DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

C'HAPTER3

Java Transaction API

TIh: Java Transaction APl consists of three elements: a high-level
application transaction demarcation interface, a high-level transaction manager
interface intended for an application server, and a standard Java mapping of the X/
Open XA protocol intended for a transactional resource manager. This chapter
specifies each of these elements in detail.

3.1 User Transaction Interface

The jawax.transaction.UserTransaction interface provides the
application the ability to control fransaction boundaries programmatically.

The implementation of the UserTransacticon object must be both
javax.naming.Referenceable and java._io.Serializable, so that the
object can be stored in all INDI naming contexts.

The following example illustrates how an application component acquires and
uses & UserTransaction object via injection.

@Resource UserTransaction userTransaction;
public void updateDatai) |
/f Etart a transaction.
userTransaction.begini) ;
Iy
/¢ FPerform transactional operations on data
/4 Commit the transaction.

tx.commit () :

C'HAPTER3

Java Transaction API

TIh: Java Transaction APl consists of three elements: a high-level
application transaction demarcation interface, a high-level transaction manager
interface intended for an application server, and a standard Java mapping of the X/
Open XA protocol intended for a transactional resource manager. This chapter
specifies each of these elements in detail.

3.1 User Transaction Interface

The jawax.transaction.UserTransaction interface provides the
application the ability to control fransaction boundaries programmatically.

The implementation of the UserTransacticon object must be both
javax.naming.Referenceable and java._io.Serializable, so that the
object can be stored in all INDI naming contexts.

The following example illustrates how an application component acquires and
uses & UserTransaction object via injection.

@Resource UserTransaction userTransaction;
public void updateDatai) |
/f Etart a transaction.
userTransaction.begini) ;
Iy
/¢ FPerform transactional operations on data
/4 Commit the transaction.

userTransaction.commit () ;

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

The following example illustrates how an application component acquires and
uses a UserTransaction object using a INDI lookup.

public woid updateDataf) |
/4 Obtain the default initial JHNDI context.
Context context = new InitialContexti);
!/ Look up the UsarTransaction object.
UserTransaction userTransaction = (UserTransaction)
context. lockup("java:comp/UserTransaction") ;
/4 Etart a tramsaction.
userTransaction.begini) ;

)

/4 Ferform transactional operations on data
/4 Commit the transactiomn.

tx.commit) ;

The UserTransaction.begin method starts a global transaction and
associates the transaction with the calling thread. The transaction-to-thread
association 8 managed transparently by the Transaction Manager.

Support for nested transactions is not required. The
UserTransaction.begin method throws the HorSupportedException
when the calling thread is already associated with a transaction and the transaction
manager implementation does not support nested transactions. Use of
UserTransaction from within a method or bean annotated with
@Transactional is not restricted. For example, UserTransaction may be
needed in these cases to mark the transaction for rollback or obtain the stams of a
current transaction. However, the application must ensure UserTransaction is
not used in a way that will compromise the behavior of any transaction that may
be managed by the container. In particular, UserTransaction should not be
used o commit of rollback a transaction that was started by a transaction
interceptor, as such an action might compromise the integrity of the application

Transaction context propagation between application programs is provided by
the underlying transaction manager implementations on the client and server
machines. The transaction context format used for propagation is protocol
dependent and must be negotiated between the client and server hosts. For
example, if the transaction manager is an implementation of the JTS specification,

Public Review Drafi

The following example illustrates how an application component acquires and
uses a UserTransaction object using a INDI lookup.

public woid updateDataf) |
/4 Obtain the default initial JHNDI context.
Context context = new InitialContexti);
!/ Look up the UsarTransaction object.
UserTransaction userTransaction = (UserTransaction)
context. lockup("java:comp/UserTransaction") ;
/4 Etart a tramsaction.
userTransaction.begini) ;

)

/4 Ferform transactional operations on data
/4 Commit the transactiomn.

tx.commit) ;

The UserTransaction.begin method starts a global transaction and
associates the transaction with the calling thread. The transaction-to-thread
association 8 managed transparently by the Transaction Manager.

Support for nested transactions is not required. The
UserTransaction.begin method throws the HorSupportedException
when the calling thread is already associated with a transaction and the transaction
manager implementation does not support nested transactions.

Transaction context propagation between application programs is provided by
the underlying transaction manager implementations on the client and server
machines. The ransaction context format used for propagation is protocol
dependent and must be negotiated between the client and server hosts. For
example, if the transaction manager is an implementation of the ITS specification,
it will use the transaction context propagation format as specified in the CORBA
OTS specification. Transaction propagation is transparent to application
Programs.

