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I. INTRODUCTION

This year, as part of the Waymo Open Dataset (WOD)
set of challenges, a new challenge Panoramic Video Panop-
tic Segmentation (PVPS) was introduced [10]. This chal-
lenge requires video panoptic segmentation to be consistent
across multiple synchronized camera streams. Particular to the
dataset, there are 5 cameras mounted on the vehicle viewing
the scene from the left to the right. Instance categories such
as pedestrians, vehicles, and cyclists are tracked across both
cameras and time.

Our approach to the challenge combines Clip-kMax that lever-
ages k-Means cross attention across a video clip, as described
in the Video kMax paper [13] with Video Panoptic Stitching
[11] for post processing. While our current implementation
does not include the HiLA-MB module [13], we discuss
its potential as future work. Besides, we propose Panoramic
Camera Stitching across multi-camera frames as future work.

This technical report is organized as follows. In section II,
we review some of the literature for Panoptic Segmentation.
Our experiments and results are described in section III. In
the final section IV, we discuss challenges, work in progress
and further directions.

II. RELATED WORK

In recent years, there has been significant progress in panop-
tic segmentation, particularly with the advent of transformer
attention mechanisms. We have extensively studied the fol-
lowing state-of-the-art methods most of which leverage trans-
former attention mechanisms.

e DeTR [1]: DeTR proposes a transformer-based object
detection and panoptic segmentation framework, which
replaces heuristics like anchor box proposals with direct
box predictions by introducing object queries. It achieves
impressive performance by directly predicting objects and
their attributes.

o MaskFormer [5]: MaskFormer extends the vision trans-
former architecture for panoptic segmentation from DetR
by adopting a pixel decoder. It differs from Max-DeepLab
[15] in that it does not require auxiliary training losses.

o Mask2Former [7]: Mask2Former improves upon Mask-
Former by using masked attention in the decoder model
which restricts attention to local features. Additionally,
Mask2Former is easily extendable to video panoptic
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segmentation by simply stacking 2 consecutive image
frames [6].

Segment Anything [9]: We explored using the Seg-
ment Anything model published very recently. This is a
promptable model that allows zero-shot learning (through
composition, etc) for various tasks such as edge detection
and instance segmentation. Unfortunately, one of the
shortcomings of the work is the lack of simple prompts
for panoptic segmentation. Regardless, using the Segment
Anything model as a backbone is a future direction we
would like to pursue.

DeepLab Family [2, 3, 4]: The DeepLab series of papers
have made significant contributions to semantic seg-
mentation and object detection. By incorporating dilated
convolutions and atrous spatial pyramid pooling, they
have achieved remarkable results in various challenging
scenarios.

Panoptic DeepLab [8]: Panoptic DeepLab extends the
DeepLab framework to incorporate panoptic segmenta-
tion. The method performs instance segmentation through
instance center prediction and regression branches
and combines them with semantic segmentation from
DeepLab family to achieve state-of-art bottom up panop-
tic segmentation.

ViP DeepLab [11]: ViP DeepLab extends Panoptic
DeepLab to the video domain by adding additional
branches for center regression of the next frame in the
video sequence w.r.t the current frame. We experimented
with ViP DeepLab architecture in addition to clip kMax
for solving the challenge.

Max DeepLab [15]: Max DeepLab introduces a novel
dual-path transformer architecture that leverages several
possible forms of attention between pixel path and mem-
ory path. The PQ style loss and other auxiliary losses are
introduced in this work.

K-Means Mask Transformer [16]: This recent approach
combines K-means clustering and transformer-based at-
tention mechanisms for panoptic segmentation. This work
made a novel connection between k-means clustering and
transformer attention mechanisms.

Video kMax [13]: This work extends K-Means Mask
Transformer to the video domain by simply concatenating
images in a clip along the height axis generating a tube
prediction over the clip. The simplicity of the approach
and the state-of-the art performance motivated us
to attempt this method for the challenge. The work
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Fig. 1. Clip kMax architecture. Our implementation uses T = 2. Reference
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also proposes a Hierarchical Location Aware Memory
Buffer (HiLA-MB) for object tracking across long video
sequences. Our current implementation does not include
the HILA-MB module but we believe it’s a promising
direction to explore further.

III. METHOD & RESULTS

Our approach, Clip kMax as introduced in [13], leverages K-
Means cross attention to address the WOD 2D Video Panoptic
Segmentation challenge. As mentioned in the original paper,
we used a clip of length 2. The clip images are concatenated
along the height axis and fed as input to the model during
both training and inference.

Our model takes images from all different cameras similar
to the ‘View’ mode training in the WOD PVPS paper [10].
We generated source data as pairs of images at consecutive
timesteps. For training and validation datasets, this refers to
images at consecutive time steps where the ground truth labels
are available. For the test dataset, for inference, we used the
image at the very next timestamp as the second image of the
clip.

