
A Neural Network-Based Enrichment of 
Reproducing Kernel Approximation for 

Modeling Localization and Brittle Fracture
J. S. Chen, J. Baek, Y. Wang

Structural Engineering Department
Mechanical & Aerospace Engineering Department

Center for Extreme Events Research
University of California San Diego



2

Discrete Representation of Localization and Fractures
Interface element insertion, embedded weak/strong 
discontinuities, enrichment
• Ineffective to determine curvilinear crack paths, crack kinking 

and branching
• Tedious and even impossible to track complex crack topologies.

Diffuse Representation of Localization and Fractures
Quantity averaging, gradient methods, phase field

• Very fine discretization required.
• Adaptive model refinement is cumbersome for traditional 

mesh-based methods.

Proposed Neural Network Partition of Unity (NN-PU) Ritz Method

• PU (RKPM) + machine learned enrichment functions + energy minimization
• Loss function minimization: enrichment functions for localization and fracture
• Problems with local features: feature encoded transfer learning

Motivation



NN-PU for Strain Localizations and Fractures

3

𝐮𝐮ℎ 𝐱𝐱 = �𝐮𝐮ℎ 𝐱𝐱 + �𝐮𝐮ℎ 𝐱𝐱

Solution decomposition

Smooth solution approximation by partition of unity (PU)
�𝐮𝐮ℎ 𝐱𝐱 ≈ 𝐮𝐮𝑅𝑅𝑅𝑅 𝐱𝐱  = ∑𝐼𝐼=1𝑁𝑁𝑁𝑁 Ψ𝐼𝐼 𝐱𝐱 𝐝𝐝𝐼𝐼

�𝐮𝐮ℎ 𝐱𝐱 ≈ 𝐮𝐮𝑁𝑁𝑁𝑁 𝐱𝐱  = ∑𝐽𝐽=1𝑁𝑁𝑁𝑁 𝐮𝐮𝐽𝐽𝐵𝐵 𝐱𝐱

Rough solution approximation (for strong/weak discontinuities)

• �𝐮𝐮ℎ: smooth solution (background: fixed discretization)
• �𝐮𝐮ℎ: rough solution (foreground: evolving NN enrichment)

• 𝐮𝐮𝑅𝑅𝑅𝑅: Reproducing Kernel (RK) approximation
• 𝐮𝐮𝑁𝑁𝑁𝑁: Neural Network (NN) approximation
• 𝐮𝐮𝐽𝐽𝐵𝐵: block-level NN approximation

𝐮𝐮ℎ = �𝐮𝐮ℎ + �𝐮𝐮ℎ = �
𝐼𝐼∈𝒮𝒮

Ψ𝐼𝐼 𝐱𝐱 𝐝𝐝𝐼𝐼 + �
 𝐾𝐾=1

𝑛𝑛𝑁𝑁𝑁𝑁
𝜻𝜻𝐾𝐾 𝐱𝐱 𝑤𝑤𝐼𝐼𝐼𝐼𝐶𝐶  

𝐮𝐮𝐽𝐽𝐵𝐵 𝐱𝐱 = �
𝐾𝐾=1

𝑛𝑛𝑁𝑁𝑁𝑁 �𝜙𝜙𝐽𝐽𝐽𝐽 𝐱𝐱 �𝒗𝒗𝐽𝐽𝐽𝐽 𝐱𝐱

�𝒗𝒗𝐽𝐽𝐽𝐽 𝐗𝐗 = �
𝐼𝐼∈ ̅𝒮𝒮

Ψ𝐼𝐼 𝐱𝐱 �𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶

𝑤𝑤𝐼𝐼𝐼𝐼𝐶𝐶 = 0 ∀𝐼𝐼 ∉ ̅𝒮𝒮 = {𝐽𝐽|∃𝐱𝐱 ∈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 Ψ𝐽𝐽 , 𝜅𝜅 𝐱𝐱 >𝜅𝜅𝑐𝑐}

• 𝐮𝐮𝐽𝐽𝐵𝐵 : block-level NN approximation

Baek, J., Chen, J. S., Susuki, K, International Journal for Numerical Methods in Engineering. Vol. 123, pp 4422-4454, 2022.
Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and Engineering, arXiv:2307.01937, 2023



Reproducing Kernel Particle Method
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•Reproducing kernel (RK) approximation
• The order of continuity and the order of completeness are independently defined in 

the RK approximation.

