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Abstract

Predicting the motion of multiple traffic participants
has always been one of the most challenging tasks in au-
tonomous driving. The recently proposed occupancy flow
field prediction method has shown to be a more effective
and scalable representation compared to general trajectory
prediction methods. However, in complex multi-agent traf-
fic scenarios, it remains difficult to model the interactions
among various factors and the dependencies among pre-
diction outputs at different time steps. In view of this, we
propose a transformer-based hierarchical feature guided
network (HGNET), which can efficiently extract features of
agents and map information from visual and vectorized in-
puts, modeling multimodal interaction relationships. Sec-
ond, we design the Feature-Guided Attention (FGAT) mod-
ule to leverage the potential guiding effects between differ-
ent prediction targets, thereby improving prediction accu-
racy. Additionally, to enhance the temporal consistency and
causal relationships of the predictions, we propose a Time
Series Memory framework to learn the conditional distri-
bution models of the prediction outputs at future time steps
from multivariate time series. The results demonstrate that
our model exhibits competitive performance, which ranks
3rd in the 2024 Waymo Occupancy and Flow Prediction
Challenge.

1. Introduction

Predicting the motion of multiple traffic participants has
consistently been a significant challenge in autonomous
driving technology. An accurate and robust prediction mod-
ule must effectively handle a wide range of traffic scenar-
ios and participant behaviors. Additionally, it is crucial to
account for the potential interactions among different traf-
fic participants, as simplistic predictions can result in un-
realistic and contradictory outputs. Leveraging the robust
capabilities of deep learning, recently proposed occupancy
flow field prediction method offers an enhanced and more

Figure 1. Transformer-based encoder for multimodal inputs.

efficient representation for multimodal predictions in multi-
agent scenarios [4].

However, current prediction techniques for occupancy
flow field face several significant challenges. Firstly, while
predictions for visible agent motion typically perform well
within conventional tasks, forecasts for occluded obsta-
cles often exhibit suboptimal performance. Additionally,
there is a notable absence of suitable inference structures
in network design, with many methods relying on high-
dimensional abstract features at the network’s front end to
generate the final prediction targets [2, 3]. Secondly, there is
a lack of integration and correlation among the predictions
for future flow and the future occupancy predictions for
both visible and occluded obstacles. Effectively leveraging
these correlations could substantially enhance the predic-
tion performance of each component. Thirdly, for sequen-
tial prediction tasks, modeling the relationships between
outputs at different time steps is essential for improving pre-
diction accuracy.

In this technical report, we propose a hierarchical fea-
ture guided network for predicting occupancy flow field,
along with several specialized structural designs to effi-
ciently extract key features for forecasting the behaviors of



multiple agents in complex traffic scenarios characterized
by strong interaction relationships. Firstly, we employ a
transformer-based encoder to extract visual and vectorized
historical information, as well as map information, serv-
ing as input context tokens. Secondly, with the proposed
Feature-Guided Attention (FGAT) module, we introduce a
flexible and hierarchical framework that fully exploits the
intrinsic relationships among flow, visible, and occluded
agents’ occupancy grid, thereby efficiently extracting cor-
related features. Thirdly, to extract the temporal relation-
ships within prediction results over the forecast horizon and
enhance the continuity and correlation among features, we
have designed a Time Series Memory framework to capture
and store temporal information. It should be noted that our
proposed transformer-based prediction framework exhibits
significant scalability and flexibility while ensuring supe-
rior predictive performance. Experiments on the Waymo
Open Motion Dataset [1] demonstrate that HGNET can ac-
curately forecast trajectories in the form of occupancy flow
field at the scene level.

2. Approach
In this section, we provide a detailed introduction to the

HGNET framework. First, we briefly introduce the net-
work’s input and encoder, with the overall architecture il-
lustrated in Figure 1. Next, we describe the proposed de-
coder, along with several specialized structures designed
specifically for the prediction tasks. Finally, we explain the
training objectives used to optimize the prediction model
for joint occupancy flow field (OFF).

2.1. Multi-modal Context Tokens Encoding

To maximize the utilization of available multimodal in-
put information, we employ two types of input information,
including vectorized input and visual input. Vectorized in-
put consists of the historical trajectory state sequences of
NA agents within the scene over the past Th time steps,
containing information including position, velocity, head-
ing angle, and agent type. We also introduce vectorized map
information Mvec to the system. Finally, the positional at-
tributes of all agents and map elements are transformed into
the local coordinate system of the ego vehicle. For visual
input related to the prediction task of occupancy flow, we
establish a historical occupancy grid along with the back-
ward flow field between time steps t = −Th and t = 0.
Additionally, following the approach in [3], we introduce
an RGB visualization representation Mvis of the map net-
work to thoroughly incorporate essential map information
like traffic light signals.

