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Abstract 

The advent of modern CMOS cameras has enabled amateur astronomers to capture wide field images of the night 
sky with great detail.  Many have utilized this new capability to aid in the search of minor planets, comets, and 
other moving objects including artificial satellites and debris.  However, the larger sensors result in an increase in 
processing times.  An optimal detection and tracking algorithm would allow for a turnaround time equal to or less 
than the amount of time it took to acquire the images.  Since faster moving objects typically necessitate shorter 
exposures, the total acquisition time can be quite short.  Additionally, due to the wide field, the algorithm should be 
able to robustly isolate, track, and identify the multiple objects that may pass through the field during the dwell 
time.  Furthermore, as a number of these objects have rotating or tumbling motion, an ideal algorithm should 
tolerate high variability in brightness.  A new detection algorithm, called Fast Acquisition of Streaked Targets 
(FAST), has been developed which aims to meet these criteria.  As one example, it can process a set of 90 images, 
each 26 megapixels in size, in under 60 seconds, correctly identifying dozens of objects even in a crowded star 
field.  As its name implies, it excels at detection of objects presenting a streaked profile, which can occur due to a 
combination of fast movement relative to the exposure times and plate scale.  However, FAST can also detect 
objects having only a few pixels of streak, enabling it to quickly search a very wide range of possible motions.  This 
paper describes the three parts that make up the overall algorithm: object detection, tracking, and identification.  
Finally, a number of datasets captured with various instruments will be presented for evaluation of the algorithm. 

1. Introduction 

There are a number of techniques to detect and 

track moving objects in a sequence of astronomical 

images.  The conventional four frame technique 

involves capturing an image of a given field, waiting 

20 minutes, returning to said field, and repeat until 

four images of that field have been captured.  Moving 

objects can then be detected provided that they have 

sufficient signal-to-noise ratio (SNR) on each image 

(Denneau, 2013).  Synthetic tracking (ST) is another 

technique which allows one to detect faint objects 

having a much lower SNR, as it operates on stacked 

images.  In a blind search, ST processes thousands of 

stacked images, each exploring a different motion 

vector  (Heinze, 2015).  One downside to ST is that a 

robust implementation typically involves using the 

median stack, which necessitates that the object be 

present on at least 50% of the frames, which can be 

problematic if one has dwelled on a field for a long 

time with a narrow field of view.  ST also becomes 

prohibitively time-consuming (or computationally 

demanding) when the motion of the object is 

sufficiently fast such that it imparts a streaked profile 

on the exposure, as motion rates must be explored on 

both axes of the search grid, resulting in an exponential 

increase in motion vectors for blind searches.  

Typically, this increase is mitigated for optimized 

surveys where the total time from first exposure to last 

is proportional to the speed of the object: a fast object 

paired with a short dwell time can be identified with 

reasonable computation times.  However, surveys 

would like to explore a wide range of motions, 

accommodating streaked objects, and for this a new 

algorithm has been developed: Fast Acquisition of 

Streaked Targets (FAST).  The algorithm described in 

this paper encompasses detection, tracking, and 

identification of moving objects, including near earth 

asteroids (NEAs) and artificial satellites. 

As one example, FAST can fully detect, track, and 

identify objects from a dataset of 90 exposures, each 

26 megapixels in dimensions, in under 60 seconds, 

independent of object speed.  It also accommodates 

large variability in object brightness and robustly 

isolates and tracks multiple objects in the same field, 

while other algorithms such as the Fast Radon 

Transform can have difficulties dealing with images 

that contain multiple streaked objects (Nir, 2018).  

Similar to ST, the FAST algorithm also operates well 

even in crowded star fields.  Finally, FAST can also 

process objects having only a few pixels of streak, 

being able to detect very slow-moving objects 

alongside extremely fast-moving objects, as will be 

shown in one of the examples. 

One application of FAST is to dwell on a field 

with a wide field instrument, such that any object that 

passes through the field during that time – even for just 

a few frames – will be detected.  This makes it ideal 

for uncued searches of the GEO belt region or for blind 

detection of fast-moving asteroids.  An added module, 

“Monitor Queue” has also been implemented to 

further automate data processing so that an operator 

can leave the software unattended through the night. 
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2. Object Detection 

At a most basic level, a detectable object imparts 

some sort of signal on an image.  In the case of an 

object having a very low signal-to-noise ratio (SNR), 

this can present itself as an almost imperceptible 

fluctuation in a single pixel value on a single image.  

