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Abstract— In this report, we introduce our method, Robust
Motion Predictor (RMP), for the Waymo Open Dataset Chal-
lenge 2024, Motion Prediction. Accurately predicting the future
trajectories of surrounding traffic participants is crucial for au-
tonomous vehicles. Current prediction methods depend heavily
on complete historical trajectory data, and their performance
deteriorates rapidly when certain timestamps are missing.
However, various challenging situations, such as occlusion,
sensor failures, and adverse weather conditions, can result
in incomplete historical trajectories. Therefore, we propose
a simple recovery module designed to restore incomplete
historical trajectories, which is also plug-and-play. The overall
network structure is modified based on MTR [1] framework.
Our method, the RMP ensemble, ranked third in SoftmAP with
a score of 0.4726 and first in Overlap Rate with a score of
0.1257. Our end-to-end version, RMP e2e, ranked second in
both ADE (0.5529 meters) and FDE (1.0932 meters) on the
Waymo test leaderboard.

I. INTRODUCTION
Prediction accuracy is crucial for autonomous vehicle sys-

tems. Current learning-based motion predictors [1]–[9] are
typically trained and evaluated using selected target agents
with nearly complete historical trajectories. For instance, in
the Waymo prediction leaderboard [10], [11], all methods
must predict the trajectories of 2 to 8 agents per scenario,
and the proportion of valid past timestamps must be greater
than 97% of all past timesteps (see TABLE I). However, this
ideal condition may not always be feasible in practice due
to various challenging situations, such as occlusion, sensor
failures, and adverse weather conditions, which can result
in incomplete historical trajectories. In some extreme cases,
there may be only a single frame of historical trajectory
available. For example, in situations like a ’ghost pedestrian’
suddenly darting out from behind an obstacle, the vehicle’s
sensors might only capture one frame of the pedestrian’s
movement, making accurate prediction highly challenging.
To tackle this situation, we propose our RMP network
structure, which can realize accurate predictions even when
receiving only one timestep historical data. The model is
built based on MTR [1], which is a powerful query-based
motion predictor.
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TABLE I: Data for valid past timesteps, all past timesteps and valid
ratio for selected agents to predict in Waymo motion dataset.

Training Validation Testing
Valid Past Timesteps 23367425 2,060,239 2,100,823
All Past Timesteps 23956394 2,113,892 2,156,550

Valid Ratio 0.9754 0.9746 0.9742

II. METHOD

A. Input Representation

Unlike the MTR framework, which does not consider traf-
fic light information, our approach only uses current traffic
light information as waypoints on map polylines, discarding
historical traffic lights data. Additionally, we incorporate
historical relative movement between target agents and map
polylines as an additional input context. By employing an
agent-centric strategy, the input for each target agent can be
represented as follows:

A ∈ RNa×Tp×F1 , where Na represents the number of
agents in the scenarios, Tp is the number of past timesteps,
and F1 includes features such as position, heading, velocity,
acceleration, agent type, agent size, valid sign, and one-hot
embeddings for past timesteps.

M ∈ RNl×Np×F2 , where Nl denotes the number of
map polylines, Np represents the number of waypoints per
polyline, and F2 includes position, direction, and waypoint
type.

R ∈ RNl×Tp×F3 , where F3 indicates the relative position
and orientation between the target agent and the center of
each road polyline over the past timesteps.

This approach ensures a comprehensive representation of
the current traffic conditions and the interactions between
agents and their environment.

B. Network Encoder

Feature aggregation. Temporal information, including
agent historical states A and relative movement R, is pro-
cessed using a Multi-Scale LSTM (MSL) model. Initially,
the data is concurrently passed through a 1D CNN module
with kernel sizes of 1, 3, and 5. It then progresses through
a two-layer LSTM network, where the output at the final
timestep is captured, concatenated across feature dimensions,
and passed through an additional MLP layer to generate the
final feature token (see Fig. 1). For the road polylines data
M, a simple PointNet-like network is employed to extract
the spatial features of each polyline.
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Fig. 1: Network structure of our proposed method.

