
Swin-Trajectory: Technical Report for 2025 Waymo Vision-based
End-to-End Driving Challenge

Sungjin Park1† Gwangik Shin1† Jaeha Song1† Sumin Lee1 Hyukju Shon1

Byounggun Park1 Jinhee Na2 Hawook Jeong2 Soonmin Hwang1

1Hanyang University 2RideFlux Inc.
{shihtzu333, david5432, archiiive99, maroona, sohnhyck, okharry1, soonminh}@hanyang.ac.kr

{jhna, hawook}@rideflux.com

Abstract

End-to-end autonomous driving aims to predict motion
plans or control commands directly from raw sensor inputs.
Although recent methods often incorporate vision language
models (VLMs) or auxiliary tasks, we take a minimalist ap-
proach called Swin-Trajectory, a transformer-based way-
point predictor that uses only a single front-facing camera
and structured ego-vehicle history. We employ a lightweight
Swin Transformer as backbone to extract dense image fea-
tures, and use cross-attention between these features and
waypoint queries—derived from historical trajectories and
ego states—to capture spatial-temporal context for trajec-
tory prediction. Our model runs at 14ms on an RTX 4090
and achieves competitive performance in the challenge.

1. Introduction

End-to-end (E2E) autonomous driving is an emerging
paradigm in which driving behaviors are inferred directly
from sensory inputs using a single unified model. Com-
pared to traditional modular approaches, E2E methodol-
ogy has gained considerable attention due to its potential
to holistically optimize the entire driving system, resulting
in significant improvements in safety and performance.

Recent end-to-end (E2E) methods have shown strong
performance by incorporating auxiliary perception tasks [1,
2] and further leveraging vision language models (VLMs),
such as EMMA [3], which leverages their reasoning ca-
pabilities to handle even more challenging scenes. How-
ever, such approaches inevitably result in larger and more
complex model architectures. In contrast, we take a mini-
malist approach: a lightweight, deployment-friendly model
trained solely with trajectory supervision.

†equal contribution

Our model, Swin-Trajectory, is a streamlined E2E plan-
ner that utilizes only a single front-facing camera and ego-
vehicle status without any additional supervision. Through
careful engineering to mitigate shortcut learning, our model
achieves a compelling balance between accuracy and com-
putational efficiency.

2. Method

To predict a sequence of future waypoints in the vehicle-
centric coordinate frame, we utilize a single front-facing
camera and structured waypoint queries. As shown in Fig-
ure 1, our architecture consists of 3 components: feature
extractor, ego-info encoder and trajectory decoder module.

2.1. Feature Extraction

We begin by extracting visual features from the input im-
age using a Swin Transformer [4] as backbone. To provide
geometric grounding for the dense image features, we uti-
lize 3D positional encoding. Specifically, we sample dense
pixel locations from the feature map grid and project each
pixel into 3D space using a set of predefined depth bins. The
resulting 3D coordinates are normalized and passed through
a linear positional encoder to obtain 3D positional encoding.

2.2. Ego-info Encoder

To encode the historical waypoints and ego-vehicle
states into waypoint queries, the historical waypoints P ∈
RB×Nhis×2 are flattened into RB×2Nhis and passed through
a linear layer to produce initial query embeddings Qhis ∈
RB×Npred×C .

The ego-vehicle state vector E ∈ RB×12 includes ve-
locity, acceleration, yaw rate, initial speed, curvature esti-
mated from past trajectory, fixed vehicle size, and a one-
hot encoded driving intention. The ego-vehicle state vector
E ∈ RB×12 is then encoded via another linear layer to gen-
erate both keys and values Ke,Ve ∈ RB×Npred×C .
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Figure 1. Overall Architecture. The model comprises three main components: (1) a Swin Transformer backbone for extracting spatial
image features with 3D positional encoding, (2) a waypoint query encoder that fuses historical waypoints and ego-vehicle states via Ego-
info Encoder to produce refined waypoint queries, (3) a Transformer decoder that applies Trajectory Decoder between the waypoint queries
and flattened image features to predict future trajectories.

These are fused via a single transformer layer, where
Qhis serves as the query and Ke, Ve serve as the memory,
resulting in refined waypoint queries Qway ∈ RB×Npred×C

that integrate both temporal history and structured ego in-
formation. These queries are then used in subsequent de-
coder blocks with image features for final prediction.

