
Introducing FAST: Fast Acquisition of Streaked Targets

Daniel Parrott

tychotracker@gmail.com

Abstract

The advent of modern CMOS cameras has enabled amateur astronomers to capture wide field images of the night
sky with great detail. Many have utilized this new capability to aid in the search of minor planets, comets, and
other moving objects including artificial satellites and debris. However, the larger sensors result in an increase in
processing times. An optimal detection and tracking algorithm would allow for a turnaround time equal to or less
than the amount of time it took to acquire the images. Since faster moving objects typically necessitate shorter
exposures, the total acquisition time can be quite short. Additionally, due to the wide field, the algorithm should be
able to robustly isolate, track, and identify the multiple objects that may pass through the field during the dwell
time. Furthermore, as a number of these objects have rotating or tumbling motion, an ideal algorithm should
tolerate high variability in brightness. A new detection algorithm, called Fast Acquisition of Streaked Targets
(FAST), has been developed which aims to meet these criteria. As one example, it can process a set of 90 images,
each 26 megapixels in size, in under 60 seconds, correctly identifying dozens of objects even in a crowded star
field. As its name implies, it excels at detection of objects presenting a streaked profile, which can occur due to a
combination of fast movement relative to the exposure times and plate scale. However, FAST can also detect
objects having only a few pixels of streak, enabling it to quickly search a very wide range of possible motions. This
paper describes the three parts that make up the overall algorithm: object detection, tracking, and identification.
Finally, a number of datasets captured with various instruments will be presented for evaluation of the algorithm.

1. Introduction

There are a number of techniques to detect and

track moving objects in a sequence of astronomical

images. The conventional four frame technique

involves capturing an image of a given field, waiting

20 minutes, returning to said field, and repeat until

four images of that field have been captured. Moving

objects can then be detected provided that they have

sufficient signal-to-noise ratio (SNR) on each image

(Denneau, 2013). Synthetic tracking (ST) is another

technique which allows one to detect faint objects

having a much lower SNR, as it operates on stacked

images. In a blind search, ST processes thousands of

stacked images, each exploring a different motion

vector (Heinze, 2015). One downside to ST is that a

robust implementation typically involves using the

median stack, which necessitates that the object be

present on at least 50% of the frames, which can be

problematic if one has dwelled on a field for a long

time with a narrow field of view. ST also becomes

prohibitively time-consuming (or computationally

demanding) when the motion of the object is

sufficiently fast such that it imparts a streaked profile

on the exposure, as motion rates must be explored on

both axes of the search grid, resulting in an exponential

increase in motion vectors for blind searches.

Typically, this increase is mitigated for optimized

surveys where the total time from first exposure to last

is proportional to the speed of the object: a fast object

paired with a short dwell time can be identified with

reasonable computation times. However, surveys

would like to explore a wide range of motions,

accommodating streaked objects, and for this a new

algorithm has been developed: Fast Acquisition of

Streaked Targets (FAST). The algorithm described in

this paper encompasses detection, tracking, and

identification of moving objects, including near earth

asteroids (NEAs) and artificial satellites.

As one example, FAST can fully detect, track, and

identify objects from a dataset of 90 exposures, each

26 megapixels in dimensions, in under 60 seconds,

independent of object speed. It also accommodates

large variability in object brightness and robustly

isolates and tracks multiple objects in the same field,

while other algorithms such as the Fast Radon

Transform can have difficulties dealing with images

that contain multiple streaked objects (Nir, 2018).

Similar to ST, the FAST algorithm also operates well

even in crowded star fields. Finally, FAST can also

process objects having only a few pixels of streak,

being able to detect very slow-moving objects

alongside extremely fast-moving objects, as will be

shown in one of the examples.

One application of FAST is to dwell on a field

with a wide field instrument, such that any object that

passes through the field during that time – even for just

a few frames – will be detected. This makes it ideal

for uncued searches of the GEO belt region or for blind

detection of fast-moving asteroids. An added module,

“Monitor Queue” has also been implemented to

further automate data processing so that an operator

can leave the software unattended through the night.

2

2. Object Detection

At a most basic level, a detectable object imparts

some sort of signal on an image. In the case of an

object having a very low signal-to-noise ratio (SNR),

this can present itself as an almost imperceptible

fluctuation in a single pixel value on a single image.

