
Occupancy and Flow Prediction Using Temporal Convolutions

1Daeil Han, 1Gaeun Kim, 2Yeong Jun Koh, 1Hanul Kim
1Seoul National University of Science and Technology

2Chungnam National University
{dalehan0606, gekim}@seoultech.ac.kr, yjkoh@cnu.ac.kr, hukim@seoultech.ac.kr

Abstract

Occupancy and flow prediction is essential for autonomous
driving, as it aims to forecast the future positions and move-
ments of various objects, such as vehicles and pedestrians.
In this report, we present our approach to the occupancy
and flow prediction task in the 2024 Waymo Open Dataset
Challenge. Our model integrates a spatial-temporal en-
coder, a multi-scale aggregator, and an autoregressive de-
coder. We employ multiple loss functions, including focal
loss, flow loss, and a modified traced loss. Our method
achieves a Flow-Grounded AUC of 0.7564 on the test set
of the 2024 Waymo Open Dataset.

1. Proposed Method
Figure 1 depicts our model, which includes four compo-
nents: encoder, aggregator, decoder, and prediction head.
The encoder first takes two types of input features, called
agent and static features, and encodes them into a multi-
scale feature map. The aggregator then improves this fea-
ture map. Using the enhanced feature map, the decoder au-
toregressively generates features for future frames. Lastly,
the prediction head estimates the occupancy and flow maps
for these future frames.

1.1. Input Representation

For a given scenario, we extract 10 previous frames along
with one current frame. Each frame includes agent and
static feature maps, which are bird’s-eye-view (BEV) fea-
ture maps aligned to the ego vehicle. The agent fea-
ture At ∈ RH×W×C captures the information of dynamic
agents at frame t. Here, H = 256 and W = 256 denote
the height and the width of a feature map, and C = 3
is the number of input feature channels. Each channel of
the agent feature represents object type, x-direction ve-
locity, and y-direction velocity. The object type can be
one of three values: vehicle object (+1), non-vehicle ob-
ject (-1), and absence of object (0). On the other hand,

the static feature St ∈ RH×W×C encodes the road envi-
ronment, with its channels detailing road type, road angle,
and traffic light states. We define our inputs by concate-
nating each feature along time dimension. Therefore, the
inputs A = [A1, · · · , AT ] and S = [S1, · · · , ST ] are 4-
dimensional tensors of size T ×H×W ×C, where T = 11
denotes the index of the current frame.

1.2. Model

Encoder: Figure 2 illustrates the detailed architec-
ture of our encoder. We base our encoder on the
CAFormer-S18 [13] backbone, pretrained on the ImageNet
dataset [11]. Thus, our encoder shares many hyperparame-
ters with the CAFormer-S18, such as the number of stages,
the number of blocks per stage, and the dimensions for each
stage. However, since the CAFormer-S18 backbone is de-
signed to classify static images, we modify it to handle tem-
poral input.

Specifically, our encoder stage consists of four compo-
nents: a spatial downsample layer, a metaformer block,
a temporal convolution block, and a temporal downsam-
ple layer. The first two components are derived from
CAFormer-S18. We set the stride of the first spatial down-
sample layer to 4, and the stride for the other spatial down-
sample layers to 2. The temporal convolution block per-
forms layer normalization [1] and two 1D convolutions with
a SiLU [10] activation function. The temporal downsample
is a strided 1D convolution layer to decrease the temporal
resolution of the inputs by half.

Given our inputs A and S, the encoder first processes
them using the spatial downsample layers of the first stage,
and then combines them for subsequent blocks. We then
perform global average pooling on the output of each stage
along the temporal dimension to produce multi-scale fea-
tures X1,X2,X3,X4. The ith scale feature map Xi ∈
RHi×Wi×Ci is a 3-dimensional tensor, where Hi, Wi, and
Ci are the height, width, and number of channels at this
scale, respectively. Here, Hi = H/2i+1 and Wi =
W/2i+1.

1



Figure 1. The overview of our model.

Figure 2. The structure of the encoder using MetaFormer with temporal convolutions.

Aggregator: The aggregator is designed to improve
multi-scale features by incorporating precise localization
information from fine-scale features and adding richer se-
mantic context from coarse-scale features. To achieve this,
we employ Path Aggregation Network (PAN) [5] in YOLO-
v9 [12]. The output of the aggregator is the enhanced fea-
tures at each scale. We denote the enhanced feature at the
ith scale as X̃i ∈ RHi×Wi×Ci .