On the other end of the spectrum, an object having 

high SNR will contribute a vastly noticeable increase 

across multiple pixel values.  One typical approach is 

to set a threshold corresponding to the “detection 

SNR” – that is, the minimum SNR that an object must 

have on a given image.  As one extracts sources from 

an image, the SNR of each source is compared to this 

threshold, and those sources that are below the 

threshold are removed from further consideration.  

However, because the goal is to detect objects having 

motion, it is possible to take advantage of the fact that 

the pixel value will undergo a change in the provided 

dataset.  One can then proceed to compute statistics for 

every pixel in the image, determining the average and 

standard deviation of each pixel.  The signal of moving 

objects will therefore produce a new pixel value equal 

to the average plus some number of standard 

deviations.  Therefore, an initial threshold requirement 

is that a detection pixel must have a value that is some 

number of sigmas away from the average pixel value 

spanning the images in the dataset. 

 

2.1 Split Detections 

Another aim of the algorithm is to be able to 

detect streaks even in crowded star fields.  Figure 1 

shows an example of the Solar Dynamics Observatory 

(NORAD #36395) satellite passing through a crowded 

field. 

 

 
Figure 1: Streak in Crowded Star Field 

As can be seen from this example, the streak 

passes in front of no fewer than six stars.  The 

consequence of this is that because pixels occupied by 

stars typically have a higher noise variance than pixels 

of the background, the faint signal of the streak is 

unlikely to exceed the detection threshold of the star 

pixels, which means that rather than having one 

coherent detection, the streak will be broken up into 

several split detections. 

 

 
Figure 2: Streak at 4x Zoom 

Figure 2 shows the same streak at a higher zoom 

level for better inspection.  Then, Figure 3 shows what 

the streak looks like after having applied detection 

thresholds.  The white background presents all pixels 

that failed to satisfy the detection threshold.  Ideally, 

all pixels except those belonging to the streak would 

be in this white background, however, as can be seen 

there are some isolated clusters of noise that are visible 

throughout the image, outside the green rectangle. 

 

 
Figure 3: Streak with Detection Thresholds 

The process of handling the split detections is 

rather straightforward: the algorithm iterates through 
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all detections extracted from the image, and compares 

the endpoints of each detection to that of the endpoints 

of other detections.  If any two pairings of endpoints 

are within some predetermined pixel proximity of each 

other, then the detections are merged into one.  This 

“predetermined” proximity is therefore a configurable 

value that the end-user can optimize for their particular 

system.  However, extensive analysis of multiple 

datasets across multiple instruments (having different 

plate scales, noise characteristics, etc.) has yielded an 

optimized value of 16 pixels that adequately merges 

nearly all split detections, while not over-

enthusiastically merging independent detections. 

 

 
Figure 4: Falcon 9 Booster and IM-1 Lunar Lander. 

Figure 4 shows an example of setting this 

parameter to 32 pixels, where there are two distinct 

objects: the fainter object being the Intuitive 

Machine’s IM-1 Lunar Lander (NORAD #58963), and 

the brighter object being the SpaceX Falcon 9 rocket 

booster (NORAD #58964) that launched it towards the 

Moon.  The left side of the image shows how the two 

distinct objects were treated as one object when using 

32 pixels as the proximity limit, while the right side 

shows how they are correctly classified as two distinct 

objects when using 16 pixels as the limit.  Note that 

although these objects do not convey a recognizable 

streak – in fact they appear very much identical to the 

stars around them – they are nonetheless easily 

extracted by the algorithm as moving objects, showing 

that the algorithm is also capable of working with 

objects having minimal or almost no streak. 

 

3. Tracking 

After having generated detections for each image 

in the dataset, the next step is to identify tracks that 

comprise a series of two or more detections.  Tracking 

is important for several reasons.  First, it allows one to 

work with very faint detections that could likely be 

false detections.  But by applying a tracker, the false 

detections will be eliminated because they (usually) do 

not track consistently across multiple images.   

Secondly, a track allows one to determine the motion 

of the object, which is useful for identification and 

determining follow-up parameters.  Finally, tracking 

allows one to isolate multiple objects that may appear 

in the same field, which happens regularly with wide-

field instruments. 