𝑢𝑢ℎ 𝐗𝐗 = �
I=1

𝑁𝑁𝑁𝑁
Ψ𝐼𝐼 𝐗𝐗 𝑑𝑑𝐼𝐼

RK approximation

Ψ𝐼𝐼 𝐗𝐗 = �
𝛂𝛂 ≤𝑛𝑛

𝐗𝐗 − 𝐗𝐗𝐼𝐼 𝛂𝛂𝑏𝑏𝛂𝛂 𝐱𝐱 Φ𝑎𝑎 𝐗𝐗 − 𝐗𝐗𝐼𝐼

RK shape function

�
𝐽𝐽=1

𝑁𝑁𝑁𝑁

Ψ𝐼𝐼 𝐗𝐗 𝐗𝐗𝐼𝐼𝛂𝛂 = 𝐗𝐗𝛂𝛂, 𝛂𝛂 ≤ 𝑛𝑛

Reproducing condition

Order of 
continuity

Order of 
completeness

Liu WK, Jun S, Zhang YF. Int J Numer Methods Fluids 1995;20:1081–106.
Chen JS, Pan C, Wu C-T, Liu WK. Comput Methods Appl Mech Engrg 1996;139:195–227.

• Straightforward adaptive refinement
• Arbitrary order continuities
• Enrichment with special functions
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Block-level NN Approximation

5

𝑢𝑢𝑁𝑁𝑁𝑁 𝐱𝐱 = �
𝐵𝐵=1

𝑁𝑁𝐵𝐵

𝑏𝑏𝐵𝐵𝑁𝑁𝑁𝑁 𝐱𝐱;𝐖𝐖𝐵𝐵

𝑏𝑏𝐵𝐵𝑁𝑁𝑁𝑁 𝐱𝐱;𝐖𝐖 = �
𝐾𝐾=1

𝑁𝑁𝐾𝐾
�𝜙𝜙𝐾𝐾𝐾𝐾 𝐲𝐲 𝐱𝐱;𝐖𝐖𝐵𝐵

𝐿𝐿 ,𝐖𝐖𝐾𝐾𝐾𝐾
𝑆𝑆 𝑝𝑝 𝐱𝐱;𝐖𝐖𝐾𝐾𝐾𝐾

𝑃𝑃

• 𝐖𝐖𝐿𝐿: NN weight set controlling 
the location and orientation of 
the kernel.

• 𝐖𝐖𝑆𝑆: NN weight set controlling 
the shape of transition.

• 𝑁𝑁𝑁𝑁: the number of NN kernels per block

NN Kernel function captures
• Location and orientation of 

localization
• Shape of solution transition

NN Polynomial introduces
• Monomial completeness for 

further accuracy

• 𝐖𝐖𝑃𝑃: NN monomial coefficient set

Neural network (NN) 
approximation

Block-level NN 
approximation

• 𝑏𝑏𝐵𝐵𝑁𝑁𝑁𝑁: block-level NN approximation

* The NN control parameters 𝐖𝐖𝐿𝐿, 𝐖𝐖𝑆𝑆, and 𝐖𝐖𝑃𝑃 are 
determined via loss function minimization.

Baek, J., Chen, J. S., & Susuki, K. (2022). A Neural Network‐enhanced Reproducing Kernel Particle Method for Modeling Strain Localization. International Journal for Numerical 
Methods in Engineering, Vol. 123, pp 4422-4454.

�𝜙𝜙𝐽𝐽𝐽

𝑦𝑦1

𝑦𝑦1

�𝜙𝜙𝐽𝐽𝐽
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Polynomial sub-block

A Neural Network-enhanced RKPM for Localization Modeling

Baek, J., Chen, J. S., Susuki, K, International Journal for Numerical Methods in Engineering. Vol. 123, pp 4422-4454, 2022.
Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and Engineering, arXiv:2307.01937, 2023



Parametrization by 𝐖𝐖𝐿𝐿

7

Parametric Coordinate

𝑦𝑦2

𝑦𝑦1

𝑥𝑥2

𝑥𝑥1

Physical Coordinate

• Complicated localization patterns are projected onto 
a parametric space.

• NN Parametric Coordinate

• NN kernel functions defined in the parametric 
space can capture complex localizations in the 
physical space.