Public Review Drafi

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

TRANSACTION MANAGER INTERFACE

it will use the transaction context propagation format as specified in the CORBA
OTS specification. Transaction propagation is transparent to application
Programs,

32 Transaction Manager Interface

The jawax.transaction.TransactionManager interface allows the
application server to control transaction boundaries on behalf of the application
being managed. For example, the EJB container manages the transaction states for
transactional EJB components; the container uses the TransacticnManager
interface mainly to demarcate transaction boundaries where operations affect the
calling thread’s transaction context. The Transaction Manager maintains the
transaction context association with threads as part of its infernal data structure. A
thread's transaction context is either null or it refers fo a specific global
transaction. Multiple threads may concurrently be associated with the same global
fransaction.

Support for nested franactions is not required.

Each transaction context is encapsulated by a Transaction object, which
can be used to perform operations which are specific to the target transaction,
regardless of the calling thread’s transaction context. The following sections
provide mone detail.

e | Starting a Transaction

The TransactionManager _begin method starts a global transaction and
asaociates the transaction context with the calling thread.

If the Transaction Manager implementation does not support nested
transactions, the TransactionManager . begin method throws the
HotSupportedException when the calling thread is already associated with a
fransaction.

The TransactionManager.getTransaction method returns the
Transaction object that represents the transaction context currently associated
with the calling thread. This Transact ion object can be used to perform various
operations on the target ransaction. Examples of Transaction object
aperations are resource enlistment and synchronization registration. The
Transaction interface is described in Section 3.3, “Transaction Interface.”

9

TRANSACTION MANAGER INTERFACE

32 Transaction Manager Interface

The jawax.transaction.TransactionManager interface allows the
application server to control transaction boundaries on behalf of the application
being managed. For example, the EJB container manages the transaction states for
transactional EJB components; the container uses the TransacticnManager
interface mainly to demarcate transaction boundaries where operations affect the
calling thread’s transaction context. The Transaction Manager maintains the
transaction context association with threads as part of its infernal data structure. A
thread’s transaction context is either null or it refers to a specific global
transaction. Multiple threads may concurrently be associated with the same global
transaction.

Support for nested franactions is not required.

Each transaction context is encapsulated by a Transacticon object, which
can be used to perform operations which are specific to the target transaction,
regardless of the calling thread’s transaction context. The following sections
provide more detail.

Ll | Starting a Transaction

The TransactionManager _begin method starts a global transaction and
associates the transaction context with the calling thread.

If the Transaction Manager implementation does not support nested
transactions, the TransactionManager . begin method throws the
HotSupportedException when the calling thread is already associated with a
fransaction.

The TransactionManager.getTransaction method retorns the
Transacticon object that represents the transaction context currently associated
with the calling thread. This Transact ion object can be used 1o perform various
operations on the target transaction. Examples of Transaction object
aperations are resource enlistment and synchronization registration. The
Transaction interface is described in Section 3.3, “Transaction Interface.”

.] Completing a Transaction

The TransactionManager.commit method completes the transaction currently
associated with the calling thread. Afier the commit methed returns, the calling
thread is not associated with a transaction. I the commic method is called when the

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

.] Completing a Transaction

The TransactionManager. commit method completes the transaction currently
agaociated with the calling thread. After the commit methed retrns, the calling
thread is not agsociated with a transaction, If the commit method is called when the
thread is not associated with any transaction context, the TransactionManager
throws an exception. In some implementations, the commit operation is restricted to
the transaction originator only. If the calling thread is not allowed to commit the
transaction, the TransactionManager throws an exception.

The TransactionManager.rollback method rolls back the transaction
associated with the current thread. After the rollback method completes, the
thread is associated with no transaction.

313 Suspending and Resuming a Transaction

A call to the TransactionManager . suspend method temporarily suspends the
transaction that is currently associated with the calling thread. If the thread is not
associated with any transaction, a null object reference is returned; otherwise, a
valid Transact ion object is returned. The Transacticon object can later be
passed to the resume method to reinstate the transaction context association with
the calling thread.

The TransactionManager.resume method re-associates the specified
transaction context with the calling thread. If the transaction specified is a valid
transaction, the transaction context is associated with the calling thread,
otherwise, the thread is associated with no transaction.

Transaction tobj = TransactionManager.suspend() ;

TransactionManager.resume{tobj);

If TransactionManager . resume is invoked when the calling thread is
already associated with another transaction, the Transaction Manager throws the
IllegalStateException exception

Mote that some transaction manager implementations allow a suspended
transaction to be resumed by a different thread. This feature is not required by
ITA.

Public Review Drafi

thread is not associated with any transaction context, the TransactionManager
throws an exception. In some implementations, the commit operation is restricted to
the transaction originator only. If the calling thread is not allowed 1o commit the
transaction, the TransactionManager throws an exception.

