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ABSTRACT 
High-performance computing (HPC) has revolutionized our ability to perform detailed simulations 
of complex real-world processes. A prominent contemporary example is from aerospace propulsion, 
where HPC is used for rotating detonation rocket engine (RDRE) simulations in support of the 
design of next-generation rocket engines; however, these simulations take millions of core hours 
even on powerful supercomputers [1], which makes them impractical for engineering tasks like 
design exploration and risk assessment. Reduced-order models (ROMs) address this limitation by 
constructing computationally cheap yet sufficiently accurate approximations that serve as surrogates 
for the high-fidelity model. In this presentation, we discuss a new distributed algorithm [2] that 
achieves fast and scalable construction of predictive physics-based ROMs trained from sparse 
datasets of extremely large state dimension. The algorithm learns structured physics-based ROMs 
that approximate the dynamical systems underlying those datasets. This enables model reduction for 
problems at a scale and complexity that exceeds the capabilities of existing approaches. We 
demonstrate our algorithm's scalability using up to 2,048 cores on the Frontera supercomputer at the 
Texas Advanced Computing Center [3]. We focus on a real-world three-dimensional RDRE for 
which one millisecond of simulated physical time requires one million core hours on a 
supercomputer. Using a training dataset of 2,536 snapshots each of state dimension 76 million, our 
distributed algorithm enables the construction of a predictive data-driven reduced model in just 13 
seconds on 2,048 cores on Frontera. 
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