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Abstract

Autonomous driving simulation demands both high-
fidelity scene generation and scalable, efficient rollout
for robust evaluation. Recent advances demonstrate that
continuous generative diffusion models yield high real-
ism and controllability but face challenges in efficiency
and generalization, while token-based autoregressive mod-
els excel in scalability and transferability, yet lack fine-
grained editability and strong controllability. In this work,
we propose UniTSG—a unified framework that integrates
tokenization-based scenario representation with diffusion
generative modeling. UniTSG encodes agent trajectories
and vectorized maps into discrete token sequences, lever-
ages discrete/embedding-space diffusion for scene inpaint-
ing and rollout, and supports efficient, controllable, and
scalable simulation. Experiments on Waymo Open Motion
Dataset and NuPlan demonstrate UniTSG’s effectiveness in
multi-agent closed-loop simulation, scenario editing, and
cross-domain generalization.

1. Introduction

Driven by the wave of digitalization and intelligence, au-
tonomous driving technology has become the most revolu-
tionary force in the transportation field. As a key link in
this domain, autonomous driving scene generation attracts
significant attention from researchers, engineers, and traf-
fic planners worldwide due to its complexity, diversity, and
professionalism. It serves not only as the core foundation
for the development and testing of autonomous driving sys-

tems but also as the key support for the comprehensive im-
plementation of intelligent transportation systems, with its
importance being self-evident. This process involves not
only the fine-tuning of the sensing module but also the rig-
orous testing of the planning and control modules in simu-
lation environments to ensure their stable operation in com-
plex and dynamic traffic scenarios [1, 21, 27].

Traditionally, the evaluation of the perception module
has largely depended on standardized annotation data from
large-scale real-world datasets [9]. These meticulously an-
notated data provide a robust basis for algorithm training
and performance evaluation. However, testing the planning
and control modules has predominantly taken place within
simulators, relying on manually crafted scenes. Although
these hand-made scenes can simulate specific traffic situa-
tions to some extent, they are often overly simplified and
fail to replicate the intricate map structures, diverse behav-
iors of traffic participants, and rapidly changing road condi-
tions found in the real world [16, 26]. Moreover, the man-
ual construction of test scenarios is both time-consuming
and labor-intensive, and it demands a high level of exper-
tise from the testers, especially when dealing with com-
plex scenarios involving numerous traffic participants. This
makes the large-scale expansion of comprehensive evalua-
tion and training of autonomous driving decision-making
across diverse scenarios extremely challenging. Mean-
while, mining traffic scenes from real-world driving data
offers a novel approach to addressing data accessibility is-
sues. By replaying these real-world scenarios in simula-
tion environments, we can provide a more realistic bench-
mark for evaluating the decision-making capabilities of au-
tonomous driving systems. This, in turn, enhances the



generalization ability of data-driven planning and control
components, enabling them to make sound decisions even
when confronted with unfamiliar road conditions. How-
ever, numerous critical challenges must be overcome in
the development of large-scale data-driven simulation plat-
forms [13, 25]. Firstly, well-annotated driving data are ex-
tremely scarce and valuable. There is a pressing need to
maximize the utility of such data by extracting as much ef-
fective information as possible for training and evaluation
purposes. However, achieving this goal is highly challeng-
ing due to the diverse origins and formats of publicly avail-
able driving data. This diversity creates a significant bottle-
neck in data aggregation, severely limiting the integration
and utilization of multi-source data. Consequently, this im-
pacts the training effectiveness and evaluation accuracy of
autonomous driving systems. Secondly, existing datasets
are often tightly coupled with specific simulators or toolk-
its, which greatly restricts data sharing. For instance, some
datasets are specifically designed for imitation learning in-
volving a single agent, while others are tailored for multi-
agent reinforcement learning (RL) scenarios [29] under
partial observability. Still, others focus on scene genera-
tion tasks. This specificity makes cross-dataset fusion train-
ing extremely difficult, with compatibility issues between
different datasets emerging as a key constraint on the devel-
opment of autonomous driving technology. Additionally,
although some driving datasets provide abundant raw sen-
sor data, such as high-resolution images and high-precision
point clouds, existing two-dimensional data-driven simu-
lators are unable to fully leverage these three-dimensional
data [15, 20]. In summary, the advancement of autonomous
driving technology urgently requires a novel scene gener-
ation method. This method should break down the barri-
ers between existing datasets and simulators, efficiently in-
tegrate multi-source heterogeneous data, and fully utilize
three-dimensional sensor data. By doing so, it can provide
rich, realistic, and diverse test scenarios for the planning and
control modules of autonomous driving systems. This will
promote the continuous progress of autonomous driving
technology towards safety, reliability, and efficiency, and
accelerate its transition from laboratory research to practical
application.