The TransactionManager.rollback method rells back the transaction
associated with the current thread. After the rollback method completes, the
thread is asgociated with no transaction.

313 Suspending and Resuming a Transaction

Acalltothe TransactionManager . suspend method temporarily suspends the
transaction that is currently associated with the calling thread. If the thread is not
asseciated with any transaction, a null object reference is returned; otherwise, a
valid Transact ion object is returned. The Transaction object can later be
passed to the resume method to reinstate the transaction context association with
the calling thread.

The TransacticnManager. resume method re-associates the specified
transaction context with the calling thread. If the transaction specified is a valid
transaction, the transaction context is associated with the calling thread;
otherwise, the thread is associated with no transaction.

Transaction tobj = TransactionManager.suspend() ;

TransactionManager.resume(tobij);

If TransactionManager. resume is invoked when the calling thread is
already associated with another transaction, the Transaction Manager throws the
IllegalStateException exception.

Mote that some transaction manager implementations allow a suspended
transaction to be resumed by a different thread. This feature is not required by
ITA.

The application server is responsible for ensuring that the resources in use by
the application are properly delisted from the suspended transaction. A resource
delist operation triggers the Transaction Manager to inform the resource manager
to disassociate the transaction from the specified resource ohject
(kAaResource.end (TMSUSEEND}).

Public Review Drafi

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

TRAMSACTHIN INTERFACE

The application server is responsible for ensuring that the resources in use by
the application are properly delisted from the suapended transaction. A resource
delist operation triggers the Transaction Manager to inform the resource manager
1o disassociate the transaction from the specified resource ohject
(KAResource.end (TMSUSEFEND}).

When the application’s transaction context is resumed, the application server
ensures that the resource in use by the application is again enlisted with the
transaction. Enlisting a resource as a result of resuming a transaction triggers the
Transaction Manager to inform the resource manager to re-associate the resource
abject with the resumed fransaction (XARescurce.start (THRESUKE]). Refer
o Section 3.3.1, “Resource Enlistment.” and Section 3.4.4, “Transaction
Association,” for more details on resource enlistment and transaction association.

33 Transaction Interface

The Transaction interface allows operations to be performed on the transaction
asaociated with the target object. Every global transaction is associated with one
Transacticon object when the iransaction is created. The Transact ion object
can be used to:

+ Enlist the transactional resources in use by the application.
+ Register for transaction synchronization callbacks.
* Commit or rollback the transaction.

« Obtain the status of the transaction.

These functions are described in the sections below.

P | Resource Enlistment

An application server provides the application ran-time infrastrocture that includes
transactional resource management. Transactional resources such as database
connections are typically managed by the application server in conjunction with
some resource adapter and optionally with connection pooling optimization. In
arder for an external transaction manager to coordinate transactional work
performed by the resource managers, the application server must enlist and delist
the resources used in the fransaction.

Resource enlistment performed by an application server serves iwo purposes:

TRAMSACTHIN INTERFACE

When the application’s transaction context is resumed, the application server
ensures that the resource in use by the application is again enlisted with the
transaction. Enlisting a resource as a result of resuming a transaction triggers the
Transaction Manager to inform the resource manager to re-associate the resource
abject with the resumed fransaction (XAResource.start (THRESUME}). Refer
1o Section 3.3.1, “Resource Enlistment.” and Section 3.4.4, “Transaction
Acssociation,” for more details on resource enlistment and transaction association.

33 Transaction Interface

The Transaction interface allows operations to be performed on the transaction
associated with the target object. Every global transaction is associated with one
Transaction object when the transaction is created. The Transact ion object
can be used to:

"

Enlist the transactional resources in use by the application.

-

Register for transaction synchronization callbacks.

-

Commit or rollback the transaction.

-

Obtain the status of the transaction.

These functions are described in the sections below.

3aa Resource Enlistment

An application server provides the application ran-time infrastrocture that includes
transactional resource management. Transactional resources such as database
connections are typically managed by the application server in conjunction with
spme resource adapter and optionally with connection pooling optimization. In
arder for an external transaction manager to coordinate transactional work
performed by the resource managers, the application server must enlist and delist
the resources used in the fransaction.

Resource enlistment performed by an application server serves two purposes:

* It informs the Transaction Manager about the resource manager instance that
is participating in the global transaction. This allows the Transaction Manager

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

+ It informs the Transaction Manager about the resource manager instance that
is participating in the global transaction. This allows the Transaction Manager
to inform the participating resource manager an trangaction association with
the work performed through the connection (resource) ohject.

-

It enables the Transaction Manager to group the resource types in use by each
transaction. The resource grouping allows the Transaction Manager to conduct
the two-phase commit transaction protocol between the Transaction Manager
and the Resource Managers, as defined by the X/Open XA specification.

