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Abstract

This technical report introduces Parallel ModeSeq, a mul-
timodal behavior prediction framework inspired by sequen-
tial mode modeling (ModeSeq). The framework stacks mul-
tiple decoding layers with mode rearrangement in between
for iterative refinement and applies the Multi-Agent Early-
Match-Take-All (MA-EMTA) training strategy to produce
multimodal scene output without mode selection or ensem-
ble methods. Our approach efficiently decodes all modes
in parallel while translating the mode set into a sequence
via causal mode-to-mode self-attention, attaining improved
trajectory diversity and calibrated mode confidence without
the reliance on recurrent mode generation. We also employ
the margin ranking loss to minimize the average number
of confidence inversions in ranking, which effectively en-
hances the performance on mAP. Equipping our framework
with the QCNet-style encoding method and the QCNeXt-
style joint decoding architecture, our solution achieves phe-
nomenal performance on all metrics, outperforming other
methods by a large margin in the 2025 Waymo Interaction
Prediction Challenge.

1. Introduction

Multimodal behavior prediction requires capturing the full
distribution of agents’ future behavior, which is challeng-
ing owing to the lack of multimodal ground truth. The
problem even becomes exponentially harder when the joint
behavior of multiple agents needs to be anticipated. The
Waymo Interaction Prediction Challenge [1] has simpli-
fied the problem by focusing on two-agent joint prediction,
making it feasible to combine marginal prediction results
into joint scenes or conduct conditional factorization over
agents, both of which necessitate heuristic mode selection
(e.g., NMS). However, such approaches are suboptimal, ei-
ther failing to guarantee scene consistency or violating the
end-to-end philosophy of deep learning. Moreover, it is im-
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possible for these approaches to be modified as direct joint
prediction models, given that the paradigm of anchor-based
dense mode prediction they follow will lead to a prohibitive
number of joint anchors. For example, the combination of
64 single-agent anchors from merely two agents will result
in 4096 joint anchors, indicating that anchor-based methods
are unscalable.

Our solution to the joint prediction problem is fully end-
to-end, directly producing a sparse set of multimodal scene
outputs without any post-processing tricks. Inspired by
ModeSeq [8], we formulate multimodal prediction as se-
quential mode modeling to obtain diverse trajectories and
calibrated confidences under the framework of sparse mode
prediction. But unlike ModeSeq, which generates modes in
a recurrent manner, our approach leverages causal mode-to-
mode self-attention to translate the mode set into a sequence
and efficiently decode all modes in one shot, leading to a
parallel version of ModeSeq. To further promote the scor-
ing capability, we employ the margin ranking loss to raise
the confidence of the positive samples and suppress that of
the negative samples. To adapt to the joint multi-agent pre-
diction task, we integrate the parallel version of ModeSeq
with the QCNet-style encoder [6] and the QCNeXt-style de-
coder [7], obtaining a comprehensive prediction framework
that achieves unprecedented performance on the Waymo
Open Motion Dataset [1].

2. Method
2.1. Scene Encoding

We adopt QCNet [6] as the scene encoder. This encoder ex-
ploits a hierarchical map encoding module based on map-
to-map self-attention to produce the map embedding of
shape [M, D], with D referring to the hidden size. On the
other hand, the encoder consists of Transformer modules
that factorize the space and time axes, including tempo-
ral self-attention, agent-to-map cross-attention, and agent-
to-agent self-attention. These three types of attention are
grouped and interleaved twice to yield the agent embedding
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Figure 1. Overview of the Parallel ModeSeq framework for a single agent. Left: We stack multiple Parallel ModeSeq layers with mode
rearrangement in between to iteratively refine the multimodal output under the Early-Match-Take-All (EMTA) training strategy. Right:
Each Parallel ModeSeq layer consists of a Causal Mode-to-Mode Transformer module for capturing mode-wise dependencies and a Context
Transformer module for retrieving the scene embeddings produced by the encoder.

of shape [A, T, D] for A agents and T historical time steps, sequence by ensuring that the generation of a mode depends
which constitutes the final scene embeddings together with on the earlier modes instead of all other modes. Following
the map embedding. the Causal Mode-to-Mode Transformer module, we employ

a Context Transformer to extract scene context from the en-
2.2. Marginal Parallel ModeSeq coder embeddings. We decompose the Context Transformer

into three separate modules, including mode-time cross-
attention, mode-map cross-attention, and mode-agent cross-
attention, each of which takes as input only a subset of the
encoder embeddings. First, the mode-time cross-attention
fuses the query feature with the historical encoding belong-
ing to the agent of interest, enabling the query to adapt to
the specific agent. Second, we aggregate the map informa-
tion surrounding the agent of interest into the query feature
leveraging the mode-map cross-attention, which contributes
to the map compliance of the forecasting results. Finally,
utilizing the mode-agent cross-attention module to fuse the
neighboring agents’ embeddings at the current time step
promotes the model’s social awareness. Given the context-
aware mode queries, we use MLPs to output the trajectories
and the mode confidences.

This section illustrates Parallel ModeSeq for marginal pre-
diction, which can be easily extended as a joint prediction
architecture using the modeling tools in QCNeXt [7].

