A Neural Network-Based Enrichment of Reproducing Kernel Approximation for Modeling Localization and Brittle Fracture

J. S. Chen, J. Baek, Y. Wang Structural Engineering Department Mechanical & Aerospace Engineering Department Center for Extreme Events Research University of California San Diego

Motivation

Discrete Representation of Localization and Fractures Interface element insertion, embedded weak/strong discontinuities, enrichment

- Ineffective to determine curvilinear crack paths, crack kinking and branching
- Tedious and even impossible to track complex crack topologies.

Diffuse Representation of Localization and Fractures

Quantity averaging, gradient methods, phase field

- Very fine discretization required.
- Adaptive model refinement is cumbersome for traditional mesh-based methods.

Proposed Neural Network Partition of Unity (NN-PU) Ritz Method

- PU (RKPM) + machine learned enrichment functions + energy minimization
- Loss function minimization: enrichment functions for localization and fracture
- Problems with local features: feature encoded transfer learning

NN-PU for Strain Localizations and Fractures

Solution decomposition

- $\mathbf{u}^{h}(\mathbf{x}) = \widetilde{\mathbf{u}}^{h}(\mathbf{x}) + \widehat{\mathbf{u}}^{h}(\mathbf{x})$
- $\widetilde{\mathbf{u}}^h$: smooth solution (**background**: fixed discretization)
- $\widehat{\mathbf{u}}^h$: rough solution (**foreground**: evolving NN enrichment)

Smooth solution approximation by partition of unity (PU)

 $\widetilde{\mathbf{u}}^{h}(\mathbf{x}) \approx \mathbf{u}^{RK}(\mathbf{x}) = \sum_{I=1}^{NP} \Psi_{I}(\mathbf{x}) \mathbf{d}_{I}$

Rough solution approximation (for strong/weak discontinuities)

 $\widehat{\mathbf{u}}^{h}(\mathbf{x}) \approx \mathbf{u}^{NN}(\mathbf{x}) = \sum_{I=1}^{NB} \mathbf{u}_{I}^{B}(\mathbf{x})$ • \mathbf{u}_{I}^{B} : block-level NN approximation

$$\mathbf{u}_{J}^{B}(\mathbf{x}) = \sum_{K=1}^{n_{NK}} \hat{\phi}_{JK}(\mathbf{x}) \hat{\boldsymbol{\nu}}_{JK}(\mathbf{x})$$
$$\hat{\boldsymbol{\nu}}_{JK}(\mathbf{X}) = \sum_{I \in \bar{S}} \Psi_{I}(\mathbf{x}) \hat{w}_{IJK}^{C}$$
$$\mathbf{u}^{h} = \tilde{\mathbf{u}}^{h} + \hat{\mathbf{u}}^{h} = \sum_{I \in \bar{S}} \Psi_{I}(\mathbf{x}) \left(\mathbf{d}_{I} + \sum_{K=1}^{n_{NK}} \boldsymbol{\zeta}_{K}(\mathbf{x}) w_{IK}^{C} \right)$$
$$w_{IK}^{C} = 0 \ \forall I \notin \bar{S} = \{J | \exists \mathbf{x} \in supp(\Psi_{J}), \kappa(\mathbf{x}) > \kappa_{c} \}$$

- **u**^{*RK*}: Reproducing Kernel (RK) approximation
- **u**^{NN}: Neural Network (NN) approximation
- \mathbf{u}_J^B : block-level NN approximation

Baek, J., Chen, J. S., Susuki, K, International Journal for Numerical Methods in Engineering. Vol. 123, pp 4422-4454, 2022. Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and Engineering, arXiv:2307.01937, 2023

Reproducing Kernel Particle Method

Reproducing kernel (RK) approximation

• The order of continuity and the order of completeness are independently defined in the RK approximation.

