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1University of Tübingen, Tübingen AI Center 2NVIDIA Research

Abstract

The fragmentation of existing autonomous vehicle (AV)
datasets hinders the development of generalizable driving
policies that can handle complex and infrequent events. To
overcome this, we introduce the Open-X AV (OXAV) repos-
itory, an initiative designed to aggregate a wide variety of
AV datasets and enable models to learn from these diverse
sources. We propose a two-stage training workflow using
OXAV: a pre-training phase using perception-focused data,
followed by post-training on challenging planning-centric
scenarios. Our method DiffusionLTF, a simple end-to-end
policy trained on OXAV, ranked second in the 2025 Waymo
vision-based end-to-end driving challenge, demonstrating
the benefits of diverse, aggregated data.

1. Introduction
Large-scale, diverse datasets have been pivotal for creat-
ing capable and generalizable AI systems [1]. While Au-
tonomous Vehicles (AVs) stand to greatly benefit from this,
the current landscape of publicly available datasets is highly
fragmented. Individual datasets typically prioritize a spe-
cific discipline, such as perception data with precise la-
bels [2], synthetic data for simulation [14, 27], or auto-
labeled data with large-scale annotations crucial for plan-
ning [9, 11]. This specialization, however, limits the ability
of end-to-end systems trained on a single dataset to effec-
tively handle complex, rare events [4].

In this work, we aim to bridge this gap by fostering cross-
platform, multi-dataset learning. Mirroring similar efforts
for robotics [7], we introduce the Open-X AV (OXAV) ini-
tiative, aimed at aggregating diverse AV datasets to facili-
tate research into generalizable autonomous driving models.
Specifically, we propose a two-stage training workflow that
capitalizes on the distinct strengths of varied data sources.
(1) An initial pre-training phase on large-scale perception-
focused splits, potentially incorporating vast amounts of
synthetic data, and building a strong representational foun-
dation. (2) A post-training phase focusing on curated
planning-centric splits that expose the model to challenging

Figure 1. Overview of Open X-AV. Four complementary datasets
(top left: CARLA [12]; top middle: WOD-P [24]; top right:
NAVSIM [11]; bottom: WOD-E2E [9]), ranging from heavily an-
notated synthetic data to minimally labeled but challenging real-
world scenarios, supporting our multi-stage training methodology.

and rarely observed driving scenarios.
The OXAV repository, in its initial release, supports joint

training on four distinct datasets shown in Fig. 1, inten-
tionally selected to embody this perception-planning com-
plementarity. To validate the efficacy of such aggregated
data, we train simple end-to-end driving models on OXAV
to participate in the Waymo Vision-based End-to-End Driv-
ing Challenge. Our models achieve a high ranking on the
official leaderboard, despite using only a ResNet34 back-
bone [13] and requiring only a single day of training on an
A100 GPU. We find the Waymo Open Dataset-Perception
split [24] to be particularly effective in the pre-training
phase. This result provides initial evidence for the benefits
of cross-dataset learning in end-to-end AV development.

2. Open X-AV

2.1. Task

The Waymo Vision-based E2E Driving Challenge is an
open-loop benchmark for autonomous driving stacks that
involves predicting future vehicle trajectories given sensory
and vehicle motion inputs, including: (1) camera images
providing 360° environmental perception, (2) historical ve-
hicle states, and (3) a discrete navigational command. Un-
like prior open-loop benchmarks, the dataset used for this
challenge was curated to contain long-tail driving scenar-
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Dataset Input Modality Output Modality Size Curation
RGB LiDAR Trajectories BEV Semantics Bounding Boxes Semantics Depth (Hours)

CARLA [28] ✓ ✓ ✓ ✓ ✓ ✓ ✓ 42 Hand-crafted scenarios
NAVSIM [11] ✓ ✓ ✓ ✓ ✓ 30* Constant velocity filtering
WOD-P [24] ✓ ✓ ✓ ✓ ✓ 4 Geographic coverage

WOD-E2E [9] ✓ ✓ 12 Long-tail sampling

Table 1. Datasets. CARLA, NAVSIM, and WOD-P provide diverse input and output modalities, whereas WOD-E2E provides curated,
challenging scenarios. *We support the navtrain split, which contains around 25% of the 120 hours available in OpenScene [8].

ios. Participating teams must predict 5-second future way-
points in bird’s-eye-view coordinates which are scored with
the new Rater Feedback Score described in Section 3. Our
work explores cross-dataset learning to address this task.