A1 = MSL(A), A1 ∈ RNa×D1 ,
R1 = MSL(R), R1 ∈ RNl×D1 ,
M1 = ϕ(MLP(M)), M1 ∈ RNl×D1 ,

(1)

where ϕ(·) denotes the max-pooling operation.
Feature Fusion and Recovery Module. In this process,

we integrate encodings from various input modalities using
Multi-Context Gating (MCG) as proposed in [5]. We utilize
a cascading method where, at each stage, two distinct modal-
ities are chosen from a set of three to be input into the MCG
module. The output from one MCG module is then fed into
the subsequent MCG module in the sequence, as illustrated
in Fig. 1.

(A2,R2) = MCG(A1,R1),

(M2,R3) = MCG(M1,R2),

(A3,M3) = MCG(A2,M2).

(2)

Then, we use A3 as the final agent tokens Aagent ∈ RNa×D1

and M3 +R3 as the final map tokens Mmap ∈ RNp×D1 .
We assume that local interactions are crucial and sufficient

to reconstruct incomplete historical trajectories. Therefore,
we use a single layer of local attention [1] to ensure that
each agent token attends to its K nearest neighbor tokens
(including both agent and map tokens). Following this, a
simple MLP layer is employed to recover the complete
past trajectories for all agents. Next, a PointNet-like layer
aggregates these recovered trajectories into agent tokens. A
residual connection is added between the input and output
of the recovery module to ensure stable training.

Aagent = Aagent + Recovery(Aagent),

Recovery(Aagent) = MLP(APast),

APast = MLP(Aagent),

(3)

Where APast ∈ RNa×(Tp×4) and 4 denotes the position and
velocity for the recovered past trajectories. This recovery
module aims to reconstruct the incomplete historical trajec-
tories for each agent and integrate this enriched historical
information into the agent tokens. After the recovery module,
both agent tokens and map tokens will go through another

four layers of local attention for further feature fusion. The
ith transformer encoder layer can be formulated as:

Qi = MHA(Qi−1 + PE(Qi−1),

K(Qi−1) + PE(K(Qi−1)),K(Qi−1)),
(4)

where MHA(·, ·, ·) represents the multi-head attention func-
tion, Q0 = [Mmap,Aagent] ∈ R(Na+Nm)×D1 , and K(·)
denotes the K-nearest neighbours (KNN) algorithm, which
is used to identify the K nearest tokens relative to each
query. The term PE(·) refers to the sinusoidal positional
encoding assigned to input tokens, incorporating the most
recent position of each agent and the central point of each
map polyline. The final output of the local attention layer will
be snet into the MTR decoder, [Mmap,Aagent] = QFinal.

C. Network Decoder

The decoder part is identical to the MTR [1] decoder,
except for how the output trajectories are used to calculate
the loss. Between each decoder layer’s output and loss
calculation, we apply evolving and distinct anchors tricks
referred in [2]. We use 6 decoder layers, perform evolving
anchors at the second and fourth layers, and select distinct
anchors at each layer.

D. Loss Function

We put forward a combined loss function which is consist
of two components: Original MTR [1] loss and recovery
loss. The total loss function can be defined as follows:

LTotal = LMTR + LRecovery (5)

For the MTR loss, We follow the loss function of MTR [1],
using a decoder loss LDecoder and a dense future prediction
loss LDf .

The recovery loss LRecovery aims to optimize the recovery
module to resume the incomplete past trajectories and it is
simply the L1 loss of recovered APast and ground truth past
trajectories APastGT .



TABLE II: Performance on the test leaderboard of the motion prediction track of the Waymo Open Dataset Challenge. Our approach is
termed as RMP, i.e., Robust Motion Predictor. Soft mAP is the official ranking metric, while miss rate is the secondary ranking metric.
The first place is denoted by bold, the second place by underline, and the third place by *asterisk.

