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Abstract

Generating realistic and controllable agent behaviors
in traffic simulation is crucial for the development of au-
tonomous vehicles. In this report , we introduce a novel
framework Versatile Behavior Diffusion (VBD) to simu-
late interactive scenarios with multiple traffic participants.
The VBD model consists of three main parts: a query-
centric Transformer encoder, a Transformer denoiser to
generate scene-level joint behaviors of agents using the
diffusion process, and a Transformer-based multi-modal
marginal trajectory predictor. Our model not only gen-
erates scene-consistent multi-agent interactions but also
enables scenario editing. Experimental evaluations in-
dicate that the VBD model achieves competitive perfor-
mance on the Waymo 2024 Sim Agents benchmark. Project
website: https://sites.google.com/view/
versatile-behavior-diffusion

1. Introduction
Simulation plays a crucial role in validating the perfor-

mance of autonomous driving systems. One primary chal-
lenge is generating diverse, realistic, and interactive traffic
behaviors at scale. Conventional model-based methods of-
ten fail to deliver the necessary realism and accurately cap-
ture human interactions within real-world contexts. Con-
sequently, many studies have shifted towards data-driven
methods, leveraging readily available driving logs and ap-
plying imitation learning techniques to model more realistic
behaviors for traffic agents. However, these methods typi-
cally focus on a single agent or use a shared policy across
all traffic participants, resulting in a lack of scene consis-
tency and increasing the likelihood of collisions in highly
interactive scenarios.

We aim to leverage diffusion models [2, 7, 8], a class of
generative modeling methods that gradually recover struc-
tured data from random noise, for traffic scenario genera-
tion. Diffusion models enable effective behavior modeling
for multi-agent joint futures and have been increasingly em-

ployed in generating agent behaviors [4,9]. However, train-
ing and controlling diffusion models for traffic agent inter-
action modeling remain challenging. In this paper, we pro-
pose Versatile Behavior Diffusion (VBD), which utilizes
maps and historical states of agents as conditional inputs to
generate realistic and scene-consistent traffic scenarios.

We demonstrated that our model is capable of directly
generating scenarios via denoising, controllable sampling
for various tasks with user-specific objectives, improv-
ing generation quality by integrating behavior priors, and
generating long-tail safety-critical scenarios using game-
theoretic guidance. In this report, we focus on directly
simulating traffic agents’ behaviors in a closed-loop envi-
ronment without guidance, as our submission to the 2024
Waymo Open Dataset SimAgent Challenge. Detailed de-
scriptions of our model and additional applications can be
found in our extended paper.

2. Method
2.1. Overview

The VBD model consists of three main components as
illustrated in Fig. 1. The scene encoder Eϕ : c 7→ ĉ en-
codes the scene context c into its latent representation ĉ
using query-centric attention Transformers [6, 10]. Lever-
aging rich scene context information from encoder, the de-
noiser Dθ : (ĉ, ũ, k) 7→ û directly predicts a joint control
sequence û from ĉ and noised control ũ at step k. The be-
havior predictor Pψ : (ĉ, {ζi}Mi=1) 7→ {CatM (ûa, ω̂a)}Aa=1

predicts an M -mode marginal categorical trajectory distri-
bution of each agent from ĉ with the help of a set of rep-
resentative static end-point anchors {ζi}Mi=1 extracted from
data [6]. All three modules utilize a stack of query-centric
self-attention and cross-attention blocks for flexibility and
scalability.

2.2. System Dynamics

The diffusion model operates in the action space, and we
assume that there is a dynamic function that can translate
actions to physical states xt+1 = f(xt,ut). A unicycle dy-
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Figure 1. Overview of the proposed VBD model. The input scenario tokens are encoded through a query-centric Transformer-based
scenario encoder. The behavior predictor generates marginal multi-modal trajectories. The denoiser predicts the joint multi-agent future
trajectories while attending to themselves and the condition tokens. During inference, the predicted behavior priors or user-defined model-
based objectives J can be used to guide the denoising process to generate desired scenarios.

namics function is utilized to transform agent actions into
states, which is adopted to approximate the dynamics of all
agent types, including vehicles, pedestrians, and cyclists.
The current state of an agent is defined by its global coordi-
nates (x, y), yaw angle ψ, and velocities vx, vy . Given the
action of an agent, including acceleration v̇ and yaw rate ψ̇,
and the time length for one step ∆t, the next-step state of
the agent is calculated using the following forward dynam-
ics f , expressed as:

x(t+ 1) = xt + vx(t)∆t,

y(t+ 1) = yt + vy(t)∆t,

ψ(t+ 1) = ψ(t) + ψ̇∆t,

v(t+ 1) =
√
vx(t)2 + vy(t)2 + v̇∆t,

vx(t+ 1) = v(t+ 1) cosψ(t+ 1),

vy(t+ 1) = v(t+ 1) sinψ(t+ 1).

