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Motivation

Challenges
Peridynamic simulations are computational expensive
Applying local boundary conditions in non-local models is not trivial

Solution
Coupling of non-local and local models

Apply boundary conditions in the local region
Apply peridynamics in the region where we have crack and fractures

Can we use machine learning to identify the peridynamic region?
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Model problem
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Model Problem

Classical linear elasticity model in 1D (with cross-sectional area A = 1):

−Eu′′(x) = fb(x), ∀x ∈ Ω = (0, `),

u(x) = 0, at x = 0

Eu′(x) = g , at x = `

Coupling with peridynamic model:
Nonlocal model in Ωδ = (a, b) ⊂ Ω where δ = horizon.

0 a − δ a x − δ x x + δ b b + δ `

Ω

Ωδ

Hδ(x)
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Peridynamics
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Peridynamics

D
Hδ(xi)

xi

δ

A non-local alternative
formulation of classical
continuum mechanics
No differentials of displacement
fields are used, which makes it
an attractive framework for
modeling and simulating
fracture mechanics applications.

References
Silling, Stewart A. ”Reformulation of elasticity theory for discontinuities and long-range forces.” Journal of the Mechanics and

Physics of Solids 48.1 (2000): 175-209.
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Linearized Peridynamics

Linearized microelastic bond-based model

−
∫

Hδ(x)
κ
ξ ⊗ ξ

‖ξ‖3
(u(y)− u(x))dy = fb(x)

In 1D:

−
∫ x+δ

x−δ
κ

u(y)− u(x)
|y − x | dy = fb(x)

By taking the limit δ → 0, one then recovers the local model
pointwise whenever κ is chosen as:

E =
κδ2

2
i.e. κ =

2E
δ2
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Variable Horizon Coupling Approach
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VHCM formulation

δv

δ

0 a a + δ b − δ b x

Variable horizon function:

δv (x) =


x − a, a < x ≤ a + δ
δ, a + δ < x ≤ b − δ
b − x , b − δ < x < b

κ̄(x)δ2v (x) = κδ2, ∀x ∈ Ωδ
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VHCM formulation

−Eu′′(x) = fb(x), ∀x ∈ Ωe

−
∫ x+δv (x)

x−δv (x)
κ̄(x)u(y)− u(x)

|y − x | dy = fb(x), ∀x ∈ Ωδ

u(x) = 0, at x = 0

Eu′(x) = g , at x = `

u(x)− u(x) = 0, at x = a, b
σ+(u)(x)− Eu′(x) = 0, at x = a
σ−(u)(x)− Eu′(x) = 0, at x = b

References
Diehl, Patrick, and Serge Prudhomme. ”Coupling approaches for classical linear elasticity and bond-based peridynamic models.”

Journal of Peridynamics and Nonlocal Modeling 4.3 (2022): 336-366.
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Structure of investigation

Full Nonlocal Solution uNLM

x0 xn

E(uNLM, uVHCM) < ϵ

Coupling Solution uVHCM: Reference Configuration

x0 xn
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(b) Numerical Analysis(a) Input Load values

(c) CNN networks

(d) Output: Predicted Configuration
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Loads used for data generation

The load functions employed in this study include load functions inducing
discontinuous solutions with a finite jump at the discontinuity point. The
investigation was extended to include the family of loads characterized by
solutions of polynomial expressions of degree 3 and lower; which induce
full local behavior.
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Figure: RHS functions fi(x), i = 1..3.
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Load function

u(x) =
{

x for x < 0.5

x2 for x > 0.5

f (x) =



0 for x ∈ [0, 0.5)
1
2
δ2 − δ + 3

8
+ (2δ − 3

2
− ln δ)x

+( 3
2

+ ln δ)x2 − (x2 − x)(ln 1
2

− x) for x ∈ [0.5 − δ, 0.5)

1
2
δ2 − δ + 3

8
+ (2δ + 3

2
+ ln δ)x

−( 3
2

+ ln δ)x2 + (x2 − x)(ln 1
2

− x) for x ∈ [0.5, 0.5 + δ)

1 for x ∈ [0.5 + δ, 1.0]

How to parameterize the NLM region?

