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Abstract

In this technical report, we present the 1st place solution
for the 2023 Waymo Open Dataset Pose Estimation chal-
lenge. Due to the difficulty of acquiring large-scale 3D
human keypoint annotation, previous methods have com-
monly relied on 2D image features and 2D sequential an-
notations for 3D human pose estimation. In contrast, our
proposed method, named LPFormer, uses only LiDAR as
its input along with its corresponding 3D annotations. LP-
Former consists of two stages: the first stage detects the
human bounding box and extracts multi-level feature repre-
sentations, while the second stage employs a transformer-
based network to regress the human keypoints using these
features. Experimental results on the Waymo Open Dataset
demonstrate the top performance, and improvements even
compared to previous multi-modal solutions.

1. Introduction

Human pose estimation has gained significant popularity
in the image and video domain due to its wide range of ap-
plications. However, pose estimation using 3D inputs, such
as LiDAR point cloud, has received less attention due to
the difficulty associated with acquiring accurate 3D annota-
tions. As a result, previous methods [3, 16, 18] on LiDAR-
based human pose estimation commonly rely on weakly-
supervised approaches that utilize 2D annotations. These
approaches often assume precise calibration between cam-
era and LiDAR inputs. However, in real-world scenarios,
small errors in annotations or calibration can propagate into
significant errors in 3D space, thereby affecting the training
of the network. Additionally, due to the differences in per-
spective, it is difficult to accurately recover important vis-
ibility information by simply lifting 2D annotations to the
3D space.

In image-based human pose estimation, the dominant
approach is the top-down method [9], which involves first
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Figure 1. Our method can predict 3D keypoints (red points with
yellow wireframes), 3D bounding boxes, and 3D semantic seg-
mentation in a single framework.

detecting the human bounding box and then predicting the
single-person pose based on the cropped features. However,
a significant gap exists in the backbone network between
the 2D detector and the 3D detector. Most LiDAR object
detectors utilize projected bird’s-eye view (BEV) features
to detect objects, which helps reduce computational costs.
This procedure leads to the loss of separable features in the
height dimension that are crucial for human pose estima-
tion. An effective use of learned object features for human
pose estimation is still unexplored.

In this technical report, we present LPFormer, a com-
plete two-stage top-down 3D human pose estimation frame-
work that uses only LiDAR point cloud as input and is
trained solely on 3D annotations. In the first stage, we
adopt the design of LidarMultiNet [14], our previous state-
of-the-art LiDAR multitask network that can accurately pre-
dict human object bounding boxes while generating fine-
grained voxel features at a smaller scale. The second stage
extracts point-level, voxel-level and object-level features
of the points clouds inside each predicted bounding box
and regresses the keypoints in a light-weighted transformer-
based network. Our approach demonstrates that complex
human pose estimation tasks can be seamlessly integrated
into the LiDAR multi-task learning framework (as shown
in Figure 1), achieving state-of-the-art performance without



Figure 2. Main Architecture of LPFormer. Our network aims to estimate the 3D human pose for the entire frame based on the LiDAR-
only input. It is comprised of two main components. The left part (blue) represents our powerful multi-task network, LidarMultiNet
[14], which generates accurate 3D object detection and provides rich voxel and bird’s-eye-view (BEV) features. The right part (green)
corresponds to our Keypoint Transformer (KPTR), predicting the 3D keypoints of each human box using various inputs from our first-
stage network.

the need for image features or annotations.

2. Related Work

Image-based 3D human pose estimation 3D human
pose estimation (HPE) has been extensively studied based
solely on camera images, where the human pose is rep-
resented as a parameter mesh model such as SMPL [5]
or skeleton-based keypoints. Previous works in this field
can be generally categorized into two main approaches:
top-down [4, 9] or bottom-up methods [2, 11]. Top-down
methods decouple the pose estimation problem to individ-
ual human detection using the off-the-shelf object detection
network and single-person pose estimation on the cropped
object region. On the contrary, bottom-up methods first
estimate the instance-agnostic keypoints and then group
them together [2] or directly regress the joint parameter us-
ing center-based feature representation [11]. Some recent
works [8, 13] explored using the transformer decoder to es-
timate human pose in an end-to-end fashion following the
set matching design in DETR [1]. However, image-based
3D HPE suffers from inaccuracies and is considered not ap-
plicable to larger-scale outdoor scenes due to frequent oc-
clusion and the difficulty of depth estimation.

