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Abstract

The field of autonomous driving technology is experi-
encing rapid advancements, and simulation has emerged as
a critical tool for enhancing its robustness and scalability.
Otherwise, the simulation agents face challenges in gener-
ating intelligent reactions. To enhance the realism of the
simulator, we propose a solution named Joint-MultiPath++
ranked 2nd in the Waymo Sim Agents Challenge 2023. Our
source code is publicly available on GitHub1.

1. Introduction

Simulation has become crucial for advancing the devel-
opment of autonomous driving vehicles (ADVs). A sim-
plistic approach to simulation involves replaying the sensor
data captured by the ADV in the real world, making minor
software modifications, and observing the outcome of the
scenario. However, this approach presents inherent chal-
lenges, such as the lack of responsiveness of playback ob-
jects to ADV behavior changes. Consequently, simulation
agents are necessary to realistically react to our actions. In
this paper, we propose a solution named Joint-MultiPath++
which efficiently scores the 2nd on Waymo Sim Agents
Challenge 2023.

2. Related Work

To enhance the realism of trajectories in simulators, a
typical model comprises an encoder and a decoder. The
encoder is for encoding both the map information and the
historical trajectory data.

When it comes to map information, there are two
primary methods that are commonly used. The raster
method[1, 2, 6, 8, 9, 11] represents the world by creating
a series of images from a top-down perspective. It sim-
plifies the process as it combines different types of input
information, such as road configurations, agent state his-
tory, and spatial relationships, into a multi-channel image.
This input modality is naturally aligned with Convolutional
Neural Network (CNN) model inputs. Instead, the polyline

1https://github.com/wangwenxi-handsome/Joint-
Multipathpp

method [4, 7, 10] presents a different approach for repre-
senting curves such as lanes, crosswalks, and boundaries. It
achieves this by breaking them down into smaller linear seg-
ments. This method is more efficient and concise because
road networks tend to have sparse characteristics.

The decoder is designed to accurately predict multi-
modal trajectories. This prediction process can be divided
into two approaches: one-by-one prediction and joint pre-
diction. One-by-one prediction[5, 10, 12] adopts the agent-
centric strategy and predicts each agent individually, with-
out taking into account the interactions among their future
trajectories. Recognizing the limitations of this method, we
have opted for the joint prediction approach[3], where we
simultaneously predict the trajectories of different agents,
capturing their interactions and dependencies. By employ-
ing the joint prediction method, we aim to enhance the ac-
curacy and comprehensiveness of our predictions.

3. Method
JointMultiPath++ means it is a joint prediction model.

The network structure is shown in Figure 1. In the original
version of Multipath++[10], the model inference can only
predict the future trajectory of one agent at a time, and there
is a serious drawback if we directly apply Multipath++[10]
to the Sim Agent Challenge: there is no interaction between
the corresponding modalities of each agent. In fact, due to
the concept of anchor in Multipath++[10], the mth modality
of each agent always converges to the same shape, which
leads to potential collision problems.

To address this point, we made corresponding modifi-
cations in the data preprocessing, encoder and decoder, so
that the model can obtain 32 future world distributions by
one inference.

3.1. Data preprocessing

We have made three adjustments to the data preprocess-
ing based on Multipath++[10]:

1. There is no distinction between the target agent and
other agents. In each scene, n agents are fixedly selected
for prediction. The agent selecting method includes only
selecting available agents, selecting agents sorted by avali-
able time and selecting all agents. And we use zero padding
when the number of seleted agents is less than n.
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Figure 1: The architecture of Joint-Multipath++ Encoder(Encoder only). Every MCG block is composed of three layers. b
is batch size which is equal to the number of scenes. n is the number of modeled agents, t is the history timestamp. s is
the polyline number for each agent. d is the hidden dimension of embeddings. Different embeddings have different hidden
dimensions. Please refer to 4.1 for default values.