The easiest solution: Let the ML model predict the discrete location a and
b and all discrete nodes between these points are NLM nodes.
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Load function
With multiple discontinuities

How to define the NLM region?
We can not use a and b easily since we have multiple intervals
depending on the location of the two jumps.
A more general solution is to predict whether each discrete node is
located in local region (LM node) or in the nonlocal region (NLM
node).
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Numerical Data Simulation

Nojoud Nader et al. (LSU) March 06, 2024 16 / 30



Numerical Data Simulation

Parameter Exploration
Central positions of the NLM region vary between 2δ and l − 2δ
Adjust coupling region length from h to 0.7

Simulation Steps
Execute coupling solution uVHCM
Run full nonlocal solution uNLM
Estimate error between both solutions: E(uNLM, uVHCM)

Quality Control
Include in dataset solutions with error below tolerance

Boundary Conditions
Maintain δ layer at both ends for finite differences

Case Studies
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Example of Data Simulation
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Figure: Peridynamic region configuration with discontinuity at x = 0.5. uNLM is
represented by � and uVHCM is represented by •; (Left) displacement fields uNLM
and uVHCM using load f1; (Right) displacement fields uNLM and uVHCM using load
f2. In both cases, the two curves coincide.

With the following error estimation:
Ef1(uNLM, uVHCM) = 4.206× 10−3.
Ef2(uNLM, uVHCM) = 4.207× 10−3.
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Machine learning model
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Machine learning model: CNN

255 × 32

Conv

127 × 32 125 × 64

Conv

62 × 64 60 × 128

Conv

30 × 128

3840 × 1

Flatten

64 × 1

FC

257 × 1
FC

Sigmoid

Nojoud Nader et al. (LSU) March 06, 2024 20 / 30



Results

Nojoud Nader et al. (LSU) March 06, 2024 21 / 30



Results
Case 1

Input: Full Vector Input
Output: Label (NLM or LM) for each discrete node

Train Test Validation Total

Case 1 2313 463 308 3084

Prediction Evaluation: Estimate nonlocal region borders (a, b) from
predicted output -> Solution estimation based on full nonlocal and
coupling algorithms -> Error calculation between Full nonlocal and
Coupling solution
Results:

Accuracy F1-score Load E(uNLM, uVHCM)

Case 1 0.99 0.99 f1 2.17× 10−6- 1.40× 10−2

f2 1.17× 10−6 - 1.33× 10−4
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Evaluation of the results
Case 1
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Figure: Error estimation after prediction (a) Comparison between the reference
and predicted configurations of local and nonlocal regions. (b) displacement fields
uNLM (�) and uVHCM (•) using load f1. (c) displacement fields uNLM and uVHCM
using load f2.

With the following error estimation:
Ef1(uNLM, uVHCM) = 4.036× 10−4.
Ef2(uNLM, uVHCM) = 4.035× 10−4.
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How good is our CNN for extrapolation?
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Windowing

x0 xi

W (xi)

xj

W (xj)

xn

Figure: Schematic representation of data points and their corresponding windows.
Two specific data points, xi and xj , are highlighted, each associated with its own
window, denoted as W (xi) and W (xj).

Resulting Dataset:

Train Test Validation Total

Case 2 109885 22959 15312 148156
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Results
Case 2: Widowing Data

Input: Window Input
Output: Label (NLM or LM) for each discrete node
Test: f4 = tanh((x − 0.5)/t), t = 0.05.
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Figure: Nonlocal region detection and error estimation after prediction for general
test case

Ef4(uNLM , uVHCM) = 1.73× 10−4.
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Results
Case 2: Widowing Data

Input: Window Input
Output: Label (NLM or LM) for each discrete node
Test: f4 = tanh((x − 0.5)/t), t = 0.0005.
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Figure: Nonlocal region detection and error estimation after prediction for general
test case

Ef4(uNLM , uVHCM) = 1.75× 10−4.
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Results
Case 2: Widowing Data

Input: Window Input
Output: Label (NLM or LM) for each discrete node
Test: f5 = e−(20x−10−c)2 , c = 2
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Figure: Nonlocal region detection and error estimation after prediction for general
test case

Ef5(uNLM , uVHCM) = 9.93× 10−5.
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Summary

Case
Study Case 1 Case 2

Input Full Vector Windows
Output Full Labels Vector One Node Label
Load
Dataset

fi(x), i = 1, 2, 3 and
their transformations.

fi(x), i = 1, 2, 3 and
their transformations.

ML
Model
Type

Multiple node
Classification Node wise Classification

Interpre-
tation

Demonstrated the feasibil-
ity of the proposed ap-
proach for region detec-
tion, as a kind of a “proof
of concept”.

Highly effective strategy
for handling data with
varying numbers of discon-
tinuities without the need
for retraining the model for
each specific scenario.
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Outlook and conclusion

Conclusion
Proof of concept for predicting the coupling region
Relatively low training data needed

Outlook
Improve the CNN to generalize our model
Moving to two dimensions
Including damage by bond breaking in two dimensions

Paper under Preparation:
AI-based identification of overlapping regions for coupling local and
non-local models
N. Nader, P. Diehl, S. Prudhomme, M. D’Elia, and C. Glusa

I am happy to take any of your questions.
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