute.org/Accredited_Software_Test_Manager_Certification_ASTMC_Program.php
http://www.test-institute.org

	WELCOME
	ABOUT INTERNATIONAL SOFTWARE TEST INSTITUTE™
	Introduction To Software Testing
	What is Software Quality Assurance?
	What Is Software Testing?
	Fundamentals of Software Testing
	Software Testing Roles and Responsibilities
	Software Testing Methods
	Software Testing Levels
	Software Testing Types
	Manual Software Testing
	Automated Software Testing
	Waterfall Software Engineering Life Cycle
	Agile Software Engineering Life Cycle
	Software Project Management
	Software Testing Life Cycle And Software Testing Operations
	Deliverables Of Software Testing Team
	What Is Software Risk And Software Risk Management?
	Processes to Support Software Testing
	Thank you

