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Abstract

We provide several simple, interpretable rule-based base-
lines for the 2025 Waymo Scenario Generation Challenge.
The challenge addresses the task of generating realistic
simulation scenarios, which are crucial for developing au-
tonomous vehicles. Our best baseline, SHRED, achieves a
high score of 0.624, notably close to the theoretical upper
bound of 0.692, and ranking third on the leaderboard. Our
results demonstrate the strong performance of simple meth-
ods and help contextualize more complex approaches.

1. Introduction
Simulation has emerged as a crucial tool for scaling the
development of autonomous driving systems. It enables
fast, repeatable, and cost-effective evaluation of self-driving
policies [1]. However, for simulation-based evaluation to
provide meaningful insights, the simulation needs to be re-
alistic, repeatable (low variance) and large-scale.

The Waymo Scenario Generation Challenge addresses
this need by tasking participants with developing generative
models that, given a map and the number agents involved in
the scene as inputs, propose multiple diverse agent place-
ments and simulated behaviors. Given the data-driven na-
ture of this task, the best performance is likely achieved by a
learning-based approach. Nevertheless, rule-based methods
provide an important baseline as they are interpretable and
computationally efficient. More importantly, high perform-
ing rule-based baselines can also identify tasks and datasets
for which the more complex learning-based methods are un-
necessary. Thus, they can help the community to better un-
derstand which open problems have the highest real-world
impact and are most pressing to address [3, 10].

In this work, we propose multiple simple baselines for
the Waymo Scenario Generation Challenge. We also eval-
uate multiple approaches that use privileged information,
such as the logged future on a given scenario. Together,
these experiments allow us to better understand the dataset
and the complex aggregate “Realism Meta Metric” based on
which the challenge is scored. We find that our best simple

Figure 1. Rule-based driving scenarios. The first column shows
the ground truth for two representative scenarios from the dataset.
Subsequent columns present individual rollouts generated by our
method for each scenario. Off-road objects are shown in gray, on-
road objects in blue, and the autonomous driving vehicle in green.

baseline, SHRED, achieves a score of 0.624 on the valida-
tion set, while the upper bound is only 0.692 - putting into
perspective other learning-based submissions to the leader-
board. Fig. 1 provides a comparison between ground truth
and SHRED-generated scenarios.

We also find some limitations in the current evaluation
metrics. In particular, the collision and off-road labels, the
two largest contributors to the overall metric, are subject to
significant label noise, which could incentivize conformity
to metrics over optimizing scenario realism.

2. Method

As shown in Fig. 2, we decompose the problem into two
steps: (1) generating initial states, and (2) simulating the
behavior of the dynamic objects over the required horizon.

Following the rules of the Scenario Generation Chal-
lenge, we use the dynamic and static map features, past
and current timestep of the ego vehicle, and the number of
agents to generate for each object type (vehicle, cyclist, and
pedestrians) as inputs. More specifically, from the map, we
extract the polylines of road edges, center lines, as well as
statistics like number of lanes and average speed limit.

To generate the initial states of all objects, we first es-
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Figure 2. SHRED. Starting from the inputs specified by the challenge (left), we first regress an estimate of the number of off-road objects,
then initialize positions in unoccupied areas and generate paths for all dynamic objects (center). Finally, a dynamics and traffic model is
used for simulation, producing trajectories over 91 time steps (right).

timate the number of objects that are positioned offroad.
Subsequently, we use rejection sampling to find valid initial
locations for all objects. Lastly, we generate future paths
for all non-stationary on-road agents.

Off-road Rate Regressor: Accurately predicting the num-
ber of off-road objects is a key factor in achieving a high
overall score. We explore using a constant off-road ratio
(e.g. 40% off-road), as well as using a simple 3-Layer
Multi-Layer-Perceptron (MLP) regressor taking number of
objects, number of lanes and the avg. speed limit as input.

