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Motivation

Peridynamic simulations are computational expensive

Applying local boundary conditions in non-local models is not trivial

Solution:

Coupling of non-local and local models
Apply boundary conditions in the local region

Apply peridynamics in the region where we have crack and fractures

Can we use machine learning to identify the peridynamic region?

Model Problem

Classical linear elasticity model in 1D (with cross-sectional area A = 1):
−E ′′(x) = fb(x), ∀x ∈ Ω = (0, `),

(x) = 0, at x = 0
E ′(x) = g, at x = `

Coupling with peridynamic model:

Nonlocal model in = (a, b) ⊂ Ω where δ = horizon.

0 a − δ a x − δ x x + δ b b + δ `

Ω

Hδ(x)

Background

Peridynamics: (NLM)

D
Hδ(xi)

xi

δ

A non-local alternative formulation of

classical continuum mechanics

No differentials of displacement fields

are used, which makes it an attractive

framework for modeling and

simulating fracture mechanics

applications [1].

Variable Horizon Coupling Method (VHCM):

The main idea of the method is to make the horizon δ decrease to zero as one

approaches the interfaces x = a and x = b so as to avoid the need to introduce an

overlapping region around the interfaces [2].

δv

δ

0 a a + δ b − δ b x

Variable horizon function:

δv(x) =

 x − a, a < x ≤ a + δ
δ, a + δ < x ≤ b − δ
b − x, b − δ < x < b

κ̄(x)δ2
v(x) = κδ2, ∀x ∈
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Structure of Investigation

The input data consists of the second derivative of the load fb(x). The output

of the process is a label associated with each node. A coupling configuration

is added to the training set when it induces a coupled solution whose error,

with respect to the fully nonlocal solution, is below a given tolerance. CNN

architecture is used as deep neural network model.

Full Nonlocal Solution uNLM

x0 xn

E(uNLM, uVHCM) < ϵ

Coupling Solution uVHCM: Reference Configuration
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Loads

The load functions employed in this study include load functions inducing discon-

tinuous solutions with a finite jump at the discontinuity point. The investigation

was extended to include the family of loads characterized by solutions of polyno-

mial expressions of degree 3 and lower; which induce full local behavior.
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Figure 1. RHS functions fi(x), i = 1..3.

Results

Case 1: Full Input Vector

Input: Full Load Vector

Output: Label (NLM or LM) for each discrete node

Train Test Validation Total

Case 1 2313 463 308 3084

Prediction Evaluation: Estimate nonlocal region borders (a, b) from predicted out-

put -> Solution estimation based on full nonlocal and coupling algorithms -> Error

calculation between Full nonlocal and Coupling solution

Results (Cont.)
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Figure 2. Error estimation after prediction (a) Comparison between the reference and predicted

configurations of local and nonlocal regions. (b) displacement fields uNLM (�) and uVHCM (•) using
load f1. (c) displacement fields uNLM and uVHCM using load f2. Error estimation:

Ef1(uNLM, uVHCM) = 4.036 × 10−4. and Ef2(uNLM, uVHCM) = 4.035 × 10−4.

Case 2: Window Based Case

Input: Window load

Output: Label (NLM or LM) for each discrete node

Train Test Validation Total

Case 2 109885 22959 15312 148156

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Prediction on Test Case: f4

LM

NLM

(a)

0.0 0.2 0.4 0.6 0.8 1.0
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Prediction on Test Case: f4

LM

NLM

(b)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

Prediction on Test Case: f5

LM

NLM

(c)

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

U
i

Displacement using f4

Discontinuity at x = 0.49 and |Ωδ| = 69δ/8

NLM

VHCM

Boundaries of Ωδ

(d)

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

U
i

Displacement using f4

Discontinuity at x = 0.5 and |Ωδ| = 33δ/8

NLM

VHCM

Boundaries of Ωδ

(e)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.000

0.005

0.010

0.015

0.020

U
i

Displacement using f5

Discontinuity at x = 0.59 and |Ωδ| = 78δ/8

NLM

VHCM

Boundaries of Ωδ

(f)

Figure 3. Nonlocal region detection and error estimation after prediction for general test cases.

(Top) Predicted configuration of local and nonlocal regions. (Bottom) Displacement fields uNLM

and uVHCM. Error Estimation: (a-d) f4 = tanh((x − 0.5)/t), t = 0.05. The error E(uNLM, uVHCM) is
1.73 × 10−4. (b-e) f4 = tanh((x − 0.5)/t), t = 0.0005. The error E(uNLM, uVHCM) is 1.75 × 10−4. (c-f)

f5 = e−(20x−10−c)2
, c = 2. The error E(uNLM, uVHCM) is 9.93 × 10−5.

Conclusion And Outlook

Conclusion: This study shows the proof of concept for the AI-based identification

of overlapping regions for the coupling of local and nonlocal models. Our model

demonstrated robust performance, as reflected by high evaluation metrics, with

an accuracy of 0.98 and an F1-score of 0.97.

Outlook: The approach will be extended for higher dimensional geometries, while

incorporating damage via bond breaking in two dimensions facilitates a more real-

istic simulation, enhancing the model’s fidelity and applicability.
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