Joint-Multipath++ for Simulation Agents

Wenxi Wang Haotian Zhen

Abstract

The field of autonomous driving technology is experi-
encing rapid advancements, and simulation has emerged as
a critical tool for enhancing its robustness and scalability.
Otherwise, the simulation agents face challenges in gener-
ating intelligent reactions. To enhance the realism of the
simulator, we propose a solution named Joint-MultiPath++
ranked 2nd in the Waymo Sim Agents Challenge 2023. Our
source code is publicly available on GitHub'.

1. Introduction

Simulation has become crucial for advancing the devel-
opment of autonomous driving vehicles (ADVs). A sim-
plistic approach to simulation involves replaying the sensor
data captured by the ADV in the real world, making minor
software modifications, and observing the outcome of the
scenario. However, this approach presents inherent chal-
lenges, such as the lack of responsiveness of playback ob-
jects to ADV behavior changes. Consequently, simulation
agents are necessary to realistically react to our actions. In
this paper, we propose a solution named Joint-MultiPath++
which efficiently scores the 2nd on Waymo Sim Agents
Challenge 2023.

2. Related Work

To enhance the realism of trajectories in simulators, a
typical model comprises an encoder and a decoder. The
encoder is for encoding both the map information and the
historical trajectory data.

When it comes to map information, there are two
primary methods that are commonly used. The raster
method[1, 2, 6, 8, 9, 11] represents the world by creating
a series of images from a top-down perspective. It sim-
plifies the process as it combines different types of input
information, such as road configurations, agent state his-
tory, and spatial relationships, into a multi-channel image.
This input modality is naturally aligned with Convolutional
Neural Network (CNN) model inputs. Instead, the polyline

Ihttps://github.com/wangwenxi-handsome/Joint -
Multipathpp

method [4, 7, 10] presents a different approach for repre-
senting curves such as lanes, crosswalks, and boundaries. It
achieves this by breaking them down into smaller linear seg-
ments. This method is more efficient and concise because
road networks tend to have sparse characteristics.

The decoder is designed to accurately predict multi-
modal trajectories. This prediction process can be divided
into two approaches: one-by-one prediction and joint pre-
diction. One-by-one prediction[5, 10, 12] adopts the agent-
centric strategy and predicts each agent individually, with-
out taking into account the interactions among their future
trajectories. Recognizing the limitations of this method, we
have opted for the joint prediction approach[3], where we
simultaneously predict the trajectories of different agents,
capturing their interactions and dependencies. By employ-
ing the joint prediction method, we aim to enhance the ac-
curacy and comprehensiveness of our predictions.

3. Method

JointMultiPath++ means it is a joint prediction model.
The network structure is shown in Figure 1. In the original
version of Multipath++[10], the model inference can only
predict the future trajectory of one agent at a time, and there
is a serious drawback if we directly apply Multipath++[10]
to the Sim Agent Challenge: there is no interaction between
the corresponding modalities of each agent. In fact, due to
the concept of anchor in Multipath++[| 0], the mth modality
of each agent always converges to the same shape, which
leads to potential collision problems.

To address this point, we made corresponding modifi-
cations in the data preprocessing, encoder and decoder, so
that the model can obtain 32 future world distributions by
one inference.

3.1. Data preprocessing

We have made three adjustments to the data preprocess-
ing based on Multipath++[10]:

1. There is no distinction between the target agent and
other agents. In each scene, n agents are fixedly selected
for prediction. The agent selecting method includes only
selecting available agents, selecting agents sorted by avali-
able time and selecting all agents. And we use zero padding
when the number of seleted agents is less than n.

https://github.com/wangwenxi-handsome/Joint-Multipathpp
https://github.com/wangwenxi-handsome/Joint-Multipathpp

agent_history_info
pos, heading, speed, valid, type

I
] ¥ (]

agent_history_diff

[b,n, t-1,d] [o,n t,d+1t]

agent_history
[b. n, t, d]

ageni_history_and_timesta

)

o agent info_embedding

[b, n, d]

road_network_embedding
[b, n, s, d]

agent_intention_embedding roadgraph_mcg_embedding
[b, n. d] [b, n. d]

agent_embedding

[k, n, d]

Figure 1: The architecture of Joint-Multipath++ Encoder(Encoder only). Every MCG block is composed of three layers. b
is batch size which is equal to the number of scenes. n is the number of modeled agents, 7 is the history timestamp. s is
the polyline number for each agent. d is the hidden dimension of embeddings. Different embeddings have different hidden

dimensions. Please refer to 4.1 for default values.