Position Initializer: For placing objects, we make the sim-
plifying assumptions that all pedestrians are placed off-
road, all cyclists are placed on-road, and vehicles are placed
such that the off-road ratio is satisfied. Furthermore, we as-
sume that all off-road objects are static and all on-road ob-
jects are dynamic and controlled by the IDM traffic model.
First, the autonomous driving vehicle (ADV) is initialized
at its known location. Then, on-road objects are randomly
placed on lane centerlines within a certain distance around
the ADV using rejection sampling. A sampled location is
rejected if it is within d = max(l1,w1)/2+max(l2,w2)/2 of an-
other object, where li, wi are the length and width of object
i. Velocities are initialized to that of the ADV for cars, and
to a fixed value for cyclists. Off-road objects and on-road
objects that failed to be placed successfully after n attempts
are placed off-road with a similar procedure, with their ve-
locities fixed at 0.

Path Generator: Similar to [2, 6], we generate and sam-
ple a fixed length path for each dynamic object along lane
centerlines starting from the object’s initial position. For
the ADV, which follows the logged trajectory (available as
a task input) for the first 11 timesteps, we instead identify

the closest point on a lane centerline immediately after this
interval. The rest of the path is then constructed from this
point onward along the lane centerline.
IDM Traffic Model: For the simulation of dynamic ob-
jects, we modify the Intelligent Driver Model (IDM) [9]
available in the Waymax simulator [5]. It follows the center-
line paths and controls the acceleration of vehicles by tak-
ing into account a target speed, as well as their distance and
relative velocity to leading objects, hence promoting colli-
sion avoidance. To prevent traffic light violations, we ad-
ditionally override acceleration outputs when a vehicle ap-
proaches a red traffic light.

3. Experiments
This section details the dataset, evaluation metrics, experi-
mental setup, and our results.
Dataset: We use traffic scenarios from the Waymo Open
Motion Dataset [4]. This dataset includes static map fea-
tures, traffic signal states, and object trajectories. The train-
ing and validation splits contain 91 time steps at 10 Hz, cov-
ering past, present, and future states, whereas the test split
includes only the past and current time steps (11 steps at
10 Hz). To comply with the rules of the Scenario Genera-
tion Challenge, we remove all past and future states of all
objects except for the ADV’s past and current states.
Evaluation Split: To reduce computational costs, we re-
port results on miniVal, a subset of 430 samples from the
validation set, i.e. approximately one percent of the total
validation data. This subset provides a representative sam-
ple of the full validation set, as confirmed by the comparable
results obtained from the official Waymo evaluation server.
Scenario Generation Metrics: The Scenario Generation
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Figure 3. Correlation between the number of pedestrians to be
simulated and the number of collisions in the ground truth.

Challenge employs a modified evaluation metric originally
introduced in the Waymo Open Sim Agents Challenge [8].
Submissions are evaluated using the approximate negative
log-likelihood (NLL) of the ground truth samples under the
distribution of simulated scenario rollouts. This metric in-
centivizes scenario generation that more closely matches
the distribution of the ground truth data. The final ”Meta”
metric weights and aggregates ten such distributional sub-
metrics which can be grouped into three categories: i) Kine-
matics: linear speed (LINS) and acceleration (LINA), an-
gular speed (ANGS) and acceleration (ANGA) ii) Interac-
tive: collision indication (COLL), distance to nearest object
(DTNO), time to collision (TTC) iii) Map-based: off-road
indication (OFFR), traffic light violation (TLV), distance to
road edge (DTRE). In contrast to the Sim Agents Challenge,
the Scenario Generation Challenge evaluates all valid sam-
ples of all objects that need to be simulated, rather than a
selected subset of objects.
Heuristics and Hyperparameters: We conduct an in-
depth analysis on a subset of the training data, from which
we derive several key insights used as heuristics in our
method. Firstly, we find that about 60 percent of the ob-
jects are placed on-road and 40 percent off-road, which we
also try as a fixed ratio for object placement. Pedestrians
are predominantly found off-road in the dataset.