For each resource in use by the application, the application server invokes the
enlistRescurce method and specifies the xaRescurce object that identifies
the resource in wse.

The enlistResource request resulis in the Transaction Manager informing
the resource manager to start asgociating the transaction with the work performed
through the corresponding resource—by invoking the ¥ARescurce _start
method. The Transaction Manager is responsible for passing the appropriate flag
inits xAResource.start method call to the resource manager. The
XARescurce interface is described in Section 3.4, “X AResource Interface.”

Ifthe target transaction already has another XAResource ohject participating
in the transaction, the Transaction Manager invokes the XAResource isSaneRM
method to determine if the specified ¥ARescurce represents the same resource
manager instance. This information allows the Transaction Manager to group the
resource managers that are performing work on behalf of the transaction.

If the xAResource object represents a resource manager instance that has
seen the global transaction before, the Transaction Manager groups the newly
registered resource together with the previous XARescurce object and ensures
that the same Resource Manager only receives one set of prepare-commit calls for
completing the target global transaction.

If the xAResource object represents a resource manager that has not
previously seen the global transaction, the Transaction Manager establishes a
different transaction branch ID° and ensures that this new resouree manager is
infiermed about the transaction completion with proper prepare-commit calls.

The iszameim method is discussed in Section 3.4.9, “ldentifying Resource
Manager Instance.”

The Transaction.delistRescurce method is used to disassociate the
apecified resource from the transaction context in the target object. The
application server invokes the delistResource method with the following two
parameters:

Public Review Drafi

to inform the participating resource manager on trangaction association with
the work performed through the connection (resource) ohject.

"

It enables the Transaction Manager to group the resource types in use by each
transaction. The regource grouping allows the Transaction Manager to conduect
the two-phase commit transaction protocol between the Transaction Manager
and the Resource Managers, as defined by the X/Open XA specification.

For each resource in use by the application, the application server invokes the
enlistResource method and specifies the xARescurce object that identifies
the resource in use.

The enlistResource request resulis in the Transaction Manager informing
the resource manager to start asgociating the transaction with the work performed
through the corresponding resource—by invoking the ¥aARescurce _start
method. The Trangaction Manager is responsible for passing the appropriate flag
inits xAResource. start method call to the resource manager. The
xhRescurce interface is described in Section 3.4, “X AResource Interface.”

Ifthe target transaction already has another XAResource ohject participating
in the transaction, the Transaction Manager invokes the XAResource isSameRHM
method to determine if the specified ¥AResocurce represents the same resource
manager instance. This information allows the Transaction Manager to group the
resource managers that are performing work on behalf of the transaction.

If the tAResource object represents a resource manager instance that has
seen the global transaction before, the Transaction Manager groups the newly
registered resource together with the previous XARescurce object and ensures
that the same Resource Manager only receives one set of prepare-commit calls for
completing the target global transaction.

If the tAResource object represents a resource manager that has not
previously seen the global transaction, the Transaction Manager establishes a
different transaction beanch ID° and ensures that this new resouree manager is
informed about the transaction completion with proper prepare-commit calls.

The issamagm method is discussed in Section 3.4.9, “Identifying Resource
Manager Instance.”

The Transaction.delistResource method is used to disassociate the
apecified resource from the trangaction context in the target object. The
application server invokes the delistResource method with the following two
parameters:

Public Review Drafi

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

TEANSACTIONSYNCHRGNIZATIONREGISTREY INTERFACE 25

l.b TransactionSvanchronization Registry Interface

The jawax.transaction.TransactionSynchronizationRegistry
interface is intended for use by system level application server components such as
persistence managers, This provides the ability to register synchronization objects
with special ordering semantics, associate resource objects with the current
transaction, get the transaction context of the current fransaction, get current
transaction status, and mark the current trangaction for rollback.

This interface is implemented by the application server as a stateless service
abject. The same object can be used by any number of components with complete
thread safety. In standard application server environments, an instance
implementing this interface can be looked up via INDI using a standard name.

The user of getRescurce and putResource methods is a library
component that manages transaction-specific data on behalf of a caller. The
transaction-specific data provided by the caller is not immediately flushed to a
tranzaction-enlisted resource, but instead is cached. The cached data is stored in a
transaction-related data structure that is in a zero-of-one-to-one relationship with
the transactional context of the caller.

An efficient way 1o manage such a transaction-related data struciure is for the
implementation of the TransacticnSynchronizationRegistry to manage a
Map for each transaction as part of the transaction state.

The keys of this Map are objects that are provided by the library components
{users of the API). The values of the Map are any values that the library
components are interested in storing, for example the transaction-related data
structures. This Map has no concurrency issues since it is a dedicated instance for
the transaction. When the ransaction completes, the Map is cleared, releasing
resources for garbage collection.

