

This is the Java Transaction API (JTA) specification. JTA specifies high-level
interfaces between a transaction manager and the parties involved in a distributed
transaction system: the application, the resource manager, and the application server.
This document also provides general usage scenarios and implementation
considerations to support JTA in a component-based enterprise application server
environment.

Please send technical comments on this specification to:

users@jta@eng-spec.sunjava.comnet

Sun Microsystems Inc.

Java Transaction API (JTA)

Java Transaction API (JTA)

Java Transaction API
 Copyright © 1999 2013 by Sun Microsystems Inc.Oracle Corporation
901 San Antonio Road, Palo Alto, CA 94303.

 500 Oracle Parkway, Redwood City, California 94065
U.S.A. All rights reserved.

Susan Cheung & Vlada Matena

Version 1.1 2 November 01, 2002Paul
Parkinson

Specification: JSR-000907 Java(tm) Transaction API (JTA) Specification ("Specification")

ORACLE IS WILLING TO LICENSE THIS SPECIFICATION TO YOU ONLY UPON THE
CONDITION THAT YOU ACCEPT ALL OF THE TERMS CONTAINED IN THIS AGREEMENT.
PLEASE READ THE TERMS AND CONDITIONS OF THIS AGREEMENT CAREFULLY. BY
DOWNLOADING THIS SPECIFICATION, YOU ACCEPT THE TERMS AND CONDITIONS OF THE
AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND BY IT, SELECT THE "DECLINE"
BUTTON AT THE BOTTOM OF THIS PAGE.

Specification: JSR-907 Java Transaction API 1.2

Version: 1.12

Status: Maintenance ReleaseReview

Specification Lead: Oracle America, Inc.
Release: 14 26 February 20072013

Copyright 2007 SUN MICROSYSTEMS2013 Oracle America, INCInc.
4150 Network Circle, Santa Clara, California 95054, U.S.A

All rights reserved.
2

Java Transaction API
LIMITED LICENSE GRANTS

1. License for Evaluation Purposes. Sun Specification Lead hereby grants you a fully-paid, non-exclusive,
non-transferable, worldwide, limited license (without the right to sublicense), under Sun’Specification
Lead's applicable intellectual property rights to view, download, use and reproduce the Specification only
for the purpose of internal evaluation. This includes (i) developing applications intended to run on an
implementation of the Specification, provided that such applications do not themselves implement any
portion(s) of the Specification, and (ii) discussing the Specification with any third party; and (iii)
excerpting brief portions of the Specification in oral or written communications which discuss the
Specification provided that such excerpts do not in the aggregate constitute a significant portion of the
Specification.

2. License for the Distribution of Compliant Implementations. Sun Specification Lead also grants you a
perpetual, non-exclusive, non-transferable, worldwide, fully paid-up, royalty free, limited license (without
the right to sublicense) under any applicable copyrights or, subject to the provisions of subsection 4 below,
patent rights it may have covering the Specification to create and/or distribute an Independent
Implementation of the Specification that: (a) fully implements the Specification including all its required
interfaces and functionality; (b) does not modify, subset, superset or otherwise extend the Licensor Name
Space, or include any public or protected packages, classes, Java interfaces, fields or methods within the
Licensor Name Space other than those required/authorized by the Specification or Specifications being
implemented; and (c) passes the Technology Compatibility Kit (including satisfying the requirements of
the applicable TCK Users Guide) for such Specification ("Compliant Implementation"). In addition, the
foregoing license is expressly conditioned on your not acting outside its scope. No license is granted
hereunder for any other purpose (including, for example, modifying the Specification, other than to the
extent of your fair use rights, or distributing the Specification to third parties). Also, no right, title, or
interest in or to any trademarks, service marks, or trade names of Sun Specification Lead or
Sun’Specification Lead's licensors is granted hereunder. Java, and Java-related logos, marks and names are
trademarks or registered trademarks of Sun MicrosystemsOracle America, Inc. in the U.S. and other
countries.

3. Pass-through Conditions. You need not include limitations (a)-(c) from the previous paragraph or any
other particular "pass through" requirements in any license You grant concerning the use of your
Independent Implementation or products derived from it. However, except with respect to Independent
Implementations (and products derived from them) that satisfy limitations (a)-(c) from the previous
paragraph, You may neither: (a) grant or otherwise pass through to your licensees any licenses under
Sun’Specification Lead's applicable intellectual property rights; nor (b) authorize your licensees to make
any claims concerning their implementation’'s compliance with the Specification in question.

4. Reciprocity Concerning Patent Licenses.
3

Java Transaction API
a. With respect to any patent claims covered by the license granted under subparagraph 2 above
that would be infringed by all technically feasible implementations of the Specification, such license is
conditioned upon your offering on fair, reasonable and non-discriminatory terms, to any party seeking it
from You, a perpetual, non-exclusive, non-transferable, worldwide license under Your patent rights which
are or would be infringed by all technically feasible implementations of the Specification to develop,
distribute and use a Compliant Implementation.

b With respect to any patent claims owned by Sun Specification Lead and covered by the license
granted under subparagraph 2, whether or not their infringement can be avoided in a technically feasible
manner when implementing the Specification, such license shall terminate with respect to such claims if
You initiate a claim against Sun Specification Lead that it has, in the course of performing its
responsibilities as the Specification Lead, induced any other entity to infringe Your patent rights.

c Also with respect to any patent claims owned by Sun Specification Lead and covered by the
license granted under subparagraph 2 above, where the infringement of such claims can be avoided in a
technically feasible manner when implementing the Specification such license, with respect to such claims,
shall terminate if You initiate a claim against Sun Specification Lead that its making, having made, using,
offering to sell, selling or importing a Compliant Implementation infringes Your patent rights.

5. Definitions. For the purposes of this Agreement: "Independent Implementation" shall mean an
implementation of the Specification that neither derives from any of Sun’Specification Lead's source code
or binary code materials nor, except with an appropriate and separate license from SunSpecification Lead,
includes any of Sun’Specification Lead's source code or binary code materials; "Licensor Name Space"
shall mean the public class or interface declarations whose names begin with "java", "javax",
"com.sun<Specification Lead>" or their equivalents in any subsequent naming convention adopted by Sun

Oracle through the Java Community Process, or any recognized successors or replacements thereof; and
"Technology Compatibility Kit" or "TCK" shall mean the test suite and accompanying TCK User’'s Guide
provided by Sun Specification Lead which corresponds to the Specification and that was available either
(i) from Sun’Specification Lead's 120 days before the first release of Your Independent Implementation
that allows its use for commercial purposes, or (ii) more recently than 120 days from such release but
against which You elect to test Your implementation of the Specification.

This Agreement will terminate immediately without notice from Sun Specification Lead if you breach the
Agreement or act outside the scope of the licenses granted above.

DISCLAIMER OF WARRANTIES
4

Java Transaction API
THE SPECIFICATION IS PROVIDED "AS IS". SUN SPECIFICATION LEAD MAKES NO
REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT (INCLUDING AS A CONSEQUENCE OF ANY PRACTICE OR
IMPLEMENTATION OF THE SPECIFICATION), OR THAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This document does not represent any
commitment to release or implement any portion of the Specification in any product. In addition, the
Specification could include technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN SPECIFICATION LEAD
OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF OR RELATED IN ANY WAY TO YOUR HAVING,
IMPELEMENTING OR OTHERWISE USING USING THE SPECIFICATION, EVEN IF SUN

SPECIFICATION LEAD AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.
You will indemnify, hold harmless, and defend Sun Specification Lead and its licensors from any claims
arising or resulting from: (i) your use of the Specification; (ii) the use or distribution of your Java
application, applet and/or implementation; and/or (iii) any claims that later versions or releases of any
Specification furnished to you are incompatible with the Specification provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a
U.S. Government prime contractor or subcontractor (at any tier), then the Government’'s rights in the
Software and accompanying documentation shall be only as set forth in this license; this is in accordance
with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48
C.F.R. 2.101 and 12.212 (for non-DoD acquisitions).

REPORT

If you provide Sun Specification Lead with any comments or suggestions concerning the Specification
("Feedback"), you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-
confidential basis, and (ii) grant Sun Specification Lead a perpetual, non-exclusive, worldwide, fully paid-
5

Java Transaction API
up, irrevocable license, with the right to sublicense through multiple levels of sublicensees, to incorporate,
disclose, and use without limitation the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by California law and controlling U.S. federal law.
The U.N. Convention for the International Sale of Goods and the choice of law rules of any jurisdiction
will not apply.

The Specification is subject to U.S. export control laws and may be subject to export or import regulations
in other countries. Licensee agrees to comply strictly with all such laws and regulations and acknowledges
that it has the responsibility to obtain such licenses to export, re-export or import as may be required after
delivery to Licensee.

This Agreement is the parties’ ' entire agreement relating to its subject matter. It supersedes all prior or
contemporaneous oral or written communications, proposals, conditions, representations and warranties
and prevails over any conflicting or additional terms of any quote, order, acknowledgment, or other
communication between the parties relating to its subject matter during the term of this Agreement. No
modification to this Agreement will be binding, unless in writing and signed by an authorized
representative of each party.

Rev. April, 2006
6

Java Transaction API
Table of Contents
1. Introduction ... 7

1.1 Background .. 7
1.2 Target Audience .. 9

2. Relationship to Other Java APIs .. 10

2.1 Enterprise JavaBeans ... 10
2.2 JDBC 24.0 1 Standard Extension ... 10
2.3 Java Message Service .. 10
2.4 Java Transaction Service ... 10

3. Java Transaction API ... 11

3.1 UserTransaction Interface ... 11
3.1.1 UserTransaction Support in EJB Server 11
3.1.2 UserTransaction Support for Transactional Clients 12

3.2 TransactionManager Interface .. 12
3.2.1 Starting a Transacation ... 13
3.2.2 Completing a Transaction .. 13
3.2.3 Suspending and Resuming a Transaction 13

3.3 Transaction Interface .. 14
3.3.1 Resource Enlistment ... 15
3.3.2 Transaction Synchronization.. 15
3.3.3 Transaction Completion ... 17
3.3.4 Transaction Equality and Hash Code 17

3.4 XAResource Interface ... 17
3.4.1 Opening a Resource Manager .. 19
3.4.2 Closing a Resource Manager ... 19
3.4.3 Thread of Control ... 19
3.4.4 Transaction Association ... 20
3.4.5 Externally Controlled Connections ... 21
3.4.6 Resource Sharing ... 21
3.4.7 Local and Global Transactions ... 22
3.4.8 Failures Recovery ... 22
3.4.9 Identifying The Resource Manager Instance 23
3.4.10 Dynamic Registration .. 24

3.5 Xid Interface ... 24
3.6 TransactionSynchronizationRegistry Interface 24
4. JTA Support in Application Server 3.7 Transactional Annotation
.. 26. 25
43.8 TransactionScoped Annotation1 Connection-Based Resource
Usage Scenario .. 2627

4. JTA Support in Application Server ...2 Transaction Associa-
tion and Connection Request Flow2830
7

Java Transaction API
5. Java Transaction API Reference 4.1 Connection-Based Resource Usage Scenario
... . 30
6. Related Documents4.................................2 Transaction Association and
Connection Request Flow .. 3267

5. Related Documents.. 33
8

Java Transaction API
1 Introduction

This document describes the Java Transaction API (JTA). JTA specifies local Java
interfaces between a transaction manager and the parties involved in a distributed
transaction system: the application, the resource manager, and the application server.

The JTA package consists of three parts:

• A high-level application interface that allows a transactional application to
demarcate transaction boundaries.

• A Java mapping of the industry standard X/Open XA protocol that allows a
transactional resource manager to participate in a global transaction controlled
by an external transaction manager.

• A high-level transaction manager interface that allows an application server to
control transaction boundary demarcation for an application being managed by
the application server.

 Note: The JTA interfaces are presented as high-level from the transaction
manager’s perspective. In contrast, a low-level API for the transaction
manager consists of interfaces that are used to implement the transaction
manager. For example, the Java mapping of the OTS are low-level interfaces
used internally by a transaction manager.

1.1 Background

Distributed transaction services in Enterprise Java middleware involves five players:
the transaction manager, the application server, the resource manager, the application
program, and the communication resource manager. Each of these players contributes
to the distributed transaction processing system by implementing different sets of
transaction APIs and functionalities.

• A transaction manager provides the services and management functions
required to support transaction demarcation, transactional resource
management, synchronization, and transaction context propagation.

• An application server (or TP monitor) provides the infrastructure required to
support the application run-time environment which includes transaction state
management. An example of such an application server is an EJB server.

• A resource manager (through a resource adapter1) provides the application
access to resources. The resource manager participates in distributed
transactions by implementing a transaction resource interface used by the

1.A Resource Adapter is a system level software library that is used by an application server or client to
connect to a Resource Manager. A Resource Adapter is typically specific to a Resource Manager. It is avail-
able as a library and is used within the address space of the client using it. Examples of resource adapters
are: JDBC driver to connect to a relational database, ODMG driver to connect to an object database, JRFC
library to connect to SAP R/3 system. A resource adapter may provide additional services besides the con-
nection API.
9

Java Transaction API
transaction manager to communicate transaction association, transaction
completion and recovery work. An example of such a resource manager is a
relational database server.

• A component-based transactional application that is developed to operate in a
modern application server environment relies on the application server to
provide transaction management support through declarative transaction
attribute settings. An example of this type of applications is an application
developed using the industry standard Enterprise JavaBeans (EJB) component
architecture. In addition, some other stand-alone Java client programs may wish
to control their transaction boundaries using a high-level interface provided by
the application server or the transaction manager.

• A communication resource manager (CRM) supports transaction context
propagation and access to the transaction service for incoming and outgoing
requests. The JTA document does not specify requirements pertained to
communication. Refer to the JTS Specification [2] for more details on
interoperability between Transaction Managers.