LiDAR-based 3D human pose estimation To solve the
depth ambiguity problem, some researchers [12, 19] ex-

plored using depth images for the 3D HPE. Compared to
the depth image, LiDAR point cloud has a larger range and
is particularly applicable to outdoor scenes, such as in au-
tonomous driving applications. Waymo recently released
the human joint keypoint annotations on both associated
2D images and 3D LiDAR point cloud on Waymo Open
Dataset [10]. However, due to the lack of enough 3D an-
notation, previous works [16, 18] have focused on semi-
supervised learning approaches. These approaches lift 2D
annotation to the 3D space and rely on the fusion of image
and LiDAR features for the HPE task.

3. Method

LPFormer is a two-stage LiDAR-only model designed
for 3D pose estimation. Figure 2 provides an overview of
our framework. The input to LPFormer only consists of
point clouds, represented as a set of LiDAR points P =
{pi|pi ∈ R3+Cpoint}Ni=1, where N denotes the number of
points and Cpoint includes additional features such as inten-
sity, elongation, and timestamp for each point. In the first
stage, we employ a powerful multi-task network [14] that
accurately predicts 3D object detection and 3D semantic
segmentation, incorporating meaningful semantic features.
Inspired by a recent work [16], our second stage leverages
a transformer-based model. This model takes various out-



Figure 3. Illustration of Keypoint Transformer (KPTR). In the initial stage of our KPTR, we start by compressing the feature dimension
of the box features. These compressed box features are then repeated and concatenated with the point features and point voxel features.
The keypoint queries are generated from learnable embedding features. Then L sequences of KPTR operations are performed on the
keypoint queries and point tokens. Finally, the keypoint queries are passed through three distinct MLPs to learn the XY offsets, Z offsets,
and visibilities of the 3D keypoints. Simultaneously, the point tokens are processed by an MLP to learn the point-wise segmentation labels
for the 3D keypoints, which serves as an auxiliary task.

puts from the first stage as inputs and generates 3D human
keypoints Ykp ∈ RNkp×3 along with their corresponding
visibilities Yvis ∈ RNkp , where Nkp is the number of 3D
keypoints.

3.1. First Stage Detection

The first stage of our LPFormer adopts the methodology
of LidarMultiNet [14] for extracting point clouds features
from raw point clouds P . Illustrated in Figure 2, it con-
sists of a 3D encoder-decoder structure with Global Con-
text Pooling (GCP) module in between. The 3D object de-
tection predictions are obtained through the 3D detection
head, which is attached to the dense 2D BEV feature map.

Enriching point features with multi-level feature em-
bedding Within each detected bounding box, the points
are performed by a local coordinate transformation involv-
ing translation and rotation. Subsequently, the transformed
points are concatenated with their corresponding original
point features, resulting in Ppoint ∈ RM×Nmax×(3+Cpoint),
where M is the number of bounding boxes and Nmax rep-
resents the maximum number of point clouds within each
bounding box. For each box, we randomly shuffle and re-
move extra points, and pad with zero if the number of points
within a box is less than Nmax. Additionally, we generate
point voxel features Pvoxel ∈ RM×Nmax×Cvoxel by gath-
ering the 3D sparse features from the decoder using their
corresponding voxelization index, where Cvoxel denotes the
channel size of the last stage of the decoder. Similar to Cen-

terPoint [15], for each bounding box, we adopt the BEV fea-
tures at its center as well as the centers of its edges in the 2D
BEV feature map as the box features B ∈ RM×(5×CBEV )

3.2. Second Stage Keypoint Transformer

By leveraging the capabilities of the robust first stage
model LidarMultiNet [14], our second stage is able to ex-
ploit valuable semantic features for capturing intricate ob-
ject details, including human 3D pose. Different from Li-
darMultiNet [14], we choose a transformer architecture in-
stead of a PointNet-like [7] structure as our second stage, in
order to effectively understand 3D keypoints by leveraging
local points information through an attention mechanism.
The details of our second stage are shown in Figure 3.