The scalability of the library code is significantly enhanced by the addition of
the getkesource and putResource metheds to the

TransactionSynchronizationRegistry.

3.7 Transactional Annotation

The javax.transaction.Transactional annotation provides the application
the ability to declaratively contrel transaction boundaries on CDI managed beans, as
well as classes defined as managed beans by the Java EE specification, at both the
class and methed level. Method level annotations override class level annotations.

TEANSACTIONSYNCHRGNIZATIONREGISTREY INTERFACE 25

l.b TransactionSvanchronization Registry Interface

The jawax.transaction.TransactionSynchronizationRegistry
interface is intended for use by system level application server components such as
persistence managers, This provides the ability to register synchronization objects
with special ordering semantics, associate resource objects with the current
transaction, get the transaction context of the current fransaction, get current
transaction status, and mark the current trangaction for rollback.

This interface is implemented by the application server as a stateless service
abject. The same object can be used by any number of components with complete
thread safety. In standard application server environments, an instance
implementing this interface can be looked up via INDI using a standard name.

The user of getRescurce and putResource methods is a library
component that manages transaction-specific data on behalf of a caller. The
transaction-specific data provided by the caller is not immediately flushed to a
tranzaction-enlisted resource, but instead is cached. The cached data is stored in a
transaction-related data structure that is in a zero-of-one-to-one relationship with
the transactional context of the caller.

An efficient way 1o manage such a transaction-related data struciure is for the
implementation of the TransacticnSynchronizationRegistry to manage a
Map for each transaction as part of the transaction state.

The keys of this Map are objects that are provided by the library components
{users of the API). The values of the Map are any values that the library
components are interested in storing, for example the transaction-related data
structures. This Map has no concurrency issues since it is a dedicated instance for
the transaction. When the ransaction completes, the Map is cleared, releasing
resources for garbage collection.

The scalability of the library code is significantly enhanced by the addition of
the getkesource and putResource metheds to the

TransactionSynchronizationRegistry.

3.7 Transactional Annotation

The java=x.transaction. Transactional annotation provides the
application
the ability to declaratively control transaction boundaries on CDI managed beans, as
well as classes defined as managed beans by the Java EE specification, at both the

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

16

This support is provided via an implementation of CDH interceptors that conduet the
necegsary suspending, resuming, ete. The Transactional interceptor interposes

on business method invecation and lifecyele events. Lifeeyele methods are invoked
in an unspecified fransaction context unless the method is annotated explicitly with
@Transactional. The Transactional interceplors must have a priority

of Interceptor. Priority. PLATFORM sEFoRE.200. Refer to the

Interceptors specification for more details.

The TeType element of the annotation indicates whether a bean method is to
be executed within a transaction context where the values provide the following
corresponding behavior and TxType . REQUIRED i the default:

* TuType.REQUIRED: If called outside a transaction context, the interceptor
must begin a new JTA transaction, the managed bean method execution must
then continue inside this transaction context, and the ransaction must be com-
pleted by the interceptor.

If called inside a transaction context, the managed bean method execution
muat then continue inside this transaction context.

* TuType.REQUIRES MEW: If called outside a transaction context, the inter-
ceptor must begin a new JTA transaction, the managed bean method execu-
tion must then continue inside this transaction context, and the transaction
must be completed by the interceptor.

If called inside a transaction context, the current transaction context must be

suspended, a new JTA transaction will begin, the managed bean method exe-
cution must then continue inside this iransaction context, the transaction must
be completed, and the previously suspended transaction must be resumed.

* TuType.MANDATORY: IT called outside a fransaction context, a
TransactionalException with a nested
TransactionReguiredException must be thrown.

If called inside a transaction context, managed bean methed execution will
then continue under that context.

* TuType.sUPPoRTSE: If called outside a transaction context, managed bean
method execution must then continue outside a transaction contexi.

If called inside a transaction context, the managed bean method, execution
must then continue inside this ransaction context.

Public Review Drafi

16

class and method level where method level annotations override those at the class
level. See the EJB specification for restrictions on the use of aTransactional
with EJBs. This support is provided via an implementation of CDI interceptors that
conduct the necessary suspending, resuming, etc. The Transactional interceptor
interposes on business method invoeations and lifecyele events. Lifecvele methods
are invoked in an unspecified transaction context unless the method is annotated
explicitly with @Transactional. The Transactional interceptors must have
a priority of Interceptor . Priority. PLATFORM_BEFORE+200. Refer to the
Interceptors specification for more details.

