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Abstract

Consistently forecasting the accurate future states of sur-
rounding traffic participants is a paramount role among the
autonomous driving system. The occupancy flow field pre-
diction offers a scalable and effective framework for jointly
forecasting the future motions of multiple agents within a
scene. However, significant challenges persist in accu-
rately modeling future consistency between prediction pat-
terns, as well as traceability for each rasterized agent. This
work introduce DOPP: a differentiable prediction system
integrating occupancy flow field with future motion states.
With query-informed modular co-design insights upon our
preceding work [7], we devised MS-OccFormer module,
which achieves multi-stage alignment per occupancy flow
field forecasting with consistent awareness from agent-wise
marginal motion predictions. Additionally, we developed an
integrated learning paradigm in consistently update the all
of the prediction objectives. Through our proposed method,
we achieved competitive prediction accuracy and displace-
ments for occupancy and flow predictions, demonstrating
impressive flow-traced performance and ranked 1st in the
2024 WOMD leaderboard.

1. Introduction
Forecasting the accurate and social-consistent status of

targeted traffic participants represents one of the most sig-
nificant challenges in the realm of autonomous driving.
[1]. Notably, the hereditary heterogeneous agents and
scalable interactive behaviors among driving scene un-
derscores the challenging tasks for prediction. To ade-
quately tackle this challenge, existing approaches are pri-
marily twofold predicting occupancy field probabilities,
or conducting multi-agent trajectory predictions anchored
per agent instance. The former spotlights scalable pre-
dictions allowing arbitrary surrounding agents’ forecast-
ing [9–11], while the latter generates tractable trajecto-
ries without spatial limits [5]. However, relying on a sin-
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Figure 1. Overview: We propose an integrated network which
couples the prediction task of occupancy flow field with multi-
agent marginal forecasting. The method functions a partial variant
as our preceding system [7] and delivers compliant predictions.

gle prediction format inevitably presents inherent limita-
tions. Expressly,occupancy-based approaches achieve ac-
curate joint predictions but lose agent-specific tractability.
This can result in temporal conflicts and the omission of
critical agents. Conversely, motion prediction models face
inconsistencies and exponential computational costs when
modeling joint interaction patterns among multiple agents

These characteristics underscore the complementary na-
ture of prediction representations. Multiple trials have been
witnessed in the community, presenting similar ideas inte-
grating both formats as an efficient multi-task paradigm [6]
or end-to-end pipelines [3]. However, current approaches
falls short in addressing consistency among different pre-
dictions, demonstrating potential conflicts and missing
agents for occupancy field. This may further leads to non-
strategic planning behaviors and safety concerns. The short-
fall motivates a co-design which enables a mutual infor-
mation guidance under an integrated model between occu-
pancy flow field and motion prediction for multiple agents.

In this study, we aimed to address these challenges
through an differentiable integration predicting occupancy
flow field with multi-agent motion states, termed as DOPP.
It functions as a variant upon the prediction module of our
preceding system [7]. At its core, we launch an integrated
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Figure 2. Cascade integrated decoding framework of Ms-OccFormer in DOPP a) A single block of multi-scale agent-conditioned occu-
pancy predictor. Joint occupancy and backward flow Ô, F̂ are consistently integrated with marginal prediction features HA

traj , through
global interactions and local refinements, and guided by iteratively updated learnable attention mask M; b) A Swin-T decoder for local
interactions through shifted-window cross attention; c) Agent-wise fusion for marginal prediction features.

pipeline performing occupancy and flow field prediction
that aligns and refines consistently with marginal motion
prediction. To elaborate further, as depicted in Figure 1,
our proposed framework primarily focuses on the decoding
stage integrating both tasks. With encoded scene features
upon our previous work [9], we propose MS-OccFormer, a
cascade decoder network to perform marginal-conditioned
occupancy prediction. The proposed model fuses motion
predictive features while forecasting step-wise occupancy
flow features, enabling mutual predictive awareness. The
motion prediction decoder are inherited from another previ-
ous work [5]. The proposed paradigm demonstrates state-
of-the-art accuracy in occupancy and flow field prediction,
thanks to compliant integration from the motion prediction.

