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Abstract—This paper presents a realistic method for exploit-
ing an already known insecurity of the Congestion Control
behavior of the Transmission Control Protocol that was orig-
inally pointed out in 1999 [11] and that affects all known
TCP implementations. This insecurity exploits the fundamental
assumption of TCP that the communicating remote end is trust-
worthy and is behaving correctly. We developed a methodology
and an algorithm which we used to attack a web server and
deceive it in transmitting with a constant rate of 900 Mbits per
second. During the attack the server was incapable of reacting
to the network congestion it caused.
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I. INTRODUCTION

The Transmission Control Protocol (TCP) [8] is one of the
core Internet protocols. Almost all applications that require
reliable data transfers take advantage of its capabilities. In
October 1986 the Internet had the first of what became a
series of “congestion collapses” [6] which lead Van Jacobson
and Mike Karels in proposing a method for “Congestion
Avoidance and Control” [6] which added the flow control
ability to TCP. Since then, great efforts were made to
improve the behavior of TCP and make it more robust by
trying to improve congestion control logic [2], reduce packet
loss [7], [9], improve performance [5], [1] and further set
the basis for future development [2].

Because of its wide acceptance and deployment, all these
years TCP has been the target of sophisticated security
attacks from third parties leading to the research and de-
velopment of appropriate defense strategies [3], [13]. In
1999 Savage et al. identified three attack methods [11] that
could be performed by remote end-points instead of third
parties and coined the term “misbehaving receivers”. In 2005
Sherwood at al. focused on the Optimistic Acknowledgment
(opt-ack) attack [12] by illustrating the possibilities of its
exploitation.

The opt-ack attack is based on the TCP assumption
that the remote end is trustworthy. Existing Congestion
Control Algorithms increase the transmission rate of TCP
whenever there is direct indication of no packet-loss. Since
this indication is solely based on the receipt of positive

ACKs, it is possible that a misbehaving receiver sends those
ACKs even when the transmitted data are lost.

In this paper we present a method for easy exploitation
of this vulnerability and the experimental results of its
implementation. We also prove that the Hypertext Transfer
Protocol [4] (HTTP) can be effectively combined with this
attack method. Even though the possibility of the opt-ack
attack has been presented in the literature [11], [12], this is
the first implementation that has been successfully utilized
to perform attacks. The proposed algorithm is adaptive and
can be used to attack both: (a) high bandwidth servers
and (b) extremely loaded, low bandwidth servers where
desynchronization issues occur. The pointed implementation
is based on a simple custom made user-space program
written in Python language and takes advantage of a set of
opensource libraries. All these make the proposed approach
very flexible and quite portable.

The rest of the paper is organized as follows: Initially we
describe the problem in section II and the tool we developed
in section III. In section IV we introduce an efficient attack
method against HTTP servers and we conclude by presenting
the results of a performed attack against a web server under
our administration in section V.

II. PROBLEM DESCRIPTION

TCP has always been developed as a method for exchang-
ing data between trusted hosts. Very few researchers have
been looking at the possibility that one of the two TCP
connection endpoints is misbehaving. More specifically,
congestion control has always been an issue of detecting
network congestion and acting against it. No Congestion
Control Algorithm has ever noted the possibility of being
abused by the other end. One can be sure about this by
looking at the “Security Considerations” sections of TCP
related Request For Comments documents (RFCs) which list
all known security issues [10] at the time of their writings.
Furthermore, no RFC has ever been published to address
this issue.

TCP Congestion Control Algorithms rely on the received
acknowledgments (ACKs) to identify network congestion



and reduce the transmission rate. Network congestion is ei-
ther identified by detecting packet loss [6] or by looking for
the Congestion Experienced (CE) codepoint when Explicit
Congestion Notification (ECN) [9] is being used. Currently
the underlying network may only drop or mark packets to
indicate congestion.