Secondly, we discover a strong correlation between the
number of pedestrians and the number of collisions in the
ground truth, as illustrated in Fig. 3. This motivates the
implementation of a simple forced collision mechanism.
Specifically, when the number of pedestrians exceeds four,
we enforce collisions for every second pedestrian to re-
flect the likelihood of collisions seen in the real-world data.
We also identify frequent cases of vehicle collisions in the
ground truth, often caused by sensor noise or erroneous
pedestrian detections inside vehicles.

Regarding static vehicles, we find no consistent pattern
indicating whether such objects should be on- or off-road,
as there are numerous examples like Fig. 4 in the dataset.
However, given that most off-road objects are static, we

Figure 4. Example scenario where many static parked cars are
classified as on-road in ground truth. Vehicles colored gray rep-
resent off-road objects, blue indicates on-road objects, red marks
objects involved in collisions, and the ADV is shown in green.

choose to classify all off-road objects as static in our setup.
To estimate the off-road object ratio more systematically,
we train a multi-layer perceptron (MLP) regressor using
four features: the number of vehicles, number of pedestri-
ans, number of road lanes, and average speed limit. The
model is trained on approximately 9,000 randomly sam-
pled training scenarios and achieves a mean absolute error
(MAE) of about 5.4. Additionally, we prioritize sampling
from the ADV’s lane and neighboring lanes before consid-
ering all lanes within the ADV’s radius (50 meter), leading
to improved DTNO submetric scores.

For object bounding box sizing, we simplify the process
by computing the mean length, width, and height for each
object type across the analyzed subset of training data and
use these constant dimensions across all timesteps. For be-
havior modeling, we employ the default parameters of the
IDM policy as implemented in the Waymax simulator. The
only exception is the desired velocity, which is set to the
speed limit of the ADV’s lane.
Results: We evaluate multiple configurations of our method
to understand the impact of different modifications (Ta-
ble 1). For efficient evaluation, all experiments are con-
ducted using a single rollout per scenario. However, we

ID Position Lat. Con. Lon. Con. Inter. Map. Kin. META

A1 40/60 CV CV 0.719 0.541 0.275 0.568
A2 40/60 Paths IDM 0.705 0.530 0.484 0.599
A3 40/60 Paths IDM w/ Lights 0.705 0.553 0.491 0.609
A4 40/60 w/ Col. Paths IDM w/ Lights 0.723 0.554 0.491 0.617

B1 MLP Paths IDM w/ Lights 0.705 0.573 0.490 0.616
B2 MLP w/ Col. Paths IDM w/ Lights 0.723 0.572 0.490 0.624

Table 1. Ablation study. Each row represents a different config-
uration of our method, varying in initial position handling, lateral
control (Lat. Con.) and longitudinal control (Lon. Con.). META
shows the aggregated performance score as a weighted sum of the
interactive, map-based, and kinematic metrics.
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Method COLL OFFR DTNO TTC LINS LINA ANGS ANGA TLV DTRE META
0.25 0.25 0.1 0.1 0.05 0.05 0.05 0.05 0.05 0.05 1.00

Logged oracle 0.921 0.625 0.331 0.887 0.416 0.552 0.638 0.727 0.994 0.353 0.692
Logged oracle first 3 frames 0.921 0.625 0.281 0.861 0.356 0.492 0.590 0.670 0.994 0.328 0.672
Logged avg. distributions 0.880 0.520 0.281 0.869 0.333 0.513 0.597 0.699 0.990 0.231 0.633

IDM logged trajectories 0.874 0.608 0.304 0.869 0.345 0.471 0.602 0.680 0.870 0.334 0.653
IDM logged trajectories w/ traffic lights 0.882 0.615 0.303 0.870 0.351 0.484 0.601 0.680 0.979 0.337 0.663

SHRED 0.860 0.565 0.254 0.850 0.326 0.434 0.556 0.645 0.970 0.214 0.624

Table 2. Upper bounds. This table presents an evaluation of several upper-bound baselines on the miniVal set and compares them with
our method. The metametric is computed using the official challenge weights shown below each submetric’s name.

