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Figure 1: Simulations of agents produced by MVTA. 4 parallel universes are visualized for each of the two scenes, in which
the autonomous driving vehicle (ADV) uniquely represented by a car icon for easy identification is undertaking a U-turn
maneuver (top) or making a left turn (bottom). For illustrative purposes, eight timesteps are shown for each agent, and time

progression is encoded in the opacity of the boxes.

Abstract

This technical report presents our I*' place solution for
the Waymo Open Sim Agents Challenge (WOSAC) 2023.
Our proposed MultiVerse Transformer for Agent simula-
tion (MVTA) effectively leverages transformer-based mo-
tion prediction approaches, and is tailored for closed-loop
simulation of agents. In order to produce simulations with
a high degree of realism, we design novel training and
sampling methods, and implement a receding horizon pre-
diction mechanism. In addition, we introduce a variable-
length history aggregation method to mitigate the com-
pounding error that can arise during closed-loop autore-
gressive execution. On the WOSAC, our MVTA and its
enhanced version MVTE reach a realism meta-metric of
0.5091 and 0.5168, respectively, outperforming all the other

methods on the leaderboard.

1. Introduction

The simulation of traffic agents is an integral element for
evaluating self-driving systems, facilitating rapid develop-
ment and ensuring safety [17]. WOSAC [!1] is the first
public benchmark for the evaluation of simulation agents in
the domain of autonomous driving, introducing new evalu-
ation metrics and leveraging large-scale real-world logged
data [4] with a diverse set of scenarios and agent behaviors.

Recent advancements in traffic agent simulators [17, 2, 5,

, 8, 15, 18] have shown a notable shift towards learning
from logged real-world driving data and data-driven genera-
tive models conditioned on the scene context, rather than re-
lying on traditional heuristic-based models encoding traffic
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Figure 2: Main Architecture of the MVTA. The world agents, ADV and road graph inputs are processed by transformer-
based encoding steps to generate enhanced scene context features. In the decoding step, rollout is executed in an autoregres-
sive manner. The ADV operates at 0.1s intervals, and concurrently, each world agent decoder also simulates the forthcoming
states at the same 0.1s interval. Q denotes the query content feature, while K and V stand for the keys and values, respectively.

The coin flip icon indicates sampling at each timestep.

rules. Our proposed simulator also falls within the learning-
based generative model paradigm. Specifically, we leverage
state-of-the-art motion prediction models [ 16, 2] and adapt
them to an autoregressive closed-loop agent simulator.

However, for autoregressive models, the error can accu-
mulate over time, as future state of agents is heavily depen-
dent on the immediate past. This can potentially lead to
drift, where the predictions become increasingly inaccurate
over time.

Inspired by TrafficSim [17] and MTR [16], we propose
a novel closed-loop simulation framework based on trans-
former encoder and decoder, and further enhance the real-
ism of the simulations through the development of novel
training and sampling strategies, as well as the receding
horizon prediction and variable-length history aggregation
methods. Several example simulations generated by MVTA
are depicted in Figure 1.

2. Related Work

Multi-modal motion prediction. In the motion pre-
diction literature, there are agent-centric prediction algo-
rithms [12, 16], as well as scene-centric and joint multi-
agent [7, 13, 19, 10] prediction methods. Most recent pre-
diction methods adopt encoder-decoder Transformer net-

works [12, 16, 1]. There is also a trend of employing diffu-
sion in the literature for predicting trajectories through the
denoising process [ 14, 9].

Most motion prediction methods are open-loop, in the
sense that the whole trajectory is produced in one-shot in-
dependently. However, in this challenge, traffic agent simu-
lation needs to be simulated in a closed-loop autoregressive
manner at 0.1s intervals. Additionally, the method must dif-
ferentiate the world agents and the ADV and factorize their
joint distribution for conditional independence.

