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Abstract

Accurately predicting the trajectory of target traffic ac-
tors with uncertainty awareness is paramount for improving
the safety and interaction capabilities of autonomous vehi-
cles, especially in complex scenarios. Addressing aleatoric
uncertainty through a multi-modal paradigm presents a re-
maining challenge, which involves reconciling the gran-
ularity of modalities with the limited number of positive
training samples allocated for each modality. This work
proposes GTR-R36: a Motion Transformer (MTR) back-
boned motion predictor with group-wise modal allocation
strategy in trajectory decoding. To tackle this challenge,
our approach involves several key steps. Firstly, we devised
group-wise querying modalities with unique initialization
for each group, thereby enhancing the diversity and quan-
tity of positive samples for each respective modality. Ad-
ditionally, we developed a miss-rate optimization scheme
that identifies and delineates the hit region from the missed
ones across group queries within each modality. Through
our proposed method, we achieved competitive prediction
accuracy and demonstrated impressive performance across
various evaluation metrics in the WOMD benchmark.

1. Introduction
Making accurate motion forecasting of targeted traffic

participants (actors) poses one of the most formidable chal-
lenges in the realm of autonomous driving [1]. Notably,
it presents a highly challenging task due to the hereditary
uncertain behaviors, or multi-modalities for each prediction
target under intricate driving environments [7]. To prop-
erly address this challenge, existing approaches are primar-
ily twofold involving goal-based estimations and set-based
regressions with a mixture of modalities. The former ap-
proaches tackle the uncertainty conditioning on an assump-
tion of goal prior for subsequent trajectory predictor [3, 4],
while the latter conduct direct update of the trajectory pre-
dictor with modality scoring and binning by certain crite-
ria [5, 6]. Still, goal-based methods encounters significant
computational burdens as their performance relies on con-
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Figure 1. Method overview: N Groups of assigned querying
modalities GN are initialized and simultaneously decoded us-
ing shared Transformer structures. Miss-rate optimization is per-
formed for predict positive-selected modality across these groups,
effectively delineating the ground-truth hit region from the rest of
heuristic modal region for each modality.

sidering a vast number of goal candidates, and may require
massive iterations to sample for the targeting goals.

This stands the set-based methods out for an appealing
choice. However, the tremendous searching space without
purposeful guidance greatly barriers the learning efficiency
and robustness with different modality randomization at the
beginning. Therefore, recent works alleviate the learning
stability via explicit clustering anchors as queries [8], or
conduct post-processing centered on EM-optimized clus-
ters [9]. Subsequently, a contradictory issue arose regarding
the balance between the number of modalities with guid-
ance, and the sample efficiency necessary for updating each
individual modality.

In this study, we aimed to address these contradictions
through the implementation of a group-wise assignment
strategy for each modality, referred to as GTR-R36. To
elaborate further, as depicted in Figure 1, our proposed
framework primarily focuses on the decoding stage during
predictor training. Given a set of querying modalities as
initial inputs, a group-wise transformation is performed, en-
hancing the input query with corresponding group guidance
and facilitating the generation of diverse decoding sam-
ples. Subsequently, a shared Transformer decoder stage is
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Figure 2. A model framework of the GTR-R36 based on MTR [8] backbone. Scene context inputs are separately encoded Transformer
encoders. For iterative decoders, N groups of querying modalities GN are respectively initialized and functioned as modality guidance
query to be added in query features of Transformer decoder. They conduct shared decoding for final motion predictions founded by
Gaussian Mixture-Models (GMM).

employed, enabling the predictor to simultaneously gener-
ate motion trajectories across groups, considering the se-
lected modalities. Lastly, a miss-rate optimization process
is conducted for each trajectory within the group, promot-
ing differentiation from the hit region within the guidance
realm of the selected modality. Thanks to the sample ef-
ficiency and differentiation achieved through our proposed
GTR approach, the framework exhibits computational cost-
efficiency by not requiring additional model parameters and
solely utilizing a single group during inference. The pro-
posed paradigm also demonstrates a high level of general-
ity, making it applicable to the majority of current state-of-
the-art motion prediction frameworks during the decoding
phase.

2. Method

2.1. Scene Context Encoding

The structural overview of proposed GTR following
MTR backbone is an encoder-decoder paradigm shown in
Figure. 2. With arbitrary scene-level encoding design, we
formulate several groups of querying modalities, and con-
duct shared decoding for group-wise multimodal motion
predictions.