From the transaction manager’s perspective, the actual implementation of the
transaction services does not need to be exposed; only high-level interfaces need to be
defined to allow transaction demarcation, resource enlistment, synchronization and
recovery process to be driven from the users of the transaction services. The purpose of
JTA is to define the local Java interfaces required for the transaction manager to support
transaction management in the Java enterprise distributed computing environment. In
the diagram shown below, the small half-circle represents the JTA specification.
Chapter 3 of the document describes each portion of the specification in details.
10

Java Transaction API
Application

 Application
Server

Resource
ManagerTransaction

Manager

Service
Implementation

Transaction

EJB
JDBC, JMS

JTAJTA
UserTransaction

XAResource

Inbound tx Outbound tx

Protocol specific Protocol specific

(for example, JTS)

TransactionManager
JTA

Communication Resource
Manager (CRM)

Low-level
11

Java Transaction API
1.2 Target Audience

This document is intended for implementors of:

• Transaction managers such as JTS.

• Resource adapters such as JDBC drivers and JMS providers.

• Transactional resource managers such as RDBMS.

• Application servers such as EJB Servers.

• Advanced transactional applications written in the JavaTM programming
language.

Application

 Application
Server

Resource
ManagerTransaction

Manager

Service
Implementation

Transaction

EJB
JDBC, JMS

JTAJTA
UserTransaction

XAResource

Inbound tx Outbound tx

Protocol specific Protocol specific

(for example, JTS)

TransactionManager
JTA

Communication Resource
Manager (CRM)

Low-level
12

Java Transaction API
2 Relationship to Other Java APIs

2.1 Enterprise JavaBeans

The Enterprise JavaBeans architecture requires that an EJB Container support
application-level transaction demarcation by implementing the
javax.transaction.UserTransaction interface. The UserTransaction interface
is intended to be used by both the EJB Bean implementor (for TX_BEAN_MANAGED
Beansbeans with bean-managed transactions) and by the client programmer who that
wants to explicitly demarcate transaction boundaries within programs that are written
in the Java programming language.

Refer to http://java.sun.com/products/ejb for further details on EJB.

 Note: The EJB Spec and related Java files will be updated to reflect the current
JTA package naming. This work is planned for the next EJB spec release.

2.2 JDBC 24.0 1 Standard Extension API

One of the new features included in the JDBC 2.0 Extension Specification is support
for distributed transactions. Two new JDBC interfaces have been created for JDBC
drivers to support distributed transactions using the Java Transaction API’s
XAResource interface. The new JDBC 2.0 interfaces are javax.sql.XAConnection
and javax.sql.XADataSource.

A JDBC driver that supports distributed transactions implements the
javax.transaction.xa.XAResource interface, the javax.sql.XAConnection
interface, and the javax.sql.XADataSource interface. Refer to the JDBC 24.0
Standard Extension 1 Specification for further details (http://java.sun.com/products/
jdbc)details.

2.3 Java Message Service

The Java Transaction API may be used by a Java Message Service provider to support
distributed transactions. A JMS provider that supports the XAResource interface is able
to participate as a resource manager in a distributed transaction processing system that
uses a two-phase commit transaction protocol. In particular, a JMS provider
implements the javax.transaction.xa.XAResource interface, the
javax.jms.XAConnection and the javax.jms.XASession interface. Refer to the
JMS 12.0 Specification for further details (http://java.sun.com/products/jms)details.

2.4 Java Transaction Service

Java Transaction Service (JTS) is a specification for building a transaction manager
which supports the JTA interfaces at the high-level and the standard Java mapping of
the CORBA Object Transaction Service 1.1 specification at the low-level. JTS provides
transaction interoperability using the CORBA standard IIOP protocol for transaction
propagation between servers. JTS is intended for vendors who that provide the
transaction system infrastructure for enterprise middleware.
13

Java Transaction API

14

Java Transaction API
3 Java Transaction API

The Java Transaction API consists of three elements: a high-level application
transaction demarcation interface, a high-level transaction manager interface intended
for an application server, and a standard Java mapping of the X/Open XA protocol
intended for a transactional resource manager. This chapter specifies each of these
elements in details.

3.1 UserTransaction Interface

The javax.transaction.UserTransaction interface provides the application the
ability to control transaction boundaries programmatically. This interface may be used
by Java client programs or EJB beans.

The UserTransaction.begin method starts a global transaction and associates the
transaction with the calling thread. The transaction-to-thread association is managed
transparently by the Transaction Manager.

Support for nested tranactions is not required. The UserTransaction.begin method
throws the NotSupportedException when the calling thread is already associated
with a transaction and the transaction manager implementation does not support nested
transactions.

Transaction context propagation between application programs is provided by the
underlying transaction manager implementations on the client and server machines.
The transaction context format used for propagation is protocol dependent and must be
negotiated between the client and server hosts. For example, if the transaction manager
is an implementation of the JTS specification, it will use the transaction context
propagation format as specified in the CORBA OTS 1.1 specification. Transaction
propagation is transparent to application programs.

3.1.1 UserTransaction Support in EJB Server

EJB servers are required to support the UserTransaction interface for use by EJB
beans with the TX_BEAN_MANAGED transaction attribute. The UserTransaction
interface is exposed to EJB components through the EJBContext interface using the
getUserTransaction method. Thus, an EJB application does not interface with the
Transaction Manager directly for transaction demarcation; instead, the EJB bean relies
on the EJB Server to provide support for all of its transaction work as defined in the
Enterprise JavaBeans Specification [5]. (The underlying interaction between the EJB
Server and the TM is transparent to the application.)

The code sample below illustrates the usage of UserTransaction by a
TX_BEAN_MANAGED EJB session bean:

// In the session bean’s setSessionContext method,
// store the bean context in an instance variable
SessionContext ctx = sessionContext;

..
15

Java Transaction API
// somewhere else in the bean’s business logic
The implementation of the UserTransaction object must be both
javax.naming.Referenceable and java.io.Serializable, so that the object can
be stored in all JNDI naming contexts.

The following example illustrates how an application component acquires and uses a
UserTransaction object via injection.

 @Resource UserTransaction userTransaction;

 public void updateData() {

 // Start a transaction.

 userTransaction.begin();

 // ...

 // Perform transactional operations on data

 // Commit the transaction.

UserTransaction utx = ctx tx.getUserTransactioncommit();

 }

// start a transaction
utx.begin();

.. do work

// commit the work
utx.commit();

3.1.2 UserTransaction Support for Transactional Clients

The UserTransaction interface may be used by Java client programs either through
support from the application server or support from the transaction manager on the
client host.

The application server vendor is expected to provide tools for an administrator to
configure the UserTransaction object binding in the JNDI namespace. The
implementation of the UserTransaction object must be both
javax.naming.Referenceable and java.io.Serializable, so that the object can
be stored in all JNDI naming contexts.

If an application server supports transaction demarcation performed by transactional
clients, the application server must support the client program’s ability to use the JNDI
lookup mechanism for obtaining the UserTransaction object reference. As JTA does
not define the JNDI name for UserTransaction, the client program should use an
appropriate configuration mechanism to pass the name string to the JNDI lookup
method.

An example of such an implementation is through the use of a system property. The
following sample code is provided for illustrative purposes:
16

Java Transaction API
// get the system property value configured by administrator
String utxPropVal = System.getProperty(“jta.UserTransaction”);

// use JNDI to locate the UserTransaction object
The following example illustrates how an application component acquires and uses a
UserTransaction object using a JNDI lookup.

 public void updateData() {

 // Obtain the default initial JNDI context.

 Context ctx context = new InitialContext();

 // Look up the UserTransaction object.

 UserTransaction userTransaction = (UserTransaction)

 context.lookup("java:comp/UserTransaction");

 // Start a transaction.

UserTransaction utx = (UserTransaction)ctx
userTransaction.lookupbegin(utxPropVal);

 // ...

 // Perform transactional operations on data

 // start transaction work.Commit the transaction.

utx.begin();
.. do work
utx.commit();

 tx.commit();

 }

The UserTransaction.begin method starts a global transaction and associates the
transaction with the calling thread. The transaction-to-thread association is managed
transparently by the Transaction Manager.

Support for nested transactions is not required. The UserTransaction.begin method
throws the NotSupportedException when the calling thread is already associated
with a transaction and the transaction manager implementation does not support nested
transactions. Use of UserTransaction from within a method or bean annotated with
@Transactional is not restricted. For example, UserTransaction may be needed in
these cases to mark the transaction for rollback or obtain the status of a current
transaction. However, the application must ensure UserTransaction is not used in a
way that will compromise the behavior of any transaction that may be managed by the
container. In particular, UserTransaction should not be used to commit or rollback
a transaction that was started by a transaction interceptor, as such an action might
compromise the integrity of the application
17

Java Transaction API
Transaction context propagation between application programs is provided by the
underlying transaction manager implementations on the client and server machines.
The transaction context format used for propagation is protocol dependent and must be
negotiated between the client and server hosts. For example, if the transaction manager
is an implementation of the JTS specification, it will use the transaction context
propagation format as specified in the CORBA OTS specification. Transaction
propagation is transparent to application programs.

3.2 TransactionManager Interface

The javax.transaction.TransactionManager interface allows the application
server to control transaction boundaries on behalf of the application being managed.
For example, the EJB container manages the transaction states for transactional EJB
components; the container uses the TransactionManager interface mainly to
demarcate transaction boundaries where operations affect the calling thread’s
transaction context. The Transaction Manager maintains the transaction context
association with threads as part of its internal data structure. A thread’s transaction
context is either null or it refers to a specific global transaction. Multiple threads may
concurrently be associated with the same global transaction.

Support for nested tranactions is not required.

Each transaction context is encapsulated by a Transaction object, which can be used
to perform operations which are specific to the target transaction, regardless of the
calling thread’s transaction context. The following sections provide more detailsdetail.

3.2.1 Starting a Transaction

The TransactionManager.begin method starts a global transaction and associates
the transaction context with the calling thread.

If the Transaction Manager implementation does not support nested transactions, the
TransactionManager.begin method throws the NotSupportedException when the
calling thread is already associated with a transaction.

The TransactionManager.getTransaction method returns the Transaction object
that represents the transaction context currently associated with the calling thread. This
Transaction object can be used to perform various operations on the target
transaction. Examples of Transaction object operations are resource enlistment and
synchronization registration. The Transaction interface is described in section 3.3
below.

3.2.2 Completing a Transaction

The TransactionManager.commit method completes the transaction currently
associated with the calling thread. After the commit method returns, the calling thread
is not associated with a transaction. If the commit method is called when the thread is
not associated with any transaction context, the TM TransactionManager throws an
exception. In some implementations, the commit operation is restricted to the
transaction originator only. If the calling thread is not allowed to commit the
transaction, the TM TransactionManager throws an exception.
18

Java Transaction API
The TransactionManager.rollback method rolls back the transaction associated
with the current thread. After the rollback method completes, the thread is associated
with no transaction.

3.2.3 Suspending and Resuming a Transaction

A call to the TransactionManager.suspend method temporarily suspends the
transaction that is currently associated with the calling thread. If the thread is not
associated with any transaction, a null object reference is returned; otherwise, a valid
Transaction object is returned. The Transaction object can later be passed to the
resume method to reinstate the transaction context association with the calling thread.

The TransactionManager.resume method re-associates the specified transaction
context with the calling thread. If the transaction specified is a valid transaction, the
transaction context is associated with the calling thread; otherwise, the thread is
associated with no transaction.

Transaction tobj = TransactionManager.suspend();

..
TransactionManager.resume(tobj);

If TransactionManager.resume is invoked when the calling thread is already
associated with another transaction, the Transaction Manager throws the
IllegalStateException exception.

Note that some transaction manager implementations allow a suspended transaction to
be resumed by a different thread. This feature is not required by JTA.

The application server is responsible for ensuring that the resources in use by the
application are properly delisted from the suspended transaction. A resource delist
operation triggers the Transaction Manager to inform the resource manager to
disassociate the transaction from the specified resource object
(XAResource.end(TMSUSPEND)).

When the application’s transaction context is resumed, the application server ensures
that the resource in use by the application is again enlisted with the transaction.
Enlisting a resource as a result of resuming a transaction triggers the Transaction
Manager to inform the resource manager to re-associate the resource object with the
resumed transaction (XAResource.start(TMRESUME)). Refer to Sections 3.3.1 and
3.4.4 for more details on resource enlistment and transaction association.

In the EJB environment, the EJB server typically manages the transactional resources
in use by the applications (The EJB bean’s resource requests are tracked and maintained
in the bean’s instance context). When suspending a transaction currently associated
with an EJB instance, the application server examines the list of resources in use by the
bean instance to determine whether any resources need to be delisted. For each resource
that is currently enlisted with the suspended transaction, the application server calls the
Transaction.delistResource method to disassociate the resource from the
transaction. When the transaction is resumed for the EJB instance, the application
server examines the list of resources in use and enlists the resources with the transaction
19

Java Transaction API
manager before giving control to the bean’s business method. Refer to Chapter 4 for
further discussion on JTA support in an application server.

3.3 Transaction Interface

The Transaction interface allows operations to be performed on the transaction
associated with the target object. Every global transaction is associated with one
Transaction object when the transaction is created. The Transaction object can be
used to:

• Enlist the transactional resources in use by the application.

• Register for transaction synchronization callbacks.

• Commit or rollback the transaction.

• Obtain the status of the transaction.

These functions are described in the sections below.

3.3.1 Resource Enlistment

An application server provides the application run-time infrastructure that includes
transactional resource management. Transactional resources such as database
connections are typically managed by the application server in conjunction with some
resource adapter and optionally with connection pooling optimization. In order for an
external transaction manager to coordinate transactional work performed by the
resource managers, the application server must enlist and delist the resources used in
the transaction.

Resource enlistment performed by an application server serves two purposes:

• It informs the Transaction Manager about the resouce manager instance that is
participating in the global transaction. This allows the Transaction Manager to
inform the participating resource manager on transaction association with the
work performed through the connection (resource) object.

• It enables the Transaction Manager to group the resource types in use by each
transaction. The resource grouping allows the Transaction Manager to conduct
the two-phase commit transaction protocol between the TM Transaction
Manager and the RMsResource Managers, as defined by the X/Open XA
specification.

For each resource in use by the application, the application server invokes the
enlistResource method and specifies the XAResource object that identifies the
resource in use.

