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Abstract
In this technical report, we detail our first-place solu-

tion for the 2024 Waymo Open Dataset Challenge’s seman-
tic segmentation track. We significantly enhanced the per-
formance of Point Transformer V3 on the Waymo bench-
mark by implementing cutting-edge, plug-and-play training
and inference technologies. Notably, our advanced version,
Point Transformer V3 Extreme, leverages multi-frame train-
ing and a no-clipping-point policy, achieving substantial
gains over the original PTv3 performance. Additionally,
employing a straightforward model ensemble strategy fur-
ther boosted our results. This approach secured us the top
position on the Waymo Open Dataset semantic segmenta-
tion leaderboard, markedly outperforming other entries.

1. Introduction

In recent years, the Waymo Open Dataset Challenge [12]
has emerged as a premier arena for showcasing advance-
ments in autonomous driving technologies. The 2024 it-
eration of this challenge continued to push the boundaries
of what is achievable in 3D perception, leveraging the rich
and diverse data provided by Waymo. The Waymo Open
Dataset is characterized by its high-resolution LiDAR scans
and comprehensive annotations, making it ideal for devel-
oping and testing cutting-edge 3D perception algorithms.
This technical report presents our winning entry for the
2024 Waymo Open Dataset Challenges semantic segmen-
tation track. Our approach builds upon the foundation of
the Point Transformer V3 (PTv3) [15], known for its ro-
bustness and efficiency in handling point cloud data. We
optimized PTv3 for the specific challenges posed by the
Waymo dataset, implementing several plug-and-play train-
ing and inference technologies that significantly enhance
performance.

Key to our strategy was the implementation of multi-
frame training, which incorporates data from two previous
frames to enrich the perception of current LiDAR frames.

Original Extreme

Config Value Config Value

optimizer AdamW optimizer AdamW
scheduler Cosine scheduler Cosine
criteria CrossEntropy (1) criteria CrossEntropy (1)

Lovasz [1] (1) Lovasz [1] (1)
learning rate 2e-3 learning rate 2e-3
block lr scaler 1e-1 block lr scaler 1e-1
weight decay 5e-3 weight decay 5e-3
batch size 12 batch size 12
datasets Waymo datasets Waymo
warmup epochs 2 warmup epochs 2
epochs 50 epochs 50
frames [0] frames [0, -1, -2]
model ensemble × model ensemble ✓

Table 1. Training settings.

Augmentations Parameters Original Extreme

random rotate axis: z, angle: [-1, 1], p: 0.5 ✓ ✓
point clip range: [-75.2, -75.2, -4, 75.2, 75.2, 2] ✓ ×
random scale scale: [0.9, 1.1] ✓ ✓
random flip p: 0.5 ✓ ✓
random jitter sigma: 0.005, clip: 0.02 ✓ ✓
grid sampling grid size: 0.05 ✓ ✓

Table 2. Data augmentations.
This technique, combined with a no-clipping-point pol-
icy that avoids discarding data points outside a specified
range, provided a deeper insight into the spatial and tem-
poral aspects of the dataset. This enhanced version, termed
Point Transformer V3 Extreme, achieved substantial per-
formance improvements over the original PTv3 metrics re-
ported in earlier works. Furthermore, by incorporating a
simple yet effective model ensemble strategy, we were able
to achieve unprecedented accuracy, securing the first-place
position on the semantic segmentation leaderboard. The de-
tailed parameter settings are presented in Tab. 1 and Tab. 2.
Our methods outperformed other competitive entries by re-
markable margins, demonstrating the potential of advanced
transformer architectures in complex, real-world environ-
ments like those represented in the Waymo Open Dataset.
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Figure 1. Overview of Point Transformer V3 (PTv3). Compared to its predecessor, PTv2 [14], our PTv3 shows superiority in the
following aspects: 1. Stronger performance. PTv3 achieves state-of-the-art results across a variety of indoor and outdoor 3D perception
tasks. 2. Wider receptive field. Benefit from the simplicity and efficiency, PTv3 expands the receptive field from 16 to 1024 points.
3. Faster speed. PTv3 significantly increases processing speed, making it suitable for latency-sensitive applications. 4. Lower Memory
Consumption. PTv3 reduces memory usage, enhancing accessibility for broader situations.

