
Best practises and guides
V1.8

PLAYABLE ADS ON UNITY

TECHNICAL BASICS
Playable Ad MUST be contained in a single HTML index file
When a device wants to show an ad, it downloads only one file (for a Playable Ad, this
would be the index.html file, for a video it would be an mp4 file) using a link to our CDN.
This means, that we can’t have a playable consisting of multiple files, simply because the
device will only download one file and one file only.

Check the picture below. There is the index.html file, but there is also a game.js file and
two folders of which one contains images.
So, if the device now downloads only the index.html file, it will be missing all the other
stuff.

In the screenshot below, you can see that there are multiple files and folders. Also, the in-
dex.html file is only 3 KB in size, so all the actual data is contained somewhere else (here
the main part is in “resource”).

The single index.html file MUST be inlined and SHOULD be minified

In the “BAD” screenshots from above the index.html file contains links to the other files
and folders, meaning that when the device has only downloaded the index.html file and
starts showing the playable, it actually needs to download some more stuff from those
links, so the ad is not really fully cached to the device.

Also, these links are only relative links like /myParentFolder/resources/images/picture2.
png and the device won’t find anything using this path because there is nothing there.
Same problem when the links are pointing to some URL on the internet where e.g. the im-
ages are stored - caching does not work. So, instead of giving a link to an external source,
we tell the browser/ad unit right there in the code what it is supposed to display.

Inlining is basically, a super long string of gibberish characters. It’s not gibberish to the
browser in our ad unit though of course. This data is interpreted as the type of file you are
saying it is - so as an image (or in this case actually a gif).

The same thing can be done with sound or video files. It is a rare practice, because for the
normal usage of an html file (for a website for example), this is often unnecessary. If you
simply want to update an image, you would need to change the source code of the web-
site every time. However, for caching the entire ad to the device memory beforehand, it
has to be done this way.

Minifying is a way of reducing the size of software code. It removes empty spaces and
shortens variable names etc. It is still perfectly well readable for a machine, but nearly
impossible to decipher for a human.

Additional notes:

Art assets:
Use spritemaps to contain the art assets. These are sprite maps/sheets/databases:
It can be used to show the movements of a character, essentially it can be used to ani-
mate objects.

A sprite sheet is a bitmap image file that contains several smaller graphics in a tiled grid
arrangement. By compiling several graphics into a single file, you enable Animate and oth-
er applications to use the graphics while only needing to load a single file.

Sprites - Creative Commons © @Bayat Games

https://bayat.itch.io/platform-game-assets

Browser testing:
Make the final build to work without mraid as well, so that you can successfully run and
complete it in desktop browser. Tapping download button in desktop browser should go to
the app store page of your choice.

Check the setting for CORS headers on the server where the file is hosted:
allow origin or Access-Control-Allow-Origin needs to be set to *

Download button functionality:
Do not use automatic redirection to the app store. The playable is not allowed to open the
app store automatically or from the very first touch within the playable.
Make sure that download button has visual tap / click response, so users understand it
was clicked.

Linking to the Appstores should be simple mraid.open calls:
case “Android”:mraid.open(“https://play.google.com/store/apps/details?id=yourgame”);

break;

case “iOS”:mraid.open(“https://itunes.apple.com/us/yourgame?mt=8”);

Please note that user agent on newer versions of iPadOS is ‘Macintosh’. We recommend
using the following logic to detect the platform a playable is running on: /android/i.test(us-
erAgent).

Filesize limitation:
Final filesize of the ad should be under 5 Mb.

Audio:
If your playable is using sound, it must use Web Audio API by default and fallback to
HTMLAudioElement or HTML DOM Audio Object. Most modern game frameworks and
sound libraries (Howler.js) are working this way. Make sure you do too.

Web Audio API is currently the only solution that respects the state of the mute/ringer
switch on iOS. Also, use `viewableChangeHandler` to mute or play sound if the app goes
background on Android.

