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Abstract

Simulating realistic agents is key for validating au-
tonomous driving systems. Current data-driven simulators
use encoder-decoder structures, complicating models and
harming data and parameter efficiency. This technical re-
port introduces BehaviorGPT, a decoder-only autoregres-
sive model that treats each time step as the current one
for enhanced data and parameter efficiency. In addition,
our Next-Patch Prediction Paradigm (NP3) allows models
to reason at the patch level and capture long-range interac-
tions. BehaviorGPT achieves state-of-the-art performance
on the Waymo Open Sim Agents Benchmark with a real-
ism score of 0.7473 and a minADE score of 1.4147, using
merely 3M model parameters. Our code will be released in
the future.

1. Introduction

Autonomous driving demands reliable evaluation of system
safety. While on-road testing is costly and lacks safety-
critical scenarios, simulation offers a low-cost alternative
for large-scale offline testing. This technical report fo-
cuses on simulating traffic agents’ behavior, which is crucial
for validating the driving policies of autonomous vehicles
(AVs).

Existing learning-based agent simulators [3, 6] often
adopt an encoder-decoder architecture inspired by motion
forecasting models. These models encode historical infor-
mation to facilitate future state decoding, requiring man-
ually splitting the time series into history and future seg-
ments. However, using heterogeneous encoders and de-
coders complicates the architecture. Moreover, we ex-
pect a sample-efficient framework to learn from all possi-
ble history-future pairs of time series. This is difficult to
achieve with encoder-decoder models owing to their het-
erogeneous processing for historical and future time steps.

Inspired by the success of Large Language Models

*Equal contribution

(LLMs), we introduce BehaviorGPT, a decoder-only au-
toregressive architecture for agent simulation. Our Behav-
iorGPT uses homogeneous Transformer blocks [5] to pro-
cess the entire trajectory snippets without separating history
and future, resulting in a simpler and more efficient simu-
lator. By employing relative spacetime representations [7]
to model each agent state as the current one, we require
each agent state to perform future prediction, thereby maxi-
mizing data utilization. To address compounding errors and
causal confusion in autoregressive modeling, we introduce
the Next-Patch Prediction Paradigm (NP3). Our proposed
NP3 enables models to reason at the patch level of trajec-
tories, facilitating long-range interaction modeling and pre-
venting models from leveraging trivial shortcuts at training
time. Equipped with NP3, BehaviorGPT achieves superior
performance in the Waymo Open Sim Agents Challenge
(WOSAC) [2] with merely 3M model parameters, demon-
strating its effectiveness for agent behavior simulation.

2. Method

This section presents our proposed BehaviorGPT for multi-
agent behavior simulation, with Fig. 1 illustrating the over-
all framework.

2.1. Problem Formulation

In multi-agent behavior simulation, we aim to simulate
agents’ future behavior in dynamic environments. A sce-
nario consists of a vector map M and the states of Nagent
agents over T time steps. The state Si of the i-th agent at
each time step includes position, velocity, yaw angle, and
bounding box size. Agent types (e.g., vehicles, pedestrians,
and cyclists) are also given. We formulate this as sequential
predictions over trajectory patches, where the prediction of
each patch will affect the subsequent patches. An agent-
level trajectory patch is defined as:

P τ
i = S

(τ−1)×ℓ+1:τ×ℓ
i , i ∈ {1, . . . , Nagent} ,

τ ∈ {1, . . . , Npatch} ,
(1)
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Figure 1. Overview of BehaviorGPT. Agent and map data are embedded and fed into a Transformer decoder for autoregressive modeling
based on next-patch prediction.

where ℓ is the number of time steps per patch, Npatch = T/ℓ,
and P τ

i represents the τ -th patch of the i-th agent. A scene-
level patch is defined as:

P τ = S
(τ−1)×ℓ+1:τ×ℓ
1:Nagent

, τ ∈ {1, . . . , Npatch} , (2)

which includes all agents’ states at the τ -th patch. We fac-
torize the joint distribution over scene-level patches using
the chain rule:

Pr
(
S1:T
1:Nagent

| M
)
= Pr

(
P 1:Npatch | M

)
=

Npatch∏
τ=1

Pr
(
P τ | P 1:τ−1,M

)
,

(3)

where Pr(S1:T
1:Nagent

| M) is the joint distribution of all
agents’ states over all time steps conditioned on the map
M . Further, we assume that agents plan their motions inde-
pendently within the horizon of a patch, factorizing the con-
ditional distribution of each scene-level patch over agents:

