
IAIR+: 2nd Place Solution for 2023 Waymo Open Dataset Challenge - Motion
Prediction

Miao Kang1† Liushuai Shi1† Jinpeng Dong1 Yuhao Huang1 Ke Ye1

Yufeng Hu1 Junjie Zhang1 Yonghao Dong1 Yizhe Li1 Sanping Zhou1

1National Key Laboratory of Human-Machine Hybrid Augmented Intelligence,
National Engineering Research Center for Visual Information and Applications,

Institute of Artificial Intelligence and Robotics, Xi’an Jiaotong University

Abstract

This technical report presents our solution for Waymo
Open Dataset Challenge 2023, Motion Prediction. The
goal of motion prediction is to predict the future trajec-
tory given a historical trajectory and corresponding envi-
ronmental information, e.g., neighbor agents and surround-
ing map. Our solution builds more capacious query sets
to represent multimodal motion modes based on a query-
based motion transformer framework (MTR [6]). Moreover,
an extensively modified polyline encoder based on an FPN-
style network is used to capture rich spatio-temporal fea-
tures, and a “DropKey” trick is adopted to enhance the gen-
eralization of the transformer model. In the ensemble step,
our solution adopts a similar-mode ensemble, which inte-
grates the trajectories and corresponding scores from dif-
ferent models for each individual query. On the Waymo Mo-
tion Prediction v1.2 dataset, our method achieves 45.61%
on the validation set and 44.80% on the testing set in terms
of average mAP. Our solution ranked 2nd in this challenge,
and we hope this solution could provide useful guidance for
future work.

1. Our Solution

Recently, the query-based methods [1, 5–8] achieve
advanced performance in motion (trajectory) prediction,
which generates additional query (location point or trajec-
tory) to represent the multimodal motion modes. Due to the
effectiveness of the query, our solution builds capacious
query set to better represent multimodal motion modes.
Moreover, an extensive modified polyline encoder is used
to capture rich spatio-temporal features and a DropKey
trick is used to enhance the generalization of the transformer
model. In the ensemble step, a similar-mode ensemble is

†Co-first authors.

used to integrate the trajectories and corresponding scores
from different models for each individual query.

We use a modified query-based motion transformer
method as our basic framework referring to MTR [6] as
shown in Figure 1. In the rest of the report, we mainly
introduce our modified parts (Marked with color boxes in
Figure 1) and how to incorporate the modified parts into the
MTR. To make a clear clarification, the sign in this report is
the same as the MTR.

1.1. Capacious Query Set

The multimodality of motion prediction shows the diver-
sity of future motions, such as turning left, right, or going
straight. The proposed capacious query set is obtained by
clustering the training dataset to represent this multimodal-
ity. Given the training set, we normalize the trajectory of
the training set with two steps. First, the beginning point of
the trajectory is translated into the origin of the coordinate
system. Second, we rotate the trajectory to align the X-axis.
In the implementation, we empirically use the direction of
the initial point of the trajectory provided in the dataset as
the rotated angle.

Once obtained the normalized trajectory, we extract the
goals (endpoint) of the normalized trajectory. These goals
are clustered into K cluster centers by the K-means algo-
rithm. The K cluster centers clustered from real trajectories
could represent diverse motion modes. Thus, we regard the
K cluster centers as our capacious query set I ∈ RK×2.

Our capacious query set is used to place the static in-
tention point, which is a part of the Motion Query Pair as
shown in Figure 1.

1.2. Modified Polyline Encoder

Referring to MTR, we first obtain the input representa-
tion of the agent and map. Specifically, we use the vec-
torized representation and agent-centric normalization strat-
egy to generate the history state of Na agents as Ain ∈

Figure 1. Overview of our modified framework.

RNa×t×Ca and road map Min ∈ RNm×n×Cm , where t is
the number of historical frames, Ca is the dimension of each
state, Nm is the number of map polylines, n is the number
of points in each polyline, and Cm is the dimension of each
point.

Our modified polyline encoder shown in Figure 2 uses
an FPN-style network [3] to extract agent features and
map features on the history state Ain, and road map Min.
Specifically, with the input features of agents or maps, we
firstly leverage a multi-scale 1D CNN layers to effectively
extract the spatial features in Ca dimension. With the stride
of 2, the CNN extracts the features in a larger spatial scale.
The sum of different level features enriches the represen-
tation ability of encoder. Then, we further utilize a linear
layer to gather the temporal information and obtain spatial-
temporal feature.

The output agent features Ap ∈ RNa×D and map fea-
tures Mp ∈ RNm×D are fed into the Transformer Encoder
as shown in Figure 1.

1.3. DropKey Trick

To enhance the generalization of the Transformer, we
use the DropKey [2] trick in the attention mechanism at the
training step. Specifically, the pseudocode of DropKey is
shown in Algorithm 1.

