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Abstract

In this technical report we present TrafficBots V1.5, a
baseline method for the closed-loop simulation of traf-
fic agents. TrafficBots V1.5 achieves baseline-level per-
formance and a 3rd place ranking in the Waymo Open
Sim Agents Challenge (WOSAC) 2024. It is a simple
baseline that combines TrafficBots, a CVAE-based multi-
agent policy conditioned on each agent’s individual des-
tination and personality, and HPTR, the heterogeneous
polyline transformer with relative pose encoding. To im-
prove the performance on the WOSAC leaderboard, we ap-
ply scheduled teacher-forcing at the training time and we
filter the sampled scenarios at the inference time. The
code is available at: https://github.com/zhejz/
TrafficBotsV1.5

1. Introduction

The problem of closed-loop multi-agent traffic simulation
can be addressed by learning a policy for each traffic partic-
ipants. Specifically, at each time step, the policy predicts the
next action of each agent, given the historical observations
form previous time steps, including the map, traffic lights
and agent trajectories. Based on TrafficBots [20], the Traf-
ficBots V1.5 policy is shared by all agents. Different behav-
iors are generated by conditioning the policy on the individ-
ual destination and personality of each agent. In contrast
to the SceneTransformer [9] network architecture and input
representation, which are not rotation and translation invari-
ant, TrafficBots V1.5 uses the pairwise-relative representa-
tion and the HPTR [21] architecture. This greatly improves
the accuracy of TrafficBots without sacrificing its efficiency
and scalability. Moreover, instead using a recurrent neu-
ral network (RNN) to encode the temporal axis, TrafficBots

V1.5 uses stacked historical observation as input, such that
its architecture is solely based on Transformers [14].

1.1. TrafficBots

TrafficBots [20] is a multi-agent policy built upon mo-
tion prediction and end-to-end (E2E) driving. Compared
to previous data-driven traffic simulators [13], TrafficBots
demonstrates superior configurability and scalability. To
generate configurable behaviors, for each agent TrafficBots
introduces a destination as navigational information, and
a time-invariant latent personality that specifies the behav-
ioral style. Unlike the goal which depends on the prediction
horizon and hence leads to causal confusions, the destina-
tion approximates the output of a navigator which is avail-
able in the problem formulation of E2E driving [19]. Im-
portantly, the destination indicates where the agent wants
to reach eventually, i.e., not necessarily at a specific future
time step. In order to capture the diverse behaviors from
human demonstrations, the personality is learned using the
conditional variational autoencoder (CVAE) [12] following
prior works on multi-modal motion prediction [2]. To en-
sure the scalability, TrafficBots uses the scene-centric rep-
resentation [9] and presents a new scheme of positional en-
coding for angles, allowing all agents to share the same
vectorized context and the use of an architecture based
on Transformers. However, due to the lack of rotation
and translation invariance induced by the scene-centric rep-
resentation, TrafficBots does not achieve superior perfor-
mance compared to methods using the agent-centric repre-
sentation.

1.2. HPTR

Depending on how the coordinate system of the vectorized
representation is selected, motion prediction methods fall
into three categories: agent-centric [8], scene-centric [9]
and pairwise-relative [3]. While agent-centric methods
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achieve top accuracy but lack scalability, and scene-centric
methods show superior scalability but suffer from poor ac-
curacy, the pairwise-relative methods get the best of both
worlds. However, previous pairwise-relative methods are
mostly using graph neural networks [3], which are often
less efficiently implemented on the graphics processing unit
(GPU) compared to Transformers with dot-product atten-
tion. To address this problem, a novel attention module
called K-nearest Neighbor Attention with Relative Pose
Encoding (KNARPE) is introduced in [21], which allows the
pairwise-relative representation to be used by Transform-
ers. KNARPE projects the relative pose encoding (RPE) and
adds them to the keys and values to obtain zi, the output of
letting token i attend to its K nearest neighbors κK

i ,
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where ui,uj are the local attributes of token i and j repre-
sented in their local coordinates, rij is the relative pose be-
tween token i and j, αij are the attention weights, eij are the
logits, W {q,k,v}, b{q,k,v} are the learnable projection matri-
ces and biases for query, key and value, and Ŵ {k,v}, b̂{k,v}

are the learnable projection matrices and biases for RPE.
The RPE is defined as follows:

