
A SIMPLE YET EFFECTIVE METHOD FOR SIMULATING
REALISTIC MULTI-AGENT BEHAVIORS

Cheng Qian∗

College of Information Science and Engineering
Northeastern University

Shenyang, China
qiancheng625@gmail.com

Di Xiu∗

School of Electronic, Electrical and Communication Engineering
University of Chinese Academy of Sciences

Beijing, China
suoliweng98@gmail.com

Minghao Tian
DiDi Autonomous Driving

Beijing, China
tianminghao@didiglobal.com

ABSTRACT

In this technical report, we present the 2nd place solution
of 2023 Waymo Open Sim Agents Challenge (WOSAC)
[4]. We propose a simple yet effective autoregressive
method for simulating multi-agent behaviors, which is
built upon a well-known multimodal motion forecasting
framework called Motion Transformer (MTR) [5] with
proper post-processing module applied. Our submission
named MTR+++ achieves 0.4697 on the Realism Meta
metric on the public WOSAC leaderboard.

1 Introduction

How to validate the safety of an autonomous driv-
ing systems (ADS) is an important topic in both re-
search community and L2+ autonomous driving indus-
try. In UNECE document ‘Proposal for the Future Cer-
tification of Automated/Autonomous Driving Systems’
(ECE/TRANS/WP.29/GRVA/2019/13), the authors pro-
posed the so-called three pillars of safety validation: simu-
lation, closed-road scenario test and real-world road test.
Simulation is undoubtedly the safest and the most cost-
efficient ‘pillar’. However, simulating traffic participants
in a realistic way is very challenging [2].

WOSAC [4] is a new challenge focusing on realistically
simulating traffic agents in an interactive way. Contestants
are asked to generate the future 8-second behaviors of the
agents in an autoregressive pattern, given the last 1-second
historical motion data together with the map features of
the scenario. The challenge is actually very similar to mo-
tion forecasting in literature [1, 3, 6]. We adapt one of the

methods called Motion Transformer (MTR) [5] to help us
generate the possible futures.

Motion Transformer (MTR) framework. Motion
Transformer (MTR) framework is a transformer encoder-
decoder model which achieved the SOTA performance
on both the marginal and joint motion prediction bench-
marks in 2022 Waymo Open Dataset Challenges. It uses
vectorized representation to handle both input trajecto-
ries and road map as poly-lines, and adopts the agent-
centric strategy that organizes all inputs to the local coor-
dinate system centered at that agent. During inference,
the input of the MTR model is the historical motion
data {[cx, cy, cz, dx, dy, dz, θ, velx, vely, valid]i} of all
the traffic participants (the local map features are included
by collecting the map poly-lines nearby for each agent),
where [cx, cy, cz] represent the location; [dx, dy, dz, θ] are
the length, width, height and heading, respectively; the
[velx, vely] are the x, y-direction velocity and the valid
is a dataset-related feature which represents whether the
groundtruth provided is valid. The output of the model are
the predicted trajectories in form of {[cx, cy, velx, vely]i}.
We run the same inference procedure for each agent in one
inference round.

2 Method

We propose a simple method to simulate the behaviors
of the agents given the past historical motion data. MTR
framework is used as the motion forecasting block to pro-
duce a hybrid of open-loop and closed-loop motion data by
executing model inference autoregressively at 0.5Hz (more

∗This work was done during internship at DiDi Autonomous Driving



A Simple Yet Effective Method For Simulating Realistic Multi-Agent Behaviors TR

(a) (b) (c)