The input scene representations mainly encompass two

categories: map segments of scene environments and histor-
ical actor states encapsulating dynamical information. We
adopted the agent-centric pipeline [5] and conduct the trans-
formation centered on target actor to be predicted. Histori-
cal states of target actor and Na closest neighbors are gath-
ered to be encoded in actor features A ∈ RNa×C ; Similarly,
Nm closest map segments are compressed in a tensor of
map features M ∈ RNm×C . We follow [8] and [9] to con-
duct late fusion during encoding. Separated Transformer
encoders are stacked K levels of local feature fusion for A
and M.

2.2. Group-wise Modal Assignment

Given encoded scene context features A and M, orig-
inally we conduct the multimodal prediction by maintain-
ing a set of M modalities as Transformer decoder query-
ing: QU = {q1

U ,q
2
U , . . . ,q

M
U } ∈ RM×2, where U de-

notes the type of target actors (vehicle, pedestrian, or cy-
clist). Each query element of qM

U would be responsible
to represent certain motion behaviors of the target actor’s
predictions. The query can be either dynamically initial-
ized, or encoded by clustering of static anchors. We fol-
low MTR to generate each query by k-means clustering:
qM
U = SinePos(IMU ) ∈ RC , where SinePos is the sinu-

soidal position encoding operations , and IMU ∈ R2 denotes



the M th clustering for actor type U .
It then adaptive queries the scene features via cross-

attention mechanism (MHCA), and utilizes the self-
attention module to differentiate each other. However, with
growing numbers of modes M which better represent the
prediction behaviors, it becomes less of the training samples
to update for each modality. Following such motivations,
we introduce N groups of queries GN so that each modal-
ities can now be updated by N guided samples augmented
from the same modality guidance with little differences.

More specifically, the group-wise assignment primarily
maintains N groups of modalities, each of which contains
all types of modality queries QM

U with respective transfor-
mation of MLPs:

G ={G1,G2, . . . ,GN} ∈ RN×M×C

GN = MLPN (QM
U )

(1)

In practise, the initialization process of group assignment
is done with a linear transformation of W ∈ RC×NC given
expanded querying QU . Then the group-wise dimension is
transposed and reshaped in the batch dimension for shared
decoding by iterative Transformer decoders shown in Fig-
ure. 2. We modeled the multimodal prediction output using
Gaussian Mixture Model (GMM): Ŷ =

∑M
k p̂kN (ŷk1:T ),

where ŷk1:T is the predicted trajectories each for a Bivariate
Gaussian elements: (µx, µy, σx, σy, ρ)1:T . An NLL loss of
GMM is devised for each decoder layer and are summed
together eventually.

During inference, we can select the final decoder results
considering a concatenation of all groups. However, as
each modality has already considered the variations across
groups during training, in this work we simply drop the rest
of groups and only maintain one group of queries (G1).

2.3. Miss-Rate Optimization

With group-wise assignment of each modality for mo-
tion predictions that augment the positive predictions with
slight varying by different group transformations, another
issue is to delineate the missed predictions from the hit one
across groups to boost the trade-offs between predicted pre-
cision and recall. Therefore, in our framework we proposed
a miss-rate optimization loss for the update across group
assigned modality. More specifically, given the predicted
states ŝt = (µx, µy)t transformed and centered on its cor-
responding ground-truth st as:

ŝTt = (ŝt − st)Rt (2)

where Rt is the rotation matrix according to ground-truth
headings. The hit region of ground-truth is defined as a
bounding box for ŝTt under Threst = (Threstx,Thres

t
y)

scaled by S of current speed v0:

S(v0) = clip(0.5 + 0.5
v0 − 1.4

11− 1.4
, 0.5, 1) (3)

We utilize a max-margin loss to penalize the transformed
predictions that outside the threshold box:

cmm
t =

{
|ŝTt | − Threst S, |ŝTt | > Threst S,

0, otherwise .
(4)

Given the selected modality, we update the miss-rate loss
for all predictions across groups and prediction horizons
T ∈ {29, 49, 79}: Lmr =

∑N
i

∑T
t cmm i

t

2.4. Implementation details

The GTR structure is trained from scratch by WOMD [2]
training set, and we consider each targeted actor track to
predict as an independent training sample for processing.
We choose GELU as the activation function, dropout is
added after each layer with a dropout rate of 0.1. We use
a distributed training strategy on 4 Tesla A100 with each
with a batch size of 96. AdamW optimizer is used with an
initial learning rate of 1e-4, and the learning rate decays by
a factor of 50% every 2 epochs after 20. The total training
epochs are set to 30. Due to limited deadline time, we only
validated the GTR-R36 version, namely N = 3 of groups
and K = 6 of decoder layers. We maintain M = 64 of
modalities for multimodal predictions.

