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1. Introduction
Autonomous driving systems are traditionally designed
with a modular architecture, involving separate components
for perception, prediction, and planning. However, the
emergence of powerful foundation models has sparked in-
creasing interest in end-to-end approaches that directly map
raw sensory inputs to driving actions. Such methods have
demonstrated promising capabilities in robustness and rea-
soning.

To evaluate the effectiveness of these approaches in han-
dling complex, real-world challenges, the 2025 Waymo
Open Dataset Vision-based End-to-End (WOD-E2E) Driv-
ing Challenge presents a new benchmark focused on long-
tail driving scenarios—rare but impactful situations such as
detours around marathons, collisions with fallen scooter rid-
ers, or interactions with emergency vehicles. The dataset
includes 4021 20-second driving segments, with 2037 for
training and 479 for validation. The test set is used for
final evaluation and includes only partial observations for
forecasting. Participants are required to predict 5-second
waypoint trajectories in bird-eye-view coordinates using in-
put from 8 surrounding cameras, past vehicle poses, and
a route plan. Submissions are scored primarily using the
Rater Feedback Score (RFS), with Average Displacement
Error (ADE) as a tie-breaker.

In this report, we present UniPlan, a unified end-to-end
planning framework that leverages large-scale public driv-
ing datasets beyond WOD-E2E dataset to improve general-
ization in rare, long-tail scenarios. Our method achieves 3rd
place in the 2025 challenge leaderboard without relying on
expensive MLLM-based auto-labeling techniques.

2. Method
2.1. Model Architecture
Our model builds on DiffusionDrive [3], which introduces
a truncated diffusion policy for efficient and diverse trajec-
tory generation. Its architecture is illstrated in Fig. 1. Unlike
vanilla diffusion methods that denoise from random Gaus-
sian noise, DiffusionDrive starts from an anchored Gaus-
sian distribution—generated around prior multi-mode tra-

jectory anchors—and applies only two denoising steps to
produce final trajectory predictions. The key advantages in-
clude:
• Significantly fewer denoising steps (2 instead of 20), en-

abling real-time inference.
• Anchor-guided sampling ensures mode diversity and

avoids mode collapse.
• A cascade diffusion decoder refines the prediction in

each denoising step via cross-attention over BEV and
agent/map queries.
During training, each noisy trajectory is paired with its

anchor and denoised using a transformer-based diffusion
decoder conditioned on scene context. The model outputs
both trajectory coordinates and confidence scores.

Diffusion Decoder We follow the diffusion-based trajec-
tory generation design introduced in DiffusionDrive [3].
The method begins by sampling a set of noisy trajectories
{τ̂k}Ninfer

k=1 from an anchored Gaussian distribution. For each
trajectory, deformable spatial cross-attention is applied to
retrieve features from Bird’s Eye View (BEV) or Perspec-
tive View (PV), based on the trajectory coordinates.

Subsequently, the model performs cross-attention be-
tween the trajectory features and queries representing
agents or maps, as extracted from the perception mod-
ule, followed by a feed-forward network (FFN). To incor-
porate the diffusion timestep, the architecture includes a
Timestep Modulation layer, followed by a multi-layer per-
ceptron (MLP) that predicts a confidence score and a spatial
offset from the initial noisy coordinates.

This process is repeated across cascade diffusion de-
coder layers, enabling iterative denoising. During infer-
ence, the decoder is reused with shared weights across de-
noising steps. The final trajectory is selected based on the
highest predicted confidence score.

2.2. Data Processing
NuPlan dataset. We build a dataset of 90k samples from
the 100-hour nuPlan dataset [1] using a sliding window of
9s (4s history, 5s future) sampled every 1s. Samples with
final displacement error > 0.5m from a constant velocity
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Figure 1. Overall architecture of DiffusionDrive. DiffusionDrive can integrate various existing perception modules and sensor inputs. The
designed diffusion decoder takes the sampled noisy trajectories from an anchored Gaussian distribution as input and progressively denoises
them with enhanced interactions with the conditional scene context in a cascade manner to generate the final predictions.

model are retained. There is also 10% possibility to keep
the samples with displacement error < 0.5m to improve
data diversity.

WOD-E2E dataset. We use a similar filtering strategy
to create 35k training and 10k validation samples. to gen-
erate new anchors based on the WOD-E2E dataset for the
training and inference of the model.