The FAST algorithm uses a 10-step tracking 

process: 

 

(1) Identify tracks 

(2) Update track motion 

(3) Score tracks 

(4) Sort tracks 

(5) Merge tracks 

(6) Centroid tracks 

(7) Merge tracks (second pass) 

(8) Compute track position – first image 

(9) Apply motion limits 

(10) Limit tracks 

 

The first step, identifying tracks, initially involves 

matching detections from two consecutive images.  

The basic criteria here is that the two detections must 

have some level of similarity in their flux; if so, almost 

any pairing of detections can be considered a valid 

candidate track.  Next, the tracker attempts to identify 

additional detections from subsequent images in the 

dataset.  This time, the detections do not have to arise 

from consecutive images.  However, there are limits in 

place on how much these additional detections are 

allowed to deviate from the initial track motion.  For 

example, if the first two detections establish a speed of 

5”/min, then a third detection should have a somewhat 

similar speed when matched with the second 

detection.  The tolerance is also dependent on the 

exposure time and plate scale: for example, it is not 

uncommon for a highly streaked object to have a poor 

speed estimate from the initial two detections, so the 

algorithm will allow for a higher search window with 

subsequent detections.  Position angle (direction) is 

also another matching parameter.  For example, 

certainly it is not realistic for the subsequent detections 

to go in reverse direction from that of the initial two 

detections.  In fact, it is possible to impose tighter 

constraints on the deviation from the initial direction, 

but again the tolerance will depend on how far apart 

the initial two detections are: if they are very close 

together, then the angle computation can have high 

uncertainty compared to detections that are farther 

apart.  The candidate track is then established with a 

total of up to five detections.  Tracks with fewer 

detections are still considered valid, but will have a 

lower score. 

The second step is to update the motion of the 

established tracks.  If a track is comprised of only two 

detections, then its motion is already optimally 

computed.  However, a track comprised of additional 
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detections can have a more optimal motion computed 

if one uses the entire span of the track, especially for 

tracks of slow-moving objects. 

The third step is to score tracks so that they can 

later be sorted.  Track score is a key component to the 

usefulness of the tracker, as it should ideally only 

present tracks of real objects to the end-user while 

discarding or de-prioritizing the tracks that are likely 

to be false.  At a high level, the scoring function looks 

at how many detections comprise the track, with more 

detections resulting in a higher score.  It also looks at 

the consistency of detections, such as how much the 

detections deviate in flux.  Another parameter is that if 

the track has a high speed, such that it should be 

expected to produce a streaked profile, then the score 

will be reduced if a detection has a shorter than 

expected streak length. 

The fourth step is to then sort the tracks based on 

their computed track score.  Tracks with high scores 

are ranked higher than those having a lower score.  The 

sorting routine simply takes O(n*log(n)) time to 

complete, where n=number of tracks identified. 

 

3.1 Merging Tracks 

 

The fifth step is to merge similar tracks together. 

This is a necessary step because tracks can have at 

most five detections, so multiple tracks may be 

established on an object that is detectable across more 

than five images.  One might be tempted to say that 

two tracks are identical if they have the same speed 

and position angle.  However, this metric alone is 

insufficient as multiple unique objects can have the 

same motion, as shown in Figure 5. 

 

 
Figure 5: Left: COSMOS 2475; Right: COSMOS 2569 

As Figure 5 illustrates, two different objects can 

have nearly identical motion within the same dataset.  

In a dataset comprised of 30 images, COSMOS 2475 

has a speed=2188”/min and PA of 26.5 degrees, while 

COSMOS 2569 has speed of 2211”/min and PA of 

27.2 degrees.  The difference in speed is around 1% 

and the difference in position angle is 0.7 degrees.  

Consider that it is not uncommon for an object to 

exhibit a changing (non-linear) motion throughout a 

dataset, and it becomes clear that these differences are 

well within the tolerance that one would allow for a 

tracked object.  Therefore, using motion by itself to 

determine if two tracks are that of the same object is 

not adequate.  Instead, one must also determine if the 

detections on one track would be positioned in close 

proximity to the (integrated) positions of the other 

track at the same timestamps.  Here again it is also 

necessary to determine the appropriate tolerances as a 

given detection may not have an exact centroid at the 

center of a streak; therefore, the algorithm adjusts the 

proximity tolerance according to the streak length.  

Even with this approach, it can still be a challenge to 

correctly identify tracks of the same object, 

particularly when a dataset spans enough time such 

that the object motion begins to exhibit curvature or 

noticeable deviation from a straight-line path.  For 

most datasets, and especially those of surveys where 

the number and duration of exposures is optimized for 

a desired class of target, this is not a frequent issue. 

