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MINISYMPOSIUM

Emulators   constructed   from  deep   neural   networks   trained   on  data,   have   recently   emerged   as  
acomputationally   efficient   alternative   to   solving   complex   systems   of   ordinary/partial  
differentialequations that are often utilized in single- or multi-physics computational applications in
science andengineering. However, the efficient, accurate, and stable training of state-of-the-art models
requireslarge volumes of data extracted from high-fidelity numerical simulations or costly experiments,
whicheffectively prohibits the application of these methods on high-fidelity applications. At the same
time,there   exists   an   opportunity   to   generate   simplified   models  to   generate   multiple   data  
sources   bysimplifying the high-fidelity numerical model, e.g., the discretization of PDEs or the
underlyinggoverning equations. Consequently, a limited quantity of high-fidelity outputs or experimental
datacan be supplemented with a substantial volume of results obtained from simplified models. The
maindrawback of these so-called “low-fidelity” models is that they are typically biased and do not retain
thehigh-fidelity prediction capabilities necessary for trustworthy predictions.  As a consequence,
augmenting   sparse,   high-fidelity   datasets   with   these   less-expensive   simulations   requires  
carefulconsideration to avoid the corruption of information contained in the original high-fidelity model.
Thisis often called “negative transfer” in the machine learning community.Several recent advancements in
the areas of multi-fidelity and transfer learning have demonstrated thepotential benefits  of this  approach.
In this  minisymposium,  we will welcome contributions  thatdevelop, discuss and/or demonstrate
approaches designed to lower the computational budget associatedto the multi-fidelity training of high-
fidelity data-driven models. We are particularly interested incontributions that assess the trustworthiness
and reliability of the proposed emulators.
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