Due to limited GPU availability within the timelines of the
competition, we conducted our experiments using a machine
equipped with a single A100 GPU, which had a memory
limit of 40 GB. To accommodate the memory constraints, we
employed a quarter crop size of the total clip dimensions for
training the Clip kMax model. For example, the original clip
size for 3 cameras was 2560 x 1920, while our crop size was
set to 641 x 481. During training, we utilized a mini-batch
size of 4.

To implement our method, we adapted the existing open-
source DeepLab implementation [2], by Google Research.
Specifically we used the K-Max DeepLab architecture with
ConvNext-L. backbone. To feed the clip as an Image, we
developed a decoder implementation that concatenates the clip
frames along the height axis to provide the input image for the
model. We could not use a pre-trained backbone as we faced
issues with checkpoint loading that are yet to be figured out.
We also experimented with a variant of ViP-DeepLab (trained
with the same training compute constraints) that used a higher

mini-batch size (8), crop size (half crop of image compared to
quarter crop of clip) and Resnet backbone that is pre-trained
on ImageNet. Our Clip kMax training used random scale, auto
augmentation (implemented in DeepLab as a simple classi-
fication policy) and panoptic copy paste as augmentations.
We set the min and max resize values the same as crop size
following the other kMax configurations. Our ViP-DeepLab
variant only used a random scale for augmentations and no
resizing. We achieved better mloU with Clip kMax model
but slightly below wAQ than the ViP DeepLab experiment.
Metrics from our different experiments are outlined in Table
L.

We did not get to implementing the HiLA-MB module for
tracking the objects across the video sequence within the time
period for the challenge. Instead we leveraged the existing
Video Panoptic Stitching method provided in the DeepLab
repository as a post-processing step for video stitching. The
Clip kMax model generates consistent Instance Ids for a given
clip of (I, It+1) frames. We assume a frame stitcher that can
propagate Instance Ids from a concatenated panoptic frame
to the next panoptic frame based on IoU matching. We refer
to the [11] for additional details about this stitching. Over
a video sequence, we use the frame stitcher to propagate
the Instance Ids from consecutive I;;; frames in the video
[14]. While this is not exactly the same method employed in
ViP-DeepLab, exploratively we found this to yield reasonable
results compared to another alternate implementations we
came up with in the short time available.

Method mloU | wAQ | wSQ

Clip kMax + our VPS | 27.48 2.51 8.31

Vip DeepLab + VPS 25.65 2.60 8.16
TABLET

RESULTS ON WAYMO TEST SET FROM OUR EXPERIMENTS.

IV. FUTURE DIRECTIONS AND DISCUSSION

Through our work on the Waymo Open Dataset Challenge 2D
Video Panoptic Segmentation using the Clip kMax method,
we identified several potential future improvements to our
approach. We list some of these below including works in
progress:

o Increased Compute Resources: Due to the limited GPU
availability during our experiments, we were constrained
by the memory limit and had to compromise on the
crop size and mini-batch size. One of our primary future
goals is to acquire more GPUs and leverage higher
computational resources. This would enable us to train
the Clip kMax model with larger mini-batch sizes and
potentially higher crop sizes potentially improving the
performance of our approach. (Update post competition
deadline: We already started making progress in this
direction and on a promising path to better results.)

o HiLA-MB for Panoptic Stitching: From our observations,
one of the shortcomings is tracking over a longer period



of time. We believe HILA-MB [13] would improve our
results significantly.

Camera Panoramic Stitching: We worked on a module
to propagate Instance Ids across cameras at the same
timestep. Unfortunately, due to a bug we were not able
to generate results with this module incorporated (which
lead to lower than expected wAQ and wSTQ metrics).
The method is similar to the one used in [10]. In
particular, for each pair of cameras with overlapping
FOVs, we compute IoUs between all instances in the
same category. The IoUs are computed in panoramic view
composed of the two camera images by equi-rectangular
projection. The IoUs are then used to create a similarity
matrix between all instance pairs. We use a Linear Sum
Assignment algorithm [12] to find the optimal pair of
matching instances between the two cameras. We do this
for all neighboring cameras and propagate the Instance
Ids from the leftmost to the rightmost camera. For each
instance, we pick the Id from the camera with a longer
history of tracking the instance. The Id is then propagated
in the other camera forward in time.

Exploring Different Attention Mechanisms: In future ex-
plorations, we aim to experiment with various attention
mechanisms, such as those introduced in recent literature,
to investigate their effect on the accuracy and robustness
of panoptic segmentation in video sequences. One such
example is Masked Attention introduced in [7].
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