As mentioned, two tracks will be merged if the 

detections from one of the tracks match up to the 

detections of the other track.  Therefore, at a basic 

level one must be able to determine if two detections 

are a match.  For detections arising from the same 

image (and therefore the same timestamp), no motion 

integration is necessary.  However, for detections 

created from a separate set of images, having different 

timestamps, it is necessary to integrate their position 

according to the object motion.  Once the positions of 

the two detections have been adjusted as necessary to 

be comparable to the same timestamp, the remaining 

work is to perform the actual comparison of the 

positions.  One could do a simple distance 

computation, ala sqrt(x2+y2), yet doing so would not 

account for the uncertainty in object position along the 

length of the streak profile.  Therefore, a better 

approach is to compare the position of one detection to 

a line segment centered around the position of the 

other detection.  Since the line segment can (and often 

does) have rotation, the overall process involves the 

following steps: 

 

(1) Compute offset between the two detections, 

yielding X0 and Y0 

(2) Compute angle between track and CCD 

position angle 

(3) Rotate (X0, Y0) into a horizontal rectangle, 

yielding (X1, Y1) 

(4) Compute dimensions of the horizontal 

rectangle 

(5) Determine if the transformed point (X1, Y1) 

falls inside the horizontal rectangle 

 

The first step in the detection comparison is rather 

straightforward: one simply subtracts the expected 

position (integrated detection from track A) from the 
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input position (current detection from track B).  In 

other words, if the two detections have identical 

coordinates, the result is (0,0) – the origin.  The second 

step is to compute the angle between the track position 

angle and the CCD (camera) position angle, also 

taking into account whether or not the view is flipped 

(if so, the angle is negated).  Next, the third step is to 

rotate the offset point (X0, Y0) into a horizontal 

rectangle, by subtracting 90 degrees from the angle 

computed in step 2 and applying the rotation matrix, 

yielding (X1, Y1).  The fourth step is to compute the 

desired bounds of the horizontal rectangle: this 

essentially acts as the matching tolerance.  A longer 

exposure time or a faster object speed will produce a 

wider rectangle for the matching.  Finally, the last step 

is to determine if the transformed (X1, Y1) falls inside 

the computed horizontal rectangle.  If so, then the two 

detections are considered a match.  Otherwise, they are 

not a match and therefore it is likely that the two tracks 

to which they belong are not of the same object. 

 

 
Figure 6: Comparing Detections 

Figure 6 shows how two detections are compared 

using a rotated rectangle for tolerance.  Detection A is 

at position (54, 63) while detection B is at (100, 100).  

The offset (X0, Y0) point is therefore at (46, 37), and 

upon rotation by the track position angle it is then 

positioned at (59, 1).  Notice that after rotation there is 

practically no y-offset; rather, almost all of the delta is 

in the x-offset, allowing for one to now simply 

determine if the point resides inside a horizontal 

(rather than rotated) rectangle, which is a 

straightforward computation.  For reference, the 

formula for computing (X1, Y1) is shown in Figure 7. 

 

 
Figure 7: Applying Rotation Matrix 

Having completed the first merge step of the 

tracking process, the next step of the tracker (6) is to 

centroid tracks.  This process involves determining the 

speed of the track and computing its centroid 

appropriately.  For slow-moving tracks, such as those 

having virtually no streak, the usual point spread 

function (PSF) fitting is performed to compute the 

centroid of each detection of the track.  Otherwise, for 

tracks of objects having noticeable streak, the 

centroiding is presently determined by computing the 

midpoint of the streak bounds.  Once the centroid of 

tracks has been determined, their motions (speed and 

position angle) are recomputed. 

Step (7) of the tracking process is a second 

application of the merge process, as the previous step 

may have adjusted the motion of some tracks such that 

they could now be considered eligible for merging 

with other tracks. 

Step (8) of the tracking process involves 

computing the position of each track as it would 

appear on the first image.  This is a convenience 

routine for comparing tracks with known asteroids and 

comets that are integrated to the timestamp of the first 

image.  However, for matching tracks with known 

artificial satellites, the more granular position 

information of each detection is preferred. 

Step (9) of the tracking process involves applying 

motion limits to filter tracks that do not satisfy a user-

defined lower- and upper-bound on speed and position 

angle.  The user can toggle on/off the speed and 

position angle limits independently. 