RK approximation

$$u^{h}(\mathbf{X}) = \sum_{I=1}^{NP} \Psi_{I}(\mathbf{X}) d_{I}$$
RK shape function

$$\Psi_{I}(\mathbf{X}) = \left\{ \sum_{|\alpha| \le n} (\mathbf{X} - \mathbf{X}_{I})^{\alpha} b_{\alpha}(\mathbf{x}) \right\} \Phi_{a}(\mathbf{X} - \mathbf{X}_{I})$$

Reproducing condition

$$\sum_{J=1}^{NP} \Psi_I(\mathbf{X}) \mathbf{X}_I^{\boldsymbol{\alpha}} = \mathbf{X}^{\boldsymbol{\alpha}}, \qquad |\boldsymbol{\alpha}| \leq n$$

$$\implies \Psi_{I}(\mathbf{x}) = \mathbf{H}^{T}(0)\mathbf{M}^{-1}(\mathbf{x})\mathbf{H}(\mathbf{x} - \mathbf{x}_{I})\phi_{a}(\mathbf{x} - \mathbf{x}_{I})$$
$$\mathbf{M}(\mathbf{x}) = \sum_{I=1}^{NP} \mathbf{H}(\mathbf{x} - \mathbf{x}_{I})\mathbf{H}^{T}(\mathbf{x} - \mathbf{x}_{I})\phi_{a}(\mathbf{x} - \mathbf{x}_{I})$$
$$\mathbf{H}(\mathbf{x} - \mathbf{x}_{I}) = \left[1, (x - x_{I}), \cdots, (x - x_{I})^{n}\right]$$

4

- Straightforward adaptive refinement
- Arbitrary order continuities
- Enrichment with special functions •

Liu WK, Jun S, Zhang YF. Int J Numer Methods Fluids 1995;20:1081–106. Chen JS, Pan C, Wu C-T, Liu WK. Comput Methods Appl Mech Engrg 1996;139:195–227.

Block-level NN Approximation

Baek, J., Chen, J. S., & Susuki, K. (2022). A Neural Network-enhanced Reproducing Kernel Particle Method for Modeling Strain Localization. International Journal for Numerical Methods in Engineering, Vol. 123, pp 4422-4454.

A Neural Network-enhanced RKPM for Localization Modeling

6

Baek, J., Chen, J. S., Susuki, K, International Journal for Numerical Methods in Engineering. Vol. 123, pp 4422-4454, 2022. Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and Engineering, arXiv:2307.01937, 2023

 $\rightarrow y_1$

Parametrization by \mathbf{W}^{L}

- Complicated localization patterns are *projected onto a parametric space*.
- *NN kernel functions* defined in the parametric space can capture complex localizations in the physical space.
- NN Parametric Coordinate

For NN block $B, \mathcal{P}^B: \mathbf{x} \to \mathbf{y}(\mathbf{x}; \mathbf{W}_B^L)$

 $\mathbf{y}(\mathbf{X}; \mathbf{W}_{B}^{L}) = \mathbf{h}_{n_{L}}(\cdot; \mathbf{W}_{Bn_{L}}^{L}) \circ \mathbf{h}_{n_{L}-1}(\cdot; \mathbf{W}_{Bn_{L}-1}^{L}) \circ \cdots \circ \mathbf{h}_{1}(\mathbf{x}; \mathbf{W}_{B1}^{L})$ where $\mathbf{h}_{i}(\boldsymbol{\xi}; \mathbf{W}_{Bi}^{L}) = \tanh\left(\mathbf{z}_{i}(\boldsymbol{\xi}; \mathbf{W}_{Bi}^{L})\right)$, for $i < n_{L}$ $\mathbf{h}_{i}(\boldsymbol{\xi}; \mathbf{W}_{Bi}^{L}) = \mathbf{z}_{i}(\boldsymbol{\xi}; \mathbf{W}_{Bi}^{L})$, for $i = n_{L}$

 $\mathbf{z}_i = \mathbf{\Theta}^{Bi} \mathbf{\xi} + \mathbf{\beta}^{Bi}$

 $\mathbf{W}_{Bi}^{L} = \{\mathbf{\Theta}^{Bi}, \mathbf{\beta}^{Ii}\} \subset \mathbf{W}_{B}^{L}$ with the weight matrix $\mathbf{\Theta}^{Bi}$ and the bias vector $\mathbf{\beta}^{Bi}$ ⁷

