Problem Set Solution – See Handout in Volk Pump Course

1. Total Head Calculation

Total Head = Static Head + Friction Head + Pressure Head + Velocity Head = $H_s + H_f + H_p + H_v$

From this system layout in the handout, Static Head $H_s = 109.0$ ft.

Based on the design flow of 1000 gpm and the given values for design suction velocity of 5-7 ft/sec and design discharge velocity of 10-12 ft/sec, the following pipe sizes and associated data is chosen from Table 2.1 on page 51 of the Volk book:

Pipe	Size	V (ft/sec)	V ² /2g (ft)	H _f (ft/100 ft)
Suction	8″	6.41	0.64	1.56
Discharge	6"	11.1	1.92	6.17

Friction Head H_f (see calc. on next page) = 65.4 ft.

Pressure Head H_p (see calc. on next page) = 123.7 ft.

Velocity Head $H_v = 0$, with the liquid levels in the 2 tanks as the reference points (see Volk, p. 58)

Total Head = $H_s + H_f + H_p + H_v = 109.0 + 65.4 + 123.7 + 0$ = <u>298.1 ft.</u> (rounded to 300.0 ft for pump selection)

2. NPSH_a Calculation

 $NPSH_a = P + H_s - H_f - H_{vp}$

P = 28.8 ft. (see note in Absolute Pressure Head calculation on next page) H_s = 2.0 ft. (see pump system drawing, suction tank liquid level above pump inlet) H_f = 2.8 ft. (see note in Suction Pipe Friction Head calculation on next page) H_{vp} = 8.7 ft. (see Table 2.3, page 80, in Volk book, at 150°F)

NPSH_a = P + H_s - H_f - H_{vp} = 28.8 + 2.0 - 2.8 - 8.7 = <u>19.3 ft.</u>

3. Pump Selections

Size	RPM	Efficiency	NPSH _r	Notes
3x6x12	3560	70%	27 ft.	To right of POR, very short on NPSH
4x6x12	3560	75%	20 ft.	Not enough NPSH margin, need 27 ft.
4x6x9	3560	81%	22 ft.	Not enough NPSH margin, need 29.7 ft., near max. impeller
6x8x11	3560	71%	25 ft.	To left of POR, very short on NPSH
6x8x17	1760	66%	10 ft.	To left of POR, near max. impeller
6x8x21	1760	66%	10 ft.	Only choice that meets all design criteria
8x10x21	1760	58%	8 ft.	Very much to left of POR

Pump Sizing Application Exercises (cont'd) – See Handout in Volk Pump Course Friction and Pressure Head Calculations for Pump Sizing Application Exercises

Friction Head Calculation

(Values of h_f and V²/2g come from table on preceding page. Values of K come from Volk, p. 55 and 56)

 $\begin{array}{l} \underline{Suction\ Pipe} \\ H_f\ (pipe) = h_f\ x\ L/100 = 1.56\ x\ 1.5 = 2.34\ ft. \\ H_f\ (gate\ valves) = K\ x\ V^2/2g\ x\ Qty. = .07\ x\ 0.64\ x\ 2 = 0.09\ ft. \\ H_f\ (suction\ pipe\ inlet) = K\ x\ V^2/2g = 0.5\ x\ 0.64 = 0.32\ ft. \ (assume\ square\ edged\ inlet) \\ H_f\ (Total\ Suction\ Pipe) = 2.34\ +\ 0.09\ +\ 0.32\ = \underline{2.8\ ft.} \\ (Note\ that\ this\ value\ of\ 2.8\ ft.\ is\ also\ the\ third\ term\ of\ the\ NPSH_a\ calculation.) \end{array}$

Discharge Pipe

 $\begin{array}{l} {\sf H_f} \ ({\sf pipe}) = {\sf h_f} \ x \ {\sf L}/100 = 6.17 \ x \ 9.0 = 55.5 \ {\sf ft}. \\ {\sf H_f} \ ({\sf gate valves}) = {\sf K} \ x \ {\sf V}^2/2g \ x \ {\sf Qty.} = .09 \ x \ 1.92 \ x \ 2 = 0.35 \ {\sf ft}. \\ {\sf H_f} \ ({\sf check valve}) = {\sf K} \ x \ {\sf V}^2/2g \ = 2 \ x \ 1.92 \ = 3.84 \ {\sf ft}. \\ {\sf H_f} \ ({\sf elbows}) = {\sf K} \ x \ {\sf V}^2/2g \ x \ {\sf Qty.} = 0.27 \ x \ 1.92 \ x \ 2 = 1.0 \ {\sf ft}. \\ {\sf H_f} \ ({\sf discharge pipe outlet}) = {\sf K} \ x \ {\sf V}^2/2g \ = 1.0 \ x \ 1.92 \ = 1.92 \ {\sf ft}. \ ({\sf sudden enlargement, K=1, see p. 56}) \\ {\sf H_f} \ ({\sf Total Discharge Pipe}) = 55.5 \ + \ 0.35 \ + \ 3.84 \ + \ 1.0 \ + \ 1.92 \ = \ \underline{62.6 \ ft}. \end{array}$

 H_f (Total) = H_f (Total Suction Pipe) + H_f (Total Discharge Pipe) = 2.8 + 62.6 = 65.4 ft.

Pressure Head Calculation

This calculation is done two ways, using gage values and absolute values of vacuum and pressure, and of course will get the same result. To compute H_{p} (suction), use equation 2.8 from Volk, Vac (ft) = Vac ("Hg) x 1.133/SG, to convert from "Hg to ft. To compute H_{p} (discharge), use equation 2.7 from the Volk book, Head (ft) = psi x 2.31/SG, to convert from psi to ft.

Gage Pressure Calculation	Absolute Pressure Calculations	
Suction Tank	Suction Tank	
H _{p (} suction) = Vac ("Hg) x 1.133/SG	H _{p (} suction) = Vac ("Hg) x 1.133/SG	
= 5 x 1.133/0.98	= (29.9 – 5) x 1.133/0.98	
= <u>-5.8 ft. gage</u>	= <u>28.8 ft. absolute</u>	
	(Note that this value of 28.8 ft is also	
	the 1^{st} term of the NPSH _a calculation.)	
Discharge Tank	Discharge Tank	
H _{p (} discharge) = psi x 2.31/SG	H _{p (} discharge) = psi x 2.31/SG	
= 50 x 2.31/0.98	= 64.7 x 2.31/0.98	
= <u>117.9 ft. gage</u>	= <u>152.5 ft. absolute</u>	
Hp (Total) = H_{p} (discharge) – H_{p} (suction)	Hp (Total) = H_{p} (discharge) – H_{p} (suction)	
= 117.9 - (- 5.8)	= 152.5 - 28.8	
= <u>123.7 ft</u>	= <u>123.7 ft.</u>	