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We propose an approach to simulating trajectories of multiple interacting agents (road users) based on
transformers and probabilistic graphical models (PGMs), and apply it to the Waymo SimAgents challenge.
The transformer baseline is based on the MTR model (Shi et al., 2024), which predicts multiple future
trajectories conditioned on the past trajectories and static road layout features. We then improve upon
these generated trajectories using a PGM, which contains factors which encode prior knowledge, such as
a preference for smooth trajectories, and avoidance of collisions with static obstacles and other moving
agents. We perform (approximate) MAP inference in this PGM using the Gauss-Newton method. Finally
we sample K = 32 trajectories for each of the N ~ 100 agents for the next T = 8A time steps, where A = 10
is the sampling rate per second. Following the Model Predictive Control (MPC) paradigm, we only return
the first element of our forecasted trajectories at each step, and then we replan, so that the simulation
can constantly adapt to its changing environment. We therefore call our approach "Model Predictive
Simulation" or MPS. We show that MPS improves upon the MTR baseline, especially in safety critical
metrics such as collision rate. Furthermore, our approach is compatible with any underlying forecasting
model, and does not require extra training, so we believe it is a valuable contribution to the community.
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Introduction each step, following the principle of model pre-
dictive control (MPC), which is widely used for
controlling complex dynamical systems (Schwen-
zer et al., 2021). We therefore call our approach

Model Predictive Simulation (MPS).

The use of transformers to create generative mod-
els to simulate agent trajectories, trained on large
datasets such as Waymo Open Data (Ettinger
et al., 2021), has become very popular in re-
cent years. Most previous work has been focusing
on improving the architecture (Nayakanti et al.,
2023; Shi et al., 2024), the training objective
(Ngiam et al., 2021; Shi et al., 2024), the tra-
jectory representation (Philion et al., 2023; Seff

Our MPS approach differs from previous PGM
methods for trajectory simulation, such as JFP
(Luo et al., 2023), in several ways. First, we explic-
itly include (data-dependent) factors for collision
avoidance and smooth trajectories, so we have

et al., 2023) or the speed (Zhou et al., 2023) of
these transformer-based models.

This paper tackles the problem from an orthog-
onal and complementary angle — namely the use
of prior knowledge, encoded using a probabilis-
tic graphical model (PGM). We perform approxi-
mate MAP inference in the PGM to “post process”
the trajectory proposals from a base transformer
model, to increase their realism and compliance
with constraints, such as collision avoidance.

To ensure that our predicted forecasts are adap-
tive to the changing environment, we replan at

better control over the generated trajectories. Sec-
ond, our approach is iterative (being based on
MPC), while JFP commits to the trajectory pro-
posals at t = 0 and is thus open loop. Third, our
approach uses the Gauss-Newton method to com-
pute the joint MAP estimate, whereas JFP is based
on discrete belief propagation methods to choose
amongst a finite set of candidate trajectories.

Method

Outer loop The overall simulation pseudocode
is shown in Algo. 1. It generates a set of K = 32
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Algorithm 1 SimAgents outer loop

Input Scene context ¢, num. agents N, num. samples K,
trajetory length T

Output Sampled trajectories,

fork=1to K do

kO
51N

fort=1toT do

hl:K,l:T

= init-trajectory(c)

Sample r = MPS(c, sk Lit= l)
Extend sk Lt append(sk Lt ’1‘ V)
end for
end for

trajectories, each of length T = 80, for N agents
given the scene context c. (The exact value of N

depends on the number of agents that are visible

in ¢.) We denote the generated output by 51 LT

where skt = [x,y, X, y] is the state (2d locat1on

and Ve10c1ty) of the ’th agent in sample k.

Algorithm 2 Model Predictive Simulation

Input Scene context ¢, agent history hy.y, num. agents N,
future planning horizon F, number of rollouts J, transformer
proposal &

Output Predicted next state for each agent, ri.y

for j=1to J do

Sample (aJ L F,g1 N) ~ (¢ iy, F)
. LF j
= BulldFactorGraph(aJl N &L ©
SR L1:F _  j1:F
Initialize STy =N
j,1:F _j i J,1:F
(511:N JE)) = Inference(GJ,s]LN )
end for
Sample j* ~ SoftMin(E)
return 511 N

Inner loop At each step ¢, the simulator calls
our MPS algorithm to generate a prediction for
the next state of each agent. The pseudocode
for this is shown in Algo. 2. The approach is
as follows. First we use the MTR transformer
model x (Shi et al., 2024) to sample a set of N
goal locations, g{:N, one for each agent, as well
as a sequence of anchor points leading to each
goal, a1 N , Where F is the planning or forecast
horizon. We do this J = 60 times in parallel,
to create a set of possible futures. We then use
the PGM to generate J joint trajectories (for all
N agents), using the method described below.

