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Abstract

This technical report presents a brand-new framework
for multimodal motion prediction. The framework is based
on sequential mode modeling, where trajectory modes are
decoded sequentially utilizing an RNN-style Transformer
module. We also propose the Early-Match-Take-All (EMTA)
loss, a customized training strategy for sequential mode
modeling, to tackle the challenge of lacking multimodal
ground truth. Our approach achieves state-of-the-art re-
sults on the 2024 Waymo Open Motion Prediction Bench-
mark, ranking second on the leaderboard.

1. Introduction
Motion prediction is a critical task for autonomous driv-

ing. To anticipate multimodal future behavior of traf-
fic agents, existing approaches employ a parallel decod-
ing module (e.g., a DETR-like decoder [1, 6, 7, 10]) and
the Winner-Take-All (WTA) training strategy [3]. However,
such a paradigm leads to predicted trajectories with limited
diversity. Take the DETR-like trajectory decoding module
as an example. Unlike in object detection, where each ob-
ject query can receive training signals via optimal bipartite
matching, we have only one ground-truth future in the mo-
tion data, only being able to optimize one predicted trajec-
tory per agent. As a result, the diversity of trajectory modes
cannot be guaranteed even if we perform message pass-
ing among modes in the decoder. To improve the perfor-
mance of mAP and Soft mAP, which requires predicting di-
verse multimodal trajectories, top-performing solutions on
the Waymo Open Motion Prediction Benchmark [2] rely on
dense mode prediction with a post-processing step of non-
maximum suppression (NMS) [6, 7], which is not elegant.

In this technical report, we propose ModeSeq, an inter-
esting (but probably not practical) method for multimodal
motion prediction: no anchors, no NMS, no dense mode
prediction, no auxiliary training tasks, just purely end-to-
end learning. Our framework applies RNN-style modules to
the mode dimension and performs sequential mode decod-
ing, which can explicitly model the relationship between

modes leveraging the inductive bias of RNNs. Similar
ideas can be traced back almost ten years ago for achiev-
ing NMS-free object detection [9]. To make RNNs great
again, we modernize RNNs with the Transformer architec-
ture and derive a Memory Transformer module. To tackle
the unique challenge in motion prediction that only one tra-
jectory mode is available in the ground truth, we introduce
an Early-Match-Take-All (EMTA) training strategy to ac-
commodate sequential mode modeling and obtain more di-
verse multimodal trajectories. Our method performs well
on mAP, Soft mAP, and Miss Rate without relying on dense
mode prediction while outperforming all solutions except
QCNet [10] on minADE and minFDE, which demonstrates
the great potential of sequential mode modeling.

2. Methodology
This section introduces the ModeSeq framework, includ-

ing the encoder, the decoder, and the training strategy.

2.1. Encoder

Our encoder follows QCNet [10], which employs fac-
torized Transformers with relative spacetime representa-
tion to obtain scene embeddings with roto-translation in-
variance in space and translation invariance in time. The
encoder stacks interleaved temporal Transformers, agent-
map Transformers, and agent-agent Transformers, produc-
ing map embeddings of shape [M,D] and agent embed-
dings of shape [A, T,D], where M , A, T , D refer to the
numbers of map instances, agents, past time steps, and hid-
den dimensions.

2.2. ModeSeq Layer

This section elaborates on the detailed structure of
a single ModeSeq layer, which consists of a Memory
Transformer module and a Factorized Transformer module.
Stacking multiple ModeSeq layers can further improve the
performance, which we leave the details to the next section.

Figure 1 shows the structure of the ℓ-th ModeSeq layer.
In general, we let the ModeSeq layer decode multiple tra-
jectory modes step by step. At the τ -th decoding step, the

1



Scene Embedding

A

T

M

Factorized Transformer

M
em

ory 
Transform

er

K
V

Q

Q

K V

Push

MLP
0.2

{𝑚!
ℓ}!∈{%,…,()%}

𝑚(
ℓ)%

𝑚(
ℓ

Figure 1. Overview of the ℓ-th ModeSeq Layer at the τ = 4 recurrent step, where the 4-th trajectory mode is being decoded.