2.2. Datasets
Our approach currently leverages four diverse datasets for
cross-dataset learning, as summarized in Table 1.

Waymo Open Dataset - Vision-Based E2E (WOD-
E2E) [9]: is the main dataset considered in the challenge
evaluation. WOD-E2E comprises 4,021 curated 20-second
segments that specifically target long-tail events occurring
with less than 0.003% frequency in daily driving.

CARLA [12]: is a simulator that can provide synthetic
training data generated using the camera calibration param-
eters from WOD-E2E. We use PDM-Lite [22] as our expert
policy to collect driving demonstrations across Town01-10,
12, and 13, following the procedure of [27, 28]. In addition
to trajectory labels, we also collect semantic segmentation,
depth maps, bird’s eye view (BEV) maps, and bounding
boxes as auxiliary supervision.

NAVSIM [11]: is constructed from OpenScene [8], a re-
distribution of the nuPlan dataset [15] containing 120 hours
of real-world driving data sampled at 2Hz. We utilize nav-
train, a filtered subset of 103k challenging samples that
removes trivial driving scenarios where simple baselines
achieve high performance. NAVSIM provides BEV seman-
tic maps and bounding boxes as additional supervision.

Waymo Open Dataset - Perception (WOD-P) [24]: pro-
vides 3D bounding boxes and HD maps. We convert the
latter to BEV semantic segmentation masks to match the
format of [5]. The dataset also benefits from having similar
camera calibration parameters to WOD-E2E.

To this end, all datasets provide 3 front-facing RGB cam-
era images and planning trajectories. Auxiliary modalities
differ across datasets (see Table 1). To partially mitigate
the differences of camera calibration when unifying data
for training, we crop images to align focal sizes. Cam-
era height differences are mitigated by padding images with
constant values. However, differences in other camera pa-
rameters, distortion coefficients, and mounting positions re-
main, which may affect cross-dataset generalization.

2.3. Baselines
To handle the multimodality of the challenging test data, we
consider several baseline methods in our experiments.

Latent TransFuser (LTF): serves as our first baseline
architecture. The original TransFuser model fuses a Li-
DAR BEV representation with a RGB perspective im-
age [5, 14, 21], whereas LTF simply replaces the LiDAR in-
put with a constant. This effectively transforms the LiDAR
branch into learnable queries for the transformer-based sen-
sor fusion, enabling vision-only end-to-end driving.

In addition to the 3 concatenated front-facing camera im-
ages, LTF incorporates vehicle status inputs including nav-
igational commands. Our version for the WOD-E2E chal-
lenge also included past vehicle speeds, and past vehicle
positions to provide temporal context and directional guid-
ance. These status inputs are processed through dedicated
embedding layers and concatenated with the BEV tokens
before serving as context tokens in the transformer decoder.

Diffusion Latent TransFuser (DiffusionLTF): extends
the LTF baseline by incorporating a diffusion-based trajec-
tory generation head. Following conceptual ideas of Dif-
fusionDrive [17] and SmartRefine [26], we employ a trun-
cated diffusion schedule which we find effective for diverse
trajectory generation while maintaining fast inference. The
architecture adopts an encoder-decoder transformer frame-
work where each waypoint is treated as an individual query,
enabling fine-grained reasoning for trajectory refinement.

As shown in Fig. 2, this approach uses a discrete vo-
cabulary of representative driving patterns derived from the
training data. During training, we apply Gaussian noise
to these trajectory prototypes and identify the nearest cor-
rupted trajectory to the ground truth as the initialization
for the denoising process. The model learns to reconstruct
clean trajectories by minimizing the error between denoised
and ground-truth trajectory.

To select a denoised proposal, we use a classification
head to score each candidate, optimized with a cross-
entropy loss. Let T̂ be the ground truth, Ti denotes the i-th
denoised candidate and ||T̂ − Ti|| is the denoising error of
a candidate, the target distribution is defined as:

yi =
exp(−||T̂ − Ti||)∑k
j=1 exp(−||T̂ − Tj ||)

(1)
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Figure 2. DiffusionLTF architecture.