Traffic agent simulation. TrafficSim [17] utilizes real-
world logged data to mimic a broad range of human driv-
ing behaviors, and leverages an implicit latent variable
model [3] to generate socially-consistent plans for all traf-
fic actors jointly. TrafficGen [5] places agents in the scene
based on the learned distribution and simulates their future
states. CTG [20] developed a conditional diffusion model
that allows user to control over trajectory properties while
maintaining realism.

The WOSAC requires the simulator to be agnostic to the
choice of ADV policy, therefore it can be swapped with ar-
bitrary ADV policy or planner. Both ADV and environment
agent models need to obtain multiple modes in order to per-
form well [11].
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Figure 3: Illustrating the receding horizon. Even though
predictions are made for the next 1s, only the waypoint of
the initial 0.1s is utilized, with the remaining prediction be-
ing discarded.

3. MultiVerse Transformer Agent Simulator
(MVTA)

Problem formulation. Given the scene context, including
map and past positions of the agents (i.e., world agents and
ADV), the goal is to simulate new states of the agents at
0.1s intervals for the upcoming 7" = 80 timesteps (i.e., a
8s episode). There are two constraints: 1) the simulator
must be closed-loop and run in autoregressive manner; 2)
the joint distribution involving the world agents and ADV
must be factorized into two conditionally independent com-
ponents, to ensure that the ADV component can be replaced
with any arbitrary policy or planner.

3.1. Network Architecture

Main architecture. The main architecture of MVTA is il-
lustrated in Figure 2. Scene context features are obtained
by processing the world agents, ADV, and map data through
polyline and transformer-based encoding steps. The trans-
former decoder layer takes the scene context features and
queries as input and unrolls the agent states for the next
timestep. This architecture is implemented to fulfill the re-
quirement of executing closed-loop simulations at 0.1s in-
tervals. Current state of the ADV is also used as input to
the decoder layer so the environment agents can react to
it. Query content feature output by each decoder layer is
used as the input for the subsequent decoder layer. The
motion prediction head, based on Gaussian Mixture Model
(GMM), outputs multi-modal trajectory predictions. To
sample the state from the multi-modal prediction, we either
pick the maximum-likelihood trajectory or randomly sam-
ple from the top-k trajectories with the highest likelihood.
In our implementation, we leverage the same architecture
for the ADV policy, but it can be swapped with any policy
or planner.

Transformer-based scene encoder. Given the agent-
centric scene inputs (i.e., agents, ADV, and road graph),
we utilize their vector representation [6], and adopt poly-
line encoders consisting of a multi-layer perceptron network
(MLP) followed by maxpooling [16]. As in [16], the agent
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Figure 4: Training loss is calculated at each timestep. Each
decoder layer produces multi-modal predictions for one
timestep.
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input is represented as the agent history motion state (i.e.,
agent position, size, heading and velocity) with a one-hot
category mask, while the map input consists of the posi-
tion and direction of each polyline point and the polyline
type. The polyline encoders produce agent features Apqs: €
RNa*D and map features M,qs; € RV=*P where N, and
N, are the number of agents and map polylines, respec-
tively, and D is the feature dimension. A scene context
transformer encoder leverages local self-attention [16] to
produce enhanced scene context features that serve as in-
puts of the subsequent decoder network.

Autoregressive transformer decoder. The autoregressive
decoding consists of a group of transformer decoder lay-
ers. Each decoder layer has a self-attention component, and
a cross-attention component that attends to the scene con-
text features, and a GMM prediction module that produces
multi-modal predictions. Each Gaussian component is rep-
resented as (iy, iy, 0z, 0y, p) and predicted with a proba-
bility p. The motion prediction head also predicts the ve-
locity (vz,vy) and heading angle (sin(0), cos(f)) of each
agent for the next timestep. We adopt the motion query
pair design in [16]. There are a total of 64 queries, corre-
sponding to the 64 motion modes, each associated with an
intention point.