2. Point Transformer V3 Extreme
This section first has a revisit of the Point Transformer V3 in
Sec. 2.1. After that, we go through the details of additional
training technologies in Sec. 2.2. The detailed parameter
settings are presented in Tab. 1 and Tab. 2.

2.1. Revisit Point Transformer V3

Scaling principle. Enhanced with large-scale pre-training,
SparseUNet [2] surpasses Point Transformers [14, 17] in
accuracy while remaining efficient. Yet, Point Transform-
ers fails to scale up due to limitations in efficiency, which
inspired the hypothesis that model performance is more sig-
nificantly influenced by scale than by complex design de-
tails. Backbone design should prioritize simplicity and effi-
ciency over the accuracy of certain mechanisms. Efficiency
enables scalability, which further brings a stronger accu-
racy.
Breaking the curse of permutation invariance Classi-
cal point cloud transformers build upon point-based back-
bones [10, 11], which treat point clouds as unstructured
data and rely on neighboring query algorithms like the k-
nearest neighbor (kNN). Yet kNN is extremely inefficient
due to the difficulty in parallelization, which further raises
the question of whether we really need the accurate neigh-
bours queried by kNN. Considering that attention is adap-
tive to kernel shape, it is worth trading the accurate spa-
tial proximity for additional scalability. Inspired by Oct-
Former [13] and FlatFormer [9], PTv3 abandoned the un-
structured nature of the point cloud, exploring a strategy to
turn unstructured sparse data into structured 1D data as lan-
guage tokens while preserving necessary spatial proximity
to attention.
Serialization & attention. Space-filling curves are paths
that traverse every point within a high-dimensional discrete

(a) Reordering

(b) Padding

Figure 2. Patch grouping. (a) Reordering point cloud accord-
ing to order derived from a specific serialization pattern. (b)
Padding point cloud sequence by borrowing points from neighbor-
ing patches to ensure it is divisible by the designated patch size.

(a) Standard

(b) Shift Order (c) Shuffle Order

shuffle

attn attn attn attn attn attn attn attn

Figure 3. Patch interaction. (a) Standard patch grouping with a
regular, non-shifted arrangement; (d) Shift Order where different
serialization patterns are cyclically assigned to successive atten-
tion layers; (d) Shuffle Order, where the sequence of serialization
patterns is randomized before being fed to attention layers.

space, preserving spatial proximity to a certain extent. The
serialization of point clouds involves sorting points accord-
ing to the traversal order defined by a specific space-filling
curve. This ordering effectively rearranges the points in a
way that respects the spatial organization dictated by the
curve, ensuring that neighboring points in the data struc-
ture are also spatially close. By reordering point clouds
through serialization and incorporating necessary padding
operations, the unordered point cloud is transformed into
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Figure 4. Overall architecture.
a structured format (see Fig. 2). Consequently, attention
mechanisms optimized for structured data can be effectively
applied to these serialized point clouds. To optimize per-
formance across various benchmarks, PTv3 employs both
local attention [8] and flash attention [4, 5]. For local at-
tention, PTv3 facilitates patch interaction by utilizing var-
ious serialization patterns across different attention layers
(see Fig. 3). Additionally, PTv3 adopts a sparse convolution
layer, prepended with a skip connection, as conditional po-
sitional encoding [3, 13], named xCPE. The overall model
architecture is visualized in Fig. 4.