initial query feature mℓ−1
τ is updated by a Memory Trans-

former and a Factorized Transformer to become mℓ
τ . The

updated feature mℓ
τ is decoded by MLP layers to produce

the τ -th trajectory and its confidence score. On the other
hand, we push mℓ

τ into a queue to prepare for the subse-
quent decoding steps. In the following, we detail the Mem-
ory Transformer and Factorized Transformer modules.
Memory Transformer. The Memory Transformer is a
Transformer-style RNN that models the sequential depen-
dencies of trajectory modes. When decoding the τ -th tra-
jectory mode based on the query feature mℓ−1

τ , we hope
it can be aware of the previously decoded modes. To this
end, the Memory Transformer updates mℓ−1

τ by letting it
attend to {mℓ

t}t∈{1,...,τ−1}, the queries stored in a queue at
previous decoding steps.
Factorized Transformer. Now that the query feature up-
dated by the Memory Transformer is aware of the previ-
ously decoded modes, we further enrich it with the scene
context features produced by the encoder. To this end, the
factorized Transformer module refines the query feature us-
ing a temporal Transformer, an agent-map Transformer, and
an agent-agent Transformer. The query at the τ -th decoding
step goes through these three layers and becomes mℓ

τ .
Prediction Head. Given mℓ

τ , we use two MLPs to de-
code the τ -th trajectory and confidence score, respectively.
On the other hand, we push mℓ

τ into a queue compris-
ing {mℓ

t}t∈{1,...,τ−1} since the decoding of the subsequent
modes relies on {mℓ

t}t∈{1,...,τ−1} ∪mℓ
τ .

2.3. Stacked ModeSeq Layers

Inspired by DETR [1], we stack multiple ModeSeq lay-
ers and apply training losses to the output of each layer for
iterative refinement. At the first layer where ℓ = 1, we set
m0

t as a learnable embedding e ∈ RD for ∀t ∈ {1, . . . ,K},

where K is the maximum number of recurrent steps. We
call this learnable embedding the “next query” since, at each
recurrent step, it looks at the preceding mode features stored
in the queue before decoding the next mode. Starting from
the second ModeSeq layer, we use the mode embeddings in
the previous layer’s queue as the query input of the Mem-
ory Transformer. We also perform mode rearrangement, an
important operation during the transition between two Mod-
eSeq Layers, which we will introduce next.
Mode Rearrangement. In sequential mode modeling, we
desire the decoder to output trajectory modes with mono-
tonically decreasing confidence scores. To this end, we re-
arrange the mode embeddings in the queue before starting a
new round of recurrent decoding in the next ModeSeq layer.
Specifically, given the mode embeddings {mℓ

t}t∈{1,...,K}
produced by the ℓ-th layer, we sort them according to the
descending order of the confidence scores predicted from
them. The sorted mode embeddings will then be sequen-
tially input to the (ℓ + 1)-th ModeSeq layer for recurrent
decoding.

2.4. Early-Match-Take-All Training Strategy

In this section, we illustrate the regression and classifi-
cation losses of the EMTA training strategy.
Regression. Our regression loss is based on the Laplace
negative log-likelihood [10, 11]. Typical WTA loss opti-
mizes only the trajectory with the minimum displacement
error to the ground-truth trajectory. In contrast, our EMTA
loss optimizes the matched trajectory decoded at the earliest
recurrent step. For example, if both the 2nd and the 3rd tra-
jectory modes match the ground truth, only the 2nd one will
be optimized, regardless of which mode has the minimum
displacement error. Here, we decide whether a predicted
trajectory is a match based on the velocity-aware distance
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Model Soft mAP↑ mAP↑ minADE↓ minFDE↓ Miss Rate↓

QCNet 0.4508 0.4452 0.5122 1.0225 0.1254
ModeSeq 0.4562 0.4507 0.5237 1.0681 0.1206

Table 1. Single-model results on the validation set of WOMD.

thresholds defined in the Miss Rate metric of the Waymo
Open Motion Prediction Benchmark. We also require the
future waypoints at every time step to match the ground
truth. If none of the predicted modes match the ground
truth, we will fall back to the regular WTA loss. With such
a training strategy, we encourage models to decode match-
ing trajectories as early as possible, thereby improving the
performance of Miss Rate.
Classification. We use the Binary Focal Loss to optimize
the confidence scores. As for label assignment, we treat
the earliest matches as positive samples, the modes decoded
later than the positive samples as negative samples, and the
modes decoded earlier than the positive samples as ignored
samples. By assigning monotonically decreasing labels, we
encourage the model to produce the more confident modes
at the beginning and the less confident ones at the end.