Algorithm 1 Algorithm of DropKey

N: token number, D: token dim
Q: query (N, D), K: key (N, D), V: value (N, D)
use_DropKey: whether use DropKey
mask_ratio: ratio to mask

def Attention(Q, K, V, use_DropKey, mask_ratio)
attn = (Q * (Q.shape[1] ** -0.5)) @ K.transpose(-2,

-1)

use DropKey as regularizer
if use_DropKey == True:

m_r = torch.ones_like(attn) * mask_ratio
attn = attn + torch.bernoulli(m_r) * -1e12

attn = attn.softmax(dim=-1)
x = attn @ V
return x

To incorporate it into the framework of MTR, the Drop-

ResBlock, 128, 1

ResBlock, D, 1

ResBlock, D, 2

ResBlock, D, 1

ResBlock, D, 2

ResBlock, D, 1

Conv, D, 1

Conv, D, 1

Conv, D, 1 Upsample

Sum

Upsample

Sum

ResBlock, D, 1

FC Layer

𝑁𝑎 × 𝑡 × 𝐶𝑎

𝑁𝑎 × 𝐷

Figure 2. The architecture of our modified Polyline En-
coder (Inputting History state for illustration).

Key is directly added to the multi-head attention module in
the training step, while the DropKey is removed in the in-
ference step. Note that the dropout of attention is removed
when DropKey is available.

1.4. Similar-Mode Ensemble

In the ensemble step, we adopt our similar-mode ensem-
ble strategy to integrate the trajectories and corresponding
scores from different models as shown in Figure 3.

Given the model set {F1, ..., FM}, each model predicts
K trajectories and corresponding scores. Note that each
model uses the same K static intention points (i.e., our pro-
posed capacious query set). The trajectory Jm

k ∈ RT×2 and
corresponding score Sm

k ∈ R1 is the k-th predicted trajec-
tory of model Fm, where T is the length of future trajectory,
k ∈ {1, ...,K}, m ∈ {1, ...,M}. Since the K predicted tra-
jectories correspond to the K static intention points one by
one in MTR, we assume that the k-th predicted trajectories

Scores

L2 Distance

NMS
×

predictions

…
A

Trajectories
A ...

...

......

......

……

: ensemble trajectory

A : Average

: Trajectories center

: ensemble trajectory

A : Average

: Trajectories center

: ensemble trajectory

A : Average

: Trajectories center

Figure 3. Illustration of our similar-mode ensemble.

{Jm
k }m={1,...,M} have similar motion modes. Therefore,

the predicted scores {Sm
k }m={1,...,M} are the correspond-

ing confidences.
Based on this assumption, we conduct the model ensem-

ble in confidence ensemble and trajectory ensemble, respec-
tively. For the confidence ensemble, we calculate the aver-
age score of M k-th trajectories as follows:

Ŝk =

∑M
m=1 S

m
k

M
, (1)

where Ŝk is the confidence of the k-th predicted trajectories.
The trajectory ensemble is conducted on the goals (end-

point) of M k-th predicted trajectories. Thus, we generate
M goals {G1

k, ..., G
M
k }, which are first averaged as follows:

Ḡk =

∑M
m=1 G

m
k

M
, (2)

where Ḡk is the averaged goal of the k-th trajectory. How-
ever, the average position can not ensure the Ḡk is the way-
point that meets the scene content. Thus, we take the closest
endpoint Ĝk with Ḡk as the final expected goal. The cor-
responding predicted trajectory Ĵk of Ĝk is the final k-th
predicted trajectory.

For K predictions, we can obtain K trajectories
{Ĵ1, ..., ĴK} and corresponding confidences {Ŝ1, ..., ŜK}.
Finally, a Non-Maximum Suppression (NMS) [4] is used to
filter the invalid trajectories referring to MTR.

2. Experiments
2.1. Implementation Details

Settings. The number of cluster centers K = 64 in our
capacious query set. The history states have t = 11 frames
with the dimension Ca = 11. We select Nm = 768 nearest
map polylines around the interested agent. Each polyline of
the road map has n = 20 points with the dimension Cm =

2. Both the dimension of agent features and map features
D are set to 256. The “mask ratio” of DropKey is set to
0.3. For other hyperparameters, we follow the setting of
MTR. The detailed settings on MTR can be found in the
https://github.com/sshaoshuai/MTR.

Ensemble. For the model ensemble, we use M = 12
models to obtain the final performance on the testing set.
The model list is as follows:

1) MTR integrates the Capacious Query Set and the
DropKey;

2) MTR integrates the Capacious Query Set;
3) MTR integrates the Capacious Query Set and the ran-

dom mask;
4) MTR integrates the Capacious Query Set and the

Modified Polyline Encoder;
5) MTR integrates the Capacious Query Set, the Modi-

fied Polyline Encoder, and 9 original Transformer Decoder
layers;

6) MTR integrates the Capacious Query Set, the Drop-
Key, and soft label supervision;

7-12) The corresponding finetune version of model 1) -
6) on the validation set.