(1)

Since each operation in the dynamics function is differen-
tiable, it can be integrated as a layer in the network to con-
vert predicted actions into states. Furthermore, we employ
the inverse dynamics function f−1 to calculate actions from
ground-truth states, which is formulated as:

v̇(t) =
v(t+ 1)− v(t)

∆t
,

v(t) =
√
vx(t)2 + vy(t)2,

ψ̇(t) =
ψ(t+ 1)− ψ(t)

∆t
.

(2)

2.3. Model Structure

Scene Encoder. The encoder processes three main in-
puts: the agent history tensor ([A, Th, Da]), the map poly-
line tensor ([Ml,Mp,Dp]), and the traffic lights tensor
([Mt,Dt]). Here, Th denotes the number of historical
steps, Ml the number of polylines, Mp the number of way-
points per polyline, Mt the number of traffic lights, and
Ml +Mt = M represents the combined count of map el-
ements. The feature sizes for agents, polylines, and traffic
lights are represented by Da, Dp, and Dt, respectively. The
agent history tensor records each agent’s historical state,
including x, y coordinates, heading angle (ψ), velocities
(vx, vy), and bounding box dimensions (l, w, h), along with
the agent type. Each map polyline, comprising Mp = 30
waypoints, includes attributes like x, y coordinates, direc-
tion angle, the traffic light state controlling the lane, and
lane type. The traffic lights tensor encompasses the x, y co-
ordinates of stop points and the state of each traffic light.
Before encoding, positional attributes of all elements are
converted into their local coordinate systems; for agents,
the reference point is their last recorded state, and for map
polylines, it is the location of the first waypoint. We choose
A = 64 agents, Th = 11 historical steps, Ml = 256 map
polylines, and Mt = 16 traffic lights.

We first encode the agent history tensor, utilizing a
shared GRU network to produce a tensor of shape [A,D],
which is then combined with the agent type embedding. For
map polylines, an MLP is employed for encoding, result-
ing in a tensor of shape [Ml,Mp,D]. This is followed by
max-pooling along the waypoint axis to produce a tensor of



shape [Ml,D]. For traffic lights, we only encode their light
status using an MLP, yielding a tensor of shape [Mt,D].
These tensors are then concatenated to form the initial scene
encoding tensor with shape [A+M,D].

The initial scene encoding is further processed using
query-centric Transformer layers to symmetrically encode
the interrelationships among scene components [6, 10]. In
this approach, each scene element is translated into its local
coordinate system and encoded with query-centric features,
and the relative position of each pair of scene elements is
calculated and encoded as edge attributes eij with a MLP.
For each query element qi operates, the query-centric trans-
former adapted a modified multi-head attention layer [5] as
follows:

QCA(Qi,K, V, e) = softmax
( qi√

D
[{kj

+eij}j∈Ω(j)]
T
)
({vj + eij}j∈Ω(j)),

(3)

where kj ,vj represent the key and value elements respec-
tively, each containing relevant element-centric informa-
tion, and j ∈ Ω(j) indicates the index of other tokens. Our
encoder consists of 6 post-norm query-centric Transformer
layers with GELU activations to process the initial scene
encoding. Each transformer layer has 8 attention heads and
the hidden embedding dimension of D = 256. The final
output tensor retains the same shape as [A+M,D].

Denoiser. The denoiser part processes three types of in-
put: noised actions ([A, Tf , 2]) derived from the ground-
truth state and action trajectories, the noise level, and
the scene encoding tensor. Each agent’s action at every
timestep a = [v̇, ψ̇]T consists of acceleration and yaw rate,
while the state comprises coordinates, heading, and veloc-
ity (x, y, ψ, v). Here, actions are reduced to a shorter length
Tf from T , by replicating the same action over multiple
timesteps, denoted as Ta. The noise level is encoded via
an embedding layer to a tensor of shape [1, 1, D]. Noised
actions are converted into noisy states using a forward dy-
namics model and subsequently encoded into a tensor of
shape [A, Tf , D] using an MLP. The encoded noisy states
are combined with the noise level embedding and a tem-
poral embedding ([1, Tf , D]) to create the initial trajec-
tory embedding. For the denoising process, two decoding
blocks, each comprising two Transformer decoder layers,
are applied to predict clean actions. Within the decoding
block, a self-attention Transformer module is employed to
model the joint distribution of future plans across agents.
To maintain closed-loop rollout causality, a causal relation-
ship mask [3] is used in the self-attention module, which en-
sures that information from future timesteps cannot be uti-
lized at the current timestep. Furthermore, a cross-attention
Transformer module is used to model the scene-conditional
distribution, by relating the noisy trajectories to the en-
coded scene conditions. Since the elements are encoded in a

query-centric manner, the decoding layers still require rela-
tive positional information between elements, which can be
obtained from the encoder.

