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Abstract

We present Simformer, the 1st place solution for the
Waymo Open Scenario Generation Challenge 2025. Sim-
former is a unified framework for large-scale, realistic
multi-agent traffic scenario generation, drawing inspiration
from UniGen and SMART. Our method discretizes agent
positions, attributes, and trajectories into interpretable to-
kens via ego-centric clustering and joint attribute binning.
Leveraging a GPT-style Transformer, Simformer autore-
gressively generates scenario tokens conditioned on map
context and the ego route. Technical innovations include
efficient token vocabulary construction, a reverse-matching
strategy for trajectory initialization, and a scalable au-
toregressive architecture. Extensive experiments on the
Waymo Open Motion Dataset demonstrate that Simformer
achieves state-of-the-art performance in realism, diversity,
and physical plausibility, setting a new benchmark for data-
driven autonomous driving simulation. The code will be
made publicly available at https://github.com/
XiaomuWang/SimFormer.

1. Introduction
Autonomous vehicles (AVs) must be evaluated in a broad

spectrum of realistic, complex, and safety-critical scenar-
ios. However, collecting rare events from the real world is
challenging. Recent scenario generation frameworks such
as UniGen [5] unify the modeling of agent placement and
behavior, but rely on continuous distributions, which com-
plicate training and limit scalability. Alternatively, SMART
[8] introduces discrete tokenization—converting continu-
ous states into discrete tokens—and a decoder-only Trans-
former (GPT-style) for autoregressive next-token predic-
tion, achieving better generalization and efficiency. Sim-
former combines these advances: it discretizes agent ini-
tial positions, attributes, and trajectories, learning to gener-
ate scenarios via an autoregressive Transformer. Simformer
enables high-quality, efficient, and generalizable scenario

generation for AV simulation and testing.

2. RELATED WORK
Scenario generation for autonomous driving has evolved

from rule-based simulation to advanced data-driven gen-
erative models. Rule-based and simulator methods (e.g.,
CARLA [2], SUMO [4]) rely on predefined traffic rules
or microscopic simulation engines to synthesize scenar-
ios, but often lack realism and diversity, especially for rare
events. With the availability of large-scale datasets, con-
tinuous regression-based models such as SimNet [1], Traf-
ficGen [3], and UniGen [5] emerged. These approaches
model agent positions, attributes, and trajectories as con-
tinuous variables, typically regressing to real-world distri-
butions using neural networks. While effective for basic
realism, such models face challenges in diversity, scala-
bility, and efficient generalization. Recently, discrete to-
kenization and autoregressive methods have shown strong
promise. Inspired by language modeling, these approaches
(e.g., SMART [8], MotionLM [7], Trajeglish [6]) con-
vert continuous scene elements and trajectories into dis-
crete tokens and leverage GPT-style Transformers to pre-
dict token sequences. This enables scalable, flexible, and
generalizable multi-agent scenario synthesis. Simformer
(this work) combines the unified scene modeling of Uni-
Gen with the efficient discrete tokenization and next-token
prediction paradigm of SMART. By clustering positions
in the ego-centric frame, using joint attribute token vo-
cabulary, and leveraging autoregressive Transformers, Sim-
former achieves state-of-the-art realism, efficiency, and sce-
nario diversity.

3. Methodology
3.1. Problem Formulation

Given a high-definition map segment M , the one-second
history of the ego vehicle’s motion Rego, and the ex-
pected number of agents to generate for each type C =
{vehicle, pedestrian, cyclist}, the scenario generation task
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requires synthesizing a complete multi-agent traffic sce-
nario. Specifically, the model must generate a set of non-
ego agents A = {a1, ..., aN} and their full trajectories
{τ1, ..., τN} over a fixed time horizon T = 91 timesteps
(including past, present, and future). Each agent ai is char-
acterized by its type, initial state (position, heading, and 3D
bounding box dimensions), and a trajectory τi composed
of center positions (x, y, z) and heading angles over time.
The number of generated agents per type must match the
provided count. The objective is to model the conditional
distribution:

p
(
A, {τi}Ni=1 | M,Rego,Count(atype)

)
(1)

such that each sampled scenario is realistic, physically plau-
sible, map-compliant, and exhibits natural multi-agent in-
teractions. In Simformer, this problem is approached by
autoregressively generating discrete tokens that represent
agent types, placements, attributes, and full trajectories,
conditioned on the map context, ego history, target agent
type counts, and previously generated agents.