Parametrization sub-block

For NN block 𝐵𝐵, 𝒫𝒫𝐵𝐵: 𝐱𝐱 → 𝐲𝐲 𝐱𝐱;𝐖𝐖𝐵𝐵
𝐿𝐿

𝐲𝐲 𝐗𝐗;𝐖𝐖𝐵𝐵
𝐿𝐿 = 𝐡𝐡𝑛𝑛𝐿𝐿 ⋅;𝐖𝐖𝐵𝐵𝑛𝑛𝐿𝐿

𝐿𝐿 ∘ 𝐡𝐡𝑛𝑛𝐿𝐿−1 ⋅;𝐖𝐖𝐵𝐵𝑛𝑛𝐿𝐿−1
𝐿𝐿 ∘ ⋯ ∘ 𝐡𝐡1 𝐱𝐱;𝐖𝐖𝐵𝐵1

𝐿𝐿  

𝐡𝐡𝑖𝑖 𝛏𝛏;𝐖𝐖𝐵𝐵𝑖𝑖
𝐿𝐿 = tanh 𝐳𝐳𝑖𝑖 𝛏𝛏;𝐖𝐖𝐵𝐵𝑖𝑖

𝐿𝐿 , for 𝑖𝑖 < 𝑛𝑛𝐿𝐿 

𝐡𝐡𝑖𝑖 𝛏𝛏;𝐖𝐖𝐵𝐵𝑖𝑖
𝐿𝐿 = 𝐳𝐳𝑖𝑖 𝛏𝛏;𝐖𝐖𝐵𝐵𝑖𝑖

𝐿𝐿 , for 𝑖𝑖 = 𝑛𝑛𝐿𝐿 

𝐳𝐳𝑖𝑖 = 𝚯𝚯𝐵𝐵𝑖𝑖𝛏𝛏 + 𝛃𝛃𝐵𝐵𝑖𝑖 

𝐖𝐖𝐵𝐵𝑖𝑖
𝐿𝐿 = 𝚯𝚯𝐵𝐵𝑖𝑖 ,𝛃𝛃𝐼𝐼𝐼𝐼 ⊂ 𝐖𝐖𝐵𝐵

𝐿𝐿  
with the weight matrix 𝚯𝚯𝐵𝐵𝑖𝑖 and the bias vector 𝛃𝛃𝐵𝐵𝑖𝑖

where



NN Kernel Function Controlled by 𝐖𝐖𝑆𝑆
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𝜙𝜙 𝑦𝑦;𝐖𝐖𝐾𝐾𝐾𝐾
𝑆𝑆 = �

𝑖𝑖=1

2

�𝜙𝜙 𝑧𝑧𝑖𝑖 𝑦𝑦, �𝑦𝑦𝑖𝑖𝐾𝐾𝐾𝐾, 𝑐𝑐𝑖𝑖𝐾𝐾𝐾𝐾 ;𝛽𝛽𝑖𝑖𝐾𝐾𝐾𝐾

NN Kernel Function

Regularized step functions

Regularized Step Functions

�𝜙𝜙 𝑧𝑧𝑖𝑖;𝛽𝛽𝑖𝑖 ≡ 𝑆𝑆 𝑧𝑧𝑖𝑖 +
1
2

;𝛽𝛽𝑖𝑖 − 𝑆𝑆 𝑧𝑧𝑖𝑖 −
1
2

;𝛽𝛽𝑖𝑖

where   𝑧𝑧𝑖𝑖 = −1 𝑖𝑖 ⁄𝑦𝑦 − �𝑦𝑦𝑖𝑖 𝑐𝑐𝑖𝑖  ,  𝑖𝑖 = 1, 2

𝑆𝑆 𝑧𝑧;𝛽𝛽 = 1
𝛽𝛽

log 1 + 𝑒𝑒𝛽𝛽𝛽𝛽  
(parametric softplus function)

�𝜙𝜙1�𝜙𝜙2

𝜙𝜙

NN Kernel sub-block



Neural Network Kernel Function Controlled by 𝐖𝐖𝑆𝑆
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NN Control Parameter 𝑐𝑐
Transition of NN kernel function

NN kernel function

NN kernel function derivatives

NN Control Parameter 𝛽𝛽
Transition of NN kernel function 

derivative
NN Control Parameter �𝑦𝑦

Domain of influence



NN-enhanced RK Network Structure
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𝐱𝐱

Block 1

Block 𝐵𝐵

Block 𝑁𝑁𝐵𝐵

⋯
⋯ 𝑢𝑢𝑁𝑁𝑁𝑁

Ψ1 𝐱𝐱

Ψ𝐼𝐼 𝐱𝐱

Ψ𝑁𝑁𝑁𝑁 𝐱𝐱

⋯
⋯

𝑢𝑢𝑅𝑅𝑅𝑅

𝑑𝑑1

𝑑𝑑𝐼𝐼

𝑑𝑑𝑁𝑁𝑁𝑁

𝑢𝑢ℎ = 𝑢𝑢𝑅𝑅𝑅𝑅 + 𝑢𝑢𝑁𝑁𝑁𝑁

𝐖𝐖1

𝐖𝐖𝐵𝐵

𝐖𝐖𝑁𝑁𝐵𝐵

NN approximation
• Takes the physical coordinate 𝐱𝐱 as its input.

