References
Abramovitz, M. and I. A. Stegun (1965). Handbook of mathematical functions. New York:
Dover Publications Inc. 9
Bachoc, F. (2013). Cross-validation and maximum likelihood estimations of hyper-
parameters of Gaussian processes with model misspecification. Computational Statistics
and Data Analysis 66, 55–69. 15
Byrd, R. H., M. E. Hribar, and J. Nocedal (1999). An interior point algorithm for large scale
nonlinear programming. SIAM Journal on Optimization 9(4), 877–900. 16
Cressie, N. A. C. (1993). Statistics for spatial data. John Wiley & Sons Inc. 15
Dubourg, V. (2011). Adaptive surrogate models for reliability analysis and reliability-based
design optimization. Ph. D. thesis, Universit
´
e Blaise Pascal, Clermont-Ferrand, France. 3, 6,
11, 13
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional. 16
Hansen, N. and A. Ostermeier (2001). Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195. 17
Krige, D. G. (1951). A statistical approach to some mine valuation and allied problems on
the Witwatersrand. Master’s thesis, University of the Witwatersrand, South Africa. 1
Matheron, G. (1963). Principles of geostatistics. Economic Geology 58(2), 1246–1266. 1
Nocedal, J. (1980). Updating Quasi-Newton Matrices with Limited Storage. Mathematics of
Computation 35(151), 773–782. 16
Rasmussen, C. and C. Williams (2006). Gaussian processes for machine learning. Adaptive
computation and machine learning. Cambridge, Massachusetts: MIT Press. 1, 5, 10, 11,
14
Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and analysis of computer
experiments. Statistical Science 4, 409–435. 1, 11
Santner, T., B. Williams, and W. Notz (2003). The design and analysis of computer experiments.
Springer series in Statistics. Springer. 1, 2, 3, 13, 15
64