3.2. Overall Pipeline

SimFormer generates realistic traffic scenarios through
an end-to-end autoregressive token prediction pipeline. The
process consists of the following stages:

1. Input Preparation: Given a high-definition map M , a
one-second history of the ego agent Rego, and a spec-
ification of the expected number of agents to generate
per type (vehicles, pedestrians, cyclists), we vectorize
the map and extract relevant polyline and context fea-
tures. This input is encoded into fixed-length token
sequences to serve as the conditioning context.

2. Tokenization: All agent-related elements—including
initial positions (in the ego-centric frame), physical
attributes (length, width, height), dynamic attributes
(speed, heading), and trajectory fragments—are dis-
cretized into interpretable token vocabularies via clus-
tering or binning techniques (detailed in Section 3.3).

3. Autoregressive Agent Generation: Guided by the
agent type counts, SimFormer iteratively generates
agents in a grouped and type-aware manner. For each
agent, it sequentially predicts (a) an agent type token,
(b) a position token, (c) tokens for size and dynamic
attributes, and (d) a sequence of trajectory tokens.
Each prediction is conditioned on the map, ego history,
agent type specification, and all previously generated
agents.

4. Decoding: The generated tokens are mapped back
to continuous representations, recovering full initial
states and 91-timestep trajectories (including past,

present, and future). These are then serialized into
structured outputs for evaluation and submission.

3.3. Tokenization Strategies

3.3.1 Initial Position Tokenization

To capture the spatial distribution of non-ego agents, we
represent each agent’s location relative to the ego vehicle’s
local coordinate frame as (∆x,∆y). We apply clustering to
these relative positions across the training data to obtain a
finite set of representative position tokens:

Vpos = {(x̂k, ŷk) | k = 1, . . . ,Kpos} (2)

where (x̂k, ŷk) denotes the center coordinates of the k-th
position token in the ego-centric frame, and Kpos is the total
number of position tokens.

During both training and scenario generation, the model
predicts a probability distribution over this discrete vocab-
ulary, indicating where agents are likely to appear relative
to the ego vehicle. This tokenization strategy enables flex-
ible and scalable modeling of complex multi-agent spatial
layouts.

3.3.2 Attribute Tokenization

To efficiently represent agent properties and capture essen-
tial attribute correlations, we discretize the physical and dy-
namic attributes of each agent into two separate joint token
vocabulary, each with matched bin resolutions for the two
dimensions.

Size Token Table The agent’s physical dimensions,
specifically length and width, are jointly discretized. Each
size token corresponds to a bin in the two-dimensional
(length, width) space:

Vsize = {(lm, wm) | m = 1, . . . ,M} (3)

where (lm, wm) denotes the center values of the m-th bin
for both length and width, and M is the number of bins for
each attribute.

Dynamic Token Table The agent’s initial speed and yaw
angle (heading) are also jointly discretized, forming the dy-
namic token vocabulary:

Vdynamic = {(vp, θp) | p = 1, . . . , P} (4)

where (vp, θp) represents the center values of the p-th bin
for both speed and heading, and P is the number of bins for
each attribute.



During both training and generation, the model predicts
probability distributions over these two attribute token vo-
cabulary for each agent, enabling flexible, data-driven syn-
thesis of plausible and diverse physical and dynamic proper-
ties. This two-table strategy balances modeling power, sam-
ple efficiency, and coverage of real-world agent attribute
distributions.

3.3.3 Trajectory Tokenization

To efficiently represent and generate agent motion, we dis-
cretize short segments of each agent’s trajectory into a fi-
nite set of trajectory tokens. Specifically, all agent trajecto-
ries are divided into fixed-length intervals (such as 0.5 sec-
onds, sampled at 0.1-second resolution), and k-disks clus-
tering [8] is applied on these segments to construct a trajec-
tory token vocabulary. Each trajectory token thus represents
a prototypical motion pattern relative to its starting point.

For trajectory initialization, we employ a reverse match-
ing strategy to ensure that the first token is physically con-
sistent with the agent’s given initial state. This is achieved
by comparing the recent movement of the agent—estimated
using its position, velocity, and heading—with the candi-
date trajectory tokens, and selecting the best match. After
the initial token is determined, the remainder of the trajec-
tory is generated autoregressively as a sequence of tokens,
each conditioned on the scenario context and previously
generated tokens.