The enlistResource request results in the Transaction Manager informing the
resource manager to start associating the transaction with the work performed through
the corresponding resource—by invoking the XAResource.start method. The
Transaction Manager is responsible for passing the appropriate flag in its
XAResource.start method call to the resource manager. The XAResource interface
is described in section 3.4.
20

Java Transaction API
If the target transaction already has another XAResource object participating in the
transaction, the Transaction Manager invokes the XAResource.isSameRM method to
determine if the specified XAResource represents the same resource manager instance.
This information allows the TM Transaction Manager to group the resource managers
who that are performing work on behalf of the transaction.

• If the XAResource object represents a resource manager instance who that has
seen the global transaction before, the TM Transaction Manager groups the
newly registered resource together with the previous XAResource object and
ensures that the same RM Resource Manager only receives one set of prepare-
commit calls for completing the target global transaction.

If the XAResource object represents a resource manager who that has not previously
seen the global transaction, the TM Transaction Manager establishes a different

transaction branch ID1 and ensures that this new resource manager is informed about
the transaction completion with proper prepare-commit calls.

The isSameRM method is discussed in section 3.4.93.4.9.

The Transaction.delistResource method is used to disassociate the specified
resource from the transaction context in the target object. The application server
invokes the delistResource method with the following two parameters:

• The XAResource object that represents the resource.

• A flag to indicate whether the delistment was due to:

• The transaction being suspended (TMSUSPEND).
• A portion of the work has failed (TMFAIL).
• A normal resource release by the application (TMSUCCESS).

An example of TMFAIL could be the situation where an application receives an
exception on its connection operation.

The delist request results in the transaction manager informing the resource manager to
end the association of the transaction with the target XAResource. The flag value allows
the application server to indicate whether it intends to come back to the same resource.
The transaction manager passes the appropriate flag value in its XAResource.end
method call to the underlying resource manager.

1.Transaction Branch is defined in the X/Open XA spec [1] as follows: “A global transaction has one or
more transaction branches. A branch is a part of the work in support of a global transaction for which the
TM Transaction Manager and the RM Resource Manager engage in a separate but coordinated transaction
commitment protocol. Each of the RMResource Manager’s internal units of work in support of a global
transaction is part of exactly one branch. .. After the TM begins the transaction commitment protocol, the
RM Resource Manager receives no additional work to do on that transaction branch. The RM may receive
additional work on behalf of the same transaction, from different branches. The different branches are
related in that they must be completed atomically. Each transaction branch identifier (or XID) that the TM
gives the RM identifies both a global transaction and a specific branch. The RM Resource Manager may use
this information to optimise its use of shared resources and locks.”
21

Java Transaction API
A container only needs to call delistResource to explicitly disassociate a resource
from a transaction and it is not a mandatory container requirement to do so as a
precondition to transaction completion. A transaction manager is, however, required to
implicitly ensure the association of any associated XAResource is ended, via the
appropriate XAResource.end call, immediately prior to completion; that is before
prepare (or commit/rollback in the onephase-optimized case).

3.3.2 Transaction Synchronization

Transaction synchronization allows the application server to get notification from the
transaction manager before and after the transaction completes. For each transaction
started, the application server may optionally register a
javax.transaction.Synchronization callback object to be invoked by the
transaction manager:

• The Synchronization.beforeCompletion method is called prior to the start
of the two-phase transaction commit process. This call is executed with the
transaction context of the transaction that is being committed.

• The Synchronization.afterCompletion method is called after the
transaction has completed. The status of the transaction is supplied in the
parameter.

3.3.3 Transaction Completion

The Transaction.commit and Transaction.rollback methods allow the target
object to be comitted or rolled back. The calling thread is not required to have the same
transaction associated with the thread.

If the calling thread is not allowed to commit the transaction, the transaction manager
throws an exception.

3.3.4 Transaction Equality and Hash Code

The transaction manager must implement the Transaction object’s equals method to
allow comparison between the target object and another Transaction object. The
equals method should return true if the target object and the parameter object both
refer to the same global transaction.

For example, the application server may need to compare two Transaction objects
when trying to reuse a resource that is already enlisted with a transaction. This can be
done using the equals method.

Transaction txObj = TransactionManager.getTransaction();
Transaction someOtherTxObj = ...

// ..
boolean isSame = txObj.equals(someOtherTxObj);

In addition, the transaction manager must implement the Transaction object’s
hashCode method so that if two Transaction objects are equal, they have the same
22

Java Transaction API
hash code. However, the converse is not necessarily true. Two Transaction objects
with the same hash code are not necessarily equal.

3.4 XAResource Interface

The javax.transaction.xa.XAResource interface is a Java mapping of the industry
standard XA interface based on the X/Open CAE Specification (Distributed
Transaction Processing: The XA Specification).

The XAResource interface defines the contract between a Resource Manager and a
Transaction Manager in a distributed transaction processing (DTP) environment. A
resource adapter for a resource manager implements the XAResource interface to
support association of a global transaction to a transaction resource, such as a
connection to a relational database.

A global transaction is a unit of work that is performed by one or more resource
managers (RM) in a DTP system. Such a system relies on an external transaction
manager, such as Java Transaction Service (JTS), to coordinate transactions.

javax.transaction.
xa.XAResource

Resource
Managers
 (RMs)

Transaction

 Manager
 (TM)

Database 1
Database 2

Java Application

Application Server

javax.transaction.
TransactionManager

JDBC 2.0
JMS 1.0

Message
Queue
Server
23

Java Transaction API
The XAResource interface can be supported by any transactional resource adapter that
is intended to be used by application programs in an environment where transactions
are controlled by an external transaction manager. An example of such a resource is a
database management system. An application may access data through multiple
database connections. Each database connection is associated with an XAResource
object that serves as a proxy object to the underlying resource manager instance. The
transaction manager obtains an XAResource for each transaction resource participating
in a global transaction. It uses the start method to associate the global transaction with
the resource, and it uses the end method to disassociate the transaction from the
resource. The resource manager is responsible for associating the global transaction
with all work performed on its data between the start and end method invocations.

At transaction commit time, these transactional resource managers are informed by the
transaction manager to prepare, commit, or rollback the transaction according to the
two-phase commit protocol.

The XAResource interface, in order to be better integrated with the Java environment,
differs from the standard X/Open XA interface in the following ways:

• The resource manager initialization is done implicitly by the resource adapter
when the resource (connection) is acquired. There is no xa_open equivalent in
the XAResource interface. This obviates the need for a resource manager to
provide a different syntax to open a resource for use within the distributed
transaction environment from the syntax used in the environment without
distributed transactions.

• Rmid is not passed as an argument. We use an object-oriented approach where
each Rmid is represented by a separate XAResource object.

• Asynchronous operations are not supported. Java supports multi-threaded
processing and most databases do not support asynchronous operations.

javax.transaction.
xa.XAResource

Resource
Managers
 (RMs)

Transaction

 Manager
 (TM)

Database 1
Database 2

Java Application

Application Server

javax.transaction.
TransactionManager

JDBC 2.0
JMS 1.0

Message
Queue
Server
24

Java Transaction API
• Error return values that are caused by the transaction manager’s improper
handling of the XAResource object are mapped to Java exceptions via the
XAException class.

• The DTP concept of “Thread of Control” maps to all Java threads that are given
access to the XAResource and Connection objects. For example, it is legal
(although in practice rarely used) for two different Java threads to perform the
start and end operations on the same XAResource object.

• Association migration and dynamic registration (optional X/Open XA features)
are not supported. We’ve omitted these features for a simpler XAResource
interface and simpler resource adapter implementation.

3.4.1 Opening a Resource Manager

The X/Open XA interface specifies that the transaction manager must initialize a
resource manager (xa_open) prior to any other xa_ calls. We believe that the knowledge
of initializing a resource manager should be embedded within the resource adapter that
represents the resource manager. The transaction manager does not need to know how
to initialize a resource manager. The TM Transaction Manager is only responsible for
informing the resource manager about when to start and end work associated with a
global transaction and when to complete the transaction.

The resource adapter is responsible for opening (initializing) the resource manager
when the connection to the resource manager is established.

3.4.2 Closing a Resource Manager

A resource manager is closed by the resource adapter as a result of destroying the
transactional resource. A transaction resource at the resource adapter level is comprised
of two separate objects:

• An XAResource object that allows the transaction manager to start and end the
transaction association with the resource in use and to coordinate transaction
completion process.

• A connection object that allows the application to perform operations on the
underlying resource (for example, JDBC operations on an RDBMS).

The resource manager, once opened, is kept open until the resource is released (closed)
explicitly. When the application invokes the connection’s close method, the resource
adapter invalidates the connection object reference that was held by the application and
notifies the application server about the close. The transaction manager should invoke
the XAResource.end method to disassociate the transaction from that connection.

The close notification allows the application server to perform any necessary cleanup
work and to mark the physical XA connection as free for reuse, if connection pooling
is in place.

3.4.3 Thread of Control

The X/Open XA interface specifies that the transaction association related xa calls must
be invoked from the same thread context. This thread-of-control requirement is not
25

Java Transaction API
applicable to the object-oriented component-based application run-time environment,
in which application threads are dispatched dynamically at method invocation time.
Different Java threads may be using the same connection resource to access the
resource manager if the connection spans multiple method invocation. Depending on
the implementation of the application server, different Java threads may be involved
with the same XAResource object. The resource context and the transaction context
may be operated independent of thread context. This means, for example, that it’s
possible for different threads to be invoking the XAResource.start and
XAResource.end methods.

If the application server allows multiple threads to use a single XAResource object and
the associated connection to the resource manager, it is the responsibility of the
application server to ensure that there is only one transaction context associated with
the resource at any point of time.

Thus the XAResource interface specified in this document requires that the resource
managers be able to support the two-phase commit protocol from any thread context.

3.4.4 Transaction Association

Global transactions are associated with a transactional resource via the
XAResource.start method, and disassociated from the resource via the
XAResource.end method. The resource adapter is responsible for internally
maintaining an association between the resource connection object and the XAResource
object. At any given time, a connection is associated with a single transaction or it is
not associated with any transaction at all.

Interleaving multiple transaction contexts using the same resource may be done by the
transaction manager as long as XAResource.start and XAResource.end are invoked
properly for each transaction context switch. Each time the resource is used with a
different transaction, the method XAResource.end must be invoked for the previous
transaction that was associated with the resource, and XAResource.start must be
invoked for the current transaction context.

XAResource does not support nested transactions. It is an error for the
XAResource.start method to be invoked on a connection that is currently associated
with a different transaction.

Table 1: Transaction Association

XAResource
Methods

XAResource Transaction States

Not
Associated

T0

Associated

T1

Association
Suspended

T2

start() T1

start (TMRESUME) T1
26

Java Transaction API
3.4.5 Externally Controlled Connections

Resources for transactional applications, whose transaction states are managed by an
application server, must also be managed by the application server so that transaction
association is performed properly. If an application is associated with a global
transaction, it is an error for the application to perform transactional work through the
connection without having the connection’s resource object already associated with the
global transaction. The application server must ensure that the XAResource object in
use is associated with the transaction. This is done by invoking the
Transaction.enlistResource method.

If a server side transactional application retains its database connection across multiple
client requests, the application server must ensure, before dispatching a client request
to the application thread, that the resource is enlisted with the application’s current
transaction context. This implies that the application server manages the connection
resource usage status across multiple method invocations.

3.4.6 Resource Sharing

When the same transactional resource is used to interleave multiple transactions, it is
the responsibility of the application server to ensure that only one transaction is enlisted
with the resource at any given time. To initiate the transaction commit process, the
transaction manager is allowed to use any of the resource objects connected to the same
resource manager instance. The resource object used for the two-phase commit
protocol need not have been involved with the transaction being completed.

The resource adapter must be able to handle multiple threads invoking the XAResource
methods concurrently for transaction commit processing. For example, suppose we
have a transactional resource r1. Global transaction xid1 was started and ended with
r1. Then a different global transaction xid2 is associated with r1. Meanwhile, the
transaction manager may start the two phase commit process for xid1 using r1 or any
other transactional resource connected to the same resource manager. The resource

start (TMJOIN) T1

end (TMSUSPEND) T2

end (TMFAIL) T0 T0

end (TMSUCCESS) T0 T0

recover() T0 T1 T2

Table 1: Transaction Association

XAResource
Methods

XAResource Transaction States

Not
Associated

T0

Associated

T1

Association
Suspended

T2
27

Java Transaction API
adapter needs to allow the commit process to be executed while the resource is currently
associated with a different global transaction.

The sample code below illustrates the above scenario:

// Suppose we have some transactional connection-based
// resource r1 that is connected to an enterprise information
// service system.
//
XAResource xares = r1.getXAResource();

xares.start(xid1); // associate xid1 to the connection
..
xares.end(xid1); // dissociate xid1 to the connection
..

xares.start(xid2); // associate xid2 to the connection
..

// While the connection is associated with xid2,
// the TM Transaction Manager starts the commit process for xid1

status = xares.prepare(xid1);
..
xares.commit(xid1, false);

3.4.7 Local and Global Transactions

The resource adapter is encouraged to support the usage of both local and global
transactions within the same transactional connection. Local transactions are
transactions that are started and coordinated by the resource manager internally. The
XAResource interface is not used for local transactions.

When using the same connection to perform both local and global transactions, the
following rules apply:

• The local transaction must be committed (or rolled back) before starting a
global transaction in the connection.

• The global transaction must be disassociated from the connection before any
local transaction is started.

If a resource adapter does not support mixing local and global transactions within the
same connection, the resource adapter should throw the resource specific exception.
For example, java.sql.SQLException is thrown to the application if the resource
manager for the underlying RDBMS does not support mixing local and global
transactions within the same JDBC connection.

3.4.8 Failures Recovery

During recovery, the Transaction Manager must be able to communicate to all resource
managers that are in use by the applications in the system. For each resource manager,
28

Java Transaction API
the Transaction Manager uses the XAResource.recover method to retrieve the list of
transactions that are currently in a prepared or heuristically completed state.