NN Kernel Function Controlled by \mathbf{W}^{S}

NN Kernel Function

Regularized step functions

Regularized Step Functions

$$\bar{\phi}(z_i; \boldsymbol{\beta}_i) \equiv S\left(z_i + \frac{1}{2}; \boldsymbol{\beta}_i\right) - S\left(z_i - \frac{1}{2}; \boldsymbol{\beta}_i\right)$$

where $z_i = (-1)^i (y - \overline{y}_i)/c_i$, i = 1, 2 $S(z; \beta) = \frac{1}{\beta} \log(1 + e^{\beta z})$ (parametric softplus function)

8

Neural Network Kernel Function Controlled by \mathbf{W}^{S}

-5

-1

-0.5

0

 \hat{z}

0.5

NN Control Parameter β Transition of NN kernel function derivative

9

NN-enhanced RK Network Structure

Neural Network Enriched Partition of Unity by Ritz Method

Loss Function for Localization

Loss Function $\mathcal{L}(\mathbf{d}, \mathbf{W}) = \int_{\Omega} \psi^{D} \left(\mathbf{U}^{h}(\mathbf{d}, \mathbf{W}) \right) d\Omega - F \left(\mathbf{U}^{h}(\mathbf{d}, \mathbf{W}) \right) + \frac{\alpha}{2} \int_{\partial \Omega^{U}} \left\| \mathbf{U}^{h}(\mathbf{d}, \mathbf{W}) - \overline{\mathbf{U}} \right\|^{2} d\Omega$ $F(\mathbf{u}) = \int_{\Omega} \mathbf{u} \cdot \mathbf{b} \, d\Omega + \int_{\partial \Omega_{h}} \mathbf{u} \cdot \mathbf{h} \, d\Gamma$ $\psi^{D}(\mathbf{u}) = g \left(\eta \left(\boldsymbol{\varepsilon}(\mathbf{u}) \right) \right) \psi^{+}_{0}(\mathbf{u}) + \psi^{-}_{0}(\mathbf{u}) + \overline{\psi} \left(\eta \left(\boldsymbol{\varepsilon}(\mathbf{u}) \right) \right)^{[1]}$ $\psi^{+}_{0} = \mu \langle \overline{\varepsilon}_{i} \rangle \langle \overline{\varepsilon}_{i} \rangle + \frac{\lambda}{2} \langle \Sigma \overline{\varepsilon}_{i} \rangle^{2}, \psi^{-}_{0} = \psi^{el} - \psi^{+}_{0}$ $\boldsymbol{\sigma} = \left(1 - \eta \left(\boldsymbol{\varepsilon}(\mathbf{u}) \right) \right) \frac{\partial \psi^{+}_{0}(\mathbf{u})}{\partial \boldsymbol{\varepsilon}(\mathbf{u})} + \frac{\partial \psi^{-}_{0}(\mathbf{u})}{\partial \boldsymbol{\varepsilon}(\mathbf{u})}$

Dissipation Energy

$$\begin{split} \bar{\psi}(\eta) &= p\left(\frac{1}{q-\eta} - \frac{1}{q}\right) \\ \eta(\kappa) &= \min\left(1, \max\left(0, \bar{\eta}(\kappa)\right)\right), \quad \bar{\eta}(\kappa) = \frac{1-\kappa_0/\kappa}{1-\kappa_0/\kappa_c}, \qquad g(\eta) = 1-\eta \\ p &= \frac{E}{2}(\kappa_0 q)^2, \qquad q = \frac{\kappa_c}{\kappa_c - \kappa_0}. \end{split}$$

[1] Miehe C, Hofacker M, Welschinger F. Comput Methods Appl Mech Eng. 2010;199(45):2765-2778

Regularization of NN Approximation

In order to have *discretization-insensitive* NN-RK approximation, the original NN kernel function is modified.

The parametric coordinate is properly scaled so that the localization width is solely determined by the NN control parameter *c*.

Approximation Ability of a Single NN Block

<u>A 4-kernel NN block</u> successfully captures the very high gradient in localizations for **topological geometries** of

- A curve without junctions
- 1 triple junction
- 1 quadruple junction

Higher order topological geometries can by captured by the superposition of multiple block-level NN approximations.