2. Method

2.1. Formulation and Encoding

The occupancy flow challenge is formulated as multi-
task objectives predicting future frames of observed occu-
pancy O1:T ∈ RT×H×W , occluded occupancy Oocc

1:T ∈
RT×H×W , and backward flow F1:T ∈ RT×H×W×2 simul-
taneously [10]. To model the global interactions between
scene elements with BEV perceptions, we inherit from our
previous work [9] to gather and encode separate visual
and vectorized scene inputs. Then, visual features are en-
coded under similar structure of [9] as BEV features QB ∈
RH×W×D. Meanwhile, agent QA ∈ RNA×D and map
QMap ∈ RNM×D features from respective encoders [8] are
concatenated and encoded by stack of 4 Transformer en-
coders. Encoded features X = {QB , QMap, QA} are then

served as input for DOPP integrating dual prediction objec-
tives.

2.2. Ms-OccFormer

To further tackle the consistency challenges for occu-
pancy given encoded scene features X, we propose MS-
OccFormer spotlights twp aspects, i.e. Agent-conditioned
occupancy that defines tractable predictions for occupancy,
and Multi-scale prediction-wise integration that deals with
the interactive alignments for occupancy with different
granularity. Illustrated in Fig. 2, MS-OccFormer utilizes a
cascaded pipeline to rollout the future horizon T , decoding
per-step occupancy flow field prediction. It is based on L
levels fusion of previous-step occupancy features and mo-
tion prediction features through a motion predictor [5].

2.2.1 Predictive Queries

We leverage occupancy queries Qocc ∈ RH×W×D in multi-
scale aggregating for positional and BEV features: Qocc =
MLP([PE(IB);QB ]). Positional grids IB ∈ RH×W×2 are
encoded using sinusoidal PE(·) and transformed by multi-
layer perceptron (MLP). We further downsample Qocc un-
der L levels of query sets {Ql,0

occ ∈ R
H

2l
×W

2l
×D}0l=L to re-

currently query multi-scale interactions.
To fully extract the interactive marginal prediction fea-

tures, we conduct an agent-wise fusion (see Fig. 2c)
that leverages the multi-modal prediction Ŷ outputs from
motion predictor [5]. Motion prediction features QA

M ∈
RNA×M×D are received from the decoding features in mo-
tion predictor. QA

M is then fused with marginal features



HA
M = maxTp MLP(PE(ŷ)), where ŷ ∈ RNA×M×Tp×2

denotes the predicted trajectories. The fused features are
projected by each horizon:

HA
traj = MLP1:T (p̂(Q

A
M +HA

M ) +QA), (1)

where HA
traj ∈ RT×NA×D denotes the marginal features.

2.2.2 Agent-conditioned Occupancy

The primary challenge in formulating O1:T ∈ RT×H×W

lies in the intractability with motion predictions that cause
joint inconsistencies. Inspired by instance-level occupancy
OA

1:T ∈ RT×H×W×NA [3], we propose the marginal-
conditioned occupancy prediction task. This models the
consistent joint occupancy p(OA

1:T |YA
M ,X) over agent-

wise motion predictions. To associate uncertainty and mu-
tual interactions, given final joint decoding features QL

occ

and marginal features HA
traj , the agent-conditioned occu-

pancy will be eventually modeled by dot products:

OA
1:T = σ(QL

occ ·MLP(HA
traj)

T ), (2)

where σ denotes Sigmoid for per-grid probabilities. The
original task can be then transformed back Ô1:T =
maxA ÔA

1:T for the observed occupancy prediction. Pre-
dicted flow F̂1:T and occluded occupancy Ôocc

1:T are concur-
rently decoded from Qt,L

occ for each future step t ∈ [1, T ].

2.2.3 Multi-scale Prediction-wise Integration

This aims to iteratively align multi-scale interaction fea-
tures between hybrid prediction in decoding OA

1:T .In Fig.
2a, multi-scale succeeded occupancy features {Ql,t−1

occ }Ll=1

query aligned marginal features by attentions at different
granularities from two-stage Transformer decoders.

The global integration stage leverages the vanilla Trans-
former decoders to perform per-grid interactions from flat-
tened high-level joint features QL,t−1

occ with marginal ones.
Subsequently, with the upscaling of occupancy features
{Ql,t−1

occ }L−1
l=1 , the local integration stage focuses on captur-

ing consistency from partial joint behaviors with marginal
features. This motivates us to design shift-window multi-
head cross-attention (SW-MCA) [7]. As depicted in Fig.
2b, we employ the rolling process to simultaneously cap-
ture local interactions under shifted windows attention.