Pr
(
P τ | P 1:τ−1,M

)
=

Nagent∏
i=1

Pr
(
P τ
i | P 1:τ−1,M

)
. (4)

Given the multimodality of agents’ behavior, we assume
Pr(P τ

i | P 1:τ−1,M) to be a mixture model with Nmode
modes:

Pr
(
P τ
i | P 1:τ−1,M

)
=

Nmode∑
k=1

πτ
i,k Pr

(
P τ
i,k | P 1:τ−1,M

)
,

(5)
where πτ

i,k is the probability of the k-th mode. Since a patch
covers ℓ time steps, we further apply the chain rule to fac-
torize the states per mode over time steps:

Pr
(
P τ
i,k | P 1:τ−1,M

)
= Pr

(
S
(τ−1)×ℓ+1:τ×ℓ
i,k | P 1:τ−1,M

)
=

τ×ℓ∏
t=(τ−1)×ℓ+1

Pr
(
St
i,k | S(τ−1)×ℓ+1:t−1

i,k , P 1:τ−1,M
)
.

(6)

Such an autoregressive formulation can be interpreted as
planning the patch-level behavior of each agent indepen-
dently (Eq. (4)), fixing agents’ behavior mode per ℓ time
steps (Eq. (5)), and autoregressively unrolling the next state
given a specific behavior mode (Eq. (6)). However, we can
also increase the replan frequency at inference time to en-
hance agents’ reactivity. For instance, although we assume
that agents plan for ℓ steps, we may let them execute only
one step of the planned actions and choose a new behavior
mode at the next step to react to the change in environments.

2.2. Relative Spacetime Representation

We adopt the relative spacetime representation introduced
in QCNet [7] to model the patches symmetrically in space
and time, achieving simultaneous multi-agent prediction
in Eq. (4) and allowing parallel next-patch predictions as
depicted in Eq. (3). Under this representation, the fea-
tures of each map element and agent state are derived from
coordinate-independent attributes (e.g., the semantic cate-
gory of a map element and the speed of an agent state). On
top of this, we effectively maintain the spatial-temporal re-
lationships between input elements via relative positional
embeddings:

Rj→i = MLP (∥dj→i∥, ∠ (ni, dj→i) , ∆θj→i, ∆τj→i) ,
(7)

where Rj→i is the relational embedding from j to i, ∥dj→i∥
is the Euclidean distance between them, ∠(ni, dj→i) is the
angle between ni (the orientation of i) and dj→i (the dis-
placement vector from j to i), ∆θj→i is the relative yaw
angle from j to i, and ∆τj→i is the time difference.

2.3. Map Tokenization and Agent Patching

We convert raw information into neural embeddings before
performing spatial-temporal relational reasoning among
traffic scene elements. We embed map information by
sampling points along the polylines every 5 meters and
tokenizing their semantic category (e.g., lane centerlines,
road edges) via learnable embeddings. The shape of the
embedding table for map elements is [17, 128], indicating



17 semantic categories in total and a hidden size of 128.
The i-th map point’s embedding is denoted as M̂i, which
only contains semantic information and does not include
any information about coordinates. For agent states, we
use attention-based patching to obtain patch-level trajec-
tory embeddings. Specifically, we transform the coordinate-
independent attributes of the i-th agent’s state St

i (i.e., the
agent type, the bounding box size, the speed, and the angle
of the velocity vector relative to the bounding box’s yaw an-
gle) with an MLP, obtaining state embedding Ŝt

i . We then
collect ℓ consecutive state embeddings and apply attention
with relative positional embeddings:

P̂ τ
i = MHSA(Q = Ŝτ×ℓ

i ,K = V = {[Ŝt
i , Rt→τ×ℓ

i ]},
t ∈ {(τ − 1)× ℓ+ 1, . . . , τ × ℓ− 1}) ,

(8)
Here, P̂ τ

i is the patch embedding of the i-th agent at the τ -th
patch, MHSA(·) is multi-head self-attention, [:, :] denotes
concatenation, and Rt→τ×ℓ

i is the positional embedding of
St
i relative to Sτ×ℓ

i .