RPE(rij) = concat(PE(xij)PE(yij),AE(θij)) (5)

PE2i(x) = sin(x · ω 2i
D ) (6)

PE2i+1(x) = cos(x · ω 2i
D ) (7)

AE2i(θ) = sin (θ · (i+ 1)) (8)
AE2i+1(θ) = cos (θ · (i+ 1)) (9)

i ∈ {0, . . . , D/2− 1}, (10)

where (xij , yij , θij) are the 2D location and yaw heading
of token j represented in the coordinate of token i, ω is the
base frequency, and D is the embedding dimension.

Based on KNARPE, a pure Transformer-based frame-
work called Heterogeneous Polyline Transformer with
Relative pose encoding (HPTR) [21] is presented, which
uses a hierarchical architecture to enable asynchronous to-
ken update and avoid redundant computations. By sharing
contexts among traffic agents and reusing the unchanged
contexts in driving scenarios, HPTR is as efficient as scene-
centric methods, while performing on par with state-of-
the-art agent-centric methods on marginal motion predic-
tion tasks. Since our method TrafficBots V1.5 is entirely

based on KNARPE and HPTR, we refer the readers to the
HPTR [21] paper for more details about the mathematical
formulation and the network architecture.

2. Method
TrafficBots V1.5 updates TrafficBots [20] with the
HPTR [21] input representation and network architecture.
This section describes the changes we have made while
combining TrafficBots and HPTR.

2.1. Architecture

The network architecture of TrafficBots V1.5 is illustrated
in Fig. 1. We make minimal changes while applying HPTR
to TrafficBots. We remove the temporal RNN from Traf-
ficBots, and follow HPTR to use stacked historical observa-
tions as input and PointNet [4, 10] to aggregate the tempo-
ral axis. The policy network, the personality predictor, and
the destination predictor of TrafficBots are now all based
on the pairwise-relative representation and KNARPE atten-
tion module. We keep the intra-map, enhance-traffic-light
and enhance-agent Transformers of HPTR. Following Traf-
ficBots, multi-modal outputs are generated by conditioning
the policy on each agent’s individual destination and per-
sonality. Therefore, the anchors and the anchor-to-all Trans-
former of HPTR are discarded. Instead of a learnable prior
personality of TrafficBots, we use a standard Gaussian for
the prior personality. We also tried to add a traffic light state
predictor, but its accuracy was not good enough to improve
the overall simulation performance on the leaderboard.

2.2. Training

We found two techniques that improve the performance of
TrafficBots V1.5. Firstly, we adopt a larger free nats [5]
equals to 1.0 for the KL-divergence between the posterior
and the prior personality. This allows the posterior person-
ality to encode more information. Secondly, we use sched-
uled sampling [1] and apply teacher-forcing to 30% agents
at the beginning of the training, i.e., these agents will be
trained via open-loop behavior cloning. The percentage of
teacher-forcing decreases linearly to 0 during the training.
Due to limited computational resources, we train our mod-
els for 5 days on 4 NVIDIA RTX 4090 GPUs. Training for
longer time or using more GPUs should improve the perfor-
mance further. We use a total batch size of 8 and we batch
over scenarios. Each scenario contains 91 time steps and a
maximum of 64 agents. Following TrafficBots, the training
uses back-propagation through time and the training loss in-
cludes the following terms:
1. Reconstruction loss that trains the model to reconstruct

the ground-truth (GT) states using the posterior person-
ality and the GT destination. It is a weighted sum of:
• A smoothed L1 loss between the predicted and the GT
(x, y) positions.
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Figure 1. Network architecture of TrafficBots V1.5. In the brackets are the tensor shapes, where the hidden dimensions are omitted
for conciseness. B is the batch size, which is also the number of episodes. NM, NC, NA are, respectively, the number of map polylines,
traffic light polylines and agent trajectories. Nnode is the number of segments in each polyline. T is the length of the stacked historical
observations. The destination predictor and personality predictor are not visualized. They have a similar structure to the policy network.

