Problem Set Solution - See Handout in Volk Pump Course

1. Total Head Calculation

Total Head $=$ Static Head + Friction Head + Pressure Head + Velocity Head $=H_{s}+H_{f}+H_{p}+H_{v}$

From this system layout in the handout, Static Head $\mathrm{H}_{\mathrm{s}}=109.0 \mathrm{ft}$.
Based on the design flow of 1000 gpm and the given values for design suction velocity of 5-7 ft/sec and design discharge velocity of $10-12 \mathrm{ft} / \mathrm{sec}$, the following pipe sizes and associated data is chosen from Table 2.1 on page 51 of the Volk book:

Pipe	Size	$\mathbf{V}(\mathbf{f t} / \mathbf{s e c})$	$\mathbf{V}^{\mathbf{2}} / \mathbf{2 g}(\mathbf{f t})$	$\mathbf{H}_{\mathbf{f}}(\mathbf{f t} / \mathbf{1 0 0} \mathbf{f t})$
Suction	$8^{\prime \prime}$	6.41	0.64	1.56
Discharge	$6^{\prime \prime}$	11.1	1.92	6.17

Friction Head H_{f} (see calc. on next page) $=65.4 \mathrm{ft}$.
Pressure Head H_{p} (see calc. on next page) $=123.7 \mathrm{ft}$.

Velocity Head $\mathrm{H}_{\mathrm{v}}=0$, with the liquid levels in the 2 tanks as the reference points (see Volk, p. 58)

```
Total Head \(=H_{s}+H_{f}+H_{p}+H_{v}=109.0+65.4+123.7+0\)
    \(=\underline{\underline{298.1 ~ f t . ~}}\) (rounded to 300.0 ft for pump selection)
```


2. $\mathbf{N P S H}_{\mathrm{a}}$ Calculation

$\mathrm{NPSH}_{\mathrm{a}}=\mathrm{P}+\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{f}}-\mathrm{H}_{\mathrm{vp}}$
$\mathrm{P}=28.8 \mathrm{ft}$. (see note in Absolute Pressure Head calculation on next page)
$H_{s}=2.0 \mathrm{ft}$. (see pump system drawing, suction tank liquid level above pump inlet)
$\mathrm{H}_{\mathrm{f}}=2.8 \mathrm{ft}$. (see note in Suction Pipe Friction Head calculation on next page)
$\mathrm{H}_{\mathrm{vp}}=8.7 \mathrm{ft}$. (see Table 2.3, page 80, in Volk book, at $150^{\circ} \mathrm{F}$)

$$
\begin{aligned}
\mathrm{NPSH}_{\mathrm{a}} & =\mathrm{P}+\mathrm{H}_{\mathrm{s}}-\mathrm{H}_{\mathrm{f}}-\mathrm{H}_{\mathrm{vp}}=28.8+2.0-2.8-8.7 \\
& =\underline{\underline{19.3 \mathrm{ft}} .}
\end{aligned}
$$

3. Pump Selections

Size	RPM	Efficiency	NPSH $_{\mathbf{r}}$	Notes
$3 \times 6 \times 12$	3560	70%	27 ft.	To right of POR, very short on NPSH
$4 \times 6 \times 12$	3560	75%	20 ft.	Not enough NPSH margin, need 27 ft.
$4 \times 6 \times 9$	3560	81%	22 ft.	Not enough NPSH margin, need 29.7 ft., near max. impeller
$6 \times 8 \times 11$	3560	71%	25 ft.	To left of POR, very short on NPSH
$6 \times 8 \times 17$	1760	66%	10 ft.	To left of POR, near max. impeller
$6 \times 8 \times 21$	1760	66%	10 ft.	Only choice that meets all design criteria
$8 \times 10 \times 21$	1760	58%	8 ft.	Very much to left of POR

Pump Sizing Application Exercises (cont'd) - See Handout in Volk Pump Course Friction and Pressure Head Calculations for Pump Sizing Application Exercises

Friction Head Calculation

(Values of h_{f} and $V^{2} / 2 g$ come from table on preceding page. Values of K come from Volk, p. 55 and 56)

