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Simulating Behaviors of Traffic Agents for
Autonomous Driving via Interactive Autoregression

Xiaoyu Mo, Haochen Liu, Zhiyu Huang, and Chen Lv.

Abstract— In this report, we present our solution for the
Waymo Open Dataset Sim Agents Challenge (WOSAC). Our
method aims to address the driving scenario by employing a
three-stage approach. Firstly, we generate joint goal sets for the
agents involved in the scenario, followed by the assignment of
target centerlines (TCLs) to each agent based on their predicted
goals. In the second stage, we introduce a random sampling
process to assign a TCL to one of the agents, ensuring diverse
simulations. Since the joint goal sets predicted by the motion
prediction method might not align with the road structure, we
further refine the goals for each agent by re-estimating them
according to their assigned TCLs. These re-estimated goals serve
as inputs for our interactive auto-regressive goal-directed planner
(GDP), which serves as the third stage of our method that
generates rollouts for simulation.

Index Terms—Traffic simulation, connected vehicles, graph
neural networks, heterogeneous interactions.

I. RELATED WORK

A. Map-Adaptive Trajectory Prediction

Map-adaptive methods can well generalize to handle dif-
ferent lane topologies, such as intersections, roundabouts,
and other unusual road structures [1]. GoalNet [1] represents
the inputs and outputs in a path-relative coordinate frame
and proposes to use a GNN to generate a variable number
of trajectories according to the number of available paths
of the target vehicle. However, GoalNet does not consider
vehicles behind the target or those in other lanes, which can
significantly impact the target vehicle’s behavior. Following
GoalNet, authors of [2] propose an integrated framework for
map-adaptive multimodal trajectory prediction. They represent
the driving scene as a hierarchical heterogeneous graph con-
taining both agents and their candidate centerlines (CCLs)
and propose a hierarchical graph operator (HGO) to handle
the heterogeneity. They introduce a virtual node to contain
the target vehicle’s dynamics feature for non-map-adaptive
behavior prediction. Incorporating the virtual node into the
graph, they can generate CCL-following, scene-reasoning, and
motion-maintaining predictions simultaneously.

B. Data-Driven Traffic Simulation

Data-driven traffic simulation can be built on trajectory
prediction methods. For example, TrafficSim [3] extends the
motion prediction method ILVM [4] and realizes traffic simu-
lation in an auto-regressive manner. TrafficBots [5] introduces
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Fig. 1. Left, an illustration of the hierarchical heterogeneous scene graph.
Right, CCL v.s. TCL. An agent’s TCL is selected from its CCLs according to
its ground truth goal point. In inference, the TCL can be manually assigned
by users to generate complex interactions.

Transformers [6] into a VectorNet [7] for map encoding and
formulates the traffic simulation task as a world model [8]
tailored for the planning module for autonomous vehicles.
We extend the map-adaptive trajectory prediction method
proposed in [2] and follow the requirements of WOSAC [9]
to simulate traffic agents in an auto-regressive manner.

II. METHOD

Our model for the Sim Agents challenge consists of three
sub-models, namely 1) the multi-agent goal predictor (MAG),
2) the target centerline-based goal estimator (TGE), and 3)
the interactive auto-regressive goal-directed planner (GDP).
The proposed model realizes multi-agent traffic simulation in
three stages for each update: 1) assign a target centerline TCLs
to each agent in the scene according to their goals predicted
by the multi-agent goal predictor, 2) re-estimating their goals
according to their TCLs separately, 3) apply GDP to generate
the final trajectories for agents to follow.

A. Problem Formulation

In the Waymo Open Sim Agents Challenge (WOSAC),
the driving task is formulated as a Hidden Markov Model,
requiring participants to construct a “world model” for traffic
simulation. This world model should exhibit autoregressive be-
havior for a specified number of steps (80 steps for 8 seconds)
and be factorized into self-driving car (SDC) and non-SDC
components [9]. Given the scene context which includes a one-
second history of the states of traffic participants and signals
and the local map, the task of WOSAC is to generate interac-
tive motions for both SDC and non-SDCs in an autoregressive
manner. The simulation will be executed for a duration of 8
seconds into the future, with a sampling frequency of 10 Hz.



2

Fig. 2. Detailed structure of the scene graph encoding module. Given the sequences (Seq) and attributes (Attr) of Agents/CCLs, we apply corresponding
encoders to them and then fuse them to obtain individual representations of both agents and CCLs. These representations are then used as node features in
the scene graph, which is processed by the hierarchical graph operator (HGO [2]) with two graph attention networks (GATs) for interaction modeling. Finally,
we embed all representations to the same dimension and obtain the agents’ dynamics (Dyn), interaction (Int) features, and CCL features for the downstream
modules.