• A cosine distance between the predicted and the GT
yaw heading.

• A smoothed L1 loss between the predicted and the GT
velocities.

2. The KL divergence between the posterior and the prior
personality. We use free nats [5] to clip the KL diver-
gence, i.e., if KL(zpost, zprior) is smaller than the free
nats, then the KL loss is not applied.

3. The cross entropy loss for destination classification.
Since the GT destination is a single class, this loss boils
down to a maximum likelihood loss, i.e., the destination
distribution is trained to maximize the log-likelihood of
the polyline index of the GT destination.

During training, we auto-regressively rollout the policy us-
ing the GT destination and the posterior personality. Before
the auto-regressively rollout, we use the reparameterization
trick to sample the posterior personality, such that it can be
trained to reconstruct the GT trajectories. For 10% of the
episodes we rollout with the prior personality instead of the
posterior personality. During the auto-regressively rollout,
we take the mean of the actions such that the gradient can be
back-propagated through the differentiable vehicle dynam-
ics. We do not apply a loss that encourages collision avoid-
ance [3, 6, 18] because this will bias the model, even though
it could improve the performance on the leaderboard.

2.3. Inference

Instead of bias the model directly, we apply a milder ap-
proach to bias the model’s outputs towards safer behav-
ior and hence improve the collision-based metrics on the
WOSAC leaderboard. Specifically, we sample 128 scenar-
ios at the inference time and select 32 scenarios that contain
the least collision events. To sample a scenario, we first
sample the personality and destination for each agent, after
that we start the auto-regressive rollout. We use the mean of

the predicted action distribution, hence the rollout is com-
pletely deterministic given the sampled personality and des-
tination. Except the episode filtering, we do not apply any
other post-processing or model ensembling techniques. At
the inference time, HPTR allows different types of tokens
to be updated asynchronously at different frequency. There-
fore, an accurate analysis of FLOPS turns out to be difficult.
For simplicity, we only profile the map encoder, which is the
computationally heaviest module in our model. For a single
episode, the map encoder uses 20 GFLOPS. Since HPTR
allows the map features to be cached and reused during the
rollout, the map is encoded only once before the simulation
starts. Other modules, e.g. the personality encoder, the traf-
fic light encoder and the policy, are computationally much
lighter than the map encoder. Based on the FLOPS of the
map encoder, we estimate that each iteration of the auto-
regressive policy rollout should require approximately an
order of magnitude fewer FLOPS, i.e., around 2 GFLOPS.

2.4. Implementation details

Overall, we use a hidden dimension of 128. We use Trans-
former with pre-layer normalization, and the attention mod-
ule has 4 heads and a feed-forward dimension of 512. The
sampling rate is fixed to 10 FPS at both the training and in-
ference time. At each time step, our method predicts the
actions one step ahead, based on the previous observations.
We do not differentiate between the ego-agent, i.e., the au-
tonomous vehicle agent, and other agents. Similar to Traf-
ficBots, TrafficBots V1.5 allows agents that are not con-
trolled by itself. Since TrafficBots V1.5 predicts the action
for all observed agents, the actions will still be predicted for
those agents, but then these actions will be discarded; the
behavior of those agents will be overridden by some other
control modules, e.g. an AV planner software or log-reply.
Each episode contains at most 1024 map tokens, 128 traf-



Table 1. Results on the WOSAC leaderboard 2024 [16].

