University of Applied Sciences

Recovery of cellulose fibres Ger Brinks/Gerrit Bouwhuis 17th March 2016

Step up to Saxion

saxion.edu

2011: Idea: Waste cotton as feed for the production of virgin fibres

2012: start project: 'proof of principle' 2012: SaXcell registered as trade mark

2014: 1e patent 2014: start TFF-project Recovery of cellulose fibres

2015: deliverable: 100 kg benchmark
2015: start describing 2nd patent
2015 (2e half) start new funded project (continuation of RCF) 3 x 100 kg (white repeated, coloured, mixed with PET)

From waste \rightarrow feed for fibres

University of Applied Sciences

- Holistic approach
- What fibre is it?
- Process
- Application
- Volumes



Trends/developments

- Growth of world population
 - Increase till 2050: 7 →9 billion: + >20%
- Growth of arable land needed
 - Growth of world population: increasing demand for food
 - Increasing demand for the production of bio-fuels
 - Increasing textile consumption due to increasing wealth
- Increasing wealth
 - Increase in demand for textiles (2 4% annually, depending on economic developments)
 - Increasing demand for food per capita

Growth of 1 kg cotton needs: 8.000 l water 400 g fertilizer 40 g pesticides

Annual cotton production: 25 billion kg

EU ambition: resource efficiency reduce dependency of imports

Market: Greener

Reuse of waste textiles

- Nowadays reused as:
 - Garments
 - Insulation
 - Cleaning
 - Incineration
 - Landfill

• Future:

- Strive for increasing reuse as garments
- Mechanically and chemically recycling
- Insulation and cleaning
- Incineration

Mechanical recycling

- Texperium/Haaksbergen
 - Process:
 - Collect
 - Sort and select
 - Shredding
 - Spinning (mechanically)
 - Advantage:
 - LCA positive
 - Fast process
 - No high investment
 - DSisadvantage:
 - Colour
 - Yarn: irregular (slubs)

Chemical recycling

- Saxion Enschede/professorship SFM
 - Principle:
 - Preparation of waste as feed stock for reuse
 - Reuse of the cellulose polymer
 - No recycled, but a virgin appearance
 - Advantage:
 - LCA positive
 - In mass applicable
 - Mass production possible
 - Producible on existing installed base
 - Price: comparable with viscose/lyocell
 - Disadvantage:
 - Still in development phase
 - Market testing necessary

- SaXcell is a regenerated cellulose fibre
- Man-made cellulosic fibres: 5,7 billion kg (source: CIRFS, 2013)
- Differences when compared to viscose/Tencel
 - Feed: waste cotton instead of cellulose derived from forestry
 - Chain length: Degree of polymerization
- Properties:
 - Hydrophilic
 - Dyeability as viscose or Tencel
 - Strength: higher; wet strength comparable with Tencel
 - Elongation: comparable with viscose/Tencel

Process steps: From waste to fibre

Feed: domestic cotton waste

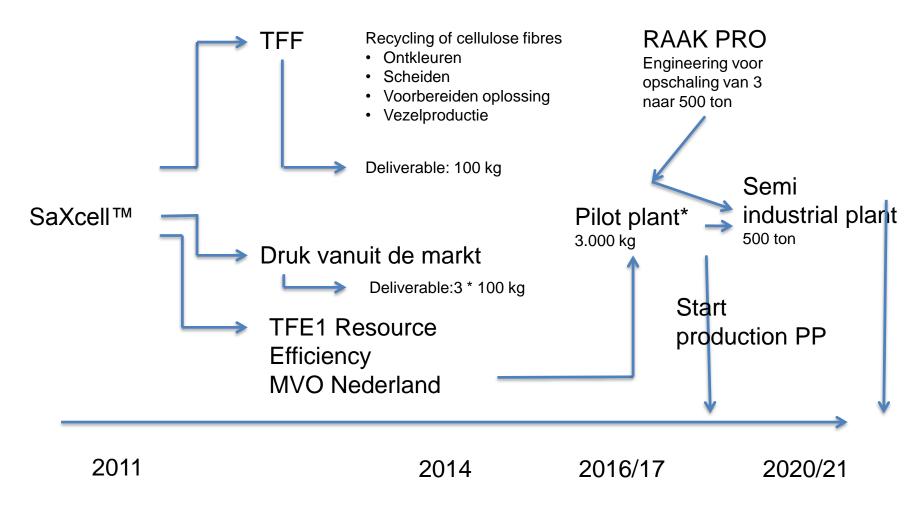
Process steps: Collection Sorting Shredding/grinding Definishing Decolouration Removal small % PET Preparing for solubilization Solubilization (lyocell or viscose process) Wet spinning Cutting (staple fibre)