Video Elements:
For embedded video elements inside the playables, it works as long as the video is inlined
and base64 encoded. Also make sure that the native video controls are not available.

video::-webkit-media-controls {
display: none !important; }

TECHNICAL REQUIREMENTS

BOOTSTRAPPING:
// Wait for the SDK to become ready
if (mraid.getState() === ‘loading’) {
	 mraid.addEventListener(‘ready’, onSdkReady);
} else {
	 onSdkReady();
}

function viewableChangeHandler(viewable) {
	 // start/pause/resume gameplay, stop/play sounds
	 if(viewable) {
		 showMyAd();
	 } else {
		 // pause
	 }
}

function onSdkReady() {
	 mraid.addEventListener(‘viewableChange’, viewableChangeHandler);
	 // Wait for the ad to become viewable for the first time
	 if (mraid.isViewable()) {
		 showMyAd();
	 }
}

function showMyAd() {
...
}

Download Button in Playable Ads - How to open the store:
// Detect platform from user agent
var userAgent = navigator.userAgent || navigator.vendor;

var url = ‘<replace with iTunes store>’;
var android = ‘<replace with Google Play Store link>’;

if (/android/i.test(userAgent)) {
	 url = android;
}

mraid.open(url);

Note: Do not use automatic redirection to the app store. The playable is not allowed to
open the app store automatically or from the very first touch within the playable.

UNITYADS PLAYABLE AD REQUIREMENTS
MRAID: Mobile Rich Media Ad Interface Definitions
Mraid is injected by our webview and you can just use the mraid methods.
Unity Ads is supporting MRAID v2.0 with the following exceptions:

Support only for full-screen interstitial ads, expand() and resize() will not be available
Custom close buttons will not be available
No support for: sms, tel, calendar and storePicture
inlineVideonext is supported from SDK 2.0.7 onwards

Requirements outside the MRAID specification:
- Advertisement must be contained in a single HTML file. All assets must be inlined
- Unity Ads SDK supports Android 4.4+ and iOS 9.0+
- Skippability of the advertisement is controlled by Unity Ads SDK
- Advertisements should be designed to support both portrait and landscape orientations
- Advertisements should be designed not to need any network requests (XHR), but for
 example, analytics calls to track user interaction are allowed
- Advertisement should go directly to the app store/play store using mraid.open() when
 designing the click-through, any start/view/click attribution will be handled server-side
- Do not use automatic redirection to the app store. The playable is not allowed to open
 the app store automatically or from the very first touch within the playable.
- Start initialization when receiving the MRAID “ready” event
- Wait for the MRAID “viewableChange” event before starting the actual playable content

When testing the playable ad:
Upload the file to a server where it can be accessed via a direct url or alternatively
upload it to the Unity Acquire Dashboard.

eg. https://myserver.com/testgame.html
Note that just https://myserver.com would not be enough without a direct url ending
with .html

Check the setting for CORS headers on the server where the file is hosted:
allow origin or Access-Control-Allow-Origin needs to be set to *

Make sure the filesize of the completed ad is under 5 Mb.

GAMEPLAY AND VISUAL LAYOUT

Entire ad duration should be designed around 30 seconds.
Aim to have the endscreen splash appear in about 27 seconds for optimal time to suggest
a download, instead of the close button.
For non-rewarded ads, the close button will appear after 5 seconds.

FIXED ELEMENTS
These come pre-built from Unity
Do not place any functionality to these areas
Countdown timer in the top right corner
Timer turns into a close button when ad is closeable
In the EU region, GDPR banner on the bottom
The banner is visible for the first time an ad is shown
The banner takes about 100 pixels in height
Only the privacy icon will be shown on the bottom left corner if:
- Not in the EU region
- Consent given for personalized ads
- GDPR banner was seen by the user once

START SCREEN
A short guide for the gameplay
· Gameplay should start immediately to catch attention
· Fade or animate into gameplay if no input is given
· Show initial interaction by examples
· Show more, tell less

GAMEPLAY
· Allow the player to finish the game
· Create a Download button to fit the game
A midgame download button guarantees more clicks and installs as it can be hard to judge
when the player reaches the end of the game before the ad can be closed.

END SCREEN
Either fail message or congratulations
· Include the game name icon and logo etc.
· Animate the download button to give it more attention,
 but do not use a strobe effect. Apple does not allow it on
 their platform.

· Make sure that the game also works in both orientations
Design the gameplay to work atleast comparatively well
on both.

You can fill the excess space with a wallpaper or move the
Download button there for example.

Ads get served to both portrait and landscape locked
games so forcing the user to turn the device is a bad ad
experience.

Sprites Creative Commons © @Bayat Games

https://bayat.itch.io/platform-game-assets

QUALITY ASSURANCE AND TESTING

We have a testing app that you can use to test/debug playables and videos in
our real ad unit and SDK instead of a desktop browser or simulator.