Error Estimate

- Ω : problem domain
- $\widehat{\Omega}$: domain within localization

$$\left\|u^{h}-u\right\|_{0,\Omega} \leq \left\|u^{h}-u\right\|_{0,\Omega\setminus\widehat{\Omega}} + \hat{C}\left\|u^{h}-u\right\|_{0,\Omega\setminus\widehat{\Omega}}^{1/2} \left\|u^{h}-u\right\|_{1,\Omega\setminus\widehat{\Omega}}^{1/2} + \frac{\left\|u^{\Gamma}\right\|}{\ell} \left\|y^{h}(x)-y(x)\right\|_{0,\widehat{\Omega}}$$

For RK background discretization along with a single hidden layer parametrization

- When \tilde{e} dominates, the convergence rate $\approx \hat{\gamma}$ on the nodal spacing. (e.g., convergence rate = 1.5 for linear basis)
- When \hat{e} dominates, the convergence rate ≈ 1 on $1/\sqrt{NR}$.

Convergence rates for $\beta \rightarrow \infty$

1D Elasticity with Pre-degraded Zones

Problem

$$\min \mathcal{L} = \int_{-1}^{+1} \frac{1}{2} E u_{,x}^2 - ub \, dx + \frac{1000E}{2h} (u - g)^2$$

Unknowns

- Reproducing kernel approximation:
 21 uniformly distributed RK nodes
- Neural network approximation:
 36 unknowns with 4 blocks
- <u>57 total unknowns</u>

1D Elasticity with Pre-degraded Zones

- Initially, kernels are uniformly distributed and the NN approximation is initialized to be zero. (i.e., the NN approximation initially does NOT know the information on the localization.)
- The kernels actively evolve during the loss function minimization and the sharp solution transition is captured.

Baek, J., Chen, J. S., & Susuki, K. (2022). International Journal for Numerical Methods in Engineering, Vol. 123, pp 4422-4454, DOI: 10.1002/nme.7040

57 vs 801 unknowns

• Without NN enhancement, the transitions are <u>NOT</u> <u>sufficiently sharp</u> even with 201 and 401 RK nodes.

2D Elasticity with Pre-degradation

g

٠

٠

The convergence rates agree with the theoretical values.

An Elastic-damage Bar Under Tension

 Compared to the un-regularized counterpart, the regularized NNenhanced RKPM yields *discretization-independent results*.

Baek, J., Chen, J. S., & Susuki, K. (2022). International Journal for Numerical Methods in Engineering. • *Highly localized strain field* is well captured.

• The NN control parameter $\beta \in \mathbf{W}^S$ suppresses the stress oscillation which is shown unless special treatment is performed.

Tensile specimen with asymmetric imperfection

 The proposed NN-enhanced RKPM yields *discretizationindependent results*.