2. Transform the coordinates and yaws of all agents into
the ADV’s coordinate frame(a scene-centric encoding).

3. For each agent, select the nearest s polylines from
their current positions as map features.

3.2. Encoder

Like Multipath++[10], the agent history encoder extracts
information in the time dimension in three ways, as follows:

agent info embeddingi = Concat(

LSTM1(agent history infoi),

LSTM2(agent history info diffi),

MCG(agent history infoi),

) i ∈ [1, n]

(1)

The shape of agent history info is (b, n, d1).
agent history infoi is defined as:

agent history infoi = Concat(

xi, yi, zi, yawi, speedi, widthi, lengthi, valid,

) i ∈ [1, n]

(2)

And agent history info diffi is defined as:

agent history info diffi(j) =

agent history info diffi(j)−
agent history info diffi(j − 1) j ∈ [1, t]

(3)

We use MCG block proposed in Multipath++[10] to
model the interaction between agents. The specific method
is to take out the agent info embedding of each agent and

perform MCG calculations with all other agents.

agent intention embeddingi = Concat(

agent info embeddingi,

MCG(agent info embeddingi,

agent info embeddingi),

) i ∈ [1, n]

(4)

The shape of agent intention embedding is (b, n, d2).
For the map features, we use MLP as polyline encoder

and use a MCG block to capture the interaction between the
trajectory and the map features.

roadgraph mcg embeddingi = MCG(

agent intention embeddingi,

MLP (road network embeddingi),

) i ∈ [1, n]

(5)

The shape of roadgraph mcg embedding is (b, n, d3).
Finally, we concatenate all three embeddings to obtain

the agent embedding.

agent embeddingi = Concat(

agent info embeddingi,

agent intention embeddingi,

roadgraph mcg embeddingi,

) i ∈ [1, n]

(6)

3.3. Decoder

In the Decoder, we discard the concept of anchor in
Multipath++[10] and map the agent embedding to 32 fu-
ture trajectories of each agent by multi-layer MLP, which
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Table 1: Detailed evaluation of our model on test set of
Waymo Open Motion Dataset

Metric Name Value

Realism meta-metric 0.4888
Linear Speed Likelihood 0.4318
Linear Acceleration Likelihood 0.2304
Angular Speed Likelihood 0.5149
Angular Acceleration Likelihood 0.4521
Distance To Nearest Object Likelihood 0.3440
Collision Likelihood 0.4198
Time To Collision Likelihood 0.8127
Distance To Road Edge Likelihood 0.6394
Offroad Likelihood 0.5830
minADE 2.0517

includes x, y, z and yaw of the agent at every timestamp.

Trajectory = MLP2(MLP1(agent embedding)

.reshape(b, n, 32, d4)).reshape(b, n, 32, 80, 4)
(7)

The role of MLP1 is to increase the dimensionality
of features in order to generate multimodal predictions,
the shape of MLP1 output is (b, n, 32 ∗ d4). The role
of MLP2 is to decrease feature dimensionality to map to
the corresponding trajectory, the shape of MLP2 output is
(b, n, 32, 80 ∗ 3).

The loss function incorporates the fused weights of the
minADE of both the trajectory’s coordinates and yaw.

Loss = mean
b,n

min
m

mean
k,t

(trajectory(k)− groudtruth(k))2

k ∈ [0, 3]

(8)

4. Experiments
4.1. Implementation Details

Architecture details. The default model is around 27MB
and is composed of encoder and decoder. In the encoder,
the road map is represented as polylines, where each poly-
line contains up to 5 map points. Each agent selects the 128
closest polylines from their current positions as map fea-
tures. For the features of agents, the hidden dimensions of
agents info embedding, agents intention embedding, road-
graph mcg embedding are 256, 128 and 128, respectively.
The dimension of final agent embedding is set to 512 to
get a large model capacity for such a largescale Waymo
Open Motion Dataset(WOMD). In the decoder, a three-
layer MLP is adopted with agent embedding and increases
the hidden dimension to 1024 which will be divided into

32 parts. After that, another three-layer MLP is adopted to
generate 32 multimodal future trajectories.
Training details. Our Joint-Multipath++ model is trained
end-to-end by Adam optimizer with a learning rate of
0.0001(no decay) and batch size of 128 scenes. We trained
the model with 200 epochs on one A100 GPU without any
data augmentation or model ensemble method. In the train-
ing and validation process, we select first 16 agents sorted
by the valid length of history trajectory. In the test process,
we select all 128 agents to predict their trajectories.

4.2. Results

Using the mapping data and history tracks from the pre-
vious second, 32 realistic future trajectories for each agent
present in the 8 seconds should be generated. Table 1 shows
the values of eleven metrics which evaluate the model’s per-
formance. Due to the joint generation of different agents’
trajectories, our model achieves excellent performance on
interactive metrics.
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