RK approximation
• The pre-computed shape functions are 

directly inputted to the network.

Loss Function



Loss Function
ℒ 𝐝𝐝,𝐖𝐖

= �
Ω
𝜓𝜓 𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖 dΩ − 𝐹𝐹 𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖

+
𝛼𝛼
2
�
𝜕𝜕Ω𝑈𝑈

𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖 − �𝐔𝐔 2dΩ

𝐱𝐱
Ψ𝐼𝐼 𝐼𝐼=1

𝑁𝑁𝑁𝑁

∇Ψ𝐼𝐼 𝐼𝐼=1
𝑁𝑁𝑁𝑁

Construct the loss function ℒ 𝐝𝐝,𝐖𝐖  with
• 𝐔𝐔𝑁𝑁𝑁𝑁 = 𝐔𝐔𝑁𝑁𝑁𝑁 𝐱𝐱;𝐖𝐖
• ∇𝐔𝐔𝑁𝑁𝑁𝑁 = 𝜕𝜕𝐔𝐔𝑁𝑁𝑁𝑁 𝐱𝐱;𝐖𝐖 /𝜕𝜕𝐱𝐱

(by automatic differentiation)
• 𝐔𝐔𝑅𝑅𝑅𝑅 = ∑𝐼𝐼=1𝑁𝑁𝑁𝑁 Ψ𝐼𝐼 𝐝𝐝𝐼𝐼
• ∇𝐔𝐔𝑅𝑅𝑅𝑅 = ∑𝐼𝐼=1𝑁𝑁𝑁𝑁 ∇Ψ𝐼𝐼 𝐝𝐝𝐼𝐼

(with precomputed Ψ𝐼𝐼 𝐼𝐼=1
𝑁𝑁𝑁𝑁  and ∇Ψ𝐼𝐼 𝐼𝐼=1

𝑁𝑁𝑁𝑁 )

Optimization
𝐝𝐝,𝐖𝐖 = argmin

𝐝𝐝,𝐖𝐖
ℒ 𝐝𝐝,𝐖𝐖

Optimal
𝐝𝐝, 𝐖𝐖

NN Weights Initialization (𝐖𝐖0)
• The NN blocks and kernel functions 

are uniformly distributed (𝐖𝐖𝐿𝐿𝐿, 𝐖𝐖𝑆𝑆𝑆).
• The monomial coefficients are set 

zero (𝐖𝐖𝑃𝑃𝑃).

RK Coefficients Initial Guess (𝐝𝐝0)
• ̅𝐝𝐝 = argmin

𝐝𝐝
ℒ 𝐝𝐝

 By standard Galerkin Procedure
 With fixed 𝐖𝐖

• Filter: 𝑑𝑑𝐼𝐼0 = ∑𝐽𝐽=1𝑁𝑁𝑁𝑁 �Ψ𝐽𝐽 𝐱𝐱𝐼𝐼 𝑑̅𝑑𝐽𝐽
• Gradient decent-type algorithm 

can be used to optimize the loss.

• 𝐝𝐝: RK coefficient set
• 𝐖𝐖 = 𝐖𝐖𝐿𝐿,𝐖𝐖𝑆𝑆,𝐖𝐖𝑃𝑃 : NN weight set
• 𝜓𝜓: Energy density functional
• 𝐹𝐹: External work
• 𝛼𝛼: Scaling parameter

𝑡𝑡 > 𝑇𝑇𝑒𝑒𝑒𝑒𝑒𝑒

𝑡𝑡 → 𝑡𝑡 + ∆𝑡𝑡

No

end
Yes

Neural Network Enriched Partition of Unity by Ritz Method



Loss Function for Localization

ℒ 𝐝𝐝,𝐖𝐖 = �
Ω
𝜓𝜓𝐷𝐷 𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖 dΩ − 𝐹𝐹 𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖 +

𝛼𝛼
2
�
𝜕𝜕Ω𝑈𝑈

𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖 − �𝐔𝐔 2dΩ

𝜓𝜓𝐷𝐷 𝐮𝐮 = 𝑔𝑔 𝜂𝜂 𝛆𝛆 𝐮𝐮 𝜓𝜓0+ 𝐮𝐮 + 𝜓𝜓0− 𝐮𝐮 + �𝜓𝜓 𝜂𝜂 𝛆𝛆 𝐮𝐮
[1]