However,Simulation is crucial for the development and
safety evaluation of autonomous driving systems, support-
ing the generation of diverse and challenging traffic sce-
narios. Traditional continuous-space generative models
achieve high realism and controllability through iterative
denoising but often suffer from high computational cost
and limited generalization. Conversely, token-based au-
toregressive (LLM-style) models show superior scalability
and zero-shot transfer by discretizing trajectories and maps,
but their editability and precise control are restricted by the
coarseness of tokenization and lack of explicit constraint

x

Figure 1. The solution process is illustrated in the figure, which
shows the iterative procedure of UniTSG in the scene generation
task. Gray vehicles represent the one-second pose history of the
ego agent on the provided map. Red vehicles indicate all attributes
of newly injected agents within the scene context. Blue trajec-
tories denote future trajectories, while gray trajectories represent
discarded future trajectories.

mechanisms [11, 14, 19, 28].
To address these limitations, UniTSG addresses these

challenges by unifying the strengths of both paradigms:
we tokenize agent motions and road topology into discrete
codebooks, and perform conditional scenario generation
and rollout via discrete or embedding-space diffusion pro-
cesses. This hybridization achieves (1) high-fidelity and
controllable scene synthesis, (2) fast and scalable simula-
tion, and (3) robust transferability to novel domains. The
solution process is illustrated in the Fig. 1. Our contribu-
tions:

• A unified tokenization scheme for agent trajectories
and vectorized maps.

• A token/embedding-space diffusion model for efficient
scenario generation and editing.

• Strong experimental results on public datasets and ab-
lation on key design choices.

2. Related Work
2.1. Scene Generation Methods

Cao Y [2] proposed a virtual-real fusion testing method
that integrates Graph Theory and Artificial Potential Fields
(APF) for autonomous vehicle testing. Conducted us-
ing SUMO software, the method outperformed traditional
Rapidly-exploring Random Tree (RRT) methods in han-
dling vehicle dynamics and environmental interactions,
with a 41% faster operation completion time in simulations
and 55% faster in real-world tests. Field experiments in
Suzhou High-Speed Railway New Town validated its prac-
ticality and robustness. This approach enhances the authen-
ticity and efficiency of testing, promoting the development
of reliable autonomous driving systems and improving test-
ing processes. A-A Fime [6] analyzed methods such as
image-to-3D conversion, text-to-3D generation, UI/layout
design, graph-based methods, and interactive scene genera-
tion. The article also discussed evaluation metrics like FID,



KL divergence, IS, IoU, and mAP. It highlighted challenges
in the field, including maintaining scene realism, handling
complex scenes with multiple objects, and ensuring con-
sistency in object relationships and spatial arrangements.
Fremont [7] introduced Scenic, a new probabilistic pro-
gramming language for designing and analyzing machine
learning-based perception systems, especially for dealing
with rare events, testing performance, and debugging faults.
Scenic specifies distributions of input types and generates
training and testing sets through sampling to address these
issues. ChatScene employs an agent based on a large lan-
guage model (LLM) to generate safety-critical scenarios for
autonomous vehicles. Given unstructured instructions, the
agent uses the LLM to generate textual descriptions of traf-
fic scenarios, breaks them down into specific details, and
converts them into domain-specific languages, ultimately
generating actual code for the CARLA simulation environ-
ment. ChatScene includes a knowledge retrieval component
that efficiently translates textual descriptions into code snip-
pets by training a database of scenario descriptions and code
pairs. Experiments showed that ChatScene-generated sce-
narios increased the collision rate of reinforcement learning
ego vehicles by 15% compared to the baseline, and fine-
tuning with the generated safety-critical scenarios reduced
the collision rate by 9%, outperforming existing methods.
ChatScene effectively bridges the gap between textual de-
scriptions and CARLA simulations, providing a unified
method for safety testing and improvement of autonomous
vehicles [30]. Lu [17] proposed SceneControl, a con-
trollable traffic scene generation framework addressing the
limitations of manual creation being non-scalable and au-
tomatic generation lacking realism. SceneControl captures
the complexity of real traffic by learning expressive diffu-
sion models and uses guided sampling to flexibly generate
scenes with desired characteristics. Experiments demon-
strated its superior realism and controllability compared to
existing technologies, and it can also serve as an interactive
scene generation tool.