On the other end of the spectrum, an object having

high SNR will contribute a vastly noticeable increase

across multiple pixel values. One typical approach is

to set a threshold corresponding to the “detection

SNR” – that is, the minimum SNR that an object must

have on a given image. As one extracts sources from

an image, the SNR of each source is compared to this

threshold, and those sources that are below the

threshold are removed from further consideration.

However, because the goal is to detect objects having

motion, it is possible to take advantage of the fact that

the pixel value will undergo a change in the provided

dataset. One can then proceed to compute statistics for

every pixel in the image, determining the average and

standard deviation of each pixel. The signal of moving

objects will therefore produce a new pixel value equal

to the average plus some number of standard

deviations. Therefore, an initial threshold requirement

is that a detection pixel must have a value that is some

number of sigmas away from the average pixel value

spanning the images in the dataset.

2.1 Split Detections

Another aim of the algorithm is to be able to

detect streaks even in crowded star fields. Figure 1

shows an example of the Solar Dynamics Observatory

(NORAD #36395) satellite passing through a crowded

field.

Figure 1: Streak in Crowded Star Field

As can be seen from this example, the streak

passes in front of no fewer than six stars. The

consequence of this is that because pixels occupied by

stars typically have a higher noise variance than pixels

of the background, the faint signal of the streak is

unlikely to exceed the detection threshold of the star

pixels, which means that rather than having one

coherent detection, the streak will be broken up into

several split detections.

Figure 2: Streak at 4x Zoom

Figure 2 shows the same streak at a higher zoom

level for better inspection. Then, Figure 3 shows what

the streak looks like after having applied detection

thresholds. The white background presents all pixels

that failed to satisfy the detection threshold. Ideally,

all pixels except those belonging to the streak would

be in this white background, however, as can be seen

there are some isolated clusters of noise that are visible

throughout the image, outside the green rectangle.

Figure 3: Streak with Detection Thresholds

The process of handling the split detections is

rather straightforward: the algorithm iterates through

3

all detections extracted from the image, and compares

the endpoints of each detection to that of the endpoints

of other detections. If any two pairings of endpoints

are within some predetermined pixel proximity of each

other, then the detections are merged into one. This

“predetermined” proximity is therefore a configurable

value that the end-user can optimize for their particular

system. However, extensive analysis of multiple

datasets across multiple instruments (having different

plate scales, noise characteristics, etc.) has yielded an

optimized value of 16 pixels that adequately merges

nearly all split detections, while not over-

enthusiastically merging independent detections.

Figure 4: Falcon 9 Booster and IM-1 Lunar Lander.

Figure 4 shows an example of setting this

parameter to 32 pixels, where there are two distinct

objects: the fainter object being the Intuitive

Machine’s IM-1 Lunar Lander (NORAD #58963), and

the brighter object being the SpaceX Falcon 9 rocket

booster (NORAD #58964) that launched it towards the

Moon. The left side of the image shows how the two

distinct objects were treated as one object when using

32 pixels as the proximity limit, while the right side

shows how they are correctly classified as two distinct

objects when using 16 pixels as the limit. Note that

although these objects do not convey a recognizable

streak – in fact they appear very much identical to the

stars around them – they are nonetheless easily

extracted by the algorithm as moving objects, showing

that the algorithm is also capable of working with

objects having minimal or almost no streak.

3. Tracking

After having generated detections for each image

in the dataset, the next step is to identify tracks that

comprise a series of two or more detections. Tracking

is important for several reasons. First, it allows one to

work with very faint detections that could likely be

false detections. But by applying a tracker, the false

detections will be eliminated because they (usually) do

not track consistently across multiple images.

Secondly, a track allows one to determine the motion

of the object, which is useful for identification and

determining follow-up parameters. Finally, tracking

allows one to isolate multiple objects that may appear

in the same field, which happens regularly with wide-

field instruments.

The FAST algorithm uses a 10-step tracking

process:

(1) Identify tracks

(2) Update track motion

(3) Score tracks

(4) Sort tracks

(5) Merge tracks

(6) Centroid tracks

(7) Merge tracks (second pass)

(8) Compute track position – first image

(9) Apply motion limits

(10) Limit tracks

The first step, identifying tracks, initially involves

matching detections from two consecutive images.