 <u> </u>			• • •			• •	-	-	-		•	<u> </u>	• •	-		•	•••	••••		•••		••			••	•••	
																	••					••			••		• •
							•	•	•	•	•	•	• •	•	•	•	••										
						1										Ι	11										1
						1.										1	11					11					11
					r 1	T					•					Τ	- I I										ΙΙ
																	T	•••				••			•••	•••	• •
						• •	• •	•	•	•	•	•	••	•	•	•	••	•••	•••	•••	•••	••	•••	•••	••	•••	••
																	••	•••	•••	•••	•••	••	•••	•••	••	••	» •
 • •	• •	• •	• •	•		• •	•	•	•	•	•	•	• •	•	•	•	••	• • •				••			••	• • •	a 🔶
																	••					••			••		• •
							•	•	•	•	•	•	• •	•	•	•											
						1 1										Ι	11										1
 						1.					÷ .					1	11										11
					r 1	T		•		•	•		• •		•	τ	- I I										ΙΙ
						1.										1	11										: I
						• •	• •	•	•	•	•	•	••	•	•	•	••	•••	•••	•••	•••	••	•••	•••	••	•••	• •
																	••	•••	••	•••	•••	••	•••	•••	••	••	» •
 •	•	• •	• •	•		• •	•	•	•	•	•	•	• •	•	•	•	••	• • •				••			••	• • •	a 🔶
																	••					••			••		• •
							•	•	•	•	•	•		•	•	•											
						1 7										Ι	11										1
 						1.										1	11					11			11	11.	11
					r 1	T		•		•	•		• •		•	τ	- I I										ΙΙ
						1.										1	11										: T
						•	• •	•	•	•	•	•	•••	•	•	•	••	•••	•••	•••	•••	••	•••	•••	••	•••	• •
																	••	•••	••	•••	•••	••	•••	•••	••	••	» 🛉
	• •	• •	• •	• •		• •	• •	•	•	•	•	• •	• •	•	•	٠	••		•••			••			••	•••	ə 🔶
																	••					••			••		• •
							•	•	•	•	•	•		•	•	•											
 						1.										1	11					11				11.	11
					r - 1	Τ 1										T	- I I.					11	111		11	11	ΙΙ
						1.										1	11										: T
						•	•	•	•	•	•	•	•••	•	•	•	•••	•••	•••	•••	•••	••	•••	•••	••	•••	• •
																	•••	•••	•••	•••	•••	••	•••	•••	••	••	. •
 • •	• •	• •	• •	•		• •	• •	•	•	•	•	•	• •	•	•	•	••	•••	•••	•••		••	•••		••	•••	ə 🔶
																	••					••			••		• •
						• •	•	•	•	•	•	•		•	•	•	••					••			••		
 																1	11										11
					r 1	T 1					•					T	- I I					11			11	11	11
						1.										1	- T T .										Τ.
						T .	•	•	•	•	•	•	• •	•	•	τ		•••	•••	•••		••	•••		•••	•••	• •
																	••	•••	•••	•••	•••	••	•••	•••	••	•••	• •
			• •	•		• •	•	•	•	•	•	•	• •	•	•	•	••	•••	•••	•••		••	•••		••	••	» 🛉
																	••					••			••		a 🔶
						• •	•	•	•	•	•	•	• •	•	•	•	••										• •
																1											• •
																1	11										11
					Г [•]	T			×.	-					- C	T .	11					11			11	11	11
					Ι.	1.										1	- I .					11	111		11	11	Ι.
						T •	•	•	•	•	•		• •	•	•	T	T.										11
																	• •	•••	•••	•••	•••	••	•••	•••	••	•••	• •
 			• •			• •	•	•	•	•	•	•	• •	•	•	•	•••	•••	•••	•••	•••	••		•••	••	••	-

Three different discretizations

Damage pattern predicted by NN-enhanced RKPM 24

NN-Enhanced RKPM for Modeling Crack Propagation in Pre-notched Specimen

- 256 RK particles (16X16) are used with 512 RK coefficients.
- 3 NN blocks are used with
 540 total NN unknown
 weights and biases.

Baek, J., Chen, J. S., & Susuki, K. International Journal for Numerical Methods in Engineering. Vol. 123, pp 4422-4454, 2022.

Baek, J., Chen, J. S., Susuki, K, International Journal for Numerical Methods in Engineering. Vol. 123, pp 4422-4454, 2022.