The TeType clement of the annotation indicates whether a bean method is to
be executed within a transaction context where the values provide the following
corresponding behavior and TxType . REQUIRED is the defauli:

* TuType.REQUIRED: If called outside a transaction context, the interceptor
must begin a new JTA transaction, the managed bean method execution must
then continue inside this transaction context, and the ransaction must be com-
pleted by the interceptor.

If called inside a transaction context, the managed bean method execution
must then continue inside this fransaction context.

* TxType.REQUIRES MEW: If called outside a transaction context, the inter-
ceptor must begin a new JTA transaction, the managed bean method execu-
tion must then continue inside this ransaction context, and the transaction
must be completed by the interceptor.

If called inside a transaction context, the current transaction context must be

suspended, a new JTA transaction will begin, the managed bean method exe-
cution must then continue inside this iransaction context, the transaction must
be completed, and the previously suspended transaction must be resumed.

* TxType.MANDATORY: I called outside a fransaction context, a
TransacticonalException With a nested
TransactionRegquiredException must be thrown.

If called inside a transaction context, managed bean method execution will
then continue under that context.

* TxType.sUPPoRTS: I called outside a transaction context, managed bean
method execution must then continue outside a transaction context.

If called inside a transaction context, the managed bean method execution
must then continue inside this fransaction context.

Public Review Drafi

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

18

@Transactional (rollbackOn={S0LException.class},

dontRollbacktn={&0LWarning.class})

The TransactionalExcepticn thrown from the Transacticnal
interceptors implementation is 8 RuntimeException and therefore by defawlt
any transaction that was started as a result of 8 Transacticonal annotation
carlier in the call stream will be marked for rollback as a result of the
TransactionalException being thrown by the Transacticonal interceptor
of the second bean. For example if a transaction is begun as a result of a call to a
bean annotated with Transactional {TxType . REQUIRES) and this bean in
turn calls a second bean annotated with Transactional [TxType . HEVER], the
transaction begun by the first bean will be marked for rellback.

If an attempt to use the UserTransaction is made from within a bean or
method annotated with @Transactional, an IllegalStateException
must be thrown, however, use of the
TransactionSynchronizationRegistry is allowed.

See the EIB specification for restrictions on the use of @Transactional
with EJBs.

38 TransactionScoped Annotation

The javax_transaction.TransactionScoped annofation provides the
ability to specify a standard CDI scope to define bean instances whose lifecyele is
scoped to the currently active JTA wransaction. This annotation cannot be used by
classes defined as managed beans by the Java EE specification which have non-
contextual references. The transaction scope is active when the return from a call to
UserTransaction.getStatus of TransactionManager.getStatus isone

of the following states:

Status.STATUE ACTIVE

Status . ETATUE MARKED ROLLEACK
Status . STATUE FREFARED

Etatus . ETATUE UNENOWH

Status . ETATUE FREFPARING
Status.ETATUE COMMITTING
SEtatus . ETATUE ROLLING BACK

Public Review Drafi

18

@Transactional (rollbackOn={S0LException.class},

dontRollbacktn={&0LWarning.class})

The TransactionalExcepticn thrown from the Transacticnal
interceptors implementation is 8 RuntimeException and therefore by defawlt
any transaction that was started as a result of 8 Transacticonal annotation
carlier in the call stream will be marked for rollback as a result of the
TransactionalException being thrown by the Transacticonal interceptor
of the second bean. For example if a transaction is begun as a result of a call to a
bean annotated with Transactional {TxType . REQUIRES) and this bean in
turn calls a second bean annotated with Transactional [TxType . HEVER], the
transaction begun by the first bean will be marked for rellback.

KR TransactionScoped Annotation

The javax_transaction.TransackionScoped annotation provides the
ability to specify a standard CDI scope to define bean instances whose lifecvele is
scoped to the currently active JTA transaction. This annotation has no effect on
classes which have non-contextual references such those defined as managed beans
by the Java EE specification . The transaction scope is active when the refumn from a
call 1o UserTransaction.get&tatus oF

TransactionManager.getStatus is one of the following states:

Status . STATUE ACTIVE
Status.ETATUE MARKED HROLLEACK
Status . ETATUE PREPARED

Status . ETATUE UNEKNOWNH

Etatus . ETATUE FREFPARING
Status . ETATUE COMMITTING
Status.ETATUE ROLLING BACK

It is not intended that the term “active” as defined here in relation to the
Transactionfcoped annotation should also apply to its use in relation to
transaction context, lifecycle, etc. mentioned elsewhere in this specification. The
object with this annotation will be associated with the corrent active JTA
transaction when the object is used. This association must be retained through any
transaction suspend or resume calls as well as any