The basic criteria here is that the two detections must

have some level of similarity in their flux; if so, almost

any pairing of detections can be considered a valid

candidate track. Next, the tracker attempts to identify

additional detections from subsequent images in the

dataset. This time, the detections do not have to arise

from consecutive images. However, there are limits in

place on how much these additional detections are

allowed to deviate from the initial track motion. For

example, if the first two detections establish a speed of

5”/min, then a third detection should have a somewhat

similar speed when matched with the second

detection. The tolerance is also dependent on the

exposure time and plate scale: for example, it is not

uncommon for a highly streaked object to have a poor

speed estimate from the initial two detections, so the

algorithm will allow for a higher search window with

subsequent detections. Position angle (direction) is

also another matching parameter. For example,

certainly it is not realistic for the subsequent detections

to go in reverse direction from that of the initial two

detections. In fact, it is possible to impose tighter

constraints on the deviation from the initial direction,

but again the tolerance will depend on how far apart

the initial two detections are: if they are very close

together, then the angle computation can have high

uncertainty compared to detections that are farther

apart. The candidate track is then established with a

total of up to five detections. Tracks with fewer

detections are still considered valid, but will have a

lower score.

The second step is to update the motion of the

established tracks. If a track is comprised of only two

detections, then its motion is already optimally

computed. However, a track comprised of additional

4

detections can have a more optimal motion computed

if one uses the entire span of the track, especially for

tracks of slow-moving objects.

The third step is to score tracks so that they can

later be sorted. Track score is a key component to the

usefulness of the tracker, as it should ideally only

present tracks of real objects to the end-user while

discarding or de-prioritizing the tracks that are likely

to be false. At a high level, the scoring function looks

at how many detections comprise the track, with more

detections resulting in a higher score. It also looks at

the consistency of detections, such as how much the

detections deviate in flux. Another parameter is that if

the track has a high speed, such that it should be

expected to produce a streaked profile, then the score

will be reduced if a detection has a shorter than

expected streak length.

The fourth step is to then sort the tracks based on

their computed track score. Tracks with high scores

are ranked higher than those having a lower score. The

sorting routine simply takes O(n*log(n)) time to

complete, where n=number of tracks identified.

3.1 Merging Tracks

The fifth step is to merge similar tracks together.

This is a necessary step because tracks can have at

most five detections, so multiple tracks may be

established on an object that is detectable across more

than five images. One might be tempted to say that

two tracks are identical if they have the same speed

and position angle. However, this metric alone is

insufficient as multiple unique objects can have the

same motion, as shown in Figure 5.

Figure 5: Left: COSMOS 2475; Right: COSMOS 2569

As Figure 5 illustrates, two different objects can

have nearly identical motion within the same dataset.

In a dataset comprised of 30 images, COSMOS 2475

has a speed=2188”/min and PA of 26.5 degrees, while

COSMOS 2569 has speed of 2211”/min and PA of

27.2 degrees. The difference in speed is around 1%

and the difference in position angle is 0.7 degrees.

Consider that it is not uncommon for an object to

exhibit a changing (non-linear) motion throughout a

dataset, and it becomes clear that these differences are

well within the tolerance that one would allow for a

tracked object. Therefore, using motion by itself to

determine if two tracks are that of the same object is

not adequate. Instead, one must also determine if the

detections on one track would be positioned in close

proximity to the (integrated) positions of the other

track at the same timestamps. Here again it is also

necessary to determine the appropriate tolerances as a

given detection may not have an exact centroid at the

center of a streak; therefore, the algorithm adjusts the

proximity tolerance according to the streak length.

Even with this approach, it can still be a challenge to

correctly identify tracks of the same object,

particularly when a dataset spans enough time such

that the object motion begins to exhibit curvature or

noticeable deviation from a straight-line path. For

most datasets, and especially those of surveys where

the number and duration of exposures is optimized for

a desired class of target, this is not a frequent issue.