3.4. Model Architecture and Token Table

Transformer Architecture SimFormer discretizes the
prediction task by clustering trajectory data into four token
types: Position, Size, Dynamic, and Trajectory. Each token
is embedded into a 128-dimensional space using separate
embedding tables. As shown in Figure 1, the model adopts a
decoder-only Transformer with a dual-stream architecture.
A 3-layer encoder processes HD map features, while a 6-
layer decoder autoregressively predicts agent tokens based
on the encoded context and ego-history.

To capture spatial and temporal structure, 64 frequency
bands are used to encode input coordinates and motion cues.
Type and positional embeddings are added to preserve spa-
tial locality, temporal order, and agent-specific information.
The Transformer backbone uses 8 attention heads with 16-
dimensional projections per head, and applies dropout with
a rate of 0.1 for regularization.

Token Table Statistics SimFormer constructs all token
vocabularies from training data. Position tokens are ob-
tained via clustering on ego-relative coordinates, while size
and dynamic attributes are discretized through uniform bin-
ning. Trajectory tokens are derived from clustered motion

fragments. Each token type corresponds to a specific fea-
ture representation, as summarized in Table 1.

Token Type Token Count Algorithm Feature Dimension

Position 1024 k-means ego-relative 2D position
Size 256 uniform binning length-width attributes
Dynamic 256 uniform binning speed and yaw
Trajectory 2048 k-disks 0.5s motion fragment

Table 1. Token vocabulary statistics and clustering parameters.

4. Experiments
4.1. Dataset

We conduct all experiments on the Waymo Open Mo-
tion Dataset (WOMD), a large-scale and diverse benchmark
for autonomous driving. WOMD consists of over 487,000
real-world driving sequences with high-definition map in-
formation and rich agent annotations, including positions,
headings, velocities, and physical dimensions for vehicles,
pedestrians, and cyclists. All experiments follow the official
Scenario Generation Challenge 2025 data splits and evalu-
ation protocols.

4.2. Metrics

For overall evaluation, we adopt the Realism Meta Met-
ric (RMM) proposed by Waymo in the Scenario Generation
Challenge 2025. RMM is a composite metric that quantifies
the realism of generated scenarios by aggregating multiple
aspects, including kinematic, interactive, and map-based
features, into a single scalar score. Higher RMM values
indicate scenarios that more closely match the distribution
and characteristics of real-world driving data.

4.3. Implementation Details

Simformer is implemented in PyTorch and trained on 8
NVIDIA A100 GPUs. We use the AdamW optimizer with
an initial learning rate of 5 × 10−4, a minimum learning
rate ratio of 1 × 10−2 (relative to the initial value), weight
decay of 0.1, and a cosine annealing learning rate schedule.
The batch size is set to 64 per GPU. Dropout with a rate of
0.1 is applied to all Transformer layers. All token vocab-
ularies are constructed from the training set using uniform
binning and clustering. Models are trained for 48 epochs,
with early stopping based on the validation Realism Meta
Metric (RMM).

4.4. Results

Our method achieves state-of-the-art performance on the
Waymo Open Motion Dataset under the official Scenario
Generation Challenge 2025 protocol. As shown in Table 2
and Figure 2, Simformer demonstrates superior realism and
diversity across all key metrics, including the Realism Meta
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Figure 1. Model Architecture.

Method Name Realism Meta metric Kinematic metrics Interactive metrics Map-based metrics
SimFormer 0.6623 0.5416 0.7417 0.6293
UniTSG 0.6604 0.5415 0.7378 0.6288
OffReg-IDM 0.6185 0.4815 0.7197 0.5668
infgen-full-large 0.6030 0.5044 0.6774 0.5638

Table 2. Comparison results with different methods in the Waymo Scenario Generation challenge.

Metric (RMM), static collision rate, and dynamic collision
rate. The visualizations illustrate diverse, physically plau-
sible multi-agent interactions, with the blue vehicle repre-
senting the ego agent in each scenario.

5. Conclusion
We presented Simformer, a unified and scalable frame-

work for realistic scenario generation in autonomous driv-
ing. By leveraging discrete tokenization and autoregressive
modeling, Simformer effectively captures the complexity
and diversity of real-world traffic. Extensive experiments
on the Waymo Open Motion Dataset demonstrate that our
approach achieves state-of-the-art performance in realism,
diversity, and physical plausibility.
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Figure 2. Visualization of six diverse scenarios generated by SimFormer. The blue vehicle denotes the ego agent. Each frame includes five
vehicles, two cyclists, and one pedestrian.
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