Typically, the system administrator configures all transactional resource factories that
are used by the applications deployed on the system. An example of such a resource
factory is the JDBC XADataSource object, which is a factory for the JDBC
XAConnection objects. The implementation of these transactional resource factory
objects are both javax.naming.Referenceable and java.io.Serializable so that
they can be stored in all JNDI naming contexts.

Because XAResource objects are not persistent across system failures, the Transaction
Manager needs to have some way to acquire the XAResource objects that represent the
resource managers which might have participated in the transactions prior to the system
failure. For example, a Transaction Manager might, through the use of the JNDI lookup
mechanism and cooperation from the application server, acquire an XAResource object
representing each of the Resource Manager configured in the system. The Transaction
Manager then invokes the XAResource.recover method to ask each resource manager
to return any transactions that are currently in a prepared or heuristically completed
state. It is the responsibility of the Transaction Manager to ignore transactions that do
not belong to it.

3.4.9 Identifying Resource Manager Instance

The isSameRM method is invoked by the Transaction Manager to determine if the target
XAResource object represents the same resource manager instance as that represented
by the XAResource object in the parameter. The isSameRM method returns true if the
specified target object is connected to the same resource manager instance; otherwise,
the method returns false. The semi-pseudo code below illustrates the intended usage.

public boolean enlistResource(XAResource xares)
{ ..

// Assuming xid1 is the target transaction and
// xid1 already has another resource object xaRes1
// participating in the transaction

boolean sameRM = xares.isSameRM(xaRes1);
if (sameRM) {

//
// Same underlying resource manager instance,
// group together with xaRes1 and join the transaction
//
xares.start(xid1, TMJOIN);

} else {
//
// This is a different RM Resource Manager instance,
// make a new transaction branch for xid1
//
xid1NewBranch = makeNewBranch(xid1);
xares.start(xid1NewBranch, TMNOFLAGS);

}
..
29

Java Transaction API
}

3.4.10 Dynamic Registration

Dynamic registration is not supported in XAResource because of the following reasons:

• In the Java component-based application server environment, connections to
the resource manager are acquired dynamically when the application explicitly
requests for a connection. These resources are enlisted with the transaction
manager on an “as-needed” basis (unlike the static xa_switch table that exists in
the C-XA procedural model).

• If a resource manager requires a way to dynamically register its work to the
global transaction, then the implementation can be done at the resource adapter
level via a private interface between the resource adapter and the underlying
resource manager.

3.5 Xid Interface

The javax.transaction.xa.Xid interface is a Java mapping of the X/Open transaction
identifier XID structure. This interface specifies three accessor methods which are used
to retrieve a global transaction’s format ID, a global transaction ID, and a branch
qualifier. The Xid interface is used by the transaction manager and the resource
managers. This interface is not visible to the application programs nor the application
server.

3.6 TransactionSynchronizationRegistry Interface

The javax.transaction.TransactionSynchronizationRegistry interface is
intended for use by system level application server components such as persistence
managers. This provides the ability to register synchronization objects with special
ordering semantics, associate resource objects with the current transaction, get the
transaction context of the current transaction, get current transaction status, and mark
the current transaction for rollback.

This interface is implemented by the application server as a stateless service object. The
same object can be used by any number of components with complete thread safety. In
standard application server environments, an instance implementing this interface can
be looked up via JNDI using a standard name.

The user of getResource() getResource and putResource() putResource methods is
a library component that manages transaction-specific data on behalf of a caller. The
transaction-specific data provided by the caller is not immediately flushed to a
transaction-enlisted resource, but instead is cached. The cached data is stored in a
transaction-related data structure that is in a zero-or-one-to-one relationship with the
transactional context of the caller.

An efficient way to manage such a transaction-related data structure is for the
implementation of the TransactionSynchronizationRegistry to manage a Map for
each transaction as part of the transaction state.
30

Java Transaction API
The keys of this Map are objects that are provided by the library components (users of
the API). The values of the Map are any values that the library components are
interested in storing, for example the transaction-related data structures. This Map has
no concurrency issues since it is a dedicated instance for the transaction. When the
transaction completes, the Map is cleared, releasing resources for garbage collection.

The scalability of the library code is significantly enhanced by the addition of the
getResource and putResource methods to the
TransactionSynchronizationRegistry.

“Related documents” on page 79 has a full description of this interface.

3.7 Transactional Annotation

The javax.transaction.Transactional annotation provides the application
the ability to declaratively control transaction boundaries on CDI managed beans, as
well as classes defined as managed beans by the Java EE specification, at both the class
and method level. This support is provided via an implementation of CDI interceptors
that conduct the necessary suspending, resuming, etc. The Transactional interceptor
interposes on business method invocation, timeout methods and lifecycle events. It
does not interpose on constructor invocations. The Transactional interceptors must
have a priority of Interceptor.Priority.PLATFORM_BEFORE+200. Refer to the
Interceptors specification for more details.

The TxType element of the annotation indicates whether a bean method is to be
executed within a transaction context where the values provide the following
corresponding behavior:

TxType.REQUIRED

If called outside a transaction context, the interceptor must begin a new JTA
transaction, the managed bean method execution must then continue inside this
transaction context, and the transaction must be completed by the interceptor.
If called inside a transaction context, the managed bean method execution must
then continue inside this transaction context.

TxType.REQUIRES_NEW

If called outside a transaction context, the interceptor must begin a new JTA
transaction, the managed bean method execution must then continue
inside this transaction context, and the transaction must be completed by
the interceptor.
If called inside a transaction context, the current transaction context must
be suspended, a new JTA transaction will begin, the managed bean
method execution must then continue inside this transaction context, the
transaction must be completed, and the previously suspended transaction
must be resumed.

TxType.MANDATORY

If called outside a transaction context, a TransactionalException with a
nested TransactionRequiredException must be thrown.
31

Java Transaction API
If called inside a transaction context, managed bean method execution
will then continue under that context.

TxType.SUPPORTS

If called outside a transaction context, managed bean method execution
must then continue outside a transaction context.
If called inside a transaction context, the managed bean method
execution must then continue inside this transaction context.

TxType.NOT_SUPPORTED

If called outside a transaction context, managed bean method execution
must then continue outside a transaction context.
If called inside a transaction context, the current transaction context must
be suspended, the managed bean method execution must then continue
outside a transaction context, and the previously suspended transaction
must be resumed by the interceptor that suspended it after the method execution
has completed.

TxType.NEVER

If called outside a transaction context, managed bean method execution
must then continue outside a transaction context.
If called inside a transaction context, a TransactionalException with a nested
InvalidTransactionException must be thrown

By default checked exceptions do not result in the transactional interceptor marking the
transaction for rollback and instances of RuntimeException and its subclasses do. This
default behavior can be modified by specifying exceptions that result in the interceptor
marking the transaction for rollback and/or exceptions that do not result in rollback. The
rollbackOn element can be set to indicate exceptions that must cause the interceptor
to mark the transaction for rollback. Conversely, the dontRollbackOn element can be
set to indicate exceptions that must not cause the interceptor to mark the transaction for
rollback. When a class is specified for either of these elements, the designated behavior
applies to subclasses of that class as well. If both elements are specified,
dontRollbackOn takes precedence.

The following example will override behavior for application exceptions, causing the
transaction to be marked for rollback for all application exceptions.

@Transactional(rollbackOn={Exception.class})

The following example will prevent transactions from being marked for rollback by
the interceptor when an IllegalStateException or any of its subclasses reaches the
interceptor.

@Transactional(
dontRollbackOn={IllegalStateException.class})
32

Java Transaction API
The following will cause the transaction to be marked for rollback for all
runtime exceptions and all SQLException types except for SQLWarning.

@Transactional(rollbackOn={SQLException.class},
dontRollbackOn={SQLWarning.class})

The TransactionalException thrown from the Transactional interceptors
implementation is a RuntimeException and therefore by default any transaction that
was started as a result of a Transactional annotation earlier in
the call stream will be marked for rollback as a result of the TransactionalException
being thrown by the Transactional interceptor of the second bean. For example if a
transaction is begun as a result of a call to a bean annotated with
Transactional(TxType.REQUIRES) and this bean in turn calls a second bean
annotated with Transactional(TxType.NEVER), the transaction begun by the first
bean will be marked for rollback.

When Transactional annotated managed beans are used in conjunction with EJB
container managed transactions the EJB container transaction rules are applied before
the interceptor chain is called. Thus the Transactional interceptors may change the
transaction context created by the EJB container. It is best practice to avoid such use of
Transactional annotations in conjunction with EJB container managed transactions
in order to avoid possible confusion.

3.8 TransactionScoped Annotation

The javax.transaction.TransactionScoped annotation provides the ability to
specify a standard CDI scope to define bean instances whose lifecycle is scoped to the
currently active JTA transaction. The transaction scope is active when the return from a call
to UserTransaction.getStatus or TransactionManager.getStatus is one of the
following states:

Status.STATUS_ACTIVE
Status.STATUS_MARKED_ROLLBACK
Status.STATUS_PREPARED
Status.STATUS_UNKNOWN
Status.STATUS_PREPARING
Status.STATUS_COMMITTING
Status.STATUS_ROLLING_BACK

It is not intended that the term “active” as defined here in relation to the
TransactionScoped annotation should also apply to its use in relation to transaction
context, lifecycle, etc. mentioned elsewhere in this specification. The object with this
annotation will be associated with the current active JTA transaction when the object is
used. This association must be retained through any transaction suspend or resume calls as
well as any Synchronization.beforeCompletion callbacks. The transaction context
must be destroyed after completion call have been made on enlisted resource but before any
33

Java Transaction API
Synchronization.afterCompletion methods are called. The way in which the JTA
transaction is begun and completed (for example via UserTransaction, Transactional
interceptor, etc.) is of no consequence. The contextual references used across different JTA
transactions are distinct. Refer to the CDI specification for more details on contextual
references. A javax.enterprise.context.ContextNotActiveException must be thrown if an
bean with this annotation is used when the transaction context is not active.

The following example test case illustrates the expected behavior:

TransactionScoped annotated CDI managed bean:

@TransactionScoped
public class TestCDITransactionScopeBean {

public void test()
{

 //...
}

}

Test Class:

UserTransaction userTransaction;
TransactionManager transactionManager;
@Inject
TestCDITransactionScopeBean testTxAssociationChangeBean;

public void testTxAssociationChange() throws Exception {
userTransaction.begin(); //tx1 begun
testTxAssociationChangeBean.test();
// assert testTxAssociationChangeBean instance has tx1
// association
Transaction transaction = transactionManager.suspend();
// tx1 suspended
userTransaction.begin(); //tx2 begun
testTxAssociationChangeBean.test();
// assert new testTxAssociationChangeBean instance has tx2
// association
userTransaction.commit();
// tx2 committed, assert notransaction scope is active
transactionManager.resume(tx);
// tx1 resumed
testTxAssociationChangeBean.test();
// assert testTxAssociationChangeBean is original tx1
// instance and not still referencing committed/tx2 tx
userTransaction.commit();
// tx1 commit, assert no transactionscope is active
try {
34

Java Transaction API
testTxAssociationChangeBean.test();
fail(“should have thrownContextNotActiveException”);

} catch (ContextNotActiveException
contextNotActiveException) {

// do nothing intentionally
}

}

35

Java Transaction API
4 JTA Support in the Application Server

This chapter provides a discussion on implementation and usage considerations for
application servers to support the Java Transaction API. Our discussion assumes the
application’s transactions and resource usage are managed by the application server.
We further assume that access to the underlying transactional resource manager is
through some Java API implemented by the resource adapter representing the resource
manager. For example, a JDBC 24.0 1 driver may be used to access a relational
database, a SAP connector resource adapter may be used to access the SAP R/3 ERP
system, and so on. This section focuses on the usage of JTA and assumes a generic
connection based transactional resource is in use without being specific about a
particular type of resource manager.

4.1 Connection-Based Resource Usage Scenario

Let’s assume that the resource adapter provides a connection-based resource API called
TransactionalResource to access the underlying resource manager.

In a typical usage scenario, the application server invokes the resource adapter’s
resource factory to create a TransactionalResource object. The resource adapter
internally associates the TransactionalResource with two other entities: an object that
implements the specific resource adapter’s connection interface and an object that
implements the javax.transaction.xa.XAResource interface.

The application server obtains a TransactionalResource object and uses it in the
following way. The application server obtains the XAResource object via a
getXAResource method. The application server enlists the XAResource to the
Transaction Manager (TM) using the Transaction.enlistResource method. The
TM Transaction Manager informs the Resource Manager to associate the work
performed (through that connection) with the transaction currently associated with the
application. The TM Transaction Manager does it by invoking the XAResource.start
method.

The application server then invokes some getConnection method to obtain a
Connection object and returns it to the application. Note that the Connection interface
is implemented by the resource adapter and it is specific to the underlying resource
supported by the resource manager. The diagram below illustrates a general flow of
acquiring resource and enlisting the resource to the Transaction Manager.
36

Java Transaction API
XAResource Connection

obj-ref
obj-ref obj-ref

getTransactionalResource
getConnectiongetXAResource

javax.transaction. javax.tbd.

Resource Manager

Adapter

AppServer

Transaction
Manager

Java
Application

TransactionalResource

javax.transaction.xa.

enlistResource

XAResource.start

getResourceTransaction.

XAResource Connection

obj-ref
obj-ref obj-ref

getTransactionalResource
getConnectiongetXAResource

javax.transaction. javax.tbd.

Resource Manager

Adapter

AppServer

Transaction
Manager

Java
Application

TransactionalResource

javax.transaction.xa.

enlistResource

XAResource.start

getResourceTransaction.
37

Java Transaction API
In this usage scenario, the XAResource interface is transparent to the application
program, and the Connection interface is transparent to the transaction manager. The
application server is the only party that holds a reference to some
TransactionalResource object.

The code sample below illustrate how the application server obtains the XAResource
object reference and enlists it with the Transaction Manager.