The random mask is a data argumentation that randomly
masks 15% input polylines. Add, the soft label supervision
is replacing the one-hot label in Decoder Loss of MTR by
the SOFTMAX of the negative distance between the goal
and static intention point. The finetune versions are gener-
ated by finetuning the models on the validation set with 10
epochs and the learning rate is set to 6.25e− 06.

2.2. Experimental Results

Ablation Study. The experimental results of the ablation
study on the validation set are shown in Table 1. Specifi-
cally, compared with the baseline method (MTR), the Drop-
Key improves the mAP from 0.4202 to 0.4389 and the ca-
pacious query set improves the mAP from 0.4202 to .4494.
What’s more, the fully modified method achieves 0.4561
performance in terms of mAP. These experimental results
demonstrate the effectiveness of our modified parts.

Results on Testing Set. As shown in Table 2, the
IAIR+(ours) is our best submission, ranking 2nd in the
Waymo Open Dataset Challenge 2023, Motion Prediction
Track. The IAIR+(w/o finetune) is the first submitted result
that does not finetune on the validation set. It shows a lower
performance demonstrating the effectiveness of model fine-
tune.

References
[1] Junru Gu, Qiao Sun, and Hang Zhao. Densetnt: Waymo open

dataset motion prediction challenge 1st place solution. arXiv
preprint arXiv:2106.14160, 2021. 1

[2] Bonan Li, Yinhan Hu, Xuecheng Nie, Congying Han, Xi-
angjian Jiang, Tiande Guo, and Luoqi Liu. Dropkey for vi-

https://github.com/sshaoshuai/MTR

model Modified Encoder Origin Encoder DropKey Capacious Query Set random mask mAP ↑ minADE ↓ minFDE ↓ MissRate ↓
MTR(baseline) - ✓ - - - 0.4202 0.5938 1.2046 0.1314
- - ✓ ✓ - - 0.4389 0.5934 1.2098 0.1340
- - ✓ - ✓ - 0.4494 0.5806 1.1869 0.1306
- - ✓ ✓ ✓ - 0.4439 0.5887 1.2075 0.1350
- - ✓ - ✓ ✓ 0.4488 0.5964 1.2155 0.1293
Ours ✓ - ✓ ✓ ✓ 0.4561 0.5871 1.1987 0.1333

Table 1. Ablation studies of our solution on the validation set

method Soft mAP ↑ mAP ↑ minADE ↓ minFDE ↓ Miss Rate ↓ Overlap Rate ↓
MTR++ Ens 0.4738 0.4634 0.5581 1.1166 0.1122 0.1276
IAIR+(ours) 0.4480 0.4347 0.5783 1.1679 0.1238 0.1263
IAIR+(w/o finetune) 0.4440 0.4311 0.5781 1.1669 0.1248 0.1268
GTR-R36 0.4384 0.4255 0.6005 1.2225 0.1330 0.1279
GTR 0.4365 0.4230 0.5871 1.2096 0.1309 0.1271
DM 0.4362 0.4301 0.6293 1.2723 0.1473 0.1364

Table 2. Performance on the test leaderboard of motion prediction track of Waymo Open Dataset Challenge. The Soft mAP is the official
ranking metric while the miss rate is the secondary ranking metric.

sion transformer. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 22700–
22709, 2023. 2

[3] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song
Feng, and Raquel Urtasun. Learning lane graph represen-
tations for motion forecasting. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–
28, 2020, Proceedings, Part II 16, pages 541–556. Springer,
2020. 2

[4] Alexander Neubeck and Luc Van Gool. Efficient non-
maximum suppression. In 18th international conference on
pattern recognition (ICPR’06), volume 3, pages 850–855.
IEEE, 2006. 3

[5] Liushuai Shi, Le Wang, Chengjiang Long, Sanping Zhou,
Fang Zheng, Nanning Zheng, and Gang Hua. Social inter-
pretable tree for pedestrian trajectory prediction. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 2235–2243, 2022. 1

[6] Shaoshuai Shi, Li Jiang, Dengxin Dai, and Bernt Schiele.
Motion transformer with global intention localization and lo-
cal movement refinement. arXiv preprint arXiv:2209.13508,
2022. 1

[7] Chenxin Xu, Weibo Mao, Wenjun Zhang, and Siheng Chen.
Remember intentions: retrospective-memory-based trajectory
prediction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 6488–6497,
2022. 1

[8] Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben Sapp,
Balakrishnan Varadarajan, Yue Shen, Yi Shen, Yuning Chai,
Cordelia Schmid, et al. Tnt: Target-driven trajectory pre-
diction. In Conference on Robot Learning, pages 895–904.
PMLR, 2021. 1

	. Our Solution
	. Capacious Query Set
	. Modified Polyline Encoder
	. DropKey Trick
	. Similar-Mode Ensemble

	. Experiments
	. Implementation Details
	. Experimental Results