2. Transform the coordinates and yaws of all agents into
the ADV’s coordinate frame(a scene-centric encoding).

3. For each agent, select the nearest s polylines from
their current positions as map features.

3.2. Encoder

Like Multipath++[1 0], the agent history encoder extracts
information in the time dimension in three ways, as follows:

agent_in fo_embedding; = Concat(
LST M, (agent_history_info;),
LST Ms(agent_history_info_dif f;), (1)
MCG (agent_history-info;),

) i€[l,n]

The shape of agent_history-info is (b,n,d).
agent_history_info; is defined as:

agent_history_info; = Concat(
Ti, Yiy 2iy Yaw;, speed;, width;, length;, valid, (2)
) i€[l,n]

And agent_history_info_dif f; is defined as:

agent_history_info-dif f;(j) =
agent_history_info dif fi(j)— 3)
agent_history_infodif f;(j —1) j € [1,t]

We use MCG block proposed in Multipath++[10] to
model the interaction between agents. The specific method
is to take out the agent_info_embedding of each agent and

perform MCG calculations with all other agents.

agent_intention_embedding; = Concat(
agent_info_embedding;,
MCG(agent_info_embedding;, (€))
agent_in fo_embedding;),
) i€[l,n]
The shape of agent_intention_embedding is (b, n, dz).
For the map features, we use MLP as polyline encoder

and use a MCG block to capture the interaction between the
trajectory and the map features.

roadgraph_-mcg_embedding; = MCG(
agent_intention_embedding;,

M LP(road_network_embedding;),
) i€l,n]

&)

The shape of roadgraph_mcg_embedding is (b, n, ds).
Finally, we concatenate all three embeddings to obtain
the agent_embedding.

agent_embedding; = Concat(
agent_in fo_embedding;,
agent_intention_embedding;, (6)
roadgraph_-mcg_embedding;,

) i€[l,n]

3.3. Decoder

In the Decoder, we discard the concept of anchor in
Multipath++[10] and map the agent_embedding to 32 fu-
ture trajectories of each agent by multi-layer MLP, which

Table 1: Detailed evaluation of our model on test set of
Waymo Open Motion Dataset

Metric Name Value
Realism meta-metric 0.4888
Linear Speed Likelihood 0.4318
Linear Acceleration Likelihood 0.2304
Angular Speed Likelihood 0.5149
Angular Acceleration Likelihood 0.4521
Distance To Nearest Object Likelihood 0.3440
Collision Likelihood 0.4198
Time To Collision Likelihood 0.8127
Distance To Road Edge Likelihood 0.6394
Offroad Likelihood 0.5830
minADE 2.0517

includes X, y, z and yaw of the agent at every timestamp.

Trajectory = M LPy(MLP;(agent_embedding) o
.reshape(b,n,32,dy,)).reshape(b, n, 32,80, 4)

The role of M LP; is to increase the dimensionality
of features in order to generate multimodal predictions,
the shape of M LP; output is (b,n,32 % d4). The role
of M LP; is to decrease feature dimensionality to map to
the corresponding trajectory, the shape of M LP; output is
(b,n,32,80 % 3).

The loss function incorporates the fused weights of the
minADE of both the trajectory’s coordinates and yaw.