As shown in Fig. 1, to consider the interaction among all
elements within the traffic scenario, the historical states of
all agents are firstly encoded by LSTM networks for all traf-
fic agents, and concatenate it to agent’s type embedding out-

put. Then a two-layer self-attention Transformer encoder is
applied to model the agent-agent interaction. The vector-
ized map waypoints are effectively encoded by a MLP layer
as the latent feature, followed by a self-attention Trans-
former encoder. To capture relationships and dependen-
cies between agents and map, we employ a cross-attention
Transformer as agent-map interaction encoder, utilizing
agent’s interaction feature as query (Q) and map feature en-
coded from vectorized map as key and value (K,V). With-
out loss of generality, we let all latent features have D hid-
den dimensions. Therefore, the vectorized tokens have the
shapes of [NA, D]. For visual features, the original inputs
are initially encoded by three MLP layers, then down sam-
pled separately. We concatenate them with each other as a
whole visual feature and feed it into the Swin-Transformer-
based encoder. Each Swin-Transformer module comprises
a two-layer Transformer equipped with both window self-
attention and shifted window self-attention. This con-
figuration facilitates comprehensive interaction modeling
for visual features through global and intersected atten-
tion mechanisms. Additionally, each attention module
incorporates multi-head attention with relative positional
bias. The outputs from three stages of Swin-Transformer
blocks are aggregated into a list v1,v2,v3 with shapes of
[H4 ,

W
4 , D

4 ], [
H
8 ,

W
8 , D

2 ], [
H
16 ,

W
16 , D] respectively, and serve

as the final output of visual features.

2.2. Hierarchical Feature Guided Decoder

To organize the prediction inference sequence of various
prediction targets more systematically and fully leverage
the guiding role of different features, we design the struc-
ture of the hierarchical feature guided decoder as shown in
Fig. 2. We choose flow as the first prediction and utilize
its high-dimensional features to inform subsequent predic-
tion tasks for it represents the changes in occupancy grids
between adjacent timesteps. Though occluded occupancy
cannot be directly inferred, the relevant features can be ef-
fectively extracted using visible information and historical
data [5]. Thus, we predict occluded occupancy as the last
prediction target, merging the features of both flow and ob-
served occupancy as guiding features. For each prediction
pathway, we first encode the corresponding inputs using a
similar method as described before, obtaining a feature list
with the same shape as the visual features (where the origi-
nal features of occluded occupancy are derived from visible
occupancy and flow). Subsequently, the encoded features
pass through a self-attention layer and are fed into our pro-
posed FGAT module as the query.
Feature-Guided Attention module. We designed the
FGAT module to amplify the query with corresponding fea-
tures guided by learnable offsets generated from the guid-
ing feature. Within the hierarchical network architecture,
the FGAT module aggregates various features from future



Figure 2. a) Framework of the decoding pipeline. b) Structure of the Feature-Guided Attention module.

timesteps. Particularly, except for the top-level FGAT mod-
ule, all guiding features are first input into a cross-attention
module as queries (with visual feature v3 as keys and val-
ues) then added with time series feature mt−1, before enter-
ing the FGAT module. Given the encoded historical feature
as query, guiding feature Q,G ∈ RH/16×W/16×C , and a
uniform index mesh-grid of points r ∈ RH/16×W/16×2 as
the references, the offsets ∆r for reference points are gen-
erated from the guiding feature by a MLP layer along with
a tanh layer:

Q′ = QWq,K
′ = xWk,V

′ = xWv,

x = fϕ(Q
′; r+∆r),∆r = tanh(MLP(G)),

(1)

where K′ and V′ represent the feature-guided key and value
embeddings, and we use a bilinear interpolation as fϕ(·; ·):

fϕ(G;R) =
∑
(x,y)

g(Rx, x)g(Ry, y)G[y, x, :], (2)

where g(i, j) = max(0, 1−|i−j|) and (x, y) represents ev-
ery point location of G ∈ RH/16×W/16×D. Finally we per-
form a multi-head cross-attention on Q′,K′,V′ with rela-
tive positional bias B, the projection matrice Wo and the
dimension of the key token d,

MHCA(Q′,K′,V′) = (hi||...||hM)Wo,

hi = softmax(Q′K′⊤/
√
d+B)V′,

(3)