Since Acknowledgments report which segments the other
end has received, the sender uses them to find out whether
packet loss was encountered and to (a) retransmit lost
segments and (b) reduce its congestion window size (cwnd),
which results in a lower transmission rate. The transmission
rate (R) of a TCP Sender is a function of the congestion
window size (cwnd) and the actual Round-Trip Time (RTT)
and is given by:

R =
cwnd

RTT

The value of the congestion window size depends on the
number of successfully delivered segments which are in-
ferred by the received ACKs. Round-Trip Time (RTT) is
determined at the sender’s side by measuring the time it
takes for an ACK to be received after its corresponding
segment was transmitted. We easily conclude that the trans-
mission rate is (currently) based only on the behavior of the
remote end which is responsible for transmitting the ACKs.
In 1999 Savage et al. identified three attack methods [11] that
could be performed by remote end-points instead of third
parties and coined the term “misbehaving receivers”. In 2005
Sherwood at al. focused on the Optimistic Acknowledgment
(opt-ack) attack [12] by illustrating the possibilities of its
exploitation.

The opt-ack attack is based on the TCP assumption
that the remote end is trustworthy. Existing Congestion
Control Algorithms increase the transmission rate of TCP
whenever there is direct indication of no packet-loss. Since
this indication is solely based on the receipt of positive
ACKs, it is possible that a misbehaving receiver can send
those ACKs even when the transmitted data are lost.

During the last years Internet connection speeds have
greatly increased and Autonomous Systems with 1Gbps1 or
more of Internet connectivity are now a commonplace. Even
though end-systems have increased their Internet connection
speeds, backbone connections did not improve their speeds
with the same rate. The current ratio of edge link speeds
versus backbone link speeds and its trend indicate that during
periods of time ISP backbones become the actual bottleneck.
During the coming years, it may be more possible than
ever, since the adoption of Congestion Control by TCP, for
congestion issues to occur again.

We thus consider the possibility that Internet backbones
may become badly congested by malicious end-nodes who

1We use the term “Bps” (with capital B) to indicate bytes per second
and “bps” (with lowercase b) to indicate bits per second.

flood at high speeds. This is caused by the fact that the cor-
rect Internet behavior is currently based on the assumption
that end nodes react on congestion in a very drastic way
which isn’t always adequate.

Apart from Savage et al and Sherweed et al, there is no
other concern or alert by vendors and security organizations
regarding this issue. This statement is based on a conver-
sation that took place at the IETF Maintenance and Minor
Extensions (tcpm) mailing list, some older archives of that
list and the lack of documents that cite [11] and actually
address this issue.

Our research of this TCP flow lead to a method that is
able to cause an unsuspected web server to perform flooding
using its maximum transmission rate without having indica-
tion of network congestion. In contrast with the work that
was presented in [12], we’ve implemented a simple flooding
application working under the Linux Operating System,
without modifying the underlying kernel. This application
was repeatedly able to cause a web server (under our
administration) to flood the Internet for 5 minutes (until
it was interrupted) with 900Mbps of traffic using just a
small portion of the actual uplink bandwidth of a DSL line
operating at 8Mbps/1Mbps (downlink/uplink).

III. TOOL DESCRIPTION

To be able to test the validity of the opt-ack attack on
the current Internet using real-world victims we created a
fully function testing attack suite. Using the Linux oper-
ating system and the Python language, we implemented a
primitive TCP/IP stack. This stack is able to negotiate TCP
Window Scaling [5] which is required for high bit rates. For
convenience we also implemented the Timestamp Option to
be able to perform Round-Trip-Time Measurement (RTTM)
[5].

The python program uses the ImPacket library for con-
structing custom made IP and TCP PDUs, a raw socket
for transmitting the custom made packets and the pcap
library for detecting and effectively receiving data that were
transmitted by the server.

Since the program runs on a network-enabled operating
system, each incoming packet will be also received by the
underlying kernel. As dictated by the TCP specification [8]
the operating system’s network stack will respond with RSTs
to incoming TCP segments that are not related to a legitimate
connection. For the program to be able to function properly
we need to add a firewall rule that drops all incoming packets
from the web server’s IP address, or just the related ones.
This prevents the local operating system from replying with
RSTs, while letting the program capture incoming packets
(packets are captured by the pcap library a lot earlier than
the firewall checking and as soon as they arrive at the local
station). Before performing the attack we also need to find
a file to be requested from the server.



Figure 1. Algorithm State Transition

IV. ATTACK DESCRIPTION

To perform this kind of exploitation one needs a Linux
client. He also needs to locate a web server with a fast
Internet connection, capable server-side hardware and a large
(10MB or more) file to serve, even though we are able to
successfully perform this attack using 1MB files by taking
advantage of HTTP/1.1.