At each time step, participants are required to simulate the 3D
positions and headings (x, y, z, h) of all the traffic participants
(valid agents in the WOSAC dataset).

B. Scene Representation and Encoding

To establish the relationship between the scene representa-
tions of traffic participants (At) and their candidate centerlines
(CCLs) (Ct), we utilize a heterogeneous scene graph. Each
node in the graph represents either an agent (vehicles, cyclists,
and pedestrians) or a CCL of an agent. Agent nodes in the
graph store the past states of the corresponding agent over
the last second. These states include relevant measurements
(position, velocity, and orientation). Additionally, each agent
node is assigned attributes, including shape (length, width, and
height) and type (vehicles, cyclists, and pedestrians), to pro-
vide further contextual information. CCL nodes in the graph
contain the waypoints that define the optional centerlines for
the associated agent. The attributes of a CCL node encompass
details such as traffic light states, the speed limit for the CCL,
and indicators indicating the presence of stop signs or speed
bumps along the CCL.

We place all the agents and CCLs in an ego-centric coor-
dinate framework, where ego is the self-driving car (SDC),
making the origin at the SDC’s current position and the hori-
zontal axis align with its current heading direction. All agents’
past states and their CCLs are represented by sequences in
this frame of reference. The CCLs of an agent at time t
are obtained from the road graph by applying a depth-first
search on the road graph from its current lane. Every agent is
connected to its neighbors (within a distance of 50 meters in
our setting) and CCLs. There is no link between an agent’s
CCL to another agent. So the driving scene is represented by a
hierarchical heterogeneous graph, where the lower-level graph
is an agent-CCL graph (shown in blue arrows in the left part
of Fig. 1) containing an agent and its CCLs, and the higher-

level graph is an interaction graph (shown in red arrows in the
left part of Fig. 1) containing all agents in the scene.

Rather than using GRUs for both Agents (agn) and CCLs
(ccl) sequences, we use multi-layer perceptions (MLPs) to
speed up training and inference. In addition to sequential
(seq) information, we also encode their attributes (atr) and
concatenate them with their sequential features to construct
the node features in the scene graph.

dit = MLPseq
agn(p

i
t), i ∈ A, (1)

ait = MLPatr
agn(z

i), i ∈ A, (2)

qjt = MLPseq
ccl (c

j
t ), j ∈ C, (3)

bjt = MLPatr
ccl (m

j
t ), j ∈ C, (4)

where A and C contain the indices of agent and CCL nodes
in the graph, pit is the past states of an agent i, zi is its
attributes, cjt is the sequence of a CCL j, and mj

t is its
attributes. Applying the above MLP encoders accordingly to
all the nodes, we obtain agents’ dynamics and attribute features
(dit and ait) and CCLs’ sequential and attribute features (qjt and
bjt ). For an agent node, the node feature is [dit, a

i
t], where [·|·]

means concatenation, while for a CCL node, the feature is
[qjt , b

j
t ].

We use a two-layer Hierarchical Graph Operator (HGO) [2]
to process the scene graph to obtain a feature vector that
summarises all information in the scene for the simulation. The
first stage of our HGO is for each agent’s CCL awareness. By
masking out inter-agent edges, we allow all agents to collect
information about their CCLs. Then in the second stage, we
allow agents to gather information from their neighborhood
to make all the agents interaction-aware. For details about the
HGO and edge-masking technique, please refer to [2]. The
scene encoder takes At and Ct as inputs and outputs all agents’
dynamics (SD), interaction (SI ), and CCL (SC) features:

SD, SI , SC = ENCscn(At, Ct), (5)
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where ENCscn is the scene (scn) encoder (ENC). Fig. 2 shows
the structure of the scene encoding stage, where all three kinds
of features are embedded into a fixed size for the next decoding
stage.

C. Multi-Agent Goal Prediction (MAG) and TCL assignment

In this stage, we want to generate joint goal sets for all
agents in the scene, then assign a TCL (selected from an
agent’s CCLs) per agent given a joint goal set. Based on the
interaction and dynamics features of all the agents, our model
first predicts four joint goal sets (Ĝ = {Ĝ1, Ĝ2, Ĝ3, Ĝ4})
for them simultaneously to capture the multimodality of real-
world driving. For an agent i:

Ĝi = DECMAG([S
i
I , S

i
D]), (6)

where [Si
I , S

i
D] is the concatenation of its interaction and

dynamics feature, Ĝi is the predicted multimodal goal of agent
i, and DECMAG is a 2-layer MLP. Given a predicted goal set
(e.g., Ĝ1) we assign a TCL for each agent from their CCLs
according to a distance criterion (the TCL is the CCL that is
closest to the agent’s predicted goal while within the distance
threshold, see the right part of Fig. 1 for an illustration.). If
none of an agent’s CCLs satisfy the criteria, we will assign
a fake TCL to it. In this stage, we initialize a TCL for every
agent.