Figure 1: (a) Trajectories directly output by MTR model; (b) Two vehicles collide after adapting the trajectories with
the highest probabilities generated by MTR model; (c) Scenario generated at 10Hz;

discussion on the update rate can be found in Section 3.2).
One inference round includes 6 possible future trajectories
generated for each agent (with sum-to-one probabilities
assigned). At any simulation step, agents utilize MTR-
generated trajectories and conduct the collision-mitigation
policy (introduced in Section 2.2) to pick 1 out of 6. To
be more specific, MTR model together with the collision-
mitigation policy infers a 2-second [0s, 2s] future trajec-
tory for each agent , based on the past 1-second historical
motion data alongside the map features. After applying
heading calculation (introduced in Section 2.1) to the tra-
jectories, the [1s, 2s] halves of the trajectories will be used
as the input of the MTR model at the next simulation step.
During the entire simulation, we keep the altitude, the
length, the width and the height of each agent as constants
(read from historical motion data). After running several
rounds, a simulated scenario will be generated. To gen-
erate 32 results as required by the challenge, we simply
select 32 variants of the fine-tuned MTR models and each
generates one. More details can be found in Section 3.1.
This method achieves 0.4697 on the Realism Meta metric,
which is the 2rd place of 2023 WOSAC.

2.1 Heading calculation

Since MTR generates high-quality trajectories which is
showed empirically in previous work (Figure 1(a)), we
simply use the (x, y) coordinates of the generated trajecto-
ries to compute the corresponding headings of the vehicles
and cyclists (implemented using np.arctan2 to calculate the
heading). For those agents predicted to hold still (which
can be induced from their trajectories by a threshold2), we
keep their heading still. For those agents whose predicted
headings distort much, we stabilize the headings by check-

ing the consecutive ones. If the difference between two
consecutive headings [t, t+ 0.1s] is larger than 0.3rad, we
overwrite the heading at t+ 0.1s and force it to be equal
to the heading at t. A further normalization step is needed
here to make sure hi ∈ [−π, π).

2.2 Collision-mitigation policy

Suppose there are N agents (including the ADV agent) to
be simulated in a given scene. With 6 trajectories generated
for each agent by MTR, there could be 6N possible results
at each update step. We observed that simply picking the
trajectories with the largest probability could lead to scenar-
ios with unrealistic collisions (Figure 1(b)). To mitigate the
presence of collisions while avoiding brute-force searching,
we propose a greedy strategy to try to select one combina-
tion with reasonable small collision counts. The idea is to
first build the 6N by 6N distance matrix D where entry
D6m+i−1,6n+j−1 indicates the minimum L2 distance be-
tween the ith-highest trajectories of agent m and the jth
one of agent n, where 0 ≤ m,n ≤ N−1 and 1 ≤ i, j ≤ 6.
If D6m+i−1,6n+j−1 ≤ (widthm + widthn) /2 where
widthk is the width of agent k, then adapting these two
trajectories will definitely lead to a collision. Thus, we
can build a 0-1 matrix C where C6m+i−1,6n+j−1 = 0 if a
collision happens between the ith trajectories of agent m
and the jth of agent n otherwise it will be set to 1. Since
trajectories generated for the same agent are all originated
from the same starting position, these trajectories collide
and thus we have N 6× 6 zero-blocks lying on the diag-
onal of C. The matrix C is symmetric and thus can be
viewed as an adjacent matrix of an undirected graph with
6N nodes (keep the same indexing of the matrix). We then
run Algorithm 1 to find a dense subgraph of size N 3. The

2Any agent with moving distance less than 0.3m during 2s according to its predicted trajectory is treated as a stopped agent
3Under the adjacency matrix setting, the density of a subgraph of size l can be easily calculated by the sum of all the entries of

the corresponding submatrix divided by l× (l− 1). A clique is a subgraph with density equal to 1. Here, we say a subgraph is dense
if its density is ≥ 0.95.

2



A Simple Yet Effective Method For Simulating Realistic Multi-Agent Behaviors TR

denser the subgraph is, the less the collision count will be.
Finally, we select the corresponding trajectories according
to the dense subgraph4.

