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Abstract

This report presents our solution that won the 1st place
in the Waymo Open Dataset (WOD) Motion Prediction
Challenge 2023. Building upon the previous year’s cham-
pion approach, MTR, we propose an enhanced version
called MTR++. This improved framework enables simul-
taneous prediction of future trajectories for multiple agents
by incorporating two novel strategies: symmetric scene
context modeling and mutually-guided intention querying.
To further enhance our performance on the leaderboard,
we adopt the same model ensemble strategy as MTR. This
strategy involves merging predictions from multiple mod-
els using non-maximum suppression. Finally, our approach
achieves the 1st place on the motion prediction leaderboard
of the WOD Challenges 2023, highlighting its effectiveness.

1. Introduction

Motion prediction is a pivotal undertaking in the realm
of contemporary autonomous driving systems, enabling
robotic vehicles to comprehend complex driving scenarios
and make judicious decisions [1, 7, 3, 9, 4, 2]. However, this
task presents great challenges due to the inherently mul-
timodal behaviors exhibited by traffic participants and the
complex nature of the surrounding environmental contexts.

To address these challenges, we base our solution on the
state-of-the-art approach MTR [5], which emerged as the
champion in last year’s challenge. While MTR achieves
strong performance in motion prediction, it focuses on gen-
erating future trajectories for a single focal agent. In con-
trast, we propose an advanced framework called MTR++,
which enables the generation of multimodal future trajecto-
ries for multiple agents simultaneously.

To achieve this, we introduce a novel symmetric scene
context modeling strategy in MTR++. Instead of encoding
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scene context features based on the global coordinate sys-
tem of the focal agent as in MTR, we encode the features
for each token individually in their local coordinate system
using a query-centric self-attention module. These symmet-
rically encoded token features can be utilized for the motion
prediction of any agent. Additionally, we employ a joint
motion decoder in MTR++ to generate future trajectories
for multiple focal agents simultaneously. Each focal agent
has its own intention queries, which are used to generate its
corresponding multimodal future trajectories. To enhance
prediction accuracy and enable agents to interact and influ-
ence each other’s behavior, we propose the mutually-guided
intention querying strategy based on the motion decoder of
MTR. This involves adding a self-attention layer to facil-
itate information propagation among the intention queries
from different focal agents before feeding them into the
transformer decoder layer. Thanks to these two novel im-
provements, the experiments show that MTR++ not only
achieves better performance but also enables the simultane-
ous motion prediction of multiple agents.

2. Method
The overall architecture of our approach is based on the

MTR framework [5], and we introduce two novel improve-
ments: the symmetric scene context modeling in the context
encoder and the mutually-guided intention querying in the
motion decoder. These new contributions are illustrated in
the following paragraphs.

2.1. Symmetric Scene Context Modeling

Unlike most existing methods that focus on a specific
agent and center the scene around them [10, 1, 8, 5], our
approach symmetrically encodes the entire scene for each
agent. This enables the encoded scene context features to
be directly utilized for predicting the motion of any agent
by attaching a motion decoder network.

Specifically, to encode the input context features, we em-
ploy the same vectorized representation as in MTR. How-
ever, instead of normalizing all inputs to a global coordinate
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system centered on a focal agent, we encode the feature of
each polyline in a polyline-centric local coordinate system.
The local coordinate system for each agent’s corresponding
polyline is determined based on the agent’s latest position
and moving direction. For map polylines, the local coordi-
nate system is determined based on the geometry center and
tangent direction of each polyline. This polyline encoding
process generates the agent features A ∈ RNa×D and the
map features M ∈ RNm×D, where Na is the number of
agents, Nm is the number of map polylines, and D is the
feature dimension.

To model the relationships between tokens, MTR uses a
native self-attention module that relies on a global coordi-
nate system centered on the focal agent. In contrast, we pro-
pose the query-centric self-attention module to model the
tokens’ relationships in a symmetric manner without rely-
ing on any global coordinate system. This module performs
the attention mechanism separately for each query token,
allowing us to explore the relationship between a query to-
ken and other tokens in its specific local coordinate system.
For example, when considering the i-th token as the query,
we convert the coordinates and directions of all tokens into
the local coordinate system of the query token, as follows:
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where i ∈ {1, . . . , Na +Nm}, and j ∈ Ω(i) indicating the
index of its neighboring tokens. F (l)

AM[i] is the input features
of the i-th token. RAM[i,j] indicate the j-th token’s relative
position and direction in the local coordinate system of the
i-th query token, and PE(·) indicates the sinusoidal posi-
tional encoding.

By employing the proposed query-centric self-attention
module, we achieve symmetric encoding of scene context
features for each input token. This enables the encoded fea-
tures to be effectively utilized for predicting the motion of
any input agent.

2.2. Mutually-Guided Intention Querying

With the symmetrically-encoded scene context features,
MTR++ leverages MTR’s motion decoder to simultane-
ously predict future trajectories for multiple agents. To fur-
ther enhance the performance of multi-agent motion pre-
diction, we propose a mutually-guided intention querying
strategy that enables agents to interact and influence each
other’s behavior. This is achieved by introducing a query-
centric self-attention layer among the intention queries from
different focal agents.