Specifically, our second stage takes various features from
local points features Ppoint, semantic voxel-wise points fea-
tures Pvoxel, and box-wise features B to predict 3D key-
points for each pedestrian or cyclist box. Starting with a
box-wise feature B, we first employ a multilayer percep-
tron (MLP) to compress its dimensions from R5×CBEV to
RCcompressed . This compressed box-wise feature is then
replicated as Pbox ∈ RNmax×Ccompressed and combined
with point-wise features Ppoint and Pvoxel, resulting in
Pcat ∈ RNmax×(3+Cpoint+Cvoxel+Ccompressed). The fused
point-wise features are subjected to a simple matrix mul-
tiplication, yielding Xpoint ∈ RNmax×Ctr , which serves
as one part of the input for Keypoint Transformer (KPTR).
The other input for KPTR is a learnable 3D keypoints query



Xkp ∈ RNkp×Ctr . Subsequently, we employ KPTR, which
consists of L blocks of a multi-head self-attention and a
feed-forward network, to learn internal features X

′

point and
X

′

kp. Finally, the keypoints’ internal features X
′

kp are fed
into three separate MLPs to predict 3D keypoints offsets
along the X and Y axes Ŷxy ∈ RNkp×2, 3D keypoints off-
sets along the Z axis Ŷz ∈ RNkp×1, and 3D keypoints vis-
ibilities Ŷvis ∈ RNkp . Furthermore, the point-wise internal
features X

′

point are processed by an MLP to estimate point-
wise keypoint segmentation Ŷkpseg ∈ RNmax×(Nkp+1).

For the final predictions, we combine the predicted 3D
keypoints offsets Ŷxy , Ŷz , and the predicted 3D keypoints
visibilities Ŷvis to generate the human pose for each bound-
ing box. Then we apply a reverse coordinate transforma-
tion to convert the predicted human pose from the local
coordinate system to the global LiDAR coordinate system.
Moreover, the predicted point-wise keypoint segmentation
Ŷkpseg serves as an auxiliary task, aiding KPTR in learning
point-wise local information and enhancing the regression
of 3D keypoints through the attention mechanism. In the
experiments section, we will demonstrate how this auxil-
iary task significantly enhances the overall performance of
the model.

3.3. Training and Losses

During the training phase, we replace the predicted
bounding boxes with ground truth bounding boxes that in-
clude 3D keypoints labels. This substitution is necessary
since only a limited number of ground truth boxes are an-
notated with 3D keypoints labels. By employing this ap-
proach, we simplify and expedite the training process. Ad-
ditionally, inspired by [18], we introduce a point-wise seg-
mentation task for keypoints as an auxiliary task to improve
the performance of 3D keypoints regression. The pseudo
segmentation labels Ykpseg ∈ RNmax×(Nkp+1) are gener-
ated by assigning each 3D keypoint’s type to its top K near-
est points. This auxiliary task is supervised using cross-
entropy loss, expressed as Lkpseg .

To facilitate the 3D keypoints regression, we divide it
into two branches: one for the regression over the X and Y
axes and another for the regression over the Z axis. This
division is based on our observation that predicting the off-
set along the Z axis is comparatively easier than predicting
it along the X and Y axes. We employ smooth L1 loss to
supervise these regression branches, denoting them as Lxy

and Lz . Note that only the visible 3D keypoints contribute
to the regression losses. In addition, we treat the visibil-
ity of the keypoints as a binary classification problem. We
supervise it using binary cross-entropy loss as Lvis.

Our first stage LiDARMultiNet is pretrained following
instructions in [14] and frozen during the 3D keypoints’
training phase. We introduce weight factors for each loss

component, and our final loss function is formulated as fol-
lows:

Ltotal = λ1Lxy + λ2Lz + λ3Lvis + λ4Lkpseg (1)

where λ1, λ2, λ3, λ4 are weight factors and fixed at values
of 5, 1, 1, and 1, respectively.

4. Experiments

4.1. Dataset

Waymo Open Dataset released the human keypoint an-
notation on the v1.3.2 dataset that contains LiDAR range
images and associated camera images. We use v1.4.2 for
training and validation. The 14 classes of keypoints for
evaluation are defined as nose, left shoulder, left elbow, left
wrist, left hip, left knee, left ankle, right shoulder, right el-
bow, right wrist, right hip, right knee, right ankle, and head
center. There are 144709 objects with 2D keypoints anno-
tations while only 8125 objects with 3D keypoints annota-
tions in the training dataset.

4.2. Metrics

We use mean per-joint position error (MPJPE) and Pose
Estimation Metric (PEM) as the metrics to evaluate our
method. In MPJPE, the visibility of predicted joint i of one
human keypoint set j is represented by vji ∈ [0, 1], indi-
cating whether there is a ground truth for it. As such, the
MPJPE over the whole dataset is:

MPJPE(Y, Ŷ ) =
1∑
i,j v

j
i

∑
i,j

vji ||Y
j
i − Ŷ j

i ||2, (2)

where Y and Ŷ are the ground truth and predicted 3D coor-
dinates of keypoints.