As mentioned, two tracks will be merged if the

detections from one of the tracks match up to the

detections of the other track. Therefore, at a basic

level one must be able to determine if two detections

are a match. For detections arising from the same

image (and therefore the same timestamp), no motion

integration is necessary. However, for detections

created from a separate set of images, having different

timestamps, it is necessary to integrate their position

according to the object motion. Once the positions of

the two detections have been adjusted as necessary to

be comparable to the same timestamp, the remaining

work is to perform the actual comparison of the

positions. One could do a simple distance

computation, ala sqrt(x2+y2), yet doing so would not

account for the uncertainty in object position along the

length of the streak profile. Therefore, a better

approach is to compare the position of one detection to

a line segment centered around the position of the

other detection. Since the line segment can (and often

does) have rotation, the overall process involves the

following steps:

(1) Compute offset between the two detections,

yielding X0 and Y0

(2) Compute angle between track and CCD

position angle

(3) Rotate (X0, Y0) into a horizontal rectangle,

yielding (X1, Y1)

(4) Compute dimensions of the horizontal

rectangle

(5) Determine if the transformed point (X1, Y1)

falls inside the horizontal rectangle

The first step in the detection comparison is rather

straightforward: one simply subtracts the expected

position (integrated detection from track A) from the

5

input position (current detection from track B). In

other words, if the two detections have identical

coordinates, the result is (0,0) – the origin. The second

step is to compute the angle between the track position

angle and the CCD (camera) position angle, also

taking into account whether or not the view is flipped

(if so, the angle is negated). Next, the third step is to

rotate the offset point (X0, Y0) into a horizontal

rectangle, by subtracting 90 degrees from the angle

computed in step 2 and applying the rotation matrix,

yielding (X1, Y1). The fourth step is to compute the

desired bounds of the horizontal rectangle: this

essentially acts as the matching tolerance. A longer

exposure time or a faster object speed will produce a

wider rectangle for the matching. Finally, the last step

is to determine if the transformed (X1, Y1) falls inside

the computed horizontal rectangle. If so, then the two

detections are considered a match. Otherwise, they are

not a match and therefore it is likely that the two tracks

to which they belong are not of the same object.

Figure 6: Comparing Detections

Figure 6 shows how two detections are compared

using a rotated rectangle for tolerance. Detection A is

at position (54, 63) while detection B is at (100, 100).

The offset (X0, Y0) point is therefore at (46, 37), and

upon rotation by the track position angle it is then

positioned at (59, 1). Notice that after rotation there is

practically no y-offset; rather, almost all of the delta is

in the x-offset, allowing for one to now simply

determine if the point resides inside a horizontal

(rather than rotated) rectangle, which is a

straightforward computation. For reference, the

formula for computing (X1, Y1) is shown in Figure 7.

Figure 7: Applying Rotation Matrix

Having completed the first merge step of the

tracking process, the next step of the tracker (6) is to

centroid tracks. This process involves determining the

speed of the track and computing its centroid

appropriately. For slow-moving tracks, such as those

having virtually no streak, the usual point spread

function (PSF) fitting is performed to compute the

centroid of each detection of the track. Otherwise, for

tracks of objects having noticeable streak, the

centroiding is presently determined by computing the

midpoint of the streak bounds. Once the centroid of

tracks has been determined, their motions (speed and

position angle) are recomputed.

Step (7) of the tracking process is a second

application of the merge process, as the previous step

may have adjusted the motion of some tracks such that

they could now be considered eligible for merging

with other tracks.

Step (8) of the tracking process involves

computing the position of each track as it would

appear on the first image. This is a convenience

routine for comparing tracks with known asteroids and

comets that are integrated to the timestamp of the first

image. However, for matching tracks with known

artificial satellites, the more granular position

information of each detection is preferred.

Step (9) of the tracking process involves applying

motion limits to filter tracks that do not satisfy a user-

defined lower- and upper-bound on speed and position

angle. The user can toggle on/off the speed and

position angle limits independently.

Finally, step (10) of the tracking process simply

removes all tracks beyond a user-defined limit. Once

tracking has completed, the resulting list of sorted,

centroided, merged, and filtered tracks is returned to

the user for inspection.

4. Track Identification

While the previous process of tracking an object

is able to transform raw detections into a set of tracks

for the end-user, there is still an added step that can

reduce the user workload: track identification. Nearly

all artificial satellites are already known and

catalogued, and approximately 90% of all asteroids are

also catalogued. By matching tracks with known

objects, the user is free to spend their time evaluating

tracks that do not match up with any known object –

these could be tracks of particular interest.