Algorithm 1: Clique/dense subgraph-finding heuristic
Input: C — the (6N × 6N )-adjacency matrix
described in Section 2.2;

Output: c — an array of indices of size N indicating
the vertices of the derived dense subgraph;

1. Initialize c := [0, 6, · · · , 6(N − 1)];
2. Check whether {c[0], · · · , c[N − 1]} forms a
clique; if so, stop and OUTPUT c;

3. Compute deg the degree array of vertices;
4. Define two recursive functions FindDSG(i, l, s)

and FindClique(i, l, s) which gradually expands
the subgraph. Here, i indicates the starting index of
the search for the lth joiner vertex, expecting to find
one with degree at least (s− 1):

DEF FindDSG(i, l, s) :
FOR j ∈ [i, i+ 5]:

IF deg[j] ≥ s− 1:
SET c[l] = j;
IF {c[0], · · · , c[l]} forms a dense subgraph:

IF l < s− 1:
RUN FindDSG (6× (l + 1) , l + 1, s);

ELSE stop and OUTPUT c;

DEF FindClique(i, l, s) :
LET jtmp := −1;
FOR j ∈ [i, i+ 5]:

SET c[l] := j;
IF {c[0], · · · , c[l]} forms a clique:

SET jtmp := j and BREAK;
IF jtmp ̸= −1:

SET c[l] := jtmp;
IF l < s− 1:

RUN FindClique (6× (l + 1) , l + 1, s);
ELSE stop and OUTPUT c;

ELSE run FindDSG(i, l, s);

5. RUN FindClique(0, 0, N)

3 Experiments

Due to time constraints, all the evaluations in this section
were conducted only on the first TFRecord file of WOMD
v1.2, which consists of 287 validation scenarios.

3.1 Implementation Details

We trained the MTR model with the same hyperparameter
settings as in [5] on both WOMD v1.1 and v1.2 except for
the learning rate. Two rounds of pre-training were con-
ducted based on WOMD v1.1 to get two baseline models
(each ran 30 epochs with 8 GPUs (NVIDIA RTX A6000)
and batch size of 128 scenes): the learning rate is decayed

by a factor of 0.5 every 2 epochs from epoch 20 and epoch
22, respectively. These two pretrained models were further
fine-tuned on WOMD v1.2 for 20 epochs. Therefore, we
obtained 40 separate models, one for each of 40 epochs
as candidates. Finally, we picked 32 models out of 40
with the highest mAP score, and applied them to generate
scenarios in the autoregressive fashion introduced in Sec-
tion 2. Using models from the results of different epochs
can not only be viewed as an ensemble method, but also
an implicit way of adding noise which can generate more
diverse multi-agent behaviors. Experiments also showed
that the more models we included in the ensemble, the
higher the overall composite metric would be (see Section
3.4 below).

3.2 Update rate

We attempted to use a frequency of 10Hz for autoregres-
sive simulation, which resulted in poor performance (Table
1). After checking the visualization (Figure 1(c)), we ob-
served that several generated trajectories were unrealistic
like wandering on the map without specific purpose. This
may be because each simulation step would bring a certain
disturbance error to the predicted trend of the previous
simulation step. The more simulation steps we conduct,
the greater the accumulated error will be.

3.3 Effects of collision-mitigation policy

We compare our collision-mitigation update policy with
the update policy which always selects the trajectories
with the highest probability scores. Table 2 shows that
our proposed collision-mitigation policy slightly improves
the quality of the simulated scenarios. Interestingly, it
improves all the metrics listed a little bit.

3.4 Number of MTR variants

Since our model runs at 0.5Hz, we have 4 simulation
steps in total in 8s simulation duration. We use notation
[m1,m2,m3,m4] to denote the number of different sce-
narios generated by our model at each step. For example,
[1, 2, 4, 4] means that we have generated 2 different sce-
narios at the second simulation step by picking the top-2
combinations of trajectories in the sense of the joint proba-
bility. We tested on 1, 2, 4, 8, 16, 32 variants respectively
with heading calculation module and collision-mitigation
policy enabled. Empirical results (Table 3) showed that 32
variants are indeed needed and it significantly improves
the Interactive metrics.