Time Series Memory Framework. To improve the accu-
racy of temporal feature prediction results, we adopt this
framework to learn a model of the conditional distribution
of future time steps of a multivariate time series given the
historical features and covariates as:

q(yt0:T |y1:t0−1, c1:T ) =

T∏
t=t0

q(yt|y1:t−1, ct), (4)

where t0 denotes the current prediction time step. We use
the embeddings of future time steps as covariates c1:T . To
model the temporal dynamics via the updated hidden state
ht−1, we employ three multi-layer GRU networks to encode
the time series sequence up to time step t − 1, given the
covariates of the next time step ct:

mt−1,ht−1 = GRU(concat(yt−1, ct),ht−2), (5)

where h0 = 0 and mt−1 is the output of GRU network. In
three prediction heads, yt−1 represents f̃t−1, õ

b
t−1, õ

c
t−1 re-

spectively. They are the outputs of the cross-attention mod-
ule, where the output of the FGAT module serves as the
query, the encoded vector features are used as the key and
value. By dynamically updating the hidden states, the infor-
mation from previous time steps is preserved and fused for
predicting features at the next time step.

Finally, we decode the flow and occupancy from the fea-
ture tensors using feature pyramid network (FPN), which
consists of multi-layer 2D-CNNs and upsampling layers,
along with additional 2D-CNNs employed to process the
features in the residual paths.

2.3. Training Objectives

For the occupancy loss Locc, we utilize the focal loss and
the cross-entrophy loss for the observed and occluded occu-
pancy regression. Similar to [4], smooth L1 loss is applied
as flow loss Lf to supervise the flow prediction. The final
multi-task training objective sum up the loss terms scaled
by the size of the grid map (with height h and width w) and
length of timesteps of the output:

L =
1

hwT
(100Locc + Lf ) (6)



Evaluation Metrics Observed Occupancy Observed Occupancy Flow Flow-grounded Occupancy

Method AUC ↑ Soft-IoU ↑ AUC ↑ Soft-IoU ↑ EPE ↓ AUC ↑ Soft-IoU ↑
DOPP 0.797 0.343 0.194 0.024 2.957 0.803 0.516
STNet 0.755 0.230 0.166 0.018 3.378 0.756 0.443
Ours 0.733 0.421 0.166 0.039 3.670 0.740 0.450

Table 1. Summary of the testing performance on the Waymo occupancy and flow prediction benchmark.

FG-
AT

time
series

Observed
AUC↑

Occluded
AUC↑

Flow
EPE↓

FG
AUC↑

✗ ✗ 0.713 0.131 3.905 0.719
✓ ✗ 0.721 0.154 3.724 0.733
✓ ✓ 0.742 0.158 3.561 0.743

Table 2. Ablation study on FGAT module and time series memory
framework.

3. Experiments
3.1. Implementation Details

The hidden feature dimension is 256, We choose GELU
as the activation function in all encoders and RELU in the
decoder. Dropout is followed after every MLP layer, all
with a dropout rate of 0.1. we use a distributed training
strategy on 2 Nvidia RTX 6000 Ada GPUs with a total batch
size of 16. The training process lasts 16 epochs. We use the
Adam optimizer for training with the initial learing rate of
1e-4, and the learning rate decayes by a factor of 50% every
2 epochs.

3.2. Quantitative Results

The performance of HGNET on the the Waymo occu-
pancy and flow prediction benchmark is shown in Tab. 1,
where we can see that our proposed approach outperforms
other method on some metrics, and overall, it demonstrates
good performance across other metrics and exhibits a cer-
tain level of competitiveness.

3.3. Ablation Study

We conduct an ablation study to investigate the infuences
of key modules in our proposed method, i.e., FGAT mod-
ule and time series memory framework. We conducted ex-
periments with two ablation variants of our model: one ex-
cluding the time series memory framework (i.e., without up-
dates to the hidden states of the time series and the fusion of
time series features) and another excluding the FGAT mod-
ule (substituting it with a standard cross-attention module).
As shown in Tab. 2, the performance metrics on the Waymo
occupancy flow validation set exhibit a decline across all
metrics for the ablated models. These results substantiate
the efficacy of our proposed framework in enhancing pre-

diction accuracy.

4. Conclusion
We propose HGNET, a hierarchical multi-modal fea-

ture guided framework for joint multi-agent occupancy flow
field prediction. Leveraging the proposed Feature-Guided
Attention module for feature guidance and an effective
Time Series Memory framework for temporal feature ex-
traction, our model achieves accurate multi-agent motion
prediction in the form of occupancy flow fields. Experimen-
tal results demonstrate that our method achieves competi-
tive performance on the Waymo occupancy and flow pre-
diction benchmark.
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