Following the Transformer decoding stage, the result-
ing trajectory embedding is fed into an MLP to decode
the clean actions tensor of shape [A, Tf , 2]. Subsequently,
clean states ([A, T, 3], encompassing x, y, ψ) are deduced
from these predicted actions using a differentiable dynam-
ics model. In this work, we choose T = 80 and Ta = 2,
resulting in Tf = 40 and thus significantly reducing com-
putational demands while maintaining high accuracy.

Behavior predictor. The behavior predictor generates
the marginal distributions of possible behaviors for agents
by directly decoding from the encoded scene conditions.
To accurately predict the probabilities of possible goals, the
predictor takes as input the static anchors for agents in lo-
cal coordinates with shape [A,Mo, 2] as the modality query
inputs. The anchors contain Mo = 64 typical x, y coordi-
nates at T = 80 extracted from data using the K-means
algorithm, and vary across different agent types such as ve-
hicles, pedestrians, and cyclists. We utilize an MLP encoder
to encode these anchors into a tensor of shape [A,Mo, 256].
This encoding is then combined with the agent encoding of
shape [A, 1, 256], to form an initial query tensor with di-
mensions [A,Mo, 256]. Then we employ 4 cross-attention
Transformer layers where relative relation encoding is still
used in the attention mechanism. The predictor iteratively
refines its predictions through several decoding layers and
finally, an MLP decoding head is added to decode the pos-
sible action sequences for all agents, resulting in a tensor
of [A,Mo, Tf , 2]. These action trajectories are transformed
into state trajectories of shape [A,Mo, T, 4] using the same
differentiable dynamics model, and each waypoint in the
trajectory contains the state (x, y, ψ, v). Another MLP layer
decodes the embedding after the Transformer layers to de-
rive marginal scores (probabilities) of these predicted tra-
jectories, with shape [A,Mo].

2.4. Model Training

We implement a multi-task learning framework that con-
currently trains the encoder, denoiser, and predictor compo-
nents of our model. To train the denoiser, we aim to mini-
mize the denoising loss:

LDθ = ES∼p,k∼U(0,K)Eũ∼pk(·|u) [λ(k)SL1(x̂(Dθ(ĉ, ũ, k))− x)] ,
(4)

which is defined as the the Smooth L1 loss between ground-
truth trajectories x and the trajectories x̂ rollout from û.

At each training step, noise level k and Gaussian noise
ϵ are sampled and applied to corrupt the ground-truth tra-
jectories. The denoiser is optimized to predict the denoised
trajectories from the corrupted trajectories. Since the model
predicts scene-level joint trajectories, all agent trajectories
are affected by the same noise level. The training procedure



Algorithm 1 Training of denoiser

Require: Denoiser Dθ, Dataset D, Denoising Steps K,
Dynamics f , Inverse Dynamics function f−1

1: for each training iteration do
2: x, c ∼ D ▷ Sample from dataset
3: Get action trajectory: u = f−1(x)
4: k ∼ U(0,K), ϵ ∼ N (0, I) ▷ Sample noise level

and Gaussian noise
5: Add noise to ground-truth: ũk =

√
ᾱku +√

1− ᾱkϵ
6: Predict denoised trajectory: û =

Dθ(ũk, k, c, f), x̂ = f(û)
7: Compute loss: LDθ = SL1(x̂− x) ▷ Use smooth

L1 loss
8: Update denoiser parameters θ
9: end for

of the denoiser is described in Algorithm 1.
To train the behavior predictor Pψ , we first select the

modem∗ that most closely matches the ground-truth trajec-
tory of each agent and minimize the predictor loss defined
as:

LPψ = ES∼p

[
A∑

a=1

SL1

(
x̂(ûa,m∗

)− xa
)
+ βCE(m∗, ω̂a)

]
,

(5)
which penalizes the smooth L1 difference between the
ground truth trajectory of each agent and the trajectory from
the best mode m∗, and encourages a higher probability to
be assigned on this mode through a Cross-Entropy loss. To
determine the best-predicted indices for an agent, the fol-
lowing criterion is applied:

m∗ =

{
argmini ||aci − xT ||, if xT is valid,
argmini ||

∑
t(x̂

i
t − xt)||, otherwise,

(6)

where aci is the static anchor point, xt is the ground-truth
point of the trajectory, and x̂it is the predicted trajectory
point. This means that if the ground-truth trajectory end-
point is invalid, the predicted trajectory with the smallest
average displacement error is selected; otherwise, the tra-
jectory corresponding to the closest anchor point is selected.