PEM is a new metric created specifically for the Pose Es-
timation challenge. Besides keypoint localization error and
visibility classification accuracy, it is also sensitive to the
rates of false positive and negative object detections, while
remaining insensitive to the Intersection over Union (IoU)
of object detections. PEM is calculated as a weighted sum
of the MPJPE over visible matched keypoints and a penalty
for unmatched keypoints, as shown:

PEM(Y, Ŷ ) =

∑
i∈M ∥yi − ŷi∥2 + C|U |

|M |+ |U |
, (3)

where M is the set of indices of matched keypoints, U is
the set of indices of unmatched keypoints, and C = 0.25
is a constant penalty for unmatched keypoints. The PEM
ensures accurate, robust ranking of model performance in a
competition setting.



Table 1. PEM and MPJPE results on the test split of WOD.

shoulders elbows wrists hips knees ankles head all
Model PEM MPJPE PEM MPJPE PEM MPJPE PEM MPJPE PEM MPJPE PEM MPJPE PEM MPJPE PEM MPJPE
baseline 0.2323 0.1894 0.2354 0.2083 0.2391 0.2240 0.2334 0.1807 0.2327 0.1934 0.2345 0.2250 0.2376 0.1984 0.2349 0.2022
KTD 0.2261 0.1876 0.2301 0.2065 0.2349 0.2227 0.2276 0.1790 0.2267 0.1919 0.2290 0.2237 0.2328 0.1973 0.2295 0.2007
LPFormer 0.1428 0.0462 0.1511 0.0578 0.1771 0.0951 0.1519 0.0562 0.1477 0.0578 0.1479 0.0663 0.1544 0.0443 0.1524 0.0594

4.3. Implementation Details

Throughout all our experiments, we use a pretrained Li-
darMultiNet [14] as the first stage of our framework, which
remains frozen during the training phase of the second
stage. For additional network and training specifics regard-
ing our first stage, please refer to LidarMultiNet [14].

Regarding KPTR, the dimensions of the inputs, namely
Cpoint, Cvoxel, and CBEV , are set to 3, 32, and 512, re-
spectively. The size of the compressed features, denoted as
Ccompressed, is 32. We cap the maximum number of points
per bounding box at 1024. For the transformer architecture,
similar to the recent work [16], we utilize L = 4 stages, an
embedding size of Ctr = 256, a feed-forward network with
internal channels of 256, and 8 heads for the MultiHeadAt-
tention layer. The total number of 3D keypoints Nkp is 14.

During training, we incorporate various data augmenta-
tions, including standard random flipping, global scaling,
rotation, and translation. It is important to note that flip-
ping the point clouds has an impact on the relationships be-
tween the 3D keypoints annotations, similar to the mirror
effect. When performing a flip over the X-axis or Y-axis,
the left parts of the 3D keypoints should be exchanged with
the right parts of the 3D keypoints accordingly.

To train our model, we use the AdamW optimizer along
with the one-cycle learning rate scheduler for a total of 20
epochs. The training process utilizes a maximum learning
rate of 3e-3, a weight decay of 0.01, and a momentum rang-
ing from 0.85 to 0.95. All experiments are conducted on 8
Nvidia A100 GPUs, with a batch size set to 16.

4.4. Main Pose Estimation Results

In our final submission to the leaderboard, we trained our
model using the combined dataset of Waymo’s training and
validation splits. The results, presented in Table 1, demon-
strate the impressive performance of our LPFormer, achiev-
ing a PEM of 0.1524, an MPJPE of 0.0594, and ranking 1st

on the leaderboard. Notably, our LPFormer outperforms all
other methods across all categories in terms of both PEM
and MPJPE.

4.5. Ablation Study

To conduct a comprehensive performance analysis of our
LPFormer, we compare it with other SOTA methods, as
shown in Table 2. It is important to note that all previous
methods were evaluated on a subset of the WOD validation
split. Additionally, these methods simplify the problem by

Table 2. The comparison on the WOD val split. ∗: reported
by [16], where the result is tested on randomly selected 50% of
subjects from the WOD val split. “L”, “CL” denote LiDAR-only,
camera & LiDAR fusion methods.