Receding horizon. The next 0.1s state is simulated by sam-
pling the multi-modal predictions output by the decoder
layer. However, each decoder layer is trained to predict
a Is trajectory, and we adopt a receding horizon solution
in which only the initial 0.1s is utilized, as illustrated in
Figure 3. The benefits of longer prediction horizon include
the promotion of multi-modal diversity, reduction of com-
pounding error and also more flexibility in inference setup.
Scene context update. The states output by the decoder
layer at each timestep are used to update the scene con-
text features. However, the design of our decoder allows
running the scene encoding at specified periodic intervals,



rather than at every simulation step. Alternatively, to keep
the scene context features updated when predicting the next
timestep, we implement two modifications to the network.
Firstly, current position of the ADV is used as input to the
decoder layer. Similar to the static intention query in [16],
sinusoidal position encoding and MLP are applied, and the
resulting position embedding is added to the query con-
tent. Secondly, we update the agent features with additional
features encoding the current positions of the other agents
A= MLP([Apast; Acurrent])~

3.2. Training

Our simulation model is trained end-to-end in a closed-
loop manner similar to that used in [17]. As shown in Fig-
ure 4, supervision is provided at each decoder layer, and
losses are computed for each timestep.

Training samples. The training samples are generated to
accommodate variable lengths of past history, as opposed to
adhering to a fixed length of 1.1s. Specifically, for each 9.1s
training trajectory, we randomly pick a point to separate the
trajectory to history and future components. This way, more
training samples can be generated from each ground-truth
trajectory. Moreover, this facilities the trajectory history ag-
gregating mechanism in our inference step.

Training losses. We use L1 loss for regressing the agent
velocity and heading angles, and the Gaussian regression
loss implemented based on the negative log-likelihood loss
to maximize the likelihood of ground-truth trajectory [16].

At each timestep the loss can be formulated as:

Lyrr = _IOgN<Sa: - Mwa0w§5y - /Jyvgy;p) (D

where S, S, is the waypoint of the ground-truth trajectory
at this timestep, and (f1,, fty, 0, 0y, p) represent the param-
eters of the selected positive Gaussian component.

We calculate the final loss based on the weighted sum
of the L1, loss and the L1 losses of velocity and heading
angles.

Liotal = ¥ MLhpp + XLl +XaLh Q)
t

During the challenge, we also made an attempt to im-
plement a simplified version of the collision avoidance
loss [17], however the preliminary result did not indicate
any improvement in terms of realism metric, and we leave
it to future studies.

3.3. Inference

Top-k sampling. During model inference, each simulation
step produces multi-modal trajectories. There are two alter-
natives available for trajectory sampling. The first approach
is to select the maximum-likelihood trajectory, while the
second is to randomly choose among the top-k (e.g., k=3)
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Figure 5: (a) Top-k sampling. (b) Aggregating new way-
point to the past trajectory.

trajectories (Figure 5a) with the highest likelihood. The first
one, while producing accurate trajectory, tends to yield less
varied trajectories. On the other hand, opting for the top-
k trajectories encourages diversity but is susceptible to the
compounding error and could generate trajectories with un-
realistic kinematic motions or even drift, As a result, we
employ the top-k sampling at periodic intervals during the
simulation steps to strike a balance between realism and di-
versity.

Variable-length history aggregation. Instead of using
fixed 1.1s history, we continuously aggregate the past his-
tory as the agent state unrolls overtime (Figure 5b), and use
the aggregated history trajectory for the scene context en-
coding in the next simulation step. The motivation is two-
fold, firstly, our training process also uses variable-length
history. Secondly, we aim to enhance the stability of the tra-
jectory simulation, thereby reducing the potential for com-
pounding error. One example showcasing the autoregres-
sive rollout is shown in Figure 6.

4. Experimental Evaluation
4.1. Dataset and Metrics

We use the Waymo Open Motion Dataset (WOMD) [4]
v1.2.0 release in our experiments. There are a total of
486,995, 44,097, and 44,920 scenarios in the training, vali-
dation, and test set, respectively. Each scenario in the train-
ing and validation sets comprises of 11 observations for
history and 80 observations from 8 seconds of future data,
therefore the total duration of each scenario is 9.1 seconds.