3. Experiments

In context of the challenge, the WOD-E2E dataset splits
into 2,037 training segments with ground truth trajectories,
479 validation segments containing both ground truth tra-
jectories and single-frame rater feedback annotations, and
1,505 test segments without any annotations for competi-
tion evaluation. For submission, participants submit 1,505
predicted trajectories for the final frame of each test seg-
ment. In our experiments, we report the model’s perfor-
mance on the validation set, if not indicated otherwise.

The challenge employs the Rater Feedback Score
(RFS) that evaluates predicted trajectories against human
expert judgment. Three expert raters annotate reference tra-
jectories with quality scores from 0 (poor driving) to 10
(excellent driving). Scoring relies on trust regions around
acceptable driving behaviors, defined by lateral and longi-
tudinal thresholds at evaluation timestamps T=3s and T=5s.
To receive an expert’s score, predicted trajectories must fall
within both trust regions of an annotated trajectory; other-
wise, they receive exponentially decreasing penalties based
on distance to the nearest reference, with a minimum floor
of 4. As a secondary metric, we also report Final Displace-
ment Error (FDE), measured as the L2 distance between
the predicted and ground truth trajectory endpoints at T=5s.

Implementation Details: Our LTF architecture employs
ResNet18 for the LiDAR branch and ResNet34 for the im-
age branch (for more details, see [5] and [14]). The image
inputs are resized to size 768 × 288. Training follows a
cosine learning rate schedule [18] with gradient norm clip-
ping at 1.5, comprising 128k gradient steps for pre-training
followed by 72k steps for post-training, with AdamW [19]
and a batch size of 64. Since auxiliary annotations differ
between datasets, we learn auxiliary labels with indepen-
dent heads for each dataset. DiffusionLTF employs a trans-
former trajectory encoder (2 layers) and decoder (6 layers)
using 256-dimensional tokens [25]. We use DDIM sam-
pling [23] with a squared cosine noise schedule [20]. The
trajectory vocabulary is clustered with furthest point sam-
pling on WOD-E2E. As for the denoising objective, we sum
up average and final error with Smooth-L1 loss function.

FDE ↓ RFS ↑

Planning decoder
LTF [5] 5.77 7.91
DiffusionLTF 5.80 7.88

Proposal ensembling
N=1 5.65 7.95
N=2 5.65 7.96
N=5 5.63 7.97
N=10 5.63 7.97

Logged Trajectories 0.00 8.10

Table 2. Model architecture ablation on WOD-E2E validation
set. The base model is our best DiffusionLTF checkpoint. While
adding the diffusion decoder to LTF alone does not improve the
score, it enables ensembling which leads to an overall boost.

3.1. Model Analysis

For our final test-set submissions, we train both the LTF de-
terministic waypoint decoder and DiffusionLTF waypoint
decoder with a shared backbone. A performance overview
of both planners can be found in Table 2. We see that a
hybrid ensemble approach significantly outperforms indi-
vidual model components. In particular, we first draw 10
proposals from DiffusionLTF. These 10 proposals might
belong to different modes and are grouped accordingly.
Within each mode group, we average the trajectories and
sum their corresponding selection logits. The averaged tra-
jectory of the mode group with the highest combined logit
score is averaged, again, with the LTF deterministic plan-
ning output to produce the final prediction.

3.2. Dataset Mixture Analysis

As a next step, we examine the effects of mixing di-
verse data sources during training, investigating how differ-
ent dataset combinations impact model performance across
both perception pre-training and post-training phases. To
ensure fair comparison, all experiments maintain identi-
cal total gradient steps while systematically varying data
composition. During pre-training, we balance batches with
equal proportions from all included datasets, while post-
training batches maintain at least 30% WOD-E2E data to
preserve target domain representation. Given the stochastic
nature of training, we generate a single seed for pre-training
and three seeds for post-training, reporting metrics from the
checkpoint achieving the highest RFS score per seed.