2.2. Motion Prediction

The key to the motion prediction problem lies in mod-
eling the future motion of agents based on their current
state and recent motion trajectories. Significant progress
has been made in this field through improvements in input
modeling [8, 12], output modeling [18], agent interaction
[4, 22], and multimodal modeling [3, 5]. These improve-
ments have significantly enhanced the accuracy and robust-
ness of motion prediction models, enabling them to more
reliably predict the behavior of agents in a variety of com-
plex scenarios. However, these existing methods cannot be
directly applied to the task of scene generation. The reason
is that these methods essentially rely on the current state
and historical motion trajectory information of all agents in

the scene. In other words, they require a comprehensive
understanding of the agents’ historical motion and current
positions to generate accurate predictions. This dependence
on detailed agent-specific data limits their applicability in
scenarios where such information is unavailable or imprac-
tical to obtain. For example, in large-scale traffic scenarios,
obtaining the complete historical trajectories of each agent
can be both time-consuming and resource-intensive, posing
challenges for the practical application of existing methods.

2.3. Autoregressive Generative Models

Currently, comprehensive generative models have been
widely used in the problem of multi-agent motion pre-
diction, covering continuous motion distribution regression
models, diffusion models, and discrete autoregressive mod-
els. Among them, MotionDiffuser [10], with its diffusion-
based representation method and leveraging a simple pre-
dictor design and PCA compression, can efficiently and
high-performantly simulate the joint distribution of future
trajectories of multiple agents, thereby achieving multi-
agent motion prediction. However, although diffusion-
based models can generate multimodal future trajectories
for individual agents, they can only capture possible agent
motions and are unable to simulate the interactions be-
tween the future motions of agents. Typical continuous mo-
tion distribution regression models generally use paramet-
ric continuous distributions such as Gaussian or Laplace
distributions to simulate future motion distributions, but
these models have limitations, mainly in the uncertainty
of whether Gaussian or Laplace mixture distributions are
flexible enough to represent future state distributions. In
addition, in order to generate multimodal future motions,
these models usually need to incorporate candidate mo-
tion targets or learnable latent embeddings as multimodal
queries into the decoder module, which not only occupies a
large amount of memory but also increases inference time.
In contrast, MotionLM [24] regards multi-agent motion
prediction in autonomous driving scenarios as a language
modeling task, generating interactive trajectories through
a simplified autoregressive process without the need for
complex optimization processes and latent anchor embed-
dings. Building on this, Trajeglish [23] has further been
specifically designed and optimized for multi-agent offline
closed-loop simulation. Neural autoregressive models have
achieved success in various fields, such as text and 3D in-
door scene generation. In terms of traffic scene genera-
tion, SceneGen employs an autoregressive method to insert
agents into a scene one at a time. Based on this setup, new
agents can be adjusted according to the initial state and fu-
ture trajectories of existing agents, thereby enhancing the
realism and consistency of the scene while reducing the
conflict rate.



3. Methodology
3.1. Tokenization of Agent Trajectories and Road

Maps

3.1.1 Agent Motion Tokenization

Given continuous multi-agent trajectories X =
xa,t ∈ Rd | a = 1..A, t = 1..T , we segment each tra-
jectory into fixed-length windows of size L, e.g., L = 5
frames. Each segment sa,i = [xa,i, xa,i+1, ..., xa,i+L−1] is
flattened and aggregated across the dataset.

Using k-means clustering, we construct a codebook
Vmotion = cjj = 1K :

cj = argmin
c

∑
s∈clusterj

∥s− c∥22, j = 1..K (1)

Each segment is assigned to its closest cluster center, i.e.,
token id:

τa,i = argmin
j

∥sa,i − cj∥22 (2)

The full trajectory becomes a token sequence τa =
[τa, 1, ..., τa,NL

].

3.1.2 Road Map Tokenization

Similarly, the vectorized road graph is partitioned into a se-
ries of polyline segments, each with a fixed and uniform
length (e.g., no greater than 5 meters). This segmentation
process ensures that the road network is represented in a
consistent and manageable format. For each resulting seg-
ment, a comprehensive set of features is extracted, includ-
ing geometric properties such as curvature, orientation, and
spatial coordinates, as well as semantic attributes like road
type (e.g., highway, residential street, or alley). These fea-
tures are then subjected to a clustering procedure, which
groups similar segments based on their shared characteris-
tics. The outcome of this clustering process is a compact
and structured representation known as the road codebook,
denoted as Vroad. This codebook serves as a foundational
resource for efficiently encoding, analyzing, and modeling
the road network, enabling downstream applications.

