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Abstract

In this report, we present the winning solution, named
MTR v3, for the Waymo Open Dataset Motion Prediction
Challenge 2024. The proposed MTR v3 builds upon MTR++
and offers improvement in two aspects: (1) we incorporate
raw lidar data to provide fine-grained semantic informa-
tion for motion prediction; and (2) we utilize evolving and
distinct anchors to promote model’s regression capability.
In addition, a simple model ensemble technique is adopted
to further boost the final performance. MTR v3 reaches a
soft mAP of 0.4967 and ranks 1st place in the challenge,
outperforming other methods with remarkable margins.

1. Introduction
Motion prediction, which refers to estimating agents’

future trajectories based on historical tracks and HD maps,
is a fundamental task in the field of autonomous driving.
In recent years, motion prediction has attracted extensive
attention [4, 5, 7, 9, 11, 17] as it is vital for robotic vehicles to
make safe decisions. Among existing research, MTR [8, 13–
15] series have achieved remarkable success. They employ
an encoder network for scene context encoding, paired with
a decoder network that generates multimodal trajectories
from a set of intention queries which are initialized from
predefined anchors.

Our solution, MTR v3, is an extension of MTR++ [14],
a cutting-edge motion prediction framework, and improves
with the incorporation of raw lidar data in scene encoding
and the evolution of intention queries in trajectory decoding.
Specifically, we introduce a lidar encoder to capture essential
scene context information, such as vegetation and buildings,
which are often missing in HD maps yet crucial for predict-
ing pedestrian motion. Additionally, vanilla MTR++ suffers
from high regression errors due to the sparsity of anchors.
To mitigate this issue, we employ evolving and distinct an-
chors in [8] to adaptively update anchors based on specific
scenes. Leveraging these techniques, our solution achieves

†: corresponding author.

0.4593 soft mAP on the validation set with a single model.
By applying a model ensemble strategy, we further boost the
performance to 0.4967 soft mAP on the test set, placing 1st
in the motion prediction track of 2024 Waymo Open Dataset
Challenges.

2. Method

The overall architecture of our approach is illustrated
in Fig 1. Our proposed solution builds upon MTR++ [14].
To augment the 3D context information, we integrate lidar
point clouds into the scene context encoder layer (described
in Sec 2.1). The agents dynamically collect relative point
features based on their motion modes, as detailed in Section
2.2. Finally, we outline the ensemble technique used in our
study (see Sec 2.3).

2.1. Model Design

Our solution, MTR v3, evolves from MTR++, a state-of-
the-art motion prediction method. Given past states of agents,
road maps, and raw lidar points, an encoder network encodes
scene context and generates multimodal scene tokens. Then
a motion decoder network is adopted to predict multimodal
future trajectories.
Scene Encoder Network. The historical agent’s states are
denoted as SA ∈ RNa×Th×Ca , where Na is the number of
agents, Th is the length of the historical observations, and
Ca is the feature dimension. The road maps are transformed
into polylines and represented as SM ∈ RNm×n×Cm , where
Nm denotes the number of polylines, n indicates the number
of points in each polyline, and Cm is the feature dimension
associated with each point along the polyline. Following
MTR++, both SA and SM are normalized to their local coor-
dinate systems and encoded using a PointNet-like [12] poly-
line encoder, producing the agent feature A ∈ RNa×D and
map feature M ∈ RNm×D. Subsequently, a simple trans-
former encoder network, composed of a set of query-centric
local self-attention layers, is adopted to aggregate features
from concatenated tokens FAM = [A,M ] ∈ R(Na+Nm)×D,

1



Polyline
Encoder

Polyline
Encoder

Agent
History

Road
Graph

...
...

Query-Centric
Scene-Encoder

x M

Scene
Lidar

Lidar
Encoder

...
...

Pool  ...

... ... ...

Trajectory-Aware Future Interaction

Transformer Decoder Layer

... ... ...

Prediction
H

ead

x N

Intention Queries
for Multiple Agents

Mutually-Guided Intention Querying

Motion Decoder NetworkScene Encoder Network

Polyline
Encoder

Polyline
Encoder

Agent
History

Road
Graph

...
...

Query-Centric
Scene-Encoder

x M

Scene
Lidar

Lidar
Encoder

...
...

Pool  ...