Process steps-elucidated-1

- Collection
 - Per year in EU: 2 billion kg
 - At least 25% suited as feed for SaXcell[™]
- Sorting
 - Separate cotton from the rest
 - Select and remove not suited material
 - Textiles4Textiles
- Shredding/grinding
 - Removal of metal parts and accessories (buttons, zippers)
 - Required fibre length: 3 mm
- Definishing
 - Mostly mild acidic solution is used to remove water repellent finsig, resins etc. LCR 1:5, no drying required

Process steps-elucidated-2

- Decolouring
 - Removal of colour and print
 - PVC-prints cannot (yet) be used
 - Chemistry: conventional textile chemicals, LCR 1:5, drying not required
- Removal of small % PET
 - Probably patented
- Preparing for dissolving
 - Set required viscosity/enhance solubility
 - Either chemically (conventional) or enzymatically



Process steps-elucidated-3

- Solubilizing
 - Traditional wet spinning-process
 - No extra investment in installed base necessary (>100 mio €)
- SaXcell[™]-fibre
 - As traditional process: known properties
 - Therefor Faster market acceptance expected
 - 'Green fibre'

Roadmap

Status research-1

TFF Project: Recovery of cellulose fibres

- Start: January 2013
- Goal: production of 100 kg fibres for benchmark
- Proof of principle 100 kg scale

Research subjects:

- Decolouration
- Adjustment DP
- Prepare for solubilization
- Scale up studies

Status research-2

Decolouration

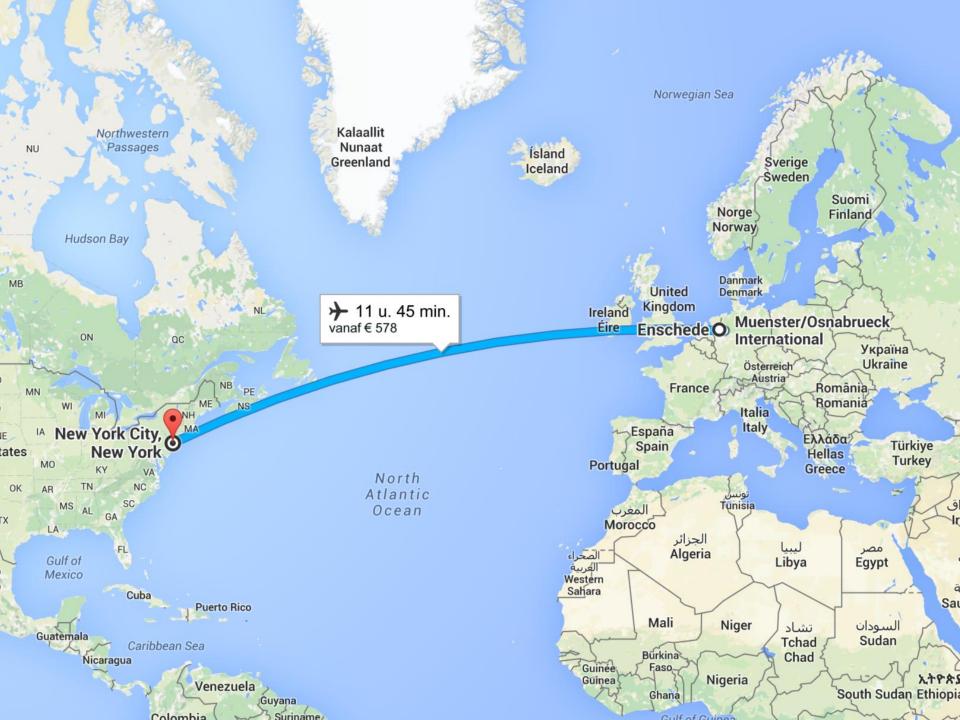
- Insoluble dyes: >90% removable in reduction cleaning
- More difficult: reactive dyes. Decolouration possible, molecule is covalent bonded, however likely not to be an issue.
- PVC-prints: not removable. Incineration
- Selection based on type of dye is possible using NIR-scanning technology