3. Experiments
3.1. Implementation Details

The hidden size we use is 128, totaling 11M model pa-
rameters. The implementation details of the encoder can
be referred to QCNet [10]. Our decoder stacks 6 ModeSeq
layers for iterative refinement, and each ModeSeq layer exe-
cutes 6 recurrent steps to obtain exactly 6 modes as required
by the challenge. We use the AdamW optimizer [5] to train
models for 30 epochs on the training split of the Waymo
Open Motion Dataset (WOMD) with a batch size of 32, an
initial learning rate of 5× 10−4, a weight decay rate of 0.1,
and a dropout rate of 0.1. The learning rate is decayed to 0
based on the cosine annealing schedule [4].

3.2. Ensembling

Inspired by Weighted Boxes Fusion (WBF) [8], we pro-
pose Weighted Trajectory Fusion (WTF) to aggregate mul-
timodal trajectories produced by multiple models. Our en-
semble method is almost the same as WBF, except we are
fusing trajectories according to distance thresholds rather
than bounding boxes according to IOU thresholds. The
WTF can improve mAP/Soft mAP/Miss Rate by sacrificing
minADE/minFDE, which indicates that the performance on
various metrics often disagrees.

3.3. Quantitative Results

The single-model results on the validation set of WOMD
are shown in Tab. 1. Compared with QCNet [10], ModeSeq

Category Soft mAP↑ mAP↑ minADE↓ minFDE↓ Miss Rate↓

Vehicle 0.5181 0.5095 0.6780 1.4046 0.1129
Pedestrian 0.4781 0.4709 0.3407 0.7117 0.0776
Cyclist 0.4248 0.4190 0.6852 1.4136 0.1706
Avg 0.4737 0.4665 0.5680 1.1766 0.1204

Table 2. Ensemble results on the test set of WOMD.

performs better on mAP, Soft mAP, and Miss Rate at the
cost of worse minADE and minFDE. The significantly bet-
ter minFDE of QCNet may be attributed to its recurrence
mechanism in the time dimension, which may also apply
to our ModeSeq framework (though the inference latency
would be much higher). We feel the performance gap in mi-
nADE and minFDE is acceptable, given that the sequential
mode modeling framework was developed in merely one
month while QCNet is a highly optimized model. Also, we
are unaware of any other motion prediction model with bet-
ter minADE/minFDE than ours. A new framework usually
undergoes years of iteration, and we welcome the commu-
nity to explore more to fill in the critical technical details
we have neglected here.

The WTF-based ensemble results on the test set of
WOMD are shown in Tab. 2. The critical hyperparameters
in WTF are the distance thresholds used for trajectory clus-
tering. We choose the velocity-aware thresholds defined for
the Miss Rate metric of the benchmark as the base thresh-
olds. On top of this, we found that using larger thresholds
can improve mAP and Soft mAP by substantially sacrific-
ing Miss Rate, minADE, and minFDE, implying the dis-
agreement of various metrics. Since this is a competition,
we overfitted Soft mAP by multiplying the base thresholds
with the scaling factors of 1.5, 1.4, and 1.4 for vehicles,
pedestrians, and cyclists, respectively, without caring about
the actual performance of models.

4. Conclusion
We propose ModeSeq, a sparse mode prediction method

for multimodal motion forecasting based on sequential
mode modeling and the Early-Match-Take-All (EMTA)
training strategy. This modeling paradigm enables diverse
multimodal motion prediction without sacrificing too much
in minADE and minFDE, achieving state-of-the-art results
on the Waymo Open Motion Prediction Benchmark. We
hope the combination of sequential mode modeling and the
EMTA training strategy can provide new insights into mul-
timodal problems and serve as an alternative to parallel mul-
timodal decoding trained with the Winner-Take-All loss.
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