Decoder: The goal of the decoder is to predict feature
maps for future frames. To achieve this, we design an au-
toregressive decoder based on convolution. As illustrated
in Figure 3, our decoder consists of a decoder cell for each
scale, each containing a convolution layer with SiLU ac-
tivation and a concatenation operation. For clarity, let us
consider the operation of the ith scale decoder cell for the
τ th frame prediction: This cell takes two inputs: the fea-
ture from the previous scale Zτ

i+1 ↑ and the feature from
the previous time step Z̃τ−1

i . Initially, the feature from the

previous time step Z̃0
i is set to the output of the aggregator

X̃i. Given these inputs, the cell stacks them and performs
convolution filtering. It then produces two output features:
one for the upper scale cell Zτ

i ↑ and one for the next time
step Z̃τ

i .
Let Zτ

i be the result of the convolution operation. For
the upper scale cell, we define the output Zτ

i ↑ as the up-
sampled version of Zτ

i , using bilinear interpolation for up-
sampling. For the next time step, we define the output Z̃τ

i

as
Z̃τ

i = [Z̃0
i ,Z1

i , · · · ,Zτ
i ] (1)

where [·] represents the concatenation operation. This
means Z̃τ

i retains all temporal information from the current
frame up to the future τ th frame. Therefore, the prediction
for τ + 1 is performed autoregressively.

Prediction Head: The upscaled outputs from the finest-
scale decoder cell Zτ

1 ↑∈ RH×W×Cd are fed into the pre-
diction head to estimate the occupancy flow map for the

2



Feature Shape

Zτ
4 32 × H

32 × W
32

Zτ
3 32 × H

16 × W
16

Zτ
2 32 × H

8 × W
8

Zτ
1 32 × H

4 × W
4

Zτ
4 ↑ 32 × H

16 × W
16

Zτ
3 ↑ 32 × H

8 × W
8

Zτ
2 ↑ 32 × H

4 × W
4

Zτ
1 ↑ 32 × H × W

Z̃τ
4 (256 + 32τ) × H

32 × W
32

Z̃τ
3 (160 + 32τ) × H

16 × W
16

Z̃τ
2 (64 + 32τ) × H

8 × W
8

Z̃τ
1 (32 + 32τ) × H

4 × W
4

Figure 3. The architecture of the decoder and the table of feature shapes used in our model at the τ frame.

future frame τ . Here, Cd = 32, which is the dimension of
the decoder cell. The prediction head is designed with two
convolution layers and SiLU activation to generate the oc-
cupancy and flow maps. The final output maps include ob-
served occupancy Ôτ

obs ∈ RH×W×1, occluded occupancy
Ôτ

occ ∈ RH×W×1, and flow F̂τ ∈ RH×W×2. The flow
map’s two channels represent the flow in the x and y direc-
tions in the coordinate system centered on the ego vehicle.

1.3. Loss Function

We train our model by minimizing three loss terms: focal
loss Lfocal, flow loss Lflow, and traced loss Ltraced. The total
loss function is defined as follows:

L = λfocalLfocal + λflowLflow + λtraceLtrace (2)

where λfocal, λflow, and λtrace are hyperparameters used to
balance the contributions of each loss term. We empiri-
cally set these hyperparameters to λfocal = 5, λflow = 1,
and λtrace = 0.02.

Focal Loss: Focal loss penalizes classification errors in
predicted occupancy maps. Let Oτ

obs and Oτ
occ be the

ground-truth occupancy maps at time step τ . We define the
binary focal loss as

Lobs = focal
(
Ôτ

obs,Oτ
obs

)
(3)

Locc = focal
(
Ôτ

occ,Oτ
occ

)
(4)

Lfocal = Lobs + Locc (5)

where focal(·, ·) denotes the standard binary focal
loss [4], and Lobs and Locc are the computed losses for ob-
served and occluded occupancy maps, respectively.

Flow Loss: We use a masked L1-loss for our flow loss.
This loss is defined as follows:

Lflow =
∥∥∥Mτ ⊙

(
F̂τ −Fτ

)∥∥∥
1

(6)

where ⊙ represents element-wise multiplication, and Mτ ∈
RH×W×2 is a binary mask that indicates the presence of
ground-truth flow. The mask Mτ is calculated as:

Mτ (i, j) =

{
1 if Fτ (i, j) ̸= 0

0 otherwise
(7)

where 0 ∈ R2 is a zero vector, and Mτ (i, j) and Fτ (i, j)
denote the mask values and the ground-truth flow at the co-
ordinates (i, j), respectively.

Traced Loss: Traced loss [8] encourages both accurate
occupancy and flow predictions. Let Oτ−1 = Oτ−1

obs ∪Oτ−1
occ

represent the union of the ground-truth observed and oc-
cluded occupancy maps. We warp this union to the frame
τ using the predicted flow map F̂τ , resulting in the warped
occupancy map Oτ−1→τ . The traced loss is then defined as

Ltrace = focal
(
Oτ−1→τ ,Oτ

)
(8)

Here, Oτ is the union of the ground-truth observed and oc-
cluded occupancy maps at frame τ .