// Acquire some connection-based transactional resource to
// access the resource manager

Context ctx = InitialContext();
ResourceFactory rf =(ResourceFactory)ctx.lookup(“MyEISResource”);
TransactionalResource res = rf.getTransactionalResource();

// Obtain the XAResource part of the connection and
// enlist it with the Transaction Manager

XAResource xaRes = res.getXAResource();
(TransactionManager.getTransaction()).enlistResource(xaRes);

// get the connection part of the transaction resource
Connection con = (Connection)res.getConnection();

.. // return the connection to the application

4.2 Transaction Association and Connection Request Flow

This session provides a brief walkthrough of how an application server may handle a
connection request from the application. The figure that follows illustrates the usage of
JTA. The steps shown are for illustrative purposes, they are not prescriptive:

1. Assuming a client invokes an EJB a CDI managed bean annotated with a
TX_REQUIRED transaction attribute Transactional(TxType.REQUIRED)
and the client is not associated with a global transaction, the EJB container
Transactional interceptor starts a global transaction by invoking the
TransactionManager.begin method..

2. After the the transaction starts, the container invokes the bean method. As part
of the business logic, the bean requests for a connection-based resource using
the API provided by the resource adapter of interest.

3. The application server obtains a resource from the resource adapter via some
ResourceFactory.getTransactionalResource method.

4. The resource adapter creates the TransactionalResource object and the
associated XAResource and Connection objects.

5. The application server invokes the getXAResource method.

6. The application server enlists the resource to the transaction manager.
38

Java Transaction API
7. The transaction manager invokes XAResource.start to associate the current
transaction to the resource.

8. The application server invokes the getConnection method.

9. The application server returns the Connection object reference to the
application.

10. The application performs one or more operations on the connection.

11. The application closes the connection.

12. The application server delist the resource when notified by the resource adapter
about the connection close.

13. The transaction manager invokes XAResource.end to disassociate the
transaction from the XAResource.

14. The application server asks the transaction manager to commit the transaction.

15. The transaction manager invokes XAResource.prepare to inform the resource
manager to prepare the transaction work for commit.

16. The transaction manager invokes XAResource.commit to commit the
transaction.

This example illustrates the application server’s usage of the TransactionManager
and XAResource interfaces as part of the application connection request handling.
39

Java Transaction API

new

Transactional
Application

Application
Resource- Transactional

XAResource
Server

new

new

getXAResource

getConnection

start

getConnection

return connection

application perfoms operations

end

prepare

close

new

getTransactionalResource

Connection

commit

Transaction
Manager

Interfaces implemented by the resource adapter

enlistResource

delistResource

commit

Factory Resource

begin
40

Java Transaction API

new

Transactional
Application

Application
Resource- Transactional

XAResource
Server

new

new

getXAResource

getConnection

start

getConnection

return connection

application perfoms operations

end

prepare

close

new

getTransactionalResource

Connection

commit

Transaction
Manager

Interfaces implemented by the resource adapter

enlistResource

delistResource

commit

Factory Resource

begin
41

Java Transaction API
5 Java Transaction API Reference

This chapter provides the documentation of the interfaces and classes that are part of
the Java Transaction API standard extension. The javax.transaction package is
relevant to the Enterprise JavaBeans, JDBC, JMS, and JTS standard extension APIs.

package javax.transaction:

Interface:

public interface javax.transaction.Status
public interface javax.transaction.Synchronization
public interface javax.transaction.Transaction
public interface javax.transaction.TransactionManager
public interface javax.transaction.UserTransaction
public interface javax.transaction.TransactionSynchronizationReg-
istry

Classes:

public class javax.transaction.HeuristicCommitException
public class javax.transaction.HeuristicMixedException
public class javax.transaction.HeuristicRollbackException
public class javax.transaction.InvalidTransactionException
public class javax.transaction.NotSupportedException
public class javax.transaction.RollbackException
public class javax.transaction.TransactionRequiredException
public class javax.transaction.TransactionRolledbackException
public class javax.transaction.SystemException

package javax.transaction.xa:

Interfaces:

public interface javax.transaction.xa.XAResource
public interface javax.transaction.xa.Xid

Classes:

public class javax.transaction.xa.XAException
42

Java Transaction API
Interface Status

interface javax.transaction.Status
{

public final static int STATUS_ACTIVE;
public final static int STATUS_COMMITTED;
public final static int STATUS_COMMITTING;
public final static int STATUS_MARKED_ROLLBACK;
public final static int STATUS_NO_TRANSACTION;
public final static int STATUS_PREPARED;
public final static int STATUS_PREPARING;
public final static int STATUS_ROLLEDBACK;
public final static int STATUS_ROLLING_BACK;
public final static int STATUS_UNKNOWN;

}

Constants

• STATUS_ACTIVE

public final static int STATUS_ACTIVE

A transaction is associated with the target object and it is in the active state. An implementation returns this
status after a transaction has been started and prior to a transaction coordinator issuing any prepares unless
the transaction has been marked for rollback.

• STATUS_COMMITTED

public final static int STATUS_COMMITTED

A transaction is associated with the target object and it has been committed. It is likely that heuristics exists,
otherwise the transaction would have been destroyed and NoTransaction returned.

• STATUS_COMMITTING

public final static int STATUS_COMMITTING

A transaction is associated with the target object and it is in the process of committing. An implementation
returns this status if it has decided to commit, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

• STATUS_MARKED_ROLLBACK

public final static int STATUS_MARKED_ROLLBACK

A transaction is associated with the target object and it has been marked for rollback, perhaps as a result of a
setRollbackOnly operation.

• STATUS_NO_TRANSACTION

public final static int STATUS_NO_TRANSACTION

No transaction is currently associated with the target object. This will occur after a transaction has com-
pleted.

• STATUS_PREPARED

public final static int STATUS_PREPARED
43

Java Transaction API
A transaction is associated with the target object and it has been prepared, i.e. all subordinates have
responded Vote.Commit. The target object may be waiting for a superior's instruction as how to proceed.

• STATUS_PREPARING

public final static int STATUS_PREPARING

A transaction is associated with the target object and it is in the process of preparing. An implementation
returns this status if it has started preparing, but has not yet completed the process, probably because it is
waiting for responses to prepare from one or more Resources.

• STATUS_ROLLEDBACK

public final static int STATUS_ROLLEDBACK

A transaction is associated with the target object and the outcome has been determined as rollback. It is
likely that heuristics exist, otherwise the transaction would have been destroyed and NoTransaction
returned.

• STATUS_ROLLING_BACK

public final static int STATUS_ROLLING_BACK

A transaction is associated with the target object and it is in the process of rolling back. An implementation
returns this status if it has decided to rollback, but has not yet completed the process, probably because it is
waiting for responses from one or more Resources.

• STATUS_UNKNOWN

public final static int STATUS_UNKNOWN

A transaction is associated with the target object but its current status cannot be determined. This is a tran-
sient condition and a subsequent invocation will ultimately return a different status.
44

Java Transaction API
Interface Synchronization

interface javax.transaction.Synchronization
{

public void beforeCompletion();
public void afterCompletion(int status);

}

The transaction manager provides a synchronization protocol that allows the interested party to be notified
before and after the transaction completes. Using the registerSynchronization method, the application server reg-
isters a Synchronization object for the transaction currently associated with the target Transaction object.

Methods

• beforeCompletion

public void beforeCompletion()

The beforeCompletion method is called by the transaction manager prior to the start of the two-phase
transaction commit process. This call is executed with the transaction context of the transaction that is being
committed. An unchecked exception thrown by a registered Synchronization object causes the transaction to
be aborted. That is, upon encountering an unchecked exception thrown by a registered synchronization
object, the transaction manager must mark the transaction for rollback.

• afterCompletion

public void afterCompletion(int status)

The afterCompletion method is called by the transaction manager after the transaction is committed or rolled
back.

Parameters:
status

Status of the transaction that was completed. The value provided is the same as that returned
by getStatus.
45

Java Transaction API
Interface Transaction

interface javax.transaction.Transaction
{

public void commit();
public boolean delistResource(XAResource xaRes, int flag);
public boolean enlistResource(XAResource xaRes);
public int getStatus();
public void registerSynchronization(Synchronization sync);
public void rollback();
public void setRollbackOnly();

}

The Transaction interface allows operations to be performed against the transaction in the target Transaction
object. A Transaction object is created corresponding to each global transaction creation.The Transaction
object can be used for resource enlistment, synchronization registration, transaction completion and status query
operations.

Methods

• commit

public void commit() throws RollbackException,
 HeuristicMixedException, HeuristicRollbackException,

IllegalStateException, SecurityException, SystemException

Complete the transaction associated with the target Transaction object.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that all relevant updates have been rolled
back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: IllegalStateException
Thrown if the transaction in the target object is inactive.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• delistResource

public boolean delistResource(XAResource xaRes, int flag)
throws IllegalStateException, SystemException

Disassociate the resource specified from the transaction associated with the target Transaction object.

Parameters:
xaRes
46

Java Transaction API
The XAResource object associated with the resource (connection).
flag

TMSUSPEND - the resource should be dissociated with the suspend mode, the caller intends
to come back to the current state.
TMFAIL - the resource is dissociated because part of the work has failed. This typically can
be caused by an error exception encountered on the resource in use.
TMSUCCESS - the resource is dissociated as part of the normal work completion.

Returns:
true if the dissociation of the resource is successful; otherwise false.

Throws: IllegalStateException
Thrown if the transaction in the target object is inactive.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• enlistResource

public boolean enlistResource(XAResource xaRes)
throws RollbackException, IllegalStateException,
SystemException

Enlist the resource specified with the transaction associated with the target Transaction object.

Parameters:
xaRes

The XAResource object associated with the resource (connection).

Returns:
true if the enlistment is successful; otherwise false.

Throws: IllegalStateException
Thrown if the transaction in the target object is in prepared state or the transaction is inactive.

Throws: RollbackException
Thrown to indicate that the transaction has been marked for rollback only.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• getStatus

public int getStatus() throws SystemException

Obtain the status of the transaction associated with the target object.

Returns:
The transaction status. If no transaction is associated with the target object, this method returns the
STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• registerSynchronization

public void registerSynchronization(Synchronization sync)
throws RollbackException, IllegalStateException,
SystemException
47

Java Transaction API
Register a synchronization object for the transaction currently associated with the target object. The transc-
tion manager invokes the beforeCompletion method prior to starting the two-phase transaction com-
mit process. After the transaction is completed, the transaction manager invokes the afterCompletion
method.

Parameters:
sync

The Synchronization object for the transaction currently associated with the target object.

Throws: IllegalStateException
Thrown if the transaction in the target object is in prepared state or the transaction is inactive.

Throws: RollbackException
Thrown to indicate that the transaction has been marked for rollback only.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• rollback

public void rollback()
throws IllegalStateException, SystemException

Rollback the transaction associated with the target Transaction object.

Throws: IllegalStateException
Thrown if the target object is not associtated with any transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setRollbackOnly

public void setRollbackOnly()
throws IllegalStateException, SystemException

Modify the transaction associated with the target object such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: IllegalStateException
Thrown if the target object is not associtated with any transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

Constants

• TMSUCCESS

public final static int TMSUCCESS = 0x04000000

Dissociate caller from transaction branch.

• TMSUSPEND

public final static int TMSUSPEND = 0x02000000

Caller is suspending (not ending) association with transaction branch.
48

Java Transaction API
• TMFAIL

public final static int TMFAIL = 0x20000000

Dissociates the caller and mark the transaction branch rollback-only.
49

Java Transaction API
Interface TransactionManager

interface javax.transaction.TransactionManager
{

public void begin();
public void commit();
public int getStatus();
public Transaction getTransaction();
public void resume(Transaction tobj);
public void rollback();
public void setRollbackOnly();
public void setTransactionTimeout(int seconds);
public Transaction suspend() ;

}

The TransactionManager interface allows the application server to communicate to the Transaction Manager for
transaction boundaries demarcation on behalf of the application. For example, this interface is used by an EJB
server to communicate to the transaction manager on behalf of the container-managed EJB components.

Methods

• begin

public void begin()
throws NotSupportedException, SystemException

Create a new transaction and associate it with the current thread.

Throws: NotSupportedException
Thrown if the thread is already associated with a transaction and the Transaction Manager does not
support nested transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• commit

public void commit()
 throws RollbackException, HeuristicMixedException,

HeuristicRollbackException, SecurityException,
IllegalStateException, SystemException

Complete the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that all relevant updates have been rolled
back.
50

Java Transaction API
Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• getStatus

public int getStatus() throws SystemException

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. If no transaction is associated with the current thread, this method returns
the Status.STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• getTransaction

public Transaction getTransaction() throws SystemException

Get the transaction object that represents the transaction context of the calling thread.

Returns:
The Transaction object that represents the transaction context of the calling thread. If the calling
thread is not associated with a transaction, a null object reference is returned.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• resume

public void resume(Transaction tobj)
throws InvalidTransactionException,

IllegalStateException, SystemException

Resume the transaction context association of the calling thread with the transaction represented by the sup-
plied Transaction object. When this method returns, the calling thread is associated with the transaction con-
text specified.

Parameters:
tobj

The Transaction object that consists of the transaction to be resumed for the calling thread.

Throws: InvalidTransactionException
Thrown if the parameter tobj refers to an invalid transaction.

Throws: IllegalStateException
Thrown if the current thread is already associated with another transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• rollback

public void rollback()
51

Java Transaction API
 throws IllegalStateException, SecurityException, SystemException

Roll back the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setRollbackOnly

public void setRollbackOnly()
throws IllegalStateException, SystemException

Modify the transaction associated with the current thread such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setTransactionTimeout

public void setTransactionTimeout(int seconds)
throws SystemException

Modify the timeout value that is associated with transactions started by subsequent invocations of the begin
method by the current thread.

If an application has not called this method, the transaction service uses some default value for the transac-
tion timeout.

Parameters:
seconds

The value of the timeout in seconds. If the value is zero, the transaction service restores the
default value. If the value is negative a SystemException is thrown.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• suspend

public Transaction suspend() throws SystemException

Suspend the transaction currently associated with the calling thread and return a Transaction object that rep-
resents the transaction context being suspended. If the calling thread is not associated with a transaction, the
method returns a null object reference. When this method returns, the calling thread is associated with no
transaction.

Returns:
The Transaction object that represents the transaction context associated with the calling thread.
Null if the calling thread is not associated with a transaction.