2.3. Trajectory Decoder
The trajectory decoder block takes the image features

F ∈ RB×Ncam×H×W×C as input from Section 2.1. These
features are first flattened along the spatial and camera di-
mensions to form a sequence: Fflat ∈ RB×(Ncam·H·W )×C .
The flattened feature sequence serves as the key and value
input to a transformer layer, while the refined waypoint
queries Qway ∈ RB×Npred×C from Section 2.2 are used as
the queries. The transformer layers fuses spatial image fea-
tures with waypoint query, and the final trajectory is pre-
dicted through a linear projection layer applied to the de-
coder output.

2.4. Loss
We utilize the L2 loss for trajectory prediction. Given

the predicted trajectory Ŷ ∈ RN×2 and the ground truth
trajectory Y ∈ RN×2, the loss is defined as:

L =
1

N

N∑
i=1

∥∥∥Ŷi −Yi

∥∥∥2
2

(1)

3. Experiments

3.1. Dataset and metrics
We use the Waymo Open Dataset for End-to-End Driv-

ing (WOD-E2E) for our experiments. Each data sample in-
cludes multi-view camera images, past trajectories and ego

status. The prediction target is a 5-second future trajectory
in an open-loop setting.

The Rater Feedback Score (RFS) evaluates trajectory
prediction by measuring deviation from human rater trajec-
tories within predefined trust regions. At t = 3 and t = 5
seconds, predictions are scored based on lateral and longi-
tudinal thresholds, scaled by the ego’s initial speed. Full
score is awarded within the region, while deviations incur
exponential penalties. The final score is clipped between 4
and 10. and the penalty is computed as:

RFS = s̄× 0.1
max

max

∆lng

τlng
,
∆lat

τlat

−1, 0


(2)

On the validation set, a single ground-truth trajectory is
treated as a single rater with s̄ = 10.

3.2. Sampling Strategy

During training, image sequences are provided at ap-
proximately 10 Hz. We observed that important driving
scenarios typically occur in the middle of a sequence. Con-
sequently, using all available frames would introduce sig-
nificant redundancy for common scenarios, diminishing the
model’s ability to effectively handle rare but critical situa-
tions. To address this, we sample frames at fixed intervals
of 15 frames, which reduces redundancy and training cost.

For the same reason, using every frame on evaluation
would lead to exaggerated scores, as many frames corre-
spond to less-complex driving situations. This may obscure
the model’s performance in more critical or challenging sce-
narios. We adopt a two sampling strategy to address this:
we select a single representative frame per sequence—the
frame 80 frames before the end of each scene, and sample
every 20 frames from whole validation set.



Validation Test

#Cameras #Blocks Semantic RFS(Single) ↑ RFS(Interval) ↑ RFS ↑ ADE ↓ GFLOPs Latency (ms)

1 1 – 6.52 7.18 7.49 2.90 93.34 13.24
1 1 ✓ 6.70 7.40 7.41 3.02 93.36 13.28
1 3 – 6.63 7.28 7.54 2.81 93.67 13.83
3 1 – 6.37 7.12 7.41 2.93 279.83 30.19
3 3 – 6.41 7.15 7.46 2.98 280.69 31.34

Table 1. Performance on WOD-E2E validation set. #Cameras indicates the number of input camera views, and #Blocks refers to the
number of trajectory decoder block used. Semantic indicates whether semantic masks are used, which serve as the fourth channel when
concatenated with the RGB image to form a 4-channel input. RFS(Single) is computed from each scene’s 80 frames (8 seconds at 10 Hz)
before the last frame, while RFS(Interval) is averaged over frames sampled every 20 frames across each scene. RFS and ADE represent
scores obtained from the official submission on the test set.

Scenario Cluster 1-Camera 3-Camera

Foreign Object Debris 6.58 6.07
Intersections 6.73 6.41
Special Vehicles 6.11 6.45
Cyclist 6.57 6.29
Multi-Lane Maneuvers 6.59 6.14
Pedestrian 6.73 6.96
Cut-ins 6.09 6.07
Single-Lane Maneuvers 6.37 6.33
Construction 5.84 6.73
Others 8.53 7.32

Overall 6.63 6.41

Table 2. Rater Feedback Score per scenario cluster on the
single sampled validation set. Each value represents the aver-
age Rater Feedback Score for each scenario cluster as defined in
WOD-E2E. All results are based on 3-block models.