... ... ...

Transformer Decoder Layer

... ... ...
Prediction

H
ead

x N

Intention Queries
for Multiple Agents

Mutually-Guided Intention Querying

Motion Decoder NetworkScene Encoder Network

Figure 1. An overview of our proposed MTR v3 framework. Multimodel inputs are fed into an encoder network to extract
scene tokens. Then, a decoder network is used to generate motion prediction of multiple agents.

which can be formulated as follows:

Q = [FAM[i],PE (RAM[i, i])] ,

K = {[FAM[j],PE (RAM[i, j])]}j∈Ω(i) ,

V = {FAM[j] + PE (RAM[i, j])}j∈Ω(i)

F ′
AM[i] = MHSA(Q,K,V),

(1)

where Ω(i) indicates the operation that retrieves index set
of the k neighborhoods of the i-th token and RAM[i, j] sig-
nifies the relative position and direction of the j-th token
in the local coordinate system centered on the i-th token.
PE(·) represents sinusoidal positional encoding function and
MHSA(·, ·, ·) denotes multi-head self-attention layer [18].

In order to supplement context information that may be
absent in the agent tracks or the road maps, we incorporate
point cloud data P ∈ RNp×Cp collected at the current time
to provide a more detailed understanding of the environ-
ment. Specifically, we first normalize point data according
to the positions and headings of No focal agents, yielding
{P (i) ∈ RN(i)

p ×Cp}No
i=1. Then a lidar segmentation network

is employed to extract voxel features and generate semantic
label of each voxel. Following [3], the one-hot encoded la-
bels and voxel positions are concatenated with the extracted
features, resulting in an enriched voxel feature representa-
tion Pv = {P (i)

v ∈ RCv×H×W×Z}No
i=1, where H , W , Z are

spatial resolution of voxel space and Cv is the feature di-
mension after concatenation. Furthermore, Pv is pooled into
BEV space and encoded through a multi-layer perceptron as
follows:

L(i) = MLP(AvgPool(P (i)
v )), (2)

where L(i) ∈ RN
(i)
l ×D indicates N

(i)
l non-empty lidar to-

kens.
Motion Decoder Network. In adherence to the core designs
of MTR++, we derive intention queries of each focal agent
from K intention points (i.e. anchors), which are generated

by utilizing the k-means clustering algorithm on the end-
points of ground truth trajectories. Given intention queries,
we stack a set of decoder layers to aggregate context fea-
tures from the encoded scene context features. Concretely, a
mutually-guided intention querying module is used to model
the interaction among intention queries, which are then up-
dated through three separate cross-attention modules for
aggregating information from A, M , and L, respectively.
Moreover, we employ dense predictions of all agents to
identify interactive agents for each focal agent, primarily
focusing on them to encode scene-compliant information.
After each decoder layer, we apply a simple prediction head
with several MLP layers on refined queries to predict multi-
modal future trajectories, which is represented by Gaussian
Mixture Model [1, 14].

Similar to MTR++, the training loss of our framework is a
weighted combination of a classification loss on predicted in-
tention probabilities, a GMM regression loss on trajectories
of positive intention queries, and an auxiliary loss derived
from dense predictions of all agents. MTR++ uses a hard-
assignment strategy that chooses positive queries closest to
the endpoints of ground truth trajectories, which tends to
limit the regression capability of the model. To tackle this
issue, we adopt the evolving and distinct anchors in EDA [8],
where positive intention queries are dynamically selected
based on the endpoints of predicted trajectories and updated
as the predictions evolve.

2.2. Motion-Guided Lidar Search

To reduce the computational burden, we follow [3] to
employ the motion-guided lidar search to gather spatially
and temporally aligned lidar tokens. For each focal agent,
we choose its latest position and the future location projected
from its current velocity as search targets. Then Ñl nearest
lidar tokens are collected and inputted into decoder network
for extracting meaningful lidar context.
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Methods Soft mAP ↑ mAP ↑ minADE ↓ minFDE ↓ Miss Rate ↓
MTR v3 1st (Ours) 0.4967 0.4859 0.5554 1.1062 0.1098
ModelSeq 2nd 0.4737 0.4665 0.5680 1.1766 0.1204
RMP Ensemble 3rd 0.4726 0.4553 0.5596 1.1272 0.1113
BeTop 0.4698 0.4587 0.5716 1.1668 0.1176
BehaveOcc 0.4678 0.4556 0.5723 1.1668 0.1176
QMTR 0.4649 0.4445 0.5702 1.1627 0.1177
QMTR-V2 0.4646 0.4441 0.5700 1.1621 0.1174
EDA 0.4596 0.4487 0.5718 1.1702 0.1169
RMP 0.4572 0.4423 0.5695 1.1658 0.1160
ControlMTR 0.4572 0.4414 0.5897 1.1916 0.1282