2.4. Triple-Attention Transformer Decoder

After obtaining map tokens and agent patch embeddings,
we use a Transformer decoder with a triple-attention mech-
anism to model spatial-temporal interactions among scene
elements. The triple-attention mechanism considers three
sources of information fusion: the temporal dependencies
between the trajectory patches of an agent, the map regula-
tions on agents, and the social interactions among agents.
First, we use causal self-attention in the time dimension
to capture the relationships among an agent’s trajectory
patches, accommodating our autoregressive formulation.
Second, a k-NN agent-map cross-attention is employed to
model the environmental influences on agents. Third, we
apply a k-NN agent-agent self-attention to capture the so-
cial interactions. All these attention modules employ rela-
tive spatial-temporal positional embeddings similar to QC-
Net [7]. The triple-attention mechanism can be depicted as:

F τ
a2t,i = MHSA(Q = P̂ τ

i ,K = V = {[P̂ t
i , Rt×ℓ→τ×ℓ

i ]},
t ∈ {1, . . . , τ − 1}) ,

(9)
F τ
a2m,i = MHCA(Q = F τ

a2t,i,K = V = {[M̂j , Rτ×ℓ
j→i]},

j ∈ N (i, τ)) ,
(10)

F τ
a2a,i = MHSA(Q = F τ

a2m,i,K = V = {[F τ
a2m,j , Rτ×ℓ

j→i]},
j ∈ N (i, τ)) ,

(11)
where N (i, τ) denotes the k-nearest agent/map neighbors
of the i-th agent at the τ -th patch. Our decoder is relatively
efficient thanks to (1) factorizing the space and time dimen-
sions and (2) using k-NN attention with k = 32 for spatial

Table 1. Comparison of the replan frequency on the test set.

Replan Frequency minADE (↓) Realism Collision Offroad

1 Hz 1.5405 0.7414 0.9520 0.9308
2 Hz 1.4147 0.7473 0.9537 0.9349
5 Hz 1.5693 0.7342 0.9429 0.9089

interaction modeling. Limited by computing resources for
model training, we only stack two layers for each attention
module with 8 attention heads and a hidden size of 128. We
welcome researchers with sufficient computing resources to
examine the scalability of our architecture.

Given the patch embeddings updated by the Transformer
decoder, we develop a next-patch prediction head to model
the marginal multimodal distribution of agent trajectories.
For the τ -th patch of the i-th agent, given the attention out-
put F τ

i ∈ R128, we estimate the next patch’s mixture model
parameters pre-defined with Nmode = 16 modes. These
modes are automatically learned without relying on any
anchors. An MLP transforms F τ

i into mixing coefficients
πτ+1
i ∈ RNmode . For each mode, the conditional distribution

of the next agent state, as depicted in Eq. (6), is consid-
ered a multivariate marginal distribution with position and
velocity components as Laplace distributions and the yaw
angle as a von Mises distribution. Under this formulation,
a GRU-based autoregressive RNN unrolls the states of the
next patch step by step, with each step being conditioned on
the last agent state. The RNN’s hidden state hτ,t

i,k ∈ R128 is
initialized with F τ

i at t = 1 for ∀k ∈ {1, . . . , Nmodes}. At
each step, an MLP estimates the location and scale parame-
ters of the next agent state’s position and velocity based on
the hidden state. The MLP also estimates the location and
concentration parameters of the next agent state’s yaw an-
gle. The location parameters of the newly predicted state,
including the 3D positions, the 2D velocities, and the yaw
angle, are used to update the RNN’s hidden state directly
without relying on the predicted scale/concentration param-
eters for sampling. The whole process is summarized as:

πτ+1
i,k = MLP([F τ

i , Zk]) ,

hτ,1
i,k = F τ

i ,

µτ×ℓ+t
i,k , bτ×ℓ+t

i,k , κτ×ℓ+t
i,k = MLP([hτ,t

i,k, Zk]) ,

hτ,t+1
i,k = RNN(hτ,t

i,k, MLP(µτ×ℓ+t
i,k )) .

(12)
Here, {µτ×ℓ+t

i,k ∈ R6}t∈{1,...,ℓ}, {bτ×ℓ+t
i,k ∈ R5}t∈{1,...,ℓ},

and {κτ×ℓ+t
i,k ∈ R}t∈{1,...,ℓ} are location, scale, and concen-

tration parameters, Zk ∈ R128 is the k-th learnable mode
embedding.

3. Experiments
We use the Waymo Open Motion Dataset (WOMD) [1] to
evaluate the effectiveness of our BehaviorGPT.



Table 2. Performance evaluation of different models on the Waymo Open Sim Agents Benchmark.