A. Client Side

The actual TCP exploitation consists of an initial prepara-
tion step (stage 0) and a two-stage attack. During preparation
the connection is established and an initial request is sent
to a web server. While in stage 1 all incoming segments
are immediately acknowledged, even though some data may
be lost. In this stage the client synchronizes itself with the
server. After a predefined period of time, long enough to
achieve synchronization, stage 1 finishes and stage 2 begins.
While in stage 2, ACKs are sent without waiting for data to
be received.

Figure 1 illustrates the state transition of the actually
implemented algorithm, which is a bit more complex than
the one described here. The extra complexity goes beyond
the scope of this paper and is there just to handle corner
cases where the rate is reduced or synchronization is lost.

Stage 0: Preparation

During preparation the client performs the three-way
handshake and connects to the web server. For our cause
we prefer to use the very common HTTP protocol. HTTP
servers reply to appropriate requests that are sent to them by

clients who connect to server-side TCP port 80. Each HTTP
session includes at least one client request and at least one
server response. The client request is performed using one
of the HTTP methods (GET, PUT, POST, HEAD, etc. . . ).
For our needs we’re performing an HTTP GET request that
asks the server side to transmit an existing file.

HTTP 1.1 [4] supports a keepalive mechanism which
dictates that the server side may be willing to wait for
more requests upon completion. This way a client is able
to retrieve multiple objects from the server side without
opening multiple connections. This method greatly speeds
up the user experience of the world wide web and reduces
the overall protocol overhead. As explained later the attack
benefits a lot from this feature so we always use HTTP/1.1.

We may also want to use the range capability of HTTP as
specified in section 14.35 of RFC2616 [4]. Using the Range
header a legitimate client is able to request only part of a
file, which is very useful for resuming downloads. For our
purposes we take advantage of a “weakness” of Apache and
IIS web servers. Both of them accept requests that specify
the same byte range multiple times and are willing to serve
it as many times as it was requested, even though this is not
required for normal use. This solves the disk I/O problems
that are mentioned in section IV-B.

A sample request looks like:

GET /~v13/debian-40r3-i386-CD-1.iso HTTP/1.1
Range: bytes=1-100000000,1-100000000,
1-100000000,1-100000000

Host: host.example.org

Here we perform an HTTP 1.1 request and we ask from
the server side to transmit four times the first 100MBytes
of a file. From our tests we concluded that it is possible
to request the same range for more than 500 times without
encountering problems. This way we eliminate the need of
finding a large file at the server side.

After performing the request the client goes to stage 1.

Stage 1: ACK everything

In this stage the client receives packets from the server
side and unconditionally responds with ACKs. This achieves
the required synchronization between the transmission and
acknowledgment rate. Since ACKs are cumulative we are
overlooking lost packets and indirectly send acknowledg-
ments for them too. While in this stage we’re able to increase
the rate up to the point where at least one segment is received
every no more than one window of data. During that time
the rate slowly increases but the maximum achievable rate
is relatively small and hard to reach.

While in this stage we measure differences in incoming
sequence numbers and determine the transmission rate of the
other end, regardless of the rate that we’re able to receive
data. We keep working like this for a predefined period of
time (startup_time) and at the end we’re left with a measured
rate of R0.



We note here that the whole algorithm is clocked by
received segments and that we choose not to send an
ACK for each one of them. We transmit an ACK every
ack_interval packets to reduce our CPU usage and upload
bandwidth consumption. We also avoid to send duplicate or
out-of-order ACKs to inhibit the sender from reducing its
transmission rate. A suggested value for ack_interval is 3
but it can be further increased or decreased to meet one’s
needs.

After the startup period the client enters stage 2.

Stage 2: Blind ACKs

At this point we stop depending on the received data from
the other end and we start sending ACKs assuming that it
transmits with rate Rn where n is the iteration number and
R0 = R0. One can easily infer that at iteration n we only
need to increase the ACK number by dt ∗ Rn−1 where dt
is the time since the last transmitted ACK. The time of the
last transmitted ACK is the time of the last iteration (tn−1):

dt = tn − tn−1

This is adequate to keep the rate at a constant level. The
ACK number for iteration n is given by:

ACKn = ACKn−1 + Rn−1 ∗ dt (1)

where ACKn is the Nth transmitted ACK, Rn−1 is the last
measured transmission rate and dt is the time since the last
ACK was sent.