The task is to simulate up to 128 agents including the
ADV, and generate 80 simulation steps (8s) for each agent
in a 0.1s sampling interval, and in an autoregressive and
reactive manner [ 1]. 32 simulations are required for each
agent to be simulated.

There are three object types (vehicles, cyclists, and
pedestrians), and their x/y/z centroid coordinates and
heading need to be simulated. There is no need to simu-
late the size of each agent since it stays constant. In our
experiments, we keep the z value the same as the starting
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Figure 6: An example of the autoregressive rollout. The context history, current state (blue-edged circle) and next simulated
waypoint (green-edged circle) are visualized for each agent.

WAYMO META METRIC KINEMATIC INTERACTIVE MAP
LEADERBOARD REALISM LINEAR LINEAR ANG. ANG. DIST. COLLISION  TTC DIST. OFFROAD  minADE
SPEED  ACCEL. SPEED ACCEL. TO OBJ. TO ROAD ()
MVTE (ours) 0.5168 0.4426 0.2218 0.5353 0.481 0.382 0.4509 0.832 0.6641 0.6409 1.677
MVTA (ours) 0.5091 0.4365 0.22 0.533 0.4805 0.3729 0.4359 0.8298 0.6545 0.6288 1.8698
MTR+++ 0.4697 0.4119 0.1066 0.4838  0.4365 0.3457 0.4144 0.7969 0.6545 0.577 1.6817
CAD 0.4321 0.3464 0.2526  0.4327 0.311 0.33 0.3114 0.7893 0.6376 0.5397 2.3146
multipath 0.424 0.4318 0.2304  0.0193  0.0355 0.3493 0.4854 0.8111 0.6372 0.613 2.0517
sim_agents_tutorial 0.3941 0.3143 0.1738 0.4785  0.4631 0.2641 0.2671 0.7709 0.5575 0.4111 3.6198
QCNeXt 0.392 0.4773 02424 0.3252  0.1987 0.3759 0.3244 0.7569 0.6099 0.36 1.083
sim_agents_tutorial 0.3201 0.3826 0.0999 0.0318  0.0391 0.2909 0.336 0.7549 0.5251 0.3804 3.108
linear_extrapolation_baseline_tutorial 0.2576 0.0745 0.1659 0.0187  0.0348 0.2221 0.2211 0.7551 0.479 0.3352 7.5148

Table 1: WOSAC Leaderboard. Realism meta-metric is the primary metric for ranking the methods. Our simulator reached

the highest meta-metric of 0.5168 among all the methods on the leaderboard.

state. The challenge does not enforce any motion model,
and therefore there are no kinematic constraints.

The main evaluation metric is the realism meta-metric,
aggregating a group of component metrics including kine-
matic, interactive and map-based metrics. For more details,
please refer to [11].

4.2. Implementation and Simulation Setup

Table 2 summarizes the hyperparameters of different
modules used in our implementation.
Training details. The simulation model is trained end-to-
end for all three agent types, using AdamW optimizer for
30 epochs. The learning rate is set to 0.0001. We set the
loss weights A1, Ag, A3 in Equation (2) to 1.0, 0.5, 0.5, re-
spectively. Similar to [16], we use 64 motion query pairs
based on 64 intention points learned by running k-means
clustering algorithm on the future 1s waypoints of the train-
ing trajectories. A set of 64 intention points is obtained for
each object category.
Batch inference and optimization. There are a total of
44,920 scenes in the test set, and each scene requires run-

ning the model inference for 32 x T times to generate the
32 simulations for a group of agents. As such, we imple-
mented batch inference to speed up the simulation process.
Given that our model design supports periodic updates of
the scene context features, the inference speed can be fur-
ther optimized by running the scene context encoder every
few timesteps (e.g., 0.5s) and running several decoder layers
(e.g., the first 5).

