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Abstract

In this technical study, we introduce VFusedSeg3D, an innovative multi-
modal fusion system created by the VisionRD team that combines camera
and LiDAR data to significantly enhance the accuracy of 3D perception.
VFusedSeg3D uses the rich semantic content of the camera pictures and
the accurate depth sensing of LiDAR to generate a strong and compre-
hensive environmental understanding, addressing the constraints inherent
in each modality. Through a carefully thought-out network architecture
that aligns and merges these information at different stages, our novel
feature fusion technique combines geometric features from LiDAR point
clouds with semantic features from camera images. With the use of multi-
modality techniques, performance has significantly improved, yielding a
state-of-the-art mloU of 72.46% on the validation set as opposed to the prior
70.51%.VFusedSeg3D sets a new benchmark in 3D segmentation accuracy,
making it an ideal solution for applications requiring precise environmental
perception.

1 Introduction

vFusedSeg3D is a multi-model architecture that used both lidar point cloud and camera
images to fuse features and output enhanced feature map that can be used to predict
segmentation maps. Our work is inspired by [Li et al.|[2023]], that also uses multimudalities
to fuse camera and lidar features.

2 Architecture

Our architecture uses dual-modal feature extraction to take advantage of the capabilities of
both image and LiDAR data, resulting in robust feature representation.

The architecture consists of two parallel feature extraction streams. We utilized DLLA34,
Yu et al.[[2018]] as the image side backbone for feature extraction due to its hierarchical
feature aggregation and multiple levels of residual blocks for multi scale feature extraction.
The Waymo Open Dataset sample includes a point cloud with 64 beams and 5 RGB camera
images from the following viewpoints: front, front-left, front-right, side-left, and side-right.
These 5 images are utilized in their entirety. After resizing for model input, the images have
a resolution of 960x640 (width x height).
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Figure 1: vFusedSeg3d architecture

The image encoder generates feature maps with dimensions of 16, 32, 64, 128, 256, and
512 feature channels. To facilitate detailed image feature extraction, a simple DLAup (Deep
Layer Aggregation upsampling) module is employed as the neck of the image-side feature
extraction. This module leverages residual connections to enhance the feature maps. This
map is critical for subsequent fusion operations because this enable comprehensive scene
knowledge by combining image-based information.

We used Point Transform v3 (PTv3),(Wu et al.|[2024] as the key feature extraction backbone
on the LiDAR side. PTv3 is useful in processing 3D point cloud data, extracting spatial
features that encapsulate the geometric complexities of the environment.
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Figure 2: Lidar and camera feature fusion: Geometric Feature Fusion Module and Semantic
Feature Fusion Modules as designed by |Li et al.| [2023]] but with some modifications

Following feature extraction as shown in , both image and LiDAR feature maps go through
a fusion process to combine semantic and geometric data. The fusion process is based on a
modified version of MSeg3D’s feature fusion module that was designed specifically for this
architecture. Point-wise LIDAR features and point-wise camera features are concatenated
together subsequent learnable fusion using a Geometry-based Feature Fusion Module
(GFFM) resulting out geometric fused features. Lidar and Camera features are aggregated
using there respectiv Semantic Feature Aggregation Module (SFAM). Instead of voxel
Features as used by MSeg3d, we utilized point-wise lidar features to be aggregated using
LIDAR SFAM. These aggregated features are used as the input of the the Semantic Feature
Fusion Module (SFFM), which has been significantly improved, with new layers added to
optimise the integration of semantic cues across modalities. This modified fusion technique



allows for a more precise and detailed interpretation of the combined data, resulting in better
performance in the following analytical tasks.

3 Training Strategy

Due to computational resource constraints, we trained the model sequentially and in seg-
ments. We initially approached this difficulty by training the LiDAR and image feature
extraction components separately. This method allowed us to focus resources effectively,
ensuring that each component was optimized to its full potential without overwhelming our
hardware capabilities.

For the LiDAR (lidarBase) side, we trained the PTv3 model for 45 epochs with a batch
size of 2. The training process spanned approximately 6 to 7 days, culminating in a highest
achievable accuracy of 70.51% mloU. In the original paper by |Wu et al.| [2024]], the reported
accuracy is around 71.3% mloU.