𝐹𝐹 𝐮𝐮 = �
Ω
𝐮𝐮 ⋅ 𝐛𝐛 𝑑𝑑Ω + �

𝜕𝜕Ωh
𝐮𝐮 ⋅ 𝐡𝐡 𝑑𝑑Γ

𝜓𝜓0+ = 𝜇𝜇 ̅𝜀𝜀𝑖𝑖 ̅𝜀𝜀𝑖𝑖 + 𝜆𝜆
2
∑ ̅𝜀𝜀𝑖𝑖 2, 𝜓𝜓0− = 𝜓𝜓𝑒𝑒𝑒𝑒 − 𝜓𝜓0+

𝜂𝜂 𝜅𝜅 = min 1, max 0, 𝜂̅𝜂 𝜅𝜅 ,       𝜂̅𝜂 𝜅𝜅 = 1−𝜅𝜅0/𝜅𝜅
1−𝜅𝜅0/𝜅𝜅𝑐𝑐

,        g(η)=1-η 

𝛔𝛔 = 1 − 𝜂𝜂 𝛆𝛆 𝐮𝐮
𝜕𝜕𝜓𝜓0+ 𝐮𝐮
𝜕𝜕𝛆𝛆 𝐮𝐮

+
𝜕𝜕𝜓𝜓0− 𝐮𝐮
𝜕𝜕𝛆𝛆 𝐮𝐮

�𝜓𝜓 𝜂𝜂 = 𝑝𝑝
1

𝑞𝑞 − 𝜂𝜂
−

1
𝑞𝑞

𝑝𝑝 =
𝐸𝐸
2
𝜅𝜅0𝑞𝑞 2,  𝑞𝑞 =

𝜅𝜅𝑐𝑐
𝜅𝜅𝑐𝑐 − 𝜅𝜅0

.

Dissipation Energy

Loss Function

[1] Miehe C, Hofacker M, Welschinger F. Comput Methods Appl Mech Eng. 2010;199(45):2765-2778



Regularization of NN Approximation

13

In order to have discretization-insensitive NN-RK approximation, the original NN 
kernel function is modified.

𝑧𝑧𝛼𝛼𝑖𝑖 = −1 𝑖𝑖 𝑦𝑦𝛼𝛼 𝐱𝐱;𝐖𝐖𝐿𝐿 − �𝑦𝑦𝑖𝑖
𝑐𝑐𝑖𝑖

𝜙𝜙 = �
𝛼𝛼=1

𝑑𝑑𝑑𝑑𝑑𝑑

�
𝑖𝑖=1

2

�𝜙𝜙 𝑧𝑧𝛼𝛼𝑖𝑖 𝑦𝑦𝛼𝛼 , �𝑦𝑦𝛼𝛼𝛼𝛼 , 𝑐𝑐𝛼𝛼𝛼𝛼 ;𝛽𝛽𝛼𝛼𝛼𝛼

Original NN kernel function

𝑧̂𝑧𝛼𝛼𝑖𝑖 = −1 𝑖𝑖
�𝐻𝐻 𝑦𝑦𝛼𝛼 𝐱𝐱;𝐖𝐖𝐿𝐿 − �𝑦𝑦𝑖𝑖

𝑐𝑐𝑖𝑖

𝜙𝜙 = �
𝛼𝛼=1

𝑑𝑑𝑑𝑑𝑑𝑑

�
𝑖𝑖=1

2

�𝜙𝜙 𝑧̂𝑧𝛼𝛼𝑖𝑖 𝑦𝑦𝛼𝛼 , �𝑦𝑦𝛼𝛼𝛼𝛼 , 𝑐𝑐𝛼𝛼𝛼𝛼 ;𝛽𝛽𝛼𝛼𝛼𝛼

�𝐻𝐻 =
1

‖𝜕𝜕𝑦𝑦𝛼𝛼/𝜕𝜕𝐱𝐱‖𝑦𝑦=�𝑦𝑦𝑖𝑖
where

Modified NN kernel function

The parametric coordinate is properly scaled so that the localization width is 
solely determined by the NN control parameter 𝑐𝑐.



Approximation Ability of a Single NN Block
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• A curve without junctions

Higher order topological geometries can by 
captured by the superposition of multiple block-
level NN approximations.