Table 1. Waymo Open Dataset Motion Prediction Challenge leaderboard. Top 10 entries are presented and the soft mAP is the
primary ranking metric.

Setting Category mAP ↑ minADE ↓ minFDE ↓ Miss Rate ↓
Vehicle 0.4702 0.7500 1.4822 0.1447

Pedestrian 0.4891 0.3489 0.7263 0.0711
Cyclist 0.3555 0.7106 1.4322 0.1853MTR ++

Avg 0.4382 0.6031 1.2135 0.1337

Vehicle 0.4819 0.6884 1.3830 0.1149
Pedestrian 0.5168 0.3351 0.6898 0.0612

Cyclist 0.3792 0.7139 1.4700 0.1764MTR v3

Avg 0.4593 0.5791 1.1809 0.1175

Vehicle 0.5141 0.6726 1.3210 0.1155
Pedestrian 0.5196 0.3309 0.6816 0.0602

Cyclist 0.4295 0.6582 1.3096 0.0811
MTR v3

(Ensemble)
Avg 0.4877 0.5539 1.1041 0.1097

Table 2. Per-class performance on the validation set of Waymo Open Motion Dataset.

2.3. Model Ensemble

In order to further enhance the performance, we train
Ne variants of our framework and adopt model ensemble
strategy in inference. Each model outputs 6 predicted tra-
jectories, which yields 6Ne results for each agent. After
combination, we apply non-maximum-suppression (NMS)
on them to select top 6 predictions.

3. Experiments
3.1. Implementation Details

Network Details. We build the MTR v3 framework with
6 encoder modules and 6 decoder modules. The hidden
feature dimension D is established at 256 and 16 neighbors
are gathered in the encoder’s local self-attention. As for
the lidar encoder, we use off-the-shelf lidar segmentation
network MSeg3D [6], which is pre-trained on Waymo Open

Dataset [16] and is frozen throughout our training process.
We downsample the voxel feature using average pooling
with a stride of (16, 16, 32), resulting in lidar tokens with a
grid size of (1.6m, 1.6m, 6m).

For the decoder modules, the number of intention points
is set as K = 64 and we collect 192 lidar tokens for local
context enhancement. The anchors evolve twice, specifically
at layers 2 and 4. During testing, for each agent, NMS based
on the distances between endpoints is adopted to select top
6 predictions from 64 predicted trajectories. The distance
threshold is held as 2.5m.

Training details. Our model is trained end-to-end on 8 Tesla
A100 GPUs for 30 epochs with an initial learning rate of
0.0001, a weight decay of 0.01, and a batch size of 80. We
use AdamW [10] optimizer with one cycle policy, which
decays the learning rate by a factor of 0.5 every 2 epochs
from epoch 20. Data augmentation strategies like random
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scene crop and random scene scale are included during the
training. All models submitted to leaderboard are trained on
training set of Waymo Open Motion Dataset (WOMD) [2].

3.2. Main Results

Top 10 results of 2024 Waymo Open Dataset Motion Pre-
diction challenge are summarized in Table 1. Our approach
ranks 1st on the leaderboard and reaches 0.4967 in terms of
soft mAP, surpassing all other submissions by 2.30%. MTR
v3 also achieves state-of-the-art performance on mAP, min
ADE, min FDE, and the miss rate. Besides, in Table 2, we
reported our single-model results and the model ensemble
results on the validation set. Notably, it achieves a +2.77%
improvement in mAP of pedestrian.

4. Conclusion
In this technical report, we present MTR v3, which lever-

ages raw LiDAR data to enhance scene context features,
thereby facilitating the motion prediction of pedestrians. In
addition, we incorporate dynamically updating anchors to
further enhance the model’s regression performance.
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