Public Review Drafi

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

TEAMNSACTIONSCOPED ANNOTATION

It is not intended that the term “active™ as defined here in relation to the
TransactionScoped annotation should alse apply to its use in relation to
transaction context, lifecycle, efc. mentioned elsewhere in this specification. The
abject with this annotation will be associated with the current active JTA
transaction when the object is used. This association must be retained through any
transaction suspend or resume calls as well as any
Synchronization.beforecCompletion callbacks. The transaction context
must be destroyed after completion calls have been made on enlisted resources.
Any Synchronization.aftercompletion methods will be invoked in an
undefined context. The way in which the ITA transaction is begun and completed
(for example via UserTransaction, Transactional interceptor, ete.) is of no
consequence. The contextual references used across different ITA transactions are
distinct. Refer to the CDI specification for more details on contextual references.
A javax.enterprise.context.ContextHotActiveException must be
thrown if a bean with this annotation is vsed when the transaction context is not
active.

The following example test case illustrates the expected behavior.

Transactionfcoped annotated CDI managed bean:
@TransactionScopead

public class TestCDITransactionScopeBean |

public woid testi)

i
Ffass
I
I
Test Class:

29

TEAMNSACTIONSCOPED ANNOTATION

Synchronization.beforecompletion callbacks The transaction context
must be destroyed after completion calls have been made on enlisted resources.
Any Synchronization.afterCompletion methods will be invoked in an
undefined context. The way in which the ITA transaction is begun and completed
(for example via UserTransaction, Transactional interceptor, ete.) is of no
consequence. The contextual references used across different ITA transactions are
distinct. Refer to the CDI specification for moere details on contextual references.
A javax.enterprise.context.ContextHotActiveException must be
thrown if a bean with this annotation is vsed when the transaction context is not
active.

The following example test case illustrates the expected behavior.

Transactionfcoped annotated CDI managed bean:
@TransactionScoped

public class TestCDITransactionfcopeBean |

public void testi)

i
i
1
I
Test Class:

UserTransaction userTransaction;
TransactionManager transactionManager;
@lnject

TestCOITransactionScopeBean testTxhAssociationChangeBean;

public void testTxAssociationChange() throws Exception |
userTransaction.begin();: //txl begun
testTxAssociationChangeBean. test () ;
// assert testTxlAssociationChangsBean instance has txl

/Y association

29

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

an

UserTransaction userTransactiong
TransactionManager transactionManager ;
@lnject

TestCOITransactionScopeBean testTxAssociationChangeBean;

public woid testTxAssociationChange() throws Exception {
userTransaction.begin(); //txl begun
testTxAssociationChangeBean. test () ;
// assert testTxAssociationChangsBean instance has txl

/{ association

Public Review Draft

an

Transaction transaction =

transactionManager . suspendf() ;
ff txl suspended
userTransaction.begin{); //tx2 begun
testTxAssociationChangeBean.test () ;
// assert new testTxissociationChangeEean instance has
/f tx2 association
userTransaction.commit () ;
{4/ tx2 committed, assert notransaction scope is actiwve
transactionManager.resume (tx) ;
/4 txl resumed
testTxAssociationChangeBean.test () ;
{// assert testTxAssociationChangeBean is original txl
/4 instance and not still referencing committed/tx3 tx
userTransaction.commit () ;
/4 txl commit, assert no transactionscops is active
t=n o

testTxAssociationChangeBean. test () ;
Eailf

“should have thrownContextMotActiveException®) ;

} catch (ContextMothActiveException
contextNotActiveException) {

{f do nothing intentionally

Public Review Draft

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

TEAMNSACTIONSCOPED ANNOTATION 31 TEAMNSACTIONSCOPED ANNOTATION 31

Transaction transaction =

transactionManager.suspend() ;
ff txl suspended
userTransaction.begini); //tx2 begun
testTxAssociationChangeBean. test () ;
/¢ assert new testTxAssociationChangeBean instance has
/f tx2 association
userTransaction.commit () ;
/¢ tx2 committed, assert notransaction scope is actiwve
transactionManager . resume(tx) ;
/4 txl resumed
testTxAssociationChangeBean. test () ;
{/ assert testTxAssociationChangeEean is origimal txl
{/f instance and not still referencing committed/tx2 tx
userTransaction.commit() ;
/¢ txl commit, assert no transactionscope is active
txy {

testTxAssociationChangaBean. test (] ;
failf

“should have thrownContextHothctiveException*);

} catch (ContextMothActiveException
contextMothctiveException) {

/¢ do nothing intentiocnally

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

36

the business logic, the bean requests for a connection-based resource using the
API provided by the resource adapter of interest.

1. The application server obtains a resource from the resource adapter via some
ResowrceFactory. getTransactioralResonree method.