Single-Layer Parallel Mode Sequence. We first intro-
duce the architecture of a single Parallel ModeSeq layer,
which is depicted in the right part of Fig. 1. It mainly con-
sists of a causal Mode-to-Mode Transformer and a Con-
text Transformer. The Mode-to-Mode Transformer mod-
ule captures the relationships between modes, where the
query embeddings are derived from the addition of the con-
tent embeddings and the order embeddings. The content
embeddings are zero-initialized for the first decoding layer.
Starting from the second decoding layer, the content em-
beddings are propagated from the mode embeddings out-
put by the last decoding layer. On the other hand, the or-

der embeddings are learnable parameters used to differen- Multi-Layer Parallel Mode Sequences. Following Mode-
tiate the order of modes in the sequence. Unlike typical Seq [8], we use an iterative refinement strategy that stacks
DETR-like decoders, which treat the query embeddings as multiple Parallel ModeSeq layers and applies training losses
set elements, our Mode-to-Mode Transformer module ap- to the output of each layer. As shown in the left part
plies causal self-attention, translating the mode set into a of Fig. 1, all layers except for the first one take as input



Table 1. Quantitative results on the 2025 Waymo Open Dataset Interaction Prediction Benchmark.

Method | Ensemble | SoftmAPg 1 mAPsT MRg| minADEg| minFDEg |
Parallel ModeSeq X 0.2978 0.2949 0.3782 0.7707 1.6897
IMPACT X 0.2718 0.2659 0.4316 0.9738 2.2734
BeTop v 0.2573 0.2511 0.4376 0.9779 2.2805
RetroMotion v 0.2562 0.2519 0.4347 0.9256 2.0890

the mode embeddings output from the last round of decod-
ing, refining the features with the scene context. Our model
also includes an operation of mode rearrangement in be-
tween layers, which corrects the order of the embeddings in
the mode sequence to encourage decoding trajectory modes
with monotonically decreasing confidence scores. Specif-
ically, before transitioning from the ¢-th to the (¢ + 1)-
th layer, we sort the mode embeddings according to the
descending order of the confidence scores predicted from
them. Through iterative refinement with mode rearrange-
ment, the trajectories and the order of modes become more
scene-compliant and more monotonous, respectively.

2.3. Extension to Joint Parallel ModeSeq

Thanks to the roto-translation invariance brought by query-
centric modeling of QCNet [6], Parallel ModeSeq natu-
rally supports multi-agent prediction in parallel. But this is
not enough for the task of joint prediction, which requires
scene consistency among the predicted futures of multiple
agents. Mirroring the success of QCNeXt [7], we extend the
marginal version of Parallel ModeSeq into a joint version in
two steps. First, we place a Future Interaction module af-
ter the Context Transformer, which performs self-attention
among the mode embeddings of all target agents within the
same joint scene. Second, we adopt a scene scoring module
to produce scene-level confidence scores, where the mode
embeddings of all target agents within the same joint scene
are aggregated into a scene embedding via max pooling.
The scene embedding is then projected into a scene score
using an MLP.

2.4. Multi-Agent Early-Match-Take-All training

In this section, we illustrate the training strategy of Joint
Parallel ModeSeq, which augments the Early-Match-Take-
All (EMTA) scheme [8] into a multi-agent setting, dubbed
MA-EMTA. We also employ a margin ranking loss to better
calibrate the confidence scores of modes.

Regression. Our regression loss is based on the Laplace
negative log-likelihood [5, 6]. Typical WTA loss optimizes
only the trajectory with the minimum displacement error to
the ground-truth trajectory. In contrast, the MA-EMTA loss
optimizes the earliest matched scene in the mode sequence.
For example, if both the 2" and the 3" joint modes match
the ground truth, only the 2" one will be optimized, regard-
less of which mode has the minimum displacement error.

Here, we decide whether a joint mode is a match based on
the velocity-aware distance thresholds defined in the scene-
level Miss Rate metric of the Waymo Interaction Predic-
tion Benchmark. If none of the predicted modes match
the ground truth, we will fall back to the scene-level WTA
loss [4, 7].

Classification. We use the Binary Focal Loss to optimize
the confidence scores. As for label assignment, we treat the
earliest matches as positive samples, with all the remaining
modes treated as negative samples.

Ranking. We desire the confidence scores of the positive
samples to be higher than those of the negative samples. To
this end, we use the margin ranking loss with a margin of
0.1 to minimize the average number of confidence inver-
sions in each training batch.

3. Experiments
3.1. Implementation Details

We develop models with a hidden size of 128, totaling
11.2M model parameters. The decoder stacks 6 layers for
iterative refinement, with each layer predicting 6 modes in
parallel. We use the AdamW optimizer [3] to train a single
model for 90 epochs on the training set with a batch size of
32, a weight decay rate of 0.1, and a dropout rate of 0.1.
The maximum learning rate is set to 5 x 10~—%, which is de-
cayed to 0 every 30 epochs following the cosine annealing
schedule with warm restarts [2].

3.2. Quantitative Results

Table 1 shows the quantitative results on the 2025 Waymo
Interaction Prediction Leaderboard. Without ensembling,
Parallel ModeSeq not only achieves trajectory errors far
lower than dense mode prediction methods, but also has
much better trajectory diversity and more calibrated scoring
capability compared with pseudo joint prediction methods
that combine marginal predictions into joint scenes.

4. Conclusion

This technical report presents our solution to the 2025
Waymo Interaction Prediction Challenge. We implement
sequential mode modeling in a parallel manner and em-
power the model with the capability of joint multi-agent
prediction, achieving state-of-the-art performance across all
prediction metrics.
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