observe a slight but consistent improvement in the metrics
when evaluating 32 rollouts. As a baseline, we begin with a
constant velocity (CV) model using a fixed initial distribu-
tion of 40% off-road and 60% on-road objects (A1). This
configuration exhibits poor kinematic performance due to
its simplistic motion model, which assumes a constant ve-
locity along the initial heading. Moreover, it leads to off-
road trajectories and collisions. Introducing more realistic
longitudinal control via IDM (A2), aligned with lateral con-
trol by following lane centerlines, substantially improves
kinematic scores. Further enhancing IDM with traffic light
awareness leads to additional gains (A3), also in the map-
based metrics. Interestingly, the constant velocity baseline
still yields a higher interactive score. Upon closer analysis,
we find that our approach tends to simulate fewer collisions
than there are in the ground truth. To address this, we in-
troduce a forced collision mechanism in pedestrian-heavy
scenarios (A4). This increases the interactive score by ap-
proximately 0.02. Furthermore, we replace the fixed off-
road rate initialization with a learned MLP-based regressor
(B1). This leads to a notable improvement in the map-based
metric, primarily due to higher scores in the OFFR metric.
Combining the learned initialization with the forced colli-
sion mechanism (B2), we could achieve a META score of
0.624, our best overall performance on miniVal set.

Logged Oracles: In Table 2, we define 5 oracles for eval-
uation. The first oracle approximates an upper bound for
miniVal by computing the Negative Log-Likelihood (NLL)
of all valid ground truth samples under their corresponding
ground truth distributions. The second oracle leverages the
distribution derived from the first three ground truth frames
as the model output and evaluates the NLL of the ground
truth under this distribution. This highlights the critical role
of scene initialization. Third, we utilize the average distri-
butions computed across all scenarios in miniVal as a com-
mon output distribution for all scenarios and calculate the
NLL of the ground truth samples accordingly. Lastly, we
simulate the Waymax IDM policy following logged trajec-
tories with and without traffic light awareness.

The most appropriate upper-bound comparison for our
approach would be the results of IDM following logged tra-

jectories with traffic light considerations. With a delta of
0.06, the largest notable performance drop appears in the
OFFR metric, especially if we consider the relatively high
weight assigned to this metric in the META score. This
discrepancy suggests that our method, even when using an
MLP-based regressor, struggles to accurately predict the
correct number of off-road objects. We believe that this is a
key area for improvement in future work.

We also observe a consistent performance gap across
all kinematic metrics. We attribute this to our simplify-
ing assumption that off-road objects are static while on-
road objects are dynamic. Due to inaccuracies in off-road
prediction, as well as static on-road parked cars in the
ground truth, these assumptions likely lead to lower kine-
matic scores. Comparing the interactive metrics, our COLL
score almost aligns with the score from the IDM upper
bound. Although the map-based metrics of the IDM up-
per bound closely match those of the general upper bound
(logged oracle), noticeable differences remain in the inter-
active and kinematic metrics. The latter may be mitigated
through hyperparameter tuning of the IDM. However, the
gap in the interactive metrics likely reflects a fundamental
limitation of the IDM model (at least for meaningful pa-
rameterizations): its inability to capture the collision noise
present in the ground-truth data, as IDM is inherently de-
signed to avoid collisions whenever possible.

4. Conclusion
We introduce SHRED, a simple and mainly rule-based
baseline for the Waymo Scenario Generation Challenge
2025. Despite its simplicity, SHRED achieves competi-
tive leaderboard scores. We also identify some limitations
of the current evaluation metrics. Labeled collisions in the
ground truth likely are entirely noise and incentivize unde-
sirable behaviors such as forced collisions. Similarly, the
off-road label is not semantically meaningful and is par-
ticularly noisy for parked vehicles. These issues indicate
that current metrics assess conformity to labeling statistics
rather than the realism of generated scenarios. Future work
should aim to address these issues, potentially through a
two-stage evaluation framework as explored in [7].
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