The effects of Active Queue Management and
Explicit Congestion Notification on DNS Traffic

Stefanos Harhalakis, Nikolaos Samaras
Department of Applied Informatics
University of Macedonia
Thessaloniki, Greece
vl3@acm.org, samaras@uom.gr

Abstract—Active Queue Management (AQM) and Explicit
Congestion Notification (ECN) are two methods that attempt
to alleviate the problems of FIFO queues and of packet drops
for congestion indication respectively. Random Early Detection
(RED) is the most popular AQM method. The Domain Naming
System (DNS) protocol is a core Internet protocol with very
high impact on user experience and overall network function-
ality. This paper presents experimental results that show an
inefficiency of RED that results in degraded performance of the
DNS protocol when compared with FIFO queues. The results
that are presented show 8 to 50 percentage points drop of DNS
efficiency depending on network conditions.

Index Terms—Active Queue Management; Domain Name
System; Explicit Congestion Notification; Random Early De-
tection

I. INTRODUCTION

Internet traffic traverses through intermediate routers and
their interface queues which, in most cases, are First-In-First-
Out (FIFO) queues or Active Queue Management (AQM)
[1] queues. While FIFO queues are simplistic drop-tail
queues, AQM queues are more sophisticated and attempt to
proactively indicate congestion to endpoints. Random Early
Detection (RED) [1] is the most common AQM method with
wide vendor support.

When using AQM, packet drops are the most common
approach to congestion indication. They are used to inform
endpoints that congestion is imminent and that they should
take immediate action to reduce their transmission rate.
This approach is compatible with most transport layer layer
protocols (like the Transmission Control Protocol [2]) that
appropriately react to congestion indication.

Explicit Congestion Notification (ECN) [3] is an addition
to the Internet Protocol [4] that can be used with AQM
queues in order to reduce or even eliminate packet drops for
congestion indication. When using ECN, packets that carry
data from a transport layer protocol that supports ECN are
marked instead of being dropped by an AQM queue, when
the queue needs to proactively indicate congestion. Currently,
ECN may only be used by transport layer protocols that
(a) implement congestion control and (b) are appropriately
extended to take advantage of ECN.

The Domain Naming System (DNS) protocol [5] is a core
Internet protocol that follows the client-server architecture. In

978-1-4577-0681-3/11/$26.00 ©2011 IEEE

Vasileios Vitsas
Department of Informatics
TEI of Thessaloniki
Thessaloniki, Greece
vitsas @it.teithe.gr

most cases, clients use the User Datagram Protocol (UDP) [6]
to make a one-datagram request to a DNS server and receive
a one-datagram response. Since only one datagram is trans-
mitted per direction, the UDP-based DNS implementations
cannot perform flow control. However, because of the way
AQM works, UDP-based DNS requests and replies may still
be dropped by AQM queues in order to proactively warn the
UDP (DNS protocol) endpoints about impeding congestion.
Of course, this action is futile.

This paper points out that switching to AQM queues from
FIFO queues may cause problems to the DNS protocol. While
FIFO queues suffer the problem of global synchronization,
they drop packets in bursts allowing more packets from
low-traffic protocols (like DNS) to pass. This argument is
verified by experimental results that show dramatic drop to
DNS efficiency. A representative subset of the experimental
results, that is presented here, shows a drop from of up to 50
percentage points of DNS protocol efficiency (from 91% to
41%) under the same networking conditions.

The rest of the paper is organized as follows: section II
briefly introduces the required background for AQM, RED,
ECN and the DNS protocol while section III describes the
actual problem. Sections IV and V present the experimental
facility setup and the software that was used for the experi-
ments. The effects of AQM on DNS traffic are presented in
section VI and section VII presents the conclusions of the
experiments.

II. BACKGROUND

FIFO is a simplistic approach to queuing and is best
viewed as a single buffer. Whenever there is available buffer
space, data are queued. When the buffer space is exhausted,
excess data are dropped. This method is efficient against
variations of traffic rates and traffic bursts and allows the
interfaces to reach their maximum transmission rate because
data are always available for transmission. However, in the
case of persistent congestion, FIFO queues (drop-tail queues)
are considered to be inadequate [1]. Because of the way
congestion control is accomplished on the Internet, FIFO
queues result in global synchronization meaning that traffic
rate is reduced altogether and then increased again instead of

906

being maintained constant. The reaction of congestion con-
trol mechanisms also lags behind any congestion indication
because of the end-to-end delay (Round-Trip Time - RTT).
This has the side effect of congestion not being addressed
early enough and thus causing excess packet drops which
are considered harmful both because they needlessly consume
router and endpoint resources and because they slow down
data transfers.