DiffusionDrive was originally proposed in the Navsim
benchmark [2], to adapt DiffusionDrive to the WOD-E2E
challenge:
• We use K-Means with 20 clusters to generate new plan-

ner anchors using WOD-E2E data for 5-second prediction
horizons (vs. 4s in nuPlan).

• We use the original ego status feature vector (velocity,
acceleration, command).
Camera feature alignment. NuPlan images

(1920x1120) are cropped (L0, F0, R0 views), con-
catenated to form a 4:1 aspect ratio image, and resized to
1024x256. WOD-E2E camera data is directly concatenated
with the front 3 cameras and resizing to the same shape.

2.3. Training Setup

We train on a single compute node with 4× H100 GPUs
and 360GB RAM. Each GPU processes a batch size of 64,
giving an effective batch size of 256. We use the AdamW
optimizer with a learning rate of 3e-4 and a Warmup Cosine
LR scheduler with the following settings:
• Warm-up for 3 epochs, followed by cosine decay.
• Training runs for 100 epochs.
• Final model is selected from the last checkpoint.
Detailed parameters can also be found in Tab. 2.

Compute Time. Joint training (WOD-E2E + NuPlan)
takes approximately 6 hours. WOD-E2E-only training re-
quires 1.5 hours.

2.4. Inference Strategy
We train 4 DiffusionDrive models with different seeds:
• One model on the full dataset (WOD-E2E + nuPlan /

WOD-E2E-only)
• Three models trained on 80% random subsets of the full

dataset
During inference, each of the 4 trained DiffusionDrive

models generates 20 candidate trajectories from the an-
chored Gaussian distribution using 2 denoising steps, as in
the original paper. These are scored via the model’s confi-
dence head. We collect 80 total candidates and select the
highest-scoring trajectory as the final output.

3. Experiments
3.1. Setup
We evaluate the following three configurations:
1. Setting A: WOD-E2E-only training without ensemble
2. Setting B: WOD-E2E-only training with ensemble
3. Setting C: Joint training on WOD-E2E + nuPlan with

ensemble
Performance is measured using the Rater Feedback

Score (RFS) and ADE on the WOD-E2E Challenge leader-
board.

3.2. Results and Analysis
Resutls are listed in Tab. 1. Our experiments yield the fol-
lowing insights:
• Model ensemble significantly boosts RFS, demonstrat-

ing the benefit of aggregating predictions from multiple
models.

• Joint training with nuPlan data slightly improves aver-
age RFS overall, with notable improvements in specific
long-tail categories.

• Categories that showed significant gains include: cyclist
interactions, cut-in maneuvers, single-lane adjustments,



Table 1. Performance Comparison Across Settings

Metric Name Setting C Setting B Setting A

Average Score 7.685 7.683 7.632
Construction Score 8.157 8.324 8.566
Intersection Score 7.787 7.846 7.854
Pedestrian Score 7.674 7.728 7.506
Cyclist Score 7.564 7.332 7.430
Multi Lane Maneuver Score 7.550 7.566 7.542
Single Lane Maneuver Score 8.247 8.122 7.956
Cut In Score 8.003 7.744 7.624
Foreign Object Debris Score 7.833 7.927 7.922
Special Vehicle Score 7.823 7.646 7.640
Spotlight Score 6.723 6.775 6.602
Others Score 7.171 7.509 7.308
ADE @ 3s 1.298 1.293 1.271
ADE @ 5s 2.926 2.936 2.857

and special vehicles, confirming the benefit of incorpo-
rating diverse public datasets.

4. Conclusion

We present UniPlan, a unified framework for scalable
end-to-end planning by leveraging large-scale public driv-
ing datasets. Our approach achieves competitive results
on the WOD-E2E long-tail challenge without relying on
expensive foundation models. The results highlight the
promise of scalable, data-centric approaches for improving
autonomous vehicle robustness.

5. More Training Details

We provide more training details in Tab. 2 for the reproduc-
tion of the leaderboard performance.

Table 2. Training Configuration for UniPlan

Hyperparameter Value
Batch Size 256
Learning Rate 3e-4
Optimizer AdamW
Learning Rate Scheduler WarmupCosLR
Minimum Learning Rate 1e-6
Total Epochs 100
Warmup Epochs 3
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