We train the MAG predictor via a joint multimodal loss
inspired by the MTPLoss [10] to force the model to predict
joint goal sets. For each scenario, we compute the joint
displacement error (JDE) for each modality (we output 4 joint
goal sets for each scenario) and use the minimum JDE over
4 joint predictions as the loss for backpropagation. This is
similar to the regression loss proposed in [10]. Specifically,
the displacement error between two points p̂ = (x̂, ŷ) and
p = (x, y) can be calculated by

DE(p̂, p) =
√
(x̂− x)2 + (ŷ − y)2. (7)

Then for each goal set Ĝm containing goals of N agents in
the scene, we can calculate its joint displacement error (JDE)
as

JDEm =
1

N

N∑
i=1

DE(Ĝi
m, Gi), (8)

where Ĝi
m is the predicted goal of agent i in this joint goal

set, and Gi is the ground truth. Then the best joint goal set
Ĝi

m∗ is the one with the minimum JDE:

m∗ = argmin
m∈{1,2,3,4}

JDEm. (9)

Then we use JDEm∗ as the loss function for backpropagation.

By conditioning the behavior of a traffic participant on
a TCL, our method allows manually assigning a TCL to
generate counterfactual behaviors of one or more agents. Users
can force an agent to interact strongly with the SDC in
training for corner case simulation. For the WOSAC challenge,
we randomly assign a TCL to a sampled agent for diverse
simulations. Since a TCL is chosen from the agent’s CCLs

and its CCLs are obtained via a depth-first search on the road
graph, the assigned TCL is compliant with the road structure.
Given a predicted goal set (e.g., Ĝ1), we do random TCL
assignments eight times, so that we can generate 32 TCL sets
to meet the challenge’s requirements (32 rollouts for a given
scenario).

D. TCL-based Goal Estimation

Given the driving scene and a TCL of an agent, the TCL-
based goal estimator (TGE) wants to predict where the agent
is most likely to be in the next eight seconds (the predefined
simulation horizon). Different from the multi-agent goal pre-
diction (MAG) module, which outputs multiple joint goal sets
for all agents in the scene, TGE focuses on a single agent
and estimates a deterministic point as its goal conditioned
on a TCL. We assume that an agent’s goal is conditioned
on three factors: 1) its interaction feature siI , 2) its dynamics
feature siD, and 3) the TCL feature si,τC . Rather than sampling
positions, either densely or sparsely [11], [12], we propose to
directly estimate the goal position by assuming that the goal
distribution of a vehicle is unimodal given the above factors.
Then the goal estimator is formulated as:

Ĝτ = DECTGE(SI , SD, Sτ
C), (10)

where DECTGE is implemented with an MLP and Ĝτ is the
predicted goal set according to a TCL set for all agents in the
scenario. In training time, we feed the ground truth TCL into
this goal estimator so that the learning process is not affected
by the selection of TCL.

We use the MSE loss between the predicted goal position
and the ground truth to train the goal estimator for simplicity,
but other loss functions, like Huber loss, can also be used.

E. Goal-Directed Planning

Given a goal set (Ĝτ ) generated by the TGE (Eq. 10), the
goal-directed planner (GDP) rolls out a traffic simulation in
an auto-regressive manner for both SDC and the world agents
separately while considering the interaction among them. The
auto-regression is implemented via GRU Cells. At each time
step, the SDC updates its states considering both its hidden
feature and the new input (i.e., states of the world agents). All
the world agents (wld, non-SDC agents) will be able to react to
the SDC agent while trying to accomplish their driving goals.
For the first step, we use xego

0 = [Sego
I , Sego

D , Sego
G ] as the input

to the SDC’s GRU network, and xwld
0 = [Swld

I , Swld
D , Swld

G ] as
the input to the world agent’s GRU. SG is the embedding of
goals. Both GRU cells have a hidden size of 384. Their hidden
states hego

0 , hwld
0 are initialized randomly:

hego
1 = GRU(xego

0 , hego
0 ), (11)

hwld
1 = GRU(xwld

0 , hwld
0 ). (12)