Active Queue Management (AQM) attempts to alleviate
the problems of drop-tail queues by providing congestion
indication to endpoints before buffer space is exhausted.
Random Early Detection (RED) is the most common AQM
mechanism with wide vendor adoption. In order to avoid
congestion and prevent global synchronization RED prob-
abilistically starts dropping packets whenever the average
queue length reaches a soft-limit and becomes a drop-tail
mechanism whenever the queue length reaches a hard limit
[7]. This way RED indicates congestion when it starts to
occur instead of waiting for the queue to become full.
Because of the probabilistic early congestion indication,
RED compensates for the end-to-end delay allowing for the
indication to reach the transmitting endpoint before the queue
becomes full. In contrast with FIFO queues, where packets
are dropped when buffer space is exhausted, RED queues
drop packets in order to indicate congestion even when there
is available buffer space. This is based on the assumption that
endpoints will react to congestion indication on time and will
lower their transmission rates in order to avoid congestion.

Explicit Congestion Notification (ECN) is an addition
to the Internet Protocol (IP) that complements AQM al-
lowing for congestion indication without dropping packets.
When ECN is used, intermediate routers mark instead of
dropping packets unless they have reached their maximum
queue size. This effectively reduces packet drops causing
fewer retransmissions which result in better network effi-
ciency and protocol behavior. ECN’s specification dictates
that only packets that carry an ECN capable upper layer
protocol should be marked instead of being dropped. Those
IP packets are distinguished by an ECN Capable Transport
(ECT) codepoint that is set by the transmitting node using
the next two bits after the DiffServ IP header field. When
those packets traverse AQM-based queues they are marked
with the Congestion Encountered (CE) codepoint instead of
being dropped, unless there is no available buffer space. This
marking is handled by the upper layer protocol at the receiver
which informs the transmitter for impeding congestion. In
the case of the Transmission Control Protocol (TCP) , this
is accomplished by using the “ECN Echo” (ECE) flag. Non-
ECT traffic is never marked and is always dropped in order
to indicate impeding congestion.

ECN requires support from the transport protocol and may
only be used with IP packets that carry data from such a
protocol. More specifically, ECN may only be used when
the transport protocol supports congestion control and is
willing to take advantage of ECN (for TCP this willingness

978-1-4577-0681-3/11/$26.00 ©2011 IEEE

is determined at the initial three-way-handshake where ECN
usage is negotiated). Since congestion control can only be
achieved with multi-packet data transfers, it is practically
impossible for single-packet data transfers to take advantage
of ECN. This means that packets of single-packet data trans-
fers may be dropped when they traverse AQM queues even
when there is available buffer space. This is a consequence
of (a) IP’s inability to distinguish data flows and (b) RED’s
characteristic of statistically handling packets. As shown in
this paper, with the adoption of ECN by transport layer
protocols such as TCP, the effects of this drawback are
increased because non-ECN capable packets are handled in a
less privileged way than packets from an ECN-enabled data
flow.

The Domain Naming System (DNS) is considered one
of the most crucial Internet protocols and has very high
impact on end-users and overall Internet functionality. The
DNS protocol can use both the Transmission Control Protocol
(TCP) and the User Datagram Protocol (UDP) but most
DNS queries are performed using UDP because of its low
latency. Only larger DNS data transfers (e.g. zone transfers)
are performed using TCP.

III. PROBLEM DESCRIPTION

UDP-based DNS queries consist of one request and one
reply and they are carried in small UDP datagrams. Because
of the nature of the query/reply mechanism (one packet per
direction) which is not sufficient for congestion control, DNS
traffic is not allowed to be carried with ECT marked IP
packets and is being exempt from taking advantage of ECN
because neither UDP or the DNS protocol support congestion
control. As a result, they suffer meaningless packet drops for
the purpose of congestion indication.

Based on the above, it is obvious that the rationale behind
AQM (proactively provide congestion indication) does not
apply to the DNS protocol because of its characteristics. IP
packets that carry DNS data cannot be distinguished by just
examining the IP header, and are thus subject to the exact
same rules such as (e.g.) TCP’s traffic. To our knowledge,
there is no justification (i.e. no published work) for the
discarding of DNS traffic, except from the lack of the ability
to distinguish it.