2. Experiments
2.1. Implementation Details

We evaluate our method using the Waymo Open Motion
dataset [2]. For each scenario, we utilize 11 frames of past
and present data and extract agent and static features from

3



Table 1. 2024 Waymo Open Dataset test set performance comparison. The best results are in bold.

Observed Occluded Flow Flow-Grounded

Model AUC ↑ Soft IoU ↑ AUC ↑ Soft IoU ↑ EPE ↓ AUC ↑ Soft IoU ↑
DOPP 0.7972 0.3429 0.1937 0.0241 2.9574 0.8026 0.5156
STrajNet 0.7514 0.4818 0.1610 0.0183 3.5867 0.7772 0.5551
VectorFlow 0.7548 0.4884 0.1736 0.0448 3.5827 0.7669 0.5298
HGNET 0.7332 0.4211 0.1656 0.0180 3.6699 0.7403 0.4498

Ours 0.7552 0.2299 0.1658 0.0180 3.3779 0.7564 0.4431

Figure 4. Visualization of predictions for two scenes.

each frame. These features are 256 × 256 bird-eye-view
maps, representing an area of 80× 80m2 in the real world.
For training, we use the AdamW [7] optimizer with the ini-
tial learning rate of 2× 10−4 and weight decay of 0.05. We
train our model for 10 epochs with cosine annealing [6]. We
set the batch size to 72.

2.2. Results

Table 1 compares our method with competing methods in
the 2024 Open Waymo Challenge. In Table 1, our method
ranks 4th in terms of the Flow-Grounded AUC, the primary
performance metric in this challenge. This is likely due
to our model being less trained (10 epochs) and not utiliz-
ing enriched input information beyond the 256× 256 maps,
which have been reported to be effective in previous stud-
ies [3, 9]. Therefore, improving these aspects remains our
future work. Figure 4 visualizes the predicted occupancy
and flow of our method for two scenes. Each column repre-
sents future predictions from 1 second to 8 seconds ahead.
The top row shows the predicted occupancy, while the bot-
tom row displays the predicted flow.

3. Conclusion

In this report, we introduced our solution for the occupancy
and flow prediction task in the 2024 Waymo Open Dataset
Challenge. We designed our model using a spatio-temporal
encoder, a multi-scale aggregator, and an autoregressive de-
coder. For the encoder, we utilized CAFormer-S18 [13],
expanding it to handle temporal features. To aggregate
the encoder outputs, we employed the PAN structure from
YOLOv9 [12]. Additionally, we developed a convolution-
based decoder to generate future frames autoregressively.
Our method achieves a Flow-Grounded AUC of 0.7564 on
the test set. However, our method is limited by its relatively
short training duration and the lack of enriched input infor-
mation. Future work will focus on extending training and
incorporating richer input data to enhance performance.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016. 1

[2] Scott Ettinger, Shuyang Cheng, Benjamin Caine, Chenxi

4



Liu, Hang Zhao, Sabeek Pradhan, Yuning Chai, Ben Sapp,
Charles Qi, Yin Zhou, Zoey Yang, Aurelien Chouard, Pei
Sun, Jiquan Ngiam, Vijay Vasudevan, Alexander McCauley,
Jonathon Shlens, and Dragomir Anguelov. Large scale in-
teractive motion forecasting for autonomous driving : The
waymo open motion dataset, 2021. 3

[3] Yihan Hu, Wenxin Shao, Bo Jiang, Jiajie Chen, Siqi Chai,
Zhening Yang, Jingyu Qian, Helong Zhou, and Qiang Liu.
Hope: Hierarchical spatial-temporal network for occupancy
flow prediction, 2022. 4

[4] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and
Piotr Dollár. Focal loss for dense object detection, 2018. 3

[5] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.
Path aggregation network for instance segmentation, 2018. 2

[6] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts, 2017. 4

[7] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization, 2019. 4

[8] Reza Mahjourian, Jinkyu Kim, Yuning Chai, Mingxing
Tan, Ben Sapp, and Dragomir Anguelov. Occupancy flow
fields for motion forecasting in autonomous driving. IEEE
Robotics and Automation Letters, 7(2):5639–5646, 2022. 3

[9] Dmytro Poplavskiy. Waymo open dataset occupancy and
flow prediction challenge solution: Look around, 2022. Ac-
cessed: 2024-05-30. 4

[10] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017. 1

[11] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115:211–252, 2015. 1

[12] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao.
Yolov9: Learning what you want to learn using pro-
grammable gradient information, 2024. 2, 4

[13] Weihao Yu, Chenyang Si, Pan Zhou, Mi Luo, Yichen Zhou,
Jiashi Feng, Shuicheng Yan, and Xinchao Wang. Metaformer
baselines for vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 46(2):896–912, 2024. 1, 4

5


	. Proposed Method
	. Input Representation
	. Model
	. Loss Function

	. Experiments
	. Implementation Details
	. Results

	. Conclusion

