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Abstract

Accurately forecasting the future behaviors of interactive
traffic participants is a critical capability for autonomous
driving systems. While interactive prediction offers an ef-
fective paradigm for modeling multi-modal futures of agent
pairs, it remains challenging to ensure consistency be-
tween interacting agents and to combat with uncertainty
across diverse behavioral modes. In this work, we pro-
pose BeTop-ens, an ensemble-based behavioral topology
reasoning framework that extends the BeTop [6] formula-
tion for robust interactive motion prediction. At the core
of BeTop-ens is BeTopNet, a synergistic learning model
that represents interactive behaviors through a hierarchical
topology graph. This graph captures both low-level motion
features and high-level behavioral modes, enabling struc-
tured reasoning over future interactions. BeTopNet employs
a dual-branch network architecture to separately model lo-
cal spatio-temporal motion cues and global interaction se-
mantics, which are fused via cross-attention for joint future
prediction. To address epistemic uncertainty and improve
robustness, BeTop-ens aggregates multiple independently
trained BeTopNet models using a refined ensemble learning
strategy. This not only enhances the calibration of predic-
tive uncertainty, but also yields notable improvements in the
accuracy and consistency of interactive forecasting.

1. Introduction
Understanding and forecasting the interactive behaviors

of multiple traffic agents is a fundamental challenge for au-
tonomous driving [2]. Accurate multi-agent prediction re-
quires not only modeling the individual dynamics of each
actor but also reasoning over their complex interactions, po-
tential future intentions, and diverse behavioral outcomes.
Existing methods often struggle to maintain consistency
across interacting agents and to capture the uncertainty in-
herent in socially plausible futures.

A wide range of prior arts have explored architectural
designs for interactive motion prediction. A common ap-
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Figure 1. BeTop-ens Overview: We propose an ensemble frame-
work that couples the interactive motion prediction task with
multi-agent behavior topology (BeTop) reasoning. The method is
established upon our preceding work [6]. Our framework reduces
uncertainty, and delivers compliant interactive predictions.

proach is to use social pooling or graph-based interac-
tion to aggregate context from neighboring agents. These
works represent interactions Through goal anchors [4] or
message passing [10], it enables mutual influence among
agents. However, these methods often lack structured rea-
soning over joint behavior modes, leading to inconsistencies
in predicted futures between interacting agents. Another
line employs transformer-based models or scene-centric en-
coders [11] . These architectures fuse spatial and tempo-
ral information in a data-driven manner to capture interac-
tions at scale. Despite their expressive capacity, they typi-
cally rely on dense attention mechanisms without explicitly
modeling behavioral dependencies. Relation modeling, in
contrast, explicitly captures future behavioral interactions
using mechanisms such as attention [8], game theory [5],
or braided structures [9]. However, these methods struggle
to scale effectively in capturing high-level social semantics
due to significant computational overhead. Another chal-
lenge lies in the epistemic uncertainty, which stems from
model ambiguity. This can result in overconfident predic-
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Figure 2. The BeTopNet Architecture. BeTop establishes an integrated network for topological behavior reasoning. Scene encoder
generates scene-aware attributes for agent SA and map SM . Initialized by SR and QA, synergistic decoder reasons edge topology êln and
trajectories Ŷl

n iteratively from topology-guided local attention.

tions in ambiguous or safety-critical scenarios.
In this study, we aimed to address these challenges

through an ensemble learning framework upon our preced-
ing interactive formulation, termed as BeTop-ens. BeTop
introduce a behavioral topology reasoning framework that
formulates multi-agent interactions as a structured graph of
latent behavioral modes. While BeTop improves consis-
tency and interpretability, it does not explicitly address epis-
temic uncertainty, which arises from rare interaction pat-
terns. Hence, an ensemble extension of the BeTop frame-
work are designed to enhance uncertainty modeling. At
its core is BeTopNet, a dual-branch neural architecture that
captures both local motion dynamics and global interaction
semantics through a hierarchical topology graph. BeTop-
ens constructs a diverse set of BeTopNet instances trained
with different initialization and learning dynamics. This en-
semble strategy enables the model to better represent the
distribution over plausible futures. Evaluated on WOMD
interactive prediction benchmarks, BeTop-ens achieves im-
proved accuracy and consistency in interactive prediction.