3.5 An end-to-end model MTR_E.

We also propose an end-to-end variant of MTR,
called MTR_E, where can directly predict the
[cx, cy, cz, θ, velx, vely] of the agents. Specifically, we
have simply modified the decoder section of MTR. We

4If the vertex (6m+ i− 1) is included in the subgraph, then we pick the ith-highest trajectory of agent m

3



A Simple Yet Effective Method For Simulating Realistic Multi-Agent Behaviors TR

Table 1: Different update rate.
Update rate

(repeated 32 times)
Realism Meta

metric ↑
Kinematic
metrics ↑

Interactive
metrics ↑

Map-based
metrics ↑ minADE ↓

10Hz 0.2836 0.0934 0.1243 0.0659 8.9345
0.5Hz 0.4311 0.1232 0.1554 0.1525 2.2093

Table 2: Effects of collision-mitigation policy.
Collision-mitigation

policy
Realism Meta

metric ↑
Kinematic
metrics ↑

Interactive
metrics ↑

Map-based
metrics ↑ minADE ↓

× 0.4743 0.1298 0.1747 0.1698 1.7560
✓ 0.4753 0.1299 0.1754 0.1700 1.7554

Table 3: Effects of number of variants of MTR model selected.

number of variants Realism Meta
metric ↑

Kinematic
metrics ↑

Interactive
metrics ↑

Map-based
metrics ↑ minADE ↓

1 (repeat 32 times) 0.4336 0.1228 0.1580 0.1528 2.1848
1 [1,2,4,4] 0.4398 0.1194 0.1593 0.1611 2.1674
2 [1,1,4,4] 0.4487 0.1209 0.1646 0.1632 2.1373
4 [1,1,2,4] 0.4519 0.1221 0.1659 0.1639 2.0618
8 [1,1,1,4] 0.4652 0.1286 0.1690 0.1675 1.9015
16 [1,1,1,2] 0.4712 0.1288 0.1732 0.1692 1.8096

32 [1,1,1,1] (Submitted) 0.4753 0.1299 0.1754 0.1700 1.7554

32 [1,1,1,1] (MTR E) 0.4958 0.1484 0.1738 0.1735 1.6642

changed the output dimension of MLP in dense future
prediction module and motion prediction module while
adding extra L1 losses for cz and θ to the total loss. Table
3 also shows the MTR_E improves all the metrics listed,
which leads to a 4.3% increase on Realism Meta metric
than our submission MTR+++.

References
[1] Y. Chai, B. Sapp, M. Bansal, and D. Anguelov. Mul-

tipath: Multiple probabilistic anchor trajectory hy-
potheses for behavior prediction. arXiv preprint
arXiv:1910.05449, 2019.

[2] Q. Chao, H. Bi, W. Li, T. Mao, Z. Wang, M. C. Lin,
and Z. Deng. A survey on visual traffic simulation:
Models, evaluations, and applications in autonomous
driving. Computer Graphics Forum, 39(1):287–308,
2020.

[3] W. Luo, C. Park, A. Cornman, B. Sapp, and
D. Anguelov. Jfp: Joint future prediction with interac-

tive multi-agent modeling for autonomous driving. In
K. Liu, D. Kulic, and J. Ichnowski, editors, Proceed-
ings of The 6th Conference on Robot Learning, volume
205 of Proceedings of Machine Learning Research,
pages 1457–1467. PMLR, 14–18 Dec 2023.

[4] N. Montali, J. Lambert, P. Mougin, A. Kuefler,
N. Rhinehart, M. Li, C. Gulino, T. Emrich, Z. Yang,
S. Whiteson, B. White, and D. Anguelov. The waymo
open sim agents challenge, 2023.

[5] S. Shi, L. Jiang, D. Dai, and B. Schiele. Motion trans-
former with global intention localization and local
movement refinement. Advances in Neural Informa-
tion Processing Systems, 2022.

[6] B. Varadarajan, A. Hefny, A. Srivastava, K. S. Refaat,
N. Nayakanti, A. Cornman, K. Chen, B. Douillard,
C. P. Lam, D. Anguelov, and B. Sapp. Multipath++:
Efficient information fusion and trajectory aggregation
for behavior prediction. In 2022 International Con-
ference on Robotics and Automation (ICRA), pages
7814–7821, 2022.

4


	Introduction
	Method
	Heading calculation
	Collision-mitigation policy

	Experiments
	Implementation Details
	Update rate
	Effects of collision-mitigation policy
	Number of MTR variants
	An end-to-end model MTR_E.