Throws: SystemException
52

Java Transaction API
Thrown if the transaction manager encounters an unexpected error condition.
53

Java Transaction API
Interface UserTransaction

public interface javax.transaction.UserTransaction
{

public void begin();
public void commit();
public int getStatus();
public void rollback();
public void setRollbackOnly();
public void setTransactionTimeout(int seconds);

}

The UserTransaction interface defines the methods that allow an application to explicitly manage transaction
boundaries.

Methods

• begin

public void begin()
 throws NotSupportedException, SystemException

Create a new transaction and associate it with the current thread.

Throws: NotSupportedException
Thrown if the thread is already associated with a transaction and the Transaction Manager imple-
mentation does not support nested transactions.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• commit

public void commit()
 throws RollbackException, HeuristicMixedException,

HeuristicRollbackException, SecurityException,
IllegalStateException, SystemException

Complete the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: RollbackException
Thrown to indicate that the transaction has been rolled back rather than committed.

Throws: HeuristicMixedException
Thrown to indicate that a heuristic decision was made and that some relevant updates have been
committed while others have been rolled back.

Throws: HeuristicRollbackException
Thrown to indicate that a heuristic decision was made and that all relevant updates have been rolled
back.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to commit the transaction.

Throws: IllegalStateException
54

Java Transaction API
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• getStatus

public int getStatus() throws SystemException

Obtain the status of the transaction associated with the current thread.

Returns:
The transaction status. If no transaction is associated with the current thread, this method returns
the STATUS_NO_TRANSACTION value.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• rollback

public void rollback()
 throws IllegalStateException, SecurityException, SystemException

Roll back the transaction associated with the current thread. When this method completes, the thread
becomes associated with no transaction.

Throws: SecurityException
Thrown to indicate that the thread is not allowed to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setRollbackOnly

public void setRollbackOnly()
throws IllegalStateException, SystemException

Modify the transaction associated with the current thread such that the only possible outcome of the transac-
tion is to roll back the transaction.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.

• setTransactionTimeout

public void setTransactionTimeout(int seconds)
throws SystemException

Modify the timeout value that is associated with transactions started by subsequent invocations of the begin
method by the current thread.

If an application has not called this method, the transaction service uses some default value for the transac-
tion timeout.

Parameters:
seconds
55

Java Transaction API
The value of the timeout in seconds. If the value is zero, the transaction service restores the
default value. If the value is negative a SystemException is thrown.

Throws: SystemException
Thrown if the transaction manager encounters an unexpected error condition.
56

Java Transaction API
Interface TransactionSynchronizationRegistry

public interface javax.transaction.TransactionSynchronizationRegistry
{

public Object getTransactionKey();
public void putResource(Object key, Object value);
public Object getResource(Object key);
public void registerInterposedSynchronization(Synchronization sync);
public int getTransactionStatus();
public void setRollbackOnly();
public boolean getRollbackOnly();

}

This interface is intended for use by system level application server components such as persistence manag-
ers, resource adapters, as well as EJB and Web application components. This provides the ability to register
synchronization objects with special ordering semantics, associate resource objects with the current transac-
tion, get the transaction context of the current transaction, get current transaction status, and mark the cur-
rent transaction for rollback.

This interface is implemented by the application server as a stateless service object. The same object can be
used by any number of components with complete thread safety. In standard application server environ-
ments, an instance implementing this interface can be looked up via JNDI using a standard name. The stan-
dard name is java:comp/TransactionSynchronizationRegistry.

Methods

• getTransactionKey

public Object getTransactionKey()

Returns:

An opaque object that represents the transaction bound to the current thread at the time this method is called,
or null is returned if a transaction is not associated with the current thread.

The returned object overrides hashCode and equals methods, to allow its use as the key in a java.util.Hash-
Map for use by the caller. The returned object will return the same hashCode and compare equal to all other
objects returned by calling this method from any component executing in the same transaction context in the
same application server.

The toString method returns a String that might be usable by a human reader to usefully understand the
transaction context. The result of the toString method is otherwise not defined. Specifically, there is no for-
ward or backward compatibility guarantee for the result returned by the toString method.

The object is not necessarily serializable, and is not useful outside the virtual machine from which it was
obtained.

• putResource

public void putResource(Object key, Object value)

Add or replace an object in the map of resources being managed for the transaction bound to the current
thread at the time this method is called. The supplied key must be of a caller-defined class so as not to con-
flict with other users. The class of the key must guarantee that the hashCode and equals methods are suitable
for keys in a map. The key and value are not examined or used by the implementation. The general contract
57

Java Transaction API
of this method is that of java.util.Map#put(Object, Object)} for a Map that supports non-null keys and null
values. For example, if there is already an value associated with the key, it is replaced by the value parame-
ter.

Parameters:
key

The key for the Map entry.
value

The value for the Map Entry.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: NullPointerException
Thrown if the parameter key is null.

• getResource

public Object getResource(Object key)

Get an object from the Map of resources being managed for the transaction bound to the current thread at the
time this method is called. The key should have been supplied earlier by a call to putResouce in the same
transaction. If the key cannot be found in the current resource Map, null is returned. The general contract of
this method is that of java.util.Map#get(Object) for a Map that supports non-null keys and null values. For
example, the returned value is null if there is no entry for the parameter key or if the value associated with
the key is actually null.

Parameters:
key

The key for looking up the associated value object.

Returns:

The value object associated with the key, or null if not found.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

Throws: NullPointerException
Thrown if the parameter key is null.

• registerInterposedSynchronization

public void registerInterposedSynchronization(Synchronization sync)

Register a Synchronization instance with special ordering semantics. Its beforeCompletion will be called
after all SessionSynchronization beforeCompletion callbacks and callbacks registered directly with the
Transaction, but before the 2-phase commit process starts. Similarly, the afterCompletion callback will be
called after 2-phase commit completes but before any SessionSynchronization and Transaction afterCom-
pletion callbacks.

The beforeCompletion callback will be invoked in the transaction context of the transaction bound to the
current thread at the time this method is called. Allowable methods include access to resources, e.g. Connec-
tors. No access is allowed to "user components" (e.g. timer services or bean methods), as these might change
the state of data being managed by the caller, and might change the state of data that has already been
58

Java Transaction API
flushed by another caller of registerInterposedSynchronization. The general context is the component con-
text of the caller of registerInterposedSynchronization.

The afterCompletion callback will be invoked in an undefined context. No access is permitted to "user com-
ponents" as defined above. Resources can be closed but no transactional work can be performed with them.

If this method is invoked without an active transaction context, an IllegalStateException is thrown.

If this method is invoked after the two-phase commit processing has started, an IllegalStateException is
thrown.

Parameters:
sync

The synchronization instance.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• getStatus

public int getTransactionStatus()

Return the status of the transaction bound to the current thread at the time this method is called.

This is the result of executing TransactionManager.getStatus() in the context of the transaction bound to the
current thread at the time this method is called.

Returns:

The status of the transaction bound to the current thread at the time this method is called.

• setRollbackOnly

public void setRollbackOnly()

Set the rollbackOnly status of the transaction bound to the current thread at the time this method is called.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.

• getRollbackOnly

public boolean getRollbackOnly()
throws IllegalStateException

Get the rollbackOnly status of the transaction bound to the current thread at the time this method is called.

Returns:

The rollbackOnly status.

Throws: IllegalStateException
Thrown if the current thread is not associated with a transaction.
59

Java Transaction API
Interface XAResource

public interface javax.transaction.xa.XAResource
{

public void commit(Xid xid, boolean onePhase);
public void end(Xid xid, int flags);
public void forget(Xid xid);
public int getTransactionTimeout();
public boolean isSameRM(XAResource xares);
public int prepare(Xid xid);
public Xid[] recover(int flag);
public void rollback(Xid xid);
public boolean setTransactionTimeout(int seconds);
public void start(Xid xid, int flags);

}

XAResource interface is a Java mapping of the industry standard XA resource manager interface. Please refer to:
X/Open CAE Specification – Distributed Transaction Processing: The XA Specification, X/Open Document No.
XO/CAE/91/300 or ISBN 1 872630 24 3.

Methods

• commit

void commit(Xid xid, boolean onePhase) throws XAException

This method is called to commit the global transaction specified by xid.

Parameters:
 xid

A global transaction identifier.

 onePhase
If true, the resource manager should use a one-phase commit protocol to commit the work
done on behalf of xid.

Throws: XAException
An error has occurred. Possible XAExceptions are XA_HEURHAZ, XA_HEURCOM,
XA_HEURRB, XA_HEURMIX, XAER_RMERR, XAER_RMFAIL, XAER_NOTA, XAER_IN-
VAL, or XAER_PROTO.

If the resource manager did not commit the transaction and the parameter onePhase is set to true,
the resource manager may throw one of the XA_RB* exceptions. Upon return, the resource man-
ager has rolled back the branch’s work and has released all held resources.

• end

void end(Xid xid, int flags) throws XAException

This method ends the work performed on behalf of a transaction branch. The resource manager dissociates
the XA resource from the transaction branch specified and let the transaction be completed.

If TMSUSPEND is specified in flags, the transaction branch is temporarily suspended in incomplete state.
The transaction context is in suspened state and must be resumed via start with TMRESUME specified.
60

Java Transaction API
If TMFAIL is specified, the portion of work has failed. The resource manager may mark the transaction as
rollback-only.

If TMSUCCESS is specified, the portion of work has completed successfully.

Parameters:
 xid

A global transaction identifier that is the same as what was used previously in the start
method.

 flags
One of TMSUCCESS, TMFAIL, or TMSUSPEND.

Throws: XAException
An error has occurred. Possible XAException values are XAER_RMERR, XAER_RMFAIL,
XAER_NOTA, XAER_INVAL, XAER_PROTO, or XA_RB*.

• forget

void forget(Xid xid) throws XAException

This method is called to tell the resource manager to forget about a heuristically completed transaction
branch.

Parameters:
xid

A global transaction identifier.

 Throws: XAException
An error has occurred. Possible exception values are XAER_RMERR, XAER_RMFAIL,
XAER_NOTA, XAER_INVAL, or XAER_PROTO.

• getTransactionTimeout

int getTransactionTimeout() throws XAException

This method returns the transaction timeout value set for this XAResource instance. If XARe-
source.setTransactionTimeout was not use prior to invoking this method, the return value is the
default timeout set for the resource manager; otherwise, the value used in the previous setTransac-
tionTimeout call is returned.

Throws: XAException
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL.

Returns:
The transaction timeout values in seconds.

• isSameRM

boolean isSameRM(XAResource xares) throws XAException

This method is called to determine if the resource manager instance represented by the target object is the
same as the resource manager instance represented by the parameter xares .

Parameters:
xares

An XAResource object.

Returns:
true if same RM instance; otherwise false.
61

Java Transaction API
Throws: XAException
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL.

• prepare

int prepare(Xid xid) throws XAException

This method is called to ask the resource manager to prepare for a transaction commit of the transaction
specified in xid.

Parameters:
xid

A global transaction identifier.

Throws: XAException
An error has occurred. Possible exception values are: XA_RB*, XAER_RMERR, XAER_RM-
FAIL, XAER_NOTA, XAER_INVAL, or XAER_PROTO.

Returns:
A value indicating the resource manager’s vote on the outcome of the transaction. The possible val-
ues are: XA_RDONLY or XA_OK. If the resource manager wants to roll back the transaction, it
should do so by throwing an appropriate XAException in the prepare method.

• recover

Xid[] recover(int flag) throws XAException

This method is called to obtain a list of prepared transaction branches from a resource manager. The transac-
tion manager calls this method during recovery to obtain the list of transaction branches that are currently in
prepared or heuristically completed states.

The flag parameter indicates where the recover scan should start or end, or start and end. This method may
be invoked one or more times during a recovery scan. The resource manager maintains a cursor which marks
the current position of the prepared or heuristically completed transaction list. Each invocation of the
recover method moves the cursor past the set of Xids that are returned.

Two consecutive invocation of this method that starts from the beginning of the list must return the same list
of transaction branches unless one of the following takes place:

- the transaction manager invokes the commit, forget, prepare, or rollback method for that resource
manager, between the two consecutive invocation of the recovery scan.

- the resource manager heuristically completes some transaction branches between the two invocation
of the recovery scan.

 Parameters:
 flag

One of TMSTARTRSCAN, TMENDRSCAN, TMNOFLAGS. TMNOFLAGS must be used
when no other flags are used.

TMSTARTRSCAN - indicates that the recovery scan should be started at the beginning of the
prepared or heuristically completed transaction list.

TMENDRSCAN - indicates that the recovery scan should be ended after the method returns
the Xid list. If this flag is used in conjunction with the TMSTARTRSCAN, this method invo-
cation starts and ends the recovery scan.

TMNOFLAGS - this flag must be used when no other flags are specified. This flag may be
62

Java Transaction API
used only if the recovery scan has already been started. The list of Xids are returned

 Returns: xid[]
The resource manager returns zero or more Xids for the transaction branches that are currently in a
prepared or heuristically completed state. If an error occurs during the operation, the resource man-
ager should throw the appropriate XAException.

 Throws: XAException
An error has occurred. Possible values are XAER_RMERR, XAER_RMFAIL, XAER_INVAL,
and XAER_PROTO.

• rollback

 void rollback(Xid xid) throws XAException

 This method informs the resource manager to roll back work done on behalf of a transaction branch.

Parameters:
 xid

A global transaction identifier.

Throws: XAException
An error has occurred. Possible XAExceptions are XA_HEURHAZ, XA_HEURCOM,
XA_HEURRB, XA_HEURMIX, XAER_RMERR, XAER_RMFAIL, XAER_NOTA, XAER_IN-
VAL, or XAER_PROTO.

Upon return, the resource manager has rolled back the branch’s work and has released all held
resources.

• setTransactionTimeout

boolean setTransactionTimeout(int seconds) throws XAException

This method sets the transaction timeout value for this XAResource instance. Once set, this timeout value
is effective until setTransactionTimeout is invoked again with a different value. To reset the timeout
value to the default value used by the resource manager, set the value to zero.