2. Method

2.1. BeTop Formulation

We leverage the braid theory [1], which probes ex-
plicit formulations for compliant multi-agent interactions
from future data Y1:Na

. Intuitively, it denotes a transform
process for Y1:Na with respective agent coordinates, and
then gathers each future forward intertwine (occupancy)
as joint interactions. Formally, consider the braid group
BNa

= {σn} by Na primitive braids σn, each of which
σn = (fn

1 , · · · , fn
Na

) denotes a tuple of monotonically in-

creased functions f : R3 × Y → R2 × I mapping from
Cartesian

(
x⃗, y⃗, t⃗

)
to lateral coordinate

(
y⃗, t⃗

)
for agent fu-

ture Y. Specifically, the function fn
i in σn is defined as

fn
i → (Yi − bn)Rn; 1 ≤ i, n ≤ Na, where bn and Rn

denote the left-hand transform matrix to local coordinate of
agent An. The joint interactive behaviors are identified as
a set of braids having intertwines {σ±

n } ⊂ BNa over oth-
ers [9]. The goal of BeTop is to reason a topological graph
G = (V, E) for multi-agent future behaviors. Expressly,
node topology V = {Yn} is denoted by multi-agent future
trajectories. We can then reformulate the braid set {σ±

n } as
an edge topology eij → E ∈ RNa×Na ; 1 ≤ i, j ≤ Na

for future interactive behaviors. Each topology element
eij can be defined by two braid functions f i

i , f
i
j ∈ σi as-

sessing the future interwines along with Yi,Yj as: eij =
maxt I

(
f i
i (y

t
i), f

i
j(y

t
j)
)
. Here I is an intertwine indicator

by segment intersection under lateral coordinates. We can
formulate the reasoning task as: G∗ = (max V̂,max Ê).
Agent future Ŷ in node term V̂ is defined by Gaussian mix-
tures (GMM). The edge reasoning Ê can be specified as
minimizing the binary cross entropy (BCE):

max Ê = min
∑
i

∑
j

BCE(eij , êij), (1)

where 1 ≤ i, j ≤ Na. Synergistic reasoning structures are
then established optimizing G∗.

2.2. BeTopNet

As presented in Fig. 2, we introduce the synergistic
learning framework reasoning BeTop. It encompasses a
Transformer backended encoder-decoder network. With en-
coded scene semantics X;M, the proposed network fea-



tures a synergistic decoder which reasons and guides Be-
Top. Reason heads for topology Ê and Prediction for V̂
comprise the behavioral graph G.

2.3. Scene Encoder

We leverage a scene-centric coordinate system [7], it
comprises historical agent states X ∈ RNa× Th×Da and
map polyline inputs M ∈ RNm× Lm×Dm , where we por-
tion Nm map segments with length Lm from full scene map.
Both attributes are encoded separately as SA ∈ RNa×D

and SM ∈ RNm×D and concatenated as scene features
S = [SA;SM ] ∈ R(Na+Nm)×D. A stack of Transformer
encoders with local attention are directly employed from
encoded scene semantics SA,SM .

2.4. Synergistic Decoder

Retaining encoded scene features SA,SM , we zoom
in the decoding strategy. We introduce the iterative pro-
cess of N Transformer decoder layers contributed to all
agents, pursuing the basis from [11]. To iron out the scene
uncertainties, a multi-modal set of M decoding queries
Q0

A ∈ RM×D are initialized for multi-agent future trajec-
tories. Meanwhile, relative attributes SR ∈ RNa×Na×DR

are deployed through MLPs as topology features Q0
R ∈

RNa×Na×D for edge topology reasoning.
Next, we devise dual streams to the iterative decoding

process for V̂ of future trajectories and Ê of future topology.
Given agent An, the decoding process in layer l follows:

Ql,n
R = TopoDecoder

(
Ql−1,n

A ,Ql−1,n
R ,SA

)
,

êln = TopoHead
(
Ql,n

R

)
,

(2)

where both future trajectories Ŷn ∈ V̂ and interactive
topology ên ∈ Ê in BeTop are decoded in parallel:

Ql,n
A = Decoder

(
Ql−1,n

A ,SA,SM , Ŷl−1
n , êln

)
,

Ŷl
n = Head(Ql,n

A ),
(3)

Reasoned edge topology êln ∈ RM×Na are garnered by
topological decoder with query broadcasting Ql−1,n

A ; Rea-
soning nodes for Ŷn, a Transformer decoder with topology-
guided local attention are drafted serving êln as priors.

2.5. Topology-Guided Local Attention

Querying whole-scene agent semantics results in mis-
aligned interactive agents and sparse attention. This mo-
tivates our design for local attention guided by the reasoned
topology êln ∈ RM×Na as priors. Specifically, we retrieve
the top-K index ϵln ∈ RM×K priored from êln for eventual
interactive agents behaviors with An. Interactive indices

are directly leveraged in gathering SA selectively for local
cross-attention. This process is formed as:

Cl,n
A =TopoAttn

(
Ql−1,n

A ,SA, ê
l
n

)
→

MHA
(
q = Ql−1,n

A ; k, v = S
i∈ϵln
A

)
,

(4)

where ϵln = argmaxK(êln). Topology-guided agent fea-
tures Cl,n

A are then aggregated in each layer.