Finally, step (10) of the tracking process simply 

removes all tracks beyond a user-defined limit.  Once 

tracking has completed, the resulting list of sorted, 

centroided, merged, and filtered tracks is returned to 

the user for inspection. 

 

4. Track Identification 

While the previous process of tracking an object 

is able to transform raw detections into a set of tracks 

for the end-user, there is still an added step that can 

reduce the user workload: track identification.  Nearly 

all artificial satellites are already known and 

catalogued, and approximately 90% of all asteroids are 

also catalogued.  By matching tracks with known 

objects, the user is free to spend their time evaluating 

tracks that do not match up with any known object – 

these could be tracks of particular interest. 

As mentioned previously in step (8) of the 

tracking process, it is possible to match tracks with 

known objects by integrating the database of orbital 

elements of minor planets to the timestamp of the first 

image.  And since all tracks have a pre-computed 

position to that first image, all that remains is to 

compute the distance between that position and that of 
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the integrated position of the minor planets.  If the 

resulting distance is within some tolerance, a match is 

declared and the track is said to be associated with a 

known minor planet. 

Similarly, the same can be done with artificial 

satellites, however a bit more care must be exercised 

because the fast motion of most satellites imposes a 

tighter tolerance on the delta time between an actual 

detection versus an integrated detection.  In other 

words, one should use an actual detected position for 

matching, wherever it is possible to do so, rather than 

integrating (interpolating) to a common timestamp.  

Consequently, the elements of artificial satellites can 

be integrated to multiple timestamps across the dataset 

in order to ensure a good match. 

 

5. Evaluation 

A number of datasets have been collected to 

evaluate the performance of the FAST algorithm.  

These datasets include a variety of optical instruments 

and cameras.  A typical implementation of the 

algorithm is to have it “stare” at the same region of the 

sky for an extended period, and typically processing 

30 minutes worth of data at a time.  This usually works 

out to around 100 images per dataset with each image 

having an exposure time of 10 seconds (depending on 

plate scale) and gap time of around 10 seconds 

between each exposure.  While it is possible to supply 

the algorithm datasets having a dwell time of more 

than 30 minutes, track matching on artificial satellites 

could start to become suboptimal.  Thus, an optimized 

survey would ideally capture multiple datasets 

throughout the night, each comprised of 30 minutes 

dwell time on a patch of the sky using a wide field 

instrument. 

 

 
Figure 8: Samyang 135mm with ASI 2600MM 
(configuration from the iTelescope Network) 

Dataset #1: 

 

Telescope: Samyang 135mm 

Camera: ZWO ASI 2600MM (Sony IMX571) 

Aperture: 65mm 

Focal length: 130mm 

Field of View: 621x415 arcmin (71.5 deg2) 

Plate scale: 12”/pixel (at bin 2x) 

 

Dataset characteristics: 

 

Images: 57 images (each 3124x2088 pixels) 

Exposure time per image: 3.00 seconds 

Total Exposure time: 2.850 minutes 

Total Dataset time: 14.083 minutes 

 

Results: 

 

Tracks returned: 

3 “High” confidence (3/3 real) 

Detected two MEO objects and one LEO object 

Processing time: 4 seconds 

 

 
Figure 9: BREEZE-M DEB (TANK) (Speed=2092”/min) 

 
Figure 10: COSMOS 2277 (GLONASS) 

(Speed=2274”/min) 

 
Figure 11: GONETS M 05 (Speed=29846”/min) 
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Dataset #2: 

 

Telescope: Samyang 135mm 

Camera: ZWO ASI 2600MM (Sony IMX571) 

Aperture: 65mm 

Focal length: 130mm 

Field of View: 621x415 arcmin (71.5 deg2) 

Plate scale: 12”/pixel (at bin 2x) 

 

Dataset characteristics: 

 

Images: 90 images (each 3124x2088 pixels) 

Exposure time per image: 10.0 seconds 

Total Exposure time: 15.00 minutes 

Total Dataset time: 46.517 minutes 

 

Results: 

 

Tracks returned: 

27 “High” confidence (27/27 real) 

7 “Medium” confidence (5/7 real) 

Processing time: 6 seconds 

 

 
Figure 12: GSAT 6A 

GSAT 6A (as well as all tracks here) was detected 

“blindly”.  It has a speed of 1450”/min and was found 

with no issue.  In 2018 this same satellite was actually 

lost for a few days, following an orbit raising 

maneuver (Surendra, 2018). 