Finally we evaluate the energy of each generated
trajectory, E/, sample one of the low energy (high

probability) ones to get s} F and return the first

step of this sampled traJectory, s 1
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Figure 1 | Factor Graph for N = 2 agents unrolled
for T planning steps. Circles are random variables,
gray squares are fixed factors.
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Figure 2 | Joint probability model.

Graphical model The key to our method is the
probabilistic graphical model (PGM) for improv-
ing upon the proposed trajectories by MTR. The
factor graph is shown in Fig. 1 and the correspond-
ing conditional joint distribution is given in Fig. 2.
The model was inspired by (Patwardhan et al.,
2022) who uses Gaussian belief propagation. We
now explain each of the factors.

First we have factors which compare a candi-
date trajectory to the original proposal. The mo-
tion factor is defined as fy(s}) = |s! - a}|, where
a; is the predicted location (anchor point) for
agent i at time t as computed by x. This en-
sures the trajectory stays close to the initial pro-
posal. The proximity to goal factor is defined as
fa(sf) = |sf — gil, where g; is the goal for agent i
predicted by x. This ensures the trajectory ends
close to where we expect.

Second we have factors defined from "physics".
We define a factor that penalizes deviation from
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linear motion: fi.(s,s’) = [sy, —(sxy+siyAc)|, where
sxy are the location components of s, sy; are the
velocity components of s, and At is the sampling
rate. We also define a factor that penalizes change
in direction: fa(s,s’) = |sy —siyl. We used weight
2.0 for fa and 1.0 for all other factors.

Third we have factors derived from static obsta-
cles on the road: fo(s | €) = max(y)ecz; G(X, ¥ |
s), where cgg represents the coordinates of the
road edges (part of the context ¢) and G(x,y | s)
is a Gaussian field centered and rotated according
to the agent’s location s, .

Finally, we have pairwise collision factors be-
tween agents: fc(s,s’) = max(y,y)eccp(s) G(x, ¥ |
s), where G(x,y | s) is a Gaussian field for agent
s, and CCP(s’) are the 9 collision checking points
(CCP) for the other agent s’ (4 corners, 4 centers
of the sides, and center of the agent).

Inference Inference on the factor graph is equiv-
alent to minimizing a non-linear, non-convex
quadratic optimization problem defined over
S%Z For efficiency reasons, we developed a two-
step approach. First, we use the Gauss—Newton
method (Bjorck, 1996) to solve a partial model
that only consists of fi;, fi and fa factors, as
these can all be evaluated in parallel across agents
using N individual trajectory models. This step
produces smoothed trajectories, which are then
frozen. Second, we sample joint trajectories for
agents according to their probability (unnormal-
ized energy), and use the fo and f¢ factors to
score their quality. After repeating this J times,
the best joint trajectories are sampled from a soft-
min operation over the scores of the J samples.

Experimental Evaluation

Benchmark We evaluated MPS on the 2024
Waymo Sim Agents Challenge, where the task
is simulating 32 realistic rollouts of all agents in
the scene given their 1s history for 8s into the fu-
ture. The simulation needs to be closed-loop and
factorized between the ADV and other agents,
which MPS satisfies naturally.

Implementation Details We implemented the

factors and the inference in JAX ! and JAXopt 2 for
the Gauss-Newton method. We leveraged JAX’s
just-in-time (JIT) compilation and observed great
scalability. For speed up, we take 10 immediate
next steps at each MPS iteration.

We trained our own MTR model 7 using the
open source code > . We removed local attention
and reduced the source polylines to 512. The
training data is augmented by adding extra inter-
acting agents, and by applying random history
dropouts. We followed the original training setup
except the number of epochs (50), the batch size
(8) and the LR schedule ([25, 30, 35, 40, 45]).
Training took about 3 days on 16 A100s.

We used only the official Waymo Open Motion
Dataset v1.2.1 and did not use any Lidar or Cam-
era data. We did not need any additional training
and we did not use ensembles.

Sim Agents 2024 Results We ranked number 4
among all methods (Table 1). We outperformed
the 2023 winner MVTE (Wang et al., 2023) which
also uses MTR (Shi et al., 2024), and are approx-
imately 1 point behind the 2024 winner SMART
(Wu et al., 2024). MPS achieved near-top per-
formance in a few safety critical metrics such as
COLLISION and OFFROAD, showing the effective-
ness of the priors in our model. MPS showed a
lack of performance in LINEAR SPEED / ACCEL.
We speculate this is because MPS can generate
diverse rollouts that are very different from the
logged data used for metric evaluation.

Ablation Study To evaluate the value of the PGM
priors, we compare MPS to the same MTR model
with random trajectory sampling (MTR+RAND)
on the validation dataset. As shown in Table 2,
MPS improved safety-critical metrics such as COL-
LISION, OFFROAD and the overall REALISM score,
while lacked performance at LINEAR SPEED / AC-
CEL for the same reason discussed above.

Qualitative Study Qualitatively, MPS generates
diverse (multi-modal) predictions (Fig. 3), and
each prediction contains realistic traffic patterns
such as lane merging, unprotected left turn, yield-
ing, among others (Fig. 4).