Loss = meanmin mean (trajectory(k) — groudtruth(k))?

b,n m R

ke[0,3]
3

4. Experiments
4.1. Implementation Details

Architecture details. The default model is around 27MB
and is composed of encoder and decoder. In the encoder,
the road map is represented as polylines, where each poly-
line contains up to 5 map points. Each agent selects the 128
closest polylines from their current positions as map fea-
tures. For the features of agents, the hidden dimensions of
agents_info_embedding, agents_intention_embedding, road-
graph_mcg_embedding are 256, 128 and 128, respectively.
The dimension of final agent_embedding is set to 512 to
get a large model capacity for such a largescale Waymo
Open Motion Dataset(WOMD). In the decoder, a three-
layer MLP is adopted with agent embedding and increases
the hidden dimension to 1024 which will be divided into

32 parts. After that, another three-layer MLP is adopted to
generate 32 multimodal future trajectories.

Training details. Our Joint-Multipath++ model is trained
end-to-end by Adam optimizer with a learning rate of
0.0001(no decay) and batch size of 128 scenes. We trained
the model with 200 epochs on one A100 GPU without any
data augmentation or model ensemble method. In the train-
ing and validation process, we select first 16 agents sorted
by the valid length of history trajectory. In the test process,
we select all 128 agents to predict their trajectories.

4.2. Results

Using the mapping data and history tracks from the pre-
vious second, 32 realistic future trajectories for each agent
present in the 8 seconds should be generated. Table 1 shows
the values of eleven metrics which evaluate the model’s per-
formance. Due to the joint generation of different agents’
trajectories, our model achieves excellent performance on
interactive metrics.

References

[1] Sergio Casas, Wenjie Luo, and Raquel Urtasun. In-
tentnet: Learning to predict intention from raw sensor
data. In Conference on Robot Learning, pages 947—
956. PMLR, 2018. 1

[2] Yuning Chai, Benjamin Sapp, Mayank Bansal, and
Dragomir Anguelov. Multipath: Multiple probabilis-
tic anchor trajectory hypotheses for behavior predic-
tion. arXiv preprint arXiv:1910.05449, 2019. 1

[3] Hao Cheng, Mengmeng Liu, Lin Chen, Hell-
ward Broszio, Monika Sester, and Michael Ying
Yang. Gatraj: A graph-and attention-based multi-
agent trajectory prediction model. arXiv preprint
arXiv:2209.07857,2022. 1

[4] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen,
Dragomir Anguelov, Congcong Li, and Cordelia
Schmid. Vectornet: Encoding hd maps and agent dy-
namics from vectorized representation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1152511533, 2020. 1

[5] Junru Gu, Chen Sun, and Hang Zhao. Densetnt: End-
to-end trajectory prediction from dense goal sets. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 15303-15312, 2021.
1

[6] Joey Hong, Benjamin Sapp, and James Philbin. Rules
of the road: Predicting driving behavior with a convo-
lutional model of semantic interactions. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8454-8462, 2019. 1

[7] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie
Liao, Song Feng, and Raquel Urtasun. Learning lane
graph representations for motion forecasting. In Com-

(8]

(9]

(10]

(11]

(12]

puter Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part
11 16, pages 541-556. Springer, 2020. 1

Francesco Marchetti, Federico Becattini, Lorenzo Sei-
denari, and Alberto Del Bimbo. Mantra: Memory
augmented networks for multiple trajectory predic-
tion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 7143—
7152, 2020. 1

Charlie Tang and Russ R Salakhutdinov. Multiple fu-
tures prediction. Advances in neural information pro-
cessing systems, 32,2019. 1

Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Sri-
vastava, Khaled S Refaat, Nigamaa Nayakanti, Andre
Cornman, Kan Chen, Bertrand Douillard, Chi Pang
Lam, Dragomir Anguelov, et al. Multipath++: Ef-
ficient information fusion and trajectory aggregation
for behavior prediction. In 2022 International Con-
ference on Robotics and Automation (ICRA), pages
7814-7821. IEEE, 2022. 1,2

Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat,
Bin Yang, Sergio Casas, and Raquel Urtasun. End-to-
end interpretable neural motion planner. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8660-8669, 2019. 1
Hang Zhao, Jiyang Gao, Tian Lan, Chen Sun, Ben
Sapp, Balakrishnan Varadarajan, Yue Shen, Yi Shen,
Yuning Chai, Cordelia Schmid, et al. Tnt: Target-
driven trajectory prediction. In Conference on Robot
Learning, pages 895-904. PMLR, 2021. 1