You can find the test app in th Apple Appstore and Google Play storefronts.
https://play.google.com/store/apps/details?id=com.unity3d.auicreativetestapp
https://apps.apple.com/us/app/ad-testing/id1463016906

Usage:
Upload and host the playable .html file where it can be accessed with an URL.
Or alternatively upload it to the Unity Acquire Dashboard.

If uploading to your own hosted location, please then use any QR code generator
(e.g. http://www.qr-code-generator.com) to generate a code from the URL of the playable.

Unity Acquire Dashboard generates the QR codes automatically and can be found under
your Creative Packs and clicking on “Show QR Code“

You can then use the Test App to read the URL and view the ad.

Note: Make sure the url ends in .html
Note: For iOS, the URL that hosts the playable has to use secure https instead of just http
due to Apple platform security.

When you are finished and are submitting the ad:
This might sound self explanatory, but make sure the playable actually loads and plays
correctly. Play it a few times to catch any potential bugs or functionality.

Make sure that the playable is all inlined into one HTML file and is under 5 Megabytes.

The UnityAds SDK supports iOS 9+ and Android 4.4.1+ for playables

When testing, make sure, the URL you are hosting the playable in is using httpS not only
http. iOS requires https due to the platform holders security concerns.

Check the setting for CORS headers on the server where the file is hosted:
allow origin or Access-Control-Allow-Origin needs to be set to *
You can read more about CORS here:
https://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html

Make sure the filesize of the completed ad is under 5 Mb.

Some of the playables won’t work in a browser, try it with the Unity Test App and on
several different devices if possible, from old Androids to the latest iPhone.

Some of the playables will work in a browser but fail to implement MRAID correctly and
thus fail in our ad unit. In that case it is hard for you to spot that and we can check it in the
final QA. When you use our testing apps, you can spot many issues beforehand.

Things to look for:
Performance throughout the whole playable should be stable. Make sure the ad runs
smoothly.

Install button should lead to the correct store and game. Check on an actual iOS device as
the simulator runtime doesn’t have an App Store.

Duration (check how long does it take to reach the end screen and Call-to-action). Total
experience should take just under 30 seconds.

Orientation Changes, making sure game still functions and looks okay when orientation is
switched from portrait to landscape and vice versa.

Common things to check for on older Androids like 4.4, 5.0:
Generally polyfill issues (object.assign, etc.)

Sound Issues:
If a user locks the screen, the sound should stop. And if the screen is unlocked, the sound
should restart. Check that the physical mute button is respected.

I’m getting an error while uploading my playable:
Q: I’m getting an error “invalid URL” when I’m uploading a playable to the Dashboard
A: We have some requirements for using the upload via URL functionality:
Playable must be hosted on a HTTPS server, not HTTP server.
The URL must contain the full filename, including the .htm / .html extension.
The URL can not have parameters after the filename and extension.
The URL must be a valid web address, not a local URL.

Q: I’m getting an error about failing to fetch content when I’m uploading a playable to the
Dashboard via a URL
A: Verify that you can access the playable with the Ad Testing app and verify that your
CORS is set up properly. Please check section ‘Suggested CORS setup’ for more informa-
tion. You can also upload the playable directly from a file on your local computer.

Q: I’m getting an error about the file size
A: Make sure your playable is under 5MB in size. Often it is possible to optimize for exam-
ple image assets without degrading the quality too much.

Q: I’m getting an error about an invalid store URL
A: Make sure the playable source code contains a link to your game’s store page. Make
sure the URL is present in plain text and not constructed on the fly during runtime.

My playable fails to work on the Ad Testing app:
Q: My playable gets stuck at the loading screen in the Ad Testing app on iOS
A: The likely cause for this is misconfigured CORS headers on the hosting server. Please
check section ‘Suggested CORS setup’ for more information.

Suggested CORS setup:
If the CORS headers of your web server are not properly set up, the ad will stall at the
loading screen when it is viewed in the Ad Testing app on iOS. Uploading the playable via
a URL to the Acquire Dashboard will also fail in this case.

Check the setting for CORS headers on the server where the file is hosted:
allow origin or Access-Control-Allow-Origin must to be set to *.

Read more about setting up CORS for Amazon S3 here:
https://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html
Read more about setting up CORS for Cloudflare here:
https://support.cloudflare.com/hc/en-us/articles/200308847-Using-cross-origin-re-
source-sharing-CORS-with-Cloudflare
Read more about setting up CORS for Google Cloud Storage here:
https://cloud.google.com/storage/docs/configuring-cors

Thank you for reading!