Since we want to further increase the transmission rate we
introduce a boost value which is periodically added to the
ACK number. We choose a predefined assumed RTT value
and the number (cwnd_inc) of segments of size MSS we
want to increase the other end’s Congestion Window (cwnd)
every RTT . Boost is given by:

boost = cwnd_inc ∗ MSS ∗ dt

RTT

where MSS is the Maximum Segment Size. For servers
that use aggressive TCP implementations, cwnd_inc can
have values greater than 15. For low-bandwidth servers,
servers with high network load and servers with conservative
TCP implementations, cwnd_inc can be set to 1. When
considering boost, equation 1 becomes:

ACKn = ACKn−1 + Rn−1 ∗ dt + boost

We further add an upper rate limit where we stop adding
boost. This limit is chosen so that the server will not reach its
maximum local link transmission rate, since it will encounter
local congestion. This limit is determined by preliminary
test runs where we observe the point where the algorithm
stalls. Most of the time this means that the server stops
increasing its transmission rate and the algorithm looses
its synchronization and we use the rate of that moment
as the maximum rate. Typical values are: 105000 KBps

for servers with 1Gbps Ethernet connection, 30000 KBps
for servers with 1Gbps Ethernet connection without very
capable hardware, 10000 - 12000 KBps for servers with
100Mbps Ethernet connection and 5000 KBps for network-
loaded servers.

B. Server Side Concerns

When requesting from a server to transmit at rates near
1Gbps, pushing it to its limits, we have to face some other
real-world problems too. For a server to be able to serve a
file at a constant rate of 1 Gbps or 125 Mbytes/second, it has
to be able to perform disk reads at that rate. In most cases
this is not possible and the server side will stalls waiting for
I/O. We can circumvent this by selecting to transfer a file
like a 650MB CD iso image which is large enough to be
transmitted for more than 3-4 seconds using high bit rates,
but small enough to be stored in memory cache or by using
the range weakness described in section IV-A to perform a
request of an equivalent total length.

Before we begin the attack we also need to download
the file once. This will force the server to read it from the
disk and have it immediately available for serving it from
its memory cache. We then take advantage of the keepalive
mechanism that was described earlier and keep performing
the same request indefinitely. To achieve this we need to use
a counter (count) at the client side to count the transmitted
bytes. Whenever this counter reaches the approximate file
size (reinit), a new GET request is sent to the server.
This way the server is always busy retransmitting the same
file again and again, forcing its operating system to keep
it in memory cache (since it is being requested every few
seconds) and serving it without ever closing the connection.

When performing transfers at speeds near 1 Gbps or 125
MBps, a large amount of data is always on-the-fly. For
RTT = 200ms and R = 100000KBps there are always
20MBytes of data on the intermediate network. This means
that we have to be proactive and initiate a new transfer a
little bit earlier. Assuming that a request needs RTT/2 time
to reach the other end, we transmit a new request whenever
count reaches reinit− (R ∗RTT ). This way we are ahead
of our time by at least RTT/2 and we do not allow the
sender side to stall waiting for our next request since this
could reduce its transmission rate.

V. RESULTS

Using this technique one can achieve speeds of up to
more than 900Mbps after a very short period of time (20-60
seconds) and force the server side in constantly transmitting
almost at its maximum rate. The actual time it takes to reach
the maximum speed depends on the parameters that were
used. Since this approach can be adjusted by parameters to
become very modest in the way it increases the transmission
rate, it is not error prone and has proved to be very efficient.



Rate: ACK: 107508.585 KBps, 256.93 ACKs/sec,
420.86 MB Transferred, RTTM: 0.340088

Rate: ACK: 107755.252 KBps, 257.65 ACKs/sec,
526.24 MB Transferred, RTTM: 0.343079

Restart
Rate: ACK: 107595.764 KBps, 256.92 ACKs/sec,

0.00 MB Transferred, RTTM: 0.344116

Figure 2. Sample Output

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  10  20  30  40  50  60

M
B

y
te

s/
se

co
n
d

Seconds

Transmission rate

Figure 3. Transmission rates

A sample output is shown in Figure 2. In each “line”
we see the transmission rate in KBytes/second based on
the difference of transmitted ACK numbers, the transmitted
ACK rate, the MBytes of the file that were ACKed (it resets
every 620 MBytes) and the RTT as it was estimated by
the Timestamps option (RTTM). Lines are printed every
1 second and the “Restart” line indicates that a new GET
request was sent to the server to initiate another file transfer.