𝑓𝑓𝑅𝑅𝑅𝑅 + 𝑓𝑓𝑁𝑁𝑁𝑁 𝑓𝑓𝑅𝑅𝑅𝑅 𝑓𝑓𝑁𝑁𝑁𝑁

A 4-kernel NN block successfully captures the 
very high gradient in localizations for topological 
geometries of

• 1 triple junction

• 1 quadruple junction



Error Estimate

15

𝑢𝑢ℎ − 𝑢𝑢 0,Ω ≤ 𝐶𝐶 + ̂̂𝐶𝐶 𝑎𝑎�𝛾𝛾𝑘𝑘 𝑢𝑢 𝑝𝑝+1,Ω\�Ω + 𝐶𝐶𝑦𝑦
𝑢𝑢Γ

ℓ
𝑛𝑛𝑁𝑁𝑁𝑁
− ⁄1 2

𝑢𝑢ℎ − 𝑢𝑢 0,Ω ≤ 𝑢𝑢ℎ − 𝑢𝑢 0,Ω\�Ω + 𝐶̂𝐶 𝑢𝑢ℎ − 𝑢𝑢 0,Ω\�Ω
1/2 𝑢𝑢ℎ − 𝑢𝑢 1,Ω\�Ω

1/2 +
𝑢𝑢Γ

ℓ
𝑦𝑦ℎ 𝑥𝑥 − 𝑦𝑦 𝑥𝑥 0,�Ω

Convergence rates for 𝜷𝜷 → ∞

For RK background discretization along with a single hidden layer parametrization

• �𝛾𝛾 = 𝑝𝑝 + 0.5
• 𝑝𝑝: order of RK basis

≡ 𝑒̃𝑒 ≡ 𝑒̂𝑒

• Ω: problem domain
• �Ω: domain within localization

• When 𝑒̃𝑒 dominates, the convergence rate ≈ �𝛾𝛾 on the nodal spacing.
(e.g., convergence rate = 1.5 for linear basis)

• When 𝑒̂𝑒 dominates, the convergence rate ≈ 1 on 1/ 𝑁𝑁𝑁𝑁.

Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and Engineering, Vol. 410, 116590, 2024.



1D Elasticity with Pre-degraded Zones
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minℒ = �
−1

+1 1
2
𝐸𝐸𝑢𝑢,𝑥𝑥

2 − 𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑 +
1000𝐸𝐸
2ℎ

𝑢𝑢 − 𝑔𝑔 2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

𝐸𝐸

𝑥𝑥

Problem

Young’s modulus distribution

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-10

-5

0

5

10
body force

𝑏𝑏

Body force distribution

𝑥𝑥

Unknowns
• Reproducing kernel approximation:

21 uniformly distributed RK nodes
• Neural network approximation:

36 unknowns with 4 blocks
• 57 total unknowns
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Solution

NN Kernel Functions

• Initially, kernels are 
uniformly distributed and 
the NN approximation is 
initialized to be zero.
(i.e., the NN 
approximation initially 
does NOT know the 
information on the 
localization.)

• The kernels actively 
evolve during the loss 
function minimization 
and the sharp solution 
transition is captured.

1D Elasticity with Pre-degraded Zones
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Total solution

Neural network approximation

Block 1

Block 2

Block 3

Block 4

𝑥𝑥

𝑢𝑢𝑅𝑅𝑅𝑅

Reproducing kernel approximation

𝑢𝑢𝑁𝑁𝑁𝑁

𝑢𝑢𝑅𝑅𝑅𝑅
+ 𝑢𝑢𝑁𝑁𝑁𝑁

Baek, J., Chen, J. S., & Susuki, K. (2022). International Journal for Numerical Methods in Engineering, Vol. 123, pp 4422-4454, DOI: 10.1002/nme.7040

https://doi.org/10.1002/nme.7040
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Neural network-enhanced solution (57 unknowns)

57 vs 801 unknowns
• Without NN enhancement, the transitions are NOT 

sufficiently sharp even with 201 and 401 RK nodes.

𝑥𝑥

𝑢𝑢ℎ

𝑥𝑥

𝑢𝑢ℎ

Reproducing kernel only solution



2D Elasticity with Pre-degradation

𝑔𝑔

Tensile specimen with pre-degradation

Minimization problem

minΠ =
1
2
�
Ω
𝛆𝛆 𝐮𝐮ℎ :𝐃𝐃: 𝛆𝛆 𝐮𝐮ℎ  𝑑𝑑Ω

𝛆𝛆 𝐮𝐮 =
1
2
𝛁𝛁𝛁𝛁 + 𝛁𝛁𝛁𝛁 𝑇𝑇

𝑔𝑔

Approximation

• 451 RK nodes with linear basis (902 unknowns)