To ensure interactive consistency across multi-scale in-
tegration, we devise a learnable attention mask Ml

1:T ∈
RT× H

2L−l ×
W

2L−l ×NA for Transformer decoder that itera-
tively refines upon interaction results from the previous
scale. This aligns the attention modeling based on the pre-
vious results Shown in Fig. 2a, for each level, the attention
mask gets updated with agent-conditioned occupancy on the

current scale level: M̂l = σ(Ql
occ · MLPl(H

A
traj)

T ). The
attention masks are then iteratively updated following:

Ml = λm Upsample(Ml−1) + (1− λm)M̂l, (3)

where λm = 0.5 is the update factor. In general,
given Transformer decoder at certain stage as Trans, the
prediction-wise integration under l of t is defined as:

Ql,t
occ = Trans(q = Ql,t−1

occ , k, v = HA,t
traj ,m = Ml

t). (4)

Output joint occupancy features QL,t
occ will be eventually

fused via Equ. 2 for conditioned occupancy predictions
ÔA

1:T and transformed back to observed occupancy Ô1:T .
QL,t

occ also concurrently decode flow F̂1:T and occluded
occupancy Ôocc

1:T . Both occupancy forms are added, and
warped by predicted flow for the final output.

2.3. Integrated Learning

We formulate a multi-task learning paradigm for the
proposed network. For precise prediction of marginal-
conditioned observed occupancy ÔA

1:T and the occluded
ones Oocc

1:T in MS-OccFormer, we employ a combination
of top-k BCE loss and Dice loss [3] jointly for ÔA

1:T and
M1:T , for balanced predictions of occupancy probabilities:
Locc = LBCE + λDiceLDice, with λDice = 5. The backward
flow regression are updated by the L1 loss as [9]. All objec-
tives learn jointly following our previous work [9].

2.4. Implementation details

The challenge is defined by predicting T = 8 frames
of future occupancy, each rasterized by 80 × 80m2 driv-
ing scene with H,W = 256. Encoded scene comprises
NA = 33 agent and NM = 100 map features with D =
256. Motion predictor outputs M = 6 modals of predic-
tions with Tp = 80. The integration level is set to L = 3 in
Ms-OccFormer decoder. The DOPP framework is trained
from scratch by WOMD [2] training set without augmenta-
tions or post-processing. We choose ReLU as the activation
function, dropout is added after each layer with a dropout
rate of 0.1. We use a distributed training strategy on 4 Tesla
A100 with a total batch size of 16. AdamW optimizer is
used with cosine annealing strategy, initializing the learn-
ing rate as 1e-4. The total training epochs are set to 20.

3. Results
Table 1 presents the quantitative results in comparison

to other methods on the 2024 Waymo Occupancy and Flow
Prediction Leaderboard. The proposed method marks ex-
ceptional accuracy (AUC) for all occupancy predictions,
presenting +2.4% observed, +8.9% occluded, and +2.3%
flow-traced occupancy in comparing to previous state-of-
the-art approaches [9]. The compliant integration further



Table 1. Testing performance on the Waymo Occupancy and Flow Prediction Leaderboard

Evalutation Metrics Observed Occupancy Occluded Occupancy Flow Occupancy Flow Field

Model AUC ↑ Soft-IOU ↑ AUC ↑ Soft-IOU ↑ EPE ↓ FT-AUC ↑ FT-Soft-IOU ↑
STrajNet [9] 0.778 0.491 0.178 0.045 3.204 0.785 0.531
VectorFlow [4] 0.755 0.488 0.174 0.045 3.583 0.767 0.531
OFMPNet [11] 0.769 0.502 0.165 0.042 3.587 0.761 0.538

DOPP (Ours) 0.797 0.343 0.194 0.024 2.957 0.803 0.515

a) b) c) d) e)

Time Prob.

t=0 p=0

Figure 3. Qualitative results of WOMD scenarios: a) Crossing
an unsignalized intersection with an incoming vehicle; b) Unpro-
tected left-turn with a potential take-over vehicle; c) Cruising a
five-point intersection with heavy traffic; d) Merging in a highway;
and e) Right-turn with heading cyclist and low-speed vehicle.
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Figure 4. Qualitative ablations of short term multi-scale atten-
tion masks M1:T compared with occupancy predictions Ô1:T and
the ground-truth O1:T . Aligned results from multiple granular-
ities under scenarios a) and b) reveal the validity of multi-scale
prediction-wise integration design in MS-OccFormer.

result in a reduction of 8.5% flow prediction error. Qualita-
tive performance under interactive scenarios (Fig. 3) further
corroborates the scene compliance of proposed prediction
system. For the key design of multi-scale predictions inte-
gration in Ms-OccFormer, qualitative (see Fig. 4) ablations
have presented notable results from attention mask update,
as well as local integration for prediction consistency.
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