Furthermore, it is worth mentioning that the proposed
GTR pipeline is highly versatile and can be easily adapted
to other renowned predictors that employ the multimodal
prediction paradigm. Therefore, we are planning to validate
the generality of proposed approach in future work.

3. Results
Table 1 presents the quantitative outcomes in compar-

ison to other methods on the 2023 Waymo Motion Pre-
diction Leaderboard. The results demonstrate exceptional
mean average precision (mAP) scores for the predicted tra-
jectories, leading our method to secure the 3rd position on
the leaderboard. It is worth mentioning that there is a con-
current method named GTR in the competition; However,
our approach has achieved superior results without relying
on any ensemble techniques.

Table 1. Testing Results on 23’ Motion Prediction Leaderboard

Method Soft mAP mAP minADE minFDE MR

MTR++Ens 0.4738 0.4634 0.5581 1.1166 0.1276
IAIR+ 0.448 0.4347 0.5783 1.1679 0.1263
Ours 0.4384 0.4255 0.6005 1.2225 0.1279
GTR 0.4365 0.423 0.5871 1.2096 0.1272
DM 0.4362 0.4301 0.6293 1.2723 0.1473

To further manifest the performance lifting by proposed
group-wise pipeline, we conducted an ablation study in
examining the group assignment and miss-rate optimiza-
tion for MTR backbone. The results presented in Table 2



Table 2. Testing results of each prediction type for ablation baselines.

Ablation baseline Actor Types Soft mAP mAP minADE minFDE MR

GTR-R36

Vehicle 0.465 0.4521 0.745 1.5049 0.1477
Pedestrian 0.4357 0.4243 0.347 0.7221 0.0741
Cyclist 0.4144 0.4003 0.7095 1.4406 0.1772
Avg 0.4384 0.4255 0.6005 1.2225 0.133

GTR-3

Vehicle 0.4667 0.4533 0.7415 1.4941 0.1463
Pedestrian 0.432 0.4205 0.3476 0.7226 0.0754
Cyclist 0.4087 0.3918 0.7 1.4017 0.1778
Avg 0.4358 0.4219 0.5964 1.2061 0.1332

MTR [8]

Vehicle 0.459 0.4494 0.7642 1.5257 0.1514
Pedestrian 0.4409 0.4331 0.3486 0.727 0.0753
Cyclist 0.365 0.3561 0.7022 1.4093 0.1786
Avg 0.4216 0.4129 0.605 1.2207 0.1351

demonstrate a notable improvement in performance across
all metrics when comparing our approach, MTR-3 (assign-
ing 3 groups for simultaneous predictions), to the vanilla
MTR method. Notably, the Soft mAP metric shows a no-
table 3% performance gain, and it is reasonable to anticipate
even better results by increasing the number of assigned
groups. Additionally, the inclusion of the miss rate opti-
mization loss contributes to an overall precision improve-
ment, resulting in a 1% boost in the final metric. It is im-
portant to acknowledge the limitation of having only three
groups of varied predictions, as incorporating more pre-
dictions would further enhance the effectiveness of the de-
signed miss rate optimization in distinguishing missed pre-
dictions.

4. Conclusions
In this study, we introduce a novel group-wise assign-

ment paradigm (named GTR-R36) for querying modalities
and incorporate miss-rate optimization into multimodal mo-
tion predictions. Building upon the MTR backbone, our
proposed strategy achieves a substantial 3% improvement
using only three groups of assignments, without the need
for additional ensemble models. The efficacy of the group
assignment approach is further confirmed through rigorous
ablation studies. An important aspect of our work is its
high generality, as the proposed paradigm can be applied to
nearly all types of multimodal predictor structures. We an-
ticipate that further investigation into the group mechanism
will lead to even higher results incorporating larger number
of groups.
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