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ABSTRACT 

Topology optimization (TO) is a mathematical approach for optimizing the performance of 

structures by designing material distribution within a predefined domain under specific constraints. 

Conventional TO approaches rely on meshing the structure and have a nested nature where each 

design iteration requires solving a system of partial differential equations (PDEs). In contrast to 

existing methods, we introduce a simultaneous and mesh-free TO approach that unifies the design 

and analysis steps into a single optimization loop. Our method is grounded on Gaussian processes 

(GPs) which incorporate deep neural networks as their mean functions. Our method is inherently 

mesh-independent and significantly aids in (1) satisfying equality constraints in the design problem, 

(2) minimizing gray areas which are unfavorable in real-world applications, and (3) simplifying the 

inverse design by reducing the sensitivity of neural networks to factors such as random initialization, 

architecture type, and choice of optimizer. To show the impact of our work, we evaluate the 

performance of our approach against COMSOL on a few benchmark examples. The talk is 

concluded by sketching our recent ideas on operator learning via GPs which account for correlations 

not only in the input function space, but also in the support of the target function space. This unique 

feature allows us to incorporate the physics of the system —including PDEs, boundary conditions, 

and initial conditions— directly into the loss function through automatic differentiation. 
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