This paper studies the effects on DNS traffic of the
transition from FIFO queues to AQM: Because FIFO queues
burstly drop packets when they become full they force any
congestion-controlled traffic (like TCP traffic) to suddenly
drop its transmission rate. While this is an unwanted ef-
fect known as global-synchronization it leaves the queue
half-empty (i.e. non-full) for more time allowing for non-
congestion-controlled traffic like DNS traffic to pass.

As it is shown, the DNS protocol becomes inefficient when
combined with AQM and its performance worsens even more
when the background traffic takes advantage of ECN. This
performance drop has very high impact on user experience
and is able to cause multi-second delays to users browsing
the Internet or other Internet-wide services like e-mail. A

907

Background Traffic
Receiver - #1

DNS Client E

Background Traffic
Receiver - #2

—
—
Access Links

100 Mbps
Link A
Link B
Bottleneck Link
10 Mbps
BN1

Link C
— Internet Emulation
—< S— Link - 100 Mbps

TEI of Thessaloniki
Network

T=<
Link D ~ .

Connection to TEI
100 Mbps

Background Traffic Local DNS Server

Generator #1

Background Traffic
Generator #2

Figure 1: Testing facility setup

number of experimental results are included in order to show
the performance degradation of DNS traffic when AQM is
used.

IV. FACILITY SETUP

In order to test the validity of the problem we setup an
experimental facility. The setup of the facility is shown in
figure 1 and consists of:

o Two servers generating constant background traffic

o Two clients receiving the background traffic

o A DNS client that performs DNS queries

o Three routers that provide the underlying network (BN1,
BN2, GW)

o A 10Mbps bottleneck link with RED queues in its ends
between BN1 and BN2

o A 100Mbps link that emulates Internet delays between
BN2 and GW

e The local network of TEI of Thessaloniki and a
100Mbps connection to it.

e The local DNS server of the Department of Informatics
of TEI of Thessaloniki

The above setup was used in order to accomplish the follow-
ing goals:

978-1-4577-0681-3/11/$26.00 ©2011 IEEE

« Have well-behaved background traffic: Well behaved
traffic is considered all traffic that appropriately reacts to
congestion indication (e.g. TCP traffic, Stream Control
Transmission Protocol [8] traffic, Datagram Congestion
Control Protocol [9] traffic and traffic that supports TCP-
Friendly Rate Control [10]). This was accomplished
by using a number of parallel TCP connections that
constantly downloaded data.

« Have a bottleneck link where the data rate is limited by
the hardware capabilities and not by software (i.e. traffic
shaping).

o Have the ability to emulate Internet delays in order to
test background TCP traffic against both low and high
Bandwidth-Delay-Product (BDP) paths, since different
BDP paths may result in different protocol behavior.

o Have separate clients with distinct roles. This means
distinguishing traffic receivers and the DNS client. Traf-
fic receivers only received background traffic and the
DNS client only performed DNS queries. This approach
eliminated any interference and removed suspicion of
unwanted delays.

All experiments were performed using the following operat-
ing systems:

o Debian/GNU Linux distribution with 2.6.32 kernel for
all clients and intermediate routers.

e Debian/GNU Linux distribution with 2.6.26 and 2.6.30
for the two servers.

By using the Linux operating system for intermediate routers,
clients and servers we were able to measure and monitor
traffic in great detail.

The administering of the interface queues is part of the
traffic control (tc) facility of the Linux operating system.
The actual queues are called queuing disciplines (qdiscs) and
can be either classless or classful. Classful gqdiscs allow the
creation of multiple traffic classes and the classification of
traffic. Classless qdiscs can be used either by themselves or as
part of classful qdiscs where they can be attached to classes.
Every network interface is required to have an attached qdisc
which by default is a packet-based FIFO qdisc.

For the experiments the following qdiscs were used:

o The RED classless qdisc at the ends of link B (bot-
tleneck link) for the AQM tests. The Linux kernel
implements byte-mode RED.

o The BFIFO (byte FIFO) classless qdisc at the ends of
link B for the FIFO tests.

o The Hierarchical Token Bucket (HTB) classful gdisc at
the ends of link C (Internet emulation link). This classful
qdisc was used in order to prioritize traffic as follows:

— Non-DNS traffic was sent to a class that had the
Network Emulator (netem) [11] classless qdisc at-
tached in order to be delayed as needed.

— DNS traffic was sent to a class that had a packet
FIFO classless qdisc attached.

