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What do we mean by “delayed fracture?”

A structure with or without an obvious crack or stress Delayed fracture behavior
concentration may sustain a fixed load or fixed i
displacement for some time followed by sudden failure.

This is not accounted for by basic failure criteria such as

* Failure occurs in un-notched material when max
tensile stress > tensile strength,
* i.e.Omax = Oy

e Or, in asample with a pre-existing crack, failure
occurs when applied stress intensity factor exceeds
fracture toughness, i.e.

- K; > K,

e Our working hypothesis is that delayed fracture in
our experiments is a result of time dependent bond

Then fails
failure.

suddenly




Under constant load — creep rupture is a type of delayed fracture

* Crack may grow very slowly —e.g. in metals at high :

temperature
* Or may be stable for some time and then suddenly : Poly (vinyl alcohol) (PVA)
fail dual-crosslink hydrogel

* Example: PVA Hydrogel

* Cross-linked by permanent (covalent) bonds
/ /) and transient (physical) bonds.

* Breaking and healing of physical bonds
results in highly viscoelastic behavior




Creep rupture in PVA Hydrogel — experimental setup
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Mincong Liu, Jingyi Guo, Chung-Yuen Hui, Alan Zehnder,

Crack tip stress based kinetic fracture model of a PVA dual-crosslink hydrogel,
Extreme Mechanics Letters, Volume 29, 2019, 100457,



Creep rupture in PVA Hydrogel — experimental data

Stretch under constant nominal stress

increases over time
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A lot of scatter. Reducing stress by 2X
increases time to failure by about 500 X



Delayed fracture of PDMS Under Fixed Stretch and Constant Stretch

Rate

PDMS cross linked at 10:1 ratio selected to
minimize viscoelastic deformation and focus

on time dependent bond breaking.
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Torsional rheometry data from 10:1
PDMS shows very low loss modulus —
indicating low viscoelasticity
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Delayed fracture experiments on PDMS

Pure shear (PS) sample with sharp crack tip Double edge crack (DEC) sample with blunt crack tip

a b

Sharp crack tip
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FEM simulations
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Result for blunt crack under step stretch followed by hold

Stretch
Double edge crack (DEC) sample with o | 250

blunt crack tip, nominal stretch A = 1.6
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Deformation is time-dependent and non-recoverable



Onset of unstable fracture in blunt crack samples

Holding start
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Time to sudden failure: -1.8 seconds

Crack nucleation crack growth
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Sample failed after 7 hours holding at nominal stretch of 1.6
Images acquired continually at 200 fps. We are looking just at the last few frames prior to unstable failure

Crack reaches
critical length

.II
y
¢

0.2mm

-0.05 seconds

See also: H. M. van der Kooij, S. Dussi, G. T. van de Kerkhof, R. A. Frijns, J. van der Gucht, J. Sprakel, Laser speckle strain imaging reveals the
origin of delayed fracture in a soft solid, Science Advances 4 (5) (2018) eaar1926



Crack propagation from sharp crack under step stretch and hold

Steady state crack propagation in pure shear samples

A 012 b 10.7 1
10.6 1
10.10 _ V= 0.25um/s
E E 10.5 1
E 10.08 E A=1.12
P £ 10.41
2 10.06 - g
o 2 10.31
T 10.04 e
.04 1 © ]
g £ 102
10.02 1 10.1
10.00 1 10.0 1
0 5 10 15 20 25 30 35 0 500 1000 1500 2000 2500
Time (h) Time (s)
C d
12.5 16 -
v =0.1mm/s
o = 0.90um/s . /
£ =
E E.l A=116
g 11.5 g
Beginning of holding After 2 hours § 5131
% 11.0 x
© © 121
(U] Q
10.5 114
10.0 10 1
0 500 1000 1500 2000 2500 3000 0 10 20 30 40 50 60 70
Time (s) Time (s)

Crack speed increases sharply with applied stretch level:
5 orders of magnitude in crack speed
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Crack speed from experiments with constant stretch rate

combined with data from step stretch experiment
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For each stretch ratio we can compute energy release rate

Constitutive model fit from uniaxial
test data using Yeoh model
3
W) = z (I, — 3)*
k=1

2
I, =%+ —
1 +)\
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long enough crack (a/H > 1):
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Putting step and constant stretch rate data together with G
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Kinetic (Eyring type) failure model for crack growth

Time-dependent chain breaking function Intermediate functions
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Crack speed calculation

From FEM simulation, for each nominal stretch, A, we
have I; (x) and hence force on chains, f is known

f=1rk

Material approaching

For steady state crack growth

+1.000e-|
-4.000e-0

[N

% = —v % = — nTmb exp (i;%j;), v = crack speed

: o T
Set % = 0 for I; < I, at distance x = L ahead of crack
tip, b =1atx = L.

Failure conditionis b = b, at x = x,

Integrate the above and solve for v:
_ Nm Lex (Laf(x)
in(1/bgy )y % ksT

v ) dx



Model Parameter Identification

Crack speed result from prior slide (writing out f, force acting on chain)
Tll’l 3n 1

Five independent parameters in the model: {tIn(b.)/n,,,x., 1.,n,Ly/1;}

Choose 1 million random points in parameter space and find best fit to experimental data
of crack speed vs. energy release rate.

Results:

{tIn(b.) /Ny, X, 1,1, Ly /1,y = {—208.7 5,89 um, 4.155,2.021, 1}



Crack speed from model and step loading experiments
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Crack propagation in short crack samples
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G normalized by Gpg
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* When the crack length is very short, pure shear calculation is not valid.

* Use FEM (Abaqus) to determine energy release rate, which for% K 1, is linear with crack length
with a normalized slope of w = 1.18 T, thus for very short cracks, G = wa W (I)

* Well approximated by G = Gpgtanh(g'%) for longer cracks

* Relative to long starter cracks, need higher stretch to start short cracks, which then run into
increasing G and accelerate until becoming unstable
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Short crack experiments

Beginning
of holding

2400s

2420s

2422s

2422.2s

Sample images for 0.49 mm initial crack
length with stretch 1.26

Stretch and hold experiments performed for 4 initial
crack lengths and stretches
(a) 0.80 mm initial crack with stretch A = 1.23,
(b) 0.75 mm crack with stretch 1.25,
(c) 0.49 mm crack with stretch 1.26,
(d) 0.34 mm crack with stretch 1.30.

Samples observed with camera and crack length
measured
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Testing model against short crack data
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Further experimental — model comparison

* From experimental data of crack speed

vs. G we find that for 1.3 FEM simulation
v=025um/s, G=1147-L * Experiments
m 1.4
-8 ¢
5
* Experiments with different initial crack =13 e
£ 1
lengths, stretching slowly until E
7 o
v=025um/s. 1.2 -
e Record stretch ratio at which this occurs.
#
* For each crack length use FEM to : ' : : i '
0 2 - 6 8 10

compute stretch needed to reach crack length (mm)

G= 11472
m



Summary

* Delayed fracture in PDMS is studied experimentally for blunt notches and for sharp cracks under step

stretch and constant stretch rate.
* In blunt notch sample crack grows after an extended hold

* Insharp, long crack samples loaded to G above threshold, crack grows at constant rate for step
loading.
* G vs crack speed is the same for step stretch and constant stretch rate

* Crack speed, v, is observed to be an exponential function of energy release rate, G, in pure-shear (PS) sharp crack sample

* An analytic model based on chain Eyring type breaking kinetics is consistent with the measured

relationship between G and V
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