Method Soft mAP ↑ mAP ↑ minADE ↓ minFDE ↓ Miss rate ↓ Overlap Rate ↓
MTR v3 [4] 0.4967 0.4859 0.5554∗ 1.1062∗ 0.1098 0.1279

ModeSeq 0.4737 0.4665 0.5680 1.1766 0.1204 0.1275
Betop 0.4698 0.4587∗ 0.5716 1.1668 0.1183 0.1272

BehaveOcc 0.4678 0.4566 0.5723 1.1668 0.1176 0.1278
QMTR 0.4649 0.4445 0.5702 1.1627 0.1177 0.1269

EDA [2] 0.4596 0.4487 0.5718 1.1702 0.1169 0.1266∗

ControlMTR [3] 0.4572 0.4414 0.5897 1.1916 0.1282 0.1259
LLM-Augmented-MTR v4 0.4423 0.4270 0.5987 1.2084 0.1316 0.1274

MTR [1] 0.4403 0.4249 0.5964 1.2039 0.1312 0.1274
Traj pred 0.4320 0.4218 0.6030 0.1409 1.9136 0.1283

FMAT 0.3438 0.3000 0.5362 1.0788 0.1364 0.1342
LSTM 0.1931 0.1863 1.0065 2.3553 0.3750 0.1898
RMP 0.4572 0.4423 0.5695 1.1658 0.1160∗ 0.1257

RMP e2e 0.3828 0.3440 0.5529 1.0932 0.1354 0.1295
RMP Ensemble 0.4726∗ 0.4553 0.5596 1.1272 0.1113 0.1257

TABLE III: Detailed performance comparison of RMP variants across four categories: Vehicle, Pedestrian, Cyclist, and Average. The
variants include RMP, RMP e2e, and RMP Ensemble.

Our Model Category Soft mAP ↑ mAP ↑ minADE ↓ minFDE ↓ Miss rate ↓ Overlap Rate ↓

RMP

Vehicle 0.5013 0.4776 0.6627 1.3425 0.1103 0.0397
Pedestrian 0.4758 0.4670 0.3524 0.7333 0.0725 0.2651

Cyclist 0.3946 0.3822 0.6936 1.4217 0.1652 0.0724
Avg 0.4572 0.4423 0.5695 1.1658 0.1160 0.1257

RMP
(Ensemble)

Vehicle 0.4922 0.4686 0.6731 1.3433 0.1143 0.0399
Pedestrian 0.4923 0.4812 0.3358 0.6935 0.0627 0.2652

Cyclist 0.4334 0.4160 0.6698 1.3448 0.1567 0.0721
Avg 0.4726 0.4553 0.5596 1.1272 0.1113 0.1257

RMP
(e2e)

Vehicle 0.4279 0.3824 0.6763 1.3105 0.1353 0.0416
Pedestrian 0.3846 0.3420 0.3239 0.6584 0.0767 0.2699

Cyclist 0.3359 0.3074 0.6586 1.3108 0.1943 0.0771
Avg 0.3828 0.3440 0.5529 1.0932 0.1354 0.1295

TABLE IV: Results of randomly masking various percentages of historical trajectories for all agents per scenario on the Waymo validation
dataset.

Method Missing timestamps Soft mAP ↑ mAP ↑ minADE ↓ minFDE ↓ Miss rate ↓ Overlap Rate ↓

MTR

40% 0.4264 0.4093 0.624 1.2446 0.1403 0.1289
50% 0.4192 0.4023 0.6354 1.2594 0.1431 0.1297
60% 0.4117 0.3954 0.6497 1.2771 0.1458 0.1306
70% 0.4019 0.3858 0.673 1.3073 0.1517 0.1309
80% 0.3784 0.3633 0.7087 1.3534 0.1603 0.1327
90% 0.3425 0.329 0.7749 1.451 0.1802 0.1361

only current timestamps 0.2801 0.2692 0.9171 1.6648 0.2207 0.146

Ours

40% 0.4498 0.4317 0.5774 1.1874 0.1221 0.1273
50% 0.4492 0.4312 0.5787 1.1894 0.1226 0.1274
60% 0.449 0.4311 0.5821 1.195 0.1226 0.127
70% 0.4454 0.4275 0.5845 1.1979 0.1235 0.1267
80% 0.4392 0.4214 0.5919 1.2081 0.1264 0.1275
90% 0.4287 0.4118 0.6063 1.2317 0.1302 0.1275

only current timestamps 0.4083 0.3925 0.6309 1.273 0.1378 0.1308

III. EXPERIMENTS

A. Experimental Setup

1) Dataset and Metrics: Our model is trained using the
Waymo Open Motion Dataset (WOMD), which is divided
into two sets: 486,995 scenes for training and 44,097 scenes
for validation. The performance of our model is evalu-
ated using several metrics, including the minimum average
displacement error (minADE), minimum final displacement
error (minFDE), miss rate, overlap rate, and soft mean
average precision (Soft mAP). Among these, Soft mAP is
a crucial metric for assessing the model’s performance.