As mentioned previously in step (8) of the

tracking process, it is possible to match tracks with

known objects by integrating the database of orbital

elements of minor planets to the timestamp of the first

image. And since all tracks have a pre-computed

position to that first image, all that remains is to

compute the distance between that position and that of

6

the integrated position of the minor planets. If the

resulting distance is within some tolerance, a match is

declared and the track is said to be associated with a

known minor planet.

Similarly, the same can be done with artificial

satellites, however a bit more care must be exercised

because the fast motion of most satellites imposes a

tighter tolerance on the delta time between an actual

detection versus an integrated detection. In other

words, one should use an actual detected position for

matching, wherever it is possible to do so, rather than

integrating (interpolating) to a common timestamp.

Consequently, the elements of artificial satellites can

be integrated to multiple timestamps across the dataset

in order to ensure a good match.

5. Evaluation

A number of datasets have been collected to

evaluate the performance of the FAST algorithm.

These datasets include a variety of optical instruments

and cameras. A typical implementation of the

algorithm is to have it “stare” at the same region of the

sky for an extended period, and typically processing

30 minutes worth of data at a time. This usually works

out to around 100 images per dataset with each image

having an exposure time of 10 seconds (depending on

plate scale) and gap time of around 10 seconds

between each exposure. While it is possible to supply

the algorithm datasets having a dwell time of more

than 30 minutes, track matching on artificial satellites

could start to become suboptimal. Thus, an optimized

survey would ideally capture multiple datasets

throughout the night, each comprised of 30 minutes

dwell time on a patch of the sky using a wide field

instrument.

Figure 8: Samyang 135mm with ASI 2600MM
(configuration from the iTelescope Network)

Dataset #1:

Telescope: Samyang 135mm

Camera: ZWO ASI 2600MM (Sony IMX571)

Aperture: 65mm

Focal length: 130mm

Field of View: 621x415 arcmin (71.5 deg2)

Plate scale: 12”/pixel (at bin 2x)

Dataset characteristics:

Images: 57 images (each 3124x2088 pixels)

Exposure time per image: 3.00 seconds

Total Exposure time: 2.850 minutes

Total Dataset time: 14.083 minutes

Results:

Tracks returned:

3 “High” confidence (3/3 real)

Detected two MEO objects and one LEO object

Processing time: 4 seconds

Figure 9: BREEZE-M DEB (TANK) (Speed=2092”/min)

Figure 10: COSMOS 2277 (GLONASS)

(Speed=2274”/min)

Figure 11: GONETS M 05 (Speed=29846”/min)

7

Dataset #2:

Telescope: Samyang 135mm

Camera: ZWO ASI 2600MM (Sony IMX571)

Aperture: 65mm

Focal length: 130mm

Field of View: 621x415 arcmin (71.5 deg2)

Plate scale: 12”/pixel (at bin 2x)

Dataset characteristics:

Images: 90 images (each 3124x2088 pixels)

Exposure time per image: 10.0 seconds

Total Exposure time: 15.00 minutes

Total Dataset time: 46.517 minutes

Results:

Tracks returned:

27 “High” confidence (27/27 real)

7 “Medium” confidence (5/7 real)

Processing time: 6 seconds

Figure 12: GSAT 6A

GSAT 6A (as well as all tracks here) was detected

“blindly”. It has a speed of 1450”/min and was found

with no issue. In 2018 this same satellite was actually

lost for a few days, following an orbit raising

maneuver (Surendra, 2018).

Dataset #3:

Telescope: Takahashi Epsilon 180ED

Camera: ZWO ASI 2600MM (Sony IMX571)

Aperture: 180mm

Focal length: 500mm

Field of View: 160x107 arcmin (4.8 deg2)

Plate scale: 3.1”/pixel (at bin 2x)

Dataset characteristics:

Images: 90 images (each 3124x2088 pixels)

Exposure time per image: 10.0 seconds

Total Exposure time: 15.00 minutes

Total Dataset time: 27.183 minutes

Figure 13: iTelescope T71 (Dataset #3)

Results:

Tracks returned:

11 “High” confidence (11/11 real)

1 “Low” confidence with 3 hits (1/1 real)

Processing time: 7 seconds

Figure 14: High Variability in Brightness

As shown in Figure 14, this dataset includes an

example of a track established on an object having

high variability in brightness (Ariane 1 Deb). It was

initially detected on image #30 in the sequence of 90

8

images. A second detection was also generated in the

subsequent image (#31). However, the object rotation

caused it to become fainter than the magnitude limit

(approximately 16.5) on images 32-37. Then on

image 38 the track was re-established, yielding a third

detection and increasing track score. The motion of

the track was 922”/min and position angle of 85

degrees.