4. The resource adapter creates the TransacrionalResource ohject and the asso-
ciated X AResource and Connection objects.

i The application server invokes the get¥ARescurce method.
. The application server enlists the resource to the transaction manager.

7. The transaction manager invokes XAResource. start to associate the cur-
rent transaction to the resource.

& The application server invokes the getConnection method.

0. The application server retums the Connection ohject reference to the appli-
cation.

10. The application perferms one of more operations on the connection.
11. The application closes the connection.

12 The application server delist the resource when notified by the resource adapter
about the connection cloge.

13_ The transaction manager invokes ¥AResource.end to disassociate the trans-
action from the XARescurce.

14_ The application server asks the transaction manager to commit the transaction.

13 The transaction manager invokes XAResource.prepare 1o inform the re-
apurce manager o prepare the transaction work for commit.

1&. The transaction manager invokes XARescurce. commit to commit the trans-
action.

This example illustrates the application server’s usage of the
TransactionManager and XAResource interfaces as part of the application
connection request handling.

Public Review Drafi

36

the business logic, the bean requests for a connection-based resource using the
API provided by the resource adapter of interest.

1. The application server obtains a resource from the resource adapter via some
ResowrceFactory. getTransactioralResonree method.

4. The resource adapter creates the TransacrionalResource ohject and the asso-
ciated X AResource and Connection objects.

i The application server invokes the get¥ARescurce method.
. The application server enlists the resource to the transaction manager.

7. The transaction manager invokes XAResource. start to associate the cur-
rent transaction to the resource.

& The application server invokes the getConnection method.

0. The application server retums the Connection ohject reference to the appli-
cation.

10. The application perferms one of more operations on the connection.
11. The application closes the connection.

12 The application server delists the resource when notified by the resource adapt-
er about the connection close.

13_ The transaction manager invokes ¥AResource.end to disassociate the trans-
action from the XARescurce.

14_ The application server asks the transaction manager to commit the transaction.

13 The transaction manager invokes XAResource.prepare 1o inform the re-
apurce manager o prepare the transaction work for commit.

1&. The transaction manager invokes XARescurce. commit to commit the trans-
action.

This example illustrates the application server’s usage of the
TransactionManager and XAResource interfaces as part of the application
connection request handling.

Public Review Drafi

DiffPDF - /Users/paulparkinson/Downloads/JTA1.2Specification-rev7.pdf vs. /Users/paulparkinson/Documents/jtaspec/jta-spec~spec-source-

APPENDEJ{A

Related Documents

This apecification refers to the following documents.

[1] X/Open CAE Specification — Distributed Transaction Processing: The XA
Specification, X/Open Document No. XO/CAES /300 or ISBN 1 B72630 24 3

[2] Java Transaction Service (JTS) ESpecification, available at
http://www.oracle.com/technetwork/java/javaee/jts-
specl%5- 1508547 .pdf

[3] OMG Object Transaction Service (OTS 1.1)

[4] ORE Portability Submission, OMG document orbos/97-04-14

[3] Enserprise JavaBeans™ (EJB) 3.2 Specificarion, available at htep: 7/
jop.orgfen/isrfdetail?id=345

[68] JDBC™ 4.1 Specification, available at heep: / /jep.orgienf jsrf
detail?id=221

[7] JME 2.0 Specification, available at hetp: //jep.orgfen/isc/
detail?id=343

[8] Conrexts and Dependency Mfection for the Jova EE Plagform (CD8) 1T Spec-
{fication, available at http: //jep.orgfen/jsr/detail 7id=346

kL)

APPENDEJ{A

Related Documents

This apecification refers to the following documents.

[} X/Open CAE Spectficarion — Distrifed Transaction Processing: The XA
Specificarion, XiOpen Document No. XOUCAER L300 or ISBN T 872630 24 3

[2] Jave Trarsaction Service (JT5) Spectiication, available at hetp: / /
www.oracle.comftechnetwork/java/javaee/jts-specidss-
1548547 . pdf

[3] OMG Ohjecr Transaction Service (OTE 1.1)

[4] OREB Portability Submission, QMG document orlos/A7-04-14

[3] Enserprise JavaBeans™ (EJB) 3.2 Specificarion, available at htep: 7/
jop.orgfen/isrfdetail?id=345

[68] JDBC™ 4.1 Specification, available at heep: / /jep.orgienf jsrf
detail?id=221

[7] JME 2.0 Specification, available at hetp: //jep.orgfen/isc/
detail?id=343

[8] Conrexts and Dependency Mfection for the Jova EE Plagform (CD8) 1T Spec-
{fication, available at http: //jep.orgfen/jsr/detail 7id=346

[9] mrercepior Specification, available at hetp: f/jop.orgfen/isc
detail?id=3148

kL)