2) Network Details: The output channel size for the 1D
CNN is 64. The hidden dimension for the encoder is 256,
and we utilize a 2-layer LSTM, 2 layers of MCG for each
modality fusion part, one layer of local attention before the
recovery module, and 4 layers of local attention after. The
decoder part is identical to that in MTR [1]. Our RMP model
outputs 64 different trajectories, and we use Non-maximum
Suppression(NMS) to select the final 6 trajectories. In con-
trast, our RMP e2e model directly generates 6 trajectories.

3) Training Details: We use the AdamW optimizer to
train our model in an end-to-end manner, with an initial



learning rate set to 0.0001. Beginning at epoch 20, the
learning rate is halved every two epochs. We train the model
for 30 epochs and then fine-tune it for an additional 5 epochs,
maintaining a learning rate of 6.25e-6. The best model is
trained on a single Nvidia 4090 GPU with a batch size of 6.
Other models are trained on two Nvidia 3090 GPUs with a
batch size of 12. No data augmentation is used.

4) Model Ensemble Details: Given N well-trained mod-
els, each model generates 64 different trajectories, resulting
in a total of 64N multimodal future trajectories for each
target agent. Each trajectory is accompanied by a confidence
score predicted by its respective model.

Initially, we apply a softmax operation on the scores of the
64N trajectories. Subsequently, we employ non-maximum
suppression (NMS) to select the top 6 future trajectories
based on their endpoints. The distance threshold σ for NMS
is scaled according to the length L of the trajectory with the
highest confidence among the 64N predictions, as follows:

σ = min

(
3.5,max

(
2.5,

L− 10

50− 10
× 1.5 + 2.5

))
. (6)

Our best model, RMP Ensemble, is generated by an
ensemble of four different models:

1) RMP model.
2) RMP model without recovery module.
3) RMP model using Binary Cross Entropy (BCE) for

classification loss.
4) RMP model without using evolving and distinct an-

chors.

B. Performance

1) Leaderboard: As shown in tableII, the RMP Ensemble
is our best submission, ranking 3rd in the Waymo Open
Dataset Challenge 2024, Motion Prediction Track, based on
soft mAP, and 1st in terms of overlap rate.

2) Detailed performance: We conducted experiments to
test the performance of three submissions of our RMP
method: RMP, RMP e2e, and RMP Ensemble. Each submis-
sion was evaluated across four categories: Vehicle, Pedes-
trian, Cyclist, and Average. The results are summarized in
TableIII. It can be infered that RMP excels in predicting
Vehicle behavior while RMP Ensemble outperforms the
other two submissions in the remaining three categories:
Pedestrian, Cyclist, and Average. This analysis highlights the
strengths of each submission and provides valuable insights
for further optimization.

C. Experiments result

1) Missing timestamps research: We conducted an ex-
periment by randomly masking historical timestamps in the
validation set, varying the mask ratio from 40% to 100%,
to assess the robustness of both the MTR and our RMP
method. The summarized results in TableIV clearly indicate
that our method, RMP, consistently surpasses MTR across
all performance metrics when historical frames are missing.
Notably, when all historical timestamps are masked (i.e., only

current timestamps are available), our RMP method excels
with a Miss Rate (MR) of 0.1378, compared to MTR’s MR
of 0.2207. Furthermore, as the mask ratio increases, MTR
experiences a more rapid decline in performance compared
to our method. These findings underscore the robustness and
superiority of our RMP approach, especially when dealing
with missing historical data.

IV. CONCLUSIONS

In this technical report, we introduce a Robust Motion
Predictor (RMP) designed for multimodal motion prediction,
particularly effective when historical trajectories are incom-
plete. Our proposed method can achieve high prediction
accuracy even with only a single timestep of historical
trajectory information.
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