3.3. Implementation Details

Our experiments are conducted on NVIDIA RTX 4090
GPU. We employ a Swin Transformer-Tiny’s image en-
coder pre-trained in ImageNet, with patch size (2, 4, 4)
and window size (8, 7, 7). The encoder processes image
with a spatial resolution of 800×972. We train our model
on the training split for 50 epochs using the AdamW op-
timizer with a batch size of 8. The learning rate is set to
1×10−6 for the image backbone and 1×10−5 for the other
modules, with weight decay of 0.01. We adopt a cosine an-
nealing learning rate scheduler with linear warmup for the
first 500 iterations. The warmup ratio is set to 0.33, and
the minimum learning rate is set to 1 × 10−3 of the ini-
tial value. Gradient clipping with a maximum norm of 35
is applied to stabilize training. Dropout with a ratio of 0.1
is applied throughout the backbone and decoder block. No
model ensembling is used during training. For experiments
using additional semantic masks, we employ UPerNet [5]
to generate semantic segmentation features.

3.4. Results

As shown in Table 1, increasing the number of trajectory
decoder block improves performance. The 3-block variant
without semantic input achieved the highest test score, val-
idating the effectiveness of our minimal design.

As an additional experiment, we investigated whether
incorporating semantic information could further improve
performance. We used the output of a pre-trained seman-
tic segmentation model and appended a single-channel se-
mantic prior to the RGB input, forming a 4-channel image.
While this variant yielded better results on the validation
set, it underperformed on the test set—likely due to noise
and domain gap in the segmentation outputs.

When comparing the 1-camera and 3-camera setups, we
observe that the 3-camera configuration resulted in lower
overall performance, despite its higher computational cost.
We assume that this degradation is due to the model’s lim-
ited capacity (36M parameters), which struggles to disen-
tangle redundant or misaligned features introduced by flat-
tening and jointly encoding multiple views. This obser-
vation suggests that increasing the number of input views
alone does not guarantee better performance. Instead, it
emphasizes the importance of adaptive and content-aware
multi-view fusion strategies that selectively extract comple-
mentary information across views.

As shown in Table 2 and Figure 2, there are scene
types—such as Construction—where the 3-camera setup
clearly outperforms the 1-camera variant. This suggests
that additional views can be beneficial, supporting the idea
that multi-view input holds strong potential, but its success
hinges on how effectively the information is integrated.

4. Conclusion

In this report, we introduced Swin-Trajectory, a
lightweight and minimalist end-to-end driving model de-
signed for the Waymo Vision-based E2E Driving Chal-
lenge. Our approach leverages only a single front-facing
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Figure 2. Qualitative results across different scenario clusters. We compare predictions from the 1-Camera + 3-Block and 3-Camera +
3-Block settings. Except for the Construction scenario, the 1-Camera + 3-Block setting generally outperforms the 3-Camera counterpart.
Each row presents a qualitative visualization from the validation set, highlighting representative differences across clusters. For clarity,
some cluster names are abbreviated: ”Multi-Lane” stands for Multi-Lane Maneuvers, and ”Foreign Obj.” refers to Foreign Object Debris.

camera and structured ego inputs, avoiding any reliance on
semantic labels or HD maps. Despite its simplicity, Swin-
Trajectory effectively models both spatial and temporal
contexts through an encoder–decoder attention framework:
ego-info encoder integrates historical trajectory and vehicle
state, while trajectory decoder enables cross-attention be-
tween waypoint queries and dense image features.

Extensive experiments on WOD-E2E validation and test
sets demonstrate that our architecture achieves competitive
results with low latency and computation cost. Notably, we
show that increasing the number of decoder block signif-
icantly improves performance in the single-camera setup.
While the 3-camera variant exhibits advantages in certain
scenarios like construction zones, our results suggest that
multi-view fusion requires more sophisticated handling to
consistently outperform the single-view baseline. Future
works may explore adaptive fusion strategies and integra-
tion of external priors for further improvement.
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