Suction Pipe

$H_{f}($ pipe $)=h_{f} \times L / 100=1.56 \times 1.5=2.34 \mathrm{ft}$.
H_{f} (gate valves) $=\mathrm{K} \times \mathrm{V}^{2} / 2 \mathrm{~g} \times$ Qty. $=.07 \times 0.64 \times 2=0.09 \mathrm{ft}$.
H_{f} (suction pipe inlet) $=\mathrm{K}^{2} \mathrm{~V}^{2} / 2 \mathrm{~g}=0.5 \times 0.64=0.32 \mathrm{ft}$. (assume square edged inlet)
$\mathrm{H}_{\mathrm{f}}($ Total Suction Pipe $)=2.34+0.09+0.32=\underline{2.8 \mathrm{ft}}$.
(Note that this value of 2.8 ft . is also the third term of the $\mathrm{NPSH}_{\mathrm{a}}$ calculation.)
Discharge Pipe
$H_{f}($ pipe $)=h_{f} \times \mathrm{L} / 100=6.17 \times 9.0=55.5 \mathrm{ft}$.
H_{f} (gate valves) $=\mathrm{K} \times \mathrm{V}^{2} / 2 \mathrm{~g} \times$ Qty. $=.09 \times 1.92 \times 2=0.35 \mathrm{ft}$.
H_{f} (check valve) $=\mathrm{K} \mathrm{x} \mathrm{V}{ }^{2} / 2 \mathrm{~g}=2 \times 1.92=3.84 \mathrm{ft}$.
H_{f} (elbows) $=K \times V^{2} / 2 \mathrm{~g} \times$ Qty. $=0.27 \times 1.92 \times 2=1.0 \mathrm{ft}$.
H_{f} (discharge pipe outlet) $=\mathrm{K} \times \mathrm{V}^{2} / 2 \mathrm{~g}=1.0 \times 1.92=1.92 \mathrm{ft}$. (sudden enlargement, $\mathrm{K}=1$, see p .56)
$\mathrm{H}_{\mathrm{f}}($ Total Discharge Pipe $)=55.5+0.35+3.84+1.0+1.92=\underline{62.6 \mathrm{ft}}$.
$H_{f}($ Total $)=H_{f}($ Total Suction Pipe $)+H_{f}($ Total Discharge Pipe $)=2.8+62.6=\underline{\underline{65.4} \mathrm{ft}}$.

Pressure Head Calculation

This calculation is done two ways, using gage values and absolute values of vacuum and pressure, and of course will get the same result. To compute H_{p} (suction), use equation 2.8 from Volk, $\operatorname{Vac}(\mathrm{ft})=\mathrm{Vac}\left({ }^{\prime \prime} \mathrm{Hg}\right) \times 1.133 / \mathrm{SG}$, to convert from " Hg to ft . To compute H_{p} (discharge), use equation 2.7 from the Volk book, Head (ft) = psi x 2.31/SG, to convert from psi to ft.

Gage Pressure Calculation
Suction Tank

$$
\begin{aligned}
\mathrm{H}_{\mathrm{p}(\text { suction })} & =\mathrm{Vac}(\text { " } \mathrm{Hg}) \times 1.133 / \mathrm{SG} \\
& =5 \times 1.133 / 0.98 \\
& =-5.8 \mathrm{ft} . \text { gage }
\end{aligned}
$$

Discharge Tank
$H_{p}($ discharge $)=p s i \times 2.31 / S G$
$=50 \times 2.31 / 0.98$

$$
=117.9 \mathrm{ft} . \text { gage }
$$

Hp (Total) $=\mathrm{H}_{\mathrm{p}}$ (discharge) $-\mathrm{H}_{\mathrm{p}}$ (suction)

$$
\begin{aligned}
& =117.9-(-5.8) \\
& =123.7 \mathrm{ft}
\end{aligned}
$$

Absolute Pressure Calculations
Suction Tank

$$
\begin{aligned}
\mathrm{H}_{\mathrm{p}(\text { suction })} & =\mathrm{Vac}(\text { " } \mathrm{Hg}) \times 1.133 / \mathrm{SG} \\
& =(29.9-5) \times 1.133 / 0.98 \\
& =\underline{28.8 \mathrm{ft} . \text { absolute }}
\end{aligned}
$$

(Note that this value of 28.8 ft is also the $1^{\text {st }}$ term of the $\mathrm{NPSH}_{\mathrm{a}}$ calculation.)

$$
\begin{aligned}
& \text { Discharge Tank } \\
& \mathrm{H}_{\mathrm{p}} \text { (discharge) }=\mathrm{psi} \times 2.31 / \mathrm{SG} \\
& =64.7 \times 2.31 / 0.98 \\
& =152.5 \mathrm{ft} \text {. absolute } \\
& \mathrm{Hp}(\text { Total })=\mathrm{H}_{\mathrm{p}} \text { (discharge) }-\mathrm{H}_{\mathrm{p}} \text { (suction) } \\
& =152.5-28.8 \\
& =123.7 \mathrm{ft} \text {. }
\end{aligned}
$$