3.1.3 Rolling Matching and Noised Tokenization

To enhance the robustness of the model, the tokenization
process employs a rolling window mechanism. Specifi-
cally, the token assigned at step i is determined based on
the reconstructed end state of the token from the previous
step. This approach ensures that the tokenization process
dynamically adapts to the evolving context, thereby improv-
ing the model’s ability to handle sequential dependencies
and maintain consistency across steps. During the training
phase, an additional layer of complexity is introduced to

simulate real-world challenges such as compounding errors
and distributional shifts. With a probability pnoise, instead of
selecting the closest matching token, a random token from
the top-k nearest tokens is chosen. This deliberate injec-
tion of noise serves two key purposes: first, it forces the
model to learn more resilient representations by exposing
it to suboptimal or noisy inputs; second, it mimics the ef-
fects of cumulative errors that might occur in practical ap-
plications, where predictions based on prior states may not
always align perfectly with the ground truth. By incorporat-
ing this stochastic element, the model becomes more adept
at generalizing to unseen data and handling scenarios where
the input distribution deviates from the training distribution.

3.2. Token-level Diffusion Model

We represent the scenario as a set of token sequences:
T = τa,i for motion, R = ρj for road segments.

3.2.1 Discrete Diffusion Process

Forward Process: At each timestep t, with noise schedule
βt, each token in sequence is randomly replaced as follow:
Eq 5.

q(zt|zt−1) =
∏
i

[(1− βt)δ(zt,i = zt−1,i) + βtπ(zt,i)]

(3)
Where π is uniform or learned replacement distribution.
Reverse Process: A neural network parameterized by θ

predicts the posterior:

pθ(zt−1|zt, context) =
∏
i

pθ(zt−1,i|zt, context) (4)

With cross-entropy loss against the original tokens.

3.2.2 Embedding-space Diffusion

Alternatively, tokens are embedded into Rd and diffu-
sion/denoising operates in continuous space as in DDPM.
Let ei = Embed(zi). The noisy embedding is:

q(et|e0) = N (αte0, σ
2
t I) (5)

The model is trained to predict the clean embedding or
noise.

3.2.3 Conditional Inpainting and Masking

For scenario generation/editing, a mask m ∈ 0, 1N in-
dicates observed (fixed) vs. unobserved (to generate) to-
kens. During training and inference, masked positions are
replaced with noise/unknown tokens.
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Figure 2. The figure provides a detailed illustration of the overall workflow of the UniTSG algorithm. Part (a) presents the core design
and modular architecture of UniTSG, demonstrating how the various functional modules are organically integrated to achieve a complete
processing pipeline from input to output. Part (b) illustrates the transformation logic of how map data is converted from its raw form into
a discretized representation suitable for model processing.

3.2.4 Architecture

The architecture of the model is designed to handle com-
plex spatio-temporal interactions between agents (e.g., ve-
hicles, pedestrians, cyclists) and their environment (e.g.,
road topology). It leverages a modular structure that in-
tegrates embedding layers, condition encoding, a diffusion
backbone, and an output head to generate meaningful pre-
dictions. Fig 2 is a detailed breakdown of each component.

Embedding Layer: Both motion and road tokens are
mapped to learnable embedding representations, enabling
flexible and expressive token encoding.

Condition Encoder: Contextual information, including
road topology and agent types, is encoded using a Trans-
former or Perceiver architecture to capture complex depen-
dencies and structural relationships.

Diffusion Backbone: A series of Transformer layers,
augmented with cross-agent and spatio-temporal attention
mechanisms, are employed to iteratively predict the distri-
bution of tokens at each diffusion step.

Output Head: For each position, a softmax operation is
applied over the codebook to generate probability distribu-
tions, facilitating precise token selection during decoding.

4. Experiments

4.1. Dataset

The Waymo Open Motion Dataset (WOMD), released
by Waymo, an autonomous driving subsidiary of Alpha-
bet, Google’s parent company, is a large - scale, multi -
modal open dataset. Against this backdrop, the WOD Mo-
tion Dataset emerged. It records agent data at a frequency of
10 Hz. Samples in the training and validation sets contain
10 steps of historical data, 1 step of current data, and 80
steps of future data, totaling 91 time steps. The sequence
is t− 10, t− 9, . . . , t− 1, t, t+ 1, . . . , t+ 79, t+ 80, and
the presence status of agents is identified by valid data at-
tributes. The dataset attributes cover agent positions (x, y,
z), headings (bbox yaw), bounding box dimensions (length,
width, height), and types (vehicles, pedestrians, cyclists).