Method Modal gt box MPJPE(cm)↓
ContextPose [6] ∗ C ✓ 10.82
Multi-modal [18] CL ✓ 10.32
THUNDR [17] ∗ C ✓ 9.62
THUNDR [17] w/ depth ∗ CL ✓ 9.20
HUM3DIL [16] ∗ CL ✓ 6.72
LPFormer L 6.16

Table 3. The ablation of improvement of each component on the
WOD val split.

Baseline 2nd seg aux transformer box feat PEM↓ MPJPE ↓
✓ 0.1908 0.1801
✓ ✓ 0.1176 0.0865
✓ ✓ ✓ 0.1149 0.083
✓ ✓ ✓ ✓ 0.1044 0.0703
✓ ✓ ✓ ✓ ✓ 0.0976 0.0616

providing ground truth 3D bounding boxes along with asso-
ciated ground truth 2D bounding boxes as inputs. Despite
some of these methods incorporating camera and LiDAR
fusion or 2D weakly supervision, our LPFormer outper-
forms them all in terms of MPJPE, achieving an impressive
MPJPE of 6.16cm.

Table 3 shows a comparison of the performance between
the first stage and LPFormer, as well as the contribution of
each component in the second stage to the overall perfor-
mance. The first stage results are directly output from the
Center Head following the BEV feature map. Given the
BEV feature map is primarily driven by the detection task
and has low resolution, it lacks fine-grained features, result-
ing in mediocre performance. The second stage which is
similar to Second-stage Refinement module in LidaMulti-
Net [14], however, significantly improves upon introduc-
ing point-wise fine-grained features. Further enhancements
are achieved by adding the keypoint segmentation auxiliary
task, employing the transformer structure, and incorporat-
ing box features, all of which contribute to varying degrees
of performance improvement for the model.

4.6. Visualization

Figure 1 shows the output predictions of our model for
one frame in the validation set, viewed from a particular



(a) Ground Truth (b) 1st stage (c) LPFormer

Figure 4. Prediction results compared to the Ground Truth and the 1st stage results.

angle. The input is solely 3D LiDAR point clouds. Re-
markably, our network simultaneously outputs results of
3D semantic segmentation, 3D bounding boxes, as well as
their 3D keypoints (red) along with the corresponding wire-
frames (yellow) for visualization. Our model also predicts
visibility, for example, the left knee of the second person
from the left is predicted as invisible, while the left foot is

visible. Both feet of the third person from the right are pre-
dicted as invisible. The right elbow of the sixth person from
the right is predicted as invisible, however, the right hand is
visible.

Figure 4 presents a selection of predictions made on the
validation set. From left to right, the three columns rep-
resent ground truths, the predictions of the 1st stage, and



the predictions of LPFormer, respectively. Each row show-
cases the same group of objects. As can be observed, across
all three groups, the performance of LPFormer noticeably
surpasses that of the 1st stage output. The first row high-
lights a cyclist for whom ground truth annotations are ex-
tremely limited. Despite the limited amount of annotations,
LPFormer still manages to deliver meaningful output. In
the second row, LPFormer is strikingly close to the ground
truth, with the exception of an FN (False Negative) visi-
bility for the right hand of the pedestrian on the left. The
third row demonstrates that even on the pedestrian without
ground truth annotations, LPFormer still produces satisfac-
tory results. For the running pedestrian on the right, LP-
Former performs pretty well. However, the left pedestrian’s
head center is an FP (False Positive) case, and the crossed
hands pose is a difficult case given the small amount of sim-
ilar ground truth annotations available.

Figure 5 demonstrates the model’s performance in
pedestrian-rich scenarios, as the PEM metric is sensitive
to both false positive and false negative object detections.
In these scenarios, the restriction on a 25m detection range
has been eliminated, while the detection score threshold and
IoU threshold have been maintained. It is evident that the
model can detect more distant pedestrians and provide key-
points predictions. However, it is noted that the visibility
for distant pedestrians decreases, which is reasonable as
the point clouds in the distance tend to be more sparse and
prone to occlusion.

5. Conclusion
In the Waymo Open Dataset pose estimation challenge

2023, our proposed LPFormer secured the 1st place. As
for the future work, we plan to further enhance our LP-
Former method through broad integration and fusion of Li-
DAR and camera data, in addition to exploiting 2D weak
supervision.
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Figure 5. Prediction results on the whole scene with a significant number of pedestrians in the validation set.
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