Ihttps://github.com/google/jax
2https://jaxopt.github.io/
Shttps://github.com/sshaoshuai/MTR
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WAYMO META METRIC KINEMATIC INTERACTIVE MAP

RE REAIL LINEAR LINEAR ANG. ANG. DIST. DIST. inAT
LEADERBO. ISM SPEED ACCEL. SPEED ACCEL. TO OBJ. COLLISION  TTC TO ROAD OFFROAD  mi EL
SMART 0.7511 0.3646 0.4057 0.4231 0.5844 0.3769 0.9655 0.8317  0.6590 0.9362 1.5447
MVTE 0.7301 0.3506  0.3530 0.4974 0.5999 0.3742 0.9049 0.8309  0.6655 0.9071 1.6769
MPS (Ours) 0.7416 0.3137 0.3049 0.4705 0.5834 0.3593 0.9629 0.8070 0.6651 0.9366 1.4841

Table 1 | WOSAC Leaderboard:

SMART (2024 winner) Vs. MVTE (2023 winner) Vs. MPS (ours).

META METRIC KINEMATIC INTERACTIVE MAP
LINEAR LINEAR ANG. ANG. DIST. DIST. inAD
METHOD ISM SPEED ACCEL. SPEED ACCEL. TO OBJ. COLLISION  TTC TO ROAD OFFROAD  mi El
MTR+RAND 0.7019 0.3922 0.3530 0.3899 0.3304 0.3691 0.8491 0.8164 0.6706 0.9207 1.3084
MPS 0.7418 0.3158 0.3056 0.4664 0.5818 0.3604 0.9617 0.8094  0.6651 0.9374 1.4841

Table 2 | Abalation study — comparing MPS to MTR with random trajectory sampling.

Figure 3 | MPS creates diverse (multi-modal) roll-
outs.
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Figure 4 | MPS creates realistic traffic patterns.

Conclusion

We explored an approach that can improve on any
trajectory simulation model by adding domain-
specific priors, and performing inference in the
corresponding PGM. We believe combing prior-
driven (top-down) and data-driven (bottom-up)
methods is key to building robust and reliable
autonomous driving planning and simulation.*

4We thank Joseph Ortiz and Wolfgang Lehrach formany
useful discussions and suggestions.

References

A. Bjorek. Numerical methods for least squares problems. SIAM,
1996.

S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai,
B. Sapp, C. R. Qi, Y. Zhou, et al. Large scale interactive motion
forecasting for autonomous driving: The waymo open motion
dataset. In ICCV, 2021.

W. Luo, C. Park, A. Cornman, B. Sapp, and D. Anguelov. Jfp:
Joint future prediction with interactive multi-agent modeling for
autonomous driving. In CoRL, 2023.

N. Nayakanti, R. Al-Rfou, A. Zhou, K. Goel, K. S. Refaat, and B. Sapp.
Wayformer: Motion forecasting via simple & efficient attention
networks. In ICRA. IEEE, 2023.

J. Ngiam, B. Caine, V. Vasudevan, Z. Zhang, H.-T. L. Chiang, J. Ling,
R. Roelofs, A. Bewley, C. Liu, A. Venugopal, et al. Scene trans-
former: A unified architecture for predicting multiple agent
trajectories. arXiv preprint arXiv:2106.08417, 2021.

A. Patwardhan, R. Murai, and A. J. Davison. Distributing collabora-
tive Multi-Robot planning with gaussian belief propagation. In
IEEE Robotics and Automation Letters, Mar. 2022.

J. Philion, X. B. Peng, and S. Fidler. Trajeglish: Learning the lan-
guage of driving scenarios. arXiv preprint arXiv:2312.04535,
2023.

M. Schwenzer, M. Ay, T. Bergs, and D. Abel. Review on model
predictive control: An engineering perspective. The International
Journal of Advanced Manufacturing Technology, 117(5):1327—-
1349, 2021.

A. Seff, B. Cera, D. Chen, M. Ng, A. Zhou, N. Nayakanti, K. S.
Refaat, R. Al-Rfou, and B. Sapp. Motionlm: Multi-agent motion
forecasting as language modeling. In ICCV, 2023.

S. Shi, L. Jiang, D. Dai, and B. Schiele. Mtr+ +: Multi-agent motion
prediction with symmetric scene modeling and guided intention
querying. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Y. Wang, T. Zhao, and F. Yi. Multiverse transformer: 1st place
solution for waymo open sim agents challenge 2023. arXiv
preprint arXiv:2306.11868, 2023.

W. W, X. Feng, Z. Gao, and Y. Kan. Smart: Scalable multi-agent
real-time simulation via next-token prediction. arXiv preprint
arXiv:2405.15677, 2024.

Z.Zhou, J. Wang, Y.-H. Li, and Y.-K. Huang. Query-centric trajectory
prediction. In CVPR, 2023.




	Introduction
	Method
	Experimental Evaluation
	Conclusion