• Single hidden layer with 40 neurons for NN 
parametrization

Reference

𝐮𝐮ℎ

𝐮𝐮𝑁𝑁𝑁𝑁

𝐮𝐮𝑅𝑅𝑅𝑅

𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦
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-1.1 -1 -0.9 -0.8

-3.85

-3.8

-3.75

-3.7

-3.65

-3.6

-3.55

-3.5

-1.8 -1.6 -1.4 -1.2
-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

1

1.5
1

1

Convergence for varying 𝒉𝒉
(avg. rate of 1.647)

Convergence for varying 𝒏𝒏𝑵𝑵𝑵𝑵
(avg. rate of 1.150)

The convergence rates 
agree with the 
theoretical values.



An Elastic-damage Bar Under Tension
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Load-displacement response of un-
regularized models

Load-displacement response of 
regularized NN-enhanced RKPM

Material 
imperfection • Compared to the un-regularized 

counterpart, the regularized NN-
enhanced RKPM yields 
discretization-independent results.

Baek, J., Chen, J. S., & Susuki, K. 
(2022). International Journal for 
Numerical Methods in 
Engineering.
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• Highly localized strain 
field is well captured.

• The NN control parameter 𝛽𝛽 ∈ 𝐖𝐖𝑆𝑆 suppresses the 
stress oscillation which is shown unless special 
treatment is performed.

Stress obtained by 
smooth NN kernels

Stress obtained by adaptive 
NN kernels controlled by 𝜷𝜷.

Strain field



Tensile specimen with asymmetric 
imperfection

24
Damage pattern predicted by NN-enhanced 

RKPM

ℎ = 𝐻𝐻/6 ℎ = 𝐻𝐻/12 ℎ = 𝐻𝐻/24

• The proposed NN-enhanced 
RKPM yields discretization-
independent results.

Three different discretizations

Load-displacement curve

ℎ = 𝐻𝐻/6 
ℎ = 𝐻𝐻/12 
ℎ = 𝐻𝐻/24 
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𝑢𝑢1𝑅𝑅𝑅𝑅 + 𝑢𝑢1𝑁𝑁𝑁𝑁 Damage

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

0.1

0.2

0.3

0.4

0.5

0.6

NN-enhand RK
Reference

Load-displacement curve

𝑢𝑢2𝑅𝑅𝑅𝑅 + 𝑢𝑢2𝑁𝑁𝑁𝑁

Baek, J., Chen, J. S., & Susuki, K. International Journal for Numerical Methods in Engineering. Vol. 123, pp 4422-4454, 2022.

NN-Enhanced RKPM for Modeling Crack Propagation in Pre-notched Specimen

• 256 RK particles (16X16) 
are used with 512 RK 
coefficients.

• 3 NN blocks are used with 
540 total NN unknown 
weights and biases.
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Comparison with 
experimentally 

observed crack range

• 256 RK particles (16X16) 
are used with 512 RK 
coefficients.

• 1 NN block is used with 
278 total NN unknown 
weights and biases.

Baek, J., Chen, J. S., Susuki, K, International Journal for Numerical Methods in Engineering. Vol. 123, pp 4422-4454, 2022.



Loss Function for Brittle Fracture

ℒ 𝐝𝐝,𝐖𝐖 = �
Ω
𝜓𝜓𝐷𝐷 𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖 dΩ − 𝐹𝐹 𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖 +

𝛼𝛼
2
�
𝜕𝜕Ω𝑈𝑈

𝐔𝐔ℎ 𝐝𝐝,𝐖𝐖 − �𝐔𝐔 2dΩ

𝜓𝜓𝐷𝐷 𝐮𝐮 = 𝑔𝑔 𝜂𝜂 𝛆𝛆 𝐮𝐮 𝜓𝜓0+ 𝐮𝐮 + 𝜓𝜓0− 𝐮𝐮 + �𝜓𝜓 𝜂𝜂 𝛆𝛆 𝐮𝐮
[1]