Figure 3 shows how the transmission rate increases in time
and stabilizes when it reaches the pre-set upper limit. The
graph was produced using modest parameter values and il-
lustrates the two stage period and the achieved constant rate.
Stage 1 lasts 5 seconds (0-4) and manages to synchronize
the algorithm. Stage 2 lasts 33 seconds (5-37) and deceives
the server side in increasing its transmission rate up to a
little more than 107 MBytes/second (more than 897 Mbps).
After that the algorithm stabilizes to the achieved rate until
interrupted.

The indicated rate is determined from the difference
of the ACKed bytes and thus it is the actual throughput
of the transmitted TCP data stream. Assuming that the
Path MTU (PMTU) is 1500 bytes (worst case scenario)
and that IP and TCP headers consume no more than 40
bytes (worst case scenario too), the actual rate becomes
897 ∗ 1500/1460 = 921Mbps. This is the rate of the bytes
that the server side floods the Internet with. The actual
transmission rate at the local link of the server is determined
by considering the overhead of the Ethernet protocol too and
it is 921 ∗ 1518/1500 = 932Mbps.

A. Network congestion and observations

Because of the way the flooding is performed, network
congestion will occur at the nearest to the server side con-
gested link. After a short period of time all TCP connections
that use this link will reduce their rate and they will almost
pause. The attacked server will keep transmitting at its
maximum rate occupying a larger portion of the congested
link’s bandwidth. Since this link will be almost exclusively
used by the attacked server, the largest possible portion of
the generated traffic will pass to the next congested link,
propagating the problem to the nearest physical bottleneck.

High transfer rates can also cause high loads to firewalls
and some low-end intermediate routers. Poor cabling and
low-end hardware is also stressed. On one tested case
networking problems occurred because of physical errors on
an intermediate 1Gbps copper-based Ethernet connection.
Those problems effectively made the attacked web server
partially unavailable by disturbing the routing procedure
of intermediate routers and causing frequent reroutes. On
another case an intermediate low-end Linux-based firewall
suffered kernel panics for unknown reasons.

During our research we have done a series of observa-
tions:

1) Many deployed web servers have the range weakness.
2) About half of the examined sites support the keepalive

mechanism.
3) Akamai servers do not support the HTTP keepalive

mechanism and thus they reduce the potential of ex-
ploiting them. Also, they aren’t capable of transmitting
at very high rates. Major companies like Microsoft and
Sun use Akamai technologies to provide content and
thus they aren’t immediately vulnerable.

4) By using cwnd_inc = 1 and high RTT values it
is possible to exploit even long-distant, low-speed,
congested servers.

5) Using this method one can determine the server side
link speed.

6) Google is vulnerable.
Also, as expected, we found that proxy servers are vulner-
able to this attack too. For example, the Squid cache (the
most common and widely used HTTP caching proxy server)
fully supports persistent connections (as it calls them) and
defaults to “on” with a request timeout of 30 seconds and a
maximum connection lifetime of 1 day. The availability of
open-proxies (i.e. proxies that can be used by anyone, even
outside of the network provider) only worsens the situation.

VI. CONCLUSIONS

As mentioned in [12] the threat of a distributed denial-of-
service (DDoS) attack using this technique actually exists
and should not be taken lightly. We have implemented a
malicious client using a popular language like Python and
proved that this attack can be effectively performed by using



only user-space tools (i.e. there is no need to modify the
underlying Operating System). Also, since the number of
available high-speed end-points is quite large, one needs
to find 10-100 such servers to perform a Distributed DoS
(DDoS) attack to an ISP just by having control of a couple
of DSL lines.

A large portion of the world-wide deployed web servers
can be abused and tricked into flooding the Internet using
their maximum transmission rate. Some major sites like
Google’s seem to be vulnerable while others like Microsoft’s
that use Akamai technologies are not. This attack may also
be used to perform Denial of Service (DoS) attacks to
web-servers and Autonomous Systems (ASs) with lesser
hardware/infrastructure.
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