The total loss function for the multi-task learning model
is formulated as:

L = LDθ + γLPψ , (7)

where γ is a hyperparameter to balance the importance of
tasks. The hyperparameters used in the total loss function
are γ = 0.5, and β = 0.05 is used in the predictor loss.

A cosine variance schedule is adopted in the diffusion
process, employing K = 5 diffusion steps, and the maxi-
mum value of β(k) is set to 0.999. The predicted raw ac-
tions are standardized during the diffusion process, with the

mean and standard deviation of actions set to 0 and 1. The
model is trained using an AdamW optimizer with a weight
decay of 0.01. The initial learning rate is set at 0.0002
and decays by 0.02 every 1, 000 training steps, and a lin-
ear warm-up is employed for the first 1, 000 steps. The total
number of epochs for training is 16. Gradient clipping is im-
plemented with a norm limit set to 1.0. The training of the
model utilizes BFloat16 Mixed precision and is executed on
4 NVIDIA A100 GPUs, with a batch size of 14 per GPU.

2.5. Implementation details

The model was trained and validated on the Waymo
Open Motion Dataset (WOMD) and we employ the Way-
max simulator [1] as the interface for closed-loop traffic
simulation. To improve closed-loop roll-out performance
and stability, agent behaviors are replanned with a fre-
quency of 1 Hz.

We evaluate the simulation performance of the multi-
agent diffusion policy. We execute the VBD model’s out-
put in the Waymax simulator, and only let the policy/model
control 64 agents near the self-driving car in the scene,
while the rest of the agents follow a constant velocity policy.
At each replanning step, we sample from Gaussian noise to
initialize the diffusion generation process. The simulation
horizon is 8 seconds, requiring 8 replanning steps to gener-
ate a scenario. We generate a total of 32 scenarios from the
same initial state. The detailed steps of scenario generation
can be found in Algorithm 2.

3. Results
Tab. 1 presents the quantitative results in comparison to

other methods on the Waymo 2024 Sim Agents Benchmark.
The proposed VBD model (diffusion policy) demonstrates
strong performance across all metrics, particularly the mi-
nADE metric, which assesses proximity to human driving
trajectories. With only 12M parameters and fewer diffusion
steps, our model enables faster runtime (<100 ms per step),
facilitating traffic simulation in practice. Fig. 2 showcases
some qualitative results of the VBD model, highlighting
its ability to generate interactive behaviors among agents
within complex scenarios.scene-level

4. Conclusions
We introduce the VBD model for smart agent behavior

simulation. The VBD model utilizes query-centric atten-
tion Transformers for scene encoding, capturing both local
and relative information to enhance performance in multi-
agent prediction. The Transformer-based denoiser head cre-
ates a diffusion-based multi-agent behavior policy to bet-
ter model joint agent behaviors and scene-level interac-
tions. Additionally, the model includes a marginal behav-
ior prediction head to stabilize training and provide priors



Table 1. Testing performance on the Waymo Sim Agents Leaderboard

Model Realism Meta (↑) Kinematic (↑) Interactive (↑) Map-based (↑) minADE (↓)

SMART 0.7511 0.4445 0.8050 0.8571 1.5447
BehaviorGPT 0.7473 0.4333 0.7997 0.8593 1.4147
MVTE 0.7302 0.4503 0.7706 0.8381 1.6770
TrafficBotsV1.5 0.6988 0.4304 0.7114 0.8360 1.8825

VBD 0.7200 0.4169 0.7819 0.8137 1.4743

Controlled agent Traffic light Stop sign Speed [m/s]Speed bump

Figure 2. Performance of our VBD model on the Waymo Sim Agents task. The multi-agent diffusion policy is capable of controlling a
large number of agents in an interactive and map-adherent manner for traffic simulation.

Algorithm 2 Generating Scenario

Require: Encoder Eϕ, Denoiser Dθ, Initial Observation c0,
Denoising Steps K

1: for t = 0, . . . , 8 do
2: ĉt = Eϕ(ct) ▷ Encode Scene Context
3: ũK ∼ N (0, I) ▷ Sample Random Noise
4: for k=K. . . 1 do
5: ũk−1 = Dθ(ũk, ĉt, k) ▷ Denoise
6: end for
7: ct+1 = Step(ct, ũ0:1

0 ) ▷ Step Waymax with the
first second control sequence

8: end for

for scene editing and controllable generation. Our model is

trained on the large-scale Waymo Open Motion Dataset and
achieves competitive closed-loop simulation performance
on the Waymo 2024 Sim Agents Benchmark.
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