Method Name minADE (↓) Realism Meta metric Kinematic metrics Interactive metrics Map-based metrics

BehaviorGPT 1.4147 0.7473 0.4333 0.7997 0.8593
VBD 1.4743 0.7200 0.4169 0.7819 0.8137
SMART 1.5435 0.7457 0.4168 0.8053 0.8571
SMART 1.5447 0.7511 0.4445 0.8050 0.8571
GUMP 1.6041 0.7431 0.4780 0.7887 0.8359
MVTE 1.6770 0.7302 0.4503 0.7706 0.8381
TrafficBotsV1.5 1.8825 0.6988 0.4304 0.7114 0.8360
cogniBOT v1.5 1.8832 0.6288 0.3293 0.7129 0.6918

Table 3. Comparison of model parameters.

BehaviorGPT SMART Trajeglish [3] MTR++ [4] MTR [4]

3M 8M 35.6M 86.6M 65.8M

3.1. Implementation Details

The optimal patch size we experimented with is 10, corre-
sponding to 1 second. All hidden sizes in the model are
set to 128. All attention layers have 8 attention heads with
16 dimensions per head. Each attention layer is enhanced
by residual connections, a feed-forward network activated
by the ReLU function, and Layer Normalization in a pre-
norm manner. We apply the same architecture to make pre-
dictions for all agents. To differentiate the policies of sur-
rounding vehicles and AVs, we use an AV-specific learnable
embedding to incorporate the agent type information when
embedding AVs’ states. We can also easily swap with any
other AV policy, as we have properly factorized the multi-
agent distribution according to Eq. (4).

Based on the training objective of the negative likelihood
of the factorized Pr(S1:T

1:Nagent
| M), we train our models for

30 epochs with a batch size of 24 using the AdamW opti-
mizer. The weight decay rate and the dropout rate are both
0.1. Using the cosine annealing scheduler, we decay the
learning rate from 5× 10−4 to 0. We apply teacher forcing
at the patch level when performing next-patch prediction.
In contrast, we feed the predicted states to the RNN when
conducting next-state prediction within each patch.

Our results are produced by a single model with 3M pa-
rameters. To obtain 32 replicas of 8-second rollouts, we
independently sample a behavior mode from each agent’s
next-patch distribution. After mode sampling, we can fix
the behavior modes of agents for at most 10 time steps, uti-
lizing the 10-step next-state prediction results produced by
the autoregressive RNN. This can lower the inference la-
tency at the cost of lower reactivity. To enhance the reac-
tivity of agents, we tried conducting next-patch prediction
every 0.5 seconds. As shown in Tab. 1, increasing the fre-
quency of next-patch prediction to 2 Hz leads to much better
results across all metrics. However, the 5-Hz results become
worse.

3.2. Main Results

We evaluated our model on the Waymo Open Sim Agents
Benchmark [2], with results demonstrated in Tab. 2. Our
model surpasses state-of-the-art solutions regarding mi-
nADE and achieves the best performance on the map-
based metrics. Besides the benchmarking results, we fur-
ther compare the parameter count of BehaviorGPT against
several baselines. Table 3 shows that BehaviorGPT, with
only 3M model parameters, significantly reduces the pa-
rameter count compared to models like MTR [4] and Tra-
jeglish [3]. These results highlight the parameter efficiency
of the decoder-only architecture. Our model also has low
inference latency, consuming about 10 ms for a single sim-
ulation step on an NVIDIA L20 GPU.

Table 4. Comparison of patch sizes on a subset of the val split.

Patch Size Replan Frequency minADE (↓) Realism Offroad

1 10 Hz 2.3752 0.6783 0.8432
5 2 Hz 1.5598 0.7272 0.9077
10 1 Hz 1.5203 0.7334 0.9131

In Tab. 4, we compare the simulation results using dif-
ferent patch sizes. As shown in the first row of the table, the
simulation results are very bad without any patching oper-
ations. Using a patch size of 10 yields better results than
using a patch size of 5.

4. Conclusion
This technical report introduced BehaviorGPT, a decoder-
only autoregressive architecture for agent simulation in au-
tonomous driving. By applying homogeneous Transformer
blocks to the entire trajectory snippets and using rela-
tive spacetime representations, BehaviorGPT simplifies the
modeling process and maximizes data utilization. We also
developed the Next-Patch Prediction Paradigm to task mod-
els with predicting trajectory patches instead of single-step
agent states, enabling high-level scene understanding and
long-range interaction reasoning. Our Waymo Open Sim
Agents Challenge results show that BehaviorGPT achieves
superior performance with just 3M model parameters, high-
lighting its potential to further improve simulation realism
with more data and computation.
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