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Abstract

We present IMPACT, a unified trajectory prediction frame-
work that jointly models both behavioral intentions and fu-
ture trajectories, aiming to enhance prediction accuracy,
interpretability, and efficiency. After a shared context
encoding stage, IMPACT simultaneously predicts agent-
level behavioral intentions and polyline-level occupancy
within a symmetric architecture, providing strong priors for
trajectory decoding through dynamic, modality-dependent
context pruning. Notably, our single-model performance
achieves second place in the Interaction Prediction track
of the 2025 Waymo Open Dataset Challenge.

1. Introduction
Trajectory prediction in interactive driving scenarios is one
of the most challenging problems in autonomous driving.
To enable safe and social-aware driving, a prediction model
must not only forecast the future motions of surrounding
agents, such as vehicles, pedestrians, and cyclists, but also
capture the underlying interactions among them. Most prior
multi-agent prediction methods estimate marginal distribu-
tions for each agent, assuming conditional independence.
This overlooks future social interactions that are critical
for accurate scene understanding and coordinated decision-
making. Most existing methods determine attention in-
puts purely based on geometric distance, typically selecting
nearby agents and map elements through fixed-radius [1] or
k-nearest-neighbor (KNN) filtering [2]. While effective in
reducing computation, these distance-based filters are obliv-
ious to semantic intent and interaction relevance, often lead-
ing to the exclusion of critical context or the inclusion of
irrelevant elements.

In this report, we introduce IMPACT, an intention-
aware trajectory prediction framework. Our architecture
begins with a shared encoder that extracts rich contextual
information from both agents and map elements. This en-
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coded representation is then jointly leveraged by three core
modules: an agent-level behavioral intention predictor, a
polyline-level vectorized occupancy predictor, and a trajec-
tory decoder. The predicted intentions and occupancy prob-
abilities serve as priors, dynamically filtering out irrelevant
agents and map elements for trajectory decoding stage. This
design enables IMPACT to produce accurate, interpretable,
and computationally efficient multimodal trajectory predic-
tions.

2. Methodologies
2.1. Input Representation
In our method, we apply agent-centric normalization. To
predict a target agent, the input to the predictor comprises:
A = {a1, a2, . . . , aNa} ∈ RNa×Tp×F1 , representing Na

agents with Tp past states and feature dimension F1, and
L = {l1, l2, . . . , lNl

} ∈ RNl×Np×F2 , representing Nl poly-
lines with Np points each and feature dimension F2.

Following the approaches of RMP-YOLO[3], we fur-
ther incorporate the historical relative movement between
the target agent and the map polylines to capture dy-
namic subtle interdependencies. This historical movement
is denoted by R = {r1, r2, . . . , rNl

} ∈ RNl×Tp×F3 ,
where F3 is the feature size associated with the relative
movement((∆x, ∆y, cos∆θ, sin∆θ)).

2.2. Network Structure
2.2.1. Spatial Temporal Encoding
To comprehensively model temporal dependencies, we ap-
ply a Multi-Scale LSTM (MSL) module. The time-series
data A and R are each processed through three parallel
streams. Each stream consists of a 1D CNN with a dis-
tinct kernel size followed by an LSTM. For the i-th stream
with kernel size ki, the output at the final time step Tp is
computed as:

ATp

ki
= LSTM (Conv1Dki(A))

∣∣∣
t=Tp

, ki ∈ {1, 3, 5} (1)

RTp

ki
= LSTM (Conv1Dki(R))

∣∣∣
t=Tp

, ki ∈ {1, 3, 5} (2)
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Figure 1. An overview of framework of IMPACT. Both the Intention Predictor and the Vectorized Occupancy Predictor share the same
context encoder with the Trajectory Decoder, leveraging their outputs to prune irrelevant agents and map polylines. This selective mecha-
nism ensures that only the most critical context is fed into the decoder for final trajectory prediction.

The final-step hidden states are concatenated (⊕) along
the feature dimension, and a multi-layer perceptron (MLP)
projects the concatenated vector into a unified temporal fea-
ture token:

A1 = MLP (ATp

1 ⊕ATp

3 ⊕ATp

5 ) ∈ RNa×D, (3)

R1 = MLP (RTp

1 ⊕RTp

3 ⊕RTp

5 ) ∈ RNl×D. (4)

For the spatial data L, we adopt a simplified PointNet-like
architecture to aggregate each polyline into a feature token:

L1 = MaxPooling(MLP(L)) ∈ RNl×D. (5)

These tokens are aligned in the feature space (RD) and
ready for downstream fusion and prediction tasks.