Loss Function for Brittle Fracture

Loss Function $\mathcal{L}(\mathbf{d}, \mathbf{W}) = \int_{\Omega} \psi^{D} \left(\mathbf{U}^{h}(\mathbf{d}, \mathbf{W}) \right) d\Omega - F \left(\mathbf{U}^{h}(\mathbf{d}, \mathbf{W}) \right) + \frac{\alpha}{2} \int_{\Omega \cap U} \left\| \mathbf{U}^{h}(\mathbf{d}, \mathbf{W}) - \overline{\mathbf{U}} \right\|^{2} d\Omega$ $F(\mathbf{u}) = \int_{\Omega} \mathbf{u} \cdot \mathbf{b} \, d\Omega + \int_{\partial \Omega} \mathbf{u} \cdot \mathbf{h} \, d\Gamma$ $\psi^{D}(\mathbf{u}) = g\left(\eta\left(\mathbf{\varepsilon}(\mathbf{u})\right)\right)\psi_{0}^{+}(\mathbf{u}) + \psi_{0}^{-}(\mathbf{u}) + \bar{\psi}\left(\eta\left(\mathbf{\varepsilon}(\mathbf{u})\right)\right)^{[1]}$ $\psi_0^+ = \mu \langle \bar{\varepsilon}_i \rangle \langle \bar{\varepsilon}_i \rangle + \frac{\lambda}{2} \langle \sum \bar{\varepsilon}_i \rangle^2, \ \psi_0^- = \psi^{el} - \psi_0^+$ $\boldsymbol{\sigma} = g\left(\eta\left(\boldsymbol{\varepsilon}(\mathbf{u})\right)\right) \frac{\partial \psi_0^+(\mathbf{u})}{\partial \boldsymbol{\varepsilon}(\mathbf{u})} + \frac{\partial \psi_0^-(\mathbf{u})}{\partial \boldsymbol{\varepsilon}(\mathbf{u})}$

Dissipation Energy

$$\begin{split} \bar{\psi}(\eta) &= p\eta^2 \\ \eta &= \frac{\mathcal{H}}{\mathcal{H} + p}, \quad \mathcal{H} = \max\left(\max_{t \in [0,T]} \{\psi_0^+(\boldsymbol{\varepsilon}) - \psi_c\}, 0\right), \quad \psi_c = \frac{f_t}{2E}, \quad g = (1 - \eta)^2 \\ p &= \frac{\mathcal{G}_c}{\ell}, \quad \mathcal{G}_c = \frac{\psi_0^+}{\psi_l^+/\mathcal{G}_{cl} + \psi_{ll}^+/\mathcal{G}_{cll}}. \end{split}$$

[1] C. Miehe, F. Welschinger, M. Hofacker, Int. J. Numer. Methods Eng. 83 (2010) 1273–1311.

Mixed-mode Fracture of a Doubly Notched Crack Branching

- 496 RK particles (16X31) are used with **992 RK coefficients**.
- a neural network with two 40-neuron hidden layers, involving 1,842 unknown weights and biases.

Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and Engineering, Vol. 410, 116590, 2024

Fracture Branching

(b)

(d)

0.8

Baek, J., Chen, J. S., Computer Methods in Applied Mechanics and EngineeringVol. 410, 116590, 2024

Phase Field Grain Growth Simulation

Time-discretized orientation-phase field problem

$$\min \Pi = \int_{\Omega} \left(\frac{\rho}{2\Delta t} \theta(\theta - 2\bar{\theta}) + \alpha \|\nabla \theta\| + \frac{\beta}{2} \|\nabla \theta\|^2 + \frac{p}{2} \eta^2 + \frac{q}{2} \|\nabla \eta\|^2 \right) d\Omega$$

- DOF: lattice orientation heta and phase field η
- ρ , α , β , p, q: model parameters
- $\bar{\theta}$: lattice orientation from the previous time step

- **441 background RK** nodes with linear basis
- Two 4-kernel NN blocks
- 20-neuron 2-hidden layer parametrization network (1044 unknown NN parameters)

Transfer Learning of Neural Network Basis Functions

Off-Line Training of "Parent" NN Basis Functions

On-Line Transfer Learning of "Feature Encoded" NN Basis Functions

NN-PU with Multiple Transfer Learning

Conclusion

- A neural network-enhanced reproducing kernel particle method was developed.
 - The NN control parameters that determines the location, orientation, and transition shape are automatically found during the loss optimization.
 - Block-level neural network approximation allows a sparse neural network with significantly small number of unknown NN parameters.
 - Complex localizations can be captured by the superposition of multiple NN blocks, each of which can capture low order topological geometries such as a triple or a quadruple junctions.
- Energy based Neural Network Enriched NN-PU Ritz method:
 - Localization and fracture process modeling with a fixed discretization
 - Neural Network enrichment function and transfer learning for local features
 - N-adaptivity for PDE solver without re-meshing demonstrated superior computational efficiency and human effort reduction compared to FEM