Pre-training mixture: In this experiment (Table 3), we
pre-train the backbones on a mixed of auxiliary labels com-
ing from different sets of datasets, then post-train the model
solely on WOD-E2E’s logged trajectories. The results
demonstrate that pre-training with auxiliary datasets con-
sistently improves model performance compared to train-
ing solely on WOD-E2E data. While any individual dataset
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Pre-training Datasets Metrics

CARLA NAVSIM WOD-P FDE ↓ RFS ↑
6.33 ± 0.46 7.52 ± 0.01

✓ 6.02 ± 0.14 7.75 ± 0.02
✓ 5.94 ± 0.16 7.81 ± 0.03

✓ 5.82 ± 0.10 7.85 ± 0.04

✓ ✓ 5.74 ± 0.17 7.83 ± 0.04
✓ ✓ 5.84 ± 0.20 7.74 ± 0.03

✓ ✓ 5.90 ± 0.09 7.81 ± 0.04

✓ ✓ ✓ 5.73 ± 0.21 7.84 ± 0.01

Table 3. Impact of pre-training with diverse data.

provides meaningful improvements, WOD-P emerges as
the most effective single pre-training dataset, achieving the
highest RFS score of 7.85. The combination of all three
datasets yields the lowest FDE of 5.73 but does not surpass
the RFS performance of WOD-P alone. This suggests that
while diverse pre-training data helps with trajectory accu-
racy, the quality and relevance of individual datasets may
be more critical for expert raters’ satisfaction than simply
maximizing dataset diversity.

Post-training mixture: The next experiments in Table 4
share a backbone pre-trained on all datasets. They differ by
which datasets’ auxiliary labels are used in the post-training
step to fine-tune the backbone parallel to the training of the
planning heads on WOD-E2E. Here, we increase the batch
size from 64 to 128 to control the noise level of gradients
of the planning heads, since only about half of the batch
actually has waypoint labels of WOD-E2E and the other
half has only auxiliary labels. Following the pre-training
analysis, the post-training mixture results reveal a contrast-
ing pattern. Unlike pre-training where auxiliary datasets
consistently provided benefits, post-training with additional
datasets generally degrades performance compared to train-
ing exclusively on WOD-E2E data. The baseline approach
with no additional datasets achieves the highest RFS score
of 7.84, while most auxiliary dataset combinations reduce

Additional Post-training Datasets Metrics

CARLA NAVSIM WOD-P FDE ↓ RFS ↑
5.73 ± 0.21 7.84 ± 0.01

✓ 6.25 ± 0.19 7.76 ± 0.12
✓ 6.17 ± 0.05 7.77 ± 0.04

✓ 5.82 ± 0.21 7.83 ± 0.03

✓ ✓ 5.91 ± 0.20 7.81 ± 0.07
✓ ✓ 5.65 ± 0.18 7.80 ± 0.05

✓ ✓ 5.88 ± 0.10 7.80 ± 0.04

✓ ✓ ✓ 5.74 ± 0.08 7.84 ± 0.07

Table 4. Post-training with joint planning and perception.

# Submission Val RFS ↑ Test RFS ↑

1 Post-train WOD-E2E & CARLA 7.42 7.19
2 Post-train WOD-E2E only 7.54 7.42

3 Pre- and post-train all datasets 7.86 7.54
4 Post-train validation set 8.20 7.49

5 Add past states to status tokens 7.90 7.59
6 Pre-train WOD-P only 7.97 7.71

Table 5. Results on the WOD-E2E test server.

both FDE and RFS performance. This preliminary result
indicates the importance of curated planning-centric data in
the post-training phase.

Test-set performance: To verify models’ performance
against the test set, each participating team was allowed to
submit 6 predictions to the leaderboard per month. A sum-
mary of our submissions is shown in Table 5.

The first and second submission shared the same pre-
trained backbone trained on CARLA only, differing in that
the first submission is also post-trained on CARLA’s logged
trajectories. To enable this, we defined a learned mapping
from CARLA’s GPS target points to WOD-E2E’s naviga-
tional commands (e.g., turn left, go straight, turn right).
The CARLA trajectory post-training did not improve per-
formance, and was excluded in our main experiments.

The third submission used all data for pre-training and
post-training, and the fourth submission used in addition the
validation set of WOD-E2E for training. However, we ob-
served strong fluctuation of validation performance between
each epoch, so the validation set was excluded from training
in subsequent experiments for model selection purposes.

