
Reconsidering the usage of stand-alone packets for Congestion
Indication

S. Harhalakis, N. Samaras and V. Vitsas

February 13, 2010

Abstract
With the introduction of Active Queue Management
and Explicit Congestion Notification, Internet Routers’
queues have become an active part of Congestion Con-
trol. This letter points out that data flows with one
packet per-direction are not allowed to take advantage
of ECN, meaning that they will experience unprivileged
handling by intermediate routers and presents a method
for reducing the unintended packet drops of AQM when
it is combined with ECN. The method is backwards
compatible and can be deployed incrementaly without
introducing security risks. The method is applied on
DNS traffic showing significant improvement of user
experience.

1 Introduction
Router queues consist a shared resource [7]. In most
cases, when the used portion of a queue reaches a cer-
tain limit some or all of the newly arrived packets are
dropped. Transport layer protocols like the Transmis-
sion Control Protocol (TCP) that support flow control
interpret packet loss as congestion indication and re-
duce their transmission rate [1]. Generally, packet loss
acts as a signal that indicates congestion and may in-
directly notify the transmitting party to reduce its trans-
mission rate. This behavior is common among all proto-
cols that support congestion control and is also the ac-
cepted behavior for user-space congestion-control im-
plementations [4].

Drop-tail queues drop packets whenever they become
full while Active Queue Management (AQM) [2] tech-
niques start indicating congestion before a queue is full.
When using AQM, packet drops are the most common
approach to congestion indication. Random Early De-
tection (RED) [2] is probably the most popular AQM

mechanism. In order to avoid congestion and prevent
global synchronization [3] RED probabilistically starts
dropping packets whenever the average queue length
reaches a limit and becomes a drop-tail mechanism
whenever the queue length reaches a hard limit. This
way RED indicates congestion when it starts to occur
instead of waiting for the queue to become full.

Explicit Congestion Notification (ECN) [6] is an ad-
dition to AQM that allows for congestion indication
without actually dropping packets. When using ECN,
RED queues mark instead of dropping packets unless
they have reached their maximum queue size. Since
packets aren’t dropped there are fewer retransmissions
which result in better network efficiency and protocol
behavior. ECN’s specification dictates that only pack-
ets that carry an ECN capable upper layer protocol
should be marked instead of being dropped. Those IP
packets are distinguished by an ECN Capable Trans-
port (ECT) codepoint that is set by the transmitting
node. When those packets traverse AQM-based queues
they are marked with the Congestion Encountered (CE)
codepoint instead of being dropped, unless there is no
available buffer space. This marking is handled by the
upper layer protocol at the receiver which informs the
transmitter for impeding congestion. In the case of TCP,
this is accomplished by using the “ECN Echo” (ECE)
flag. Non-ECT traffic is never marked and is always
dropped in order to indicate impeding congestion.

Even though all packets are candidates for drops,
only a subset of them are candidates for marking. This
means that ECN capable transport layer protocols are
treated in an privileged way since their packets are only
dropped whenever the queue becomes drop-tail while
all other packets may be dropped a lot earlier. Look-
ing at ECN’s specification, it is obvious that it was not
intended to act as a quality of service (QoS) method.
However, because of the way it is used it results in
a behavior where packets with an ECT codepoint be-

1

come drop-candidates much later than packets without
the ECT codepoint.

2 Stand-alone packets
A fundamental assumption of all deployed congestion
control methods is that a data flow has more than one
packet per direction. This means that it is impossible
to have flow control with only one packet per-direction.
Since ECN can only be used with an upper layer proto-
col that supports congestion control (like TCP), we de-
note that stand-alone packets cannot take advantage of
ECN and are thus treated in an unprivileged way. This
happens because stand-alone packets cannot be subjects
of congestion control.

Having in mind the Domain Name System (DNS)
protocol, we note that there are delay sensitive (i.e. with
high impact on user experience) data traffic exchanges
with only one packet per direction that cannot take ad-
vantage of ECN. We thus consider all traffic that:

1. Has at-most one packet per direction,

2. When dropped will trigger a retransmission after a
timeout,

3. When dropped will result in user observable delay,
degrading user experience, and

4. When not dropped will not significantly increase
the average queue size. This means that it must
not be produced in bursts and must not consist a
significant portion of Internet traffic.

and we refer to its packets as “special stand-alone pack-
ets”. Based on that definition we introduce two propos-
als: An extension of ECN’s usage and the application
of that extension to a subset of DNS traffic.