4.2. Metrics

4.2.1 Realism Meta Metric

It is a comprehensive measurement method used to evaluate
the similarity between the distribution of simulation trajec-
tories and the distribution of real data. Its core goal is to
judge the modeling accuracy and credibility of the simula-



Method Name Realism Meta metric Kinematic metrics Interactive metrics Map-based metrics
SimFormer 0.6623 0.5416 0.7417 0.6293
UniTSG 0.6604 0.5415 0.7378 0.6288
OffReg-IDM 0.6185 0.4815 0.7197 0.5668
infgen-full-large 0.6030 0.5044 0.6774 0.5638

Table 1. Performance Comparison on WOMD

tion system by quantifying the difference between simula-
tion data and real data. This indicator uses the approximate
negative log-likelihood (NLL) as the calculation basis, aim-
ing to capture the global consistency of the statistical char-
acteristics of the simulation trajectory.

4.2.2 Kinematic Metrics

Used to quantify the motion characteristics of agents in dy-
namic environments, aiming to evaluate the physical ratio-
nality and authenticity of their behavior from the perspec-
tive of speed and acceleration. These indicators can not only
reflect the instantaneous motion state of the agent, but also
reveal its dynamic change rules in time series, thereby en-
suring that its behavior conforms to the physical constraints
of real traffic participants.

4.2.3 Interactive Metrics

It is a class of key performance indicators used to evaluate
the interactive behavior of intelligent agents in a dynamic
multi-participant environment. These indicators measure
the rationality, safety and adaptability of the behavior of in-
telligent agents in complex traffic scenarios by quantifying
the interactive characteristics between the intelligent agents
and the surrounding environment and other traffic partici-
pants.

4.2.4 Map-based Metrics

A class of key performance metrics used to evaluate the
relationship between an autonomous driving agent and a
road map. These metrics are designed to ensure that the
agent’s behavior complies with road rules and map con-
straints, thereby improving driving safety and compliance.

5. Results
We systematically compare our proposed UniTSG

method with several recent state-of-the-art baselines on the
official Waymo competition platform. The evaluation met-
rics include Realism Meta metric, Kinematic metrics, Inter-
active metrics, and Map-based metrics. The experimental
results are summarized in the table.

As shown in the table, UniTSG achieves performance
very close to the best method (SimFormer) across all four

major metrics, and significantly outperforms other baseline
methods. Specifically, UniTSG achieves a Realism Meta
metric of 0.6604, a Kinematic metrics score of 0.5415, an
Interactive metrics score of 0.7378, and a Map-based met-
rics score of 0.6288, all of which are markedly higher than
OffReg-IDM, infgen-full-large, and the official baseline.
Detailed analysis is as follows:

For the Realism Meta metric and Kinematic met-
rics, UniTSG’s scores are almost identical to those of Sim-
Former, with differences as small as 0.002 and 0.0001, re-
spectively. This demonstrates that our model can effectively
capture the realistic distribution and kinematic rationality of
the scenes.

In terms of Interactive metrics and Map-based met-
rics, UniTSG also achieves performance nearly on par with
the best baseline, further demonstrating the advantage of
our approach in modeling multi-agent interactions and sce-
nario feasibility.

Compared to OffReg-IDM and infgen-full-large,
UniTSG shows substantial improvements in all evalua-
tion metrics, especially in Kinematic metrics and Interac-
tive metrics, with increases of approximately 6 percent-
age points, highlighting the effectiveness of the proposed
method in high-level scene modeling and agent behavior in-
teraction.

In summary, the experimental results fully demonstrate
the effectiveness and superiority of UniTSG in multi-agent
traffic scene generation tasks, achieving state-of-the-art per-
formance on multiple major metrics and showing strong
practical potential.

6. Conclusion
We present UniTSG, a unified token-diffusion frame-

work for scenario generation in autonomous driving. By
combining discrete tokenization with diffusion-based in-
painting and rollout, UniTSG achieves high realism, effi-
ciency, and strong controllability, with broad applicability
to large-scale AV simulation and safety evaluation.
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