Reason heads Given respective decoding features Ql,n
R

and Ql,n
A for each layer, we affix reason heads accus-

tomed to corresponding formulations for ên and Ŷn. Re-
ferred in Eq. (2), the topology head and prediction head
are jointly devised by stacked MLPs in reasoning BeTop
results. For agent An in each layer, reason heads decode
GMM components of future states ŷn ∈ RM×Tf×5 (re-
ferring to (µx, µy, log σx, log σy, ρ) per step) with mixture
score p̂n ∈ RM ,{ŷn, p̂n} ∈ Ŷn, as well as interactive edge
topology êln ∈ RM×Na for BeTop.

2.6. Learning and Ensemble Strategy

Learning objectives: We start by pursuing the target in
Sec. 2.1. Objectives are firstly established in regulating
multi-agent behavioral states {Ŷn} ⊂ V̂ while maximiz-
ing their interactive distributions Ê . The imitative objective
for Ŷ is defined by the negative log-likelihood (NLL) from
best-reasoned components m∗ closest to ground-truths, as
denoted: LV =

∑Tf

t LNLL(ŷ
m∗,t
n , p̂m∗

n ,Yn). The topol-
ogy are computed by BCE given gathered êm

∗

n ∈ RNa ,
formulated as LE =

∑Na

j H(êm
∗

n,j , en,j) over Na = 2 in-
teractive agents jointly.
Ensemble Strategy: Given F BeTopNet ensemble with
different configurations, we firstly derive interactive modal-
ities by top-M (i) pair-wise joint scoring for each BeTopNet:
P

(i)
J = maxM(i)

∏NI

n p̂
(i)
n , where i ∈ F . BeTop-ens then

applies non-maximum suppression (NMS) strategy [11] to
retrieve the top-M joint modalities from the concatenated
ensemble joint scores P (i)

J produced by each model:

ŶJ , PJ = argmax
M

NMS([P (1)
J ; · · · ;P (F )

J ]) (5)

where [; ] denotes concatenation, and ŶJ terms for the final
interactive prediction outputs.

2.7. Implementation Details

BeTop-ens is deviced by F = 5 BeTopNet variants,
where each model are configured following our preceding
work [6], varying by L ∈ [2, 4, 6], D ∈ [256, 512] and
M ∈ [6, 64]. Each BeTopNet in BeTop-ens is trained from
scratch by the WOMD [3] training set without augmenta-
tions. We use a distributed training strategy on 8 A100
GPUs with batch size of 256. AdamW optimizer is used
with learning rate as 1e-4. Training epochs are set to 30.



Table 1. Testing performance on the Waymo 2025 Interaction Prediction Leaderboard

Method Name minADE ↓ minFDE ↓ Miss Rate ↓ Overlap Rate ↓ mAP v2 ↑ Soft-mAP ↑
Parallel ModeSeq 0.7707 1.6897 0.3782 0.1896 0.2949 0.2978
IMPACT [13] 0.9738 2.2734 0.4316 0.1684 0.2659 0.2718
RetroMotion (SMoE hybrid) 0.9256 2.0890 0.4347 0.1927 0.2519 0.2562
RMP YOLO [12] 0.9274 2.1131 0.4167 0.1695 0.2313 0.2486
AutoDiffuser-Draft 0.9422 2.1759 0.4885 0.1636 0.2211 0.2249
infgen-base-xl 1.2059 2.6427 0.5649 0.2402 0.0714 0.1236
Waymo LSTM baseline [3] 1.9056 5.0278 0.7750 0.3407 0.0648 0.0693

BeTop (2024) [6] 0.9744 2.2744 0.4355 0.1696 0.2412 0.2466
BeTop-ens 0.9779 2.2805 0.4376 0.1688 0.2511 0.2573
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t=0s t=8s e=0 e=1p=0 p=1

Joint Probability Prediction Edge Topology 

Figure 3. Qualitative results on WOMD Validation Interactive
Sets. Our method could accurately reason the annotated interac-
tive pairs, while delivering consistent joint motion predictions.

3. Result and Conclusion

Table 1 presents the quantitative results on the 2025
WOMD Interaction Prediction Leaderboard. BeTop-ens
achieves a competitive balance across all metrics. Specif-
ically, it obtains a minADE of 0.9779 and a minFDE of
2.2805, which are on par with other leading approaches
such as IMPACT and RetroMotion. Notably, BeTop-ens
achieves better mAP score (0.2511) than diffusion-based
models like AutoDiffuser-Draft (0.2211) and large-scale
transformers such as infgen-base-xl (0.0714). Qualitative
results in Fig. 3 also highlight the strength of BeTop-ens in
reasoning accurate and deiverse interaction patterns

We propose BeTop-ens, an ensemble reasoning model of
multi-agent behavioral topology for interactive prediction.
Through model ensembling, our method reports a solid im-
provement in consistent interactive prediction.
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