3 ECN Proposal
We consider the current approach of AQM somehow
unfair to special stand-alone packets. There is no docu-
mented intention for AQM to drop those packets since
dropping them when there is available buffer space will
not serve congestion control. Multiple methods can be
proposed in order to alleviate this problem, but a realis-
tic proposal should (a) require as few modifications as
possible from the underlying network and the remote
endpoints and (b) ensure backwards compatibility.

It is proposed that special stand-alone packets be
marked with the ECT codepoint by transmitting nodes.
This will instruct intermediate queues that use AQM
to mark them instead of dropping them when there is
available buffer space. The proposed ECN approach is
backwards compatible and requires no modification in
the underlying network. Existing AQM and ECN en-
abled routers will be able to handle this kind of traf-
fic. Even communicating endpoints do not need to both
support this method, meaning that it is possible for such
a solution to be deployed incrementally.

The classification of packets as special stand-alone
should be based on the rules of the previous section.
When a proposal is made for the packets of a kind of
traffic (e.g. UDP-based DNS queries) to be considered
as special stand-alone, it must also:

• Prove that the average queue size of intermediate
queues will not be significantly affected,

• Prove that other traffic will not be disrupted and

• Justify that it will not introduce security problems.

4 DNS Proposal
DNS is considerd one of the most crucial protocols of
the Internet with high impact on end-users. Most DNS
queries are performed using the UDP protocol in or-
der to reduce delay and overhead. By definition, UDP-
based DNS queries and their replies are one-packet per
direction data flows1. DNS resolving is usually the first
step of most world-wide-web transactions and its de-
lay is almost the delay that a user experiences before
(e.g.) a web page starts to download. DNS queries are
retried after a predefined, system-wide time-out that de-
pends on the operating system. For Windows systems,
the timeout of the first retry is 1 second and for Linux
(glibc) systems it is 5 seconds.

Based on the above observations, we consider UDP-
based DNS queries and their replies as special stand-
alone packets because:

• They are one-packet per-direction data flows,

• Each query is retransmitted after a predefined
timeout. Replies are indirectly retransmitted after
a new (repeated) query,

1DNS specification dictates that queries that require more that one
datagram must be performed using TCP.

2

• Packet drops result in user-observable delay that
affects user experience and

• DNS traffic consists a very small portion of Inter-
net traffic

We thus propose that the ECN extension be used for
UDP-based DNS queries and replies. IP packets that
carry UDP datagrams should be marked with an ECT
codepoint even though the traffic cannot react to con-
gestion control. We choose the ECT(0) codepoint for
this purpose and leave the ECT(1) codepoint unspec-
ified for future use as recommended by [6] for cases
where only one ECT codepoint is required.

5 Test results

We performed of simulations using a modified version
of the NS-2 simulator in order to determine the ef-
fects of applying the ECN extension on DNS traffic.
The modifications allowed for ECN marking of Mes-
sagePassing packets which were used to simulate DNS
queries and replies. The simulations tested the network
behavior and DNS effectiveness when adding the ECT
codepoint to DNS packets while operating over a con-
gested link. Congestion was achieved by using Pack-
Mime TCP sessions with ECN enabled. The purpose
was to examine (a) whether the average queue size is
affected and (b) whether the proposed modification ac-
tually improves user experience. The behavior of both
Windows and Linux (glibc) was tested by simulating
their DNS resolvers. The test scenario consisted of:

• one 10MBps link that was congested on one-
direction only

• RED queues

• 20 DNS clients

• one DNS server.

Each DNS client performed a new query every half a
second. Linux queries timed-out after their second at-
tempt and windows queries timed-out after their fifth at-
tempt. The tests covered a 15-seconds warm-up period
and a 45-seconds measuring period. Many of the sim-
ulation parameters were based on the parameters that
were used for the tests of [5] which proposes the addi-
tion of ECN to TCP’s SYN/ACK packets and seem to

Attempts w/o # w/o % w/ # w/ % T/out Improvement

1 1262 74.37 % 1507 88.08 % 5 19%

2 306 18.03 % 173 10.11 % 5 43%

Failed 129 7.60 % 31 1.81 % - 76%

(a) Linux (glibc)

Attempts w/o # w/o % w/ # w/ % T/out Improvement

1 1205 68.70 % 1485 84.18 % 1 23%

2 393 22.41 % 233 13.21 % 2 41%

3 113 6.44 % 40 2.27 % 2 65%

4 36 2.05 % 5 0.28 % 4 86%

5 6 0.34 % 1 0.06 % 8 83%

Failed 1 0.06 % 0 0 % - 100%

(b) Windows

Table 1: Effects of ECN on DNS query attempts

be well accepted. For the targeted load of the intermedi-
ate link, 95% was used as a somehow modest approach
for a congested link.