Enhancement solubility

- Strategy:
 - Enzymatic:
 - Mechanical energy required
 - Mild process conditions
 - Economic feasibility: doubted
 - Conventional chemistry:
 - Acidification
 - Perfect reproducible
 - Cheap process

Status research-3

Prepare for dissolution


- 'Powdering'
 - Better soluble
 - Improved dosage
- Enzymatic process(low concentration)
- Mild process conditions
- Drying
 - Residual moisture content 10 15 %
 - Centrifuge?
 - Slight under pressure (vacuum)

Scaling up

- Upscaling from 10 to 100 kg \neq multiplying by 10
 - Piping, reactor, drying equipment
 - Dosing time is important (gelling)
 - Rheology of the solution: special stirring equipment required

LET ME INTRODUCE MYSELF!

SAXCELLTM

A REGENERATED CELLULOSE FIBER FROM DOMESTIC COTTON WASTE

THE STORY

SAXCELLTM

from waste to valuable feedstock

AMBITION

TRANSFER WASTE INTO VALUABLE FIBERS NO INVESTMENT NEEDED FOR INSTALLED BASE PRODUCT FITS IN EXISTING GARMENT PRODUCTION CHAIN

BROADLY APPLICABLE (LOW COST AND ENVIRONMENTAL EFFICIENT PROCESS)

MATERIALS: CLOSED LOOP

DOMESTIC WASTE

YARNS

FEEDSTOCK FOR CELLULOSE FIBERS

FABRICS

CELLULOSE FIBERS

PROCESSING: CLOSED LOOP?

DISCARDING

GARMENT PRODUCTION/SALES

WEAVING/ KNITTING/ FINISHING

YARN SPINNING

COLLECT/SORT/UNRAVEL

SWISSING

WET-SPINNING

PROCESSING: CLOSED LOOP?

Discarding of

DISCARDING fibres

GARMENT PRODUCTION/SALES

WEAVING/ KNITTING/ FINISHING

YARN SPINNING

COLLECT/SORT/UNRAVEL

Processes to transfer waste into feed-stock for wet-spinning

*š*WIS2ING*š*

WET-SPINNING

CHEMICAL RECYCLING

WHAT PREPARE DOMESTIC COTTON WASTE TO BE REUSED REUSE OF THE CELLULOSE POLYMER UP-CYCLING

ADVANTAGE

LCA IMPROVED (LESS WATER, LESS CHEMICALS, LESS ENERGY) BROAD APPLICABLE WHITE VIRGIN FIBER MASS PRODUCTION PRODUCIBLE ON EXISTING 'INSTALLED BASE' PRICE: COMPARABLE/SLIGHTLY MORE EXPENSIVE THAN EXISTING PULP

> **STATUS** STILL UNDER DEVELOPMENT EXTENSIVE MATERIAL TESTING IS STARTING

Sciences

facts and figures

WET SPUN 1,7 DTEX, CUTTING LENGTH: 40 MM

STRENGTH: HIGHER THAN COMPARABLE EXISTING PRODUCTS

ELONGATION: SLIGHTLY BELOW EXISTING PRODUCT, BUT WITHIN REQUIRED RANGE

HYDROPHILIC DYEABLE COLOUR YIELD: BETTER THAN EXPECTED

ARTOFIL/DEURNE: SEPTEMBER 2015

TECHNICAL YARNS OE-SPINNING EQUIPMENT NM 17 EN 34/2

JOHAN VAN DEN ACKER/GEMERT

WEAVING MILL FABRIC CONSTRUCTION: PLAIN WOVEN FABRIC 210 G/M² APPLICATION: WOMENS WEAR

THE TEAM

പ്പണ

GER BRINKS MANAGING PROFESSOR

PRAMOD AGRAWAL BIO-CATALYSIS

HENK GOOIJER TEXTILE CHEMIST

JENS OELERICH ORGANIC AND ANALYTIC CHEMIST

GERRIT BOUWHUIS TEXTILE PROCESS DESIGN/PROJECT LEADER

Acknowledgement

- TFF for supporting this research
- Saxion University of Applied Science
- Academie Creatieve Technologie
- Researchers: Jens Oelerich, Richard Groeneveld Studenten: Maaike, Hannah, Sina, Judith