Method name
Realism meta

metric ↑
Kinematic
metrics ↑

Interactive
metrics ↑

Map-based
metrics ↑

minADE
↓

SMART-large [17] 0.7564 0.4769 0.7986 0.8618 1.5501
BehaviorGPT [22] 0.7473 0.4333 0.7997 0.8593 1.4147
GUMP 0.7431 0.4780 0.7887 0.8359 1.6041
model predictive submission 0.7417 0.4182 0.7942 0.8591 1.4842
MVTE [15] 0.7302 0.4503 0.7706 0.8381 1.6770
VBD 0.7200 0.4169 0.7819 0.8137 1.4743
TrafficBots V1.5 (Ours) 0.6988 0.4304 0.7114 0.8360 1.8825
cogniBot v1.5 0.6288 0.3293 0.7129 0.6918 N/A
linear extrapolation baseline 0.3985 0.2253 0.4327 0.4533 7.5148

fic light tokens and 64 agent tokens, where invalid tokens
are masked. Each map token corresponds to a polyline con-
sisting of up to 20 segments, each 1 meter in length. Each
traffic light token corresponds to the polyline it associated to
and the traffic light state. Each agent token corresponds to
an agent trajectory. We use a sliding window approach and
stack the historical observations from the last 11 steps. For
the Transformers with K-nearest-neighbor attention, each
map token attends to the 32 nearest map tokens. Each traffic
light token attends to 24 nearest map tokens and 24 nearest
traffic light tokens. Each agent token attends to 64 map to-
kens, 25 traffic light tokens and 25 agent tokens in its prox-
imity. More details about the network architecture can be
found in the open-source repository of TrafficBots V1.5, as
well as in the TrafficBots [20] and HPTR [21] papers. Our
model does not take the z axis, i.e., the altitude dimension,
into account. During inference, we assume that the z di-
mension of agent trajectories remains constant and is equal
to its last observed value.

3. Results

We have not run any ablation studies for our method. How-
ever, we would like to point out some promising directions
for ablations, including the discrete action space, weights
of different losses, and the collision avoidance loss. We
have done a manual and rough parameter tuning for our
model. The performance of our method on the WOSAC
leaderboard [16] is shown in Table 1. More details about
the challenge and the metrics can be found in the WOSAC
paper [7]. Our method achieves baseline-level performance
in terms of the realism meta metric, which is a weighted
sum of other metrics except the minADE. We apply a uni-
cycle model for the dynamics of all types of agents and
select the parameters heuristically. This allows our sim-
ulation to generate smooth trajectories, but it also affects
the kinematic metrics negatively. Our TrafficBots V1.5 is
outperformed by other methods in terms of interactive met-

rics which involve collision avoidance. We believe adding a
loss that encourages collision avoidance would help, but it
is controversial if a collision-free simulation would be use-
ful for the development of autonomous driving algorithms.
In terms of map-based metrics that consider off-road driv-
ing, our model performs comparably to other methods The
minADE of TrafficBots V1.5 is significantly larger than
other methods on the leaderboard, which is a known prob-
lem inherited from TrafficBots. Overall, from Table 1 we
observe that GPT-based [11] architectures that rely on to-
kenization and next-token prediction, such as SMART and
BehaviorGPT, achieve top performance. Interestingly, none
of these GPT-based architectures uses goal or personality
conditioning, but they are still able to generate multi-modal
outputs. It seems that the multi-modality in traffic simu-
lation can be addressed using tokenization and the cross-
entropy loss. This indicates that the poor performance of
TrafficBots might be caused by the CVAE and regression
losses on continuous states and actions. Another interesting
thing is that the GPT-based methods achieve the best perfor-
mance without considering the traffic lights. This indicates
that the dataset might be imbalanced and the evaluation met-
rics might be flawed.

4. Conclusion
In this technical report we present TrafficBots V1.5, which
is a baseline method that combines TrafficBots, a prior
work on the closed-loop traffic simulation using CVAE,
and HPTR, a prior work on the Transformer-based motion
prediction using the pairwise-relative representation. Our
method is the only CVAE-based method on the WOSAC
leaderboard 2024. The performance of our method is
slightly worse than the GPT-based methods. However, as
a baseline method that involves minor novelty, it achieves
the performance we expected, and there are many possibil-
ities to improve this simple baseline.
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