More specifically, we represent the intention queries in

MTR++ as E
(m)
I ∈ RNo×K×D, where No is the number

of focal agents and K is the number of intention queries
for each focal agent. To facilitate information interac-
tion among all the intention queries, we reshape them as
E

(m)
I ∈ RNoK×D. The process of mutually-guided inten-

tion querying can be formulated as follows:
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where i ∈ {1, . . . , NoK}, and F
(m)
I ∈ R(NoK)×D indicates

the query content feature from the previous transformer de-
coder layer and is initialized as zero in the first decoder
layer. RI[i,j] indicate the relative position and direction of
j-th intention query in the local coordinate system of the
i-th query token.

Through this information propagation process, the in-
tention queries of multiple agents guide and influence each
other during the multimodal motion decoding process. This
mutual guidance enhances the capability of the model to
generate more informed and realistic predictions for the fu-
ture trajectories of the agents.

3. Experiments
3.1. Implementation Details

Architecture details. The overall architecture details of
MTR++ are the same as MTR [6, 5]. We adopt 6 trans-
former encoder layers for the context encoding and 6 trans-
former decoder layers for generating the multimodal future
trajectories. The hidden feature dimension is set to 256.
For context encoding, the road map is represented as poly-
lines, where each polyline contains up to 20 map points
(about 10m in WOMD). For the prediction head, a three-
layer MLP head is adopted with feature dimension 512. We
do not use any traffic light data in our model.

For each category, we adopt 64 intention queries based
on 64 intention points that are generated by k-means cluster-
ing algorithm on the training set. During testing, we adopt
NMS with a distance threshold 2.5m to select top 6 predic-
tions from 64 predicted trajectories.
Training details. Our model is trained in an end-to-
end manner by AdamW optimizer with a learning rate of
0.0001, a weight decay of 0.01, and a batch size of 80
scenes. We train the model for 30 epochs with 8 GPUs,
and the learning rate is decayed by a factor of 0.5 every 2
epochs from epoch 20.
Model ensemble. To further boost the performance of our
MTR++ framework, we adopt the same model ensemble
technique as in MTR [6]. Particularly, we trained multiple
variants of both MTR and MTR++ models by modifying the
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Table 1: Top 10 entries on the test leaderboard of Waymo Open Dataset Motion Prediction Challenge 2023. The Soft mAP
is the official ranking metric while the miss rate is the secondary ranking metric. “*” indicates the method is submitted after
the deadline of this challenge.

Method Soft mAP↑ mAP ↑ minADE ↓ minFDE ↓ Miss Rate ↓
MTR++ ens 1st (Ours) 0.4738 0.4634 0.5581 1.1166 0.1122
MTR++ 0.4414 0.4329 0.5906 1.1939 0.1298
*GTR ens 0.4518 0.4428 0.5855 1.2056 0.1296
IAIR+ 2nd 0.4480 0.4347 0.5783 1.1679 0.1238
GTR-R36 3rd 0.4384 0.4255 0.6005 1.2225 0.1330
GTR 0.4365 0.4230 0.5871 1.2096 0.1309
DM 0.4362 0.4301 0.6293 1.2723 0.1473
MPTr+ 0.4267 0.4130 0.5963 1.2060 0.1318
MPTr 0.4158 0.4018 0.6093 1.2232 0.1336
vtstats 0.4093 0.3976 0.6039 1.2231 0.1364
LeapNet 0.4089 0.3988 0.6766 1.3203 0.1510

number of decoder layers, the number of intention queries
and the hidden feature dimension. For each focal agent,
multiple predictions from these models are first merged to-
gether, then we utilize the non-maximum-suppression to se-
lect the top 6 predictions based on the predicted confidence
of each trajectory.

3.2. Main Results

Table 1 presents the leading entries on the final leader-
board of the 2023 Waymo Open Dataset Motion Prediction
challenge. The results showcased in Table 1 highlight the
outstanding performance of MTR++ even without utiliz-
ing model ensemble, already achieving remarkable results
on the large-scale Waymo Open Dataset. Upon combining
predictions from various MTR++ frameworks, the perfor-
mance of MTR++ experiences a substantial boost, surpass-
ing all other submissions by a significant margin. These
remarkable advancements demonstrate the effectiveness of
the proposed MTR++ framework.

4. Conclusion

In conclusion, we propose the novel MTR++ framework
as a novel solution for the challenges of motion predic-
tion in autonomous driving. Our innovative approaches,
including symmetric scene context modeling and mutually-
guided intention querying strategies, enhance the represen-
tation of scene context information and enable concurrent
prediction of multiple agents’ trajectories. The results of
our experiments demonstrate the outstanding performance
of MTR++, leading it to secure the first-place position in
the highly competitive Waymo Motion Prediction Chal-
lenge 2023. This remarkable achievement contributes to
the advancement of autonomous driving systems, offering
promising prospects for safer and more efficient transporta-
tion in the future.
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