The observed decrease in accuracy is primarily attributable to differences in grid sampling
resolution and low batch size. The original study employed a finer grid sampling of 0.05
and batch size of 12 with multi-GPU training, whereas we used a coarser grid sampling
of 0.1, due to limitations in our computational resources, and batch size of 2 with single
GPU. Increasing the grid resolution beyond this value resulted in Out of Memory (OOM)
errors, thus constraining our ability to achieve the higher accuracy reported in the original
paper.Image side was trained for 10 epochs with batch size of 8.

Once the individual LIDAR and image models were trained and their parameters fine-tuned,
we froze these models to conserve resources. This freezing process prevented any further
modifications to the weights of the feature extraction models during the subsequent training
phases, thereby reducing the computational load. This fusion model was trained for 25
epochs with batch size of 2. We did not use mini-batching for gradient accumulation,
although it is a good idea, but due to time limitation for more experimentation, we trained
our models on 2 batch size.

Subsequently, we directed our resources towards training the fusion model, which inte-
grates the pre-trained and frozen image and LiDAR feature maps. This staged training
approach not only addressed our resource limitations but also ensured that the integration
layer—responsible for merging semantic and geometric features—received the dedicated
attention needed for effective learning.

By compartmentalizing the training process in this manner, we managed to circumvent the
limitations imposed by our hardware resources, allowing each part of the network to be
meticulously trained and thereby enhancing the overall performance and efficiency of the
model. This structured training strategy proved crucial in developing a robust multi-modal
fusion system capable of high-accuracy performance in real-world applications.

Model mloU (%)
Our LidarBase 70.51
PTv3|Wu et al.|[2024] 71.3
vFusedSeg3D 72.46

Table 1: Model Performance and mloU



4 Final Results on VAL set

As demonstrated in Table[I] the model performance metrics are summarized based on their
mean Intersection over Union (mIoU) percentages.

5 Training Hyper parameters

Training parameters used for model training are given in the Table 2]

Parameter

Value

Augmentations

Lidar Side: Global rotation around the Z-axis
([-7/4,+7/4]), Global translation (Az, Ay, Az with
N(0,0.5)), Global scaling ([0.95, 1.05]).

Image Side: Scaling ([1.0, 1.5]), Horizontal rotation
([—1°,1°]), Random cropping (size H;,, W;,), Color jitter
(brightness, contrast, saturation, hue with parameters 0.3,
0.3, 0.3, 0.1), JPEG compression ratio ([30, 70] with proba-
bility 0.5).

Image mean/std

mean = [0.40789654, 0.44719302, 0.47026115], std =
[0.28863828, 0.27408164, 0.27809835]

Lidar enc Input
Features

5 (X, y, z, intensity, elongation)

Point Cloud Seri-
alization

["z", "z-trans", "hilbert", "hilbert-trans"]

Lidar Enc: (32, 64, 128, 256, 512)
Lidar Dec: (64, 64, 128, 256)

Channels Image Enc: (32, 64, 128, 256, 512)
Image Neck: (32, 64, 128, 256)
Point Cloud (-75.2,-75.2,-4,75.2,75.2,2)
Range
Image Size (960, 640) (width, height)
Optimizer AdamW
Scheduler Cosine
Criteria CrossEntropy, Lovasz
Learning Rates g[l?)icnkllll;:;ggejs
Weight Decay S5e-2
Batch Size 2
Epochs 50
Table 2: Training Hyperparameters for vFusedSeg3D



6 Test Time Augmentations (TTA)

We only utilized Test Time Augmentations on lidar point clouds to boost our accuracies as
mentioned on Table 3]

Augmentation Description

Global Scaling (7scare) A random scaling factor in [0.95, 1.05].

Random Flipping (73;,) ~ Random flipping along the X, Y axis.

Global Rotation (7;or) Rotation around the Z axis with a random angle in [— %, +%].
Global Translation (7ya,) Translation with a random vector (Ax, Ay, Az).

Table 3: Test Time Augmentations (TTAs)

7 Experimental Setup

All experiments and training sessions were conducted on a single NVIDIA RTX 3090
graphics card, equipped with 24GB of VRAM. The GPU was paired with 32GB of CPU
RAM.
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