If the timeout operation is performed successfully, the method returns true; otherwise false. If a resource
manager does not support transaction timeout value to be set explicitly, this method returns false.

Parameters:
 seconds

An positive integer specifying the timout value in seconds. Zero resets the transaction timeout
value to the default one used by the resource manager. A negative value results in XAExcep-
tion to be thrown with XAER_INVAL error code.

Returns:
true if transaction timeout value is set successfully; otherwise false.

Throws: XAException
An error has occurred. Possible exception values are: XAER_RMERR, XAER_RMFAIL, or
XAER_INVAL.

• start

 void start(Xid xid, int flags) throws XAException

This method starts work on behalf of a transaction branch.
63

Java Transaction API
If TMJOIN is specified, the start is for joining an exisiting transaction branch xid. If TMRESUME is spec-
ified, the start is to resume a suspended transaction branch specified in xid.

If neither TMJOIN nor TMRESUME is specified and the transaction branch specified in xid already exists,
the resource manager throw the XAException with XAER_DUPID error code.

Parameters:
 xid

A global transaction identifier to be associated with the resource.

 flags
One of TMNOFLAGS, TMJOIN, or TMRESUME.

Throws: XAException
An error has occurred. Possible exceptions are XA_RB*, XAER_RMERR, XAER_RMFAIL,
XAER_DUPID, XAER_OUTSIDE, XAER_NOTA, XAER_INVAL, or XAER_PROTO.

Constants

• TMENDRSCAN

public final static int TMENDRSCAN = 0x00800000

End a recovery scan.

• TMFAIL

public final static int TMFAIL = 0x20000000

Dissociates the caller and mark the transaction branch rollback-only.

• TMJOIN

public final static int TMJOIN = 0x00200000

Caller is joining existing transaction branch.

• TMNOFLAGS

public final static int TMNOFLAGS = 0x00000000

Use TMNOFLAGS to indicate no flags value is selected.

• TMONEPHASE

public final static int TMONEPHASE = 0x40000000

Caller is using one-phase optimization.

• TMRESUME

public final static int TMRESUME = 0x08000000

Caller is resuming association with with suspended transaction branch.

• TMSTARTRSCAN

public final static int TMSTARTRSCAN = 0x01000000

Start a recovery scan.
64

Java Transaction API
• TMSUCCESS

public final static int TMSUCCESS = 0x04000000

Dissociate caller from transaction branch.

• TMSUSPEND

public final static int TMSUSPEND = 0x02000000

Caller is suspending (not ending) association with transaction branch.

• XA_OK

public final static int XA_OK = 0

The transaction work has been prepared normally.

• XA_RDONLY

public final static int XA_RDONLY = 0x00000003

The transaction branch has been read-only and has been committed.
65

Java Transaction API
Interface Xid

public interface javax.transaction.xa.Xid
{

int getFormatId();
byte[] getGlobalTransactionId();
byte[] getBranchQualifier();

}

The Xid interface is a Java mapping of the X/Open transaction identifier Xid structure. This
interface is used by the transaction manager to communicate to the resource manager for asso-
ciating a transaction to the XAResource.

Constants

• MAXGTRIDSIZE

final static int MAXGTRIDSIZE = 64

Maximum number of bytes returned by getGlobalTransactionId method.

• MAXBQUALSIZE

final static int MAXBQUALSIZE = 64

Maximum number of bytes returned by getBranchQualifier method

Methods

• getFormatId

int getFormatID()

Obtain the format identifier part of the Xid.

 Returns:
Format identifier. 0 means the OSI CCR format.

• getGlobalTransactionId

byte[] getGlobalTransactionId()

Obtain the global transaction identifier part of the Xid in a byte array.

Returns:
A byte array containing the global transaction identifier.

• getBranchQualifier

byte[] getBranchQualifier()

Obtain the transaction branch qualifier part of the Xid in a byte array.

Returns:
A byte array containing the branch qualifier of the transaction.
66

Java Transaction API
Class HeuristicCommitException

public class javax.transaction.HeuristicCommitException
extends java.lang.Exception

{
 public HeuristicCommitException();
 public HeuristicCommitException(String msg);
}

This exception is thrown by the rollback operation on a resource to report that a heuristic decision was made
and that all relevant updates have been committed.

Constructors

• HeuristicCommitException

public HeuristicCommitException()

• HeuristicCommitException

public HeuristicCommitException(String msg)
67

Java Transaction API
Class HeuristicMixedException

public class javax.transaction.HeuristicMixedException
extends java.lang.Exception

{
 public HeuristicMixedException();
 public HeuristicMixedException(String msg);
}

This exception is thrown to report that a heuristic decision was made and that some relevant updates have
been committed and others have been rolled back.

Constructors

• HeuristicMixedException

public HeuristicMixedException()

• HeuristicMixedException

public HeuristicMixedException(String msg)
68

Java Transaction API
Class HeuristicRollbackException

public class javax.transaction.HeuristicRollbackException
extends java.lang.Exception

{
 public HeuristicRollbackException();
 public HeuristicRollbackException(String msg);
}

This exception is thrown by the commit operation to report that a heuristic decision was made and that all
relevant updates have been rolled back.

Constructors

• HeuristicRollbackException

public HeuristicRollbackException()

• HeuristicRollbackException

public HeuristicRollbackException(String msg)
69

Java Transaction API
Class InvalidTransactionException

public class javax.transaction.InvalidTransactionException
extends java.rmi.RemoteException

{
 public InvalidTransactionException();
 public InvalidTransactionException(String msg);
}

This exception indicates that the request carried an invalid transaction context. This exception is used by any
module that needs to indicate the invalid transaction context to the remote client.

Constructors

• InvalidTransactionException

public InvalidTransactionException()

• InvalidTransactionException

public InvalidTransactionException(String msg)
70

Java Transaction API
Class NotSupportedException

public class javax.transaction.NotSupportedException
extends java.lang.Exception

{
 public NotSupportedException();
 public NotSupportedException(String msg);
}

This exception is thrown when the requested operation is not supported. For example, this exception can be
thrown by the Transaction Manager to indicate that nested transaction is not supported. If Transaction begin
is called when the calling thread is already associated with a transaction context and the Transaction Man-
ager implementation does not support nested transactions, then this exception is thrown by the Transaction
Manager.

Constructors

• NotSupportedException

public NotSupportedException()

• NotSupportedException

public NotSupportedException(String msg)
71

Java Transaction API
Class RollbackException

public class javax.transaction.RollbackException
extends java.lang.Exception

{
 public RollbackException();
 public RollbackException(String msg);
}

This exception is thrown when the transaction has been marked for rollback only or the transaction has been
rolledback instead of committed. This is a local exception thrown by methods in the UserTransaction,
Transaction and TransactionManager interfaces.

Constructors

• RollbackException

public RollbackException()

• RollbackException

public RollbackExcpetion(String msg)
72

Java Transaction API
Class SystemException

public class javax.transaction.SystemException extends java.lang.Exception
{

public SystemException();
public SystemException(String s);
public SystemException(int errCode);

}

The SystemException is thrown by the Transaction Manager to indicate that it has encountered an unex-
pected error condition that prevents future transaction services from proceeding.

Constructors

• SystemException

public SystemException()

Create a SystemException.

• SystemException

public SystemException(String s)

Create a SystemException with the specified string.

• SystemException

public SystemException(int errCode)

Create a SystemException with the specified error code.

Variables

• errorCode

public int errorCode

Error code for the exception.
73

Java Transaction API
Class TransactionRequiredException

public class javax.transaction.TransactionRequiredException
 extends java.rmi.RemoteException
{
 public TransactionRequiredException();
 public TransactionRequiredException(String msg);
}

This exception indicates that a request carried a null transaction context, but the target object requires an
active transaction. This exception is used by the system module that needs to indicate to the remote client
about the error condition.

Constructors

• TransactionRequiredException

public TransactionRequiredException()

• TransactionRequiredException

public TransactionRequiredException(String msg)
74

Java Transaction API
Class TransactionRolledbackException

public class javax.transaction.TransactionRolledbackException
 extends java.rmi.RemoteException
{
 public TransactionRolledbackException();
 public TransactionRolledbackException(String msg);
}

This exception indicates that the transaction associated with processing of the request has been rolled back,
or marked for roll back. Thus the requested operation either could not be performed or was not performed
because further computation on behalf of the transaction would be fruitless. This exception is thrown by a
system module to indicate to the remote client about the aborted transaction.

Constructors

• TransactionRolledbackException

public TransactionRolledbackException()

• TransactionRolledbackException

public TransactionRolledbackException(String msg)
75

Java Transaction API
Class XAException

public class javax.transaction.xa.XAException extends java.lang.Exception
{

public XAException();
public XAException(String s);
public XAException(int errCode);

}

The XAException is thrown by the Resource Manager (RM) to inform the Transaction Manager of error encoun-
tered for the transaction involved.

Constructors

• XAException

public XAException()

Create an XAException.

• XAException

public XAExeption(String s)

Create an XAException with the specified string.

• XAException

public XAException(int errCode)

Create an XAException with the specified error code.

Variables and Constants

• errorCode

public int errorCode

Error code for the exception

• XA_RBBASE

public final static int XA_RBBASE = 100

The inclusive lower bound of the rollback code.

• XA_RBROLLBACK

public final static int XA_RBROLLBACK = XA_RBBASE

The rollback was caused by an unspecified reason.

• XA_RBCOMMFAIL

public final static int XA_RBCOMMFAIL = XA_RBBASE + 1

The rollback was caused by a communication failure.
76

Java Transaction API
• XA_RBDEADLOCK

public final static int XA_RBDEADLOCK = XA_RBBASE + 2

A deadlock was detected.

• XA_RBINTEGRITY

public final static int XA_RBINTEGRITY = XA_RBBASE + 3

A condition that violates the integrity of the resources was detected.

• XA_RBOTHER

public final static int XA_RBOTHER = XA_RBBASE + 4

The resouce manager rolled back the transaction branch for a reason not on this list.

• XA_RBPROTO

public final static int XA_RBPROTO = XA_RBBASE + 5

A protocol error occurred in the resource manager.

• XA_RBTIMEOUT

public final static int XA_RBRBTIMEOUT = XA_RBBASE + 6

A transaction branch took too long.

• XA_RBTRANSIENT

public final static int XA_RBTRANSIENT = XA_RBBASE + 7

May retry the transaction branch

• XA_RBEND

public final static int XA_RBEND = XA_RBTRANSIENT

The inclusive upper bound of the rollback codes.

• XA_NOMIGRATE

public final static int XA_NOMIGRATE = 9

Resumption must occur where suspension occurred.

• XA_HEURHAZ

public final static int XA_HEURHAZ = 8

The transaction branch may have been heuristically completed.

• XA_HEURCOM

public final static int XA_HEURCOM = 7

The transaction branch has been heuristically committed.

• XA_HEURRB

public final static int XA_HEURRB = 6

The transaction branch has been heuristically rolled back.
77

Java Transaction API
• XA_HEURMIX

public final static int XA_HEURMIX = 5

The transaction branch has been heuristically committed and rolled back.

• XA_RDONLY

public final static int XA_RDONLY = 3

The transaction branch was read-only and has been committed.

• XAER_RMERR

public final static int XAER_RMERR = -3

A resource manager error occurred in the transaction branch

• XAER_NOTA

public final static int XAER_NOTA = -4

The XID is not valid.

• XAER_INVAL

public final static int XAER_INVAL = -5

Invalid arguments were given.

• XAER_PROTO

public final static int XAER_PROTO = -6

Routine invoked in an improper context.

• XAER_RMFAIL

public final static int XAER_RMFAIL = -7

Resource manager unavailable.

• XAER_DUPID

public final static int XAER_DUPID = -8

The XID already exists.

• XAER_OUTSIDE

public final static int XAER_OUTSIDE = -9

Resource manager doing work outside global transaction.
78

Java Transaction API
6 Related documents

[1] X/Open CAE Specification – Distributed Transaction Processing: The XA Specifi-
cation, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3

[2] Java Transaction Service (JTS). http://javawww.sunoracle.com/technetwork/java/
productsjavaee/jts-spec095- 1508547.pdf

[3] OMG Object Transaction Service (OTS 1.1)
http://www.omg.org/corba/sectrans.html#trans.

[4] ORB Portability Submission, OMG document orbos/97-04-14.

[5] Enterprise JavaBeansTM. http://javajcp.sun.comorg/en/productsjsr/ejbde-
tail?id=345.

[6] JDBCTM 24.01. http://javajcp.sun.comorg/productsen/ jsr/jdbcdetail?id=221.

[7] JDBCTM JMS 2.0. http://javajcp.sun.comorg/en/productsjsr/jdbcdetail?id=343.

[8] Java Message Service. http://java.sun.com/products/jms

[9] Contexts and Dependency Injection for the Java EE Platform 1.1 (CDI specifica-
tion). http://jcp.org/en/jsr/detail?id=346.
79

Java Transaction API
7 Change History for Version 1.0.1B

• Removed the method modifier abstract from all interface methods, since
interface methods are implicitly abstract.

• Table 1, row 1 (TMJOIN) : move transaction association (T1) from column 3
(association suspended) to column 1 (not associated).

• Interface javax.transaction.Synchronization, method
beforeCompletion, change the following phrase in the description "start of
the transaction completion process" to "start of the two-phase transaction
commit process".

• Interface javax.transaction.Transaction, method commit, added
IllegalStateException to throws clause.

• Interface javax.transaction.Transaction, method commit,
replace the description of HeuristicRollbackException with "Thrown
to indicate that a heuristic decision was made and that all relevant updates have
been rolled back.".

• Interface javax.transaction.Transaction, change spelling of
Transactioin to Transaction in interface description.

• Interface javax.transaction.Transaction, method
registerSynchronization, first paragraph, line 2, change the phrase
"transaction completion process" to "two-phase transaction commit process".

• Interface javax.transaction.Transaction, method rollback,
spelling correction to method signature description, change
SyetemException to SystemException.

• Interface javax.transaction.TransactionManager, method
commit, replace the description of HeuristicRollbackException
with "Thrown to indicate that a heuristic decision was made and that all relevant
updates have been rolled back.".