Figure 1 shows the effects on the queue size from the
ECN usage for both directions. The graphs indicate that
there is no increase in the average queue size. Table 1
shows the number of required attempts for a DNS re-
solving as an absolute number (#) or a percentage (%),
with (w/) and without (w/o) ECN. It also shows the im-
provement.

When not using ECN, more than 25% of DNS
queries required a retry causing delays of at least 1
second for Windows and 5 seconds for Linux systems.
This delay is well in the user-observable limits, mean-
ing that the loss of a DNS query or reply packet is far
worse than the loss of a TCP segment. The simulations
also showed reduced DNS traffic since there were fewer
retransmissions and no significant effect on the average
queue size or the background traffic.

6 Conclusions

AQM and ECN are two related promising improve-
ments for the Internet. However, it seems that their
combination is somehow unfair to non ECN capable
traffic. This letter points out that there are stand-alone
packets that may be worth of taking advantage of ECN
marking even though they are currently not allowed
to. Those packets are currently considered as drop-
candidates for the purpose of congestion indication de-

3

 860

 880

 900

 920

 940

 960

 980

 1000

 15 20 25 30 35 40 45 50 55 60
 0

 5

 10

 15

 20

S
->

C
 q

ue
ue

 s
iz

e
in

 p
ac

ke
ts

C
->

S
 q

ue
ue

 s
iz

e
in

 p
ac

ke
ts

c->s dnsecn=0
s->c dnsecn=0
c->s dnsecn=1
s->c dnsecn=1

(a) Linux resolver (glibc)

 860

 880

 900

 920

 940

 960

 980

 1000

 15 20 25 30 35 40 45 50 55 60
 0

 5

 10

 15

 20

S
->

C
 q

ue
ue

 s
iz

e
in

 p
ac

ke
ts

C
->

S
 q

ue
ue

 s
iz

e
in

 p
ac

ke
ts

c->s dnsecn=0
s->c dnsecn=0
c->s dnsecn=1
s->c dnsecn=1

(b) Windows resolver

Figure 1: Effects on queue size

spite the fact that this indication will not be utilized by
the endpoints and that such a drop may negatively im-
pact user experience. It is proposed that ECN semantics
are extended and ECN marking be allowed for special
stand-alone packets, as they are defined in this letter.
UDP based queries and replies of the DNS protocol are
a good example since they are one-packet per-direction
data transfers that have high impact on user experience.
Currently, they are drop candidates for congestion in-
dication even though it seems impossible for a resolver
or a server to ever support flow control effectively. Fu-
ture work may examine whether there are other Internet
protocols who’s packets can be considered as special
stand-alone packets.

References

[1] M. Allman, V. Paxson, and W. Stevens. TCP Con-
gestion Control. RFC 2581 (Proposed Standard),
April 1999. Obsoleted by RFC 5681, updated by
RFC 3390.

[2] B. Braden, D. Clark, J. Crowcroft, B. Davie,
S. Deering, D. Estrin, S. Floyd, V. Jacobson,
G. Minshall, C. Partridge, L. Peterson, K. Ramakr-
ishnan, S. Shenker, J. Wroclawski, and L. Zhang.
Recommendations on Queue Management and
Congestion Avoidance in the Internet. RFC 2309
(Informational), April 1998.

[3] Sally Floyd and Van Jacobson. Random early de-
tection gateways for congestion avoidance. IEEE/
ACM Transactions on Networking, 1(4):397–413,
1993.

[4] M. Handley, S. Floyd, J. Padhye, and J. Widmer.
TCP Friendly Rate Control (TFRC): Protocol Spec-
ification. RFC 3448 (Proposed Standard), January
2003. Obsoleted by RFC 5348.

[5] A. Kuzmanovic, A. Mondal, S. Floyd, and K. Ra-
makrishnan. Adding Explicit Congestion Notifica-
tion (ECN) Capability to TCP’s SYN/ACK Pack-
ets. RFC 5562 (Experimental), June 2009.

[6] K. Ramakrishnan, S. Floyd, and D. Black. The Ad-
dition of Explicit Congestion Notification (ECN)
to IP. RFC 3168 (Proposed Standard), September
2001.

[7] Rayadurgam Srikant. The Mathematics of Internet
Congestion Control (Systems and Control: Founda-
tions and Applications). SpringerVerlag, 2004.

4