2.2. Training Technologies

Multi-frame training. Perceiving distant ranges in a Li-
DAR point cloud, far from the center, is challenging due
to insufficient sampling. An intuitive solution is to con-
catenate past LiDAR frames with the current frame after a
coordinate alignment to supplement the less-sampled areas
(see Fig. 5). Specifically, we incorporate two past labelled
frames as additional references during both our training and
inference processes, utilizing all of them for supervision
during training for convenience.
Non-clipping proxy. However, merely enabling multi-
frame training does not automatically result in significant
enhancements for perception tasks. We have found that
the full potential of multi-frame training is unlocked only
when it is combined with a non-clipping strategy. Tra-
ditionally, clipping points to a specific range, such as [-
75.2, -75.2, -4, 75.2, 75.2, 2] for the Waymo Open Dataset,
was a necessary preprocessing step for perception tasks in
outdoor scenarios. This was largely because the percep-
tion systems [6, 7, 16] for autonomous driving, which of-
ten rely on submanifold sparse convolution, struggle to ef-
fectively incorporate isolated points that frequently occur
at distant ranges in open-space LiDAR point clouds. Un-
like these systems, PTv3, which organizes point clouds into
a structured 1D array, does not suffer from this disadvan-
tage. Without the limitations imposed by a clipping proxy,
PTv3 effectively leverages additional information from past
frames, which significantly enhances the semantic segmen-
tation mIoU on the Waymo Open Dataset validation split
from 72.1% to 74.8%.
Model ensemble. One technique that consistently boosts
model performance is model ensembling. In our approach,
we independently train three PTv3 models and combine

(a) Single Frame

(b) Multiple Frames

Figure 5. Visualization of Multi-frames Concatenation.

Sem. Seg. PTv3 [15] PTv3-EX

val test val test
Model Ensemble - ✓ - ✓
Params. 46.2M 46.2M×3 46.2M 46.2M×3
Training Latency 245ms 245ms×3 482ms 482ms×3
Inference Latency 132ms 132ms×3 253ms 253ms×3

Car 0.9447 0.9571 0.9463 0.9662
Truck 0.6207 0.6793 0.6283 0.7397
Bus 0.8665 0.7482 0.8920 0.7792
Other Vehicle 0.3582 0.3654 0.4857 0.3681
Motorcyclist 0.1630 0.0000 0.3946 0.1514
Bicyclist 0.7878 0.9010 0.8030 0.9203
Pedestrian 0.9120 0.9264 0.9162 0.9372
Sign 0.7235 0.7404 0.7664 0.7502
Traffic Light 0.3607 0.3373 0.4276 0.3465
Pole 0.7778 0.8157 0.8036 0.8254
Construction Cone 0.7562 0.6690 0.7405 0.6693
Bicycle 0.7821 0.6851 0.7772 0.7226
Motorcycle 0.9034 0.8070 0.9154 0.8263
Building 0.9606 0.9736 0.9636 0.9751
Vegetation 0.9189 0.8812 0.9242 0.8901
Tree Trunk 0.6860 0.7500 0.7069 0.7575
Curb 0.7152 0.7520 0.7226 0.7648
Road 0.9348 0.9306 0.9368 0.9330
Lane Marker 0.5712 0.4967 0.5726 0.5111
Other Ground 0.5206 0.5255 0.5248 0.5414
Walkable 0.8167 0.7357 0.8196 0.7538
Sidewalk 0.7872 0.8733 0.7891 0.8788

mIoU 0.7213 0.7068 0.7480 0.7276

Table 3. Results on Waymo Open Dataset. Latency and memory
usage were assessed on a single RTX 4090 GPU, with the batch
size fixed at 1 and models are trained with 4 NVIDIA a100 GPUs.

their predicted logits to form our final submission. It’s im-
portant to note that we discourage using this technique for
performance comparisons, especially on the validation split,
as it can lead to unfair comparisons. We have limited the
use of this technology to the Waymo Challenge test split.
We also advise future researchers to refrain from using this
technique for validation comparisons.
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3. Conclusion
Enhanced with multi-frame training, a non-clipping strat-
egy, and model ensembling, we have significantly extended
the capabilities of Point Transformer V3. Specifically, on
the Waymo Open Dataset, the validation mIoU increased
from 72.1% to 74.8%, and the test mIoU rose from 70.7%
to 72.8% (details provided in Tab. 3). We hope these tech-
nologies and results will inspire future research.
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