The fifth submission added past speeds and past posi-
tions as status tokens to the DiffusionLTF transformer de-
coder, giving a minor improvement. The final submission
also included past statess, but used only WOD-P as an extra
pre-training source, motivated by our results in Table 3.

4. Conclusion

Our work demonstrates that cross-dataset learning improves
end-to-end driving performance, with models pre-trained
on the diverse OXAV collection achieving strong results on
the WOD-E2E benchmark. More importantly, our analy-
sis reveals that while additional datasets consistently pro-
vide benefits, quality trumps quantity when selecting data
sources. Individual high-quality datasets like WOD-P can
outperform complex dataset combinations, and the manner
of dataset integration matters. Auxiliary data proves bene-
fits during pre-training, but can degrade performance dur-
ing post-training phases. These findings suggest that strate-
gic dataset selection and careful integration into training are
as important as dataset diversity itself for developing more
generalizable and capable end-to-end driving systems.
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Limitations: This work relies on open-loop metrics to
evaluate the performance of autonomous driving stacks.
These metrics have sometimes been misleading since they
do not measure closed-loop driving performance [6, 10, 16].
In particular, there is no analysis yet whether RFS cor-
relates with closed-loop performance or not. The WOD-
E2E dataset does not provide maps or bounding box labels,
which is why we could not use the more reliable but label-
dependent PDM-score open-loop metric [11]. For stronger
conclusions, evaluation with multiple benchmkarks and
metrics may be necessary [3, 11, 12].
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Alexey Dosovitskiy. On offline evaluation of vision-based
driving models. In Proc. of the European Conf. on Computer
Vision (ECCV), 2018. 5

[7] Open X-Embodiment Collaboration, Abby O’Neill, Ab-
dul Rehman, Abhinav Gupta, Abhiram Maddukuri, Ab-
hishek Gupta, Abhishek Padalkar, Abraham Lee, Acorn Poo-
ley, Agrim Gupta, and Ajay Mandlekar et al. Open X-
Embodiment: Robotic learning datasets and RT-X models.
https://arxiv.org/abs/2310.08864, 2023. 1

[8] OpenScene Contributors. Openscene: The largest up-to-date
3d occupancy prediction benchmark in autonomous driving.
https://github.com/OpenDriveLab/OpenScene, 2023. 2

[9] Waymo E2E Contributors. Waymo open dataset: Vision-
based end-to-end driving. https://waymo.com/open/data/e2e,
2025. 1, 2

[10] Daniel Dauner, Marcel Hallgarten, Andreas Geiger, and
Kashyap Chitta. Parting with misconceptions about learning-
based vehicle motion planning. In Conference on Robot
Learning (CoRL), 2023. 5

[11] Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo
Weng, Zhiyu Huang, Zetong Yang, Hongyang Li, Igor
Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas
Geiger, and Kashyap Chitta. Navsim: Data-driven non-
reactive autonomous vehicle simulation and benchmark-
ing. In Advances in Neural Information Processing Systems
(NeurIPS), 2024. 1, 2, 5

[12] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio
Lopez, and Vladlen Koltun. CARLA: An open urban driving
simulator. In Proceedings of the 1st Annual Conference on
Robot Learning, pages 1–16, 2017. 1, 2, 5

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition, 2015. 1

[14] Bernhard Jaeger, Kashyap Chitta, and Andreas Geiger. Hid-
den biases of end-to-end driving models. In Proc. of the
IEEE International Conf. on Computer Vision (ICCV), 2023.
1, 2, 3

[15] Napat Karnchanachari, Dimitris Geromichalos, Kok Seang
Tan, Nanxiang Li, Christopher Eriksen, Shakiba Yaghoubi,
Noushin Mehdipour, Gianmarco Bernasconi, Whye Kit
Fong, Yiluan Guo, and Holger Caesar. Towards learning-
based planning: The nuplan benchmark for real-world au-
tonomous driving. In IEEE International Conference on
Robotics and Automation, ICRA, 2024. 2

[16] Zhiqi Li, Zhiding Yu, Shiyi Lan, Jiahan Li, Jan Kautz, Tong
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