2.2.2. Feature Fusion.
We adopt the encoder from RMP-YOLO [3] as the back-
bone network for feature fusion (see Figure 1). To in-
tegrate heterogeneous input modalities, we employ a cas-
caded Multi-Context Gating (MCG) mechanism inspired by
[4]. The MCG modules sequentially fuse pairs of modali-
ties from a candidate set of three. The output of each MCG
stage serves as input to the subsequent stage, enabling hier-
archical feature interaction:

(A2,R2) = MCG(A1,R1), (6)

(L2,R3) = MCG(L1,R2), (7)

(A3,L3) = MCG(A2,L2), (8)

The final fused tokens are defined as agent tokens: A3 ∈
RNa×D and map tokens: L3 = L3 +R3 ∈ RNp×D. Thus,
we design a K-nearest-neighbor (KNN) guided local atten-
tion mechanism to restrict each agent token to attend only to
its K most relevant neighboring tokens (agents or map ele-
ments). This sparse attention pattern reduces computational
complexity while preserving critical interactions. Six trans-
former encoder layers are applied to achieve deep feature

fusion. Each layer follows the standard transformer archi-
tecture enhanced with positional encoding:

Xi = MHA(Xi−1 + PE(Xi−1),

K(Xi−1) + PE(K(Xi−1)),K(Xi−1))
(9)

where X0 = [L3, A3] ∈ R(Na+Nm)×D, MHA(·) de-
notes multi-head attention, K(·) selects K-nearest neigh-
bors via Euclidean distance, and PE(·) injects positional
information using sinusoidal encoding. The positional co-
ordinates derive from agents’ latest observed positions and
map polylines’ centroid coordinates. The final output to-
kens XFinal = [L4, A4] are fed into the behavioral inten-
tion prediction module and vectorized occupation predic-
tion for dynamic context-aware pruning.

Before diving into decoder part (see Figure 2), we define
query content feature at decoder layer i as Qi ∈ RK×D,
which are later used to aggregate information from agent
tokens and map tokens, and decode multimodal prediction
results and K denotes the number of different futures.

2.2.3. Multimodal Behavioral Intention Prediction
For each future modality, we predict the behavioral inten-
tions of other agents with respect to the target agent. Given
the input agent tokens A4 ∈ RNa×D and the query con-
tent Qi ∈ RK×D, we fuse these features into a unified rep-
resentation of shape RK×Na×2D via straightforward ten-
sor broadcasting and concatenation. Next, the fused fea-
tures are passed through a multi-layer perceptron (MLP)
and then added to the previous layer’s behavioral intention
token Ii−1 ∈ RK×Na×D. Finally, another MLP followed
by a softmax activation function produces the final behav-
ioral intention predictions:

Ĥi = Softmax
(

MLP
(
Ii
))

∈ RK×Na×4,

Ii = MLP(MLP(A4 ⊕Qi) + Ii−1).
(10)

Each vector element h represents a probability distri-
bution over four intention categories: yielding, overtak-
ing, ignored, and nearby. To make the decoding process
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Figure 2. An overview of our decoder framework, featuring context-aware pruning via symmetric dual filters.

more focused, we first compute an overall interaction score
from the predicted distribution Ĥ using a utility function
ψ, producing ψ(Ĥi) ∈ RK×Na . We then select the top-m
highest-scoring agents for downstream trajectory decoding.
Therefore, for each modality, we choose m most revelant
agents A5 ∈ Rm×D, where m ≪ Na. This filtering step
refines the decoder’s input, concentrating on the most in-
fluential interactions while improving prediction accuracy.
The ground-truth label of behavioral intention H∗ is derived
from an auto-labeled data preprocessing process.

2.2.4. Multimodal Vectorized Occupancy Prediction
Unlike conventional occupancy prediction methods that
rely on computationally intensive rasterization of multi-
view images, we introduce a novel vectorized occupancy
prediction framework that integrates seamlessly with our
vectorized scenario representation. For each map polyline
li, we predict multimodal occupancy probabilities corre-
sponding to different future hypotheses of the target agent.
Denoting Ci−1 as the previous vectorized occupancy to-
kens, we apply an operation symmetric to the multimodal
behavioral intention prediction:

Ôi = Sigmoid
(

MLP
(
Ci)) ∈ RK×Nl×1,

Ci = MLP(MLP(L4 ⊕Qi) + Ci−1)
(11)

This vectorized approach ensures both efficiency and
scalability while maintaining alignment with the overall
vectorized representation of the scene. Among the Nl

polylines’s multimodal occupancy probabilities φ(Ôi) ∈
RK×Nl , we select the top-nwith the highest predicted prob-
abilities in each modality to form L5 ∈ Rn×D, where n ≪
Nl. These top-ranked polylines serve as focused inputs for
the subsequent trajectory decoder. The ground-truth occu-
pancy label O∗ is also derived from an auto-labeled data
preprocessing process.