The above setup allowed for the testing of scenarios with
different Bandwidth-Delay-Products (BDPs) while keeping

908

DNS measurements accurate. Since the DNS protocol doesn’t
do any kind of Round-Trip Time (RTT) estimation and does
not perform retransmissions', the exemption of DNS traffic
from the netem emulator did not affect the validity of the
results and instead provided more accurate timings. Since
link C was never congested, the usage of different qdiscs on it
did not have any side effects. Remote access to the machines
was performed using “out-of-band” connections that didn’t
traverse the bottleneck link.

While performing the tests we had to deal with a mostly
undocumented feature of Linux’s networking stack. While it
is possible to fully customize the qdiscs of each interface,
another buffer may exist at a lower level: The underlying
networking driver most probably includes a buffer (referred to
as ring-buffer) of its own which is large enough to affect the
results. The Intel e1000 driver for example uses by default a
128 packet buffer. The size of this ring buffer in e1000 driver
can be reduced to 80 packets (but not less) which still causes
90ms latency when filled. For the skge driver the minimum
ring-buffer size is 48 packets resulting in 54ms latency. In
order to get accurate results those value were also considered
when determining the RED parameters (i.e. RED queue size
thresholds were downshifted by that amount of packets).

V. SOFTWARE

The experiments used the following custom-made pro-
grams:

o A client-server program that creates multiple TCP con-
nections and constantly transfers traffic between them.
The clients ran on the Background Traffic Receivers (#1
and #2) and the servers ran on the Background Traffic
Generators (#1 and #2).

o A DNS resolving program that performed DNS queries
as described bellow.

e A monitoring program that monitored the traffic rates
and the queue status of BN2’s RED queue.

All tests were performed while having 120 background TCP
connections transferring data from the Background Traffic
Generators to the Background Traffic Receivers. Each re-
ceiver created and maintained 30 parallel TCP connections
with each server. All TCP connections used the Cubic [12]
congestion control algorithm which is the default for all
recent Linux kernels.

The DNS resolving program used 100 threads to perform
parallel queries. Each thread performed 100 queries for
warm-up and 200 queries for measurements. The warm-up
allowed the network to adapt to the extra traffic and provided
more accurate results. Each one of the 100*(100+200) queries
was performed against a DNS name that was local to the
name server in order to avoid extra (random) delay from
Internet lookups. The queries were performed using the logic

'DNS clients may retry after predefined timeouts up to a number of times
but this is a decision of the DNS client implementer. Many applications use
the standard DNS resolver library of the underlying operating system. The
exact DNS resolver’s behavior is not dictated by the DNS protocol. DNS
servers never retransmit.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE

of the Microsoft Windows resolver which tries up to 5 times
using 1, 2, 2, 4 and 8 seconds timeout respectively.

The monitoring program monitored both the interface traf-
fic and the queue status. The interface traffic was monitored
by examining /proc/net/dev 2 times per second while the
queue status was monitored using the output of the “tc qdisc
show dev eth1” command at a rate of 10 times per second.

The programs that were used were created as follows:

o Background traffic generator and receiver: Using C++

and the Linux’s networking API.

o DNS resolver: Using the python language along with its

threading support and the python-dns library.

e Monitoring program: Using the python language, the

iproute2 package and the Qt library.
DNS resolving tests (i.e. with and without using ECN) did
not ran in parallel in order to avoid interference with each
other.

VI. EFFECTS OF AQM ON DNS TRAFFIC

We evaluated the performance of the DNS protocol both
when the congested link uses byte-mode FIFO queues and
byte-mode RED queues. The presented results are a repre-
sentative subset of a quite larger set of tests. Some of the
contacted tests which used packet FIFO or more aggressive
parameters showed far worse results regarding DNS timeouts.

The results presented here were achieved using the follow-
ing parameters:

o Network-driver ring-buffer: 80 packets (assumed to re-

sult in 90ms delay on the 10Mbps link)

« Byte mode FIFO queue size: Depending on the targeted
maximum delay. When targeting 300ms as the maxi-
mum link delay the fifo size was 262500 bytes (which
results in about 210 ms maximum delay).

o RED:

— Assumed average packet size: 1400 bytes
— Link bandwidth: 10 Mbps
— Targeted maximum link delay: 300ms
— Minimum Queue Size Threshold: 74874 bytes
— Maximum Queue Size Threshold: 262374 bytes
— Queue Limit: 375000 bytes
— Burst: 98 packets 2
— Maximum marking probability: 10%
o Internet link:

— Delay: 100 ms
— Delay jitter: 25 ms
— Delay correlation: 25%

Table I shows the efficiency of the DNS protocol when
FIFO and RED queues are used. The measurements were
made without using ECN for the background TCP connec-
tions. As shown, the success probability of the first attempt
of DNS resolvings is degraded by about 8 percentage points

2This is computed using the formula that is proposed by Linux’s tc-red
manual page: (2 *ming +maxq)/(3* AvgPktSize). This does not have
a significant effect on RED’s behavior since the bottleneck link is constantly
congested.