• Interface javax.transaction.TransactionManager, method
setTransactionTimeout, replace the first paragraph of the description
with "Modify the timeout value that is associated with transactions started by
subsequent invocations of the begin method.".

• Interface javax.transaction.TransactionManager, method
setTransactionTimeout, replace the description of method parameter
seconds with "The value of the timeout in seconds. If the value is zero, the
transaction service restores the default value. If the value is negative a
SystemException is thrown.".

• Interface javax.transaction.UserTransaction, method commit,
replace the description of HeuristicRollbackException with "Thrown to indicate
that a heuristic decision was made and that all relevant updates have been rolled
back.".
80

Java Transaction API
• Interface javax.transaction.UserTransaction, method
setTransactionTimeout, replace the first paragraph of the description
with "Modify the timeout value that is associated with transactions started by
subsequent invocations of the begin method.".

• Interface javax.transaction.UserTransaction, method
setTransactionTimeout, replace the description of method parameter
seconds with "The value of the timeout in seconds. If the value is zero, the
transaction service restores the default value. If the value is negative a
SystemException is thrown.".

• Interface javax.transaction.xa.XAResource, method commit,
insert return type void to method signature description.

• Interface javax.transaction.xa.XAResource, method commit,
spelling correction to description, change paramether to parameter.

• Interface javax.transaction.xa.XAResource, method end, replace
return type int with void in method signature description.

• Interface javax.transaction.xa.XAResource, method end,
corrected spelling of XAException errorCode XAER_RMFAILED to
XAER_RMFAIL.

• Interface javax.transaction.xa.XAResource, method recover,
spelling correction to method signature description, replace return type xid[]
with Xid[].

• Interface javax.transaction.xa.XAResource, method rollback,
add the following to the description of XAException, "Possible XAExceptions
are XA_HEURHAZ, XA_HEURCOM, XA_HEURRB, XA_HEURMIX,
XAER_RMERR, XAER_RMFAIL, XAER_NOTA, XAER_INVAL, or
XAER_PROTO. Upon return, the resource manager has rolled back the
branch’s work and has released all held resources.".

• Interface javax.transaction.xa.XAResource, spelling correction to
description, replace TMNOFLAG with TMNOFLAGS.

• Interface javax.transaction.xa.XAResource, added constants
XA_OK and XA_RDONLY to be consistent with the actual interface
definition.

• Interface javax.transaction.xa.Xid, method
getGlobalTransactionId, spelling correction to method signature
description, corrected method name from getGrid to
getGlobalTransactionId.

• Interface javax.transaction.xa.Xid, method
getBranchQualifier, spelling correction to method signature
description, corrected method name from getEqual to
getBranchQualifier.
81

Java Transaction API
• Class javax.transaction.xa.XAException, spelling correction to
description of interface definition, replace phrase
javax.transactioin.xa.XAException with
javax.transaction.xa.XAException.
82

Java Transaction API
8 Change History for Version 1.1

• Section 3.4 XAResource Interface: The line "The transaction manager obtains
an XAResource for each resource manager participating in a global
transaction." has been changed to "The transaction manager obtains an
XAResource for each transaction resource participating in a global
transaction.".

• Interface javax.transaction.UserTransaction, method setTransactionTimeout,
replace the first paragraph of the description with "Modify the timeout value
that is associated with transactions started by subsequent invocations of the
begin method by the current thread.".

• Interface javax.transaction.TransactionManager, method
setTransactionTimeout, replace the first paragraph of the description with
"Modify the timeout value that is associated with transactions started by
subsequent invocations of the begin method by the current thread.".

• New interface javax.transaction.TransactionSynchronizationRegistry.

• Interface javax.transaction.Synchronization, method beforeCompletion, add
the following description: "An unchecked exception thrown by a registered
Synchronization object causes the transaction to be aborted. That is, upon
encountering an unchecked exception thrown by a registered synchronization
object, the transaction manager must mark the transaction for rollback.".

•

83

Java Transaction API
9 Change History for Version 1.2

• New annotation javax.transaction.Transactional and exception
javax.transaction.TransactionalException

• New annotation javax.transaction.TransactionScoped

• Added the following description to the end of section 3.3.1 Resource
Enlistment: "A container only needs to call delistResource to explicitly
dissociate a resource from a transaction and it is not a mandatory container
requirement to do so as a precondition to transaction completion. A transaction
manager is, however, required to implicitly insure the association of any
associated XAResource is ended, via the appropriate XAResource.end call,
immediately prior to completion; that is before prepare (or commit/rollback in
the onephase-optimized case)."

• Various update of stale material, version updates, etc
84

	Table of Contents
	1. Introduction ... 7
	2. Relationship to Other Java APIs .. 10
	3. Java Transaction API ... 11
	4. JTA Support in Application Server ...2 Transaction Association and Connection Request Flow 2830
	5. Related Documents.. 33

	1 Introduction
	1.1 Background
	1.2 Target Audience

	2 Relationship to Other Java APIs
	2.1 Enterprise JavaBeans
	2.2 JDBC 24.0 1 Standard Extension API
	2.3 Java Message Service
	2.4 Java Transaction Service

	3 Java Transaction API
	3.1 UserTransaction Interface
	3.1.1 UserTransaction Support in EJB Server
	3.1.2 UserTransaction Support for Transactional Clients

	3.2 TransactionManager Interface
	3.2.1 Starting a Transaction
	3.2.2 Completing a Transaction
	3.2.3 Suspending and Resuming a Transaction

	3.3 Transaction Interface
	3.3.1 Resource Enlistment
	3.3.2 Transaction Synchronization
	3.3.3 Transaction Completion
	3.3.4 Transaction Equality and Hash Code

	3.4 XAResource Interface
	3.4.1 Opening a Resource Manager
	3.4.2 Closing a Resource Manager
	3.4.3 Thread of Control
	3.4.4 Transaction Association
	Table 1: Transaction Association

	3.4.5 Externally Controlled Connections
	3.4.6 Resource Sharing
	3.4.7 Local and Global Transactions
	3.4.8 Failures Recovery
	3.4.9 Identifying Resource Manager Instance
	3.4.10 Dynamic Registration

	3.5 Xid Interface
	3.6 TransactionSynchronizationRegistry Interface
	3.7 Transactional Annotation

	4 JTA Support in the Application Server
	4.1 Connection-Based Resource Usage Scenario
	4.2 Transaction Association and Connection Request Flow
	1. Assuming a client invokes an EJB a CDI managed bean annotated with a TX_REQUIRED transaction attribute Transactional(TxType.REQUIRED) and the client is not associated with a global transaction, the EJB container Transactional interceptor starts a ...
	2. After the the transaction starts, the container invokes the bean method. As part of the business logic, the bean requests for a connection-based resource using the API provided by the resource adapter of interest.
	3. The application server obtains a resource from the resource adapter via some ResourceFactory.getTransactionalResource method.
	4. The resource adapter creates the TransactionalResource object and the associated XAResource and Connection objects.
	5. The application server invokes the getXAResource method.
	6. The application server enlists the resource to the transaction manager.
	7. The transaction manager invokes XAResource.start to associate the current transaction to the resource.
	8. The application server invokes the getConnection method.
	9. The application server returns the Connection object reference to the application.
	10. The application performs one or more operations on the connection.
	11. The application closes the connection.
	12. The application server delist the resource when notified by the resource adapter about the connection close.
	13. The transaction manager invokes XAResource.end to disassociate the transaction from the XAResource.
	14. The application server asks the transaction manager to commit the transaction.
	15. The transaction manager invokes XAResource.prepare to inform the resource manager to prepare the transaction work for commit.
	16. The transaction manager invokes XAResource.commit to commit the transaction.

	5 Java Transaction API Reference
	Interface Status
	Constants
	• STATUS_ACTIVE
	• STATUS_COMMITTED
	• STATUS_COMMITTING
	• STATUS_MARKED_ROLLBACK
	• STATUS_NO_TRANSACTION
	• STATUS_PREPARED
	• STATUS_PREPARING
	• STATUS_ROLLEDBACK
	• STATUS_ROLLING_BACK
	• STATUS_UNKNOWN

	Interface Synchronization
	Methods
	• beforeCompletion
	• afterCompletion
	Parameters:

	Interface Transaction
	Methods
	• commit
	Throws
	Throws
	Throws
	Throws
	Throws
	Throws

	• delistResource
	Parameters:
	Returns:
	Throws
	Throws

	• enlistResource
	Parameters:
	Returns:
	Throws
	Throws
	Throws

	• getStatus
	Returns:
	Throws

	• registerSynchronization
	Parameters:
	Throws
	Throws
	Throws

	• rollback
	Throws
	Throws

	• setRollbackOnly
	Throws
	Throws

	Constants
	• TMSUCCESS
	• TMSUSPEND
	• TMFAIL

	Interface TransactionManager
	Methods
	• begin
	Throws
	Throws

	• commit
	Throws
	Throws
	Throws
	Throws
	Throws
	Throws

	• getStatus
	Returns:
	Throws

	• getTransaction
	Returns:
	Throws

	• resume
	Parameters:
	Throws
	Throws
	Throws

	• rollback
	Throws
	Throws
	Throws

	• setRollbackOnly
	Throws
	Throws

	• setTransactionTimeout
	Parameters:
	Throws

	• suspend
	Returns:
	Throws

	Interface UserTransaction
	Methods
	• begin
	Throws
	Throws

	• commit
	Throws
	Throws
	Throws
	Throws
	Throws
	Throws

	• getStatus
	Returns:
	Throws

	• rollback
	Throws
	Throws
	Throws

	• setRollbackOnly
	Throws
	Throws

	• setTransactionTimeout
	Parameters:
	Throws

	Interface TransactionSynchronizationRegistry
	Methods
	• getTransactionKey
	Returns:

	• putResource
	Parameters:
	Throws
	Throws

	• getResource
	Parameters:
	Returns:
	Throws
	Throws

	• registerInterposedSynchronization
	Parameters:
	Throws

	• getStatus
	Returns:

	• setRollbackOnly
	Throws

	• getRollbackOnly
	Returns:
	Throws

	Interface XAResource
	Methods
	• commit
	Parameters:
	Throws: XAException

	• end
	Parameters:
	Throws: XAException

	• forget
	Throws: XAException

	• getTransactionTimeout
	Throws: XAException
	Returns:

	• isSameRM
	Returns:
	Throws: XAException

	• prepare
	Parameters:
	Throws: XAException
	Returns:

	• recover
	Parameters:
	Returns: xid[]
	Throws: XAException

	• rollback
	Parameters:
	Throws: XAException

	• setTransactionTimeout
	Parameters:
	Returns:
	Throws: XAException

	• start
	Parameters:
	Throws: XAException

	Constants
	• TMENDRSCAN
	• TMFAIL
	• TMJOIN
	• TMNOFLAGS
	• TMONEPHASE
	• TMRESUME
	• TMSTARTRSCAN
	• TMSUCCESS
	• TMSUSPEND
	• XA_OK
	• XA_RDONLY

	Interface Xid
	Constants
	• MAXGTRIDSIZE
	• MAXBQUALSIZE

	Methods
	• getFormatId
	Returns:

	• getGlobalTransactionId
	Returns:

	• getBranchQualifier
	Returns:

	Class HeuristicCommitException
	Constructors
	• HeuristicCommitException
	• HeuristicCommitException

	Class HeuristicMixedException
	Constructors
	• HeuristicMixedException
	• HeuristicMixedException

	Class HeuristicRollbackException
	Constructors
	• HeuristicRollbackException
	• HeuristicRollbackException

	Class InvalidTransactionException
	Constructors
	• InvalidTransactionException
	• InvalidTransactionException

	Class NotSupportedException
	Constructors
	• NotSupportedException
	• NotSupportedException

	Class RollbackException
	Constructors
	• RollbackException
	• RollbackException

	Class SystemException
	Constructors
	• SystemException
	• SystemException
	• SystemException

	Variables
	• errorCode

	Class TransactionRequiredException
	Constructors
	• TransactionRequiredException
	• TransactionRequiredException

	Class TransactionRolledbackException
	Constructors
	• TransactionRolledbackException
	• TransactionRolledbackException

	Class XAException
	Constructors
	• XAException
	• XAException
	• XAException

	Variables and Constants
	• errorCode
	• XA_RBBASE
	• XA_RBROLLBACK
	• XA_RBCOMMFAIL
	• XA_RBDEADLOCK
	• XA_RBINTEGRITY
	• XA_RBOTHER
	• XA_RBPROTO
	• XA_RBTIMEOUT
	• XA_RBTRANSIENT
	• XA_RBEND
	• XA_NOMIGRATE
	• XA_HEURHAZ
	• XA_HEURCOM
	• XA_HEURRB
	• XA_HEURMIX
	• XA_RDONLY
	• XAER_RMERR
	• XAER_NOTA
	• XAER_INVAL
	• XAER_PROTO
	• XAER_RMFAIL
	• XAER_DUPID
	• XAER_OUTSIDE

	6 Related documents
	[1] X/Open CAE Specification – Distributed Transaction Processing: The XA Specification, X/Open Document No. XO/CAE/91/300 or ISBN 1 872630 24 3
	[2] Java Transaction Service (JTS). http://javawww.sunoracle.com/technetwork/java/ productsjavaee/jts-spec095- 1508547.pdf
	[3] OMG Object Transaction Service (OTS 1.1)
	[4] ORB Portability Submission, OMG document orbos/97-04-14.
	[5] Enterprise JavaBeansTM. http://javajcp.sun.comorg/en/productsjsr/ejbdetail?id=345.
	[6] JDBCTM 24.01. http://javajcp.sun.comorg/productsen/ jsr/jdbcdetail?id=221.
	[7] JDBCTM JMS 2.0. http://javajcp.sun.comorg/en/productsjsr/jdbcdetail?id=343.
	[8] Java Message Service. http://java.sun.com/products/jms
	[9] Contexts and Dependency Injection for the Java EE Platform 1.1 (CDI specification). http://jcp.org/en/jsr/detail?id=346.

	7 Change History for Version 1.0.1B
	8 Change History for Version 1.1
	9 Change History for Version 1.2