MVTE. We explore the design space of the MVTA model
and trained 3 variants of the model by increasing the number
of hidden feature dimension in the encoder (e.g., 384 as op-
posed to 256) and decoder (e.g., 768 as opposed to 512). In
the enhanced MVTE solution, model is randomly sampled
to generate each simulation, encouraging more diversity in
the resulting simulations.

4.3. Experimental Results

WOSAC 2023 leaderboard. On the WOSAC leader-
board!, the realism meta-metric is the official primary met-

Ihttps://waymo.com/open/challenges/2023/
sim-agents/
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Figure 7: Three simulations of a scene, in which a vehicle waiting to get onto the main road. The vehicle turns left or right,
or keeps waiting for the right time to go. Additionally, the ADV also demonstrates multi-modal behavior, either proceeding
straight or making a left turn. Five timesteps are rendered for each simulation.

Module Hyperparameters Values
Scene MLP  No. Channels-Agent 256
No. Layers-Agent 3
No. Channels-Map 64
No. Layers-Map 5
Encoder Hidden Feature Dim. 256/384
No. Encoder Layers 6
No. Attention Head 8
Decoder Hidden Feature Dim.-Agent 512/768
Hidden Feature Dim.-Map 256/384
No. Decoder Layers 10
No. Attention Head 8
No. Motion Modes 64
Training Learning rate 0.0001
No. Epochs 30

Loss weights 1.0,0.5,0.5

Table 2: Hyperparameters of different modules in MVTA.

ric used for ranking the methods. The minADE metric is
also calculated but it is primarily used for evaluating mo-
tion prediction methods. The official baseline extrapolates
the trajectory of an agent using the last heading and speed
logged in the provided history [11]. For more baselines
based on Wayformer [12] on the validation set, please refer
to [11].

The leaderboard is shown in Table 1. On the test set,
our MVTA reaches a realism meta-metric of 0.5091 and our
MVTE further improves the meta-metric to 0.5168, ranking
the 1*! place in the challenge. Notably, it also has the highest
scores in component metrics except the linear and collision
metrics.

Note in Table 1 that minADE does not always corre-

late with the ranking, as the method achieving the lowest
minADE has lower realism meta metric compared to other
methods.
Qualitative results. In Figure 7, we present a scenario
demonstrating the multi-modal behavior of an agent. Fig-
ure 8§ features five simulated scenarios showcasing reactive
environment agents. These agents exhibit a wide variety
of behaviors including yielding, overtaking, pausing for un-
protected left turns, and engaging with the ADV. Qualitative
simulation results of several intersection scenes with agents
undertaking a wide variety of maneuvers are provided in
Figure 9. Due to the complexity of these scenes, it is im-
possible for heuristic-based models that encode traffic rules
to simulate these realistic agents.

5. Conclusion

In this technical report, we have presented the Multiverse
Transformer (MVTA) framework which produces parallel
universes for the application of traffic agents simulation.
It achieved state-of-the-art performance and ranks the 1%
place in the Waymo Open Sim Agents Challenge 2023. We
hope our work inspires further research in the area of simu-
lation agents. In our upcoming research, we intend to inves-
tigate scene-centric simulation approaches for improving
the degree of realism of simulations, and also explore the
possibility of using diffusion/denoising-based approaches.
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Figure 8: Five simulated scenarios featuring reactive environment agents, each with five timesteps rendered. Scenario 1
depicts a congested right lane where an agent, indicated by the arrow, attempts to overtake the ADV. Scenario 2 and 3
showcase vehicles at intersections, waiting for the oncoming traffic to clear before making an unprotected left turn. Scenario
4 shows the ADV slows down to yield to a car merging onto the main road from a driveway. The car behind the ADV then
changes to the left lane and overtakes the autonomous vehicle. Lastly, scenario 5 demonstrates the ADV executing a slow
right-turn, resulting in the agent behind it having to slow down or stop.
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