2.2.5. Trajectory Decoder
We adopt a multi-layer MTR-style[2] trajectory decoder. At
each layer i, self-attention is applied to the query content
Qi ∈ RK×D across the K motion modes, enabling infor-

mation exchange among different future modalities. Sub-
sequently, for each modality, two cross-attention modules
integrate features from the filtered agent tokens A5 and
map tokens L5. Finally, the target agent feature (replicated
K times) is concatenated with the cross-attended query
features, and passed through a regression head to gener-
ate a set of Gaussian Mixture Model (GMM) parameters

at each future timestep:
{(
µk
x, µ

k
y , σ

k
x, σ

k
y , ρ

k
)}K

k=1
, where(

µk
x, µ

k
y , σ

k
x, σ

k
y , ρ

k
)

parameterizes the k-th Gaussian com-
ponent. In addition, a classification head outputs the confi-
dence scores S ∈ RK corresponding to each motion mode.
This multimodal representation captures the inherent uncer-
tainties of agent trajectories.

2.3. Training Loss
Our overall training objective comprises four components:

Ltotal = λ1 LInt + λ2 LOcc + λ3 LTraj + λ4 LScore, (12)

where λ1, λ2, λ3, and λ4 are weighting factors balancing the
contributions of behavioral intention prediction, vectorized occu-
pancy prediction, trajectory prediction, and mode classification,
respectively. Specifically, LInt is calculated using the multi-class
Focal Loss, LOcc is based on the binary Focal Loss, LTraj is
derived from the GMM loss, and LScore is computed with Binary
Cross-Entropy. During training, the winner-take-all strategy is
applied for LInt, LOcc, and LTraj, ensuring that only the modality
closest to the ground-truth trajectory is used to compute these
losses. The weighting factors are set as λ1 = 100, λ2 = 100,
λ3 = 1, and λ4 = 1.

3. Experiments
3.1. Experimental Setup
Implementation Details. We employ AdamW optimizer for
training, conducting experiments on a cluster of 8 NVIDIA A800
GPUs with a total batch size of 80. The learning rate is initialized
as 1 × 10−4 and begins step decay starting at epoch 22, halving
every two epochs. The model undergoes 30 epochs.



Figure 3. Visualization of predicted multi mode intention labels. The first column renders the ground truth intention labels of the agents.
Remaining columns render the predicted results of K=6 different modes. We can see that our predicted intentions and trajectories are
coupled and cover most possible modes.

Table 1. Leaderboard performance of the interaction prediction track of the Waymo Open Dataset Challenge.

Method minADE ↓ minFDE ↓ Miss Rate ↓ mAP ↑ Soft mAP ↑
Parallel ModeSeq 0.7707 1.6897 0.3782 0.2949 0.2978
IMPACT(ours)[5] 0.9738 2.2734 0.4316 0.2659 0.2718

BeTop-ens [6] 0.9779 2.2805 0.4376 0.2511 0.2573
RetroMotion (SMoE hybrid) 0.9256 2.0890 0.4347 0.2519 0.2562

RMP YOLO[3] 0.9274 2.1131 0.4167 0.2313 0.2486
AutoDiffuser-Draft 0.9422 2.1759 0.4885 0.2211 0.2249

infgen-base-xl 1.2059 2.6427 0.5649 0.0714 0.1236
Waymo LSTM baseline 1.9056 5.0278 0.7750 0.0648 0.0693

3.2. Leaderboard Performance
Joint Prediction Performance. As presented in Table 1,
without any model-ensemble techniques, our single model
achieves the second best performance on the Waymo joint predic-
tion leaderboard. We visualize the per-mode qualitative results in
Figure 3. Each predicted trajectory mode is conditioned on the be-
havioral intention outputs, which act as semantic priors for decod-
ing. This confirms the effectiveness of intention-aware guidance
in generating coherent and interaction-consistent predictions.
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