909

FIFO queue RED queue
Attempt | Replied Queries [Percentage | Replied Queries [Percentage
1 19474 97.37% 17928 89.64%
2 505 2.52% 1876 9.38%
3 21 0.11% 176 0.88%
4 0 0% 17 0.09%
5 0 0% 3 0.01%
Total 20000 100% 20000 100%

Table I: Sample comparison of DNS efficiency with FIFO and RED queues

FIFO ———
120 | RED —— |

120 |

100 |-
AN A AR

AR e Ay MRV Vi by A

e Wy ¥ \““\“‘Vv\‘ﬁ ‘A‘V“ " Y

80 FY AT

60 q

Dropped Packets per second

40 B

20 1

0 L L L L L L
0 20 40 60 80 100 120
Seconds

Figure 2: Packet drops for FIFO and RED queues (both DNS
and non-DNS packets)

when using RED queues. When using FIFO queues the
clients had 97.37% probability for getting a response while
when using RED this percentage dropped to 89.64%. This
is explained by the fact that RED probabilistically starts
dropping packets before a queue is full meaning that there
will be continuous packet drops, while FIFO queues burstly
drop packets when they become full. Each burst of packet
drops usually lasts a small amount of time and is followed
by lower transmission rates, leaving time for DNS traffic to
pass. A rough interpretation of the results indicates that when
using FIFO queues the queue was not full for about 97% of
the time.

Figure 2 is a graph of the average packet drop rate over
time and shows the effect of DNS traffic on packet drops.
The observed raise of the packet drop rate is the result
of the background DNS traffic which starts at 10 seconds.
Packet drops were measured 10 times per second and a
rate was calculated at each timeslot (giving accuracy of
10 drops/second). The graph plots the exponential weighted
moving average:

Vi=axV,.1+(1—a)x P,

where V,, is the value on the graph at point n, a = 0.9 and
P, is the measured packet drop rate (measured in 100 ms
intervals and adjusted for 1 second - i.e. multiplied with 10)
at point n.

978-1-4577-0681-3/11/$26.00 ©2011 IEEE

The graph shows that for the time DNS traffic was gener-
ated, packet drops increased much more when using a RED
queue. When using a FIFO queue, packet drops were slightly
increased and the rate increment was hardly distinguished
from normal traffic. With RED there was an increase of
about 30% of packet drops under the exact same networking
conditions. In both cases the link utilization was kept to
100%.

We further tested the DNS behavior when using AQM
under the following conditions:

o With all 120 background TCP connections not using
ECN. The results are those that are shown in table I.

o With half (60/120) of the background TCP connections
using ECN.

o With all 120 background TCP connections using ECN.

Table II compares the results of the above test-cases and
shows how the adoption of ECN by the background TCP
traffic affects the DNS efficiency. In the performed tests,
full ECN adoption resulted in 5 percentage points further
degradation of the first attempt success probability. In the
three cases the fail probability of the first attempt is about
10%, 12% and 15% respectively. For 99% confidence level
the calculated confidence intervals were +0.43, +0.45 and
+0.63 percentage points respectively as shown in table III.

Furthermore, table IV shows the success rate of the 1st
attempt of a DNS query under varying conditions. For
example, when the targeted maximum delay of the bottleneck
link was 200ms and the Internet delay was 20ms (£5ms) the
usage of a byte-FIFO queue resulted on ~91% success rate.
On the other hand, when RED was used, the success rate
was:

e ~ 81% when the background traffic did not use ECN,

e ~ 41% when the background traffic was using ECN and

e ~ 68% when the background traffic was a mix of ECN
and non ECN traffic.

The comparison indicates that:

1) When ECN is being used the DNS’s traffic priority is
practically lowered and

2) RED heavily impacts DNS traffic with relatively-small
(i.e. not large) buffers

It is thus shown that AQM adoption can have harmful effects
on DNS traffic, dropping the efficiency of DNS even by
10 percentage points and that ECN adoption results in even
further reduction up to 50 percentage points.