From step 2 onward, we use the input from hidden states of the
world agents with a max operation over the feature dimension
and use the input from hidden states of the SDC agents for
each world agent:

hego
t = GRU(max(hwld

t−1), h
ego
t−1), t ∈ [2, 80], (13)
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TABLE I
RESULTS ON THE WOSAC LEADERBOARD

Method Name Realism Meta Metric Kinematic Metrics Interactive Metrics minADE

MVTE 0.5168 0.4202 0.5289 1.6770
MTR+++ 0.5091 0.4175 0.5186 1.8698
CAD 0.4321 0.3357 0.4355 2.3146
multipath 0.4240 0.1792 0.5328 2.0517

Ours 0.3941 0.3574 0.3923 3.6198

QCNeXt 0.3920 0.3109 0.4454 1.0830
sim agents tutorial 0.3201 0.1384 0.4294 3.1080
linear extrapolation baseline tutorial 0.2576 0.0735 0.3548 7.5148

hwld
t = GRU(hsdc

t−1, h
wld
t−1), t ∈ [2, 80]. (14)

In this setting, the SDC agent operates according to its own
states and features of all the world agents, and our world
agents are reactive to the SDC agents since their motions are
a function of both their past hidden states and that of the SDC
agent.

Then, the hidden states for each agent (ego and wld) over
the prediction horizon (80 steps, 8 seconds into the future)
are decoded using another MLP to 4-dimensional vectors
representing its states (x, y, z, heading) at each step. For
a scenario containing N agents, the output tensor for an 8-
second roll-out is a tensor of shape [N × 80× 4].

We train the goal-directed planner via a Smooth L1 Loss as
implemented by PyTorch.

III. TRAINING AND SIMULATION

A. Dataset

We train and evaluate our model on the training split of
the Waymo open motion dataset (WOMD) [13] and test it on
the test split of Sim Agents Challenges 2023 [9].

B. Training

We split the whole WOMD dataset for training (90%) and
in-process validation (10%). We use the AdamW optimizer
with the weight decay set to 0.01 and the initial learning rate
of 0.0001 to train the models for 30 epochs on a 2080Ti
GPU. The learning rate gets half after epochs 20, 22, 24,
26, and 28. For both the MAG and TGE models, the batch
size was set to 256, while for the GDP, the batch size is
set to 64. We use both the SDC and target agents defined
by WOMD for training and generate rollouts of all valid
agents for simulation. Note that the three modules (i.e., MAG,
TGE, GDP) are trained separately. Both TGE and GDP are
unimodal (deterministic) methods, while they can generate
diverse simulations by conditioning on different TCLs and
Goals.

C. Simulation

A simulation is realized by applying these three modules in
a cascading manner. Given a scenario, we first apply the MAG
model to generate 4 joint goal sets. Then, for each goal set,
we initialize a TCL for each agent in the scene according to
their predicted goal. To generate 8 simulations from each goal

set, we randomly sample an agent, which has more than one
CCLs and randomly assign a TCL for it. This stage allows us
to manipulate the behavior of a world agent to enforce strong
interaction with the SDC agent for specific testing purposes,
while for the challenge, we just randomly select an agent to
assign its TCL. After a TCL is assigned per agent, we can
estimate the goal for each agent and then apply the GDP model
to roll out a simulation. By iterating through all the goal sets,
we can generate 32 different simulations as required by the
challenge.

IV. RESULTS

We show the results for the WOSAC in Tab. I. Where our
model outperforms three submissions in terms of the Realism
Meta metric, including the linear extrapolation baseline pro-
vided by Waymo and a generalization of the QCNet (QCNeXt
for WOSAC), which was the winner of the Argoverse motion
prediction challenge 2022. For details of these metrics for
the challenge, please refer to [9]. Considering that WOSAC
has a close relationship with the motion prediction task, the
generalization of a challenge wining method can be regarded
as a strong baseline, and outperforming QCNeXt demonstrates
the effectiveness of our method for the Sim Agents challenge.
We do not have further information regarding other methods
submitted to the leaderboard. We look forward to knowing
more about these methods to compare thoroughly and improve
the performance of our method in the future. We show six
sampled roll-outs in Fig. 3 for six different scenarios. It can
be seen that the proposed method is able to generate traffic
roll-outs for a variable number of traffic agents in different
driving scenarios.

V. CONCLUSION

This report provides a comprehensive overview of our
solution to the Sim Agents challenge, which focuses on
enabling the autoregressive simulation of future interactions
among traffic participants. Additionally, our solution offers the
flexibility for users to customize the behaviors of world agents
through target centerline (TCL) assignment.
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