 

Dataset #3: 

 

Telescope: Takahashi Epsilon 180ED 

Camera: ZWO ASI 2600MM (Sony IMX571) 

Aperture: 180mm 

Focal length: 500mm 

Field of View: 160x107 arcmin (4.8 deg2) 

Plate scale: 3.1”/pixel (at bin 2x) 

 

Dataset characteristics: 

 

Images: 90 images (each 3124x2088 pixels) 

Exposure time per image: 10.0 seconds 

Total Exposure time: 15.00 minutes 

Total Dataset time: 27.183 minutes 

 

 
Figure 13: iTelescope T71 (Dataset #3) 

Results: 

 

Tracks returned: 

11 “High” confidence (11/11 real) 

1 “Low” confidence with 3 hits (1/1 real) 

Processing time: 7 seconds 

 

 
Figure 14: High Variability in Brightness 

As shown in Figure 14, this dataset includes an 

example of a track established on an object having 

high variability in brightness (Ariane 1 Deb).  It was 

initially detected on image #30 in the sequence of 90 
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images.  A second detection was also generated in the 

subsequent image (#31).  However, the object rotation 

caused it to become fainter than the magnitude limit 

(approximately 16.5) on images 32-37.  Then on 

image 38 the track was re-established, yielding a third 

detection and increasing track score.  The motion of 

the track was 922”/min and position angle of 85 

degrees. 

 

Dataset #4: 

 

Telescope: Samyang 135mm 

Camera: ZWO ASI 2600MM (Sony IMX571) 

Aperture: 65mm 

Focal length: 130mm 

Field of View: 621x415 arcmin (71.5 deg2) 

Plate scale: 12”/pixel (at bin 2x) 

 

Dataset characteristics: 

 

Images: 90 images (each 3124x2088 pixels) 

Exposure time per image: 3.0 seconds 

Total Exposure time: 4.500 minutes 

Total Dataset time: 22.783 minutes 

 

 
Figure 15: Detection of Unknown Object 

Results: 

 

Tracks returned: 

22 “High” confidence (22/22 real) 

Processing time: 8 seconds 

 

Dataset #4 has 22 tracks with “High” confidence.  

This dataset also shows an example of an “unknown” 

track (#17), that initially could not be matched to a 

known object.  It has a speed of 788”/min, which is 

noticeably different from that of a geostationary 

satellite.  Instead, it is a geosynchronous satellite with 

inclination of 5.6 degrees. 

 

 
Figure 16: Motion of Track #17 (Courtesy of n2yo.com) 

Dataset #5: 

 

Telescope: 0.25m Ritchey-Chrétien 

Camera: QHY42 (Gsense 400 CMOS) 

Aperture: 250mm 

Focal length: 2000mm 

Field of View: 31x31 arcmin (0.267 deg2) 

Plate scale: 2.25”/pixel (at bin 2x) 

 

Dataset characteristics: 

 

Images: 125 images (each 818x818 pixels) 

Exposure time per image: 1.0 seconds 

Total Exposure time: 2.083 minutes 

Total Dataset time: 2.085 minutes 

 

 

 
Figure 17: 2019 JH7 (Near Earth Asteroid) 

This dataset shows an example of a tracked Near 

Earth Asteroid (NEA) found moving at 1145”/min, 

which is even faster than geostationary satellites at 

900”/min.  This indicated that it was indeed a close 

approach. 
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6. Future Enhancements 

The FAST algorithm has been implemented into 

the Tycho Tracker software, which presently generates 

astrometry in MPC1992 (or alternatively ADES) 

format, consistent with report generation for 

astrometry of minor planets.  However, for those 

seeking to use FAST for detection of artificial 

satellites, it can be desirable to generate reports in the 

Interactive Orbit Determination (IOD) format.  This is 

a fairly straightforward feature to support and will be 

completed in the next revision.  This will make the 

measurements compatible with those that are 

generally submitted to the SeeSat-L mailing list 

(Lewis, 1998). 

 

7. Conclusion 

The FAST algorithm is shown to quickly detect 

and identify moving objects in a series of images.  It is 

robust in detecting objects with a streaked profile, as 

well as objects having high variability in brightness.  

When used in conjunction with a “Monitor Queue” 

tool that watches for incoming datasets, it can be 

greatly automated to process data from an entire night.  

Its ability to quickly match dozens of tracks with 

known objects allows one to easily spot unknown 

objects for follow-up. 
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