Dataset #4:

Telescope: Samyang 135mm

Camera: ZWO ASI 2600MM (Sony IMX571)

Aperture: 65mm

Focal length: 130mm

Field of View: 621x415 arcmin (71.5 deg2)

Plate scale: 12”/pixel (at bin 2x)

Dataset characteristics:

Images: 90 images (each 3124x2088 pixels)

Exposure time per image: 3.0 seconds

Total Exposure time: 4.500 minutes

Total Dataset time: 22.783 minutes

Figure 15: Detection of Unknown Object

Results:

Tracks returned:

22 “High” confidence (22/22 real)

Processing time: 8 seconds

Dataset #4 has 22 tracks with “High” confidence.

This dataset also shows an example of an “unknown”

track (#17), that initially could not be matched to a

known object. It has a speed of 788”/min, which is

noticeably different from that of a geostationary

satellite. Instead, it is a geosynchronous satellite with

inclination of 5.6 degrees.

Figure 16: Motion of Track #17 (Courtesy of n2yo.com)

Dataset #5:

Telescope: 0.25m Ritchey-Chrétien

Camera: QHY42 (Gsense 400 CMOS)

Aperture: 250mm

Focal length: 2000mm

Field of View: 31x31 arcmin (0.267 deg2)

Plate scale: 2.25”/pixel (at bin 2x)

Dataset characteristics:

Images: 125 images (each 818x818 pixels)

Exposure time per image: 1.0 seconds

Total Exposure time: 2.083 minutes

Total Dataset time: 2.085 minutes

Figure 17: 2019 JH7 (Near Earth Asteroid)

This dataset shows an example of a tracked Near

Earth Asteroid (NEA) found moving at 1145”/min,

which is even faster than geostationary satellites at

900”/min. This indicated that it was indeed a close

approach.

9

6. Future Enhancements

The FAST algorithm has been implemented into

the Tycho Tracker software, which presently generates

astrometry in MPC1992 (or alternatively ADES)

format, consistent with report generation for

astrometry of minor planets. However, for those

seeking to use FAST for detection of artificial

satellites, it can be desirable to generate reports in the

Interactive Orbit Determination (IOD) format. This is

a fairly straightforward feature to support and will be

completed in the next revision. This will make the

measurements compatible with those that are

generally submitted to the SeeSat-L mailing list

(Lewis, 1998).

7. Conclusion

The FAST algorithm is shown to quickly detect

and identify moving objects in a series of images. It is

robust in detecting objects with a streaked profile, as

well as objects having high variability in brightness.

When used in conjunction with a “Monitor Queue”

tool that watches for incoming datasets, it can be

greatly automated to process data from an entire night.

Its ability to quickly match dozens of tracks with

known objects allows one to easily spot unknown

objects for follow-up.

8. Acknowledgements

I would like to thank the supporters of the Tycho

software who have provided additional datasets used

in refining and optimizing the algorithm: G. Privett, J.

Jahn, A. Maury, G. Attard, D. Rankin, A. Francis, D.

Bamberger, M. Holbrook, and many others.

9. References

Denneau, L., et al. “The Pan-STARRS Moving Object

Processing System.” (2013). https://arxiv.org/pdf/

1302.7281.pdf

Heinze, A., et al. "Digital Tracking Observations Can

Discover Asteroids Ten Times Fainter than

Conventional Searches." (2015). https://arxiv.org/

pdf/1508.01599.pdf

Nir, G., et al. “Optimal and Efficient Streak Detection

in Astronomical Images.” (2018).

https://iopscience.iop.org/article/10.3847/1538-

3881/aaddff/pdf

Surendra, S. “We now know the exact location of

GSAT-6A communication satellite.” (2018).

https://timesofindia.indiatimes.com/india/we-now-

knows-exact-location-of-gsat-6a-communication-

satellite-says-isro-chief/articleshow/63701803.cms

Lewis, G. “Interactive Orbit Determination (IOD)

Version 0”. (1998). http://www.satobs.org/position/

IODformat.html