𝐹𝐹 𝐮𝐮 = �
Ω
𝐮𝐮 ⋅ 𝐛𝐛 𝑑𝑑Ω + �

𝜕𝜕Ωh
𝐮𝐮 ⋅ 𝐡𝐡 𝑑𝑑Γ

𝜓𝜓0+ = 𝜇𝜇 ̅𝜀𝜀𝑖𝑖 ̅𝜀𝜀𝑖𝑖 + 𝜆𝜆
2
∑ ̅𝜀𝜀𝑖𝑖 2, 𝜓𝜓0− = 𝜓𝜓𝑒𝑒𝑒𝑒 − 𝜓𝜓0+

𝜂𝜂 = ℋ
ℋ+𝑝𝑝

, ℋ = max max
𝑡𝑡∈ 0,𝑇𝑇

𝜓𝜓0+ 𝛆𝛆 − 𝜓𝜓𝑐𝑐 , 0 , 𝜓𝜓𝑐𝑐= 𝑓𝑓𝑡𝑡
2𝐸𝐸

 ,  𝑔𝑔 = 1 − 𝜂𝜂 2

𝛔𝛔 = 𝑔𝑔 𝜂𝜂 𝛆𝛆 𝐮𝐮
𝜕𝜕𝜓𝜓0+ 𝐮𝐮
𝜕𝜕𝛆𝛆 𝐮𝐮

+
𝜕𝜕𝜓𝜓0− 𝐮𝐮
𝜕𝜕𝛆𝛆 𝐮𝐮

�𝜓𝜓 𝜂𝜂 = 𝑝𝑝𝜂𝜂2

𝑝𝑝 =
𝒢𝒢𝑐𝑐
ℓ

,  𝒢𝒢𝑐𝑐=
𝜓𝜓0+

𝜓𝜓𝐼𝐼+/𝒢𝒢𝑐𝑐𝑐𝑐 + 𝜓𝜓𝐼𝐼𝐼𝐼+/𝒢𝒢𝑐𝑐𝑐𝑐𝑐𝑐
.

Dissipation Energy

Loss Function

[1] C. Miehe, F. Welschinger, M. Hofacker, Int. J. Numer. Methods Eng. 83 (2010) 1273–1311. 



Mixed-mode Fracture of a Doubly Notched Crack Branching

NN-RKPM Experiment (reference)
A. Bobet, H.H. Einstein, 
1998 

• 496 RK particles (16X31) are used with 992 RK coefficients.

• a neural network with two 40-neuron hidden layers, involving 1,842 unknown 
weights and biases.

Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and Engineering, Vol. 410, 116590, 2024



Fracture Branching

Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and EngineeringVol. 410, 116590, 2024



Phase Field Grain Growth Simulation
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minΠ = �
Ω

𝜌𝜌
2∆𝑡𝑡

𝜃𝜃 𝜃𝜃 − 2𝜃̅𝜃 + 𝛼𝛼 𝛁𝛁𝜃𝜃 +
𝛽𝛽
2

𝛁𝛁𝜃𝜃 2 +
𝑝𝑝
2
𝜂𝜂2 +

𝑞𝑞
2

𝛁𝛁𝜂𝜂 2  𝑑𝑑Ω

• DOF: lattice orientation 𝜃𝜃 and phase field 𝜂𝜂
• 𝜌𝜌, 𝛼𝛼, 𝛽𝛽, 𝑝𝑝, 𝑞𝑞: model parameters
• 𝜃̅𝜃: lattice orientation from the previous time step

Time-discretized orientation-phase field problem • 441 background RK nodes with 
linear basis

• Two 4-kernel NN blocks
• 20-neuron 2-hidden layer 

parametrization network
(1044 unknown NN parameters)

Background RK 
discretization






Transfer Learning of Neural Network Basis Functions
Off-Line Training of “Parent” NN Basis Functions 

Initial Guess 
from Parent

Initial Guess 
from Parent

On-Line Transfer Learning of “Feature Encoded” NN Basis Functions

60°



Q4 FEM, 768 nodes

hP-adaptivity

RKPM, 768 nodesQ8 FEM, 647,174 nodes

NN-PU with Multiple Transfer Learning
NN-PU N-Adaptivity
265 NN-enriched nodes

NN-RK, 768 RK nodes 
+ 2,698 NN hyperparameters 

tr
ai

ne
d 

N
N

 
ba

se
s 



Conclusion

33

• A neural network-enhanced reproducing kernel particle method was developed.
• The NN control parameters that determines the location, orientation, and 

transition shape are automatically found during the loss optimization.
• Block-level neural network approximation allows a sparse neural network with 

significantly small number of unknown NN parameters.
• Complex localizations can be captured by the superposition of multiple NN 

blocks, each of which can capture low order topological geometries such as a 
triple or a quadruple junctions.

• Energy based Neural Network Enriched NN-PU Ritz method: 
• Localization and fracture process modeling with a fixed discretization
• Neural Network enrichment function and transfer learning for local features
• N-adaptivity for PDE solver without re-meshing demonstrated superior 

computational efficiency and human effort reduction compared to FEM
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