910

[Atmpt [noECN | % [350%ECN [% [onlyECN [% |
1 17928 89.64 17535 87.67 16924 84.62
2 1876 9.38 2135 10.68 2629 13.14
3 176 0.88 282 1.41 383 1.92
4 17 0.09 46 0.23 56 0.28
5 3 0.01 2 0.01 8 0.04
Total 20000 100% 20000 100% 20000 100%

Table II: Efficiency of DNS for 300ms link delay

| Queries | Replies | Success % | Mean % | StdDev of % | Confidence Interval [Range with 99% confidence |

No ECN 20000 17928 89.64 89.91 0.28618 +0.43 89.48 - 90.34
50% ECN 20000 17535 87.67 87.95 0.30139 +0.45 87.50 - 88.40
Only ECN | 20000 16924 84.62 85.00 0.42665 +0.63 84.37 - 85.63

Table III: Confidence intervals with 99% confidence level from 3 samples for 300ms link delay

FIFO queue RED queue
Targeted Link Delay | Internet Delay/Jitter # | % nECN | % [350%ECN] % [onlyECN [%
200ms 20ms +5ms 18285 | 91.42 16129 80.64 13606 68.03 8278 41.39
200ms 50ms +5ms 18513 | 92.56 16819 84.09 15073 75.36 9156 45.78
300ms 100ms #25ms 19474 | 97.37 17928 89.64 17535 87.67 16924 84.62

Table IV: Comparison of 1st attempt success rate of DNS queries under

VII. CONCLUSIONS

AQM and ECN are two related promising improvements
for the Internet. However, as shown in this paper, the transi-
tion to AQM and ECN highly degrades the efficiency of the
DNS protocol. Since UDP-based DNS queries and replies
are one-packet per-direction data transfers, they cannot be
congestion controlled. This results in significant DNS packet
loss and has high impact on user-experience (i.e. multi-
second, user-observable delays).

The paper presented a subset of a quite larger set of
experimental results regarding the effects of congestion on
intermediate FIFO and RED queues on the DNS protocol.
Under the selected network parameters, when the congested
link switched from FIFO to RED, the DNS protocol effi-
ciency dropped from at least 8 and up to 11 percentage points.
When the background TCP traffic took advantage of ECN, the
DNS’s efficiency further dropped from 12 up to 50 percentage
points. Since the DNS protocol is a core Internet protocol
with very high impact on user experience, this degradation
can be considered very harmful and perhaps unacceptable
especially when targeting lower maximum delays. It seems
thus that the disadvantages of AQM and ECN may outweigh
the advantages under certain conditions.

REFERENCES

[1] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin,
S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ra-
makrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Recommenda-
tions on Queue Management and Congestion Avoidance in the Internet.
RFC 2309 (Informational), April 1998.

[2] J. Postel. Transmission Control Protocol. RFC 793 (Standard),

September 1981. Updated by RFCs 1122, 3168.

K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit

Congestion Notification (ECN) to IP. RFC 3168 (Proposed Standard),

September 2001.

[4] J. Postel. Internet Protocol. RFC 791 (Standard), September 1981.
Updated by RFC 1349.

[3]

978-1-4577-0681-3/11/$26.00 ©2011 IEEE

[5]

(6]
(7]

(8]

(91

[10]

[11]
[12]

varying parameters with FIFO and RED

P.V. Mockapetris. Domain names - implementation and specification.
RFC 1035 (Standard), November 1987. Updated by RFCs 1101, 1183,
1348, 1876, 1982, 1995, 1996, 2065, 2136, 2181, 2137, 2308, 2535,
2845, 3425, 3658, 4033, 4034, 4035, 4343.

J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.
Sally Floyd and Van Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on Networking,
1(4):397-413, 1993.

R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Tay-
lor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson. Stream Control
Transmission Protocol. RFC 2960 (Proposed Standard), October 2000.
Obsoleted by RFC 4960, updated by RFC 3309.

E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control
Protocol (DCCP). RFC 4340 (Proposed Standard), March 2006.

M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP Friendly
Rate Control (TFRC): Protocol Specification. RFC 3448 (Proposed
Standard), January 2003. Obsoleted by RFC 5348.

S. Hemminger. Network emulation with netem. In Linux Conf Au,
April 2005.
PFLDNet 2005.
Variant, 2005.

CUBIC: A New TCP-Friendly High-Speed TCP

911

